WorldWideScience

Sample records for alignment-free local structural

  1. Efficient alignment-free DNA barcode analytics

    OpenAIRE

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient ...

  2. Alignment-free sequence comparison with spaced k-mers

    OpenAIRE

    Boden, Marcus; Schöneich, Martin; Horwege, Sebastian; Lindner, Sebastian; Leimeister, Chris; Morgenstern, Burkhard

    2013-01-01

    Alignment-free methods are increasingly used for genome analysis and phylogeny reconstruction since they circumvent various difficulties of traditional approaches that rely on multiple sequence alignments. In particular, they are much faster than alignment-based methods. Most alignment-free approaches work by analyzing the k-mer composition of sequences. In this paper, we propose to use 'spaced k-mers', i.e. patterns of deterministic and 'don't care' positions instead of contiguous k-me...

  3. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences

    OpenAIRE

    Pratas, Diogo; Silva, Raquel M; Pinho, Armando J.; Ferreira, Paulo J.S.G.

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrat...

  4. Complete experimental toolbox for alignment-free quantum communication

    CERN Document Server

    D'Ambrosio, Vincenzo; Walborn, Stephen P; Aolita, Leandro; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio

    2012-01-01

    Quantum communication employs the counter-intuitive features of quantum physics to perform tasks that are im- possible in the classical world. It is crucial for testing the foundations of quantum theory and promises to rev- olutionize our information and communication technolo- gies. However, for two or more parties to execute even the simplest quantum transmission, they must establish, and maintain, a shared reference frame. This introduces a considerable overhead in communication resources, par- ticularly if the parties are in motion or rotating relative to each other. We experimentally demonstrate how to circumvent this problem with the efficient transmission of quantum information encoded in rotationally invariant states of single photons. By developing a complete toolbox for the efficient encoding and decoding of quantum infor- mation in such photonic qubits, we demonstrate the fea- sibility of alignment-free quantum key-distribution, and perform a proof-of-principle alignment-free entanglement distribut...

  5. ALFRED: A Practical Method for Alignment-Free Distance Computation.

    Science.gov (United States)

    Thankachan, Sharma V; Chockalingam, Sriram P; Liu, Yongchao; Apostolico, Alberto; Aluru, Srinivas

    2016-06-01

    Alignment-free approaches are gaining persistent interest in many sequence analysis applications such as phylogenetic inference and metagenomic classification/clustering, especially for large-scale sequence datasets. Besides the widely used k-mer methods, the average common substring (ACS) approach has emerged to be one of the well-known alignment-free approaches. Two recent works further generalize this ACS approach by allowing a bounded number k of mismatches in the common substrings, relying on approximation (linear time) and exact computation, respectively. Albeit having a good worst-case time complexity [Formula: see text], the exact approach is complex and unlikely to be efficient in practice. Herein, we present ALFRED, an alignment-free distance computation method, which solves the generalized common substring search problem via exact computation. Compared to the theoretical approach, our algorithm is easier to implement and more practical to use, while still providing highly competitive theoretical performances with an expected run-time of [Formula: see text]. By applying our program to phylogenetic inference as a case study, we find that our program facilitates to exactly reconstruct the topology of the reference phylogenetic tree for a set of 27 primate mitochondrial genomes, at reasonably acceptable speed. ALFRED is implemented in C++ programming language and the source code is freely available online. PMID:27138275

  6. Complete experimental toolbox for alignment-free quantum communication

    Science.gov (United States)

    Sciarrino, Fabio

    2013-03-01

    Quantum communication employs the counter-intuitive features of quantum physics for tasks that are impossible in the classical world. It is crucial for testing the foundations of quantum theory and promises to revolutionize information and communication technologies. However, to execute even the simplest quantum transmission, one must establish, and maintain, a shared reference frame. This introduces a considerable overhead in resources, particularly if the parties are in motion or rotating relative to each other. We experimentally show how to circumvent this problem with the transmission of quantum information encoded in rotationally invariant states of single photons. Our approach exploits multiple degrees of freedom of single photons. In particular, the polarization and transverse spatial modes stand out for this purpose. Just as the circular polarization states are eigenstates of the spin angular momentum of light, the helical-wavefront Laguerre-Gaussian modes are eigenmodes of its orbital angular momentum (OAM). We implement photonic qubit invariant under rotation around the optical axis by combining the polarization with OAM properties. By developing a complete toolbox for the efficient encoding and decoding of quantum information in such photonic qubits, we demonstrate the feasibility of alignment-free quantum key-distribution, and perform proof-of-principle demonstrations of alignment-free entanglement distribution and Bell-inequality violation. The core of our toolbox is a liquid crystal device, named ``q-plate,'' that maps polarization-encoded qubits into qubits encoded in hybrid polarization-OAM states of the same photon that are invariant under arbitrary rotations around the propagation direction, and vice versa. The scheme should find applications in fundamental tests of quantum mechanics and satellite-based quantum communication. We will discuss the potential applications of this scheme to real quantum communication network. European project

  7. LAF: Logic Alignment Free and its application to bacterial genomes classification

    OpenAIRE

    Weitschek, Emanuel; Cunial, Fabio; Felici, Giovanni

    2015-01-01

    Alignment-free algorithms can be used to estimate the similarity of biological sequences and hence are often applied to the phylogenetic reconstruction of genomes. Most of these algorithms rely on comparing the frequency of all the distinct substrings of fixed length (k-mers) that occur in the analyzed sequences. In this paper, we present Logic Alignment Free (LAF), a method that combines alignment-free techniques and rule-based classification algorithms in order to assign biological samples ...

  8. Sequence Comparison Alignment-Free Approach Based on Suffix Tree and L-Words Frequency

    Directory of Open Access Journals (Sweden)

    Inês Soares

    2012-01-01

    Full Text Available The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions. In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L—L-words—in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  9. Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.

    Science.gov (United States)

    Agüero-Chapin, Guillermin; Pérez-Machado, Gisselle; Sánchez-Rodríguez, Aminael; Santos, Miguel Machado; Antunes, Agostinho

    2016-01-01

    Identifying adenylation domains (A-domains) and their substrate specificity can aid the detection of nonribosomal peptide synthetases (NRPS) at genome/proteome level and allow inferring the structure of oligopeptides with relevant biological activities. However, that is challenging task due to the high sequence diversity of A-domains (~10-40 % of amino acid identity) and their selectivity for 50 different natural/unnatural amino acids. Altogether these characteristics make their detection and the prediction of their substrate specificity a real challenge when using traditional sequence alignment methods, e.g., BLAST searches. In this chapter we describe two workflows based on alignment-free methods intended for the identification and substrate specificity prediction of A-domains. To identify A-domains we introduce a graphical-numerical method, implemented in TI2BioP version 2.0 (topological indices to biopolymers), which in a first step uses protein four-color maps to represent A-domains. In a second step, simple topological indices (TIs), called spectral moments, are derived from the graphical representations of known A-domains (positive dataset) and of unrelated but well-characterized sequences (negative set). Spectral moments are then used as input predictors for statistical classification techniques to build alignment-free models. Finally, the resulting alignment-free models can be used to explore entire proteomes for unannotated A-domains. In addition, this graphical-numerical methodology works as a sequence-search method that can be ensemble with homology-based tools to deeply explore the A-domain signature and cope with the diversity of this class (Aguero-Chapin et al., PLoS One 8(7):e65926, 2013). The second workflow for the prediction of A-domain's substrate specificity is based on alignment-free models constructed by transductive support vector machines (TSVMs) that incorporate information of uncharacterized A-domains. The construction of the models was

  10. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences.

    Science.gov (United States)

    Pratas, Diogo; Silva, Raquel M; Pinho, Armando J; Ferreira, Paulo J S G

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrate the power and usefulness of the method we give complete chromosomal information maps for the pairs human-chimpanzee and human-orangutan. The tool by means of which these results were obtained has been made publicly available and is described in detail. PMID:25984837

  11. Alignment-free comparison of genome sequences by a new numerical characterization.

    Science.gov (United States)

    Huang, Guohua; Zhou, Houqing; Li, Yongfan; Xu, Lixin

    2011-07-21

    In order to compare different genome sequences, an alignment-free method has proposed. First, we presented a new graphical representation of DNA sequences without degeneracy, which is conducive to intuitive comparison of sequences. Then, a new numerical characterization based on the representation was introduced to quantitatively depict the intrinsic nature of genome sequences, and considered as a 10-dimensional vector in the mathematical space. Alignment-free comparison of sequences was performed by computing the distances between vectors of the corresponding numerical characterizations, which define the evolutionary relationship. Two data sets of DNA sequences were constructed to assess the performance on sequence comparison. The results illustrate well validity of the method. The new numerical characterization provides a powerful tool for genome comparison. PMID:21536050

  12. Genome-based phylogeny of dsDNA viruses by a novel alignment-free method.

    Science.gov (United States)

    Gao, Yang; Luo, Liaofu

    2012-01-15

    Sequence alignment is not directly applicable to whole genome phylogeny since several events such as rearrangements make full length alignments impossible. Here, a novel alignment-free method derived from the standpoint of information theory is proposed and used to construct the whole-genome phylogeny for a population of viruses from 13 viral families comprising 218 dsDNA viruses. The method is based on information correlation (IC) and partial information correlation (PIC). We observe that (i) the IC-PIC tree segregates the population into clades, the membership of each is remarkably consistent with biologist's systematics only with little exceptions; (ii) the IC-PIC tree reveals potential evolutionary relationships among some viral families; and (iii) the IC-PIC tree predicts the taxonomic positions of certain "unclassified" viruses. Our approach provides a new way for recovering the phylogeny of viruses, and has practical applications in developing alignment-free methods for sequence classification. PMID:22100880

  13. Clustering of reads with alignment-free measures and quality values

    OpenAIRE

    Comin, Matteo; Leoni, Andrea; Schimd, Michele

    2015-01-01

    Background The data volume generated by Next-Generation Sequencing (NGS) technologies is growing at a pace that is now challenging the storage and data processing capacities of modern computer systems. In this context an important aspect is the reduction of data complexity by collapsing redundant reads in a single cluster to improve the run time, memory requirements, and quality of post-processing steps like assembly and error correction. Several alignment-free measures, based on k-mers count...

  14. A Novel Alignment-Free Method for Comparing Transcription Factor Binding Site Motifs

    Science.gov (United States)

    Xu, Minli; Su, Zhengchang

    2010-01-01

    Background Transcription factor binding site (TFBS) motifs can be accurately represented by position frequency matrices (PFM) or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position alignment between the two compared motifs. In some applications, alignment-free methods might be preferred; however, few such methods with high accuracy have been described. Methodology/Principal Findings Here we describe a novel alignment-free method for quantifying the similarity of motifs using their PFMs by converting PFMs into k-mer vectors. The motifs could then be compared by measuring the similarity among their corresponding k-mer vectors. Conclusions/Significance We demonstrate that our method in general achieves similar performance or outperforms the existing methods for clustering motifs according to their binding preference and identifying similar motifs of transcription factors of the same family. PMID:20098703

  15. A novel alignment-free method for comparing transcription factor binding site motifs.

    Directory of Open Access Journals (Sweden)

    Minli Xu

    Full Text Available BACKGROUND: Transcription factor binding site (TFBS motifs can be accurately represented by position frequency matrices (PFM or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position alignment between the two compared motifs. In some applications, alignment-free methods might be preferred; however, few such methods with high accuracy have been described. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a novel alignment-free method for quantifying the similarity of motifs using their PFMs by converting PFMs into k-mer vectors. The motifs could then be compared by measuring the similarity among their corresponding k-mer vectors. CONCLUSIONS/SIGNIFICANCE: We demonstrate that our method in general achieves similar performance or outperforms the existing methods for clustering motifs according to their binding preference and identifying similar motifs of transcription factors of the same family.

  16. Local structure of supercritical matter

    OpenAIRE

    Bolmatov, Dima; Zav'yalov, D.; Zhernenkov, M.

    2014-01-01

    The supercritical state is currently viewed as uniform on the pressure-temperature phase diagram. Supercritical fluids have the dynamic motions of a gas but are able to dissolve materials like a liquid. They have started to be deployed in many important industrial applications stimulating fundamental theoretical work and development of experimental techniques. Here, we have studied local structure of supercritical matter by calculating static structure factor, mean force potential, self-diffu...

  17. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  18. Protein structure search and local structure characterization

    Directory of Open Access Journals (Sweden)

    Ku Shih-Yen

    2008-08-01

    Full Text Available Abstract Background Structural similarities among proteins can provide valuable insight into their functional mechanisms and relationships. As the number of available three-dimensional (3D protein structures increases, a greater variety of studies can be conducted with increasing efficiency, among which is the design of protein structural alphabets. Structural alphabets allow us to characterize local structures of proteins and describe the global folding structure of a protein using a one-dimensional (1D sequence. Thus, 1D sequences can be used to identify structural similarities among proteins using standard sequence alignment tools such as BLAST or FASTA. Results We used self-organizing maps in combination with a minimum spanning tree algorithm to determine the optimum size of a structural alphabet and applied the k-means algorithm to group protein fragnts into clusters. The centroids of these clusters defined the structural alphabet. We also developed a flexible matrix training system to build a substitution matrix (TRISUM-169 for our alphabet. Based on FASTA and using TRISUM-169 as the substitution matrix, we developed the SA-FAST alignment tool. We compared the performance of SA-FAST with that of various search tools in database-scale search tasks and found that SA-FAST was highly competitive in all tests conducted. Further, we evaluated the performance of our structural alphabet in recognizing specific structural domains of EGF and EGF-like proteins. Our method successfully recovered more EGF sub-domains using our structural alphabet than when using other structural alphabets. SA-FAST can be found at http://140.113.166.178/safast/. Conclusion The goal of this project was two-fold. First, we wanted to introduce a modular design pipeline to those who have been working with structural alphabets. Secondly, we wanted to open the door to researchers who have done substantial work in biological sequences but have yet to enter the field of protein

  19. RV-Typer: A Web Server for Typing of Rhinoviruses Using Alignment-Free Approach.

    Directory of Open Access Journals (Sweden)

    Pandurang S Kolekar

    Full Text Available Rhinoviruses (RV are increasingly being reported to cause mild to severe infections of respiratory tract in humans. RV are antigenically the most diverse species of the genus Enterovirus and family Picornaviridae. There are three species of RV (RV-A, -B and -C, with 80, 32 and 55 serotypes/types, respectively. Antigenic variation is the main limiting factor for development of a cross-protective vaccine against RV.Serotyping of Rhinoviruses is carried out using cross-neutralization assays in cell culture. However, these assays become laborious and time-consuming for the large number of strains. Alternatively, serotyping of RV is carried out by alignment-based phylogeny of both protein and nucleotide sequences of VP1. However, serotyping of RV based on alignment-based phylogeny is a multi-step process, which needs to be repeated every time a new isolate is sequenced. In view of the growing need for serotyping of RV, an alignment-free method based on "return time distribution" (RTD of amino acid residues in VP1 protein has been developed and implemented in the form of a web server titled RV-Typer. RV-Typer accepts nucleotide or protein sequences as an input and computes return times of di-peptides (k = 2 to assign serotypes. The RV-Typer performs with 100% sensitivity and specificity. It is significantly faster than alignment-based methods. The web server is available at http://bioinfo.net.in/RV-Typer/home.html.

  20. LOCAL ATOMIC STRUCTURE OF AMORPHOUS METALS

    OpenAIRE

    Egami, T.; Maed, K.; Srolovitz, D.; Vitek, V.

    1980-01-01

    The local parameters are introduced to describe the local atomic structure of amorphous metals. They define the structural defects which facilitate the explanation of various properties, including the volume change by annealing.

  1. The structure of local gravity theories

    OpenAIRE

    Dupre, Maurice J.

    2014-01-01

    We discuss the structure of local gravity theories as resulting from the idea that locally gravity must be physically characterized by tidal acceleration, and show how this relates to both Newtonian gravity and Einstein's general relativity.

  2. Enhancing community detection by local structural information

    CERN Document Server

    Xiang, Ju; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-01-01

    Many real-world networks such as the gene networks, protein-protein interaction networks and metabolic networks exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have positive effect on community detection in the networks. Here, various local similarity measures are used to extract the local structural information and then are applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial to the improvement for the community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and the applied community detection methods.

  3. Combinatorics of locally optimal RNA secondary structures.

    Science.gov (United States)

    Fusy, Eric; Clote, Peter

    2014-01-01

    It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366∙n-3/2∙2.618034n. Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are 1.07427∙n-3/2∙2.35467n many saturated structures for a sequence of length n. In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles). PMID:23263300

  4. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

    Science.gov (United States)

    Teng, Tun-Chien; Lai, Wei-Che

    2014-12-15

    This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X). PMID:25607496

  5. Local structures on stratified spaces

    OpenAIRE

    Ayala, David; Francis, John; Tanaka, Hiro Lee

    2014-01-01

    We develop a theory of smoothly stratified spaces and their moduli, including a notion of maps classifying tangential structures. We characterize continuous, space-valued sheaves on these smoothly stratified spaces in terms of tangential data, and we similarly characterize 1-excisive invariants of stratified spaces. These results are based on the existence of open handlebody decompositions for stratified spaces, as well as functorial resolutions of singularities to smooth manifolds with corners.

  6. Local backbone structure prediction of proteins.

    Science.gov (United States)

    de Brevern, Alexandre G; Benros, Cristina; Gautier, Romain; Valadié, Héléne; Hazout, Serge; Etchebest, Catherine

    2004-01-01

    A statistical analysis of the PDB structures has led us to define a new set of small 3D structural prototypes called Protein Blocks (PBs). This structural alphabet includes 16 PBs, each one is defined by the (phi, psi) dihedral angles of 5 consecutive residues. The amino acid distributions observed in sequence windows encompassing these PBs are used to predict by a Bayesian approach the local 3D structure of proteins from the sole knowledge of their sequences. LocPred is a software which allows the users to submit a protein sequence and performs a prediction in terms of PBs. The prediction results are given both textually and graphically. PMID:15724288

  7. Organizational structural changes in Danish local Government

    OpenAIRE

    Sehested, Karina

    1993-01-01

    Since 1990, profound structural changes in the organization of local government have taken place in Denmark: Changes in the political structure (with the consolidation of political committees), in the administration (with the consolidation of departments and internal decentralization), and at the level of institutions (with decentralization from the administrative unit to the institutions). At the center of the changes are despecialization and decentralization. The longterm goal is to improve...

  8. Fingerprint Recognition Using Global and Local Structures

    OpenAIRE

    Kalyani Mali,; Samayita Bhattacharya

    2011-01-01

    Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solvedproblem is a common mistake. The global level structures consist of many ridges to form some specific shape like arch, loop, and whorl. Local level structures are called minutiae, which further classified as either endpoints or bifurcations. Either of which can be used to identify the fingerprint, o...

  9. Fingerprint Recognition Using Global and Local Structures

    Directory of Open Access Journals (Sweden)

    Kalyani Mali,

    2011-01-01

    Full Text Available Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solvedproblem is a common mistake. The global level structures consist of many ridges to form some specific shape like arch, loop, and whorl. Local level structures are called minutiae, which further classified as either endpoints or bifurcations. Either of which can be used to identify the fingerprint, our approach uses both methods.

  10. Structure Process, Weak Values and Local Momentum

    Science.gov (United States)

    Hiley, B. J.

    2016-03-01

    We explain how weak values and the local momentum can be better understood in terms of Bohm's notion of structure process. The basic ideas of this approach can be expressed in a fully algebraic way, generalising Heisenberg's original matrix mechanics. This approach leads to questions that are now being experimentally investigated by our group at University College London.

  11. Finding local community structure in networks

    CERN Document Server

    Clauset, A

    2005-01-01

    Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O(d*k^2) for general graphs when $d$ is the mean degree and k is the number of vertices to be explored. For graphs where exploring a new vertex is time-consuming, the running time is linear, O(k). We show that on computer-generated graphs this technique compares favorably to algorithms that require global knowledge. We also use this algorithm to extract meaningful local clustering information in the large recommender network of an online retailer and show the existence of mesoscopic structure.

  12. A structural alphabet for local protein structures: improved prediction methods.

    Science.gov (United States)

    Etchebest, Catherine; Benros, Cristina; Hazout, Serge; de Brevern, Alexandre G

    2005-06-01

    Three-dimensional protein structures can be described with a library of 3D fragments that define a structural alphabet. We have previously proposed such an alphabet, composed of 16 patterns of five consecutive amino acids, called Protein Blocks (PBs). These PBs have been used to describe protein backbones and to predict local structures from protein sequences. The Q16 prediction rate reaches 40.7% with an optimization procedure. This article examines two aspects of PBs. First, we determine the effect of the enlargement of databanks on their definition. The results show that the geometrical features of the different PBs are preserved (local RMSD value equal to 0.41 A on average) and sequence-structure specificities reinforced when databanks are enlarged. Second, we improve the methods for optimizing PB predictions from sequences, revisiting the optimization procedure and exploring different local prediction strategies. Use of a statistical optimization procedure for the sequence-local structure relation improves prediction accuracy by 8% (Q16 = 48.7%). Better recognition of repetitive structures occurs without losing the prediction efficiency of the other local folds. Adding secondary structure prediction improved the accuracy of Q16 by only 1%. An entropy index (Neq), strongly related to the RMSD value of the difference between predicted PBs and true local structures, is proposed to estimate prediction quality. The Neq is linearly correlated with the Q16 prediction rate distributions, computed for a large set of proteins. An "expected" prediction rate QE16 is deduced with a mean error of 5%. PMID:15822101

  13. On the local structure of Dirac manifolds

    OpenAIRE

    Dufour, Jean-Paul; Wade, Aissa

    2004-01-01

    We give a local normal form for Dirac structures. As a consequence, we show that the dimensions of the pre-symplectic leaves of a Dirac manifold have the same parity. We also show that, given a point $m$ of a Dirac manifold $M$, there is a well-defined transverse Poisson structure to the pre-symplectic leaf $P$ through $m$. Finally, we describe the neighborhood of a pre-symplectic leaf in terms of geometric data. This description agrees with that given by Vorobjev for the Poisson case

  14. Simple Ligand–Receptor Interaction Descriptor (SILIRID for alignment-free binding site comparison

    Directory of Open Access Journals (Sweden)

    Vladimir Chupakhin

    2014-06-01

    Full Text Available We describe SILIRID (Simple Ligand–Receptor Interaction Descriptor, a novel fixed size descriptor characterizing protein–ligand interactions. SILIRID can be obtained from the binary interaction fingerprints (IFPs by summing up the bits corresponding to identical amino acids. This results in a vector of 168 integer numbers corresponding to the product of the number of entries (20 amino acids and one cofactor and 8 interaction types per amino acid (hydrophobic, aromatic face to face, aromatic edge to face, H-bond donated by the protein, H-bond donated by the ligand, ionic bond with protein cation and protein anion, and interaction with metal ion. Efficiency of SILIRID to distinguish different protein binding sites has been examined in similarity search in sc-PDB database, a druggable portion of the Protein Data Bank, using various protein–ligand complexes as queries. The performance of retrieval of structurally and evolutionary related classes of proteins was comparable to that of state-of-the-art approaches (ROC AUC ≈ 0.91. SILIRID can efficiently be used to visualize chemogenomic space covered by sc-PDB using Generative Topographic Mapping (GTM: sc-PDB SILIRID data form clusters corresponding to different protein types.

  15. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy

    Institute of Scientific and Technical Information of China (English)

    Guanghong Zuo; Bailin Hao

    2015-01-01

    A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/without login requirements.

  16. The Local Structure of Amorphous Silicon

    Science.gov (United States)

    Treacy, M. M. J.; Borisenko, K. B.

    2012-02-01

    It is widely believed that the continuous random network (CRN) model represents the structural topology of amorphous silicon. The key evidence is that the model can reproduce well experimental reduced density functions (RDFs) obtained by diffraction. By using a combination of electron diffraction and fluctuation electron microscopy (FEM) variance data as experimental constraints in a structural relaxation procedure, we show that the CRN is not unique in matching the experimental RDF. We find that inhomogeneous paracrystalline structures containing local cubic ordering at the 10 to 20 angstrom length scale are also fully consistent with the RDF data. Crucially, they also matched the FEM variance data, unlike the CRN model. The paracrystalline model has implications for understanding phase transformation processes in various materials that extend beyond amorphous silicon.

  17. Structure of BRS-invariant local functionals

    International Nuclear Information System (INIS)

    For a large class of gauge theories a nilpotent BRS-operator s is constructed and its cohomology in the space of local functionals of the off-shell fields is shown to be isomorphic to the cohomology of s=s+d on functions f(C,T) of tensor fields T and of variables C which are constructed of the ghosts and the connection forms. The result allows general statements about the structure of invariant classical actions and anomaly cadidates whose BRS-variation vanishes off-shell. The assumptions under which the result holds are thoroughly discussed. (orig.)

  18. Local entanglement structure across a many-body localization transition

    Science.gov (United States)

    Bera, Soumya; Lakshminarayan, Arul

    2016-04-01

    Local entanglement between pairs of spins, as measured by concurrence, is investigated in a disordered spin model that displays a transition from an ergodic to a many-body localized phase in excited states. It is shown that the concurrence vanishes in the ergodic phase and becomes nonzero and increases in the many-body localized phase. This happen to be correlated with the transition in the spectral statistics from Wigner to Poissonian distribution. A scaling form is found to exist in the second derivative of the concurrence with the disorder strength. It also displays a critical value for the localization transition that is close to what is known in the literature from other measures. An exponential decay of concurrence with distance between spins is observed in the localized phase. Nearest neighbor spin concurrence in this phase is also found to be strongly correlated with the disorder configuration of on-site fields: nearly similar fields implying larger entanglement.

  19. GUTSS: An Alignment-Free Sequence Comparison Method for Use in Human Intestinal Microbiome and Fecal Microbiota Transplantation Analysis

    Science.gov (United States)

    Heltshe, Sonya L.; Hayden, Hillary S.; Radey, Matthew C.; Weiss, Eli J.; Damman, Christopher J.; Zisman, Timothy L.; Suskind, David L.; Miller, Samuel I.

    2016-01-01

    Background Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS) metagenomic sequence are lacking. Results We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray–Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS) software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT) studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT. Conclusion Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical

  20. Community detection using global and local structural information

    Indian Academy of Sciences (India)

    Hai-Long Yan; Ju Xiang; Xiao-Yu Zhang; Jun-Feng Fan; Fang Chane; Gen-Yi Fu; Er-Min Guo; Xin-Guang Hu; Ke Hu; Ru-Min Wang

    2013-01-01

    Community detection is of considerable importance for understanding both the structure and function of complex networks. In this paper, we introduced the general procedure of the community detection algorithms using global and local structural information, where the edge betweenness and the local similarity measures respectively based on local random walk dynamics and local cyclic structures were used. The algorithms were tested on artificial and real-world networks. The results clearly show that all the algorithms have excellent performance in the tests and the local similarity measure based on local random walk dynamics is superior to that based on local cyclic structures.

  1. Importance of Local Structural Variations on Recrystallization

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Lin, Fengxiang; Zhang, Yubin; Zhang, Y.H.

    2013-01-01

    Effects of local variations in the deformation microstructure on subsequent recrystallization are discussed and illustrated by three examples. The three examples consider local variations on different length scales and are: 1. Effects of local variations in the deformation microstructure on the f...

  2. Local Government Structure and Capacities in Europe

    NARCIS (Netherlands)

    Nemec, J.; Vries, M.S. de

    2015-01-01

    This article argues that the local government capacities and local government performance in Europe clearly rank this continent to the most developed world areas from the point of local democracy. The background factors explaining this situation have a multidimensional character and one can identify

  3. PDF analysis of PuAl alloys local structure

    Science.gov (United States)

    Platteau, C.; Bruckel, P.; Ravat, B.; Delaunay, F.

    2009-03-01

    For understanding singular properties of plutonium, there is a need in studying the average and local atomic structure in Pu alloys. To study the local structure of the δ phase, a pair distribution function (PDF) analysis was done and has shown some significant differences with the average structure.

  4. Geometry motivated alternative view on local protein backbone structures

    OpenAIRE

    Zacharias, Jan; Knapp, Ernst Walter

    2013-01-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (ϕ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, whi...

  5. Invariant current approach to wave propagation in locally symmetric structures

    Science.gov (United States)

    Zampetakis, V. E.; Diakonou, M. K.; Morfonios, C. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.

    2016-05-01

    A theory for wave mechanical systems with local inversion and translation symmetries is developed employing the two-dimensional solution space of the stationary Schrödinger equation. The local symmetries of the potential are encoded into corresponding local basis vectors in terms of symmetry-induced two-point invariant currents which map the basis amplitudes between symmetry-related points. A universal wavefunction structure in locally symmetric potentials is revealed, independently of the physical boundary conditions, by using special local bases which are adapted to the existing local symmetries. The local symmetry bases enable efficient computation of spatially resolved wave amplitudes in systems with arbitrary combinations of local inversion and translation symmetries. The approach opens the perspective of a flexible analysis and control of wave localization in structurally complex systems.

  6. Local Structure Analysis of Bi2WO6

    Science.gov (United States)

    Yoneda, Yasuhiro; Kohara, Shinji; Takeda, Hiroaki; Tsurumi, Takaaki

    2012-09-01

    A local structure analysis of Bi2WO6 was performed by high-energy X-ray atomic pair-distribution function (PDF) analysis. We found a deviation between the local and average structures owing to the different coherence lengths between the Bi2O2 and WO6 layers. Bi atoms were displaced toward the b-axis of the orthorhombic Pca21 structure. The local off-center shift of Bi atoms coupled with the thermal factor but not with the average structure and thus was neglected. The coherence length of the Bi2O2 layer increased with increasing temperature and spread in the whole crystal when the average structure changed from the Pca21 structure to the Aba2 structure.

  7. Local Structural Alignment of RNA with Affine Gap Model

    Science.gov (United States)

    Wong, Thomas K. F.; Cheung, Brenda W. Y.; Lam, T. W.; Yiu, S. M.

    Predicting new non-coding RNAs (ncRNAs) of a family can be done by aligning the potential candidate with a member of the family with known sequence and secondary structure. Existing tools either only consider the sequence similarity or cannot handle local alignment with gaps. In this paper, we consider the problem of finding the optimal local structural alignment between a query RNA sequence (with known secondary structure) and a target sequence (with unknown secondary structure) with the affine gap penalty model. We provide the algorithm to solve the problem. Based on a preliminary experiment, we show that there are ncRNA families in which considering local structural alignment with gap penalty model can identify real hits more effectively than using global alignment or local alignment without gap penalty model.

  8. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  9. Mapping the local structure of nanowires

    DEFF Research Database (Denmark)

    Persson, Johan Mikael; Wagner, Jakob Birkedal

    2013-01-01

    The crystallographic and compositional structure of heterostructured semiconductor nanowires has been studied by means of transmission electron microscopy. The native geometry of the studied InP-GaAs nanowires (80-100 nm in diameter) is in general too thick for reliable high-resolution TEM imaging....... Nano Beam Electron Diffraction (NBED) is shown to be a powerful technique to reveal strain near the interface of compositional change in heterostructured semiconductor nanowires. Furthermore, the relative orientation of the nanowires is studied by means of NBED revealing the nanowires to be very...

  10. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  11. Local structure analyzers as determinants of preattentive pattern discrimination.

    Science.gov (United States)

    Kröse, B J

    1987-01-01

    Contemporary literature suggests that preattentive texture or pattern discrimination is induced by differences between local structure features or "textons." This paper presents a model for the description of such local structure features based on the computation of local autocorrelations within the image. By means of this structure model a measure of structure dissimilarity is introduced. Experiments have been carried out to test a hypothesized relation between the detectability of a target pattern in a field of background patterns and the value of the structure dissimilarity measure. The experimental results show that it seems justified to relate, in a quantitative way, the detectability of the target pattern to the value of the structure dissimilarity measure. PMID:3828403

  12. Semifolded Localized Structures in Three-Dimensional Soliton Systems

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Ping; ZHENG Chun-Long; CHEN Li-Qun

    2004-01-01

    By means ora Painlevé-Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer-Kaup-Kupershmidt system with variable coefficients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.

  13. Localized vibrations: moles in structure-land

    Science.gov (United States)

    van der Maas, John H.

    1992-03-01

    Functional groups reveal specific information about their direct surroundings; in fact, they form the moles, the undercover agents, in molecules. However, as with agents, the information is produced in coded form (spectral data) so one has to know the code in detail before the message is completely understood. The substantially improved accuracy (wavenumber, intensity) and sensitivity brought about by FT-instruments, in combination with computer software, offer extended spectral information. Functional groups can now be examined in great detail. Obviously the amount of deducible structural items is group dependent, implying that one has to pursue the probing qualities of a functionality prior to use. The OH-group, and more in particular the OH-stretching vibration, proves to be an extremely good mole. Its potentials are demonstrated on conformational studies of various saturated alcohols, the presence of OH(DOT)(DOT)(DOT)(pi) bridges, the strength and type of OH(DOT)(DOT)(DOT)O bridges, all in an apolar solvent, and on the disclosure of different hydrogen bonds in some solid samples.

  14. A generative, probabilistic model of local protein structure

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Mardia, Kanti V.; Taylor, Charles C.; Ferkinghoff-Borg, Jesper; Krogh, Anders; Hamelryck, Thomas

    2008-01-01

    Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative...... conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state...

  15. Structure of local interactions in complex financial dynamics

    Science.gov (United States)

    Jiang, X. F.; Chen, T. T.; Zheng, B.

    2014-06-01

    With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis.

  16. An online substructure identification method for local structural health monitoring

    International Nuclear Information System (INIS)

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment. (paper)

  17. Reconstruction of biofilm images: combining local and global structural parameters

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-11-07

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  18. Global/local methods for probabilistic structural analysis

    Science.gov (United States)

    Millwater, H. R.; Wu, Y.-T.

    1993-01-01

    A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.

  19. Local Area Damage Detection in Composite Structures Using Piezoelectric Transducers

    CERN Document Server

    Lichtenwalner, Peter F

    1998-01-01

    An integrated and automated smart structures approach for structural health monitoring is presented, utilizing an array of piezoelectric transducers attached to or embedded within the structure for both actuation and sensing. The system actively interrogates the structure via broadband excitation of multiple actuators across a desired frequency range. The structure's vibration signature is then characterized by computing the transfer functions between each actuator/sensor pair, and compared to the baseline signature. Experimental results applying the system to local area damage detection in a MD Explorer rotorcraft composite flexbeam are presented.

  20. Parametric localized modes in quadratic nonlinear photonic structures

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole; Soukoulis, Costas M.

    2001-01-01

    We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi2) nonlinear interfaces embedded in a linear layered structure-a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear...... linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media....

  1. Measurement of local relative displacements in large structures

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Eder, Martin Alexander; Nielsen, Magda

    2014-01-01

    and capable of measuring 3D local displacements with a high degree of accuracy. In this article, the technique is used to measure local deformations in the vicinity of the adhesive trailing edge joint of a wind turbine rotor blade. The SDMS results correspond well with another independent measurement...... particular. The measurement of small local relative displacements in structures subjected to large global deformations is complex and hardly feasible with conventional measurement methods. Therefore, a Small Displacement Measurement System (SDMS) has been devised. The SDMS is based on stereo photogrammetry...

  2. Evaluation of Screening Mammograms by Local Structural Mixture Models

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Lee, G. L.

    Praha: Czech Technical University in Prague, 2012, s. 51-61. ISBN 978-80-01-05130-6. [Stochastic and Physical Monitoring Systems. Zlenice near Prague (CZ), 25.06.2012-30.06.2012] R&D Projects: GA ČR GA102/08/0593 Grant ostatní: GA ČR(CZ) GAP403/12/1557 Institutional support: RVO:67985556 Keywords : Screening mammography * Texture information * Local statistical model * Log-likelihood image * Structural Gaussian mixture Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2012/RO/grim-evaluation of screening mammograms by local structural mixture modelsr.pdf

  3. One Single Static Measurement Predicts Wave Localization in Complex Structures

    Science.gov (United States)

    Lefebvre, Gautier; Gondel, Alexane; Dubois, Marc; Atlan, Michael; Feppon, Florian; Labbé, Aimé; Gillot, Camille; Garelli, Alix; Ernoult, Maxence; Mayboroda, Svitlana; Filoche, Marcel; Sebbah, Patrick

    2016-08-01

    A recent theoretical breakthrough has brought a new tool, called the localization landscape, for predicting the localization regions of vibration modes in complex or disordered systems. Here, we report on the first experiment which measures the localization landscape and demonstrates its predictive power. Holographic measurement of the static deformation under uniform load of a thin plate with complex geometry provides direct access to the landscape function. When put in vibration, this system shows modes precisely confined within the subregions delineated by the landscape function. Also the maxima of this function match the measured eigenfrequencies, while the minima of the valley network gives the frequencies at which modes become extended. This approach fully characterizes the low frequency spectrum of a complex structure from a single static measurement. It paves the way for controlling and engineering eigenmodes in any vibratory system, especially where a structural or microscopic description is not accessible.

  4. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions. PMID:18491388

  5. PredyFlexy: flexibility and local structure prediction from sequence

    Science.gov (United States)

    de Brevern, Alexandre G.; Bornot, Aurélie; Craveur, Pierrick; Etchebest, Catherine; Gelly, Jean-Christophe

    2012-01-01

    Protein structures are necessary for understanding protein function at a molecular level. Dynamics and flexibility of protein structures are also key elements of protein function. So, we have proposed to look at protein flexibility using novel methods: (i) using a structural alphabet and (ii) combining classical X-ray B-factor data and molecular dynamics simulations. First, we established a library composed of structural prototypes (LSPs) to describe protein structure by a limited set of recurring local structures. We developed a prediction method that proposes structural candidates in terms of LSPs and predict protein flexibility along a given sequence. Second, we examine flexibility according to two different descriptors: X-ray B-factors considered as good indicators of flexibility and the root mean square fluctuations, based on molecular dynamics simulations. We then define three flexibility classes and propose a method based on the LSP prediction method for predicting flexibility along the sequence. This method does not resort to sophisticate learning of flexibility but predicts flexibility from average flexibility of predicted local structures. The method is implemented in PredyFlexy web server. Results are similar to those obtained with the most recent, cutting-edge methods based on direct learning of flexibility data conducted with sophisticated algorithms. PredyFlexy can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/. PMID:22689641

  6. Analysis of local influences in structural details of the bridges

    Directory of Open Access Journals (Sweden)

    Adam RUDZIK

    2015-03-01

    Full Text Available The article analyses the problems of local influences in structural details of bridges as the critical locations, whose damages or excessive force may directly affect the safety of users. These analyses are shown on selected examples. Presented is the example of local changes in the forms of proper vibrations in the node of the truss bridge that can be used in expert issues concerning the causes of damages. The second example are the changes in stresses in the stay cable anchorage element including the nonlinear material models. Models of this type can be successfully used by engineers as they allow for analysis of selected structural details without the need for detailed mapping of the entire structure, but only a selected section.

  7. Local magnetic structure determination using polarized neutron holography

    Energy Technology Data Exchange (ETDEWEB)

    Szakál, Alex, E-mail: szakal.alex@wigner.mta.hu; Markó, Márton, E-mail: marko.marton@wigner.mta.hu; Cser, László, E-mail: cser.laszlo@wigner.mta.hu [Wigner Research Centre for Physics, Konkoly Thege M. út 29-33, H-1121 Budapest (Hungary)

    2015-05-07

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  8. Early detection of local buckling in structural members

    Science.gov (United States)

    Ali, Bashir; Sundaresan, Mannur J.; Schulz, Mark J.; Hughes, Derke

    2005-05-01

    Most structural health monitoring analyses to date have focused on the determination of damage in the form of crack growth in metallic materials or delamination or other types of damage growth in composite materials. However, in many applications, local instability in the form of buckling can be the precursor to more extensive damage and unstable failure of the structure. If buckling could be detected in the very early stages, there is a possibility of taking preventive measures to stabilize and save the structure. Relatively few investigations have addressed this type of damage initiation in structures. Recently, during the structural health monitoring of a wind turbine blade, local buckling was identified as the cause of premature failure. A stress wave propagation technique was used in this test to detect the precursor to the buckling failure in the form of early changes in the local curvature of the blade. These conditions have also been replicated in the laboratory and results are reported in this paper. A composite column was subjected to axial compression to induce various levels of buckling deformation. Two different techniques were used to detect the precursors to buckling in this column. The first identifier is the change in the vibration shapes and natural frequencies of the column. The second is the change in the characteristics of diagnostic Lamb waves during the buckling deformation. Experiments indicate that very small changes in curvature during the initial stages of buckling are detectable using the structural health monitoring techniques. The experimental vibration characteristics of the column with slight initial curvatures compared qualitatively with finite element results. The finite element analysis is used to identify the frequencies that are most sensitive to buckling deformation, and to select suitable locations for the placement of sensors that can detect even small changes in the local curvature.

  9. Topological framework for local structure analysis in condensed matter.

    Science.gov (United States)

    Lazar, Emanuel A; Han, Jian; Srolovitz, David J

    2015-10-27

    Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous descriptions. We demonstrate the connection of this approach to the behavior of physical systems and explore how crystalline structure is compromised at elevated temperatures. We also illustrate potential applications to identifying defects in plastically deformed polycrystals at high temperatures, automating analysis of complex structures, and characterizing general disordered systems. PMID:26460045

  10. Structure alignment based on coding of local geometric measures

    Directory of Open Access Journals (Sweden)

    Rinne Andrew W

    2006-07-01

    Full Text Available Abstract Background A structure alignment method based on a local geometric property is presented and its performance is tested in pairwise and multiple structure alignments. In this approach, the writhing number, a quantity originating from integral formulas of Vassiliev knot invariants, is used as a local geometric measure. This measure is used in a sliding window to calculate the local writhe down the length of the protein chain. By encoding the distribution of writhing numbers across all the structures in the protein databank (PDB, protein geometries are represented in a 20-letter alphabet. This encoding transforms the structure alignment problem into a sequence alignment problem and allows the well-established algorithms of sequence alignment to be employed. Such geometric alignments offer distinct advantages over structural alignments in Cartesian coordinates as it better handles structural subtleties associated with slight twists and bends that distort one structure relative to another. Results The performance of programs for pairwise local alignment (TLOCAL and multiple alignment (TCLUSTALW are readily adapted from existing code for Smith-Waterman pairwise alignment and for multiple sequence alignment using CLUSTALW. The alignment algorithms employed a blocked scoring matrix (TBLOSUM generated using the frequency of changes in the geometric alphabet of a block of protein structures. TLOCAL was tested on a set of 10 difficult proteins and found to give high quality alignments that compare favorably to those generated by existing pairwise alignment programs. A set of protein comparison involving hinged structures was also analyzed and TLOCAL was seen to compare favorably to other alignment methods. TCLUSTALW was tested on a family of protein kinases and reveal conserved regions similar to those previously identified by a hand alignment. Conclusion These results show that the encoding of the writhing number as a geometric measure allow high

  11. Failure behavior of composite sandwich structures under local Loading

    Energy Technology Data Exchange (ETDEWEB)

    Rizov, V. [University of Architecture, Civil Engineering and Geodesy, Department of Technical Mechanics, Sofia (Bulgaria)

    2009-03-15

    Usually when analyzing the mechanical response of foam-cored fiber-reinforced composite sandwich structures to localized static loading, the face sheets are treated as a linear-elastic material and no damage initiation and growth is considered. However, practice shows that at higher indentation magnitudes damage develops in the face sheet in the area of contact with the indentor, which could lead to local failure of the face laminate due to the loss of bending stiffness and strength. Therefore, the main objective of the present study is to develop a damage model for predicting the local failure in the composite face sheet and its influence on the load-displacement behavior of sandwich structures under local loading. For this purpose, the Hoffman failure criterion is incorporated into a finite element modeling procedure using the ABAQUS program system. Results deducted from the modeling procedure are compared with experimental data obtained in the case of static indentation tests performed on sandwich beam specimens using steel cylindrical indentors. It is shown that taking into account the damage in the face sheet leads to a substantial improvement in the performance of the model when simulating the mechanical behavior of the sandwich structures at higher indentation values. (orig.)

  12. Tracking Coherent Structures and Source Localization in Geophysical Flows

    Science.gov (United States)

    Forgoston, Eric; Hsieh, Ani; Schwartz, Ira; Yecko, Philip

    There has been a steady increase in the deployment of autonomous underwater and surface vehicles for applications such as ocean monitoring, tracking of marine processes, and forecasting contaminant transport. The underwater environment poses unique challenges since robots must operate in a communication and localization-limited environment where their dynamics are tightly coupled with the environmental dynamics. This work presents current efforts in understanding the impact of geophysical fluid dynamics on underwater vehicle control and autonomy. The focus of the talk is on the use of collaborative vehicles to track Lagrangian coherent structures and to localize contaminant spills. Research supported by the National Science Foundation and the Office of Naval Research.

  13. Local response of concrete structures to explosive loading

    International Nuclear Information System (INIS)

    This paper reports on the HDR safety program experiments performed concerning demolition of concrete structures and pipes by explosive charges. The precalculability of the local structure reaction as well as that of the global plant was checked. The effect on the bore hole wall by the detonating explosive and the local concrete behavior around the bore hole were investigated. The measured pressure-time history in and around the bore hole is compared with the calculated values. The calculated values seem to be near reality (as far as measurements are available), concerning pressure rise curve within the bore hole and the peak pressure. The analysis of the blow off contours performed with two variations of the material strength of the concrete plates is presented

  14. Dynamics of Localized Structures in Systems with Broken Parity Symmetry

    Science.gov (United States)

    Javaloyes, J.; Camelin, P.; Marconi, M.; Giudici, M.

    2016-04-01

    A great variety of nonlinear dissipative systems are known to host structures having a correlation range much shorter than the size of the system. The dynamics of these localized structures (LSs) has been investigated so far in situations featuring parity symmetry. In this Letter we extend this analysis to systems lacking this property. We show that the LS drifting speed in a parameter varying landscape is not simply proportional to the parameter gradient, as found in parity preserving situations. The symmetry breaking implies a new contribution to the velocity field which is a function of the parameter value, thus leading to a new paradigm for LSs manipulation. We illustrate this general concept by studying the trajectories of the LSs found in a passively mode-locked laser operated in the localization regime. Moreover, the lack of parity affects significantly LSs interactions which are governed by asymmetrical repulsive forces.

  15. Dynamics of Localized Structures in Systems with Broken Parity Symmetry

    CERN Document Server

    Javaloyes, J; Marconi, M; Giudici, M

    2016-01-01

    A great variety of nonlinear dissipative systems are known to host structures having a correlation range much shorter than the size of the system. The dynamics of these Localized Structures (LSs) have been investigated so far in situations featuring parity symmetry. In this letter we extend this analysis to systems lacking of this property. We show that the LS drifting speed in a parameter varying landscape is not simply proportional to the parameter gradient, as found in parity preserving situations. The symmetry breaking implies a new contribution to the velocity field which is a function of the parameter value, thus leading to a new paradigm for LSs manipulation. We illustrate this general concept by studying the trajectories of the LSs found in a passively mode-locked laser operated in the localization regime. Moreover, the lack of parity affects significantly LSs interactions which are governed by asymmetrical repulsive forces.

  16. Local structure co-occurrence pattern for image retrieval

    Science.gov (United States)

    Zhang, Ke; Zhang, Fan; Lu, Jia; Lu, Yinghua; Kong, Jun; Zhang, Ming

    2016-03-01

    Image description and annotation is an active research topic in content-based image retrieval. How to utilize human visual perception is a key approach to intelligent image feature extraction and representation. This paper has proposed an image feature descriptor called the local structure co-occurrence pattern (LSCP). LSCP extracts the whole visual perception for an image by building a local binary structure, and it is represented by a color-shape co-occurrence matrix which explores the relationship of multivisual feature spaces according to visual attention mechanism. As a result, LSCP not only describes low-level visual features integrated with texture feature, color feature, and shape feature but also bridges high-level semantic comprehension. Extensive experimental results on an image retrieval task on the benchmark datasets, corel-10,000, MIT VisTex, and INRIA Holidays, have demonstrated the usefulness, effectiveness, and robustness of the proposed LSCP.

  17. Competition and market structure in local real estate markets

    OpenAIRE

    Beck, Jason; Scott, Frank; Yelowitz, Aaron

    2010-01-01

    The persistence of the standard six percent real estate sales commission across markets and over time calls into question the competitiveness of the residential real estate brokerage industry. While there is anecdotal evidence that some local real estate markets are fairly concentrated, no systematic study of market structures has been conducted. We have collected primary data on the number and market shares of real estate brokers in a variety of small, medium, and large real estate markets a...

  18. Localizing age-related individual differences in a hierarchical structure

    OpenAIRE

    Salthouse, Timothy A.

    2004-01-01

    Data from 33 separate studies were combined to create an aggregate data set consisting of 16 cognitive variables and 6832 different individuals who ranged between 18 and 95 years of age. Analyses were conducted to determine where in a hierarchical structure of cognitive abilities individual differences associated with age, gender, education, and self-reported health could be localized. The results indicated that each type of individual difference characteristic exhibited a d...

  19. Measuring capital market efficiency: Global and local correlations structure

    OpenAIRE

    Ladislav Kristoufek; Miloslav Vosvrda

    2012-01-01

    We introduce a new measure for the capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. Methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From geographical point of view, the more efficient markets are d...

  20. Measuring capital market efficiency: Global and local correlations structure

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2013-01-01

    Roč. 392, č. 1 (2013), s. 184-193. ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Capital market efficiency * Fractal dimension * Long-range dependence * Short-range dependence Subject RIV: AH - Economics Impact factor: 1.722, year: 2013 http://library.utia.cas.cz/separaty/2012/E/kristoufek-measuring capital market efficiency global and local correlations structure.pdf

  1. Explosive evolution of self-preserving local structures

    International Nuclear Information System (INIS)

    It has recently been noticed that certain forms of localized structures can grow explosively in time without change in spatial structure. Explicit forms, which describe their evolution are obtained as solutions of reaction-diffusion equations. It is the purpose of the present investigation to analyze the influence of perturbations on such solutions. The analysis will be generalized to consider the interaction of three variables, e.g. a three-wave system, as described by three coupled reaction-diffusion equations. Equilibria, i.e. time-independent solutions corresponding to the explosive-type reaction-diffusion equations, are also determined and their properties of stability are analyzed. (author)

  2. Local Reasoning about Programs that Alter Data Structures

    DEFF Research Database (Denmark)

    O'Hearn, Peter W.; Reynolds, John Clifton; Yang, Hongseok

    2001-01-01

    We describe an extension of Hoare's logic for reasoning about programs that alter data structures. We consider a low-level storage model based on a heap with associated lookup, update, allocation and deallocation operations, and unrestricted address arithmetic. The assertion language is based....... Through these and a number of examples we show that the formalism supports local reasoning: A speci-cation and proof can concentrate on only those cells in memory that a program accesses. This paper builds on earlier work by Burstall, Reynolds, Ishtiaq and O'Hearn on reasoning about data structures....

  3. Analyzing the sequence-structure relationship of a library of local structural prototypes.

    Science.gov (United States)

    Benros, Cristina; de Brevern, Alexandre G; Hazout, Serge

    2009-01-21

    We present a thorough analysis of the relation between amino acid sequence and local three-dimensional structure in proteins. A library of overlapping local structural prototypes was built using an unsupervised clustering approach called "hybrid protein model" (HPM). The HPM carries out a multiple structural alignment of local folds from a non-redundant protein structure databank encoded into a structural alphabet composed of 16 protein blocks (PBs). Following previous research focusing on the HPM protocol, we have considered gaps in the local structure prototype. This methodology allows to have variable length fragments. Hence, 120 local structure prototypes were obtained. Twenty-five percent of the protein fragments learnt by HPM had gaps. An investigation of tight turns suggested that they are mainly derived from three PB series with precise locations in the HPM. The amino acid information content of the whole conformational classes was tackled by multivariate methods, e.g., canonical correlation analysis. It points out the presence of seven amino acid equivalence classes showing high propensities for preferential local structures. In the same way, definition of "contrast factors" based on sequence-structure properties underline the specificity of certain structural prototypes, e.g., the dependence of Gly or Asn-rich turns to a limited number of PBs, or, the opposition between Pro-rich coils to those enriched in Ser, Thr, Asn and Glu. These results are so useful to analyze the sequence-structure relationships, but could also be used to improve fragment-based method for protein structure prediction from sequence. PMID:18977232

  4. Assessing the local identifiability of probabilistic knowledge structures.

    Science.gov (United States)

    Stefanutti, Luca; Heller, Jürgen; Anselmi, Pasquale; Robusto, Egidio

    2012-12-01

    Given a collection Q of problems, in knowledge space theory Doignon & Falmagne, (International Journal of Man-Machine Studies 23:175-196, 1985) the knowledge state of a student is the collection K ⊆ Q of all problems that this student is capable of solving. A knowledge structure is a pair (Q, ), where is a collection of knowledge states that contains at least the empty set and Q. A probabilistic knowledge structure (PKS) is a knowledge structure (Q, , π), where π is a probability distribution on the knowledge states. The PKS that has received the most attention is the basic local independence model BLIM; Falmagne & Doignon, (British Journal of Mathematical and Statistical Psychology 41:1-23, 1988a, Journal of Mathematical Psychology 32:232-258, 1988b). To the best of our knowledge, systematic investigations in the literature concerning the identifiability of the BLIM are totally missing. Based on the theoretical work of Bamber and van Santen (Journal of Mathematical Psychology 29:443-473, 1985), the present article is aimed to present a method and a corresponding computerized procedure for assessing the local identifiability of the BLIM, which is applicable to any finite knowledge structure of moderate size. PMID:22588988

  5. Visualization of structures and cosmic flows in the Local Universe

    CERN Document Server

    Pomarede, Daniel; Tully, R Brent

    2012-01-01

    A visualization of three-dimensional structures and cosmic flows is presented using information from the Extragalactic Distance Database V8k redshift catalog and peculiar velocities from the Cosmicflows-1 survey. Structures within a volume bounded at 8000 km/s on the cardinal Supergalactic axes are explored in terms of both the display of the positions of the 30124 galaxies of the catalog and its reconstructed luminosity density field, corrected to account for growing incompleteness with distance. Cosmography of the Local Universe is discussed with the intent to identify the most prominent structures, including voids, galaxy clusters, filaments and walls. The mapping also benefits from precise distance measures provided through the Cosmicflows-1 observational program. Three-dimensional visualizations of the coherent flows of galaxies in the nearby universe are presented using recent results obtained on the reconstruction of cosmic flows with the Wiener Filter approach. The three major components of the Milky ...

  6. Hypo-analytic structures local theory (PMS-40)

    CERN Document Server

    Treves, François

    2014-01-01

    In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations and delimits their supports. The contents of this book consist of many results accumulated in the last decade by the author and his collaborators, but also include classical results, such as the Newlander-Nirenberg theorem. The reader will find an elementary description of the FBI transform, as well as examples of its use. Treves extends the main approximation and uniqueness results to first-order nonlinear equations by means of ...

  7. Local structure of chromium incorporated into electrodeposited nickel hydroxide films

    International Nuclear Information System (INIS)

    We have utilized X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate the local structure of Cr (III) and Cr (VI) ions incorporated into α-Ni(OH)2 films. The films were prepared by cathodic co-deposition of Cr and Ni at a constant current from aqueous solutions of nickel nitrate, chromium nitrate and potassium chromate. XAFS measurements show that in films formed from 0.1 M Ni(NO3)2 + 0.0005 M Cr(NO3)3, Cr (III) is incorporated into the Ni lattice sites of alpha-Ni(OH)2. In contrast, co-deposition from a 0.1 M Ni(NO3)2 + 0.001 M K2CrO4 solution results in Cr (VI) occupying the interlamellar sites of the brucite structure. (au)

  8. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  9. High Resolution Local Structure-Constrained Image Upsampling.

    Science.gov (United States)

    Zhao, Yang; Wang, Ronggang; Wang, Wenmin; Gao, Wen

    2015-11-01

    With the development of ultra-high-resolution display devices, the visual perception of fine texture details is becoming more and more important. A method of high-quality image upsampling with a low cost is greatly needed. In this paper, we propose a fast and efficient image upsampling method that makes use of high-resolution local structure constraints. The average local difference is used to divide a bicubic-interpolated image into a sharp edge area and a texture area, and these two areas are reconstructed separately with specific constraints. For reconstruction of the sharp edge area, a high-resolution gradient map is estimated as an extra constraint for the recovery of sharp and natural edges; for the reconstruction of the texture area, a high-resolution local texture structure map is estimated as an extra constraint to recover fine texture details. These two reconstructed areas are then combined to obtain the final high-resolution image. The experimental results demonstrated that the proposed method recovered finer pixel-level texture details and obtained top-level objective performance with a low time cost compared with state-of-the-art methods. PMID:26186777

  10. MULTI-SCALE COHERENT STRUCTURES IN TURBULENT BOUNDARY LAYER DETECTED BY LOCALLY AVERAGED VELOCITY STRUCTURE FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; JIANG Nan; WANG Zhen-dong; SHU Wei

    2005-01-01

    The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse-grained velocity structure functions, which describes the relative motions of straining and compressing for multi-scale eddy structures in turbulent flows, was put forward based on the theory of locally multi-scale average. Based on the consistency between coarse-grained velocity structure function and Harr wavelet transformation, detecting method was presented,by which the coherent structures and their intermittency was identified by multi-scale flatness factor calculated by locally average structure function. Phase-averaged evolution course for multi-scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi-scale coherent eddy structures and their effects on statistics of turbulent flows were studied.

  11. Measuring capital market efficiency: Global and local correlations structure

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2013-01-01

    We introduce a new measure for capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.

  12. The local structure of a Liouville vector field

    International Nuclear Information System (INIS)

    In this work we investigate the local structure of a Liouville vector field ξ of a Kaehler manifold (P,Ω) which vanishes on an isotropic submanifold Q of P. Some of the eigenvalues of its linear part at the singular points are zero and the remaining ones are in resonance. We show that there is a C1-smooth linearizing conjugation between the Liouville vector field ξ and its linear part. To do this we construct Darboux coordinates adapted to the unstable foliation which is provided by the Centre Manifold Theorem. We then apply recent linearization results due to G. Sell. (author). 11 refs

  13. Local structural excitations and critical temperature of supported superconducting oxides

    International Nuclear Information System (INIS)

    High resolution IR spectra for the following complex oxides: La2CuO4, Nd2CuO4, YBa2Cu3O7-x, BaBiO3, HgCaBaCuO (at cations ratio 1223) were obtained for studying the role of oxygen sublattice in formation of electrophysical properties of superconducting oxide ceramics. Frequencies of vibration spectra sensitive to lattice distortions, oxygen content and occurrence of its excited states, were revealed. The assumption on local structural excitations and role of donor-acceptor interactions in formation of high-temperature superconductivity was confirmed

  14. The local structure theorem for real spherical varieties

    DEFF Research Database (Denmark)

    Knop, Friedrich; Krötz, Bernhard; Schlichtkrull, Henrik

    2015-01-01

    Let G be an algebraic real reductive group and Z a real spherical G -variety, that is, it admits an open orbit for a minimal parabolic subgroup P . We prove a local structure theorem for Z . In the simplest case where Z is homogeneous, the theorem provides an isomorphism of the open P -orbit with...... bundle Q×LS . Here Q is a parabolic subgroup with Levi decomposition L⋉U , and S is a homogeneous space for a quotient D=L/Ln of L , where Ln⊆L is normal, such that D is compact modulo center....

  15. Local structure of Eu3+ ions in fluorophosphate laser glass

    Indian Academy of Sciences (India)

    P Babu; R Vijaya; Kyoung Hyuk Jang; Hyo Jin Seo; V Lavin; C K Jayasankar

    2010-11-01

    A fluorophosphate laser glass doped with 1.0 mol% of Eu3+ ions has been prepared and studied by site-selective spectroscopy to explore the local structure of Eu3+ ions. Site-selective 50 → 71,2 emission spectra have been measured under resonant excitation to the 50 level at different wavelengths within the 70 → 50 band at 16 K. Using the Stark level positions of the 71 and 72 levels, crystal-field analysis has been carried out. The results suggest the existence of a unique kind of site for all the environments of Eu3+ ions in this glass.

  16. Local structure of nanosized tungstates revealed by evolutionary algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Timoshenko, Janis; Anspoks, Andris; Kuzmin, Alexei [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Kalinko, Alexandr [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Synchrotron SOLEIL, l' Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France)

    2015-02-01

    Nanostructured tungstates, such as CoWO{sub 4} and CuWO{sub 4}, are very promising catalytic materials, particularly for photocatalytic oxidation of water. The high catalytic activity of tungstate nanoparticles partially is a result of their extremely small sizes, and, consequently, high surface-to-volume ratio. Therefore their properties depend strongly on the atomic structure, which differ significantly from that of the bulk material. X-ray absorption spectroscopy is a powerful technique to address the challenging problem of the local structure determination in nanomaterials. In order to fully exploit the structural information contained in X-ray absorption spectra, in this study we employ a novel evolutionary algorithm (EA) for the interpretation of the Co and Cu K-edges as well as the W L{sub 3}-edge extended X-ray absorption fine structure (EXAFS) of nanosized CoWO{sub 4} and CuWO{sub 4}. The combined EA-EXAFS approach and simultaneous analysis of the W L{sub 3} and Co(Cu) K-edge EXAFS spectra allowed us for the first time to obtain a 3D structure model of the tungstate nanoparticles and to explore in details the effect of size, temperature and transition metal type. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Local structure of nanosized tungstates revealed by evolutionary algorithm

    International Nuclear Information System (INIS)

    Nanostructured tungstates, such as CoWO4 and CuWO4, are very promising catalytic materials, particularly for photocatalytic oxidation of water. The high catalytic activity of tungstate nanoparticles partially is a result of their extremely small sizes, and, consequently, high surface-to-volume ratio. Therefore their properties depend strongly on the atomic structure, which differ significantly from that of the bulk material. X-ray absorption spectroscopy is a powerful technique to address the challenging problem of the local structure determination in nanomaterials. In order to fully exploit the structural information contained in X-ray absorption spectra, in this study we employ a novel evolutionary algorithm (EA) for the interpretation of the Co and Cu K-edges as well as the W L3-edge extended X-ray absorption fine structure (EXAFS) of nanosized CoWO4 and CuWO4. The combined EA-EXAFS approach and simultaneous analysis of the W L3 and Co(Cu) K-edge EXAFS spectra allowed us for the first time to obtain a 3D structure model of the tungstate nanoparticles and to explore in details the effect of size, temperature and transition metal type. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. A local algorithm for detecting community structures in dynamic networks

    CERN Document Server

    Massaro, Emanuele; Guazzini, Andrea; Passarella, Andrea; Bagnoli, Franco

    2013-01-01

    The emergence and the global adaptation of mobile devices has influenced human interactions at the individual, community, and social levels leading to the so called Cyber-Physical World (CPW) convergence scenario [1]. One of the most important features of CPW is the possibility of exploiting information about the structure of social communities of users, that manifest through joint movement patterns and frequency of physical co-location: mobile devices of users that belong to the same social community are likely to "see" each other (and thus be able to communicate through ad hoc networking techniques) more frequently and regularly than devices outside of the community. In mobile opportunistic networks, this fact can be exploited, for example, to optimize networking operations such as forwarding and dissemination of messages. In this paper we present a novel local cognitive-inspired algorithm for revealing the structure of these dynamic social networks by exploiting information about physical encounters, logge...

  19. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  20. Modeling amorphization of tetrahedral structures under local approaches

    International Nuclear Information System (INIS)

    Many crystalline ceramics can be topologically disordered (amorphized) by disordering radiation events involving high-energy collision cascades or (in some cases) successive single-atom displacements. The authors are interested in both the potential for disorder and the possible aperiodic structures adopted following the disordering event. The potential for disordering is related to connectivity, and among those structures of interest are tetrahedral networks (such as SiO2, SiC and Si3N4) comprising corner-shared tetrahedral units whose connectivities are easily evaluated. In order to study the response of these networks to radiation, the authors have chosen to model their assembly according to the (simple) local rules that each corner obeys in connecting to another tetrahedron; in this way they easily erect large computer models of any crystalline polymorphic form. Amorphous structures can be similarly grown by application of altered rules. They have adopted a simple model of irradiation in which all bonds in the neighborhood of a designated tetrahedron are destroyed, and they reform the bonds in this region according to a set of (possibly different) local rules appropriate to the environmental conditions. When a tetrahedron approaches the boundary of this neighborhood, it undergoes an optimization step in which a spring is inserted between two corners of compatible tetrahedra when they are within a certain distance of one another; component forces are then applied that act to minimize the distance between these corners and minimize the deviation from the rules. The resulting structure is then analyzed for the complete adjacency matrix, irreducible ring statistics, and bond angle distributions

  1. Mechanochemically synthesized fluorides: local structures and ion transport.

    Science.gov (United States)

    Preishuber-Pflügl, Florian; Wilkening, Martin

    2016-06-01

    The performance of new sensors or advanced electrochemical energy storage devices strongly depends on the active materials chosen to realize such systems. In particular, their morphology may greatly influence their overall macroscopic properties. Frequently, limitations in classical ways of chemical preparation routes hamper the development of materials with tailored properties. Fortunately, such hurdles can be overcome by mechanochemical synthesis. The versatility of mechanosynthesis allows the provision of compounds that are not available through common synthesis routes. The mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis not only of new compounds but also of nanocrystalline materials with unusual properties such as enhanced ion dynamics. Fast ion transport is of crucial importance in electrochemical energy storage. It is worth noting that mechanosynthesis also provides access to metastable phases that cannot be synthesized by conventional solid state synthesis. Ceramic synthesis routes often yield the thermally, i.e., thermodynamically, stable products rather than metastable compounds. In this perspective we report the mechanochemical synthesis of nanocrystalline fluorine ion conductors that serve as model substances to understand the relationship between local structures and ion dynamics. While ion transport properties were complementarily probed via conductivity spectroscopy and nuclear magnetic relaxation, local structures of the phases prepared were investigated by high-resolution (19)F NMR spectroscopy carried out by fast magic angle spinning. The combination of nuclear and non-nuclear techniques also helped us to shed light on the mechanisms controlling mechanochemical reactions in general. PMID:27172256

  2. Embrittlement and Flow Localization in Reactor Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of necking is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.

  3. Nano structures of amorphous silicon: localization and energy gap

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2013-10-01

    Full Text Available Renewable energy research has created a push for new materials; one of the most attractive material in this field is quantum confined hybrid silicon nano-structures (nc-Si:H embedded in hydrogenated amorphous silicon (a-Si:H. The essential step for this investigation is studying a-Si and its ability to produce quantum confinement (QC in nc-Si: H. Increasing the gap of a-Si system causes solar cell efficiency to increase. By computational calculations based on Density Functional Theory (DFT, we calculated a special localization factor, [G Allan et al., Phys. Rev. B 57 (1997 6933.], for the states close to HOMO and LUMO in a-Si, and found most weak-bond Si atoms. By removing these silicon atoms and passivating the system with hydrogen, we were able to increase the gap in the a-Si system. As more than 8% hydrogenate was not experimentally available, we removed about 2% of the most localized Si atoms in the almost tetrahedral a-Si system. After removing localized Si atoms in the system with 1000 Si atoms, and adding 8% H, the gap increased about 0.24 eV. Variation of the gap as a function of hydrogen percentage was in good agreement with the Tight –Binding results, but about 2 times more than its experimental value. This might come from the fact that in the experimental conditions, it does not have the chance to remove the most localized states. However, by improving the experimental conditions and technology, this value can be improved.

  4. CHANGES IN THE STRUCTURE OF ROMANIAN LOCAL BUDGETS

    OpenAIRE

    Cristinel ICHIM

    2010-01-01

    The basic component of local public finances is the local budget, defined as the document through which annual revenue and expenditure of administrative-territorial units are provided and approved. By means of local budgets, the activity of local public finances is designed and operated, local public budgets being tools for forecasting, programming, implementing and monitoring the results of the execution of financial resources of local communities and their distribution and use through local...

  5. Local structure of solid Rb at megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    De Panfilis, S. [Centre for Life Nano Science IIT@Sapienza, Istituto Italiano di Tecnologia, I-00161 Roma (Italy); Gorelli, F.; Santoro, M. [INO-CNR and LENS, I-50019 Sesto Fiorentino, Firenze (Italy); Ulivi, L. [ISC-CNR, I-50019 Sesto Fiorentino, Firenze (Italy); Gregoryanz, E. [School of Physics and Astronomy, Centre for Science Under Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Irifune, T.; Shinmei, T. [Geodynamics Research Center, Ehime University, Matsuyama 790-8577 (Japan); Kantor, I.; Mathon, O.; Pascarelli, S. [European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2015-06-07

    We have investigated the local and electronic structure of solid rubidium by means of x-ray absorption spectroscopy up to 101.0 GPa, thus doubling the maximum investigated experimental pressure. This study confirms the predicted stability of phase VI and was completed by the combination of two pivotal instrumental solutions. On one side, we made use of nanocrystalline diamond anvils, which, contrary to the more commonly used single crystal diamond anvils, do not generate sharp Bragg peaks (glitches) at specific energies that spoil the weak fine structure oscillations in the x-ray absorption cross section. Second, we exploited the performance of a state-of-the-art x-ray focussing device yielding a beam spot size of 5 × 5 μm{sup 2}, spatially stable over the entire energy scan. An advanced data analysis protocol was implemented to extract the pressure dependence of the structural parameters in phase VI of solid Rb from 51.2 GPa up to the highest pressure. A continuous reduction of the nearest neighbour distances was observed, reaching about 6% over the probed pressure range. We also discuss a phenomenological model based on the Einstein approximation to describe the pressure behaviour of the mean-square relative displacement. Within this simplified scheme, we estimate the Grüneisen parameter for this high pressure Rb phase to be in the 1.3–1.5 interval.

  6. Structuring Lecture Videos by Automatic Projection Screen Localization and Analysis.

    Science.gov (United States)

    Li, Kai; Wang, Jue; Wang, Haoqian; Dai, Qionghai

    2015-06-01

    We present a fully automatic system for extracting the semantic structure of a typical academic presentation video, which captures the whole presentation stage with abundant camera motions such as panning, tilting, and zooming. Our system automatically detects and tracks both the projection screen and the presenter whenever they are visible in the video. By analyzing the image content of the tracked screen region, our system is able to detect slide progressions and extract a high-quality, non-occluded, geometrically-compensated image for each slide, resulting in a list of representative images that reconstruct the main presentation structure. Afterwards, our system recognizes text content and extracts keywords from the slides, which can be used for keyword-based video retrieval and browsing. Experimental results show that our system is able to generate more stable and accurate screen localization results than commonly-used object tracking methods. Our system also extracts more accurate presentation structures than general video summarization methods, for this specific type of video. PMID:26357345

  7. Local causal structures, Hadamard states and the principle of local covariance in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio [Erwin Schroedinger Institut fuer Mathematische Physik, Wien (Austria); Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Porrmann, Martin [KwaZulu-Natal Univ. (South Africa). Quantum Research Group, School of Physics; National Institute for Theoretical Physics, Durban (South Africa)

    2010-01-15

    In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M{sup '} and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M{sup '}. (orig.)

  8. Local causal structures, Hadamard states and the principle of local covariance in quantum field theory

    International Nuclear Information System (INIS)

    In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M' and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M'. (orig.)

  9. Evaluating the Importance of Local Environment on Tree Structural Allometries

    Science.gov (United States)

    Duncanson, L.; Cook, B. D.; Rourke, O.; Hurtt, G. C.; Dubayah, R.

    2013-12-01

    Allometric relationships relating various forest structural properties such as DBH, tree height and aboveground biomass have been developed through detailed field data collection both in the United States, and globally. However, there has been limited attention to explaining observed variability in these relationships. Often, a single relationship is developed for a single species, and is applied irrespective of environment. In this research, we attempt to explain allometry as a function of environment by focusing on the relationship between DBH, crown radius and tree height. Two primary datasets are used to conduct this research. First, the Forest Inventory Analysis (FIA) dataset, including tree DBH and height information for the United States, are used to investigate variability in the relationship between DBH and tree height. Second, high-resolution airborne lidar datasets were collected from areas across the US, Canada and Costa Rica and are applied to investigate variability in the relationship between crown radius and height. The lidar datasets are run through a generalized canopy delineation algorithm to produce multilayered estimates of individual tree location, height, and crown radius. Power law functions are fit to the relationships between DBH and tree height, and crown radius and tree height. The mean and standard deviation of the power law exponents are compared to environmental attributes including precipitation, temperature, topography, and age since disturbance. This research demonstrates that although universal tendencies are observed in average power law exponents, considerable local variability exists that can be partially attributed to local environment. Therefore local environment, as well as tree species, should be accounted for in the development and application of allometric equations for forest studies.

  10. Local Structure Fixation in the Composite Manufacturing Chain

    Science.gov (United States)

    Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene

    2010-12-01

    Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.

  11. Pressure dependence of the local structure of iridium ditelluride across the structural phase transition

    Science.gov (United States)

    Paris, E.; Joseph, B.; Iadecola, A.; Marini, C.; Ishii, H.; Kudo, K.; Pascarelli, S.; Nohara, M.; Mizokawa, T.; Saini, N. L.

    2016-04-01

    The local structure of IrTe2 has been studied by iridium L3-edge x-ray absorption spectroscopy (XAS) measurements as a function of pressure, performed at two temperatures (100 and 295 K) across the structural phase transition at ˜270 K. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectra show pressure-dependent anomalies, suggesting phase transitions that are characterized by different local atomic displacements. The high-temperature phase of IrTe2 (trigonal at 295 K) reveals a clear anomaly in the Ir-Te correlations at ˜4 GPa, while the low-temperature phase (at 100 K) shows a smaller change at ˜6 GPa, likely to be associated with transitions in lower-symmetry phases. XANES spectra, measuring higher-order atomic correlations, also show nonlinear pressure dependence in the local geometry at the anomalous pressures. These nonlinear changes suggest that IrTe2 goes through lower local symmetry phases with increasing pressure.

  12. Compare local pocket and global protein structure models by small structure patterns

    KAUST Repository

    Cui, Xuefeng

    2015-09-09

    Researchers proposed several criteria to assess the quality of predicted protein structures because it is one of the essential tasks in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions. Popular criteria include root mean squared deviation (RMSD), MaxSub score, TM-score, GDT-TS and GDT-HA scores. All these criteria require calculation of rigid transformations to superimpose the the predicted protein structure to the native protein structure. Yet, how to obtain the rigid transformations is unknown or with high time complexity, and, hence, heuristic algorithms were proposed. In this work, we carefully design various small structure patterns, including the ones specifically tuned for local pockets. Such structure patterns are biologically meaningful, and address the issue of relying on a sufficient number of backbone residue fragments for existing methods. We sample the rigid transformations from these small structure patterns; and the optimal superpositions yield by these small structures are refined and reported. As a result, among 11; 669 pairs of predicted and native local protein pocket models from the CASP10 dataset, the GDT-TS scores calculated by our method are significantly higher than those calculated by LGA. Moreover, our program is computationally much more efficient. Source codes and executables are publicly available at http://www.cbrc.kaust.edu.sa/prosta/

  13. Local structure of the magnetotail current sheet: 2001 Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Runov

    2006-03-01

    Full Text Available Thirty rapid crossings of the magnetotail current sheet by the Cluster spacecraft during July-October 2001 at a geocentric distance of 19 RE are examined in detail to address the structure of the current sheet. We use four-point magnetic field measurements to estimate electric current density; the current sheet spatial scale is estimated by integration of the translation velocity calculated from the magnetic field temporal and spatial derivatives. The local normal-related coordinate system for each case is defined by the combining Minimum Variance Analysis (MVA and the curlometer technique. Numerical parameters characterizing the plasma sheet conditions for these crossings are provided to facilitate future comparisons with theoretical models. Three types of current sheet distributions are distinguished: center-peaked (type I, bifurcated (type II and asymmetric (type III sheets. Comparison to plasma parameter distributions show that practically all cases display non-Harris-type behavior, i.e. interior current peaks are embedded into a thicker plasma sheet. The asymmetric sheets with an off-equatorial current density peak most likely have a transient nature. The ion contribution to the electric current rarely agrees with the current computed using the curlometer technique, indicating that either the electron contribution to the current is strong and variable, or the current density is spatially or temporally structured.

  14. Local defect structures of deuterium and nitrogen in niobium

    International Nuclear Information System (INIS)

    The local defect structures of deuterium as well as of nitrogen-deuterium pairs in niobium were investigated. This was done with the method of the coherent quasi-elastic, diffuse scattering of thermal neutrons in great distance to high Miller indices of Bragg reflections (intermediate reflex scattering), which was experimentally determined at NbD0.0170 monocrystals, NbN0.0143 monocrystals and NbN0.0143D0.0110 monocrystals. The influences of the lattice distortions in close vicinity to the defect can be proved for high scattering vectors in low-symmetrical directions. For the NbN0.0143 system, it was demonstrated that the static lattice distortions lead to a characteristic attenuation of the host lattice phonons. This loss of intensity (static Debye-Waller factor) was quantitatively determined for selected TA-phonons. It is shown that the combination of these measuring results with the results from the diffuse neutron scattering can supply valuable information about the defect structure. (orig./MM)

  15. Review on Empirical Studies of Local Impact Effects of Hard Missile on Concrete Structures

    OpenAIRE

    Ismail Abdul Rahman; Ahmad Mujahid Ahmad Zaidi; Qadir Bux@ Imran Latif

    2011-01-01

    Concrete is basic construction material used for any kind of structure. However, in most vital and local structures such as nuclear plants, Power plants, Weapon Industries, weapons storage places, water retaining structures like dams, and also local industries, & etc., concrete structures have to be designed as defensive structures to provide protection against any accidents or knowingly generated incidents such as dynamic loading, dynamic local impact damage and global damage generated by ki...

  16. The model of local mode analysis for structural acoustics of box structures

    Science.gov (United States)

    Ngai, King-Wah

    Structure-borne noise is a new noise pollution problem emerging from railway concrete box structures in Hong Kong. Its low frequency noise with intermittent effect can cause considerable nuisance to neighborhoods. The tonal noise peaks in this low frequency range should be one of the important factors in structure-borne noise analysis. In the acoustic field, the deterministic analysis of all the resonant modes of vibration is generally considered as not practical. Many acoustic experts use the statistical energy analysis as the main tool for the noise investigation whereas the application of the experimental modal analysis in the structural acoustic problem is comparatively rare. In the past, most studies mainly focused on the structure-borne noise measurement and analysis. The detail study of the cause of structure-borne noise is lack, especially for the rectangular concrete box structure. In this dissertation, an experimental and analytical approach is adopted to study a typical concrete box model. This thesis aims at confirming the importance of modal analysis in the structure-borne noise study and then at identifying the local vibration modes along the cross-section of box structure. These local modes are responsible for the structure-borne noise radiation. The findings of this study suggest that the web of viaduct cross-section is not as rigid as assumed in the conventional viaduct design and the web face is likely to be more flexible in the vertical displacement of the concrete viaduct. Two types of local vibration modes along the cross-section are identified: the centre mode and the web mode. At the top panel of the viaduct, the centre mode has movement in the middle but not at the edges. The web mode has movement at the edges with the middle fixed. The combined centre and web mode has been found to be important in the structural acoustics of the concrete box structure. In the actual concrete viaduct, the coincidence frequency is especially low (often around

  17. Historic timber skeleton structures and the local seismic culture

    Science.gov (United States)

    Bostenaru, M.

    2009-04-01

    This presentation deals with the employment of timber skeleton structure and the local seismic culture. After the 1755 earthquake in the reconstruction of Lisbon a type of building with timber skeleton and masonry infill called "gaiola pombalina" was promoted, since this was designed to better resists earthquakes. "Gaiola" means cage, and it was also named after the Marques de Pombal who introduced it in the reconstruction following the earthquake. The „gaiola pombalina" presents a timber skeleton with Saint Andrew crosses in the interior walls with masonry infill and thick masonry load bearing walls loosing in thickness to the upper floors in the exterior walls. The masonry can fall out during earthquakes but the building remains staying given the interior timber skeleton. The type of buildings with timber structure and (masonry) infill behaved well in earthquakes in various parts of the earth, like Nepal (the dhaji dewary type), Pakistan, Turkey (the himiş type after the 1999 earthquake) [both latter types were researched by Langenbach, www.conservationtech.com and www.traditional-is-modern.net] and also in Germany after the 1356 earthquake (the Southern German subtype of Fachwerk). Also in Italy a subtype called "casa baraccata" was promoted in a construction code to a similar time (following the 1783 earthquake in Southern Italy, see Tobriner 1983) as that of the "gaiola pombalina", the time of the Baroque, when town planning acquired another status. Unlike at the "gaiola pombalina" the "casa baraccata" the timber skeleton is at the exterior walls. For this reason this type of buildings is considered to be an expression of the local seismic culture. However, this type of buildings is common also for areas where seismic risk is not an issue, like half-timbered in England and the northern subtype of Fachwerk in Northern Germany, and in some high seismic risk regions with mountains and timber resources like Romania is not spread. Given these premises the author

  18. Ring localized structures in nonlinear shallow water wave dynamics

    International Nuclear Information System (INIS)

    The nonlinear dynamics of the concentric shallow water waves is described by means of the cylindrical Korteweg-de Vries equation, often referred to as the concentric Korteweg-de Vries equation (cKdVE). By using the mapping that transforms a cKdVE into the standard one – hereafter also referred to as the planar Korteweg-de Vries equation (KdVE) – the spatiotemporal evolution of a cylindrical surface water wave, corresponding to a tilted cylindrical bright soliton, is described. The usual representation of a tilted soliton is 'non-physical'; here the cylindrical coordinate and the retarded time play the role of time-like and space-like variables, respectively. However, we show that, when we express such analytical solution of the cKdVE in the appropriate representation in terms of the two horizontal space coordinates, say X and Y, and the 'true' time, say T, this non-physical character disappears. The analysis is then carried out numerically to consider the surface water wave evolution corresponding to initially localized structures with standard boundary conditions, such as bright soliton, Gaussian and Lorentzian profiles. A comparison among those profiles is finally presented

  19. Strength through structure: visualization and local assessment of the trabecular bone structure

    International Nuclear Information System (INIS)

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  20. Strength through structure: visualization and local assessment of the trabecular bone structure

    Science.gov (United States)

    Räth, C.; Monetti, R.; Bauer, J.; Sidorenko, I.; Müller, D.; Matsuura, M.; Lochmüller, E.-M.; Zysset, P.; Eckstein, F.

    2008-12-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  1. A special kind of local structure in the CMB intensity maps: duel peak structure

    International Nuclear Information System (INIS)

    We study the local structure of Cosmic Microwave Background (CMB) temperature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4 deg. away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4 deg. characteristic into an artificial one, such as 3 deg. or 5 deg., there will be less 'similar spots', and the temperature peaks or valleys will be less significant. The presented 'similar spots' have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory. (invited reviews)

  2. A special kind of local structure in the CMB intensity maps: duel peak structure

    Institute of Scientific and Technical Information of China (English)

    Hao Liu; Ti-Pei Li

    2009-01-01

    We study the local structure of Cosmic Microwave Background (CMB) tem-perature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less "similar spots", and the temperature peaks or valleys will be less significant. The presented "sim-ilar spots" have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.

  3. A special kind of local structure in the CMB intensity maps: duel peak structure

    Science.gov (United States)

    Liu, Hao; Li, Ti-Pei

    2009-03-01

    We study the local structure of Cosmic Microwave Background (CMB) temperature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less 'similar spots', and the temperature peaks or valleys will be less significant. The presented 'similar spots' have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.

  4. Average and local structure of selected metal deuterides

    Energy Technology Data Exchange (ETDEWEB)

    Soerby, Magnus H.

    2005-07-01

    at ambient and low temperatures. The Switendick criterion is always fulfilled. The local deuterium arrangement in the disordered cubic phase at 298 K resemble that of the ordered monoclinic low-temperature phase at 150 K for length scales up to 4 Aa or three coordination spheres. The nearest and next-nearest deuterium neighbours are statically displaced from their average positions to adapt interatomic distances in better agreement with those in the ordered structure. There are no significant differences in the short-range order around the onset temperature for ordering (252 K and 248 K) as compared to that observed at 298 K. (Author)

  5. Average and local structure of selected metal deuterides

    International Nuclear Information System (INIS)

    temperatures. The Switendick criterion is always fulfilled. The local deuterium arrangement in the disordered cubic phase at 298 K resemble that of the ordered monoclinic low-temperature phase at 150 K for length scales up to 4 Aa or three coordination spheres. The nearest and next-nearest deuterium neighbours are statically displaced from their average positions to adapt interatomic distances in better agreement with those in the ordered structure. There are no significant differences in the short-range order around the onset temperature for ordering (252 K and 248 K) as compared to that observed at 298 K. (Author)

  6. Sampling Realistic Protein Conformations Using Local Structural Bias

    DEFF Research Database (Denmark)

    Hamelryck, Thomas Wim; Kent, John T.; Krogh, A.

    2006-01-01

    The prediction of protein structure from sequence remains a major unsolved problem in biology. The most successful protein structure prediction methods make use of a divide-and-conquer strategy to attack the problem: a conformational sampling method generates plausible candidate structures, which......-reaching implications for protein structure prediction, determination, simulation, and design....

  7. Local Area Damage Detection in Composite Structures Using Piezoelectric Transducers

    OpenAIRE

    Lichtenwalner, Peter F.; Sofge, Donald A.

    2007-01-01

    An integrated and automated smart structures approach for structural health monitoring is presented, utilizing an array of piezoelectric transducers attached to or embedded within the structure for both actuation and sensing. The system actively interrogates the structure via broadband excitation of multiple actuators across a desired frequency range. The structure's vibration signature is then characterized by computing the transfer functions between each actuator/sensor pair, and compared t...

  8. LOCAL EXTINCTIONS, CONNECTEDNESS, AND CULTURAL EVOLUTION IN STRUCTURED POPULATIONS

    OpenAIRE

    Premo, L. S.

    2012-01-01

    Population geneticists have shown that the effects of local extinction and recolonization on selectively neutral genetic diversity are sensitive to the number of individuals that migrate between groups. Here, we employ a spatially explicit metapopulation model to investigate the extent to which the effects of local extinction on selectively neutral cultural diversity and change are sensitive to intergroup cultural transmission — the rate at which cultural variants are transmitted between grou...

  9. Locale structure around heteroatoms in alumino- and borosilicates for catalysis

    OpenAIRE

    Nagendrachar Garaga, Mounesha

    2013-01-01

    While alumino- and borosilicate materials have paramount importance in catalysis, the molecular origin of their activity is not completely understood. This is mainly because the incorporation of heteroatoms into the silicate framework deteriorates the molecular order by generating local disorder that is particularly difficult to establish. Because of its local vision of ordered and disordered environments, solid-state nuclear magnetic resonance (NMR) can play a key role to solve this long-sta...

  10. Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure.

    Science.gov (United States)

    Mahajan, Swapnil; de Brevern, Alexandre G; Offmann, Bernard; Srinivasan, Narayanaswamy

    2014-01-01

    Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (a-p) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues. PMID:23730714

  11. Local Large-Scale Structure and the Assumption of Homogeneity

    CERN Document Server

    Keenan, Ryan C; Cowie, Lennox L

    2014-01-01

    Our recent estimates of galaxy counts and the luminosity density in the near-infrared (Keenan et al. 2010, 2012) indicated that the local universe may be under-dense on radial scales of several hundred megaparsecs (Mpc). Such a large-scale local under-density could introduce significant biases in the measurement and interpretation of cosmological observables, such as the inferred effects of dark energy on the rate of expansion. In Keenan et al. (2013), we measured the K-band luminosity density as a function of distance from us to test for such a local under-density. We made this measurement over the redshift range 0.01 0.07, we measure an increasing luminosity density that by z~ 0.1 rises to a value of ~1.5 times higher than that measured locally. This implies that the stellar mass density follows a similar trend. Assuming that the underlying dark matter distribution is traced by this luminous matter, this suggests that the local mass density may be lower than the global mass density of the universe at an am...

  12. Verification of the local structural response of building structures in the anchorage areas of heavy components

    International Nuclear Information System (INIS)

    In conventional dynamic structural analyses for determining dynamic system response for various locations at which components are installed inside the structures it is common practice (in order to simplify analytical effort) to assume that the anchorage (anchor plate, anchor bolts or throughbolts, concrete and reinforcement in the area of bound) has rigid body characteristics and that the building structure itself does not display any local response of its own. The influence of the stiffness of the anchor plate as well anchor bolts and its stress level on the dynamic response is also neglected. For a large number of anchoring systems, especially for all those components and systems having only a small mass, this assumption is certainly appropriate. At some locations, particularly at points where heavy components are anchored or when loading input has been increased, this can lead to local loading of the anchor system as well as of the building structure well into the nonlinear range. Often, verification of capability to accommodate these loads is not possible without changing the wall thicknesses or increasing the percentage of reinforcement. Since the presence of linear or nonlinear effects can be expected to result in energy dissipation (increase in damping capacity and also a change in the stiffness of the coupled system) it must be assumed that the dynamic response between the theoretical coupling point A and the real connection point B of the component on the anchor plate can be considerably altered. Some changes of the dynamic response in the connection point B have to be expected generally even in cases of linear-elastic loading of the anchorage. Using typical anchoring systems as an example, the influence of consideration of nonlinear effects in the anchorage area of a typical anchor plate on the dynamic response as well as the conservatism of conventional analytical approaches are investigated

  13. The elastic response of sandwich structures to local loading

    NARCIS (Netherlands)

    Koissin, Vitaly; Skvortsov, Vitaly; Krahmalev, Sergey; Shipsha, Andrey

    2004-01-01

    The paper addresses the elastic response of sandwich panels to local static and dynamic loading. The bottom face is assumed to be clamped, so that the overall bending is eliminated. The governing equations are derived using the static Lamé equations for the core and the thin plate Kirchoff–Love dyna

  14. Localized structures of electromagnetic waves in hot electron-positron plasma

    International Nuclear Information System (INIS)

    The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs

  15. Mining Local Specialties for Travelers by Leveraging Structured and Unstructured Data

    OpenAIRE

    Kai Jiang; Like Liu; Rong Xiao; Nenghai Yu

    2012-01-01

    Recently, many local review websites such as Yelp are emerging, which have greatly facilitated people's daily life such as cuisine hunting. However they failed to meet travelers' demands because travelers are more concerned about a city's local specialties instead of the city's high ranked restaurants. To solve this problem, this paper presents a local specialty mining algorithm, which utilizes both the structured data from local review websites and the unstructured user-generated content (UG...

  16. Local chiral potentials and the structure of light nuclei

    CERN Document Server

    Piarulli, Maria; Schiavilla, Rocco; Kievsky, Alejandro; Lovato, Alessandro; Marcucci, Laura E; Pieper, Steven C; Viviani, Michele; Wiringa, Robert B

    2016-01-01

    We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M.\\ Piarulli {\\it et al.}, Phys.\\ Rev.\\ C {\\bf 91}, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $\\Delta$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0--125 MeV or 0--200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutof...

  17. Strong influence of regional species pools on continent-wide structuring of local communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Borregaard, Michael Krabbe; Fordyce, James A.; Rahbek, Carsten; Weiser, Michael D.; Dunn, Robert R.; Sanders, Nate

    2012-01-01

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species...... a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the...... that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong....

  18. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.

    Science.gov (United States)

    Sarver, Michael; Zirbel, Craig L; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B

    2008-01-01

    New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, "Find RNA 3D" (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs whose

  19. Local structure analysis of NaNbO3

    Science.gov (United States)

    Yoneda, Y.; Fu, D.; Kohara, S.

    2014-04-01

    NaNbO3 has an antiferroelectric structure at room temperature and finds important technological applications. It exhibits an unusual complex sequence of temperature-and pressure-driven structural phase transitions. NaNbO3 shows unambiguous evidence for the presence of the ferroelectric R3c phase coexisting with an antiferroelectric phase (Pbcm) over a wide range of temperatures. We have carried out atomic pair-distribution function (PDF) analysis on NaNbO3 to understand the phase transitions. High-energy X-ray PDF using powder samples were carried out at the SPring-8, which is provided to become rhombohedral structure if A-site atoms did order and to become orthorhombic structure if A-site atoms did disorder.

  20. Local structure analysis of NaNbO3

    International Nuclear Information System (INIS)

    NaNbO3 has an antiferroelectric structure at room temperature and finds important technological applications. It exhibits an unusual complex sequence of temperature-and pressure-driven structural phase transitions. NaNbO3 shows unambiguous evidence for the presence of the ferroelectric R3c phase coexisting with an antiferroelectric phase (Pbcm) over a wide range of temperatures. We have carried out atomic pair-distribution function (PDF) analysis on NaNbO3 to understand the phase transitions. High-energy X-ray PDF using powder samples were carried out at the SPring-8, which is provided to become rhombohedral structure if A-site atoms did order and to become orthorhombic structure if A-site atoms did disorder.

  1. Localization of acoustic emission sources in geometrically sparse structures

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Chlada, Milan

    Berlín : Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V, 2014. ISBN 978-3-940283-63-4. [Conference of the European Working Group on Acoustic Emission : EWGAE 2014 /31./. Drážďany (DE), 03.09.2014-05.09.2014] Institutional support: RVO:61388998 Keywords : civil structures * structures health monitoring ( SHM) * acoustic emission * source location Subject RIV: BI - Acoustics

  2. The local structure of oxide and metallic glasses

    International Nuclear Information System (INIS)

    In this paper, an attempt is made to delineate current structural problems in each class of materials and to present a review of relevant experimental investigations. Structural information is dominated by the results of scattering studies (neutrons or X-rays), with a recent, growing emphasis being placed on extraction of partial structure factors and accurate comparison with atomic models. EXAFS allows a more detailed investigation of the surroundings of specific atoms, even in complex systems such as oxides and chalcogenides, Moessbauer and NMR spectroscopy have provided new information on the symmetry of first-neighbour coordination shells - particularly in metallic systems. The results of experiment and computer-simulations appear to reinforce the view that structure in amorphous materials in marked less by its uniformity than by its variability. It does not seem possible to provide a simple, singular, definition of what constitutes a glass (in terms of random networks, for example) or why some form more easily than others. But a common set of principles and parameters is emerging which allow the various structures adopted by glasses to be investigated, measured and described. (orig./TW)

  3. The local structure of oxide and metallic glasses

    International Nuclear Information System (INIS)

    An attempt is made to delineate current structural problems for oxide glasses, amorphous semiconductors and metallic alloy glasses, and to present a review of relevant experimental investigations on each class of materials. Structural information is dominated by the results of scattering studies (neutrons or X-rays), with growing emphasis being placed on extraction of partial structure factors and accurate comparison with atomic models. EXAFS allows a more detailed investigation of the surroundings of specific atoms, even in complex systems such as oxides and chalcogenides, Moessbauer and NMR spectroscopy have provided new information on the symmetry of first-neighbour coordination shells - particularly in metallic systems. The results of experiments and computer simulations have been evaluated. (author)

  4. Localization of wood floor structure by infrared thermography

    Science.gov (United States)

    Cochior Plescanu, C.; Klein, M.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.

    2008-03-01

    One of our industrial partners, Assek Technologie, is interested in developing a technique that would improve the drying process of wood floor in basements after flooding. In order to optimize the procedure, the floor structure and the damaged (wet) area extent must first be determined with minimum intrusion (minimum or no dismantling). The present study presents the use of infrared thermography to reveal the structure of (flooded) wood floors. The procedure involves opening holes in the floor. Injecting some hot air through those holes reveals the framing structure even if the floor is covered by vinyl or ceramic tiles. This study indicates that thermal imaging can also be used as a tool to validate the decontamination process after drying. Thermal images were obtained on small-scale models and in a demonstration room.

  5. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier;

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation of this...... classification suggests that the balance between favoring and disfavoring structural features determines if a pair of proteins interacts or not. Our results are in agreement with previous works and support the funnel-like intermolecular energy landscape theory that explains PPIs. We have used these features to...

  6. Political structure of Mersin at the basis of the results of the local elections

    OpenAIRE

    Arslan, D. Ali

    2012-01-01

    It was aimed to investigate the political structure of Mersin and its place in the general political structure of Turkey by using methods and techniques of political sociology. Structural-functionalist was used as the theoretical base. In the other words the formation of political power in Mersin and the overall operation and changing regularities were investigated. To achieve this goal, the results of the Turkish local elections in last 50 years (totally 10 local elections) were examined....

  7. Socio-political structure of Mersin at the basis of the results of the local elections

    OpenAIRE

    D. Ali Arslan

    2012-01-01

    It was aimed to investigate the political structure of Mersin and its place in the general political structure of Turkey by using methods and techniques of political sociology. Structural-functionalist was used as the theoretical base. To achieve this goal, the results of the Turkish local elections in last 50 years (were examined. First of all, the formation of political power in Turkey and the overall operation and changing regularities at the bases of the local elections were evaluated. Se...

  8. Global/Local Iteration for Blended Composite Laminate Panel Structure Optimization Subproblems

    OpenAIRE

    Adams, David B; Watson, Layne T.; Seresta, Omprakash; Gürdal, Zafer

    2005-01-01

    Composite panel structure optimization is commonly decomposed into panel optimization subproblems. Previous work applied a guide based design approach to the problem for a structure where the local loads were assumed to be fixed for each panel throughout the design process. This paper examines the application of guide based design to a more realistic representation of the structure where the local loads for each panel are determined through a global level analysis that is coupled with the sta...

  9. Near-Field Sound Localization Based on the Small Profile Monaural Structure

    OpenAIRE

    Youngwoong Kim; Keonwook Kim

    2015-01-01

    The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pi...

  10. MR brain scan tissues and structures segmentation: local cooperative Markovian agents and Bayesian formulation

    International Nuclear Information System (INIS)

    Accurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation. (author)

  11. Muscarinic acetylcholine receptor subtypes: localization and structure/function

    DEFF Research Database (Denmark)

    Brann, M R; Ellis, J; Jørgensen, H;

    1993-01-01

    Based on the sequence of the five cloned muscarinic receptor subtypes (m1-m5), subtype selective antibody and cDNA probes have been prepared. Use of these probes has demonstrated that each of the five subtypes has a markedly distinct distribution within the brain and among peripheral tissues. The...... are described, as well as the implied structures of these functional domains....

  12. Quantum correlations and light localization in disordered nanophotonic structures

    DEFF Research Database (Denmark)

    Smolka, Stephan

    This thesis reports results on quantum properties of light in multiple-scattering nano-structured materials. Spatial quantum correlations of photons are demonstrated experimentally that are induced by multiple scattering of squeezed light and of purely quantum origin. By varying the quantum state...

  13. Structure and chromosomal localization of the human renal kallikrein gene

    International Nuclear Information System (INIS)

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  14. Evaluation of local structure alphabets based on residue burial.

    Science.gov (United States)

    Karchin, Rachel; Cline, Melissa; Karplus, Kevin

    2004-05-15

    Residue burial, which describes a protein residue's exposure to solvent and neighboring atoms, is key to protein structure prediction, modeling, and analysis. We assessed 21 alphabets representing residue burial, according to their predictability from amino acid sequence, conservation in structural alignments, and utility in one fold-recognition scenario. This follows upon our previous work in assessing nine representations of backbone geometry.1 The alphabet found to be most effective overall has seven states and is based on a count of C(beta) atoms within a 14 A-radius sphere centered at the C(beta) of a residue of interest. When incorporated into a hidden Markov model (HMM), this alphabet gave us a 38% performance boost in fold recognition and 23% in alignment quality. PMID:15103615

  15. Topological framework for local structure analysis in condensed matter

    OpenAIRE

    Lazar, Emanuel A.; Han, Jian; Srolovitz, David J.

    2015-01-01

    Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introdu...

  16. Sea urchin vault structure, composition, and differential localization during development

    OpenAIRE

    Dickey-Sims Carrie; Lang Jennifer; Makabi Miriam; Stewart Phoebe L; Robertson Anthony J; Coffman James A; Suprenant Kathy A

    2005-01-01

    Abstract Background Vaults are intriguing ribonucleoprotein assemblies with an unknown function that are conserved among higher eukaryotes. The Pacific coast sea urchin, Strongylocentrotus purpuratus, is an invertebrate model organism that is evolutionarily closer to humans than Drosophila and C. elegans, neither of which possesses vaults. Here we compare the structures of sea urchin and mammalian vaults and analyze the subcellular distribution of vaults during sea urchin embryogenesis. Resul...

  17. Local structural motifs in a quenched model monatomic liquid

    Energy Technology Data Exchange (ETDEWEB)

    LaViolette, R.A.; Stump, D.M. (Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2208 (United States))

    1994-09-01

    Amorphous packings have been generated from steepest-descent quenches applied to a monatomic liquid simulated by molecular dynamics. The model for the interatomic forces employed here provides both liquids and solids with a mean coordination as low as seven at low densities as well as the close-packed configurations with a mean coordination of twelve at higher densities. The low-coordination packings generated from the low-density liquid contain microcrystallites with a simple hexagonal structure which, with increasing density, are eventually suppressed in favor of microcrystallites with a body-centered-cubic (bcc) structure. The abrupt growth of the bcc microcrystallites occurs at densities well below the density for the hexagonal-bcc crystal transition at zero temperature and constant volume. The high-coordination packings quenched from the high-density liquid contain truly amorphous clusters which are neither crystalline nor icosahedral, but share attributes of both. The first result shows that microcrystalline clusters can be important structural elements of even simple amorphous substances. The second result resolves the conflicting claims concerning the abundance or scarcity of icosahedra in the densest amorphous substances. Both of these results challenge widely held pictures of simple amorphous substances.

  18. Perturbation method of analyzing mode localization of asymmetrical plate-type structure in incompressible flows

    International Nuclear Information System (INIS)

    The dynamical characteristics of a simple two-span parallel flat plate-type model vibrating in incompressible water are studied here. The assumption mode method is used to form the motion equation of the structure. By using a second order perturbation method, the great emphasis is focused on the influences of the asymmetrical parameter of the structure, the deviation of length and stiffness of the torsional spring on the degrees of mode localization of the structure. The results show that the second method can be applied to predict the dynamical characteristics of the structure accurately. The influences of the coupling effect of the fluid on the phenomena of the two piece beams' mode localization are different. The asymmetrical parameter of length is the main factor that leads to the behaviors of mode localization of the structure. The deviation of stiffness of the torsional spring, too, has significant influences on the phenomena of mode localization

  19. Identification of local conformational similarity in structurally variable regions of homologous proteins using protein blocks.

    Science.gov (United States)

    Agarwal, Garima; Mahajan, Swapnil; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2011-01-01

    Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the "structurally variable" regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of 'variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been

  20. Structural chemistry and the local charge picture of copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Cava, R.J. (AT and T Bell Labs., Murray Hill, NJ (USA))

    1990-02-09

    The crystal structures of the known copper oxide superconductors are described, with particular emphasis on the manner in which they fall into structural families. The local charge picture, a framework for understanding the influence of chemical composition, stoichiometry, and doping on the electrical properties of complex structures, is also described. 42 refs., 7 figs.

  1. Study on the local atomic structure of germanium in organic germanium compounds by EXAFS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic germanium compounds have been extensively applied in medicine as tonics,In this paper,the local structures of two organic germanium compounds,carboxyethylgermanium sesquioxide and polymeric germanium glutamate,were determined by EXAFS.The structure parameters including coordination numbers and bond lengths were reported,and possible structure patterns were discussed.

  2. Sea urchin vault structure, composition, and differential localization during development

    Directory of Open Access Journals (Sweden)

    Dickey-Sims Carrie

    2005-02-01

    Full Text Available Abstract Background Vaults are intriguing ribonucleoprotein assemblies with an unknown function that are conserved among higher eukaryotes. The Pacific coast sea urchin, Strongylocentrotus purpuratus, is an invertebrate model organism that is evolutionarily closer to humans than Drosophila and C. elegans, neither of which possesses vaults. Here we compare the structures of sea urchin and mammalian vaults and analyze the subcellular distribution of vaults during sea urchin embryogenesis. Results The sequence of the sea urchin major vault protein (MVP was assembled from expressed sequence tags and genome traces, and the predicted protein was found to have 64% identity and 81% similarity to rat MVP. Sea urchin MVP includes seven ~50 residue repeats in the N-terminal half of the protein and a predicted coiled coil domain in the C-terminus, as does rat MVP. A cryoelectron microscopy (cryoEM reconstruction of isolated sea urchin vaults reveals the assembly to have a barrel-shaped external structure that is nearly identical to the rat vault structure. Analysis of the molecular composition of the sea urchin vault indicates that it contains components that may be homologs of the mammalian vault RNA component (vRNA and protein components (VPARP and TEP1. The sea urchin vault appears to have additional protein components in the molecular weight range of 14–55 kDa that might correspond to molecular contents. Confocal experiments indicate a dramatic relocalization of MVP from the cytoplasm to the nucleus during sea urchin embryogenesis. Conclusions These results are suggestive of a role for the vault in delivering macromolecules to the nucleus during development.

  3. Local structure analysis of some Cu(II) theophylline complexes

    Science.gov (United States)

    David, L.; Cozar, O.; Forizs, E.; Cr ăciun, C.; Ristoiu, D.; B ălan, C.

    1999-10-01

    The CuT 2L 2·2H 2O complexes [T=Theophylline (1,3-dimethylxanthine); L=NH 3, n-propylamine (npa), 2-aminoethanol (ae)] were prepared and investigated by ESR spectroscopy. Powder ESR spectrum of CuT 2(NH 3) 2·2H 2O is axial ( g||=2.255, g⊥=2.059). ESR spectrum of CuT 2(npa) 2·2H 2O with ( g||=2.299, g⊥=2.081) is a superposition of one axial ( g||=2.299, g⊥=2.073) and one isotropic component ( g0≈2.089), in the same amount. The axial spectra of the former complexes are due to a static Jahn-Teller effect ( EJT≈2880 cm -1). ESR spectrum of CuT 2(ae) 2·2H 2O is orthorhombic ( g1c=2.199, g2c=2.095, g3c=2.037). The local symmetries around the Cu(II) ions remain unchanged by DMF solvating, by adsorbing these solutions on NaY zeolite or by lowering the temperature.

  4. Local Dynamics of Offshore Wind Turbine Jacket Sub-structures

    OpenAIRE

    Kjetså, Anders; Saaghus, Lars Jørgen

    2010-01-01

    The scope of this thesis has been to investigate the existence of out-of-plane vibration of jacket sub-structures for offshore wind turbines. This is done by making the program code JAC (Jacket Analysis Code), which is capable of solving dynamic problems in both time and frequency domain. The code is also able to do damage analysis as it has been a major goal to quantify the change in damage caused by the out-of-plane vibrations and to see how this is influenced by dierent parameters.It is sh...

  5. EXAFS local structure studies of organometallic and cluster species

    International Nuclear Information System (INIS)

    EXAFS structural parameters, viz. interatomic distances Ri and coordination numbers Ni in novel organometallic and cluster species, and the influence of a static and dynamic disorder on these parameters, are discussed. First M-M spheres in polynuclear 5d-metal derivatives and outer metal-metal spheres in distorted large clusters may not be seen in room-temperature studies. This effect often restricts geometric information available on colloid and supported polynuclear species to the closest coordination environment and may cause an elimination of the oxide shell in metal nanoparticles during data reduction

  6. HYPLOSP: a knowledge-based approach to protein local structure prediction.

    Science.gov (United States)

    Chen, Ching-Tai; Lin, Hsin-Nan; Sung, Ting-Yi; Hsu, Wen-Lian

    2006-12-01

    Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, the accuracy of existing methods is limited. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of our method. Empirically, the accuracy of the method correlates positively with the local match rate; therefore, we employ it to predict the local structures of positions with a high local match rate. For positions with a low local match rate, we propose a neural network prediction method. To better utilize the knowledge-based and neural network methods, we design a hybrid prediction method, HYPLOSP (HYbrid method to Protein LOcal Structure Prediction) that combines both methods. To evaluate the performance of the proposed methods, we first perform cross-validation experiments by applying our knowledge-based method, a neural network method, and HYPLOSP to a large dataset of 3,925 protein chains. We test our methods extensively on three different structural alphabets and evaluate their performance by two widely used criteria, Maximum Deviation of backbone torsion Angle (MDA) and Q(N), which is similar to Q(3) in secondary structure prediction. We then compare HYPLOSP with three previous studies using a dataset of 56 new protein chains. HYPLOSP shows promising results in terms of MDA and Q(N) accuracy and demonstrates its alphabet-independent capability. PMID:17245815

  7. Global/local stress analysis of composite structures. M.S. Thesis

    Science.gov (United States)

    Ransom, Jonathan B.

    1989-01-01

    A method for performing a global/local stress analysis is described and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.

  8. Separation of a Slater determinant wave function with a neck structure into spatially localized subsystems

    OpenAIRE

    Taniguchi, Yasutaka; Kanada-En'yo, Yoshiko

    2011-01-01

    A method to separate a Slater determinant wave function with a two-center neck structure into spatially localized subsystems is proposed, and its potential applications are presented. An orthonormal set of spatially localized single-particle wave functions is obtained by diagonalizing the coordinate operator for the major axis of a necked system. Using the localized single-particle wave functions, the wave function of each subsystem is defined. Therefore, defined subsystem wave functions are ...

  9. Structural/Frictional and Demand-Deficient Unemployment in Local Labor Markets

    OpenAIRE

    Holzer, Harry J.

    1988-01-01

    This paper uses data on unemployment rates and job vacancy rates to measure structural/frictional and demand-deficient components of unemployment rate differences across local labor markets. Data on occupational and industrial distributions of unemployed workers and vacant jobs, as well as on local wages, recent sales growth, Unemployment Insurance, and demographics are then used to help account for these components of unemployment across local areas.

  10. Pose Estimation using Local Structure-Specific Shape and Appearance Context

    DEFF Research Database (Denmark)

    Buch, Anders Glent; Kraft, Dirk; Kämäräinen, Joni-Kristian;

    2013-01-01

    We address the problem of estimating the alignment pose between two models using structure-specific local descriptors. Our descriptors are generated using a combination of 2D image data and 3D contextual shape data, resulting in a set of semi-local descriptors containing rich appearance and shape...

  11. Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality.

    Science.gov (United States)

    Fernández, M S; Arias, J I; Neira-Carrillo, A; Arias, J L

    2015-09-01

    Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded. PMID:26276577

  12. A hierarchical method for structural topology design problems with local stress and displacement constraints

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stidsen, Thomas K.

    2005-01-01

    of minimizing the weight of a structure subject to displacement and local design-dependent stress constraints. The method iteratively solves a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse and then...... from global optimization, which have only recently become available, for solving the problems in the sequence. Numerical examples of topology design problems of continuum structures with local stress and displacement constraints are presented....

  13. Strong influence of regional species pools on continent-wide structuring of local communities

    OpenAIRE

    Lessard, Jean-Philippe; Borregaard, Michael K.; Fordyce, James A.; Rahbek, Carsten; Weiser, Michael D.; Dunn, Robert R.; Sanders, Nathan J

    2011-01-01

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that...

  14. Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure

    Directory of Open Access Journals (Sweden)

    Knut E. Aasmundtveit

    2013-07-01

    Full Text Available Local synthesis and direct integration of carbon nanotubes (CNTs into microsystems is a promising method for producing CNT-based devices in a single step, low-cost, and wafer-level, CMOS/MEMS-compatible process. In this report, the structure of the locally grown CNTs are studied by transmission imaging in scanning electron microscopy—S(TEM. The characterization is performed directly on the microsystem, without any post-synthesis processing required. The results show an effect of temperature on the structure of CNTs: high temperature favors thin and regular structures, whereas low temperature favors “bamboo-like” structures.

  15. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  16. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Levin, Igor

    2008-11-01

    Full Text Available The functional responses (e. g., dielectric, magnetic, catalytic, etc. of many industrially-relevant materials are controlled by their local structure-a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale-the so-called "nanostructure problem"-at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem-an ultimate frontier in materials characterization-necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed "institute" would provide an intellectual infrastructure for local structure determination by (1 developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2, (2 connecting industrial and academic users with experts in measurement techniques, (3

  17. Local structural differences in homologous proteins: specificities in different SCOP classes.

    Science.gov (United States)

    Joseph, Agnel Praveen; Valadié, Hélène; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-01-01

    The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include α-helices, β-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 Å. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-β class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving β-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare β-turns of type I' and II' are also identified

  18. EXAFS, Determination of Short Range Order and Local Structures in Materials

    NARCIS (Netherlands)

    Koningsberger, D.C.; Prins, R.

    1981-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) is a powerful method of determining short range order and local structures in materials using X-ray photons produced by a synchrotron light source, or in-house by a high intensity rotating anode X-ray generator. The technique has provided valuable str

  19. Oriented graph structure of local energy minima in the random-field Ising model

    International Nuclear Information System (INIS)

    In this paper we investigate the structure of the disordered energy landscape of the RFIM with field-driven single-spin-flip dynamics. We show that local energy minima are partitioned into equivalence classes (basins) organized in a binary oriented graph. We discuss two algorithms by which one can explore the oriented graph structure

  20. Oriented graph structure of local energy minima in the random-field Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Bortolotti, Paolo [Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin (Italy)], E-mail: bortolo@inrim.it; Basso, Vittorio; Magni, Alessandro; Bertotti, Giorgio [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin (Italy)

    2008-02-01

    In this paper we investigate the structure of the disordered energy landscape of the RFIM with field-driven single-spin-flip dynamics. We show that local energy minima are partitioned into equivalence classes (basins) organized in a binary oriented graph. We discuss two algorithms by which one can explore the oriented graph structure.

  1. Design Optimization of Laminated Composite Structures with Many Local Strength Criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    This paper presents different strategies for handling very many local strength criteria in structural optimization of laminated composites. Global strength measures using Kreisselmeier-Steinhauser or p-norm functions are introduced for patch-wise parameterizations, and the efficiency of the methods...... is illustrated for multi-material topology optimization of laminated composite structures including failure criteria....

  2. A global-local optimization method for problems in structural dynamics

    NARCIS (Netherlands)

    Wind, J.W.

    2006-01-01

    The optimization of complex structures involving many design variables and constraints can be performed using a multi-level approach: a structure consisting of several components is optimized as a whole (global) and on the component level (local). Earlier work [1], [2], [3], described a multilevel t

  3. Review on Empirical Studies of Local Impact Effects of Hard Missile on Concrete Structures

    Directory of Open Access Journals (Sweden)

    Ismail Abdul Rahman

    2011-05-01

    Full Text Available Concrete is basic construction material used for any kind of structure. However, in most vital and local structures such as nuclear plants, Power plants, Weapon Industries, weapons storage places, water retaining structures like dams, and also local industries, & etc., concrete structures have to be designed as defensive structures to provide protection against any accidents or knowingly generated incidents such as dynamic loading, dynamic local impact damage and global damage generated by kinetic missiles (steel rods, steel pipes, turbine blades, etc.. The impacting missile (projectile can be classified as ‘Hard’ and ‘Soft’ in nature, depending upon the implication of its deformation with respect to the deformation of target. ‘Hard’ missile impact can generate both local impact damage and also overall dynamic global damage of concrete structure. This paper only provides the review of previous empirical studies related to our study and can be used for making design recommendation and design procedures for determining the dynamic response of the target to prevent local and impact damage.

  4. Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure

    International Nuclear Information System (INIS)

    The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption. (condensed matter: structure, thermal and mechanical properties)

  5. Breakdown Localization Studies on the SwissFEL C-band Test Structures

    CERN Document Server

    Klavins, J; Le Pimpec, F; Locans, U; Shipman, N; Stingelin, L; Wohlmuther, M; Zennaro, R

    2013-01-01

    The SwissFEL main LINAC will consist of 104 Cband structures with a nominal accelerating gradient of 28MV/m. First power tests were performed on short constant impedance test-structures composed of eleven double-rounded cups. In order to localize breakdowns, two or three acoustic emission sensors were installed on the test-structures. In order to localize breakdowns we have analysed, in addition to acoustic measurements, the delay and phase of the RF power signals. Parasitic, acoustic noise emitted from the loads of the structure complicated the data interpretation and necessitated appropriate processing of the acoustic signals. The Goals of the experiments were to identify design and manufacturing errors of the structures. The results indicate that breakdowns occur mostly at the input power coupler, as also confirmed by vacuumevents at the same location. The experiments show that the LINAC test-structures fulfil the requirements in breakdown probability. Moreover developing a detection system based on acoust...

  6. Local structure analysis of KNbO3 nanocubes by solvothermal synthesis

    Science.gov (United States)

    Yoneda, Yasuhiro; Kohara, Shinji; Nakashima, Kouichi; Nagata, Hajime; Wada, Satoshi

    2015-10-01

    The atomic-scale structure of KNbO3 nanocubes synthesized by a solvothermal method has been studied using high-energy X-ray diffraction, Rietveld refinement, and the atomic pair-distribution function (PDF) technique. It was found that the local structure of KNbO3 nanocubes was rhombohedral. The rhombohedral distortion of NbO6 octahedra was maintained in the nanocubes and also observed in KNbO3 bulk ceramics. The size effect on the crystallographic structure can be understood as analogous to the temperature-driven and/or pressure-driven structural phase transitions. The tetragonal average structure of the KNbO3 nanocubes was observed as a disordered phase of the rhombohedral local structure.

  7. PLACE AND ROLE OF THE STRUCTURAL FUNDS IN THE LOCAL BUDGET REVENUES

    Directory of Open Access Journals (Sweden)

    CRISTINEL ICHIM

    2016-06-01

    Full Text Available In this study we aim to analyse the place and role manifested within local budgets of Romania by a new category of revenues available to local authorities namely those from the Structural and Cohesion Funds of the EU. At the beginning of our scientific approach we have outlined the scope of local government revenues highlighting that in the section development of local budgets are also set off funds from the European Union. The research continues with a characterization of the structural funds in which, on the one hand, we have emphasized their importance to the development of territorial administrative units in Romania and on the other hand we showed some difficulties arising in the process of absorption of European funds. The analysis of financial resources from the EU funds within the local budgets from Romania is the last part of the article and is based on the quantitative analysis of the budget indicator, "amounts of the EU in the payments made and pre-financing" from existing data in the Statistical Yearbook of Romania, and highlights the place occupied by such income within local public revenues. This analysis shows that local public authorities from Romania have made significant progress in terms of accessing European funds, their share in total revenues of local budgets increased during 2008-2014.

  8. Protein Classification Based on Analysis of Local Sequence-Structure Correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Zemla, A T

    2006-02-13

    The goal of this project was to develop an algorithm to detect and calculate common structural motifs in compared structures, and define a set of numerical criteria to be used for fully automated motif based protein structure classification. The Protein Data Bank (PDB) contains more than 33,000 experimentally solved protein structures, and the Structural Classification of Proteins (SCOP) database, a manual classification of these structures, cannot keep pace with the rapid growth of the PDB. In our approach called STRALCP (STRucture Alignment based Clustering of Proteins), we generate detailed information about global and local similarities between given set of structures, identify similar fragments that are conserved within analyzed proteins, and use these conserved regions (detected structural motifs) to classify proteins.

  9. INTERCONNECTIONS BETWEEN THE ECONOMIC STRUCTURE OF LOCAL SPENDING AND ECONOMIC GROWTH IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Bilan Irina

    2015-07-01

    Full Text Available The issue of the effects of government interventions, explicitly of the taxes and expenditures of local public authorities, has generated substantial debate over time, and still gives rise to numerous controversies in theory and practice. Following the Keynesian path of reasoning, it is, at least theoretically, admitted that it is possible to influence the socio-economic activities and support for economic growth by means of government spending, but different other factors act towards enhancing or, on the contrary, impeding the achievement of the desired effects. From this point of view, the delimitation of competences and public expenditure responsibilities between different levels of government raises the issue of some possible different effects of the central and local governments’ interventions. As the macroeconomic stabilization function is usually associated with central governments, and the contribution of local governments often is of lesser importance, less attention is paid to the effectiveness of local administrative actions. In such a context, the paper aims to empirically evaluate the effects of the economic structure of local public expenditures on the local (territorial economic growth in Romania, over the period 2007 to 2012. The analysis has been conducted at the level of the 42 Romanian counties and on annual data collected from both international and national sources (World Bank, INSSE, The Romanian Ministry of Regional Development and Public Administration.The general method of estimation is the fixed effects estimation technique for panel data models. Our empirical approach is of absolute novelty, especially for Romania, where previous empirical studies have been focusing on the assessment of the overall effects of general government spending. The main findings of our study are that local public expenditures have a negative impact on territorial economic growth, confirmed both for overall expenditures and for various

  10. Mining Local Specialties for Travelers by Leveraging Structured and Unstructured Data

    Directory of Open Access Journals (Sweden)

    Kai Jiang

    2012-01-01

    Full Text Available Recently, many local review websites such as Yelp are emerging, which have greatly facilitated people's daily life such as cuisine hunting. However they failed to meet travelers' demands because travelers are more concerned about a city's local specialties instead of the city's high ranked restaurants. To solve this problem, this paper presents a local specialty mining algorithm, which utilizes both the structured data from local review websites and the unstructured user-generated content (UGC from community Q&A websites, and travelogues. The proposed algorithm extracts dish names from local review data to build a document for each city, and applies tfidf weighting algorithm on these documents to rank dishes. Dish-city correlations are calculated from unstructured UGC, and combined with the tfidf ranking score to discover local specialties. Finally, duplicates in the local specialty mining results are merged. A recommendation service is built to present local specialties to travelers, along with specialties' associated restaurants, Q&A threads, and travelogues. Experiments on a large data set show that the proposed algorithm can achieve a good performance, and compared to using local review data alone, leveraging unstructured UGC can boost the mining performance a lot, especially in large cities.

  11. Local formation of a Heusler structure in CoFe-Al alloys

    Science.gov (United States)

    Wurmehl, S.; Jacobs, P. J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.; Maat, S.; Carey, M. J.; Childress, J. R.

    2011-01-01

    We systematically study the changes in the local atomic environments of Co in CoFe-Al alloys as a function of Al content by means of nuclear magnetic resonance. We find that a Co2FeAl Heusler type structure is formed on a local scale. The observed formation of a highly spin-polarized Heusler compound may explain the improved magnetotransport properties in CoFe-Al based current-perpendicular-to-the-plane spin-valves.

  12. Locally self-consistent Green’s function approach to the electronic structure problem

    OpenAIRE

    Abrikosov, I. A.; Simak, S.I.; Johansson, B; Ruban, Andrei; Skriver, Hans Lomholt

    1997-01-01

    The locally self-consistent Green's function (LSGF) method is an order-N method for calculation of the electronic structure of systems with an arbitrary distribution of atoms of different kinds on an underlying crystal lattice. For each atom Dyson's equation is used to solve the electronic multiple scattering problem in a local interaction zone (LIZ) embedded in an effective medium judiciously chosen to minimize the size of the, LIZ. The excellent real-space convergence of the LSGF calculatio...

  13. LOCAL INFLUENCE ASSESSMENT IN A MULTIVARIATE t-MODEL WITH RAO'S SIMPLE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Zou Qingming; Zhang Huaixiong

    2005-01-01

    The local influence analysis is an important problem in statistical inference and some models have been discussed in many literatures[1- 5]. This paper deals with the problem of assessing local influences in a multivariate t-model with Rao's simple structure(RSS). Based on Cook's likelihood displacement, the effects of some minor perturbation on the statistical inference is assessed. As an application, a common covariance-weighted perturbation is thoroughly discussed.

  14. LOCAL BANK OFFICE OWNERSHIP, DEPOSIT CONTROL, MARKET STRUCTURE, AND ECONOMIC GROWTH

    OpenAIRE

    Collender, Robert N.; Schaffer, Sherrill L.

    2000-01-01

    The restructuring of commercial banking has heightened interest in its economic consequences both for the economy as a whole and for those most likely to bear adverse consequences: small businesses, small banks, and rural areas. Most previous research on bank restructuring focuses on changes in bank behavior. In contrast, this paper focuses on the empirical association between local economic performance and changes in local bank market regulation and structure. Findings suggest that mergers o...

  15. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins

    OpenAIRE

    Whitten, Steven T; García-Moreno E., Bertrand; Hilser, Vincent J.

    2005-01-01

    Local conformational fluctuations in proteins can affect the coupling between ligand binding and global structural transitions. This finding was established by monitoring quantitatively how the population distribution in the ensemble of microstates of staphylococcal nuclease was affected by proton binding. Analysis of acid unfolding and proton-binding data with an ensemble-based model suggests that local fluctuations: (i) can be effective modulators of ligand-binding affinities, (ii) are impo...

  16. Structural information content of networks: graph entropy based on local vertex functionals.

    Science.gov (United States)

    Dehmer, Matthias; Emmert-Streib, Frank

    2008-04-01

    In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating j-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. PMID:18243802

  17. In silico local structure approach: a case study on outer membrane proteins.

    Science.gov (United States)

    Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude

    2008-04-01

    The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. PMID:17932925

  18. Modular localization and the holistic structure of causal quantum theory, a historical perspective

    International Nuclear Information System (INIS)

    Recent insights into the conceptual structure of localization in QFT ('modular localization') led to clarifications of old unsolved problems. The oldest one is the Einstein-Jordan conundrum which led Jordan in 1925 to the discovery of quantum field theory. This comparison of fluctuations in subsystems of heat bath systems (Einstein) with those resulting from the restriction of the QFT vacuum state to an open subvolume (Jordan) leads to a perfect analogy; the globally pure vacuum state becomes upon local restriction a strongly impure KMS state. This phenomenon of localization-caused thermal behavior as well as the vacuum-polarization clouds at the causal boundary of the localization region places localization in QFT into a sharp contrast with quantum mechanics and justifies the attribute 'holstic'. In fact it positions the E-J Gedankenexperiment into the same conceptual category as the cosmological constant problem and the Unruh Gedankenexperiment. The holistic structure of QFT resulting from 'modular localization' also leads to a revision of the conceptual origin of the crucial crossing property which entered particle theory at the time of the bootstrap S-matrix approach but suffered from incorrect use in the S-matrix settings of the dual model and string theory. The new holistic point of view, which strengthens the autonomous aspect of QFT, also comes with new messages for gauge theory by exposing the clash between Hilbert space structure and localization and presenting alternative solutions based on the use of string local fields in Hilbert space. Among other things this leads to a radical reformulation of the Englert-Higgs symmetry breaking mechanism. (author)

  19. Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Lyngsø, Rune B.; Stormo, Gary D.; Gorodkin, Jan

    2005-01-01

    ability to conduct mutual scans of two sequences of arbitrary length while searching for common local structural motifs of some maximum length. This drastically reduces the complexity of the algorithm. The scoring scheme includes structural parameters corresponding to those available for free energy as......Motivation: Searching for non-coding RNA (ncRNA) genes and structural RNA elements (eleRNA) are major challenges in gene finding todya as these often are conserved in structure rather than in sequence. Even though the number of available methods is growing, it is still of interest to pairwise...... detect two genes with low sequence similarity, where the genes are part of a larger genomic region. Results: Here we present such an approach for pairwise local alignment which is based on FILDALIGN and the Sankoff algorithm for simultaneous structural alignment of multiple sequences. We include the...

  20. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Science.gov (United States)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  1. The organization of mineral exploitation and the relationship to urban structures and local business development

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte; Jørgensen, Ulrik

    2013-01-01

    of the resources using immigrant and migrant labour, working intensively over a period of time, while living in shantytowns. Both local and international experiences show that such an organization of work life is not attractive for the population, and that it often provides significant human and social challenges......The paper explores relations between mining and urban structures as these are decisive for involving the local workforce and developing local businesses. A major challenge for Greenland is the on-going decoupling between existing settlements and the main export industry based on marine living...

  2. A Multiatlas Approach for Segmenting Subcortical Brain Structures using Local Patch Distance

    Directory of Open Access Journals (Sweden)

    Neela RAMAMOORTHI

    2015-12-01

    Full Text Available In the diagnosis and treatment of various diseases, often segmenting the brain structures from MRI data is the key step. Since there are larger variations in the anatomical structures of the brain, segmentation becomes a crucial process. Using only the intensity information is not enough to segment structures since two or more structures may share the same tissues. Recently, the use of multiple pre-labeled images called atlases or templates are used in the process of segmentation of image data. Both single atlas and multiple atlases can be used. However, using multiple atlases in the segmentation process proves a dominant method in segmenting brain structures with challenging and overlapping structures. In this paper, we propose two multi atlas segmentation methods: Local Patch Distance Segmentation (LPDS and Weighted Local Patch Distance Segmentation (WLPDS. These methods use local patch distance in the label fusion step. LPDS uses local patch distance to find the best patch match for label propagation. WLPDS uses local patch distance to calculate local weights. The brain MRI images from the MICCAI 2012 segmentation challenge are chosen for experimental purposes. These datasets are publicly available and can be downloaded from MIDAS. The proposed techniques are compared with existing fusion methods such as majority voting and weighted majority voting using the similarity measures such as Dice overlap (DC, Jaccard coefficient (JC and Kappa statistics. For 20 test data sets, LPDS gives DICE=0.95±0.05, JACCARD=0.91±0.04 and KAPPA=0.94±0.07. WLPDS gives DICE=0.98±0.02, JACCARD=0.92±0.03 and KAPPA=0.95±0.04.

  3. Local structure in BaTi O3-BiSc O3 dipole glasses

    Science.gov (United States)

    Levin, I.; Krayzman, V.; Woicik, J. C.; Bridges, F.; Sterbinsky, G. E.; Usher, T.-M.; Jones, J. L.; Torrejon, D.

    2016-03-01

    Local structures in cubic perovskite-type (B a0.6B i0.4) (T i0.6S c0.4) O3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-center displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kV m m-1 .

  4. A Global Image Feature Construction Metho d Based on Local Jet Structure

    Institute of Scientific and Technical Information of China (English)

    XIE Jin; CAI Zi-Xing

    2014-01-01

    This article presents a novel and robust feature descriptor called the multi-scale autoconvolution on local jet structure (MSALJS), which is quasi-invariant to affine transformation. The MSALJS, a global image feature descriptor, is based on the deriva-tives that describe the image local structure to compute the multi-scale autoconvolution moment. Experimental data demonstrate that the MSALJS can be used in practical applications in which the object is deformed in various ways, such as particular occlusion, view angle change, and so on.

  5. Crystal structures of bacterial lipoprotein localization factors, LolA and LolB

    OpenAIRE

    Takeda, Kazuki; Miyatake, Hideyuki; Yokota, Naoko; Matsuyama, Shin-ichi; Tokuda, Hajime; Miki, Kunio

    2003-01-01

    Lipoproteins having a lipid-modified cysteine at the N-terminus are localized on either the inner or the outer membrane of Escherichia coli depending on the residue at position 2. Five Lol proteins involved in the sorting and membrane localization of lipoprotein are highly conserved in Gram-negative bacteria. We determined the crystal structures of a periplasmic chaperone, LolA, and an outer membrane lipoprotein receptor, LolB. Despite their dissimilar amino acid sequences, the structures of ...

  6. Exotic Localized Coherent Structures of the (2+1)-Dimensional Dispersive Long-Wave Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG JieFang

    2002-01-01

    This article is concerned with the extended homogeneous balance method for studying thc abundantlocalized solution structures in the (2-k1)-dimensional dispersive long-wave equations uty + xx + (u2)xy/2 = 0, ηt +(u + u + uxy)x = 0. Starting from the homogeneous balance method, we find that the richness of the localized coherentstructures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selectionsof the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers,instantons and ring solitons.

  7. Locally conformal symplectic structures and their generalizations from the point of view of Lie algebroids

    Directory of Open Access Journals (Sweden)

    Roman Kadobianski

    2004-05-01

    Full Text Available We study locally conformal symplectic structures and their generalizations from the point of view of transitive Lie algebroids. To consider l.c.s. structures and their generalizations we use Lie algebroids with trivial adjoint Lie algebra bundle $Mimesmathbb{R}$ and $Mimesfrak{g}$. We observe that important l.c.s's notions can be translated on the Lie algebroid's language. We generalize l.c.s. structures to $frak{g}$-l.c.s. structures in which we can consider an arbitrary finite dimensional Lie algebra $frak{g}$ instead of the commutative Lie algebra $mathbb{R}$.

  8. Damage evaluation of reinforced concrete underground structures after earthquake. Part 1. Relation between local deformation and performance as structural member

    International Nuclear Information System (INIS)

    The objective of this present series of researches is a development of damage level evaluation method for underground structures which have been subjected to large ground motion. The local deformations represented by crack width are observed in inspections after earthquakes. In the present report, a relationship between these local deformations and mechanical performance as a structural member was discussed through the image measurements for damaged reinforced concrete specimens. Based on the test results, the following two items were investigated. a) The procedure for evaluating the maximum displacement response during earthquakes was developed by using the width of residual flexural cracks, and was verified. The method, which focuses on remaining vertical displacement, is applicable to the structures subjected to reversed loading after maximum response. b) The criteria for shear failure were proposed as two deformation indices, i.e., increase of thickness and length of zone with increasing thickness. (author)

  9. Structure in the 3D Galaxy Distribution: II. Voids and Watersheds of Local Maxima and Minima

    CERN Document Server

    Way, M J; Scargle, Jeffrey D

    2014-01-01

    The major uncertainties in studies of the multi-scale structure of the Universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian Blocks and self organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium Simulation and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. The resulting sizes follow continuous multi-scale distributions with no indication of the presence of a discrete hierarchy. We also int...

  10. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry.

    Science.gov (United States)

    Karchin, Rachel; Cline, Melissa; Mandel-Gutfreund, Yael; Karplus, Kevin

    2003-06-01

    An important problem in computational biology is predicting the structure of the large number of putative proteins discovered by genome sequencing projects. Fold-recognition methods attempt to solve the problem by relating the target proteins to known structures, searching for template proteins homologous to the target. Remote homologs that may have significant structural similarity are often not detectable by sequence similarities alone. To address this, we incorporated predicted local structure, a generalization of secondary structure, into two-track profile hidden Markov models (HMMs). We did not rely on a simple helix-strand-coil definition of secondary structure, but experimented with a variety of local structure descriptions, following a principled protocol to establish which descriptions are most useful for improving fold recognition and alignment quality. On a test set of 1298 nonhomologous proteins, HMMs incorporating a 3-letter STRIDE alphabet improved fold recognition accuracy by 15% over amino-acid-only HMMs and 23% over PSI-BLAST, measured by ROC-65 numbers. We compared two-track HMMs to amino-acid-only HMMs on a difficult alignment test set of 200 protein pairs (structurally similar with 3-24% sequence identity). HMMs with a 6-letter STRIDE secondary track improved alignment quality by 62%, relative to DALI structural alignments, while HMMs with an STR track (an expanded DSSP alphabet that subdivides strands into six states) improved by 40% relative to CE. PMID:12784210

  11. Accurate determination of crystal structures based on averaged local bond order parameters

    OpenAIRE

    Lechner, Wolfgang; Dellago, Christoph

    2008-01-01

    Local bond order parameters based on spherical harmonics, also known as Steinhardt order parameters, are often used to determine crystal structures in molecular simulations. Here we propose a modification of this method in which the complex bond order vectors are averaged over the first neighbor shell of a given particle and the particle itself. As demonstrated using soft particle systems, this averaging procedure considerably improves the accuracy with which different crystal structures can ...

  12. Localized structures and front propagation in the Lengyel-Epstein model

    OpenAIRE

    Jensen, O.; Pannbacker, Viggo Ole; Mosekilde, Erik; Dewel, G.; Borckmans, P.

    1994-01-01

    Pattern selection, localized structure formation, and front propagation are analyzed within the framework of a model for the chlorine dioxide-iodine-malonic acid reaction that represents a key to understanding recently obtained Turing structures. This model is distinguished from previously studied, simple reaction-diffusion models by producing a strongly subcritical transition to stripes. The wave number for the modes of maximum linear gain is calculated and compared with the dominant wave nu...

  13. Finite symmetry transformation group and localized structures of the (2+1)-dimensional coupled Burgers equation

    Institute of Scientific and Technical Information of China (English)

    Lei Ya; Yang Duo

    2013-01-01

    In this paper,the finite symmetry transformation group of the (2+ 1)-dimensional coupled Burgers equation is studied by the modified direct method,and with the help of the truncated Painlevé expansion approach,some special localized structures for the (2+ 1)-dimensional coupled Burgers equation are obtained,in particular,the dromion-like and solitoff-like structures.

  14. Local structure of hole-doped manganites: influence of temperature and applied magnetic field

    International Nuclear Information System (INIS)

    We report an extended x-ray absorption fine-structure investigation on the Mn K absorption edge in La1-xCaxMnO3 as a function of temperature and magnetic field. The results provide microscopic evidence that the modifications in the local structure around Mn atomic sites, as a function of temperature and applied magnetic field, are directly related to the magneto-transport properties of these materials. (author)

  15. A global-local optimization method for problems in structural dynamics

    OpenAIRE

    Wind, J.W.

    2006-01-01

    The optimization of complex structures involving many design variables and constraints can be performed using a multi-level approach: a structure consisting of several components is optimized as a whole (global) and on the component level (local). Earlier work [1], [2], [3], described a multilevel technique developed for the optimization the Airbus A380 vertical tail plane. In this application, a global model is used to calculate the loads on each of the components. These components are then ...

  16. Local structure and spin transition in Fe2O3 hematite at high pressure

    Science.gov (United States)

    Sanson, Andrea; Kantor, Innokenty; Cerantola, Valerio; Irifune, Tetsuo; Carnera, Alberto; Pascarelli, Sakura

    2016-07-01

    The pressure evolution of the local structure of Fe2O3 hematite has been determined by extended x-ray absorption fine structure up to ˜79 GPa. Below the phase-transition pressure at ˜50 GPa, no increasing of FeO6 octahedra distortion is observed as pressure is applied. Above the phase transition, an abrupt decrease of the nearest-neighbor Fe-O distance is observed concomitantly with a strong reduction in the FeO6 distortion. This information on the local structure, used as a test-bench for the different high-pressure forms proposed in the literature, suggests that the orthorhombic structure with space group A b a 2 , recently proposed by Bykova et al. [Nat. Commun. 7, 10661 (2016), 10.1038/ncomms10661], is the most probable, but puts into question the presence of the P 21 /n form in the pressure range 54-67 GPa. Finally, the crossover from Fe high-spin to low-spin states with pressure increase has been monitored from the pre-edge region of the Fe K -edge absorption spectra. Its "simultaneous" comparison with the local structural changes allows us to conclude that it is the electronic transition that drives the structural transition and not vice versa.

  17. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-09-01

    This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin–Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.

  18. Study on the Analytical Behaviour of Concrete Structure Against Local Impact of Hard Missile

    Directory of Open Access Journals (Sweden)

    Ahmad Mujahid Ahmad Zaidi

    2011-07-01

    Full Text Available Concrete is basic construction material used for almost all kind of structure. However, in the majority essential structures such as nuclear plants, Power plants, Weapon Industries, weapons storage places, water retaining structures like dams, highways barriers, bridges, & etc., concrete structures have to be designed as self-protective structure which can afford any disaster or consciously engendered unpleasant incidents such as incident occurs in nuclear plants, incident in any essential industry, terrorist attack, Natural disasters like tsunami and etc missile attack, and local impact damage generated by kinetic missiles dynamic loading (steel rods, steel pipes, turbine blades, etc.. This paper inquisitively is paying attention on verdict of the recent development in formulating analytical behavior of concrete and reinforced concrete structures against local impact effect generated by hard missile with and without the influence of dimensional analysis based on dominant non-dimensional parameters, various nose shape factors at normal and certain inclined oblique angles. The paper comprises the analytical models and methods for predicting penetration, and perforation of concrete and reinforced concrete. The fallout conquer from this study can be used for making design counsel and design procedures for seminal the dynamic retort of the concrete targets to foil local impact damage.

  19. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2012-01-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has revealed the presence of unexpected small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticisied by Stift et al. (2012), who claimed that magnetic inversions are not robust and are undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and neglected some of the most fundamental principles behind magnetic mapping. We demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalised local Stokes profiles. For the disk-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere ...

  20. Heterogeneity of Global and Local Connectivity in Spatial Network Structures of World Migration

    CERN Document Server

    Danchev, Valentin

    2016-01-01

    We examine world migration as a social-spatial network of countries connected via movements of people. We assess how multilateral migratory relationships at global, regional, and local scales coexist ("glocalization"), divide ("polarization"), or form an interconnected global system ("globalization"). To do this, we decompose the world migration network (WMN) into communities---sets of countries with denser than expected migration connections---and characterize their pattern of local (i.e., intracommunity) and global (i.e., intercommunity) connectivity. We distinguish community signatures---"cave", "biregional", and "bridging"---with distinct migration patterns, spatial network structures, temporal dynamics, and underlying antecedents. Cave communities are tightly-knit, enduring structures that tend to channel local migration between contiguous countries; biregional communities are likely to merge migration between two distinct geographic regions (e.g., North Africa and Europe); and bridging communities have ...

  1. Probing the local structure of doped manganites using the atomic pair distribution function

    International Nuclear Information System (INIS)

    We have used atomic pair distribution function (PDF) analysis based on neutron powder diffraction data to investigate the local structure of the colossal magnetoresistant manganite La0.75Ca0.25MnO3 as a function of temperature. In the doping range 0.173+ ions. A two-phase model based on the local structures of the FM and PI phases was used to refine the experimental PDFs quantitatively. We observe the co-existence of both phases over a wide temperature range: approximately 10% of the localized JT phase (PI) is present even at the lowest temperature (T=20 K), whereas at room temperature nearly half of the sample remains in the delocalized (FM) phase. (orig.)

  2. Amplified vibrational circular dichroism as a probe of local biomolecular structure.

    Science.gov (United States)

    Domingos, Sérgio R; Huerta-Viga, Adriana; Baij, Lambert; Amirjalayer, Saeed; Dunnebier, Dorien A E; Walters, Annemarie J C; Finger, Markus; Nafie, Laurence A; de Bruin, Bas; Buma, Wybren Jan; Woutersen, Sander

    2014-03-01

    We show that the VCD signal intensities of amino acids and oligopeptides can be enhanced by up to 2 orders of magnitude by coupling them to a paramagnetic metal ion. If the redox state of the metal ion is changed from paramagnetic to diamagnetic the VCD amplification vanishes completely. From this observation and from complementary quantum-chemical calculations we conclude that the observed VCD amplification finds its origin in vibronic coupling with low-lying electronic states. We find that the enhancement factor is strongly mode dependent and that it is determined by the distance between the oscillator and the paramagnetic metal ion. This localized character of the VCD amplification provides a unique tool to specifically probe the local structure surrounding a paramagnetic ion and to zoom in on such local structure within larger biomolecular systems. PMID:24506134

  3. Exciton Localization in Extended {\\pi}-electron Systems: Comparison of Linear and Cyclic Structures

    CERN Document Server

    Thiessen, Alexander; Jester, Stefan-S; Aggarwal, A Vikas; Idelson, Alissa; Bange, Sebastian; Vogelsang, Jan; Höger, Sigurd; Lupton, John M

    2015-01-01

    We employ five {\\pi}-conjugated model materials of different molecular shape --- oligomers and cyclic structures --- to investigate the extent of exciton self-trapping and torsional motion of the molecular framework following optical excitation. Our studies combine steady-state and transient fluorescence spectroscopy in the ensemble with measurements of polarization anisotropy on single molecules, supported by Monte Carlo simulations. The dimer exhibits a significant spectral red-shift within $\\sim$ 100 ps after photoexcitation which is attributed to torsional relaxation. This relaxation mechanism is inhibited in the structurally rigid macrocyclic analogue. However, both systems show a high degree of exciton localization but with very different consequences: while in the macrocycle the exciton localizes randomly on different parts of the ring, scrambling polarization memory, in the dimer, localization leads to a deterministic exciton position with luminescence characteristics of a dipole. Monte Carlo simulati...

  4. Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures

    International Nuclear Information System (INIS)

    We investigate sound propagation in lossy, locally resonant periodic structures by studying an air-filled tube periodically loaded with Helmholtz resonators and taking into account the intrinsic viscothermal losses. In particular, by tuning the resonator with the Bragg gap in this prototypical locally resonant structure, we study the limits and various characteristics of slow sound propagation. While in the lossless case the overlapping of the gaps results in slow-sound-induced transparency of a narrow frequency band surrounded by a strong and broadband gap, the inclusion of the unavoidable losses imposes limits to the slowdown factor and the maximum transmission. Experiments, theory, and finite element simulations have been used for the characterization of acoustic wave propagation by tuning the Helmholtz/Bragg frequencies and the total amount of loss both for infinite and finite lattices. This study contributes to the field of locally resonant acoustic metamaterials and slow sound applications. (paper)

  5. Local realism does not impose the commutative algebraic structure into all quantum observables

    International Nuclear Information System (INIS)

    Malley and Fine (Phys. Rev. A 2006 73 066102) discussed that all quantum observables would commute simultaneously if we accept a realistic theory of the Bell type (a local realistic theory) for quantum events, provided that all quantum events, including every quantum state and every observable (including every projector), are reproduced by a realistic theory of the Bell type for quantum events. We point out that their claim leads us to a contradiction. We study the relation between a local realistic theory and commutativity of quantum observables in a finite-dimensional space. We show that a realistic theory of the Bell type for quantum events does not impose the commutative algebraic structure into the set of all quantum observables if all quantum events are reproduced by a local realistic theory. We discuss that a violation of Bell locality is derived within a realistic theory of the Kochen–Specker type within quantum events. (paper)

  6. Localized interface phonon polaritons in superlattice with a structural defect consisting of ternary mixed crystal

    Energy Technology Data Exchange (ETDEWEB)

    He Mengdng [Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 20083 (China)], E-mail: hemendong@sohu.com; Liu Jianqang [Department of Physics, College of Science, Jiujiang University, Jiujiang 332005 (China)

    2009-02-28

    Using a transfer matrix method, we investigate the existence and characteristics of the localized interface phonon-polariton modes (IPPMs) in superlattice (SL) with a structural defect consisting of ternary mixed crystal (Al{sub x}Ga{sub 1-x}As). The results show that the introduction of two-mode behavior of the ternary mixed crystal leads to the rich and varied localized IPPMs spectra with new features. The characteristics and positions of the localized IPPMs in the Reststrahlen region are strongly dependent on the concentration x of the ternary mixed crystal. Moreover, it is found that the localized IPPMs are sensitive to the thicknesses of the defect and constituent layers as well as to the transverse wavenumber q{sub parallel}.

  7. Localized Polymerization Using Single Photon Photoinitiators in Two-photon process for Fabricating Subwavelength Structures

    CERN Document Server

    Ummethala, Govind; Chaudhary, Raghvendra P; Hawal, Suyog; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    Localized polymerization in subwavelength volumes using two photon dyes has now become a well-established method for fabrication of subwavelength structures. Unfortunately, the two photon absorption dyes used in such process are not only expensive but also proprietary. LTPO-L is an inexpensive, easily available single photon photoinitiator and has been used extensively for single photon absorption of UV light for polymerization. These polymerization volumes however are not localized and extend to micron size resolution having limited applications. We have exploited high quantum yield of radicals of LTPO-Lfor absorption of two photons to achieve localized polymerization in subwavelength volumes, much below the diffraction limit. Critical concentration (10wt%) of LTPO-Lin acrylate (Sartomer) was found optimal to achieve subwavelength localized polymerization and has been demonstrated by fabricating 2D/3D complex nanostructures and functional devices such as variable polymeric gratings with nanoscaled subwavelen...

  8. Observation of electro-activated localized structures in broad area VCSELs

    OpenAIRE

    Parravicini, J.; Brambilla, M; Columbo, L.; Prati, F.; C. Rizza; Tissoni, G.; Agranat, A. J.; DelRe, E.

    2014-01-01

    We demonstrate experimentally the electro-activation of a localized optical structure in a coherently driven broad-area vertical-cavity surface-emitting laser (VCSEL) operated below threshold. Control is achieved by electro-optically steering a writing beam through a pre-programmable switch based on a photorefractive funnel waveguide.

  9. Face Retrieval Based on Robust Local Features and Statistical-Structural Learning Approach

    Directory of Open Access Journals (Sweden)

    Irek Defée

    2008-05-01

    Full Text Available A framework for the unification of statistical and structural information for pattern retrieval based on local feature sets is pre-sented. We use local features constructed from coefficients of quantized block transforms borrowed from video compression which robustly preserving perceptual information under quantization. We then describe statistical information of patterns by histograms of the local features treated as vectors and similarity measure. We show how a pattern retrieval system based on the feature histograms can be optimized in a training process for the best performance. Next, we incorporate structural information description for patterns by considering decomposition of patterns into subareas and considering their feature histograms and their combinations by vectors and similarity measure for retrieval. This description of patterns allows flexible varying of the amount of statistical and structural information; it can also be used with training process to optimize the retrieval performance. The novelty of the presented method is in the integration of information contributed by local features, by statistics of feature distribution, and by controlled inclusion of structural information which are combined into a retrieval system whose parameters at all levels can be adjusted by training which selects contribution of each type of information best for the overall retrieval performance. The pro-posed framework is investigated in experiments using face databases for which standardized test sets and evaluation procedures exist. Results obtained are compared to other methods and shown to be better than for most other approaches.

  10. Technological aspects of planar structurizing on woven and knitted fabrics by localized radiation induced grafting

    International Nuclear Information System (INIS)

    One technological variant of radiationchemical grafting at selected areas of textile fabrics are shown for the system polyamide-acrylamide. The variant includes the treatment of selected areas with higher temperature after homogeneous irradiation of the planar fabric. The local grafting leads to a structurizing and a larger moisture-sorption capability as well as additional dyeing pattern

  11. Residual dent in locally loaded foam core sandwich structures – Analysis and use for NDI

    NARCIS (Netherlands)

    Koissin, Vitaly; Shipsha, Andrey

    2008-01-01

    This paper addresses the residual denting in the face sheet and corresponding core damage in a locally loaded flat sandwich structure with foam core. The problem is analytically considered in the context of elastic bending of the face sheet accompanied by non-linear deformation of the crushed foam c

  12. Species specific amino acid sequence-protein local structure relationships: An analysis in the light of a structural alphabet.

    Science.gov (United States)

    de Brevern, Alexandre G; Joseph, Agnel Praveen

    2011-05-01

    Protein structure analysis and prediction methods are based on non-redundant data extracted from the available protein structures, regardless of the species from which the protein originates. Hence, these datasets represent the global knowledge on protein folds, which constitutes a generic distribution of amino acid sequence-protein structure (AAS-PS) relationships. In this study, we try to elucidate whether the AAS-PS relationship could possess specificities depending on the specie. For this purpose, we have chosen three different species: Saccharomyces cerevisiae, Plasmodium falciparum and Arabidopsis thaliana. We analyzed the AAS-PS behaviors of the proteins from these three species and compared it to the "expected" distribution of a classical non-redundant databank. With the classical secondary structure description, only slight differences in amino acid preferences could be observed. With a more precise description of local protein structures (Protein Blocks), significant changes could be highlighted. S. cerevisiae's AAS-PS relationship is close to the general distribution, while striking differences are observed in the case of A. thaliana. P. falciparum is the most distant one. This study presents some interesting view-points on AAS-PS relationship. Certain species exhibit unique preferences for amino acids to be associated with protein local structural elements. Thus, AAS-PS relationships are species dependent. These results can give useful insights for improving prediction methodologies which take the species specific information into account. PMID:21333657

  13. Dark localized structures in a cavity filled with a left-handed material

    International Nuclear Information System (INIS)

    We consider a nonlinear passive optical cavity filled with left-handed and right-handed materials and driven by a coherent injected beam. We assume that both left-handed and right-handed materials possess a Kerr focusing type of nonlinearity. We show that close to the zero-diffraction regime, high-order diffraction allows us to stabilize dark localized structures in this device. These structures consist of dips in the transverse profile of the intracavity field and do not exist without high-order diffraction. We analyze the snaking bifurcation diagram associated with these structures. Finally, a realistic estimation of the model parameters is provided.

  14. Local atomic structure of the layered compound SrFeO2

    Science.gov (United States)

    Horigane, Kazumasa; Llobet, Anna; Park, Keeseong; Louca, Despina

    2012-02-01

    SrFeO2 exhibits several unexpected structural and physical properties. Its antiferromagnetic transition temperature TN=473K is unusually high for a two-dimensional layered structure. First-principle calculations on SrFeO2 showed that the Fe 3d down-spin elections occupy the nondegenerate dz2 level rather than the degenerate (dxz, dyz) levels. This is in good agreement with the absence of a Jahn-Teller instability and the existence of the three dimensional antiferromagnetic ordering because the out-of plane direct Fe-Fe exchange is comparable in strength to the in-plane Fe-O-Fe superexchange. Therefore, it is expected that there is no structure instability in SrFeO2. Using the pair distribution function (PDF) analysis to characterize the local structure of SrFeO2, we observed that the local symmetry is lower than the average P4/mmm crystal symmetry. In particular, the FeO2 planes are buckled, with two unique buckling angles along the a-axis. The buckling angle of Fe-O-Fe is reduced from 180^o with increasing temperature, accompanied by a reduction of the Fe magnetic moment. Thus the local structure instability correlates with the magnetism where the distortions suppress orbital overlap.

  15. Peculiarities of TiNi-based shape memory alloys local crystalline structure

    International Nuclear Information System (INIS)

    The extended X-ray absorption fine structure spectroscopy (EXAFS) was applied to investigate the local structure peculiarities of TiNi-based shape memory alloys Ti50Ni25Cu25 and Ti39.2Ni24.8Cu25Hf11. The phase composition of ternary alloy was examined with the additional X-ray diffraction. Our experimental results demonstrate that the most significant changes in local crystalline structure under martensitic transformation arise in the Ni-Cu sublattice. The static disordering of the Ti coordination shell is more significant for Ni than for Cu environment. Such a conclusion is consistent with the refined values of atomic ν-shifts from the planar center of symmetry in (010) layers which are greater for Ni atoms than for Cu.

  16. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    International Nuclear Information System (INIS)

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  17. Multi-site damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system

    International Nuclear Information System (INIS)

    A new approach for structural health monitoring using guided waves in plate-like structures has been developed. In contrast to previous approaches, which mainly focused on isotropic or quasi-isotropic plates, the proposed algorithm does not assume any simplifications regarding anisotropic wave propagation. Thus, it can be used to improve the probability of detection. In this paper the mathematical background for damage localization in anisotropic plates will be introduced. This is an extension of the widely known ellipse method. The formalism is based on a distributed sensor network, where each piezoelectric sensor acts in turn as an actuator. The automatic extraction of the onset time of the first waveform in the differential signal in combination with a statistical post-processing via a two-dimensional probability density function and the application of the expectation-maximization algorithm allows a completely automatic localization procedure. Thus, multiple damages can be identified at the same time. The present study uses ultrasonic signals provided by the spectral element method. This simulation approach shows good agreement with experimental measurements. A local linear neural network is used to model the nonlinear dispersion curves. The benefit of using a neural network approach is to increase the angular resolution that results from the sparse sensor network. Furthermore, it can be used to shorten the computational time for the damage localization procedure

  18. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros

    2014-11-22

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.

  19. Crust structure of northern Morocco and southern Iberian Peninsula from local earthquake tomography

    Science.gov (United States)

    El moudnib, L.; Villasenor, A.; Harnafi, M.; Himmi, M.; Gallart, J.

    2012-12-01

    We have estimated the P-wave velocity structure under northern Morocco and Alboran Sea and Southern Spain using an iterative simultaneous inversion method of local earthquake arrival-time data for velocity and hypocentral parameters. For this investigation we applied this tomographic method to 40714 P-wave arrival times from 2429 local events recorded by 124 both temporary and permanent seismic stations of local and regional networks from January 2000 to June 2009. The P wave arrival times used are calculated by the finite difference technique which allows a flexible parameterization of the velocity model. Twenty layers with a thickness of 4km for each one were postulated to obtain the three-dimensional P-wave structure along the complex Ibero-Maghribean boundary region. The hypocenter location of the global earthquake dataset has been remarkably improved by the obtained three-dimensional velocity model (RMS reduced to 27.3%). At the uppermost level of the crust the results suggest that the most prominent feature is the very low velocity zone associated with flysch units north of the Strait of Gibraltar, and in northern Morocco extending from Al-Hoceima region to the Alboran ridge. Conversely, a high velocity anomaly is observed in the area of the Ronda Peridotites, but a similar structure is not observed in the Beni-Boussera region in Morocco. The inverted velocity model is generally consistent with geology structure of the entire area and yields more details at depth of the geology structures and tectonic units. Moreover, it shows an accurate identification at depth of the shape and the geometry of the geology structures in the area. The tomographic cross section profiles reveal a vertical downgoing highly velocity materials in the whole area and show a thick crust in either the western part of the Alboran sea or northern Morocco region compared with the eastern one. keywords: local earthquake, P arrival-time, simultaneous inversion, hypocenter relocation

  20. Socio-political structure of Mersin at the basis of the results of the local elections

    Directory of Open Access Journals (Sweden)

    D. Ali Arslan

    2012-08-01

    Full Text Available It was aimed to investigate the political structure of Mersin and its place in the general political structure of Turkey by using methods and techniques of political sociology. Structural-functionalist was used as the theoretical base. To achieve this goal, the results of the Turkish local elections in last 50 years (were examined. First of all, the formation of political power in Turkey and the overall operation and changing regularities at the bases of the local elections were evaluated. Secondly, It was looked to the formation of the political structure and the distribution of political power in Mersin since 1963 up to 2012. Finally, the meaning of Mersin findings within Turkish society was elaborated.Findings show that the political structure of Mersin city is rather different than overall Turkey. Rightist politics predominates the political structure of Mersin province. However, left politics plays a determining role in the political structure of the city of Mersin. Nevertheless, it has been experiencing significant changes in the city of Mersin in recent years: While left-wing parties have been experiencing a significant decrease, the trend has been upward for the right-wing parties.

  1. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach.

    Science.gov (United States)

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-09-01

    Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php. PMID:18763837

  2. Assessing a novel approach for predicting local 3D protein structures from sequence.

    Science.gov (United States)

    Benros, Cristina; de Brevern, Alexandre G; Etchebest, Catherine; Hazout, Serge

    2006-03-01

    We developed a novel approach for predicting local protein structure from sequence. It relies on the Hybrid Protein Model (HPM), an unsupervised clustering method we previously developed. This model learns three-dimensional protein fragments encoded into a structural alphabet of 16 protein blocks (PBs). Here, we focused on 11-residue fragments encoded as a series of seven PBs and used HPM to cluster them according to their local similarities. We thus built a library of 120 overlapping prototypes (mean fragments from each cluster), with good three-dimensional local approximation, i.e., a mean accuracy of 1.61 A Calpha root-mean-square distance. Our prediction method is intended to optimize the exploitation of the sequence-structure relations deduced from this library of long protein fragments. This was achieved by setting up a system of 120 experts, each defined by logistic regression to optimize the discrimination from sequence of a given prototype relative to the others. For a target sequence window, the experts computed probabilities of sequence-structure compatibility for the prototypes and ranked them, proposing the top scorers as structural candidates. Predictions were defined as successful when a prototype structure was found among those proposed. Our strategy yielded a prediction rate of 51.2% for an average of 4.2 candidates per sequence window. We also proposed a confidence index to estimate prediction quality. Our approach predicts from sequence alone and will thus provide valuable information for proteins without structural homologs. Candidates will also contribute to global structure prediction by fragment assembly. PMID:16385557

  3. Mounting of localization shaft by enlarged structures at the NPP with WWER-440

    International Nuclear Information System (INIS)

    A technique of mounting of a localization system at the WWER-440 NPP is described. The localization system consists of air-lift devices located in pressurized building (shaft) 12.6 thousand m3 volume. Air-lift devices are placed in 12 bayers with 3.37 m spacing over the height of localization shaft. Every layer of air-lift devices consists of 18 supporting H-beams number 60 of 8.5 m in length. The total host of air-lift devices and metal works of servicing platforms is equal to 725 t. The air-lift device consists of the large number of details (660 pieces of 500-2500 kg mass and above 2500 pieces of 500 kg mass), which causes the necessity of accomplishing a large volume of assembling and welding works. To reduce the labour content in the mounting zone and volume of work accomplished at the height the method of large-structure mounting of air-lift devices was suggested. The method lies in ground assembly of air-lift structures on the basis of several supporting beams and their following lifting to the corresponding layer. The large-structure mounting of localization shaft enables to reduce by 25-30% the length of joint welds made during the mounting as well as the volume of transport and cordage works; to reduce the time of building crane usage and 1.5-1.7 times the total periods of works

  4. Electric-field-induced local and mesoscale structural changes in polycrystalline dielectrics and ferroelectrics

    Science.gov (United States)

    Usher, Tedi-Marie; Levin, Igor; Daniels, John E.; Jones, Jacob L.

    2015-10-01

    The atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO3 and Na½Bi½TiO3, and dielectric SrTiO3. For Na½Bi½TiO3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO3 and SrTiO3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.

  5. Connections between structural jamming, local metabasin features, and relaxation dynamics in a supercooled glassy liquid

    Science.gov (United States)

    Frechero, M. A.; Alarcón, L. M.; Schulz, E. P.; Appignanesi, G. A.

    2007-01-01

    Dynamics in glass-forming liquids in the supercooled regime vary considerably from one point of the sample to another suggesting the existence of regions with different degrees of jamming. In fact, the existence of relatively compact regions with particles with an enhanced propensity for motion has been detected in model glassy systems. In turn, the structural relaxation has been shown to be accomplished by means of a series of fast transitions between metabasins in the potential energy landscape involving the collective motion of a substantial number of particles arranged in relatively compact clusters (democratic clusters or d clusters). In this work we shall complete this picture by identifying the connections between local structural jamming, metabasin confining strength, and d clusters. Thus we shall demonstrate that the degree of jamming of the local structure dictates the confining strength of the local metabasin and that the local high propensity regions and the d clusters are not only similar in nature but that they share a significant amount of particles.

  6. Vision-based localization of an underwater robot in a structured environment

    OpenAIRE

    Carreras Pérez, Marc; Ridao Rodríguez, Pere; García Campos, Rafael; Nicosevici, Tudor

    2003-01-01

    This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates ...

  7. BAYESIAN LOCAL INFLUENCE ASSESSMENTS IN A GROWTH CURVE MODEL WITH GENERAL COVARIANCE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The objective of this paper is to present a Bayesian approach based on Kullback Leibler divergence for assessing local influence in a growth curve model with general covariance structure.Under certain prior distribution assumption,the Kullback-Leibler divergence is used to measure the influence of some minor perturbation on the posterior distribution of unknown parameter.This leads to the diagnostic statistic for detecting which response is locally influential.As an application,the common covariance-weighted perturbation scheme is thoroughly considered.

  8. Locally self-consistent Green’s function approach to the electronic structure problem

    DEFF Research Database (Denmark)

    Abrikosov, I.A.; Simak, S.I.; Johansson, B.;

    1997-01-01

    The locally self-consistent Green's function (LSGF) method is an order-N method for calculation of the electronic structure of systems with an arbitrary distribution of atoms of different kinds on an underlying crystal lattice. For each atom Dyson's equation is used to solve the electronic multiple...... scattering problem in a local interaction zone (LIZ) embedded in an effective medium judiciously chosen to minimize the size of the, LIZ. The excellent real-space convergence of the LSGF calculations and the reliability of its results are demonstrated for a broad spectrum of metallic alloys with different...

  9. Changes in chemical state and local structure of green rust by addition of copper sulphate ions

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)], E-mail: ssuzuki@tagen.tohoku.ac.jp; Shinoda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Sato, M. [Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Fujimoto, S. [Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Yamashita, M. [University of Hyogo, 1-3-3, Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo, 650-0044 (Japan); Konishi, H. [Japan Atomic Energy Agency, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Doi, T.; Kamimura, T. [Sumitomo Metal Industries Ltd. 1-10, Fuso-cho, Amagasaki, Hyogo, 660-0891 (Japan); Inoue, K.; Waseda, Y. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2008-06-15

    The X-ray absorption near edge structure (XANES), the extended X-ray absorption fine structure (EXAFS) and X-ray diffraction (XRD) measurements were used for characterising the effect of the addition of copper sulphate ions on the chemical state and local structure of hydrosulphate green rust (GR). Fe K edge XANES spectra showed that Fe(II) in GR was partially oxidised by the addition of the copper sulphate solution. Cu K edge XANES spectra showed that the copper sulphate ions in the GR suspension were reduced to zero charge copper. Radial structural functions indicated that the structure of GR comprised edge sharing of FeO{sub 6} octahedral units, which was changed by the oxidation of Fe(II). In addition, it was found that the GR was partially oxidised to {alpha}-FeOOH by the addition of copper ions.

  10. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress

    International Nuclear Information System (INIS)

    We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)

  11. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress.

    Science.gov (United States)

    Bhattacharya, Somesh Kr; Tanaka, Shingo; Shiihara, Yoshinori; Kohyama, Masanori

    2013-04-01

    We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. PMID:23478447

  12. Local atomic structure inheritance in Ag{sub 50}Sn{sub 50} melt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanwen; Bian, Xiufang, E-mail: xfbian@sdu.edu.cn; Qin, Jingyu; Hu, Lina; Yang, Jianfei; Zhang, Kai; Zhao, Xiaolin; Yang, Chuncheng [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-01-28

    Local structure inheritance signatures were observed during the alloying process of the Ag{sub 50}Sn{sub 50} melt, using high-temperature X-ray diffraction and ab initio molecular dynamics simulations. The coordination number N{sub m} around Ag atom is similar in the alloy and in pure Ag melts (N{sub m} ∼ 10), while, during the alloying process, the local structure around Sn atoms rearranges. Sn-Sn covalent bonds were substituted by Ag-Sn chemical bonds, and the total coordination number around Sn increases by about 70% as compared with those in the pure Sn melt. Changes in the electronic structure of the alloy have been studied by Ag and Sn K-edge X-ray absorption spectroscopy, as well as by calculations of the partial density of states. We propose that a leading mechanism for local structure inheritance in Ag{sub 50}Sn{sub 50} is due to s-p dehybridization of Sn and to the interplay between Sn-s and Ag-d electrons.

  13. Local structure of temperature and pH-sensitive colloidal microgels

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Valentina, E-mail: nigro@fis.uniroma3.it; Bruni, Fabio; Ricci, Maria Antonietta [Dipartimento di Scienze, Sezione di Nanoscienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Angelini, Roberta; Ruzicka, Barbara [Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR) UOS Sapienza and Dipartimento di Fisica, Sapienza Università, Pz.le Aldo Moro 5, I-00185 Roma (Italy); Bertoldo, Monica [Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa (Italy); Castelvetro, Valter [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 3, I-56126 Pisa (Italy); Rogers, Sarah [ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom)

    2015-09-21

    The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneous interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.

  14. Local structure of temperature and pH-sensitive colloidal microgels

    Science.gov (United States)

    Nigro, Valentina; Angelini, Roberta; Bertoldo, Monica; Bruni, Fabio; Castelvetro, Valter; Ricci, Maria Antonietta; Rogers, Sarah; Ruzicka, Barbara

    2015-09-01

    The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneous interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.

  15. Local structure of temperature and pH-sensitive colloidal microgels

    International Nuclear Information System (INIS)

    The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneous interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition

  16. Combination of structured illumination and single molecule localization microscopy in one setup

    International Nuclear Information System (INIS)

    Understanding the positional and structural aspects of biological nanostructures simultaneously is as much a challenge as a desideratum. In recent years, highly accurate (20 nm) positional information of optically isolated targets down to the nanometer range has been obtained using single molecule localization microscopy (SMLM), while highly resolved (100 nm) spatial information has been achieved using structured illumination microscopy (SIM). In this paper, we present a high-resolution fluorescence microscope setup which combines the advantages of SMLM with SIM in order to provide high-precision localization and structural information in a single setup. Furthermore, the combination of the wide-field SIM image with the SMLM data allows us to identify artifacts produced during the visualization process of SMLM data, and potentially also during the reconstruction process of SIM images. We describe the SMLM–SIM combo and software, and apply the instrument in a first proof-of-principle to the same region of H3K293 cells to achieve SIM images with high structural resolution (in the 100 nm range) in overlay with the highly accurate position information of localized single fluorophores. Thus, with its robust control software, efficient switching between the SMLM and SIM mode, fully automated and user-friendly acquisition and evaluation software, the SMLM–SIM combo is superior over existing solutions. (special issue article)

  17. Local structure, composition, and crystallization mechanism of a model two-phase “composite nanoglass”

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-02-14

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  18. A computational framework for the optimal design of morphing processes in locally activated smart material structures

    International Nuclear Information System (INIS)

    A proof-of-concept study is presented for a strategy to obtain maximally efficient and accurate morphing structures composed of active materials such as shape memory polymers (SMP) through synchronization of adaptable and localized activation and actuation. The work focuses on structures or structural components entirely composed of thermo-responsive SMP, and particularly utilizes the ability of such materials to display controllable variable stiffness. The study presents and employs a computational inverse mechanics approach that combines a computational representation of the SMP thermo-mechanical behavior with a nonlinear optimization algorithm to determine location, magnitude and sequencing of the activation and actuation to obtain a desired shape change subject to design objectives such as prevention of damage. Two numerical examples are presented in which the synchronization of the activation and actuation and the location of activation excitation were optimized with respect to the combined thermal and mechanical energy for design concepts in morphing skeletal structural components. In all cases the concept of localized activation along with the optimal design strategy were able to produce far more energy efficient morphing structures and more accurately reach the desired shape change in comparison to traditional methods that require complete structural activation prior to actuation. (paper)

  19. Local structure, composition, and crystallization mechanism of a model two-phase “composite nanoglass”

    International Nuclear Information System (INIS)

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu55Nb45. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass

  20. Local structure and structural rigidity of the green phosphor β-SiAlON:Eu2+

    International Nuclear Information System (INIS)

    Eu2+ inserted in β-Si3−xAlxOxN4−x is a material that shows exceptional promise as a green-emitting phosphor. Synchrotron X-ray and neutron scattering, in conjunction with first-principles calculations and Eu L3 X-ray absorption measurements, yield a consistent picture of the composition, and the favorable position for Eu2+ substitution in the crystal structure. The Debye temperature ΘD, which is a proxy for structural rigidity relating to effectiveness as a phosphor, is very high for the starting β-Si3N4 framework and is determined to decrease only slightly for the small amounts of Al3+ and O2− co-substitution that are required for charge balance associated with Eu2+ insertion

  1. On the local integrability of almost-product structures defined by space-time metrics

    CERN Document Server

    Delphenich, D H

    2016-01-01

    The splitting of the tangent bundle of space-time into temporal and spatial sub-bundles defines an almost-product structure. In particular, any space-time metric can be locally expressed in time-orthogonal form, in such a way that whether or not that almost-product structure is locally generated by a coordinate chart is a matter of the integrability of the Pfaff equation that the temporal 1-form of that expression for the metric defines. When one applies that analysis to the known exact solutions to the Einstein field equations, one finds that many of the common ones are completely-integrable, although some of the physically-interesting ones are not.

  2. Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method

    International Nuclear Information System (INIS)

    This paper proposes a new analytical approach for assessing local damage to reinforced concrete structures subjected to impact load, by applying the discrete element method (DEM). It first outlines the basis concept and analytical formulation of the DEM. Next, it discusses the results of simulation analyses of concrete material tests, uni-axial compression tests and tensile splitting tests conducted to determine appropriate analytical parameters such as material constants, failure criteria and strength increase factors depending on strain rate. Finally, the adaptability of the DEM to local damage to reinforced concrete structures impacted by rigid and deformable missiles is verified through simulation analyses of various types of impact tests. Furthermore, the various impact response characteristics and failure mechanisms, such as impact forces, penetration behavior, reduction in missile velocity and energy transfer process, which are difficult to obtain experimentally, are analytically evaluated by the DEM. (orig.)

  3. Local structure of germanium-sulfur, germanium-selenium, and germanium-tellurium vitreous alloys

    International Nuclear Information System (INIS)

    119Sn and 129Te (129I) Moessbauer spectroscopy showed that chalcogen-enriched Ge100-yXy (X = S, Se, Te) glasses are constructed of structural units including two-coordinated chalcogen atoms in chains such as Ge-X-Ge- and Ge-X-X-Ge-. Germanium in these glasses is only tetravalent and four-coordinated, and only chalcogen atoms are in the local environment of germanium atoms. Chalcogen-depleted glasses are constructed of structural units including two-coordinated (in Ge-X-Ge- chains) and three-coordinated chalcogen atoms (in -Ge-X-Ge- chains). Germanium in these glasses stabilizes in both the tetravalent four-coordinated and divalent three-coordinated states, and only chalcogen atoms are in the local environment of germanium atoms.

  4. Structural Health Monitoring of Wind Turbine Blades: Acoustic Source Localization Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Mabrok Bouzid

    2015-01-01

    Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.

  5. Scale-adaptive tensor algebra for local many-body methods of electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Liakh, Dmitry I [ORNL

    2014-01-01

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).

  6. Study of localized structures of kinetic Alfvén wave and generation of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Anju, E-mail: anju.agrawal0986@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Yadav, Nitin, E-mail: nitnyadv@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi-110016 (India)

    2015-06-15

    Localization of kinetic Alfvén waves (KAW) due to ponderomotive nonlinearity can be regarded as an important mechanism for heating the space plasmas. The present paper investigates the effect of background density fluctuations on the formation of large amplitude localized structures and turbulent spectrum of KAW applicable to magnetopause. The dynamical equations are derived, taking into account the ponderomotive nonlinearity of the KAW as well as the background fluctuations which are in the form of ion acoustic waves. The system is studied numerically as well as semi-analytically. The results reveal that the presence of density fluctuations affects the formation of localized structures. These fluctuations affecting the localization of KAW may also affect heating and acceleration of plasma. Respective turbulent scaling for the different amplitude of background fluctuations has also been studied. The relevance of the numerical results has been discussed with the THEMIS observations near the magnetopause [C. Chaston et al., Geophys. Res. Lett. 35, L17S08 (2008)].

  7. Compared study of the local structure of alteration products of SON 68 glass and natural gels

    International Nuclear Information System (INIS)

    This study is a contribution in the understanding of the long time behavior of alteration products of the glass SON 68, used to simulate the nuclear glass R7T7. The local structure around Zirconium and iron has been probed using X-ray absorption spectroscopy in altered surface layer of glass SON 68. Alteration products of this glass have been prepared for short (3 hours to 7 days) and long (17 months) time, using various indexes of saturation for the leaching solution with respect to the Si content of the glass (from 0 to 90 %). The evolution of the local structure around Fe has also been studied in recent and old natural ferric gels. Zr, Fe- L2,3 XANES and Zr, Fe-K EXAFS spectroscopies have shown that, in the pristine glass, these elements are connected to the polymeric network. Zr is found in an environment close to that of a zircon-silicate containing Na and Ca. Trivalent Fe is a network former. The leached layer of glass SON 68 is constituted of poorly ordered Zr-and Fe-(oxi-hydr)oxides that may have been formed by a mechanism of dissolution/precipitation; a relict phase with the same Zr local structure as that observed in the pristine glass, probably obtained thanks to in-situ solid condensation. The structural characteristics of the leached layer are observed from the first steps of alteration for Zr and Fe. Conversely to Fe, the structural status of Zr depends on the leaching kinetic as well as the contents of Ca and Si in the solid. Fe-K EXAFS results in recent natural ferri-hydrides present a clear structural similarity with that determined in glass SON 68 leached products. The study of old paleosols (between 1,800 and 200,000 years) has demonstrated the long time stability of ferric gels, although an increase of medium range order around Fe is seen. (author)

  8. Local Impact Simulation of SC Wall Structures using Aircraft Engine Projectile

    International Nuclear Information System (INIS)

    SC wall structure developed for nuclear power plant buildings consists of plain concrete and two steel plates on both surface of the concrete, while RC structure consists of re bar and concrete. SC structure has higher scabbing resistance than RC structure due to the action of steel plate on the rear side of impact. Therefore SC structure is known as more effective structure from the viewpoint of aircraft crash than RC structure. However, most of the recent researches and experiments about local impact damage deal with RC structures, and the effect of re bar and steel plate is not considered reasonably. Although Walter et al. and Make-work et al. suggested a formula for evaluating perforation depth of steel plate covered RC walls, most of the previous researches about SC structure are focused on perforation and scabbing due to the impact of hard projectile, rather than soft projectile such as an aircraft. In this research a soft projectile, i. e. aircraft engine, is utilized for impact simulation of RC and SC walls. To evaluate local damage of SC wall structures, parametric study with the variables of wall thickness and steel ratio of the cover plate is performed, and the results are compared with those of RC structures. Since scabbing was prevented by the steel plates, penetration mode of damage was observed in SC walls while scabbing damage was occurred in RC walls. It is confirmed that the rear steel plate not only contains concrete debris, but also reduces the internal damage of the concrete walls. Penetration depth of SC walls did not largely vary due to the increasing steel ratio, and similar results to RC walls were observed when the wall thickness is larger than a certain value since the impact resistance of SC wall is mainly governed by the thickness of concrete part. Therefore, it is expected that similar level of impact resistance to RC structure can be produced with the minimum thickness of steel plates of SC structure. According to these results, SC

  9. Organizational form, local market structure and corporate social performance in retail

    OpenAIRE

    Utgård, Jakob

    2015-01-01

    I study how organizational form and local market structure influence retail firms' corporate social performance (CSP). The theoretical model is based on agency theory, which in its origin focuses on the dyad between the principal and the agent. I extend this perspective and examine how characteristics of the environment outside the dyad influence the outcomes. Retail stores vary in their organizational form and thereby in their incentives to maximize profits. I hypothesize that the different ...

  10. The Fiji locally-managed marine area network : structure, strengths and scope for future developments

    OpenAIRE

    Berthold, Sophie, 1985-

    2016-01-01

    The Fiji Locally-Managed Marine Area Network (FLMMA) is internationally known for its expertise in the community-based management of coastal resources. Based on 26 semi-structured interviews with FLMMA members and associates, this study examines the strengths and weaknesses of FLMMA in empowering the coastal communities in managing their marine resources efficiently, from 2001 to 2015, and identifies future pathways to contribute to the successful management of nearshore fisheries in Fiji. ...

  11. Structures et dynamiques spatiales des villes portuaires: du local au mondial

    Directory of Open Access Journals (Sweden)

    César Ducruet

    2005-04-01

    Full Text Available More than other cities, port cities must constantly adapt to a rapidly changing international trade environment. This adaptation is spurred by their ties to both maritime and land networks and by specific spatio-functional relations between cities and ports, from the local to the global level. For comparative purposes, this paper proposes a new way to interpret the basic structures and trends underlying these complex, and sometimes contradictory, ties.

  12. Local spinor structures in V. Fock's and H. Weyl's work on the Dirac equation (1929)

    OpenAIRE

    Scholz, Erhard

    2004-01-01

    In early 1929, V. Fock (initially in collaboration with D. Iwanenko) and H. Weyl developed independently from each other a general relativistic generalization of the Dirac equation. In the core, they arrived at the same theory by the introduction of a local (topologically trivial) spinor structures and a lifting of the Levi-Civita connection of underlying space-time. They both observed, in slightly different settings, a characteristic underdetermination of the spin connection by a complex pha...

  13. Nanomechanical structures with 91 MHz resonance frequency fabricated by local deposition and dry etching

    OpenAIRE

    Kim, GM; Kawai, S.; Nagashio, M; Kawakatsu, H.; Brugger, J.

    2004-01-01

    We report an all-dry, two-step, surface nanoengineering method to fabricate nanomechanical elements without photolithography. It is based on the local deposition through a nanostencil of a well-defined aluminum pattern onto a silicon/silicon-nitride substrate, followed by plasma etching to release the structures. The suspended 100-nm-wide, 2-mum-long, and 300-nm-thick nanolevers and nanobridges have natural resonance frequencies of 50 and 91 MHz, respectively. The fabrication method is scalab...

  14. Potential structure formed by local production of negative ions in a magnetized plasma

    International Nuclear Information System (INIS)

    We have investigated the formation process of field-aligned structures due to local production of negative ions in a plasma by means of one-dimensional electrostatic particle simulation. The plasma becomes unstable for a large production rate, being accompanied by the intermittent generation of negative solitary waves. The solitary waves play a role in making negative ions ejected rapidly from the system. (author)

  15. Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses

    International Nuclear Information System (INIS)

    We studied atomic and electronic structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical electronic density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free electron (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction electrons. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that electron transport properties of Cu-Zr MGs are dominated by localization effects rather than by electronic structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.

  16. Global and local health monitoring of civil structures using smart ferroelectric sensors and electronically steerable antennas

    Science.gov (United States)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1994-09-01

    In this paper, the global and local health monitoring of civil structures using RF antennas and ferroelectric sensors is presented. The sensors are fabricated with interdigital transducers printed on a piezoelectric polymer or ceramic type film. They in turn are mounted onto an ultra thin Penn State's novel RF antenna. The wave form measurements may be monitored at a remote location via the antennas in the sensors and an outside antenna.

  17. Experimental evidence of resonant tunneling via localized DQW states in an asymmetric triple barrier structure

    Science.gov (United States)

    Velásquez, Rober

    2003-04-01

    In this work we report on field-induced features appearing in the tunneling current traces of a biased asymmetric triple barrier resonant tunneling device in the presence of an in-plane magnetic field. A theoretical model that satisfactorily explains the origin of these features is discussed. The reported data evidences the localized nature of the quantum states in thin layer asymmetric double-quantum-well structures.

  18. Identification and localization of the structural proteins of anguillid herpesvirus 1

    OpenAIRE

    van Beurden Steven J; Leroy Baptiste; Wattiez Ruddy; Haenen Olga LM; Boeren Sjef; Vervoort Jacques JM; Peeters Ben PH; Rottier Peter JM; Engelsma Marc Y; Vanderplasschen Alain F

    2011-01-01

    Abstract Many of the known fish herpesviruses have important aquaculture species as their natural host, and may cause serious disease and mortality. Anguillid herpesvirus 1 (AngHV-1) causes a hemorrhagic disease in European eel, Anguilla anguilla. Despite their importance, fundamental molecular knowledge on fish herpesviruses is still limited. In this study we describe the identification and localization of the structural proteins of AngHV-1. Purified virions were fractionated into a capsid-t...

  19. The local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    CERN Document Server

    Zhao, Tianxing; Huang, Junheng; He, Jinfu; Liu, Qinghua; Pan, Zhiyun; Wu, Ziyu

    2014-01-01

    The local structures and optical absorption characteristic of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray Diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and UV-Vis absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region.

  20. Force and temperature characteristics of a fs-laser machined locally micro-structured FBG

    Science.gov (United States)

    Dutz, Franz J.; Marchi, Gabriele; Stephan, Valentin; Huber, Heinz P.; Roths, Johannes

    2016-05-01

    A locally micro-structured fiber Bragg grating (LMFBG) was manufactured by forming a circumferential groove in the middle of a type I fiber Bragg grating (FBG). The groove was directly ablated using a fs-laser and had a length of 86μm, a depth of 27μm and steep side walls. Due to the precisely machined geometry of the structure the reflection spectra can be accurately described with a fairly simple theoretical model. At several constant temperatures in the range from 5°C to 45°C this structure was exposed to various compressive loads in the range from 0N to -1.42N. Here the force and temperature sensitivity of the LMFBG are presented. This structure can be used for miniaturized compressive force sensing at variable temperatures, which is of particular interest for many bio-medical applications.

  1. AFM characterization of the shape of surface structures with localization factor.

    Science.gov (United States)

    Bonyár, Attila

    2016-08-01

    Although with the use of scanning probe microscopy (SPM) methods the topographical imaging of surfaces is now widely available, the characterization of surface structures, especially their shape, and the processes which change these features is not trivial with the existing surface describing parameters. In this work the application of a parameter called localization factor is demonstrated for the quantitative characterization of surface structures and for processes which alter the shape of these structures. The theory and optimal operation range of this parameter are discussed with three application examples: microstructure characterization of gold thin films, characterization of the changes in the grain structure of these films during thermal annealing, and finally, characterization of the oxidation processes on a polished tin surface. PMID:27174696

  2. Spatial Object Aggregation Based on Data Structure,Local Triangulation and Hierarchical Analyzing Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper focuses on the methods and process of spatial aggregation based on semantic and geometric characteristics of spatial objects and relations among the objects with the help of spatial data structure (Formal Data Structure),the Local Constrained Delaunay Triangulations and semantic hierarchy.The adjacent relation among connected objects and unconnected objects has been studied through constrained triangle as elementary processing unit in aggregation operation.The hierarchical semantic analytical matrix is given for analyzing the similarity between objects types and between objects.Several different cases of aggregation have been presented in this paper.

  3. Local spin flip in two- and three-magnetic-center structures: A first-principles approach

    International Nuclear Information System (INIS)

    We present a fully ab initio theory of ultrafast spin switching in nanostructures using optical control theory and including spin-orbit coupling thus realizing Λ processes. These processes are investigated using high-level quantum chemistry in structures with one, two, and three magnetic centers, where the spin localization and transferability are discussed with respect to their geometry. In particular we study metallic chains with two and three magnetic centers interconnected with Na atoms. We discuss the prerequisites for such scenarios for all structures.

  4. Local spin flip in two- and three-magnetic-center structures: A first-principles approach

    Science.gov (United States)

    Lefkidis, G.; Li, C.; Hartenstein, T.; Hübner, W.

    2010-01-01

    We present a fully ab initio theory of ultrafast spin switching in nanostructures using optical control theory and including spin-orbit coupling thus realizing Λ processes. These processes are investigated using high-level quantum chemistry in structures with one, two, and three magnetic centers, where the spin localization and transferability are discussed with respect to their geometry. In particular we study metallic chains with two and three magnetic centers interconnected with Na atoms. We discuss the prerequisites for such scenarios for all structures.

  5. Local spin flip in two- and three-magnetic-center structures: A first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Lefkidis, G; Li, C; Hartenstein, T; Huebner, W, E-mail: lefkidis@physik.uni-kl.d [Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, PO Box 3049, 67653 Kaiserslautern (Germany)

    2010-01-01

    We present a fully ab initio theory of ultrafast spin switching in nanostructures using optical control theory and including spin-orbit coupling thus realizing {Lambda} processes. These processes are investigated using high-level quantum chemistry in structures with one, two, and three magnetic centers, where the spin localization and transferability are discussed with respect to their geometry. In particular we study metallic chains with two and three magnetic centers interconnected with Na atoms. We discuss the prerequisites for such scenarios for all structures.

  6. Crystal and local atomic structure of Co-doped MgFeBO_4 warwickites

    OpenAIRE

    Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Ivanova, N. B.; Zubavichus, Y. V.; Veligzhanin, A. A.; Vasiliev, A. D.; Bezmaternykh, L. N.; Bayukov, O. A.; Arauzo, A.; Bartolomé, J.; Lamonova, K. V.; Ovchinnikov, S. G.

    2014-01-01

    Single crystalline MgFeBO_4, Mg_0.5Co_0.5FeBO_4 and CoFeBO_4 have been grown by the flux method. The samples have been characterized by X-ray spectral analysis, X-ray diffraction and X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra have been measured at the Fe andCoK-edges over a wide temperature range (6.5 - 300 K). The composition, the charge state and local environment of both Fe and Co atoms have b...

  7. Analysis of local structure and chemical state by using in-house XAFS

    International Nuclear Information System (INIS)

    X-ray absorption near-edge structure (XANES) is useful to analysis of the valence of selected element or the symmetry surrounding it. XAFS measurements by using in-house X-ray absorption spectrometer have high potential to apply to analyze the local structure or the electronic states of materials, it is not so popular recently with increasing the use of synchrotron facilities has become prevailing into various fields. The capacity of the in-house XAFS is shown in this paper along with some examples of experiments by a spectrometer with X-ray generator of only 3 kW. (author)

  8. The effects of localized damping on structural response. [of the large space telescope

    Science.gov (United States)

    Merchant, D. H.; Gates, R. M.; Ice, M. W.; Vanderlinden, J. W.

    1975-01-01

    The effect of localized structural damping on the excitability of higher order normal modes of the large space telescope was investigated. A preprocessor computer program was developed to incorporate Voigt structural joint damping models in a NASTRAN finite-element dynamic model. A postprocessor computer program was developed to select critical modes for low-frequency attitude control problems and for higher frequency fine-stabilization problems. The mode selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensors, and on image-plane motions due to sinusoidal or random power spectral density force and torque inputs.

  9. Local atomic arrangements and electronic structure of Zr-Ni-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Internal energy of a bulk metallic glass (BMG) was investigated by making full use of its relevant crystals. The local atomic arrangements commonly existing both in the BMG and the relevant crystals were identified using experimentally determined radial distribution functions. The electronic structure of the relevant crystals was investigated by discrete variational X alpha (DVXα) cluster calculations and high-resolution photoemission spectroscopy. The present analysis on the electronic structure revealed that the simultaneous formations of characteristic cluster levels and a pseudogap at the Fermi level effectively reduce the internal energy to stabilize BMGs

  10. Local-global alignment for finding 3D similarities in protein structures

    Science.gov (United States)

    Zemla, Adam T.

    2011-09-20

    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  11. A global/local analysis method for treating details in structural design

    Science.gov (United States)

    Aminpour, Mohammad A.; Mccleary, Susan L.; Ransom, Jonathan B.

    1993-01-01

    A method for analyzing global/local behavior of plate and shell structures is described. In this approach, a detailed finite element model of the local region is incorporated within a coarser global finite element model. The local model need not be nodally compatible (i.e., need not have a one-to-one nodal correspondence) with the global model at their common boundary; therefore, the two models may be constructed independently. The nodal incompatibility of the models is accounted for by introducing appropriate constraint conditions into the potential energy in a hybrid variational formulation. The primary advantage of this method is that the need for transition modeling between global and local models is eliminated. Eliminating transition modeling has two benefits. First, modeling efforts are reduced since tedious and complex transitioning need not be performed. Second, errors due to the mesh distortion, often unavoidable in mesh transitioning, are minimized by avoiding distorted elements beyond what is needed to represent the geometry of the component. The method is applied reduced to a plate loaded in tension and transverse bending. The plate has a central hole, and various hole sixes and shapes are studied. The method is also applied to a composite laminated fuselage panel with a crack emanating from a window in the panel. While this method is applied herein to global/local problems, it is also applicable to the coupled analysis of independently modeled components as well as adaptive refinement.

  12. Environmental diel variation, parasite loads, and local population structuring of a mixed-mating mangrove fish.

    Science.gov (United States)

    Ellison, Amy; Wright, Patricia; Taylor, D Scott; Cooper, Chris; Regan, Kelly; Currie, Suzie; Consuegra, Sofia

    2012-07-01

    Genetic variation within populations depends on population size, spatial structuring, and environmental variation, but is also influenced by mating system. Mangroves are some of the most productive and threatened ecosystems on earth and harbor a large proportion of species with mixed-mating (self-fertilization and outcrossing). Understanding population structuring in mixed-mating species is critical for conserving and managing these complex ecosystems. Kryptolebias marmoratus is a unique mixed-mating vertebrate inhabiting mangrove swamps under highly variable tidal regimes and environmental conditions. We hypothesized that geographical isolation and ecological pressures influence outcrossing rates and genetic diversity, and ultimately determine the local population structuring of K. marmoratus. By comparing genetic variation at 32 microsatellites, diel fluctuations of environmental parameters, and parasite loads among four locations with different degrees of isolation, we found significant differences in genetic diversity and genotypic composition but little evidence of isolation by distance. Locations also differed in environmental diel fluctuation and parasite composition. Our results suggest that mating system, influenced by environmental instability and parasites, underpins local population structuring of K. marmoratus. More generally, we discuss how the conservation of selfing species inhabiting mangroves and other biodiversity hotspots may benefit from knowledge of mating strategies and population structuring at small spatial scales. PMID:22957172

  13. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    International Nuclear Information System (INIS)

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified

  14. Near-Field Sound Localization Based on the Small Profile Monaural Structure

    Directory of Open Access Journals (Sweden)

    Youngwoong Kim

    2015-11-01

    Full Text Available The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA are derived by the designed model. From an azimuthal distance of 3–15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body.

  15. STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA

    International Nuclear Information System (INIS)

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog

  16. Asymptotic near-nucleus structure of the electron-interaction potential in local effective potential theories

    International Nuclear Information System (INIS)

    In local effective potential theories of electronic structure, the electron correlations due to the Pauli exclusion principle, Coulomb repulsion, and correlation-kinetic effects, are all incorporated in the local electron-interaction potential vee(r). In previous work, it has been shown that for spherically symmetric or sphericalized systems, the asymptotic near-nucleus expansion of this potential is vee(r)=vee(0)+βr+O(r2), with vee(0) being finite. By assuming that the Schroedinger and local effective potential theory wave functions are analytic near the nucleus of atoms, we prove the following via quantal density functional theory (QDFT): (i) Correlations due to the Pauli principle and Coulomb correlations do not contribute to the linear structure; (ii) these Pauli and Coulomb correlations contribute quadratically; (iii) the linear structure is solely due to correlation-kinetic effects, the contributions of these effects being determined analytically. We also derive by application of adiabatic coupling constant perturbation theory via QDFT (iv) the asymptotic near-nucleus expansion of the Hohenberg-Kohn-Sham theory exchange vx(r) and correlation vc(r) potentials. These functions also approach the nucleus linearly with the linear term of vx(r) being solely due to the lowest-order correlation kinetic effects, and the linear term of vc(r) being due solely to the higher-order correlation kinetic contributions. The above conclusions are equally valid for systems of arbitrary symmetry, provided spherical averages of the properties are employed

  17. Exciton Localization in Extended π-Electron Systems: Comparison of Linear and Cyclic Structures.

    Science.gov (United States)

    Thiessen, Alexander; Würsch, Dominik; Jester, Stefan-S; Aggarwal, A Vikas; Idelson, Alissa; Bange, Sebastian; Vogelsang, Jan; Höger, Sigurd; Lupton, John M

    2015-07-30

    We employ five π-conjugated model materials of different molecular shape-oligomers and cyclic structures-to investigate the extent of exciton self-trapping and torsional motion of the molecular framework following optical excitation. Our studies combine steady state and transient fluorescence spectroscopy in the ensemble with measurements of polarization anisotropy on single molecules, supported by Monte Carlo simulations. The dimer exhibits a significant spectral red shift within ∼100 ps after photoexcitation which is attributed to torsional relaxation. This relaxation mechanism is inhibited in the structurally rigid macrocyclic analogue. However, both systems show a high degree of exciton localization but with very different consequences: while, in the macrocycle, the exciton localizes randomly on different parts of the ring, scrambling polarization memory, in the dimer, localization leads to a deterministic exciton position with luminescence characteristics of a dipole. Monte Carlo simulations allow us to quantify the structural difference between the emitting and absorbing units of the π-conjugated system in terms of disorder parameters. PMID:26035080

  18. Formation of localized structures in bistable systems through nonlocal spatial coupling. I. General framework.

    Science.gov (United States)

    Colet, Pere; Matías, Manuel A; Gelens, Lendert; Gomila, Damià

    2014-01-01

    The present work studies the influence of nonlocal spatial coupling on the existence of localized structures in one-dimensional extended systems. We consider systems described by a real field with a nonlocal coupling that has a linear dependence on the field. Leveraging spatial dynamics we provide a general framework to understand the effect of the nonlocality on the shape of the fronts connecting two stable states. In particular we show that nonlocal terms can induce spatial oscillations in the front tails, allowing for the creation of localized structures, that emerge from pinning between two fronts. In parameter space the region where fronts are oscillatory is limited by three transitions: the modulational instability of the homogeneous state, the Belyakov-Devaney transition in which monotonic fronts acquire spatial oscillations with infinite wavelength, and a crossover in which monotonically decaying fronts develop spatial oscillations with a finite wavelength. We show how these transitions are organized by codimension 2 and 3 points and illustrate how by changing the parameters of the nonlocal coupling it is possible to bring the system into the region where localized structures can be formed. PMID:24580304

  19. Local chromatin structure of heterochromatin regulates repeatedDNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.

    2007-05-05

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  20. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    International Nuclear Information System (INIS)

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity

  1. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  2. Local structure of Ge quantum dots determined by combined numerical analysis of EXAFS and XANES data.

    Science.gov (United States)

    Zhang, Yuanpeng; Ersoy, Osman; Karatutlu, Ali; Little, William; Sapelkin, Andrei

    2016-01-01

    The sensitivity of X-ray absorption near-edge structure (XANES) to the local symmetry has been investigated in small (∼4 nm) matrix-free Ge quantum dots. The FDMNES package was used to calculate the theoretical XANES spectra that were compared with the experimental data of as-prepared and annealed nanoparticles. It was found that XANES data for an as-prepared sample can only be adequately described if the second coordination shell of the diamond-type structural model is included in the FDMNES calculations. This is in contrast to the extended X-ray absorption fine-structure data that show only the first-shell signal. These results suggest that, despite the high degree of disorder and a large surface-to-volume ratio, as-prepared small Ge quantum dots retain the diamond-type symmetry beyond the first shell. Furthermore, we utilized this sensitivity of XANES to the local symmetry to study annealed Ge quantum dots and found evidence for significant structural distortion which we attribute to the existence of surface disorder in the annealed oxygen-free Ge quantum dots. PMID:26698071

  3. Local structure reconstruction in hydrogenated amorphous silicon from angular correlation and synchrotron diffraction studies

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon (a-Si:H) is a widely used thin film semiconductor material which is still incompletely understood. It is generally assumed to form a continuous random network, with a high concentration of coordination defects (dangling bonds), which are hydrogen terminated. Neither the exact nature of these sites nor the degree of medium range order has been fully determined. In this paper, we present the first results for the local structure, from a combined study using angular correlation of positron annihilation radiation (ACAR) and synchrotron radiation diffraction. Reciprocal space information is obtained directly, for the mesoscale structure and the local defect structure, from the orientation dependent diffraction and 2D-ACAR patterns, respectively. Furthermore, inversion of both patterns yields a comparison of real space information through maps of the silicon-silicon pair correlation function and the electron-positron autocorrelation function B 2γ(r). From this information, it is possible to identify the dominant structural defect as a vacancy-size dangling bond cluster, around which the network strain is fully relaxed

  4. Factors influencing subcellular localization of the human papillomavirus L2 minor structural protein

    International Nuclear Information System (INIS)

    Two structural proteins form the capsids of papillomaviruses. The major structural protein L1 is the structural determinant of the capsids and is present in 360 copies arranged in 72 pentamers. The minor structural protein L2 is estimated to be present in twelve copies per capsid. Possible roles for L2 in interaction with cell surface receptors and in virion uptake have been suggested. As previously reported, L2 localizes in subnuclear domains identified as nuclear domain 10 (ND10). As it was demonstrated that L2 is able to recruit viral and cellular proteins to ND10, a possible role for L2 as a mediator in viral assembly has been proposed. In this study, we determined factors influencing the localization of L2 at ND10. Under conditions of moderate L2 expression level and in the absence of heterologous viral components, we observed that, in contrast to previous reports, L2 is mainly distributed homogeneously throughout the nucleus. L2, however, is recruited to ND10 at a higher expression level or in the presence of viral components derived from vaccinia virus or from Semliki Forest virus. We observed that translocation of L2 to ND10 is not a concentration-dependent accumulation but rather seems to be triggered by yet unidentified cellular factors. In contrast to HPV 11 and 16 L2, the HPV 18 L2 protein seems to require L1 for efficient nuclear accumulation

  5. Diversity, population structure, and evolution of local peach cultivars in China identified by simple sequence repeats.

    Science.gov (United States)

    Shen, Z J; Ma, R J; Cai, Z X; Yu, M L; Zhang, Z

    2015-01-01

    The fruit peach originated in China and has a history of domestication of more than 4000 years. Numerous local cultivars were selected during the long course of cultivation, and a great morphological diversity exists. To study the diversity and genetic background of local peach cultivars in China, a set of 158 accessions from different ecological regions, together with 27 modern varieties and 10 wild accessions, were evaluated using 49 simple sequence repeats (SSRs) covering the peach genome. Broad diversity was also observed in local cultivars at the SSR level. A total of 648 alleles were amplified with an average of 13.22 observed alleles per locus. The number of genotypes detected ranged from 9 (UDP96015) to 58 (BPPCT008) with an average of 27.00 genotypes per marker. Eight subpopulations divided by STRUCTURE basically coincided with the dendrogram of genetic relationships and could be explained by the traditional groups. The 8 subpopulations were juicy honey peach, southwestern peach I, wild peach, Buddha peach + southwestern peach II, northern peach, southern crisp peach, ornamental peach, and Prunus davidiana + P. kansuensis. Most modern varieties carried the genetic backgrounds of juicy honey peach and southwestern peach I, while others carried diverse genetic backgrounds, indicating that local cultivars were partly used in modern breeding programs. Based on the traditional evolution pathway, a modified pathway for the development of local peach cultivars in China was proposed using the genetic background of subpopulations that were identified by SSRs. Current status and prospects of utilization of Chinese local peach cultivars were also discussed according to the SSR information. PMID:25729941

  6. Global- and local-scale characterisation of bed surface structure in coarse-grained alluvial rivers

    Science.gov (United States)

    Powell, Mark; Ockelford, Annie; Nguyen, Thao; Wood, Jo; Rice, Steve; Reid, Ian; Tate, Nick

    2013-04-01

    It is widely recognised that adjustments in bed surface grain size (texture) and grain arrangement (structure) exert significant controls on the stability of coarse-grained alluvial rivers. Modifications to bed surface texture and structure occur during active sediment transport and are mediated by the process of mobile armouring which concentrates coarser-than-average particles on the surface and organises them into a variety of grain- and bedform-scale configurations. Textural aspects of surface armouring are well understood to the extent that sediment transport models can be used to predict the size distribution of armours that develop under different sediment supply regimes and shear stresses. Research has also found that the adjustment of bed surface grain size is often patchy and that the development of finer-grained and coarser-grained areas of the bed has important implications for both the rate and grain size of transported sediment. The structural aspects of stream-bed armouring, however, are less well understood, largely because of the difficulty of recognising and characterising bedforms and bed-structures that have dimensions similar to their constituent particles. Moreover, bed structure is generally parameterised using global scale descriptors of the bed surface such that information on the spatial heterogeneity of the structure is lost. The aim of this poster is to characterise the structural characteristics of water-worked river gravels, paying particular attention to quantifying the spatial heterogeneity of those characteristics using local scale descriptors. Results reported from a number of flume experiments designed to simulate the spatio-temporal evolution of bed configurations (surface texture and structure) as the system adjusts to a condition of equilibrium transport are used to evaluate the spatial variability of bed surface structure and explore its significance for modelling sediment transport rates in gravel-bed rivers. Keywords: bed

  7. Enhanced protein fold recognition using a structural alphabet.

    Science.gov (United States)

    Deschavanne, Patrick; Tufféry, Pierre

    2009-07-01

    Fold recognition from sequence can be an important step in protein structure and function prediction. Many methods have tackled this goal. Most of them, based on sequence alignment, fail for sequences of low similarity. Alignment-free approaches can provide an efficient alternative. For such approaches, the identification of efficient fold discriminatory features is critical. We propose a new fold recognition approach that relies on the encoding of the local structure of proteins using a Hidden Markov Model Structural Alphabet. This encoding provides a 1D description of the conformation of complete proteins structures, including loops. At the fold level, compared with the classical secondary structure helix, strand, and coil states, such encoding is expected to provide the means of a better discrimination between loop conformations, hence providing better fold identification. Compared with previous related approaches, this supplement of information results in significant improvement. When combining this information with supplementary information of secondary structure and residue burial, we obtain a fold recognition accuracy of 78% for 27 protein families, that is, 8% higher than the best available method so far, and of 68% for 60 families. Corresponding scores at the class level are of 92% and 90% indicating that mispredictions are mostly within structural classes. PMID:19089985

  8. Localization of surface modes along a periodic/quasiperiodic structure containing a left-handed material

    Science.gov (United States)

    Toledo-Solano, M.; Palomino-Ovando, M. A.; Lozada-Morales, R.

    2015-12-01

    We have investigated the optical properties of a one-dimensional (1-D) photonic periodic/quasiperiodic structure, designed as photonic crystal (PC)-Fibonacci (FN)-photonic crystal (PC) sections. The structure is composed of alternating layers of a right-handed material (RHM) and a left-handed material (LHM). The RHM dielectric function is frequency independent and the LHM (metamaterial) dielectric function and magnetic susceptibility are described according to the Drude model. Using attenuated total reflectivity geometry, we explore the coupling of light with the plasmons on the surface of the metamaterial layers of the hybrid structure. The excitation of surface modes in different frequency regions are investigated. We observed bands of surface modes with a significant selective spatial localization at which the intensity of the electric field is confined almost totally within one of the PC sections or within the FN one.

  9. Text localization using standard deviation analysis of structure elements and support vector machines

    Directory of Open Access Journals (Sweden)

    Zagoris Konstantinos

    2011-01-01

    Full Text Available Abstract A text localization technique is required to successfully exploit document images such as technical articles and letters. The proposed method detects and extracts text areas from document images. Initially a connected components analysis technique detects blocks of foreground objects. Then, a descriptor that consists of a set of suitable document structure elements is extracted from the blocks. This is achieved by incorporating an algorithm called Standard Deviation Analysis of Structure Elements (SDASE which maximizes the separability between the blocks. Another feature of the SDASE is that its length adapts according to the requirements of the application. Finally, the descriptor of each block is used as input to a trained support vector machines that classify the block as text or not. The proposed technique is also capable of adjusting to the text structure of the documents. Experimental results on benchmarking databases demonstrate the effectiveness of the proposed method.

  10. Potential antitumor gold drugs: DFT and XANES studies of local atomic and electronic structure

    International Nuclear Information System (INIS)

    Geometry structure optimization of the potential antitumor agent Au(bipy)(OH)2 was carried out by means of density functional theory simulations. The experimental Au L3-edge X-ray absorption near edge structure (XANES) spectrum of Au(bipy)(OH)2 was obtained. The theoretical Au L3-XANES spectra of the gold(III) complex Au(bipy)(OH)2 were simulated using both the self-consistent real-space full multiple scattering theory within the muffin-tin approximation for the potential shape and the full-potential finite difference method. The comparison of the theoretical spectra with the experimental XANES is discussed. The exact local atomic structure of gold complex Au(bipy)(OH)2 has been defined by two independent ab initio methods.

  11. Local structure analysis of magnetic transparent conducting films by x-ray spectroscopy

    International Nuclear Information System (INIS)

    We prepared Mn-doped indium-tin oxide (ITO) films on glass substrates by radio-frequency magnetron sputtering and investigated local structures surrounding Mn ions in the films by x-ray absorption spectroscopy. The Fourier transform of the extended x-ray absorption fine structure (EXAFS) spectrum indicated that the Mn ions preferably substitute the In ions at the b sites of the In2O3 lattice. According to the threshold energy obtained from the inflection point of the edge in the x-ray absorption near edge structure (XANES) spectrum, the valence of the Mn ions was evaluated to range from  +2 to  +3. These x-ray absorption spectroscopic data are useful for revealing the origin of the magnetism of the Mn-doped ITO films. (paper)

  12. Structural and electronic properties of trans-polyacetylene under local strain

    Science.gov (United States)

    Ketabi, S. A.

    2016-06-01

    A theoretical study is presented to investigate the structural and electronic properties of trans-polyacetylene (trans-PA) molecule under local strain. The influence of a local bending or compression of the space between neighboring carbon atoms on the band gap of the molecule was studied. Making use of an effective difference equation based on tight-binding procedure the band structure of trans-PA has been calculated. Our results indicate that the energy gap of the strained molecule modified significantly which affects the electronic properties of the molecule. We found that the size of the molecular gap is proportional to the bending angle so that for the bending perpendicular to π-orbitals plane the band gap reduced drastically and for the parallel one the band gap gradually increased. Furthermore, the current-voltage characteristics of the strained trans-PA molecule are studied. We found that under the local strain the threshold voltage for the current flow through the bent molecule decreased (increased) depending on the bending is perpendicular (parallel) to the molecule plane.

  13. Structural damage localization by outlier analysis of signal-processed mode shapes - Analytical and experimental validation

    Science.gov (United States)

    Ulriksen, M. D.; Damkilde, L.

    2016-02-01

    Contrary to global modal parameters such as eigenfrequencies, mode shapes inherently provide structural information on a local level. Therefore, this particular modal parameter and its derivatives are utilized extensively for damage identification. Typically, more or less advanced mathematical methods are employed to identify damage-induced discontinuities in the spatial mode shape signals, hereby, potentially, facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement noise. In the present paper, a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement noise is proposed. The method is based on signal processing of a spatial mode shape by means of continuous wavelet transformation (CWT) and subsequent application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact damage-induced, outlier analysis is conducted by applying the Mahalanobis metric to major principal scores of the sensor-located bands of the signal-processed mode shape. The method is tested analytically and benchmarked with other mode shape-based damage localization approaches on the basis of a free-vibrating beam and validated experimentally in the context of a residential-sized wind turbine blade subjected to an impulse load.

  14. Connectivity structures local population dynamics: a long-term empirical test in a large metapopulation system.

    Science.gov (United States)

    Castorani, Max C N; Reed, Daniel C; Alberto, Filipe; Bell, Tom W; Simons, Rachel D; Cavanaugh, Kyle C; Siegel, David A; Raimondi, Peter T

    2015-12-01

    Ecological theory predicts that demographic connectivity structures the dynamics of local populations within metapopulation systems, but empirical support has been constrained by major limitations in data and methodology. We tested this prediction for giant kelp Macrocystis pyrifera, a key habitat-forming species in temperate coastal ecosystems worldwide, in southern California, USA. We combined a long-term (22 years), large-scale (~500 km coastline), high-resolution census of abundance with novel patch delineation methods and an innovative connectivity measure incorporating oceanographic transport and source fecundity. Connectivity strongly predicted local dynamics (well-connected patches had lower probabilities of extinction and higher probabilities of colonization, leading to greater likelihoods of occupancy) but this relationship was mediated by patch size. Moreover, the relationship between connectivity and local population dynamics varied over time, possibly due to temporal variation in oceanographic transport processes. Surprisingly, connectivity had a smaller influence on colonization relative to extinction, possibly because local ecological factors differ greatly between extinct and extant patches. Our results provide the first comprehensive evidence that southern California giant kelp populations function as a metapopulation system, challenging the view that populations of this important foundation species are governed exclusively by self-replenishment. PMID:26909421

  15. Kinetic model of electric potentials in localized collisionless plasma structures under steady quasi-gyrotropic conditions

    International Nuclear Information System (INIS)

    Localized plasma structures, such as thin current sheets, generally are associated with localized magnetic and electric fields. In space plasmas localized electric fields not only play an important role for particle dynamics and acceleration but may also have significant consequences on larger scales, e.g., through magnetic reconnection. Also, it has been suggested that localized electric fields generated in the magnetosphere are directly connected with quasi-steady auroral arcs. In this context, we present a two-dimensional model based on Vlasov theory that provides the electric potential for a large class of given magnetic field profiles. The model uses an expansion for small deviation from gyrotropy and besides quasineutrality it assumes that electrons and ions have the same number of particles with their generalized gyrocenter on any given magnetic field line. Specializing to one dimension, a detailed discussion concentrates on the electric potential shapes (such as “U” or “S” shapes) associated with magnetic dips, bumps, and steps. Then, it is investigated how the model responds to quasi-steady evolution of the plasma. Finally, the model proves useful in the interpretation of the electric potentials taken from two existing particle simulations.

  16. Hierarchical pictorial structures for simultaneously localizing multiple organs in volumetric pre-scan CT

    Science.gov (United States)

    Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye

    2015-03-01

    Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.

  17. Local weighting of nanometric track structure properties in macroscopic voxel geometries for particle beam treatment planning

    Science.gov (United States)

    Alexander, F.; Villagrasa, C.; Rabus, H.; Wilkens, J. J.

    2015-12-01

    The research project BioQuaRT within the European Metrology Research Programme aimed at correlating ion track structure characteristics with the biological effects of radiation and developed measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigated methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Here we make use of parameterizations that link the energy of the projectile to the ionization pattern of the track using nanodosimetric ionization cluster size distributions. They were defined with data generated by simulations of ion tracks in liquid water using the Geant4 Monte Carlo toolkit with the Geant4-DNA processes. For the clinical situation with a mixed radiation field, where particles of various energies hit a cell from several directions, we have to find macroscopic relevant mean values. They can be determined by appropriate local weighting functions for the identified parameterization. We show that a stopping power weighted mean value of the mentioned track structure properties can describe the overall track structure in a cell exposed to a mixed radiation field. The parameterization, together with the presented stopping power weighting approach, show how nanometric track structure properties could be integrated into treatment planning systems without the need to perform time consuming simulations on the nanometer level for each individual patient.

  18. MEMS Biomimetic Acoustic Pressure Gradient Sensitive Structure for Sound Source Localization

    Directory of Open Access Journals (Sweden)

    Sen Ren

    2009-07-01

    Full Text Available The parasitoid fly Ormia ochracea shows an astonishing localization ability with its tiny hearing organ. A novel MEMS biomimetic acoustic pressure gradient sensitive structure was designed and fabricated by mimicking the mechanically coupled tympana of the fly. Firstly, the analytic representation formulas of the resultant force and resultant moment of the incoming plane wave acting on the structure were derived. After that, structure modal analysis was performed and the results show that the structure has out-of-phase and in-phase vibration modes, and the corresponding eigenfrequency is decided by the stiffness of vertical torsional beam and horizontal beam respectively. Acoustic-structural coupled analysis was performed and the results show that phase difference and amplitude difference between the responses of the two square diaphragms of the sensitive structure are effectively enlarged through mechanical coupling beam. The phase difference and amplitude difference increase with increasing incident angle and can be used to distinguish the direction of sound arrival. At last, the fabrication process and results of the device is also presented.

  19. Local equivalent welding element to predict the welding deformations of plate-type structures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the Heat Affected Zone (HAZ) of welding joint, the residual strain be-haviors of material under constraint and temperature circulation, as well as the activating mechanism of welding process, this paper addresses a new type welding element for numerical simulation of welding deformation, which is called the LEWE (the local equivalent welding element). This element can describe the basic char-acteristics of welded seam: the local position points of inherent strain, the equiva-lent size, the bending radius (or bending angle) from inherent strain, etc. It could be used to predict the welding deformation of plate-type structure. The comparisons between the computed deflection of welded plate and its experiment measurement are present. The results showed that the LEWE possesses a potential to simulate the deformation of welding process high-efficiently and precisely.

  20. Generalized Pipek-Mezey orbital localization method for electronic structure calculations employing periodic boundary conditions

    CERN Document Server

    Jónsson, Elvar Ö; Puska, Martti; Jónsson, Hannes

    2016-01-01

    An implementation of the generalized Pipek-Mezey method [Lehtola, S.; J\\'onsson, H. J. Chem. Theory Comput. 2014, 10, 642] for generating localized orbitals in periodic systems, i.e. Wannier functions, is described. The projector augmented wave (PAW) formalism for the representation of atomic core electrons is included in the implementation, which has been developed within the atomic simulation environment (ASE) software library. The implementation supports several different kinds of representations for the wave function, including real-space grids, plane waves or a linear combination of atomic orbitals. The implementation is tailored to the GPAW program but can easily be adapted to use output from various other electronic structure software packages such as ABINIT, NWChem, or VASP through interfaces in ASE. Generalized Pipek-Mezey Wannier functions (PMWF) are presented for both isolated molecules, as well as systems with periodicity in one, two and three dimensions. The method gives a set of highly localized...

  1. Structure-Based Local Search Heuristics for Circuit-Level Boolean Satisfiability

    CERN Document Server

    Belov, Anton

    2011-01-01

    This work focuses on improving state-of-the-art in stochastic local search (SLS) for solving Boolean satisfiability (SAT) instances arising from real-world industrial SAT application domains. The recently introduced SLS method CRSat has been shown to noticeably improve on previously suggested SLS techniques in solving such real-world instances by combining justification-based local search with limited Boolean constraint propagation on the non-clausal formula representation form of Boolean circuits. In this work, we study possibilities of further improving the performance of CRSat by exploiting circuit-level structural knowledge for developing new search heuristics for CRSat. To this end, we introduce and experimentally evaluate a variety of search heuristics, many of which are motivated by circuit-level heuristics originally developed in completely different contexts, e.g., for electronic design automation applications. To the best of our knowledge, most of the heuristics are novel in the context of SLS for S...

  2. A Novel Approach to Decoy Set Generation: Designing a Physical Energy Function Having Local Minima with Native Structure Characteristics

    OpenAIRE

    Keasar, Chen; Levitt, Michael

    2003-01-01

    We suggest a new approach to the generation of candidate structures (decoys) for ab initio prediction of protein structures. Our method is based on random sampling of conformation space and subsequent local energy minimization. At the core of this approach lies the design of a novel type of energy function. This energy function has local minima with native structure characteristics and wide basins of attraction. The current work presents our motivation for deriving such an energy function and...

  3. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    Science.gov (United States)

    Song, Xiaowei; Fagiani, Matias R.; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R.; Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim

    2016-06-01

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D2-tagged AlO1-4- and Al2O3-6- are measured in the region from 400 to 1200 cm-1. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al2O3-6- anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO3-. Terminal Al-O stretching modes are found between 1140 and 960 cm-1. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm-1) and lower energies (850-570 cm-1), respectively. Four modes in-between 910 and 530 cm-1 represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al-(O)2-Al ring.

  4. Correlation between the dielectric properties and local electronic structure of copper doped calcium titanate

    International Nuclear Information System (INIS)

    Highlights: •CuxCa1−xTiO3 system exhibits drastic morphological changes. •Dielectric constant becomes almost double for copper doping of 3%. •Local structure investigation shows no distortion at TiO6 octahedra with copper doping. •O(2p) and Ca(4sp) hybridized states with increase of Cu2+ doping reduces. -- Abstract: Copper-doped calcium titanate (CuxCa1−xTiO3, x = 0.0, 0.01, 0.02 and 0.03) ceramic system was synthesized using solid state reaction method. X-ray diffraction and Raman spectroscopic studies reveal the presence of Pbnm space group in the samples. The particle size estimated from scanning electron micrograph changes from 235 nm to 6.5 μm with copper doping, however crystallite size remain almost constant within experimental error. The dielectric study performed on these samples indicates an increase in the value of dielectric constant with Cu doping. The drastic change in the value of dielectric constant of the samples has been attributed to the change in microstructure. Local electronic structure deduced from X-ray absorption near edge structure reveals no distortion at TiO6 octahedra and reduction in O(2p) and Ca(4sp) hybridized states with increase of Cu2+ doping

  5. Phylogeny, genetic relationships and population structure of five Italian local chicken breeds

    Directory of Open Access Journals (Sweden)

    Simone Ceccobelli

    2013-09-01

    Full Text Available Number and population size of local chicken breeds in Italy is considered to be critical. Molecular data can be used to provide reliable insight into the diversity of chicken breeds. The first aim of this study was to investigate the maternal genetic origin of five Italian local chicken breeds (Ancona, Livorno, Modenese, Romagnola and Valdarnese bianca based on mitochondrial DNA (mtDNA information. Secondly, the extent of the genetic diversity, population structure and the genetic relationships among these chicken populations, by using 27 microsatellite markers, were assessed. To achieve these targets, a 506 bp fragment of the D-loop region was sequenced in 50 chickens of the five breeds. Eighteen variable sites were observed which defined 12 haplotypes. They were assigned to three clades and two maternal lineages. Results indicated that 90% of the haplotypes are related to clade E, which has been described to originate from the Indian subcontinent. For the microsatellite analysis, 137 individual blood samples from the five Italian breeds were included. A total of 147 alleles were detected at 27 microsatellite loci. The five Italian breeds showed a slightly higher degree of inbreeding (FIS=0.08 than the commercial populations that served as reference. Structure analysis showed a separation of the Italian breeds from the reference populations. A further sub-clustering allowed discriminating among the five different Italian breeds. This research provides insight into population structure, relatedness and variability of the five studied breeds.

  6. Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics

    Science.gov (United States)

    Arnoux, A.; Batou, A.; Soize, C.; Gagliardini, L.

    2013-08-01

    This paper is devoted to the construction of a stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics. We are particularly interested in automotive vehicles which are made up of stiff parts and flexible components. This type of structure is characterized by the fact that it exhibits, in the low frequency range, not only the classical global elastic modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes. To solve this difficult problem, an innovative method has recently been proposed for constructing a reduced order computational dynamical model adapted to this particular situation for the low frequency range. Then a new adapted generalized eigenvalue problem is introduced and allows a global vector basis to be constructed for the global displacements space. This method requires to decompose the domain of the structure into sub-domains. Such a decomposition is carried out using the Fast Marching Method. This global vector basis is then used to construct the reduced order computational model. Since there are model uncertainties induced by modeling errors in the computational model, the nonparametric probabilistic approach of uncertainties is used and implemented in the reduced order computational model. The methodology is applied to a complex computational model of an automotive vehicle.

  7. Local population structure of Plasmodium: impact on malaria control and elimination

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-12-01

    Full Text Available Abstract Background Regardless of the growing interest in detecting population structures in malarial parasites, there have been limited discussions on how to use this concept in control programmes. In such context, the effects of the parasite population structures will depend on interventions’ spatial or temporal scales. This investigation explores the problem of identifying genetic markers, in this case microsatellites, to unveil Plasmodium genetic structures that could affect decisions in the context of elimination. The study was performed in a low-transmission area, which offers a good proxy to better understand problems associated with surveillance at the final stages of malaria elimination. Methods Plasmodium vivax samples collected in Tumeremo, Venezuela, between March 2003 and November 2004 were analysed. Since Plasmodium falciparum also circulates in many low endemic areas, P. falciparum samples from the same locality and time period were included for comparison. Plasmodium vivax samples were assayed for an original set of 25 microsatellites and P. falciparum samples were assayed for 12 microsatellites. Results Not all microsatellite loci assayed offered reliable local data. A complex temporal-cluster dynamics is found in both P. vivax and P. falciparum. Such dynamics affect the numbers and the type of microsatellites required for identifying individual parasites or parasite clusters when performing cross-sectional studies. The minimum number of microsatellites required to differentiate circulating P. vivax clusters differs from the minimum number of hyper-variable microsatellites required to distinguish individuals within these clusters. Regardless the extended number of microsatellites used in P. vivax, it was not possible to separate all individual infections. Conclusions Molecular surveillance has great potential; however, it requires preliminary local studies in order to properly interpret the emerging patterns in the context of

  8. Electronic structure and local magnetism of 3d-5d impurity substituted CeFe2

    Science.gov (United States)

    Das, Rakesh; Das, G. P.; Srivastava, S. K.

    2016-04-01

    We present here a systematic first-principles study of electronic structure and local magnetic properties of Ce[Fe0.75M0.25]2 compounds, where M is a 3d, 4d or 5d transition or post-transition element, using the generalized gradient approximation of the density functional theory. The d-f band hybridizations existing in CeFe2 get modified by the impurity M in an orderly manner across a period for each impurity series: the hybridization is strongest for the Mn group impurity in the period and gets diminished on either side of it. The weakening of the d-f hybridization strength is also associated with a relative localization of the Ce 4f states with respect to the delocalized 4f states in CeFe2. The above effects are most prominent for 3d impurity series, while for 4d and 5d impurities, the hybridizations and relocalizations are relatively weak due primarily to the relatively extended nature of 4d and 5d wavefunctions. The Ce local moment is found to decrease from the CeFe2 value in proportion to the strength of relocalization, thus following almost the same orderly trend as obeyed by the d-f hybridization. Further, depending on the way the spin-up and spin-down densities of states of an impurity shift relative to the Fermi energy, the impurity local moments are highest for Mn or Fe group, reduce on either side, become zero for Ni to Ga, and are small but negative for V and Ti. The Ce hyperfine field is found to follow the M local moment in a linear fashion, and vice-versa.

  9. Active damage localization for plate-like structures using wireless sensors and a distributed algorithm

    International Nuclear Information System (INIS)

    Wireless structural health monitoring (SHM) systems have emerged as a promising technology for robust and cost-effective structural monitoring. However, the applications of wireless sensors on active diagnosis for structural health monitoring (SHM) have not been extensively investigated. Due to limited energy sources, battery-powered wireless sensors can only perform limited functions and are expected to operate at a low duty cycle. Conventional designs are not suitable for sensing high frequency signals, e.g. in the ultrasonic frequency range. More importantly, algorithms to detect structural damage with a vast amount of data usually require considerable processing and communication time and result in unaffordable power consumption for wireless sensors. In this study, an energy-efficient wireless sensor for supporting high frequency signals and a distributed damage localization algorithm for plate-like structures are proposed, discussed and validated to supplement recent advances made for active sensing-based SHM. First, the power consumption of a wireless sensor is discussed and identified. Then the design of a wireless sensor for active diagnosis using piezoelectric sensors is introduced. The newly developed wireless sensor utilizes an optimized combination of field programmable gate array (FPGA) and conventional microcontroller to address the tradeoff between power consumption and speed requirement. The proposed damage localization algorithm, based on an energy decay model, enables wireless sensors to be practically used in active diagnosis. The power consumption for data communication can be minimized while the power budget for data processing can still be affordable for a battery-powered wireless sensor. The Levenberg–Marquardt method is employed in a mains-powered sensor node or PC to locate damage. Experimental results and discussion on the improvement of power efficiency are given

  10. Strain localization in ductile rocks: A comparison of natural and simulated pinch-and-swell structures

    Science.gov (United States)

    Peters, Max; Berger, Alfons; Herwegh, Marco; Regenauer-Lieb, Klaus

    2016-06-01

    We study pinch-and-swell structures in order to uncover the onset of strain localization and the change of deformation mechanisms in layered ductile rocks. To this end, boudinaged monomineralic veins embedded in an ultramylonitic matrix are analyzed quantitatively. The swells are built up by relatively undeformed original calcite grains, showing twinning and minor subgrain rotation recrystallization (SGR). Combined with progressive formation of high-angle misorientations between grains, indicative of SGR, severe grain size reduction defines the transition to the pinches. Accordingly, dynamically recrystallized grains have a strong crystallographic preferred orientation (CPO). Toward the necks, further grain size reduction, increasingly random misorientations, nucleation of new grains, and a loss of the CPO occur. We postulate that this microstructure marks the transition from dislocation to diffusion creep induced by strain localization. We confirm that the development of boudins is insensitive to original grain sizes and single-crystal orientations. In order to test these microstructural interpretations, a self-consistent numerical grain size evolution is implemented, based on thermo-mechanical principles, end-member flow laws and microphysical processes. Applying constant velocity and isothermal boundary conditions to a 3-layer finite element pure shear box, pinch-and-swell structures emerge out of the homogeneous layer through grain size softening at a critical state. Viscosity weakening due to elevated strain rates and dissipated heat from grain size reduction promotes strain rate weakening until a critical grain size is reached. At this point, a switch from dislocation to diffusion creep occurs. This state locks in at local steady states and is microstructurally expressed in pinches and swells, respectively. Thus, boudinage is identified as an energy attractor, identifying the high-energy steady state of an extending layered structure. We conclude from the

  11. Structure économique et croissance locale : etude Econométrique des arrondissements belges, 1991-1997

    OpenAIRE

    Didier Baudewyns

    2005-01-01

    We study the link between economic structure and growth in the 43 Belgian ‘arrondissements’ between 1991 and 1997. We find empirical evidence that local economic structure has a significant impact on the local growth of the service sector as a whole. Sectoral specialization and competition would affect negatively local growth in this sector while we find strong evidence of a positive effect of sectoral diversity. The size of the local market would not play any role on growth but the average l...

  12. Local magnetic structure due to inhomogeneity of interaction in S=1/2 antiferromagnetic chain

    OpenAIRE

    Nishino, Masamichi; Onishi, Hiroaki; Roos, Pascal; Yamaguchi, Kizashi; Miyashita, Seiji

    1999-01-01

    We study the magnetic properties of $S=1/2$ antiferromagnetic Heisenberg chains with inhomogeneity of interaction. Using a quantum Monte Carlo method and an exact diagonalization method, we study bond-impurity effect in the uniform $S=1/2$ chain and also in the bond-alternating chain. Here `bond impurity' means a bond with strength different from those in the bulk or a defect in the alternating order. Local magnetic structures induced by bond impurities are investigated both in the ground sta...

  13. Local structural stability of actions of R^n on n-manifolds

    Directory of Open Access Journals (Sweden)

    J. L. Arraut

    2006-11-01

    Full Text Available Let M^m be a compact m-manifold and ϕ:R^n × M^m → M^m a C^r, r ≥ 1, action with infinitesimal generators of class C^r . We introduce theconcept of transversally hyperbolic singular orbit for an action ϕ and explore this concept in its relations to stability. Our main result says that if m = n and O_p is a compact singular orbit of ϕ that is transversally hyperbolic, then ϕ is C^1 locally structurally stable at O_p .

  14. Local structural stability of actions of R^n on n-manifolds

    OpenAIRE

    Arraut, J. L.; Carlos Maquera

    2006-01-01

    Let M^m be a compact m-manifold and ϕ:R^n × M^m → M^m a C^r, r ≥ 1, action with infinitesimal generators of class C^r . We introduce theconcept of transversally hyperbolic singular orbit for an action ϕ and explore this concept in its relations to stability. Our main result says that if m = n and O_p is a compact singular orbit of ϕ that is transversally hyperbolic, then ϕ is C^1 locally structurally stable at O_p .

  15. Emergence of steady and oscillatory localized structures in a phytoplankton-nutrient model

    OpenAIRE

    Zagaris, Antonios; Doelman, Arjen

    2010-01-01

    Co-limitation of marine phytoplankton growth by light and nutrient, both of which are essential for phytoplankton, leads to complex dynamic behavior and a wide array of coherent patterns. The building blocks of this array can be considered to be deep chlorophyll maxima, or DCMs, which are structures localized in a finite depth interior to the water column. From an ecological point of view, DCMs are evocative of a balance between the inflow of light from the water surface and of nutrients from...

  16. The Future of the Local Large Scale Structure: the roles of Dark Matter and Dark Energy

    OpenAIRE

    Hoffman, Yehuda; Lahav, Ofer; Yepes, Gustavo; Dover, Yaniv

    2007-01-01

    We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (OCDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is...

  17. Temperature dependent electronic structure and magnetism of metallic systems with localized moments. Application on gadolinium

    International Nuclear Information System (INIS)

    This thesis focuses on the theoretical investigation of the temperature dependent electronic and magnetic properties of metallic 4f-systems with localized magnetic moments. The presented theory is based on the Kondo-lattice model, which describes the interaction between a system of 4f-localized magnetic moments and the itinerant conduction band electrons. This interaction is responsible for a remarkable temperature dependence of the electronic structure mainly induced by the subsystem of 4f-localized moments. The many-body problem provoked by the Kondo-lattice model is solved by using a moment conserving Green function technique, which takes care of several special limiting cases. This method reproduces the T=0-exact solvable limiting case of the ferromagnetically saturated semiconductor. The temperature dependent magnetic properties of the 4f-localized subsystem are evaluated by means of a modified Rudermann-Kittel-Kasuya-Yosida (RKKY) type procedure, which together with the solution of the electronic part allows for a self-consistent calculation of all the electronic and magnetic properties of the model. Results of model calculations allow to deduce the conditions for ferromagnetism in dependence of the electron density n, exchange coupling J and temperature T. The self-consistently calculated Curie temperature TC is presented and discussed in dependence of relevant parameters (J, n, and W) of the model. The second part of the thesis is concerned with the investigation of the temperature dependence of the electronic and magnetic properties of the rare-earth metal Gadolinium (Gd). The original Kondo-lattice model is extended to a multi-band Kondo-lattice model and combined with an ab-initio band structure calculation to take into account for the multi-bands in real systems. The single-particle energies of the model are taken from an augmented spherical wave (ASW) band structure calculation. The proposed method avoids the double counting of relevant interactions by

  18. Three-dimensional velocity structure of the Galeras volcano (Colombia) from passive local earthquake tomography

    Science.gov (United States)

    Vargas, Carlos Alberto; Torres, Roberto

    2015-08-01

    A three-dimensional estimation of the Vp, Vs and Vp/Vs ratio structure at Galeras volcano was conducted by means of passive local earthquake tomography. 14,150 volcano-tectonic events recorded by 58 stations in the seismological network established for monitoring the volcanic activity by the Colombian Geological Survey - Pasto Volcano Observatory between the years 1989 and 2015, were inverted by using the LOTOS code. The seismic events are associated with shear-stress fractures in solid rock as a response to pressure induced by magma flow. Tomography resolution tests suggest a depth of imaging that yield 10 km from the summit of the main crater, illuminating a large portion of the volcanic structure and the interaction of tectonic features like the Buesaco and Silvia-Pijao faults. Full catalog tomographic inversion, that represents the stacked image of the volcanic structure or the most permanent features underneath the volcano, shows vertical structures aligned with seismicity beneath the main crater. We hypothesize that these structures correspond to a system of ducts or fractures through which magma and fluid phases flow up from deeper levels toward the top and related with the intersection of the surface traces of the Silvia-Pijao and Buesaco faults.

  19. Exotic Localized Coherent Structures of the (2+1)—Dimensional Dispersive Long—Wave Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANGJie-Fang

    2002-01-01

    This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations uty+ηxx+(u2)xy/2=0,ηt+(uη+u+uxy)x=0.Starting from the homogeneous balance method,we find that the richness of the localized coberent structures of the model is caused by the entrance of two variable-separated arbitrary functions.for some special selections of the arbitrary functions,it is shown that the localized structures of the model may be dromions,lumps,breathers,instantons and ring solitons.

  20. Local structure of the halite-sylvine solid solution according to the computer simulation data

    International Nuclear Information System (INIS)

    The structural, elastic, and thermodynamic properties of halite NaCl and sylvine KCl and the miscibility properties of the NaCl-KCl solid solution found by computer simulation are in good agreement with the experimental data. Analysis of the relaxation of the solid solution structure suggests that both anion and cation sublattices are distorted; however, the anion sublattice is distorted much more strongly. Calculations of the local bond valence at all types of ions in the solid solution show opposite deviations from the balance at cations, whereas the general balance is retained. The values of the electrostatic potential in the ion positions reflect weakening of bonding in the solid solution with respect to its pure components. In addition, with an increase in the average interatomic distance in the first coordination sphere around cations, the modulus of the electrostatic potential at cations decreases.

  1. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  2. Localized structures for (2+1)-dimensional Boiti–Leon–Pempinelli equation

    Indian Academy of Sciences (India)

    Gui Mu; Zhengde Dai; Zhanhui Zhao

    2013-09-01

    It is shown that Painlevé integrability of (2+1)-dimensional Boiti–Leon–Pempinelli equation is easy to be verified using the standard Weiss–Tabor–Carnevale (WTC) approach after introducing the Kruskal’s simplification. Furthermore, by employing a singular manifold method based on Painlevé truncation, variable separation solutions are obtained explicitly in terms of two arbitrary functions. The two arbitrary functions provide us a way to study some interesting localized structures. The choice of rational functions leads to the rogue wave structure of Boiti–Leon–Pempinelli equation. In addition, for the other choices, it is observed that two solitons may evolve into breather after interaction. Also, the interaction between two kink compactons is investigated.

  3. Communication: Local structure-mobility relationships of confined fluids reverse upon supercooling.

    Science.gov (United States)

    Bollinger, Jonathan A; Jain, Avni; Carmer, James; Truskett, Thomas M

    2015-04-28

    We examine the structural and dynamic properties of confined binary hard-sphere mixtures designed to mimic realizable colloidal thin films. Using computer simulations, governed by either Newtonian or overdamped Langevin dynamics, together with other techniques including a Fokker-Planck equation-based method, we measure the position-dependent and average diffusivities of particles along structurally isotropic and inhomogeneous dimensions of the fluids. At moderate packing fractions, local single-particle diffusivities normal to the direction of confinement are higher in regions of high total packing fraction; however, these trends are reversed as the film is supercooled at denser average packings. Auxiliary short-time measurements of particle displacements mirror data obtained for experimental supercooled colloidal systems. We find that average dynamics can be approximately predicted based on the distribution of available space for particle insertion across orders of magnitude in diffusivity regardless of the governing microscopic dynamics. PMID:25933745

  4. Influence of Local and Residual Structures on the Scaling Behavior and Dimensions of Unfolded Proteins

    CERN Document Server

    Wang, Zhisong; Makarov, Dmitrii E

    2009-01-01

    Although recent spectroscopic studies of chemically denatured proteins hint at significant nonrandom residual structure, the results of extensive small angle X-ray scattering studies suggest random coil behavior, calling for a coherent understanding of these seemingly contradicting observations. Here, we report the results of a Monte Carlo study of the effects of two types of local structures, a helix and Polyproline II (PPII) helix, on the dimensions of random coil polyalanine chains viewed as a model of highly denatured proteins. With an alpha helix content of 20%, corresponding to the Ramachandran probability of being in the helical basin, experimentally observed radii of gyration are recovered. Experimental radii are similarly recovered at an a helix content of 87%, providing an explanation for the previously puzzling experimental finding that the dimensions of the highly helical methanol-induced unfolded state are experimentally indistinguishable from those of the helix-poor urea-unfolded state. In contr...

  5. The analysis of locally reinforced holes and transition regions in thin walled structural members

    International Nuclear Information System (INIS)

    Solutions useful for the determination of the state of stress and stability in panels, plates and shells possessing both reinforced and unreinforced holes are presented. Also discussed are problems involving the local reinforcement of mating structural elements. Depending on the problem either plane stress elasticity or plate and shell theory is employed for the structural member. The reinforcement is treated as a beam having tensile, torsional and flexural stiffnesses. A restriction on the reinforcement is that the width of the beam is small compared to the radius of the hole, plate or shell. In the case of a panel, it is furthermore assumed that the hole is small compared to the depth of the panel and that the distance of the hole's center to an edge is large compared to the radius of the hole. (Auth.)

  6. Specificities of foundations for turbosets and of concrete structures in seismic localities - experience from abroad

    International Nuclear Information System (INIS)

    The method is described of elastically laid foundations of turbosets mainly suitable for seismic localities. Support structures are first built under the foundation. Then the boarding is prepared for the upper foundation plate and prestress--ed insulators are placed in the appertures in the bottom in such a manner that by their lower collar they bear on the prepared places in the support structure. On the placed insulators a set of spacing sheets is then placed. Reinforcement and concreting are performed using routine methods. Various admixtures are added to the concrete which improve the processibility of the mix and extend setting time to prevent excessive shrinkage of concrete due to an increase in hydration heat. (J.H.)

  7. Optimal sensor placement for maximum area coverage (MAC) for damage localization in composite structures

    Science.gov (United States)

    Thiene, M.; Sharif Khodaei, Z.; Aliabadi, M. H.

    2016-09-01

    In this paper an optimal sensor placement algorithm for attaining the maximum area coverage (MAC) within a sensor network is presented. The proposed novel approach takes into account physical properties of Lamb wave propagation (attenuation profile, direction dependant group velocity due to material anisotropy) and geometrical complexities (boundary reflections, presence of openings) of the structure. A feature of the proposed optimization approach lies in the fact that it is independent of characteristics of the damage detection algorithm (e.g. probability of detection) making it readily up-scalable to large complex composite structures such as aircraft stiffened composite panel. The proposed fitness function (MAC) is independent of damage parameters (type, severity, location). Statistical analysis carried out shows that the proposed optimum sensor network with MAC results in high probability of damage localization. Genetic algorithm is coupled with the fitness function to provide an efficient optimization strategy.

  8. Fe local structure in Pt-free nitrogen-modified carbon based electrocatalysts: XAFS study

    Science.gov (United States)

    Witkowska, Agnieszka; Giuli, Gabriele; Renzi, Marco; Marzorati, Stefania; Yiming, Wubulikasimu; Nobili, Francesco; Longhi, Mariangela

    2016-05-01

    The paper presents a new results on the bonding environment (coordination number and geometry) and on oxidation states of Fe in nitrogen-modified Fe/C composites used as Pt-free catalysts for oxygen reduction in Direct Hydrogen Fuel Cells. Starting from glucose or fructose, two catalysts displaying different electrochemical performance were prepared and studied in the form of pristine powder and thin catalytic layer of electrode by Fe K-edge XAFS spectroscopy. The results show how the Fe local structure varies as a function of different synthesis conditions and how changes in the structural properties of the catalysts are related to fuel cell electrochemical performance increase during a cell activation period.

  9. Local network structure of a-SiC:H and its correlation with dielectric function

    Science.gov (United States)

    Kageyama, Shota; Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-12-01

    The microscopic disordered structures of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) layers with different carbon contents have been determined based on the correlations between the dielectric function in the ultraviolet/visible region and the local bonding states studied by high-sensitivity infrared attenuated total reflection spectroscopy. We find that the microscopic structure of the a-Si1-xCx:H layers fabricated by plasma-enhanced chemical vapor deposition shows a sharp structural transition at a boundary of x = 6.3 at. %. In the regime of x ≤ 6.3 at. %, (i) the amplitude of the a-SiC:H dielectric function reduces and (ii) the SiH2 content increases drastically with x, even though most of the C atoms are introduced into the tetrahedral sites without bonding with H. In the regime of x > 6.3 at. %, on the other hand, (i) the amplitude of the dielectric function reduces further and (ii) the concentration of the sp3 CHn (n = 2,3) groups increases. Moreover, we obtained the direct evidence that the sp2 C bonding state in the a-SiC matrix exists in the configuration of C = CH2 and the generation of the graphite-like C = CH2 unit suppresses the band gap widening significantly. At high C contents of x > 6.3 at. %, the a-SiC:H layers show quite porous structures due to the formation of microvoids terminated with the SiH2/CHn groups. By taking the SiH2/CHn microvoid generation in the network and the high-energy shift of the dielectric function by the local bonding states into account, the a-SiC:H dielectric function model has been established. From the analysis using this model, we have confirmed that the a-SiC:H optical properties in the ultraviolet/visible region are determined almost completely by the local network structures.

  10. Local and global semantic integration in an argument structure: ERP evidence from Korean.

    Science.gov (United States)

    Nam, Yunju; Hong, Upyong

    2016-07-01

    The neural responses of Korean speakers were recorded while they read sentences that included local semantic mismatch between adjectives (A) and nouns (N) or/and global semantic mismatch between object nouns (N) and verbs (V), as well as the corresponding control sentences without any semantic anomalies. In Experiment 1 using verb-final declarative sentences (Nsubject [A-N]object V), the local A-N incongruence yielded an N400 effect at the object noun and a combination of N400 and a late negativity effect at the sentence final verb, whereas the global N-V incongruence yielded a biphasic N400 and P600 ERP pattern at the verb compared with the ERPs of same words in the control sentences respectively; in Experiment 2 using verb-initial object relative clause constructions ([Nsubject _V]rel [A-N]object …..) derived from the materials of Experiment 1, the effect of local incongruence changed notably such that not only an N400 but also an additional P600 effect was observed at the object noun, whereas the effect of the global incongruence remained largely the same (N400 and P600). Our theoretical interpretation of these results specifically focused on the reason for the P600 effects observed across different experiment conditions, which turned out to be attributable to (i) coordination of a semantic conflict, (ii) prediction disconfirmation, or (iii) argument structure processing breakdown. PMID:27095512

  11. Structural health monitoring of localized internal corrosion in high temperature piping for oil industry

    Science.gov (United States)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.

  12. Mechanical behavior of the LMFBR core structure under transient pressure due to local failure

    International Nuclear Information System (INIS)

    A satisfactory fast reactor safety analysis requires a comprehensive experimental and theoretical research program. The structural integrity of the reactor core in case of any local failure has to be demonstrated. Such local events may be due to random pin failure which is very likely. As a consequence contact between molten fuel and coolant may occur. The existing uncertainties in the understanding of the physical mechanisms observed during this molten fuel-coolant-interaction (MFCI) emphasize the importance of the comprehensiveness of this research program. This paper describes the effort done at GfK Karlsruhe in cooperation with UKAEA and EURATOM to predict the core deformations caused by local failure within an LMFBR core. These activities try to cover all important questions currently discussed in the analysis of possible core damage. It may be concluded that the reactor can be scrammed in time under pessimistic-realistic pressure transients and that the deformations do not exceed tolerable limits. The computer methods are general enough as to allow for different core designs with varying geometries, material properties, etc. (Auth.)

  13. Polarization dependent soft x-ray spectro-microscopy of local spin structures

    Science.gov (United States)

    Robertson, Maccallum; Agostino, Christopher; Im, Mi-Young; Montoya, Sergio; Fullerton, Eric; Fischer, Peter

    Quantitative information about element-specific contributions to local magnetic spin and orbital moments is readily available by XMCD spectroscopy and images of magnetic domain patterns with a few tens of nanometer spatial resolution. We show that the x-ray spectroscopic analysis of x-ray microscopy images provides quantitative information about local spin structures. We have investigated two prototypical multilayered PMA film systems prepared by sputtering, specifically (Co 0.3 nm/Pt 0.5 nm)x30 and (Fe 0.7nm/Gd 0.4nm)x100 systems. A spectroscopic sequence of full-field magnetic transmission soft x-ray microscopy (MTXM) images covering about 8mm field-of-views with a spatial resolution of about 20nm were recorded across the Co and Fe L edges, resp. To modulate the magnetic contrast, two sets of images were obtained with left and right circular polarization. Standard XMCD spectroscopy analysis procedures were applied to retrieve the local spectroscopic behavior. We observe a decrease of the L3/L2 ratio when approaching the domain walls, indicating a non-uniform spin configuration along the vertical profile of a domain, which we will discuss in view of both systems' magnetic anisotropies. U.S. DOE under Contract No. DE-AC02-05-CH11231.

  14. Waveform inversion for localized seismic structure and its application to D

    Science.gov (United States)

    Kawai, K.; Geller, R. J.; Fuji, N.; Konishi, K.

    2008-12-01

    In order to fully extract information on localized seismic structure from observed seismic data, we have developed a methodology for seismic waveform inversion. The calculation of synthetic seismograms and their partial derivatives are the key steps in such an inversion. We have developed accurate and efficient methods for calculating broadband synthetic seismograms for spherically symmetric transversely isotropic media for both shallow and deep events, which allows us to compute synthetics up to 2 Hz or higher frequencies (Kawai et al. 2006, GJI). Then, wWe formulate the inverse problem of waveform inversion for localized structure using the efficient algorithm of Geller and Hara (1993), computing partial derivatives for the 3-D anisotropic elastic parameters, including anelasticity, at particular points in space. Our method allows us to conduct both local and multi-scale global waveform inversion using pixel (or local shell) parameterization. We previouslyhave conducted waveform inversion for the vertical profile of the shear velocity in the lowermost mantle beneath Central America and the Arctic, beneath which the shear velocity is faster than the global average (Kawai et al., 2007ab, GRL). The obtained models suggest that the S-velocity increase in D'' may be localized in the zone from 100-200 km above the core-mantle boundary (CMB), while the S-velocity does not significantly deviate from PREM in the zone from 0-100 km above the CMB. In this studywork, we studied D'' beneath the Pacific, where the S-velocity is supposed thought to be slower than the global average on the basis of by many tomographic studies. models (e.g. Takeuchi 2007). We use the transverse component of broadband waveforms (for the period range, 8- 200 s). observed waveforms. We found 1-1.5% velocity decreases and increases in the zones from 400-500 km and from 300-400 km above the CMB, respectively. In addition, we found 0.5-1% velocity increases and decreases in the zones from 100-200 km

  15. Capturing ultrafast photoinduced local structural distortions of BiFeO3.

    Science.gov (United States)

    Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G; Rosso, Kevin M; Zhang, Xiaoyi

    2015-01-01

    The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials. PMID:26463128

  16. Capturing ultrafast photoinduced local structural distortion of BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haidan [Argonne National Lab. (ANL), Argonne, IL (United States); Sassi, Michel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Luo, Zhenlin [Univ. of Science and Technology of China, Hefei (China); Adamo, Carolina [Cornell Univ., Ithaca, NY (United States); Schlom, Darrell G. [Cornell Univ., Ithaca, NY (United States); Cornell Univ., Ithaca, NY (United States). Kavli Inst. for Nanoscale Science; Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Xiaoyi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-14

    The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.

  17. Comparative study of local structure of two cyanobiphenyl liquid crystals by molecular dynamics method

    International Nuclear Information System (INIS)

    Fully-atomistic molecular dynamics simulations were carried out on two similar cyanobiphenyl nematogens, HO-6OCB and 7OCB, in order to study effects of hydrogen bonds on local structure of liquid crystals. Comparable length of these two molecules provides more evident results on the effects of hydrogen bonding. The analysis of radial and cylindrical distribution functions clearly shows the differences in local structure of two mesogens. The simulations showed that anti-parallel alignment is preferable for the HO-6OCB. Hydrogen bonds between OH-groups are observed for 51% of HO-6OCB molecules, while hydrogen bonding between CN- and OH-groups occurs only for 16% of molecules. The lifetimes of H-bonds differ due to different mobility of molecular fragments (50 ps for N⋅⋅⋅H–O and 41 ps for O⋅⋅⋅H–O). Although the standard Optimized Potentials for Liquid Simulations - All-Atom force field cannot reproduce some experimental parameters quantitatively (order parameters are overestimated, diffusion coefficients are not reproduced well), the comparison of relative simulated results for the pair of mesogens is nevertheless consistent with the same relative experimental parameters. Thus, the comparative study of simulated and experimental results for the pair of similar liquid crystals still can be assumed plausible

  18. Optical properties and local structure of Dy3+-doped chalcogenide and chalcohalide glasses

    Institute of Scientific and Technical Information of China (English)

    TANG Gao; YANG Zhiyong; LUO Lan; CHEN Wei

    2008-01-01

    Dy3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 rim, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy3+ ions. The longest lifetime was over 2.5 ms, and the value was signifi-cantly higher than that in other Dy3+-doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy3+-doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.

  19. "SP-G", a putative new surfactant protein--tissue localization and 3D structure.

    Science.gov (United States)

    Rausch, Felix; Schicht, Martin; Paulsen, Friedrich; Ngueya, Ivan; Bräuer, Lars; Brandt, Wolfgang

    2012-01-01

    Surfactant proteins (SP) are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G) was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class. PMID:23094088

  20. Modifications of local structures of Gd2O3 on incorporation of SiO2

    International Nuclear Information System (INIS)

    In the present work we have reported the results of investigations on local structures of e-beam evaporated (Gd2O3-SiO2) composite thin films by synchrotron based EXAFS measurements. The evolution of local structure in the case of the Gd2O3-SiO2 system is found to be different from the HfO2-SiO2 system reported by us earlier. The EXAFS analysis has shown that the Gd-O bond length decreases monotonically as SiO2 content in the films increases. Also the amplitudes of the peaks in the FT-EXAFS spectra of the samples, which depend jointly on the coordination numbers as well as the Debye-Waller factors (measure of disorder) are found to decrease monotonically with increase in SiO2 contents in the Gd2O3 matrix. Atomic force microscopy (AFM) measurements of the samples also show continuous evolution of amorphous-like denser microstructure with increase in SiO2 content in the films. Hence incorporation of SiO2 in the Gd2O3 matrix, results in a continuous change in oxygen coordination yielding a change in the Gd-O bond length and also results in a continuous increase in amorphousness and a smoother morphology of the samples and, unlike the HfO2-SiO2 system, does not show any maximum for a particular SiO2 concentration.

  1. Comparison between continuous and localized methods to evaluate the flow rate through containment concrete structures

    International Nuclear Information System (INIS)

    Highlights: • The contribution focuses on the gas transfer through reinforced concrete structures. • A continuous approach with a damage–permeability law is investigated. • It is significant, for this case, only when the damage variable crosses the section. • In this case, two localized approaches are compared. • It helps at evaluating a “reference” crack opening for engineering laws. - Abstract: In this contribution, different techniques are compared to evaluate the gas flow rate through a representative section of a reinforced and prestressed concrete containment structure. A continuous approach is first applied which is based on the evaluation of the gas permeability as a function of the damage variable. The calculations show that the flow rate becomes significant only when the damage variable crosses the section. But in this situation, the continuous approach is no longer fully valid. That is why localized approaches, based on a fine description of the crack openings, are then investigated. A comparison between classical simplified laws (Poiseuille flow) and a more refined model which takes into account the evolution of the crack opening in the depth of the section enables to define the validity domain of the simplified laws and especially the definition of the associated “reference opening”

  2. Electron paramagnetic resonance parameters and local structure for Gd3+ in KY3F10

    Indian Academy of Sciences (India)

    Shao-Yi Wu; Hua-Ming Zhang; Guang-Duo Lu; Zhi-Hong Zhang

    2007-09-01

    The electron paramagnetic resonance parameters, zero-field splittings (ZFSs) b$_{2}^{0}$, b$_{4}^{0}$, b$_{4}^{4}$, b$_{6}^{0}$, b$_{6}^{4}$ and the factors for Gd3+ on the tetragonal Y3+ site in KY3F10 are theoretically studied from the superposition model for the ZFSs and the approximation formula for the factor containing the admixture of the ground 8S7/2 and the excited 6L7/2 (L=P, D, F, G) states via the spin–orbit coupling interactions, respectively. By analysing the above ZFSs, the local structure information for the impurity Gd3+ is obtained, i.e., the impurity–ligand bonding angles related to the four-fold (C4) axis for the impurity Gd3+ center are found to be about 0.6° larger than those for the host Y3+ site in KY3F10. The calculated ZFSs based on the above angular distortion as well as the factors are in reasonable agreement with the observed values. The present studies on the ZFSs and the local structure would be helpful to understand the optical and magnetic properties of this material with Gd dopants.

  3. Local atomic and electronic structure of boron chemical doping in monolayer graphene.

    Science.gov (United States)

    Zhao, Liuyan; Levendorf, Mark; Goncher, Scott; Schiros, Theanne; Pálová, Lucia; Zabet-Khosousi, Amir; Rim, Kwang Taeg; Gutiérrez, Christopher; Nordlund, Dennis; Jaye, Cherno; Hybertsen, Mark; Reichman, David; Flynn, George W; Park, Jiwoong; Pasupathy, Abhay N

    2013-10-01

    We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film. PMID:24032458

  4. "SP-G", a putative new surfactant protein--tissue localization and 3D structure.

    Directory of Open Access Journals (Sweden)

    Felix Rausch

    Full Text Available Surfactant proteins (SP are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.

  5. Studies of a local spin interactions in magnetic materials of spinel structure by neutron spectroscopy

    International Nuclear Information System (INIS)

    Inelastic neutron scattering studies on magnetic materials with a spinel structure have been undertaken in order to investigate a local spin interactions at given sites of crystallographic sublattices. The measurements carried out on ZnFe2O4, Mnsub(0.2)Znsub(0.8)Fe2O4 and MnFe2O4 between 5 and 293 K, have shown that the 6Ssub(5/2)-terms of Fe3+ and Mn2+ ions at B and A sites (for MnFe2O4) are splitted into six levels, due to the local spin interaction. The neutron spectroscopic studies are extended to the case of MgCr204 spinel having the Cr3+ ions at B-sites only. The interpretation of spectrum at 5 K was based on the splitting of crystal-field 2-level of4Fsub(3/2)-term of Cr3+ ions at B-sites. The interaction parameters were determined for chromium ions at B-sites. Basing on these values the magnetic moments of Cr3+ at B-sites have been found to be lowered with respect to the magnetic moment of free ions. The spectroscopic measurements performed yielded complementary information about magnetic structure of MgCr2O4. It appears from the present studies that there is a probability of observation of local spin interactions in magnetic spinels, not perturbed by cooperative phenomena. It was found that a contact field of magneto-molecular nature is acting on the cations at A anb B sites. The fields is caused by an indirect (via oxygen) exchange interaction with nearest magnetic ions. (author)

  6. Non-local physics: Applications from the universe evolution to the atom structure in the frame of the unified theory

    Science.gov (United States)

    Alexeev, B. V.

    2013-10-01

    The main principles of the non-local physics are delivered. The unified theory of transport processes is applicable to the physical systems in tremendous diapason of scales - from atom structures to the Universe evolution. The origin of difficulties connected with the hypothetical dark matter and dark energy consists in the total Oversimplification following from the principles of local physics and reflects the general shortcomings of the local kinetic transport theory.

  7. Self-organization of local magnetoplasma structures in the upper layers of the solar convection zone

    International Nuclear Information System (INIS)

    Self-organization and evolution of magnetoplasma structures in the upper layers of the solar convection zone are discussed as a process of diffuse aggregation of magnetic flux tubes. Equations describing the tube motion under the action of magnetic interaction forces, hydrodynamic forces, and random forces are written explicitly. The process of aggregation of magnetic flux tubes into magnetic flux clusters of different shapes and dimensions is simulated numerically. The obtained structures are compared with the observed morphological types of sunspot groups. The quantitative comparison with the observational data was performed by comparing the fractal dimensions of the photospheric magnetic structures observed in solar active regions with those of structures obtained in the numerical experiment. The model has the following free parameters: the numbers of magnetic flux tubes with opposite polarities on the considered area element (Nn and Ns), the average radius of the cross section of the magnetic flux tube (a), its effective length (l), the twist factor of the tube field (k), and the absolute value of the average velocity of chaotic tube displacements (d). Variations in these parameters in physically reasonable limits leads to the formation of structures (tube clusters of different morphological types) having different fractal dimensions. Using the NOAA 10488 active region, which appeared and developed into a complicated configuration near the central meridian, as an example, it is shown that good quantitative agreement between the fractal dimensions is achieved at the following parameters of the model: Nn = Ns = 250 ± 50; a = 150 ± 50 km; l ∼ 5000 km, and d = 80 ± 10 m/s. These results do not contradict the observational data and theoretical estimates obtained in the framework of the Parker “spaghetti” model and provide new information on the physical processes resulting in the origin and evolution of local magnetic plasma structures in the near

  8. Shatter cones at the Keurusselkä impact structure and their relation to local jointing

    Science.gov (United States)

    Hasch, Maximilian; Reimold, Wolf Uwe; Raschke, Ulli; Zaag, Patrice Tristan

    2016-08-01

    Shatter cones are the only distinct meso- to macroscopic recognition criterion for impact structures, yet not all is known about their formation. The Keurusselkä impact structure, Finland, is interesting in that it presents a multitude of well-exposed shatter cones in medium- to coarse-grained granitoids. The allegedly 27 km wide Keurusselkä impact structure was formed about 1150 Ma ago in rocks of the Central Finland Granitoid Complex. Special attention was paid in this work to possible relationships between shatter cones and local, as well as regionally occurring, fracture or joint systems. A possible shatter cone find outside the previously suggested edge of the structure could mean that the Keurusselkä impact structure is larger than previously thought. The spacing between joints/fractures from regional joint systems was influenced by the impact, but impact-induced fractures strongly follow the regional joint orientation trends. There is a distinct relationship between shatter cones and joints: shatter cones occur on and against joint surfaces of varied orientations and belonging to the regional orientation trends. Planar fractures (PF) and planar deformation features (PDF) were found in three shatter cone samples from the central-most part of the impact structure, whereas other country rock samples from the same level of exposure but further from the assumed center lack shock deformation features. PDF occurrence is enhanced within 5 mm of shatter cone surfaces, which is interpreted to suggest that shock wave reverberation at preimpact joints could be responsible for this local enhancement of shock deformation. Some shatter cone surfaces are coated with a quasi-opaque material which is also found in conspicuous veinlets that branch off from shatter cone surfaces and resemble pseudotachylitic breccia veins. The vein-filling is composed of two mineral phases, one of which could be identified as a montmorillonitic phyllosilicate. The second phase could not be

  9. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2

    International Nuclear Information System (INIS)

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics on structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5

  10. Computer modeling of the local structure, mixing properties, and stability of binary oxide solid solutions with corundum structure

    International Nuclear Information System (INIS)

    An original technique of computer modeling of substitutional solid solutions has been applied to Al2O3-Cr2O3, Al2O3-Fe2O3, and Fe2O3-Cr2O3 binary systems. The parameters of semiempirical interatomic potentials were optimized using the experimentally studied structural, elastic, and thermodynamic properties of pure components. Among point defects, the most energetically favorable ones for all three oxides are Schottky vacancy quintets. To model (Mx1M1-x2)2O3 solid solutions, 4 x 4 x 1 disordered supercells with M1: M2 cation ratios of 1: 5, 1: 2, 1: 1, 2: 1, and 5: 1 have been constructed in the cation sublattice containing 192 atoms. The mixing enthalpy and volume, interaction parameters, bulk moduli, and vibrational entropy were found by minimizing the interatomic interaction energy in supercells with the symmetry P1. Calculations of the Gibbs energy made it possible to estimate the fields of stability of the Al2O3-Cr2O3 and Al2O3-Fe2O3 solid solutions; these estimates were compared with the experimental data. Histograms of M-M, M-O, and O-O interatomic distances were constructed and the local structure was analyzed for the Al1.0Cr1.0O3, Al1.0Fe1.0O3, and Fe1.0Cr1.0O3 compositions.

  11. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition.

    Science.gov (United States)

    Liang, Yu; Guttman, Miklos; Davenport, Thaddeus M; Hu, Shiu-Lok; Lee, Kelly K

    2016-04-19

    Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes. PMID:27003615

  12. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    Science.gov (United States)

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-01

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water. PMID:22931378

  13. Bonding in elemental boron: a view from electronic structure calculations using maximally localized Wannier functions

    Science.gov (United States)

    Ogitsu, Tadashi; Gygi, Francois; Reed, John; Schwegler, Eric; Galli, Giulia

    2007-03-01

    Boron exhibits the most complex structure of all elemental solids, with more than 300 atoms per unit cell arranged in interconnecting icosahedra, and some crystallographic positions occupied with a probability of less than one. The precise determination of the ground state geometry of boron---the so-called β-boron structure--has been elusive and its electronic and bonding properties have been difficult to rationalize. Using lattice model Monte Carlo optimization techniques and ab-initio simulations, we have shown that a defective, quasi-ordered β solid is the most stable structure at zero as well as finite T. In the absence of partially occupied sites (POS), the perfect β-boron crystal is unstable; the presence of POS lower its internal energy below that of an ordered α-phase, not mere an entropic effect. We present a picture of the intricate and unique bonding in boron based on maximally localized Wannier (MLWF) functions, which indicates that the presence of POS provides a subtle, yet essential spatial balance between electron deficient and fully saturated bonds. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48.

  14. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures

    Science.gov (United States)

    Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng

    2015-10-01

    The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.

  15. Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite.

    Science.gov (United States)

    Korbas, M; Rokita, E; Meyer-Klaucke, W; Ryczek, J

    2004-01-01

    During mineral growth in rat bone-marrow stromal cell cultures, gallium follows calcium pathways. The dominant phase of the cell culture mineral constitutes the poorly crystalline hydroxyapatite (HAP). This model system mimics bone mineralization in vivo. The structural characterization of the Ga environment was performed by X-ray absorption spectroscopy at the Ga K-edge. These data were compared with Ga-doped synthetic compounds (poorly crystalline hydroxyapatite, amorphous calcium phosphate and brushite) and with strontium-treated bone tissue, obtained from the same culture model. It was found that Sr(2+) substitutes for Ca(2+) in the HAP crystal lattice. In contrast, the replacement by Ga(3+) yielded a much more disordered local environment of the probe atom in all investigated cell culture samples. The coordination of Ga ions in the cell culture minerals was similar to that of Ga(3+), substituted for Ca(2+), in the Ga-doped synthetic brushite (Ga-DCPD). The Ga atoms in the Ga-DCPD were coordinated by four oxygen atoms (1.90 A) of the four phosphate groups and two oxygen atoms at 2.02 A. Interestingly, the local environment of Ga in the cell culture minerals was not dependent on the onset of Ga treatment, the Ga concentration in the medium or the age of the mineral. Thus, it was concluded that Ga ions were incorporated into the precursor phase to the HAP mineral. Substitution for Ca(2+ )with Ga(3+) distorted locally this brushite-like environment, which prevented the transformation of the initially deposited phase into the poorly crystalline HAP. PMID:14648284

  16. Emergence and annihilation of localized structures in a phytoplankton-nutrient model

    CERN Document Server

    Zagaris, Antonios

    2010-01-01

    Co-limitation of marine phytoplankton by light and nutrient leads to complex dynamic behavior and a wide array of coherent patterns. The building blocks of this array can be considered to be deep chlorophyll maxima, or DCMs, which are structures localized in the vertical direction. From an ecological point of view, DCMs are evocative of a balance between the inflow of light from the water surface and of nutrients from the sediment. From a (linear) bifurcational point of view, they appear through a transcritical bifurcation in which the trivial, no-plankton steady state is destabilized. This article is devoted to the analytic investigation of the weakly nonlinear dynamics of these DCM patterns, and it has two overarching themes. The first of these concerns the fate of the destabilizing stationary DCM mode beyond the linear regime. Exploiting the natural singularly perturbed nature of the model, we derive an explicit reduced model of asymptotically high dimension which fully captures these dynamics. Our subsequ...

  17. Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Koeller, D.M.; DiGiulio, A.; Frerman, F.E. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others

    1995-08-10

    Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdh was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.

  18. Localizing the Latent Structure Canonical Uncertainty: Entropy Profiles for Hidden Markov Models

    CERN Document Server

    Durand, Jean-Baptiste

    2012-01-01

    This report addresses state inference for hidden Markov models. These models rely on unobserved states, which often have a meaningful interpretation. This makes it necessary to develop diagnostic tools for quantification of state uncertainty. The entropy of the state sequence that explains an observed sequence for a given hidden Markov chain model can be considered as the canonical measure of state sequence uncertainty. This canonical measure of state sequence uncertainty is not reflected by the classic multivariate state profiles computed by the smoothing algorithm, which summarizes the possible state sequences. Here, we introduce a new type of profiles which have the following properties: (i) these profiles of conditional entropies are a decomposition of the canonical measure of state sequence uncertainty along the sequence and makes it possible to localize this uncertainty, (ii) these profiles are univariate and thus remain easily interpretable on tree structures. We show how to extend the smoothing algori...

  19. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA

    Science.gov (United States)

    Li, Bin; Luo, Xiao; Deng, Binbin; Giancola, Jolynn B.; McComb, David W.; Schmittgen, Thomas D.; Dong, Yizhou

    2016-02-01

    Lipid-like nanoparticles (LLNs) have shown great potential for RNA delivery. Lipid-like compounds are key components in LLNs. In this study, we investigated the effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Our results showed that position change of functional groups on lipid-like compounds can dramatically improve delivery efficiency. We then optimized formulation ratios of TNT-b10 LLNs, a lead material, increasing delivery efficiency over 2-fold. More importantly, pegylated TNT-b10 LLNs is stable for over four weeks and is over 10-fold more efficient than that of its counterpart TNT-a10 LLNs. Additionally, the optimal formulation O-TNT-b10 LLNs is capable of delivering mRNA encoding luciferase in vivo. These results provide useful insights into the design of next generation LLNs for mRNA delivery.

  20. Hydration-Induced Local Molecular Structures in Nano-Layered Clay Particles

    Directory of Open Access Journals (Sweden)

    K. Sato

    2013-03-01

    Full Text Available Positronium (Ps annihilation spectroscopy and thermogravimetry and differential thermal analysis (TG-DTA were conducted for synthetic smectite clay minerals to investigate local molecular structures induced by water adsorption and desorption. The TG curves indicate the weight loss of ~ 3.5 wt %, ~ 2.5 wt %, and ~ 2.0 wt % for saponite, hectorite, and stevensite due to dehydration, in accordance with DTA endothermic peaks around 332 K, 350 K, and 345 K. It is found based on the results of Ps lifetime spectroscopy that the presence of angstrom-scale open space is sensitively dependent on water adsorption and desorption in smectite clay minerals.

  1. Local electronic structure and magnetic properties of 3d transition metal doped GaAs

    Institute of Scientific and Technical Information of China (English)

    LIN He; DUAN HaiMing

    2008-01-01

    The local electronic structure and magnetic properties of GaAs doped with 3d transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) were studied by using discrete varia-tional method (DVM) based on density functional theory. The calculated result in-dicated that the magnetic moment of transition metal increases first and then de-creases, and reaches the maximum value when Mn is doped into GaAs. In the case of Mn concentration of 1.4%, the magnetic moment of Mn is in good agreement with the experimental result. The coupling between impure atoms in the system with two impure atoms was found to have obvious variation. For different transition metal, the coupling between the impure atom and the nearest neighbor As also has dif-ferent variation.

  2. Local electronic structure and magnetic properties of 3d transition metal doped GaAs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The local electronic structure and magnetic properties of GaAs doped with 3 transition metal(Sc,Ti,V,Cr,Mn,Fe,Co,Ni) were studied by using discrete varia tional method(DVM) based on density functional theory.The calculated result in dicated that the magnetic moment of transition metal increases first and then de creases,and reaches the maximum value when Mn is doped into GaAs.In the cas of Mn concentration of 1.4%,the magnetic moment of Mn is in good agreement wit the experimental result.The coupling between impure atoms in the system with tw impure atoms was found to have obvious variation.For different transition meta the coupling between the impure atom and the nearest neighbor As also has dif ferent variation.

  3. Band structure engineering of graphene by a local gate defined periodic potential

    Science.gov (United States)

    Forsythe, Carlos; Maher, Patrick; Scarabelli, Diego; Dean, Cory; Kim, Philip

    Recent improvements in 2-dimensional (2D) material layering have resulted in enhanced device quality and created pathways for new device architectures. We fabricate periodic arrays from a patterned local back gate and a uniform top gate on hBN encapsulated graphene channels. The symmetry and lattice size of the periodic potential can be determined by state-of-art electron beam lithography and etching, achieving a lattice constant of 35 nm. The strength of the electric potential modulation can be controlled through applied voltage on the patterned gate. We observe signatures of superlattice modulation near the main Dirac peak in the density dependent resistance measurement at zero magnetic field. Current studies focus on the exploration of Hofstadter fractal band structures under magnetic fields. Our nano-patterned engineered superlattices on graphene hold great promise for wider applications.

  4. Local appearance features for robust MRI brain structure segmentation across scanning protocols

    DEFF Research Database (Denmark)

    Achterberg, H.C.; Poot, D.H.J.; Van Der Lijn, F.;

    2013-01-01

    Segmentation of brain structures in magnetic resonance images is an important task in neuro image analysis. Several papers on this topic have shown the benefit of supervised classification based on local appearance features, often combined with atlas-based approaches. These methods require a...... representative annotated training set and therefore often do not perform well if the target image is acquired on a different scanner or with a different acquisition protocol than the training images. Assuming that the appearance of the brain is determined by the underlying brain tissue distribution and that...... brain tissue classification can be performed robustly for images obtained with different protocols, we propose to derive appearance features from brain-tissue density maps instead of directly from the MR images. We evaluated this approach on hippocampus segmentation in two sets of images acquired with...

  5. Local structure of disordered Au-Cu and Au-Ag alloys

    International Nuclear Information System (INIS)

    X-ray-absorption fine structure (XAFS) and x-ray-diffraction (XRD) measurements of disordered alloys AuxCu1-x and Au0.5Ag0.5 prepared by melt spinning were performed. In the Au0.5Ag0.5 alloy, no significant local deviations of the atoms from the average fcc lattice were detected while in AuxCu1-x alloys, significant deviations of atoms from the average fcc lattice were found. Mean-square vibrations of the Cu-Cu distances revealed by the XAFS in AuxCu1-x alloys indicate the weakening of contact between Cu atoms in the dilute limit. Our computer simulation for AuxCu1-x clusters of 105 atoms reproduces the main features of both the XAFS and XRD data

  6. 2MASS Constraints on the Local Large-Scale Structure: A Challenge to LCDM?

    CERN Document Server

    Frith, W J

    2004-01-01

    We investigate the large-scale structure of the local galaxy distribution using the recently completed 2 Micron All Sky Survey (2MASS). First, we determine the K-band number counts over the 4000 sq.deg. APM survey area where evidence for a large-scale `local hole' has previously been detected and compare them to a homogeneous prediction. Considering a LCDM form for the 2-point angular correlation function, the observed deficiency represents a 5 sigma fluctuation in the galaxy distribution. We check the model normalisation using faint K-band data compiled from the literature; the normalisation used in this paper is in excellent agreement, and the observed counts over the APM survey area would require the model to be lowered by 3.8 sigma. However, the issue is complicated by the b>20 and b20 is representative, we find excellent agreement between the biased LCDM mocks and the 2MASS catalogue to 30 deg. The crux of the interpretation of these results appears to be whether the 2MASS volume is yet big enough to con...

  7. Local structure controls the nonaffine shear and bulk moduli of disordered solids

    Science.gov (United States)

    Schlegel, M.; Brujic, J.; Terentjev, E. M.; Zaccone, A.

    2016-01-01

    Paradigmatic model systems, which are used to study the mechanical response of matter, are random networks of point-atoms, random sphere packings, or simple crystal lattices; all of these models assume central-force interactions between particles/atoms. Each of these models differs in the spatial arrangement and the correlations among particles. In turn, this is reflected in the widely different behaviours of the shear (G) and compression (K) elastic moduli. The relation between the macroscopic elasticity as encoded in G, K and their ratio, and the microscopic lattice structure/order, is not understood. We provide a quantitative analytical connection between the local orientational order and the elasticity in model amorphous solids with different internal microstructure, focusing on the two opposite limits of packings (strong excluded-volume) and networks (no excluded-volume). The theory predicts that, in packings, the local orientational order due to excluded-volume causes less nonaffinity (less softness or larger stiffness) under compression than under shear. This leads to lower values of G/K, a well-documented phenomenon which was lacking a microscopic explanation. The theory also provides an excellent one-parameter description of the elasticity of compressed emulsions in comparison with experimental data over a broad range of packing fractions.

  8. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    International Nuclear Information System (INIS)

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level

  9. Local and regional effects on community structure of dung beetles in a mainland-island scenario.

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    Full Text Available Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites. We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal

  10. Compositional divergence and convergence in local communities and spatially structured landscapes.

    Directory of Open Access Journals (Sweden)

    Tancredi Caruso

    Full Text Available Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence than, less dissimilar (convergence than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect. The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community

  11. Diffusion of helium in the perfect and non perfect uranium dioxide crystals and their local structures

    International Nuclear Information System (INIS)

    Highlights: • The nano local structure of UO2 containing oxygen and uranium vacancies was identified. • We have determined for the first time in the UO2 the dynamical energy barriers to He migration. • It was found that the migration of helium is along the polylines. • The helium diffusion is accompanied of the emission–absorption of phonons. - Abstract: Local nano structures and their changes relevant with the diffusion of helium was determined by applying the density functional theory (DFT). With its help we calculated deformation of the crystal lattice while wandering helium atoms between octahedral sites. The optimal mutual coordinates of the atoms were determined by minimizing the Hellman–Feyman forces, allowing at the same time precisely specify dynamic height and the shape of the potential barrier. For a crystal containing single oxygen or uranium vacancies, has been described both the deformation associated with the presence of vacancy, as well as additional deformation related to the migration of the helium atom in the lattice. It was found that in the case of vacancies, the migration of helium atoms between the octahedral sites is not along a straight line but along a polyline. In addition, the presence of uranium vacancy causes that helium atoms in the octahedral sites, situated in the I and II coordination shell of uranium vacancy, have different energies. Migration between such positions must be carried out with the participation of the emission–absorption of phonons. Applying two site – model we evaluated the time for an over-barrier jump and diffusion of interstitial He. The obtained values for diffusion coefficient are compared with the experimentally obtained values and with the theoretical values of other authors

  12. Towards Consistent Mapping of Urban Structures - Global Human Settlement Layer and Local Climate Zones

    Science.gov (United States)

    Bechtel, B.; Pesaresi, M.; See, L.; Mills, G.; Ching, J.; Alexander, P. J.; Feddema, J. J.; Florczyk, A. J.; Stewart, I.

    2016-06-01

    Although more than half of the Earth's population live in urban areas, we know remarkably little about most cities and what we do know is incomplete (lack of coverage) and inconsistent (varying definitions and scale). While there have been considerable advances in the derivation of a global urban mask using satellite information, the complexity of urban structures, the heterogeneity of materials, and the multiplicity of spectral properties have impeded the derivation of universal urban structural types (UST). Further, the variety of UST typologies severely limits the comparability of such studies and although a common and generic description of urban structures is an essential requirement for the universal mapping of urban structures, such a standard scheme is still lacking. More recently, there have been two developments in urban mapping that have the potential for providing a standard approach: the Local Climate Zone (LCZ) scheme (used by the World Urban Database and Access Portal Tools project) and the Global Human Settlement Layer (GHSL) methodology by JRC. In this paper the LCZ scheme and the GHSL LABEL product were compared for selected cities. The comparison between both datasets revealed a good agreement at city and coarse scale, while the contingency at pixel scale was limited due to the mismatch in grid resolution and typology. At a 1 km scale, built-up as well as open and compact classes showed very good agreement in terms of correlation coefficient and mean absolute distance, spatial pattern, and radial distribution as a function of distance from town, which indicates that a decomposition relevant for modelling applications could be derived from both. On the other hand, specific problems were found for both datasets, which are discussed along with their general advantages and disadvantages as a standard for UST classification in urban remote sensing.

  13. Local Bamboo and Earth Construction Potential for Provision of Affordable Structures in Nigeria

    Directory of Open Access Journals (Sweden)

    OJI ACHUKA NWOKE

    2011-12-01

    Full Text Available In Nigeria and other developing countries where reinforced concrete in construction is widely used, the high and steadily increasing cost of steel has made construction very expensive. This, coupled with the political will, usually christened “Nigerian Factor” has made any conceived affordable mass housing program by successive governments a mirage. This development has triggered off the search for alternative and suitable replacement for steel reinforcement in concrete works. This search for a cheaper alternative has led to the exploration of abundant, naturally occurring materials such as bamboo, coconut fibres, sisal and oil palm fibres  which can be obtained locally at low cost and low levels of energy using local manpower and technology. The use of these locally available materials as substitute for the conventional materials in reinforced concrete elements can cut construction costs by as much as between 30% and 80%. Interest in these local materials is heightened by the facts that not only are they considered cheap; they are also “eco-friendly”. Also, the rising level of pollution in the construction industry has called for the adoption of “Eco-structures”, which are constructions that are in harmony with the surroundings and do not violate the environment neither through the chosen building materials nor through the construction methods. Several studies  have shown that contemporary  earth construction has the potentials to address the urban housing crisis in the developing countries. On the other hand there is a wrong perception among the users and the professionals that, ‘earth houses are only used by the poor people’. This paper investigates the information available on bamboo and earth material and their possible use as a low cost sustainable building material in Nigeria  in the light of problem of affordable structure. The findings of  this paper shows that more research has to be done to come up with reasonable

  14. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  15. Local structural change under antiferro- and ferromagnetic transition in FeRh alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miyanaga, Takafumi; Itoga, Tatsunori; Okazaki, Teiko [Department of Advanced Physics, Hirosaki University, Hirosaki, Aomori, 036-8561 (Japan); Nitta, Kiyofumi, E-mail: takaf@cc.hirosaki-u.ac.j [KEK-PF, Ibaraki, 305-0801 (Japan)

    2009-11-15

    We investigate the local structural change under antiferro- and ferromagnetic transition for annealed Fe{sub 50.4}Rh{sub 49.6} alloy. Both Fe and Rh K-edge EXAFS are analysed up to second nearest neighbours. For first nearest neighbour Fe-Rh (or Rh-Fe), the temperature dependence of the interatomic distance and Debye-Waller factor is well understandable and reproduced by other structural techniques. On the other hand, that for the second nearest Fe-Fe is quite mysterious; the interatomic distance is longer than the value deduced from the corresponding change of the first nearest Fe-Rh but the Debye-Waller factor for Fe-Fe decreases as temperature under the transition. In ferromagnetic phase, the coherent motion of Fe atoms is expected to be prominent. We propose the model that the transition progresses by three steps with temperature, T{sub 1}, T{sub 2}, and T{sub 3}.

  16. Analysis of vibrating structures with localized nonlinearities using nonlinear normal modes

    International Nuclear Information System (INIS)

    This work is a collaboration between EDF R and D and the Laboratory of Mechanics and Acoustics. The objective is to develop theoretical and numerical tools to compute nonlinear normal modes (NNMs) of structures with localized nonlinearities. We use an approach combining the harmonic balance and the asymptotic numerical methods, known for its robustness principally for smooth systems. Regularization techniques are used to apply this approach for the study of non-smooth problems. Moreover, several aspects of the method are improved to allow the computation of NNMs for systems with a high number of degrees of freedom (DOF). Finally, the method is implemented in Code-Aster, an open-source finite element solver developed by EDF R and D. The nonlinear normal modes of a two degrees-of-freedom system are studied and some original characteristics are observed. These observations are then used to develop a methodology for the study of systems with a high number of DOFs. The developed method is finally used to compute the NNMs for a model U-tube of a nuclear plant steam generator. The analysis of the NNMs reveals the presence of an interaction between an out-of-plane (low frequency) and an in-plane (high frequency) modes, a result also confirmed by the experiment. This modal interaction is not possible using linear modal analysis and confirms the interest of NNMs as a diagnostic tool in structural dynamics. (author)

  17. Design and fabrication of structural color by local surface plasmonic meta-molecules

    Science.gov (United States)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  18. Local structural investigation of Eu3+-doped BaTiO3 nanocrystals

    Science.gov (United States)

    Rabuffetti, Federico A.; Culver, Sean P.; Lee, John S.; Brutchey, Richard L.

    2014-02-01

    A structural investigation of sub-15 nm xEu:BaTiO3 nanocrystals (x = 0-5 mol%) was conducted to determine the distribution of the Eu3+ ion in the BaTiO3 lattice. Pair distribution function analysis of X-ray total scattering data (PDF), steady-state photoluminescence, and X-ray absorption spectroscopy (XANES/EXAFS) were employed to interrogate the crystal structure of the nanocrystals and the local atomic environment of the Eu3+ ion. The solubility limit of the Eu3+ ion in the nanocrystalline BaTiO3 host synthesized via the vapor diffusion sol-gel method was estimated to be ~4 mol%. A contraction of the perovskite unit cell volume was observed upon incorporation of 1 mol% of europium, while an expansion was observed for nominal concentrations between 1 and 3 mol%. The average Eu-O distance and europium coordination number decreased from 2.46 Å and 9.9 to 2.42 Å and 8.6 for europium concentrations of 1 and 5 mol%, respectively. Structural trends were found to be consistent with the substitution of Eu3+ for Ba2+via creation of a Ti4+ vacancy at low europium concentrations (sub-15 nm xEu:BaTiO3 nanocrystals (x = 0-5 mol%) was conducted to determine the distribution of the Eu3+ ion in the BaTiO3 lattice. Pair distribution function analysis of X-ray total scattering data (PDF), steady-state photoluminescence, and X-ray absorption spectroscopy (XANES/EXAFS) were employed to interrogate the crystal structure of the nanocrystals and the local atomic environment of the Eu3+ ion. The solubility limit of the Eu3+ ion in the nanocrystalline BaTiO3 host synthesized via the vapor diffusion sol-gel method was estimated to be ~4 mol%. A contraction of the perovskite unit cell volume was observed upon incorporation of 1 mol% of europium, while an expansion was observed for nominal concentrations between 1 and 3 mol%. The average Eu-O distance and europium coordination number decreased from 2.46 Å and 9.9 to 2.42 Å and 8.6 for europium concentrations of 1 and 5 mol%, respectively

  19. The theory of the local structure of solid solutions of oxides with Perovskite structure: Example of Pb2(FeNb)O6

    International Nuclear Information System (INIS)

    A method for constructing local-structure models for complex oxides with averaged perovskite-type structures has been developed. The constructed models take into account the probabilities of distributing different cations over sites belonging to the corresponding sublattices. The accepted approach to interpreting diffraction patterns is based on the same hypotheses as the commonly used one. As an example, a local-structure model is constructed for disordered PbFe1/2Nb1/2O3 and, on the basis of this model, the diffraction patterns of this single crystal, disordered with respect to Fe and Nb sites at T = 433 K, have been interpreted.

  20. The local structure factor near an interface; beyond extended capillary-wave models

    Science.gov (United States)

    Parry, A. O.; Rascón, C.; Evans, R.

    2016-06-01

    We investigate the local structure factor S (zq) at a free liquid–gas interface in systems with short-ranged intermolecular forces and determine the corrections to the leading-order, capillary-wave-like, Goldstone mode divergence of S (zq) known to occur for parallel (i.e. measured along the interface) wavevectors q\\to 0 . We show from explicit solution of the inhomogeneous Ornstein–Zernike equation that for distances z far from the interface, where the profile decays exponentially, S (zq) splits unambiguously into bulk and interfacial contributions. On each side of the interface, the interfacial contributions can be characterised by distinct liquid and gas wavevector dependent surface tensions, {σ l}(q) and {σg}(q) , which are determined solely by the bulk two-body and three-body direct correlation functions. At high temperatures, the wavevector dependence simplifies and is determined almost entirely by the appropriate bulk structure factor, leading to positive rigidity coefficients. Our predictions are confirmed by explicit calculation of S (zq) within square-gradient theory and the Sullivan model. The results for the latter predict a striking temperature dependence for {σ l}(q) and {σg}(q) , and have implications for fluctuation effects. Our results account quantitatively for the findings of a recent very extensive simulation study by Höfling and Dietrich of the total structure factor in the interfacial region, in a system with a cut-off Lennard-Jones potential, in sharp contrast to extended capillary-wave models which failed completely to describe the simulation results.

  1. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Werner [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Noeldgen, Markus, E-mail: mnoeldgen@schuessler-plan.d [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Schuessler-Plan Engineering Ltd., St.-Franziskus-Str. 148, D-40470 Duesseldorf (Germany); Strassburger, Elmar; Thoma, Klaus [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Eckerstrasse 4, D-79104 Freiburg (Germany); Fehling, Ekkehard [University of Kassel, Chair of Structural Concrete, Kurt-Wolters Str. 3, D-34109 Kassel (Germany)

    2010-10-15

    Research highlights: {yields} Experimental series on UHPC panels subjected to aircraft engine impact. {yields} Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. {yields} Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  2. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    International Nuclear Information System (INIS)

    Research highlights: → Experimental series on UHPC panels subjected to aircraft engine impact. → Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. → Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  3. ASPECTS REGARDING IMPLICATIONS OF ASSOCIATIVE STRUCTURES FOR LOCAL DEVELOPMENT IN PROMOTING AND STRENGTHENING OF MULTILEVEL GOVERNANCE

    Directory of Open Access Journals (Sweden)

    Mihai Cristian APOSTOLACHE

    2014-12-01

    Full Text Available The need for the development of local communities in terms of economic and social policy-making requires finding answers institutional and public policy context in which the company is located. More and more the focus is on partnership and cooperation between the various actors of public life, on the involvement of private capital in local investment, on the establishment of companies to boost the joint venture or the establishment of local action groups to train both local public administration, the local economic environment, local non -governmental entities and other persons concerned in the design, implementation and completion of local development projects financed from European funds. The projects for local communities will receive support from the increasingly pronounced from the European Union, having regard to the fact that through the development of local communities will strengthen the European project.

  4. Extended vs. Local Structure in Sb-Pyrochlores: An Illustration of the Valuable Interplay between Crystallography and XAFS

    International Nuclear Information System (INIS)

    The convergence between extended structure provided by X-ray diffraction and local structure of antimony extracted from spectroscopic data is reached through an alternative crystallographic description for a Sb-pyrochlore arrangement within the same space group symmetry of pyrochlore structure-type. A full account on this description is presented, along with a calculated diffraction pattern matching experimental data and conforming to Sb 1s XANES data

  5. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

    Science.gov (United States)

    Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

    2016-02-01

    Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3-4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages.

  6. Local Structure and Electrical Performance of Pulsed Laser Deposited CdTe/CdS Thin-Film Solar Cells

    Science.gov (United States)

    Nabizadeh, Arya; Lesinski, Darren; Cerqueira, Luis; Sahiner, Mehmet; Sahiner-Amscl Team

    2015-03-01

    The photovoltaic thin films of CdS/CdTe were prepared by pulsed laser deposition (PLD) on indium tin oxide (ITO) coated glass. The local structural variations in the thin films around Cd atom upon variations in the thin film growth parameters were investigated by X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS) and x-ray diffraction. X-ray absorption spectroscopy measurements were performed at the National Synchrotron Light Source of Brookhaven National Laboratory. The effect of the thicknesses of the CdS and CdTe layers, laser energy and the substrate temperature on the local crystal structure and coordination around the Cd atoms were investigated through quantitative multiple scattering analysis and modeling of the x-ray absorption spectroscopy data. The induced local structural modifications upon varying synthesis conditions are correlated with the electrical performance of these photovoltaic thin-films. The quantitative multiple scattering analyses and modeling of X-ray absorption spectroscopy data revealed the local environment around the Cd atoms are highly sensitive to thin film deposition parameters and the variations of the Cd local structure influences interface quality consequently, affect the electrical performance of these photovoltaic thin films. This work is supported by NSF Award #:DMI-0420952 and Research Corporation Award #:CC6405 and New Jersey Space Grant Consortium.

  7. Emergence of steady and oscillatory localized structures in a phytoplankton–nutrient model

    International Nuclear Information System (INIS)

    Co-limitation of marine phytoplankton growth by light and nutrient, both of which are essential for phytoplankton, leads to complex dynamic behaviour and a wide array of coherent patterns. The building blocks of this array can be considered to be deep chlorophyll maxima, or DCMs, which are structures localized in a finite depth interior to the water column. From an ecological point of view, DCMs are evocative of a balance between the inflow of light from the water surface and of nutrients from the sediment. From a (linear) bifurcational point of view, they appear through a transcritical bifurcation in which the trivial, no-plankton steady state is destabilized. This paper is devoted to the analytic investigation of the weakly nonlinear dynamics of these DCM patterns, and it has two overarching themes. The first of these concerns the fate of the destabilizing stationary DCM mode beyond the centre manifold regime. Exploiting the natural singularly perturbed nature of the model, we derive an explicit reduced model of asymptotically high dimension which fully captures these dynamics. Our subsequent and fully detailed study of this model—which involves a subtle asymptotic analysis necessarily transgressing the boundaries of a local centre manifold reduction—establishes that a stable DCM pattern indeed appears from a transcritical bifurcation. However, we also deduce that asymptotically close to the original destabilization, the DCM loses its stability in a secondary bifurcation of Hopf type. This is in agreement with indications from numerical simulations available in the literature. Employing the same methods, we also identify a much larger DCM pattern. The development of the method underpinning this work—which, we expect, shall prove useful for a larger class of models—forms the second theme of this paper

  8. Modeling of Local BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    Science.gov (United States)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.

  9. Finance as a Barrier to Entry: Bank Competition and Industry Structure in Local U.S. Markets

    OpenAIRE

    Nicola Cetorelli; Philip E. Strahan

    2004-01-01

    This paper tests how competition in local U.S. banking markets affects the market structure of non- financial sectors. Theory offers competing hypotheses about how competition ought to influence firm entry and access to bank credit by mature firms. Using data on U.S. local markets for banking and non-financial sectors, we find that more vigorous banking competition – that is, lower concentration and looser restrictions on geographical expansion -- is associated with more firms in operation an...

  10. The inelastic quasi-static response of sandwich structures to local loading

    NARCIS (Netherlands)

    Koissin, Vitaly; Shipsha, Andrey; Rizov, Victor

    2004-01-01

    The paper addresses the inelastic quasi-static response of sandwich beams and panels with foam core to localized loads. The plane and axisymmetric formulations for local indentation or local low-velocity impact by a rigid body are considered; no overall bending is assumed. The governing equations fo

  11. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Directory of Open Access Journals (Sweden)

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  12. Surface and interfacial interactions of multilayer graphitic structures with local environment

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, R. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Robinson, B.J., E-mail: b.j.robinson@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Rabot, C. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Delamoreanu, A. [Microelectronics Technology Laboratory (LTM), Joseph Fourier University, French National Research Center (CNRS), 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Zenasni, A. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Dickinson, J.W.; Boxall, C. [Department of Engineering, Lancaster University, Lancaster LA1 4YR (United Kingdom); Kolosov, O.V. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2015-06-30

    In order to exploit the potential of graphene in next-generation devices, such as supercapacitors, rechargeable batteries, displays and ultrathin sensors, it is crucial to understand the solvent interactions with the graphene surface and interlayers, especially where the latter may be in competition with the former, in the medium of application deployment. In this report, we combine quartz crystal microbalance (QCM) and ultrasonic force microscopy methods to investigate the changes in the film–substrate and film–environment interfaces of graphene and graphene oxide films, produced by diverse scalable routes, in both polar (deionised water) and non-polar (dodecane) liquid and vapour environments. In polar liquid environments, we observe nanobubble adsorption/desorption on the graphene film corresponding to a surface coverage of up to 20%. As no comparable behaviour is observed for non-polar environment, we conclude that nanobubble formation is directly due to the hydrophobic nature of graphene with direct consequences for electrode structures immersed in electrolyte solutions. The amount of water adsorbed by the graphene films was found to vary considerably from 0.012 monolayers of water per monolayer of reduced graphene oxide to 0.231 monolayers of water per monolayer of carbon diffusion growth graphene. This is supported by direct nanomechanical mapping of the films immersed in water where an increased variation of local stiffness suggests water propagation within the film and/or between the film and substrate. Transferred film thickness calculations performed for QCM, atomic force microscopy topography and optical transmission measurements, returns results an order of magnitude larger (46 ± 1 layers) than Raman spectroscopy (1 - 2 graphene layers) on pristine pre-transferred films due to contamination during transfer and possible turbostratic structures of large areas. - Highlights: • Exploring interaction of graphene films with polar and nonpolar liquids

  13. Two-scale convergence for locally-periodic microstructures and homogenization of plywood structures

    CERN Document Server

    Ptashnyk, Mariya

    2011-01-01

    The generalization of the notion of the two-scale convergence defined for periodic microstructures to the locally-periodic situation is the main aim of this article. The compactness theorem for the locally-periodic two-scale convergence is proven. Then, the locally-periodic two-scale convergence is applied to derive macroscopic equations for a linear elasticity problem defined in domains with locally-periodic and non-periodic plywood microstructures. The fully non-periodic microstructure is approximated by a locally-periodic domain, under regularity assumptions on the transformation matrix, described considered microstructures.

  14. One-armed spirals in locally isothermal, radially structured self-gravitating discs

    CERN Document Server

    Lin, Min-Kai

    2015-01-01

    We describe a new mechanism that leads to the destabilisation of non-axisymmetric waves in astrophysical discs with an imposed radial temperature gradient. This might apply, for example, to the outer parts of protoplanetary discs. We use linear density wave theory to show that non-axisymmetric perturbations generally do not conserve their angular momentum in the presence of a forced temperature gradient. This implies an exchange of angular momentum between linear perturbations and the background disc. In particular, when the disturbance is a low-frequency trailing wave and the disc temperature decreases outwards, this interaction is unstable and leads to the growth of the wave. We demonstrate this phenomenon through numerical hydrodynamic simulations of locally isothermal discs in 2D using the FARGO code and in 3D with the ZEUS-MP and PLUTO codes. We consider radially structured discs with a self-gravitating region which remains stable in the absence of a temperature gradient. However, when a temperature grad...

  15. Weak links between fast mobility and local structure in molecular and atomic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, S. [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Puosi, F. [Laboratoire de Physique de l’École Normale Supérieure de Lyon, UMR CNRS 5672, 46 allée d’Italie, 69007 Lyon (France); Leporini, D., E-mail: dino.leporini@df.unipi.it [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); IPCF-CNR, UOS Pisa, Pisa (Italy)

    2015-03-28

    We investigate by molecular-dynamics simulations, the fast mobility—the rattling amplitude of the particles temporarily trapped by the cage of the neighbors—in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes.

  16. Constraints on local primordial non-Gaussianity from large scale structure

    International Nuclear Information System (INIS)

    Recent work has shown that the local non-Gaussianity parameter fNL induces a scale dependent bias, whose amplitude is growing with scale. Here we first rederive this result within the context of the peak–background split formalism and show that it only depends on the assumption of universality of the mass function, assuming that the halo bias only depends on the mass. We then use the extended Press–Schechter formalism to argue that this assumption may be violated and that the scale dependent bias will depend on other properties, such as the merging history of halos. In particular, in the limit of recent mergers we find that the effect is suppressed. Next we use these predictions in conjunction with a compendium of large scale data to put a limit on the value of fNL. When combining all data assuming that the halo occupation depends only on the halo mass, we get a limit of −29 (−65)NLNLNL. While the method needs to be thoroughly tested against large scale structure simulations with realistic quasar and galaxy formation models, our results indicate that this is a competitive method relative to the cosmic microwave background one and should be further pursued both observationally and theoretically

  17. Weak links between fast mobility and local structure in molecular and atomic liquids

    International Nuclear Information System (INIS)

    We investigate by molecular-dynamics simulations, the fast mobility—the rattling amplitude of the particles temporarily trapped by the cage of the neighbors—in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes

  18. Unravelling the local structure of topological crystalline insulators using hyperfine interactions

    CERN Document Server

    Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semimetals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperne interactions: emission Mossbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on (1) the magnitude of...

  19. Local structure and redox state of vanadium in strontium-vanadate glasses

    International Nuclear Information System (INIS)

    The local structure of vanadate glasses containing SrO with the nominal composition [(SrO)x (V2O5)1-x], where 0.2 ≤ x ≤ 0.5, have been investigated by X-ray photoelectron spectroscopy (XPS). The core-level binding energies of V 2p, Sr 3p and O 1s have been measured. The doublet peaks attributed to Sr 3p3/2 and Sr 3p1/2 in the Sr 3p spectra have essentially the same binding energies for all glass samples, regardless of the composition The O 1s core level spectra, however, show slight asymmetry for the glass samples with x = 0.2 and 0.3 which results from two contributions, one from the presence of oxygen atoms in the V-O-V environment called bridging oxygen (BO) and the other from oxygen atoms in an Sr-O-V and V = O environment called non-bridging oxygen (NBO). For samples with x = 0.4 and 0.5 the O 1s spectra were symmetric indicating the existence of only one type of oxygen configuration (NBO). There is a good agreement between the measured (XPS) and calculated values for NBO/TO. The quantitative ratio, [V4+/Vtotal], for each glass sample, has been determined from the analysis of the V 2p core level spectra. The ratio remains practically constant independent of vanadium concentration within experimental uncertainties

  20. Reciprocal transformations and local Hamiltonian structures of hydrodynamic-type systems

    International Nuclear Information System (INIS)

    We start from a hyperbolic Dubrovin and Novikov (DN) hydrodynamic-type system of dimension n which possesses Riemann invariants and we settle the necessary conditions on the conservation laws in the reciprocal transformation so that, after such a transformation of the independent variables, one of the metrics associated with the initial system is flat. We prove the following statement: let n ≥ 3 in the case of reciprocal transformations of a single independent variable or n ≥ 5 in the case of transformations of both the independent variables; then the reciprocal metric may be flat only if the conservation laws in the transformation are linear combinations of the canonical densities of conservation laws, i.e. the Casimirs, the momentum and the Hamiltonian densities associated with the Hamiltonian operator for the initial metric. Then, we restrict ourselves to the case in which the initial metric is either flat or of constant curvature and we classify the reciprocal transformations of one or both the independent variables so that the reciprocal metric is flat. Such characterization has an interesting geometric interpretation: the hypersurfaces of two diagonalizable DN systems of dimension n ≥ 5 are Lie equivalent if and only if the corresponding local Hamiltonian structures are related by a canonical reciprocal transformation

  1. Local electronic structure and photoelectrochemical activity of partial chemically etched Ti-doped hematite

    Science.gov (United States)

    Rioult, Maxime; Belkhou, Rachid; Magnan, Hélène; Stanescu, Dana; Stanescu, Stefan; Maccherozzi, Francesco; Rountree, Cindy; Barbier, Antoine

    2015-11-01

    The direct conversion of solar light into chemical energy or fuel through photoelectrochemical water splitting is promising as a clean hydrogen production solution. Ti-doped hematite (Ti:α-Fe2O3) is a potential key photoanode material, which despite its optimal band gap, excellent chemical stability, abundance, non-toxicity and low cost, still has to be improved. Here we give evidence of a drastic improvement of the water splitting performances of Ti-doped hematite photoanodes upon a HCl wet-etching. In addition to the topography investigation by atomic force microscopy, a detailed determination of the local electronic structure has been carried out in order to understand the phenomenon and to provide new insights in the understanding of solar water splitting. Using synchrotron radiation based spectromicroscopy (X-PEEM), we investigated the X-ray absorption spectral features at the L3 Fe edge of the as grown surface and of the wet-etched surface on the very same sample thanks to patterning. We show that HCl wet etching leads to substantial surface modifications of the oxide layer including increased roughness and chemical reduction (presence of Fe2 +) without changing the band gap. We demonstrate that these changes are profitable and correlated to the drastic changes of the photocatalytic activity.

  2. Damage localization in composite structures with smoothly varying thickness based on the fundamental antisymmetric adiabatic wave mode.

    Science.gov (United States)

    Moll, Jochen

    2016-09-01

    This work is based on the experimental observation that the phase and group velocity of the fundamental antisymmetric wave mode in a composite structure with linearly varying thickness changes as it propagates along the nonuniform waveguide (Moll et al., 2015). This adiabatic wave motion leads to systematic damage localization errors of conventional algorithms because a constant wave velocity is assumed in the reconstruction process. This paper presents a generalized beamforming approach for composite structures with nonuniform cross section that eliminates this systematic error. Damage localization results will be presented and discussed in comparison to existing techniques. PMID:27317966

  3. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  4. Anomalous structural behavior in the metamagnetic transition of FeRh thin films from a local viewpoint

    Science.gov (United States)

    Wakisaka, Yuki; Uemura, Yohei; Yokoyama, Toshihiko; Asakura, Hiroyuki; Morimoto, Hiroyuki; Tabuchi, Masao; Ohshima, Daiki; Kato, Takeshi; Iwata, Satoshi

    2015-11-01

    The metamagnetic transition in FeRh thin films has been investigated via temperature-dependent x-ray-absorption fine-structure spectroscopy in order to gain correlations between magnetization and local electronic and geometric structures. According to the Fe and Rh K -edge x-ray-absorption near-edge structure (XANES), strong hybridization between Fe and Rh was revealed to exist. This Fe-Rh hybridization was observed to decrease during the phase transition from the antiferromagnetic (AFM) to ferromagnetic (FM) phases from the systematic change in the Fe K -edge XANES. In addition, only the Debye-Waller factor of the Fe-Fe pair in the AFM phase was observed to be considerably enhanced when compared with that in the FM phase, which was ascribed to local structural fluctuation inherent in the AFM phase. By considering the different features of the exchange interactions in Fe-Rh and Fe-Fe, this anomalous behavior is interpreted as being consistent with the recent theoretical study proposing the local fluctuations of spin and structure. Therefore, we consider that the local spin and Fe-Fe distance fluctuations play an important role in driving the metamagnetic transition, whereas the Fe-Rh hybridization correlates with the static stability of each magnetic phase.

  5. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank, E-mail: fkempken@bot.uni-kiel.de

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  6. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    International Nuclear Information System (INIS)

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  7. Hidden Markov model-derived structural alphabet for proteins: the learning of protein local shapes captures sequence specificity.

    Science.gov (United States)

    Camproux, A C; Tufféry, P

    2005-08-01

    Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. We have recently set up a Hidden Markov Model to optimally compress protein three-dimensional conformations into a one-dimensional series of letters of a structural alphabet. Such a model learns simultaneously the shape of representative structural letters describing the local conformation and the logic of their connections, i.e. the transition matrix between the letters. Here, we move one step further and report some evidence that such a model of protein local architecture also captures some accurate amino acid features. All the letters have specific and distinct amino acid distributions. Moreover, we show that words of amino acids can have significant propensities for some letters. Perspectives point towards the prediction of the series of letters describing the structure of a protein from its amino acid sequence. PMID:16040198

  8. The Sheaf-Theoretic Structure Of Non-Locality and Contextuality

    OpenAIRE

    Abramsky, Samson; Brandenburger, Adam

    2011-01-01

    We use the mathematical language of sheaf theory to give a unified treatment of non-locality and contextuality, in a setting which generalizes the familiar probability tables used in non-locality theory to arbitrary measurement covers; this includes Kochen-Specker configurations and more. We show that contextuality, and non-locality as a special case, correspond exactly to obstructions to the existence of global sections. We describe a linear algebraic approach to computing these obstructions...

  9. A New Class of (2+1)-Dimensional Localized Coherent Structures with Completely Elastic and Non-elastic Interactive Properties

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie-Fang; MENG Jian-Ping; HUANG Wen-Hua

    2004-01-01

    From the variable separation solution and by selecting appropriate functions, a new class of localized coherent structures consisting of solitons in various types are found in the (2+1)-dimensional long-wave-short-wave resonance interaction equation. The completely elastic and non-elastic interactive behavior between the dromion and compacton, dromion and peakon, as well as between peakon and compacton are investigated. The novel features exhibited by these new structures are revealed for the first time.

  10. Damage localization map using electromechanical impedance spectrums and inverse distance weighting interpolation: Experimental validation on thin composite structures

    OpenAIRE

    Cherrier, Olivier; Selva, Pierre; Pommier-Budinger, Valérie; Lachaud, Frédéric; Morlier, Joseph

    2013-01-01

    Piezoelectric sensors are widely used for structure health monitoring technique. In particular, electromechanical impedance techniques give simple and low-cost solutions for detecting damage in composite structures. The purpose of the method proposed in this article is to generate a damage localization map based on both indicators computed from electromechanical impedance spectrums and inverse distance weighting interpolation. The weights for the interpolation have a physical sense and are co...

  11. Local structure of copper nitride revealed by EXAFS spectroscopy and a reverse Monte Carlo/evolutionary algorithm approach

    Science.gov (United States)

    Timoshenko, Janis; Anspoks, Andris; Kalinko, Aleksandr; Kuzmin, Alexei

    2016-05-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy combined with reverse Monte Carlo (RMC) and evolutionary algorithm (EA) modelling is used to advance the understanding of the local structure and lattice dynamics of copper nitride (Cu3N). The RMC/EA-EXAFS method provides a possibility to probe correlations in the motion of neighboring atoms and allows us to analyze the influence of anisotropic motion of copper atoms in Cu3N.

  12. Successional Pattern, Stand Structure and Regeneration of Forest Vegetation According to Local Environmental Gradients

    Directory of Open Access Journals (Sweden)

    Nikolay R. Dyakov

    2013-06-01

    Full Text Available Despite the attempted botanical and ecological studies so far, integrated picture of successional and regenerative pattern of the forest vegetation in the studied area have not been achieved. Moreover, stand composition and development of these forests have never been studied in the context of environmental gradients. This study aims to integrate and clarify the accumulated knowledge about the successional pattern, stand structure and regeneration in the studied territory. It has also attempted to test some classical viewpoints about the forest vegetation pattern, placed in the context of environmental gradients. We hypothesized that most forest stands will follow the normal diameter distribution. Gradient-transect sampling procedure was used. Accumulated field samples were classified using TWINSPAN clustering method. Obtained forest community types were tested for consistency. Distribution of stand stem number by diameter classes was tested with Shapiro-Wilk test for normality. Stand successional distribution followed its own trajectory and no convergence has been found. All stands had normal diameter distribution and compromised seed regeneration, i.e. they were in “stagnant” condition. Dominant trees also had normal stem distribution except beech stands from the most xeric habitats, but this was due to their sprouting regeneration. We hypothesized that this regeneration pattern is due to erroneous management and lack of major natural disturbances in the area during the last decades, which could have drew the stands from “stagnancy” and restart the seed regeneration. If this tendency is maintained we suppose that it will lead to continuing degradation of local forest vegetation.

  13. Structural health monitoring of power plant components based on a local temperature measurement concept

    International Nuclear Information System (INIS)

    The fatigue assessment of power plant components based on fatigue monitoring approaches is an essential part of the integrity concept and modern lifetime management. It is comparable to structural health monitoring approaches in other engineering fields. The methods of fatigue evaluation of nuclear power plant components based on realistic thermal load data measured on the plant are addressed. In this context the Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) of nuclear power plant components are parts of the three staged approach to lifetime assessment and lifetime management of the AREVA Fatigue Concept (AFC). The three stages Simplified Fatigue Estimation (SFE), Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) are characterized by increasing calculation effort and decreasing degree of conservatism. Their application is case dependent. The quality of the fatigue lifetime assessment essentially depends on one hand on the fatigue model assumptions and on the other hand on the load data as the basic input. In the case of nuclear power plant components thermal transient loading is most fatigue relevant. Usual global fatigue monitoring approaches rely on measured data from plant instrumentation. As an extension, the application of a local fatigue monitoring strategy (to be described in detail within the scope of this paper) paves the way of delivering continuously (nowadays at a frequency of 1 Hz) realistic load data at the fatigue relevant locations. Methods of qualified processing of these data are discussed in detail. Particularly, the processing of arbitrary operational load sequences and the derivation of representative model transients is discussed. This approach related to realistic load-time histories is principally applicable for all fatigue relevant components and ensures a realistic fatigue evaluation. (orig.)

  14. Water cleaning ability and local structure of iron-containing soda-lime silicate glass

    International Nuclear Information System (INIS)

    A relationship between waste-water cleaning ability and local structure of iron-containing soda-lime silicate glass, 15Na2O·15CaO·xFe2O3·(70-x)SiO2 (x = 10–50 in mass%), abbreviated as NCFSx glass, was investigated by means of 57Fe-Mössbauer spectroscopy, redox titration with KMnO4 for the determination of chemical oxygen demand (COD) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Mössbauer spectra of NCFSx glass with “x” of 10 and 30 were composed of two doublets: one due to FeIIIO4 tetrahedra (Td) with isomer shift (δ) of 0.23–0.26 mm s − 1 and quadrupole splitting (Δ) 1.01–1.04 mm s − 1, and the other due to FeIIO6 octahedra (Oh) with δ of 1.00–1.03 mm s − 1 and Δ of 2.03–2.05 mm s − 1. Absorption area for FeII(Td) was decreased from 9.7 to 6.5 and 0.0 % when “x” was increased from 10 to 30 and 50. A leaching test performed with 500 mL of artificial waste water and 2.0 g of NCFS50 revealed waste-water cleaning ability of soda-lime glass, e.g., COD was reduced from 280 to 55.2 mg L − 1 after 10 day-leaching. After 10 day-leaching, it proved that iron was dissolved into waste water to a level of 5.3 7 x 10-1 mg L − 1. These results prove that organic matter could be effectively decomposed with iron-containing soda-lime silicate glass.

  15. The Connection between Galaxies and Dark Matter Structures in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Tinker, Jeremy L.; Behroozi, Peter S.

    2012-07-11

    We provide new constraints on the connection between galaxies in the local Universe, identified by the Sloan Digital Sky Survey (SDSS), and dark matter halos and their constituent substructures in the {Lambda}CDM model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (a) which halo property is most closely associated with galaxy stellar masses and luminosities, (b) how much scatter is in this relationship, and (c) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 {+-} 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy - halo connection can be modeled with sufficient fidelity for future precision studies of the dark Universe.

  16. Description of the cohomology of Banach algebras and locally convex algebras in the language of A∞-structures

    International Nuclear Information System (INIS)

    We consider the following problem: how can one apply the methods employed for describing the cohomology of algebras and based on the use of the A∞-structures of Stasheff to describe the cohomology of Banach algebras and locally convex algebras

  17. Nonlinear dynamic response analysis of localized damaged laminated composite structures in the context of component mode synthesis

    Science.gov (United States)

    Mahmoudi, S.; Trivaudey, F.; Bouhaddi, N.

    2015-07-01

    The aim of this study is the prediction of the dynamic response of damaged laminated composite structures in the context of component mode synthesis. Hence, a method of damage localization of complex structures is proposed. The dynamic behavior of transversely isotropic layers is expressed through elasticity coupled with damage based on an existing macro model for cracked structures. The damage is located only in some regions of the whole structure, which is decomposed on substructures. The incremental linear dynamic governing equations are obtained by using the classical linear Kirchhoff-Love theory of plates. Then, considering the damage-induced nonlinearity, the obtained nonlinear dynamic equations are solved in time domain. However, a detailed finite element modelling of such structure on the scale of localized damage would generate very high computational costs. To reduce this cost, Component Mode Synthesis method (CMS) is used for modelling a nonlinear fine-scale substructure damaged, connected to linear dynamic models of the remaining substructures, which can be condensed and not updated at each iteration. Numerical results show that the mechanical properties of the structure highly change when damage is taken into account. Under an impact load, damage increases and reaches its highest value with the maximum of the applied load and then remains unchanged. Besides, the eigenfrequencies of the damaged structure decrease comparing with those of an undamaged one. This methodology can be used for monitoring strategies and lifetime estimations of hybrid complex structures due to the damage state is known in space and time.

  18. Switchable amplification of vibrational circular dichroism as a probe of local chiral structure.

    Science.gov (United States)

    Domingos, Sérgio R; Sanders, Hans J; Hartl, František; Buma, Wybren J; Woutersen, Sander

    2014-12-15

    A new method to detect the vibrational circular dichroism (VCD) of a localized part of a chiral molecular system is reported. A local VCD amplifier was implemented, and the distance dependence of the amplification was investigated in a series of peptides. The results indicate a characteristic distance of 2.0±0.3 bonds, which suggests that the amplification is a localized phenomenon. The amplifier can be covalently coupled to a specific part of a molecule, and can be switched ON and OFF electrochemically. By subtracting the VCD spectra obtained when the amplifier is in the ON and OFF states, the VCD of the local environment of the amplifier can be separated from the total VCD spectrum. Switchable local VCD amplification thus makes it possible to "zoom in" on a specific part of a chiral molecule. PMID:25212702

  19. Model-based flaw localization from perturbations in the dynamic response of complex mechanical structures

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2009-02-24

    A new method of locating structural damage using measured differences in vibrational response and a numerical model of the undamaged structure has been presented. This method is particularly suited for complex structures with little or no symmetry. In a prior study the method successively located simulated damage from measurements of the vibrational response on two simple structures. Here we demonstrate that it can locate simulated damage in a complex structure. A numerical model of a complex structure was used to calculate the structural response before and after the introduction of a void. The method can now be considered for application to structures of programmatic interest. It could be used to monitor the structural integrity of complex mechanical structures and assemblies over their lifetimes. This would allow early detection of damage, when repair is relatively easy and inexpensive. It would also allow one to schedule maintenance based on actual damage instead of a time schedule.

  20. Local atomic structure of martensitic Ni2+xMn1-xGa: An EXAFS study

    International Nuclear Information System (INIS)

    The local atomic structure of Ni2+xMn1-xGa with 0≤x≤0.16 alloys was explored using Mn and Ga K-edge extended x-ray-absorption fine-structure (EXAFS) measurement. In order to study the atomic re-arrangements that occur upon martensitic transformation, room-temperature and low-temperature EXAFS were recorded. The changes occurring in the L21 unit cell and the bond lengths obtained from the analysis enables us to determine the modulation amplitudes over which the constituent atoms move giving rise to the shuffling of the atomic planes in the modulated structure. The EXAFS analysis also suggests the changes in hybridization of Ga-p and Ni-d orbitals associated with the local symmetry breaking upon undergoing martensitic transition

  1. Non-local transport in normal-metal/superconductor hybrid structures: the role of interference and interaction

    International Nuclear Information System (INIS)

    We present experimental results on non-local conductance in multiterminal hybrid structures, where two normal metal contacts are attached to a single superconductor. For contacts with an insulating tunnel barrier, and at energies below the energy gap of the superconductor, the non-local conductance is determined by the competition of crossed Andreev reflection (CAR) and elastic cotunneling (EC). The contributions of CAR and EC are expected to cancel each other in the tunneling limit. Recently a non-vanishing signal has been observed in such structures, with an additional energy scale below the gap. So far, quantum interference and Coulomb interaction have been suggested to lift the cancellation of CAR and EC, but no established theory exists for this signal. We observe similar signals in our structures, and demonstrate that the origin is quantum interference.

  2. Non-local transport in normal-metal/superconductor hybrid structures: the role of interference and interaction

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Jakob; Beckmann, Detlef; Huebler, Florian [Forschungszentrum Karlsruhe (Germany). Institut fuer Nanotechnologie; Loehneysen, Hilbert von [Forschungszentrum Karlsruhe (Germany). Institut fuer Festkoerperphysik

    2009-07-01

    We present experimental results on non-local conductance in multiterminal hybrid structures, where two normal metal contacts are attached to a single superconductor. For contacts with an insulating tunnel barrier, and at energies below the energy gap of the superconductor, the non-local conductance is determined by the competition of crossed Andreev reflection (CAR) and elastic cotunneling (EC). The contributions of CAR and EC are expected to cancel each other in the tunneling limit. Recently a non-vanishing signal has been observed in such structures, with an additional energy scale below the gap. So far, quantum interference and Coulomb interaction have been suggested to lift the cancellation of CAR and EC, but no established theory exists for this signal. We observe similar signals in our structures, and demonstrate that the origin is quantum interference.

  3. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS). PMID:26726677

  4. Change in the local atomic and crystal structures in a martensitic transformation in TiNiCu shape memory alloys

    International Nuclear Information System (INIS)

    Changes in the local and crystal structures of Ti, Ni, and Cu atoms in Ti50Ni25Cu25 shape memory alloys have been investigated using X-ray diffraction and extended X-ray absorption fine structure spectroscopy (EXAFS) in the temperature range of direct and inverse martensitic transformations. The analysis of the EXAFS spectra shows that the bonds involving Ni atoms have the highest degree of disorder and the change in the local environment of Ni atoms is significant for the occurrence of the shape memory effect, while Cu atoms occupy the normal positions in the crystallographic structure and have the lowest displacement amplitude leading to the stabilization of both phases

  5. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  6. Total neutron scattering: The key to the local and medium range structure of complex materials

    Indian Academy of Sciences (India)

    Th Proffen

    2008-10-01

    Structural characterization is mainly based on the measurement of Bragg intensities and yields the average structure of crystalline materials. The total scattering pattern, however, contains structural information over all length scales, and it can be used to obtain a complete structural picture of complex materials. Suddenly one has access to a new parameter, the real-space range of the refinement and structures can be analysed as a function of length scale straightforwardly.

  7. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global – disturbed local network organization

    Directory of Open Access Journals (Sweden)

    Justina Sidlauskaite

    2015-01-01

    Full Text Available Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD. However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  8. Local structures of mechanically alloyed Fe100—xCux solid soulutions studied by X—ray absorption fine structure

    Institute of Scientific and Technical Information of China (English)

    WenshengYan; YuzhiLi; 等

    2001-01-01

    The local structures of the immiscible Fe100-xCux alloys(x=0,10,20,40,60,80and100)produced by mechanical alloying have been investigated by XAFS.For the Fe100-xCux(x≥40) solid solutions,the local structures around Fe atoms change from bcc structure to fcc one and the Cu atoms maintain the original coordination geometry after milling for 160 hours.On the contrary,the local structures around Cu atoms in both of Fe80Cu20 and Fe90 Cu10 alloys appear a transition from fcc to bcc structure.We found that the Debye-waller factor σof fcc Fe-Cu phase is larger than that of bcc F-Cu phase,and the σ(0.099A°)around Fe atoms is larger than that (0.089A°) of Cu in the Fe100-xCux(x≥40)solid solutions,This suggests that the mechanically alloyed Fe100-xCux supersaturated solid solution is not a homogeneous alloy,and consists of Fe-rich and Cu-rich regions for various compositions.A possible mechanism for bcc-to-fcc and fcc-to-bcc changes in Fe100-xCux solid solutions is discussed in relation to the interdiffusion and transition induced by the ball milling.

  9. How the method of synthesis governs the local and global structure of zinc aluminum layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Pushparaj, Suraj Shiv Charan; Forano, Claude; Prevot, Vanessa; Lipton, Andrew S.; Rees, Gregory; Hanna, John V.; Nielsen, Ulla Gro

    2015-11-10

    A series of zinc aluminum layered double hydroxides (ZnAl LDHs), [Zn1-xAlx (OH)2Ax,nH2O with A = NO3-, Cl- or CO3] were prepared by the urea and co-precipitation synthesis methods, which allowed for a detailed investigation on how synthesis parameters such as pH, metal ion concentration and post synthesis treatment influence the local and global structure of the LDH product. Information about sample composition, purity, defects and other structural aspects of the LDH products were obtained from powder X-ray diffraction, transmission electron microscopy, micro-Raman, and elemental analysis, as well as solid state 1H, 27Al and 67Zn NMR spectroscopy. Our results show that the urea method results in LDHs, which on the global scale are highly crystalline LDHs, whereas solid state NMR shows the different local environments indicating local disorder most likely linked to the presence of Al-rich phases. However, these Alrich phases are not detected by global range techniques, as they either defects within the LDH particles or separate phase(s) associated with LDHs. In contrast, samples prepared by coprecipitation especially synthesized under careful pH control and subsequently hydrothermal treated have high local order and good crystallinity (particle size). Our results show that both molecular level and macroscopic techniques are needed to assess the composition of LDHs, as the conventional PXRD and TEM analysis of LDHs failed to identify the many structural defects and/or amorphous phases.

  10. Low-redshift effects of local structure on the Hubble parameter in presence of a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Antonio Enea [University of Crete, Department of Physics and CCTP, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Vallejo, Sergio Andres [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia)

    2016-04-15

    In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H(z) and (δH)/(H) for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H(z) observations will show deviations from the ΛCDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure. (orig.)

  11. Local structure and shaping of ferroelectric domain walls for photonic applications

    Science.gov (United States)

    Scrymgeour, David

    Ferroelectric lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) have emerged as key technological materials for use in photonic applications, due to the high quality of crystal growth, optical transparency over a wide frequency range (240nm--4.5 mum), and their large electro-optic and nonlinear optical coefficients. Emerging fields of optical communications, optical data storage, displays, biomedical devices, sensing, and defense applications will all rely heavily on such ferroelectrics as a versatile solid-state photonic platform. Diverse functionalities can be created in these materials simply through the patterning of the ferroelectric domains. By creating specific domain features in these materials, it is possible to create new laser wavelengths from existing sources as well as active electro-optic structures that can dynamically focus, shape and steer light. However, the process of domain shaping today is mostly empirical, based on trial-and-error rather than sound, predictive science. The central focus of this thesis work is to develop a fundamental understanding of how to shape and control domain walls in ferroelectrics, specifically in lithium niobate and lithium tantalate, for photonic applications. An understanding of the domain wall phenomena is being approached at two levels: the macroscale and the nanoscale. On the macroscale, different electric field poling techniques are developed and used to create domain shapes of arbitrary orientation. A theoretical framework based on Ginzburg-Landau-Devonshire theory is developed to determine the preferred domain wall shapes. Differences in the poling characteristics and domain wall shapes between the two materials as well as differences in material composition relates to nonstoichiometric defects in the crystal. At the nanoscale, these defects influence the local electromechanical properties of the domain wall. Understanding from both of these approaches has been used to design and create photonic devices

  12. Heterogeneity of Global and Local Connectivity in Spatial Network Structures of World Migration

    OpenAIRE

    Danchev, Valentin; Porter, Mason A.

    2016-01-01

    We examine world migration as a social-spatial network of countries connected via movements of people. We assess how multilateral migratory relationships at global, regional, and local scales coexist ("glocalization"), divide ("polarization"), or form an interconnected global system ("globalization"). To do this, we decompose the world migration network (WMN) into communities---sets of countries with denser than expected migration connections---and characterize their pattern of local (i.e., i...

  13. A Cuckoo Search Algorithm with Complex Local Search Method for Solving Engineering Structural Optimization Problem

    OpenAIRE

    Qu Chiwen; He Wei

    2016-01-01

    The standard cuckoo search algorithm is of low accuracy and easy to fall into local optimal value in the later evolution. In this paper, an improved cuckoo algorithm is proposed. Dynamic change of parameter of probability is introduced to improve the convergence speed. Complex method is quoted to improve the capabilities of local search algorithm. A non-fixed multi-segment mapping penalty function is adopted to realize constraint processing algorithms. The results of the optimization problem ...

  14. Hybrid local FEM/global LISA modeling of guided wave propagation and interaction with damage in composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2015-03-01

    This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate

  15. Seismic velocity structure of the central Taupo Volcanic Zone, New Zealand, from local earthquake tomography

    Science.gov (United States)

    Sherburn, Steven; Bannister, Stephen; Bibby, Hugh

    2003-03-01

    The 3-D distribution of P-wave velocity (Vp) and the P-wave/S-wave velocity ratio (Vp/Vs) are derived for the crust in the central Taupo Volcanic Zone (TVZ), New Zealand, by tomographic inversion of P- and S-wave arrival time data from local earthquakes. Resolution in the seismogenic mid-crust (4-6 km) is good, but poorer above and below these depths. The 3-D velocity model has several Vp anomalies as large as ±5% in the mid-lower crust (4-10 km) and more than ±10% in the upper crust (0-4 km). The model achieves a 55% reduction in data variance from an initial 1-D model. Young caldera structures, Okataina, Rotorua, and Reporoa, are characterised by low Vp anomalies at a depth of about 4 km and these coincide with large negative residual gravity anomalies. We attribute these anomalies to large volumes of low Vp, low-density, volcaniclastic sediments that have filled these caldera collapse structures. Although there are no Vp anomalies which suggest the presence of molten or semi-molten magma beneath the TVZ, a large, high Vp anomaly of more than +15% and a high Vp/Vs anomaly are observed coincident with a diorite pluton beneath the Ngatamariki geothermal field. However, Vp anomalies cannot be seen beneath the largest geothermal fields, Waimangu, Waiotapu, and Reporoa, and, consequently, if such anomalies exist, they must be below the resolution of our data. A prominent Vp contrast of 5-10% occurs at a depth of about 6 km beneath the boundary between the Taupo-Reporoa Depression and the Taupo Fault Belt (TFB), coincident with the eastern limit of the seismic activity beneath the TFB. We interpret this velocity contrast as being caused by the presence of extensive, non-molten, intrusives beneath the Taupo-Reporoa Depression. We suggest that the high-velocity material beneath the Taupo-Reporoa Depression is isolated from regional extension in the TVZ, and from the resulting faulting and seismicity, which occurs preferentially within the weaker material of the TFB. We

  16. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  17. Compared study of the local structure of alteration products of SON 68 glass and natural gels; Etude comparee de la structure locale des produits d'alteration du verre SON 68 et de gels naturels

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrin, E

    2000-07-01

    This study is a contribution in the understanding of the long time behavior of alteration products of the glass SON 68, used to simulate the nuclear glass R7T7. The local structure around Zirconium and iron has been probed using X-ray absorption spectroscopy in altered surface layer of glass SON 68. Alteration products of this glass have been prepared for short (3 hours to 7 days) and long (17 months) time, using various indexes of saturation for the leaching solution with respect to the Si content of the glass (from 0 to 90 %). The evolution of the local structure around Fe has also been studied in recent and old natural ferric gels. Zr, Fe- L{sub 2,3} XANES and Zr, Fe-K EXAFS spectroscopies have shown that, in the pristine glass, these elements are connected to the polymeric network. Zr is found in an environment close to that of a zircon-silicate containing Na and Ca. Trivalent Fe is a network former. The leached layer of glass SON 68 is constituted of poorly ordered Zr-and Fe-(oxi-hydr)oxides that may have been formed by a mechanism of dissolution/precipitation; a relict phase with the same Zr local structure as that observed in the pristine glass, probably obtained thanks to in-situ solid condensation. The structural characteristics of the leached layer are observed from the first steps of alteration for Zr and Fe. Conversely to Fe, the structural status of Zr depends on the leaching kinetic as well as the contents of Ca and Si in the solid. Fe-K EXAFS results in recent natural ferri-hydrides present a clear structural similarity with that determined in glass SON 68 leached products. The study of old paleosols (between 1,800 and 200,000 years) has demonstrated the long time stability of ferric gels, although an increase of medium range order around Fe is seen. (author)

  18. STRUCTURE FORMATION OF HYPOEUTECTOID CONSTRUCTIONS STEELS AT CARBONITRIDING WITH LOCAL INDUCTION CYCLIC HEATING

    Directory of Open Access Journals (Sweden)

    G. A. Tkachenko

    2016-02-01

    Full Text Available Improvement of mechanical characteristics of details of the soil-cultivating car. Structurization at cyclic heating of steels. The reasons of an intensification of diffusion at cyclic heating. Structure crushing, impact strength and hardness increase.

  19. Local electronic and geometrical structures of hydrogen-bonded complexes studied by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Full text: The hydrogen bond is one of the most important forms of intermolecular interactions. It occurs in all-important components of life. However, the electronic structures of hydrogen-bonded complexes in liquid phases have long been difficult to determine due to the lack of proper experimental techniques. In this talk, a recent joint theoretical and experimental effort to understand hydrogen bonding in liquid water and alcohol/water mixtures using synchrotron radiation based soft-X-ray spectroscopy will be presented. The complexity of the liquid systems has made it impossible to interpret the spectra with physical intuition alone. Theoretical simulations have thus played an essential role in understanding the spectra and providing valuable insights on the local geometrical and electronic structures of these liquids. Our study sheds light on a 40-year controversy over what kinds of molecular structures are formed in pure liquid methanol. It also suggests an explanation for the well-known puzzle of why alcohol and water do not mix completely: the system must balance nature's tendency toward greater disorder (entropy) with the molecules' tendency to form hydrogen bonds. The observation of electron sharing and broken hydrogen bonding local structures in liquid water will be presented. The possible use of X-ray spectroscopy to determinate the local arrangements of hydrogen-bonded nanostructures will also been discussed

  20. PREDICTION OF LOCAL SCOUR OUTLET STRUCTURES OF THE DONSKOE THE MAIN CANAL TO PREVENT THE DEVELOPMENT LANDSLIDE PROCESSES

    Directory of Open Access Journals (Sweden)

    Domashenko Y. E.

    2015-06-01

    Full Text Available The article contains an analytical overview of the causes of local washouts on hydraulic installations of Don highway networks. One of the major outlet structures of the main canal is the terminal resets in Sadkovskaya gully (Veselovsky reservoir 1115+79, with a maximum flow rate of 50 m3/sec, designed for irrigation and desalination of Veselovsky reservoir. To analyze the effect of the liquid on the bottom of the outlet structures we need to know the kinematic parameters of the liquid in the channel. Until now there are no universal correlations, which would allow calculating these parameters. The mathematical dependences allow analyzing the impact of water flow on the bottom of the spillway constructions of melioration canals. Modeling of local scour of channels is based on a thorough analysis of the causes of this phenomenon. The main ones are the kinematic parameters of the liquid, the speed and the propagation direction of fluid flow, structural features of the channel. The mathematical dependences allowed us to identify the following parameters that influence the degree of local scour at end spillway structures on melioration channels: the rate of flow, the degree of compression of the stream size, flow, shape, and movement of sediment, depth and shape of the supports in the plan and cross section, the shape of the hydrograph, the angle of the jet, duration of standing high water levels in Sadkovskaya balka, etc

  1. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Nicholas John Deacon

    Full Text Available Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses.High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation.Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by

  2. PRKRA Localizes to Nuage Structures and the Ectoplasmic Specialization and Tubulobulbar Complexes in Rat and Mouse Testis

    Directory of Open Access Journals (Sweden)

    Junya Suzuki

    2014-01-01

    Full Text Available The cytoplasmic RNA-induced silencing complex (RISC contains dsRNA binding proteins, including PRKRA, TRBP, and Dicer. RISC localizes to P-bodies. The nuage of the spermatogenic cells has function similar to the P-bodies. We study whether PRKRA localizes to nuage of spermatogenic cells of rat and mouse. PRKRA localized to four types of nuage structures, including aggregates of 60–90 nm particles, irregularly-shaped perinuclear granules, and intermitochondrial cement of pachytene spermatocytes, and chromatoid bodies of round spermatids. In addition, PRKRA is associated with dense material surrounding tubulobulbar complexes and with the ectoplasmic specialization. The results suggest that PRKRA functions in the nuage as an element of RNA silencing system and plays unknown role in the ectoplasmic specialization and at the tubulobulbar complexes of Sertoli cells attaching the head of late spermatids.

  3. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community.

    Science.gov (United States)

    Gómez, Pedro; Paterson, Steve; De Meester, Luc; Liu, Xuan; Lenzi, Luca; Sharma, M D; McElroy, Kerensa; Buckling, Angus

    2016-01-01

    Local adaptation of a species can affect community composition, yet the importance of local adaptation compared with species presence per se is unknown. Here we determine how a compost bacterial community exposed to elevated temperature changes over 2 months as a result of the presence of a focal bacterium, Pseudomonas fluorescens SBW25, that had been pre-adapted or not to the compost for 48 days. The effect of local adaptation on community composition is as great as the effect of species presence per se, with these results robust to the presence of an additional strong selection pressure: an SBW25-specific virus. These findings suggest that evolution occurring over ecological time scales can be a key driver of the structure of natural microbial communities, particularly in situations where some species have an evolutionary head start following large perturbations, such as exposure to antibiotics or crop planting and harvesting. PMID:27501868

  4. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Stretsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloid-β peptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloid-β peptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloid-β peptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  5. Intrinsic Nanoscience of δ Pu-Ga Alloys: Local Structure and Speciation, Collective Behavior, Nanoscale Heterogeneity, and Aging Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Bock, Nicolas; Castro, Julio M.; Conradson, Dylan R.; Cox, Lawrence E.; Dmowski, Wojtek; Dooley, David E.; Egami, Takeshi; Espinosa-Faller, Francisco J.; Freibert, Franz J.; Garcia-Adeva, Angel J.; Hess, Nancy J.; Holmstrom, Erik; Howell, Rafael C.; Katz, Barbara A.; Lashley, Jason C.; Martinez, Raymond J.; Moore, David P.; Morales, Luis A.; Olivas, J David; Pereyra, Ramiro A.; Ramos, Michael; Terry, Jeff H.; Villella, Phillip M.

    2014-04-24

    Because diffraction measurements are sensitive only to the long range average arrangement of the atoms in the coherent portion of a crystal, complementary local structure measurements are required for a complete understanding of the structure of a complex material. This is particularly an issue in solid solutions where even random distributions of a solute will result in nanometer-scale fluctuations in the local composition. The structure will be further complicated if collective and cooperative phenomena organize the solute distribution via longer range interactions between non-bonded solute sites. If the solute affects the phase stability then the question is raised of whether the atoms in domains with local compositions outside the limits of the bulk phase will rearrange into the structure stable for that composition and temperature or if the resulting stress would prevent such a local phase transition. If the former, then phase separated, heterogeneous structures at or below the diffraction limit will form. This nanometerscale competition between the phase transition and the epitaxial mismatch – exacerbated by the added strain if the transition involves a volume change – raises the potential for the formation of novel structures that do not occur in bulk material, e.g., fcc Fe. This coupling over multiple scales between inhomogeneity ordering, elastic forces, phase competition, and texture in the form of coexisting structures is a hallmark of martensites, a class of complex materials that includes δ-stabilized PuGa and that often exhibit correlated atomic and electronic properties. The enigmatic and extreme nature of Pu is consistent with its exhibiting unusual structural behavior of this type, including nanoscale heterogeneity in δ-stabilized PuGa and its enhanced homogeneity on aging that has been suggested based on earlier X-ray Absorption Fine Structure (XAFS) spectroscopy and x-ray pair distribution function (pdf) measurements. Measurements on a

  6. Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement

    Science.gov (United States)

    Feng, Lei; Yi, Xiaohua; Zhu, Dapeng; Xie, Xiongyao; Wang, Yang

    2015-08-01

    In a modern metropolis, metro rail systems have become a dominant mode for mass transportation. The structural health of a metro tunnel is closely related to public safety. Many vibration-based techniques for detecting and locating structural damage have been developed in the past several decades. However, most damage detection techniques and validation tests are focused on bridge and building structures; very few studies have been reported on tunnel structures. Among these techniques, transmissibility function and cross correlation analysis are two well-known diagnostic approaches. The former operates in frequency domain and the latter in time domain. Both approaches can be applied to detect and locate damage through acceleration data obtained from sensor arrays. Furthermore, the two approaches can directly utilize structural response data without requiring excitation measurement, which offers advantages in field testing on a large structure. In this research, a numerical finite element model of a metro tunnel is built and different types of structural defects are introduced at multiple locations of the tunnel. Transmissibility function and cross correlation analysis are applied to perform structural damage detection and localization, based on simulated structural vibration data. Numerical results demonstrate that the introduced defects can be successfully identified and located. The sensitivity and feasibility of the two approaches have been verified when sufficient distribution of measurement locations is available. Damage detection results of the two different approaches are compared and discussed.

  7. More about structures localized on domain walls: strings, skyrmions, analytic solutions for orientational moduli, symmetry analysis

    CERN Document Server

    Bychkov, Vladimir; Kurianovych, Evgeniy

    2016-01-01

    We further discuss properties of a simple model, which allows existence of domain walls with orientational moduli, localized on them. We review an analytic solution of such a model and discuss properties of that solution in a context of previous results. We discuss an existence of one-dimensional domain walls, localized on two-dimensional ones, and construct a corresponding effective action. Then in low-energy limit, which is $O(3)$ sigma-model, we discuss existence of skyrmions, localized on domain walls, and provide a solution for a skyrmion configuration, based on the analogy with instantons. We perform a symmetry analysis of the initial model and low-energy theory on the domain wall world volume.

  8. 2D localization using resistive strips associated to the Micromegas structure

    CERN Document Server

    Cussonneau, J P; Lautridou, P; Luquin, Lionel; Métivier, V; Rahmani, A; Reposeur, T

    2002-01-01

    An attractive method of two-dimensional localization based on charge division with Ni-Cr resistive strips has been adapted to a Micromegas detector taking advantage of its high gain. Along the strips, depending on the signal to noise ratio, 1.05 mm-300 mu m spatial resolutions (respectively, 0.80-0.23% of the strip length) are obtained with an sup 3 H source. For trajectory reconstruction in magnetic fields, these accuracies could match most of the localization constraints requested for measurements of the non-bending coordinate. In the direction perpendicular to the strips, localizations better than 100 mu m could be achieved using the center of gravity of the charges.

  9. The utility of comparative models and the local model quality for protein crystal structure determination by Molecular Replacement

    Directory of Open Access Journals (Sweden)

    Pawlowski Marcin

    2012-11-01

    Full Text Available Abstract Background Computational models of protein structures were proved to be useful as search models in Molecular Replacement (MR, a common method to solve the phase problem faced by macromolecular crystallography. The success of MR depends on the accuracy of a search model. Unfortunately, this parameter remains unknown until the final structure of the target protein is determined. During the last few years, several Model Quality Assessment Programs (MQAPs that predict the local accuracy of theoretical models have been developed. In this article, we analyze whether the application of MQAPs improves the utility of theoretical models in MR. Results For our dataset of 615 search models, the real local accuracy of a model increases the MR success ratio by 101% compared to corresponding polyalanine templates. On the contrary, when local model quality is not utilized in MR, the computational models solved only 4.5% more MR searches than polyalanine templates. For the same dataset of the 615 models, a workflow combining MR with predicted local accuracy of a model found 45% more correct solution than polyalanine templates. To predict such accuracy MetaMQAPclust, a “clustering MQAP” was used. Conclusions Using comparative models only marginally increases the MR success ratio in comparison to polyalanine structures of templates. However, the situation changes dramatically once comparative models are used together with their predicted local accuracy. A new functionality was added to the GeneSilico Fold Prediction Metaserver in order to build models that are more useful for MR searches. Additionally, we have developed a simple method, AmIgoMR (Am I good for MR?, to predict if an MR search with a template-based model for a given template is likely to find the correct solution.

  10. Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure

    Science.gov (United States)

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu-Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng

    2015-12-01

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.

  11. Localized positronium atoms in porous structures studied by 2D-ACAR

    International Nuclear Information System (INIS)

    The localization of positronium (PS) atoms was studied by measurements of two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) for porous glasses. Annihilations of positron-electron pairs with a large anisotropy were found in 2D-ACAR spectra. This fact can be attributed to the momentum uncertainty due to the localization of Ps in a finite dimension of pores. The present investigation showed the possibility of the detection of microstructures in amorphous materials by the 2D-ACAR technique. (orig.)

  12. In-situ analysis of strain localization related to structural heterogeneities of carbonate rocks

    Directory of Open Access Journals (Sweden)

    Dimanov A.

    2010-06-01

    Full Text Available The technique of Digital Image Correlation (DIC has been applied to study the deformation of porous carbonate rocks subjected to uniaxial compression tests. The tests have been performed at two different scales: on cylinders of 10 cm high compressed with a standard press with digital images recorded by optical microscopy at a global and local scale and on smaller parallelepiped samples deformed inside a scanning electron microscope (SEM. The development of localization at different scales is thus recorded as well as the damage and compaction mechanisms in relation with the microstructural heterogeneities.

  13. LOCALIZED COHERENT STRUCTURES OF THE (2+1)-DIMENSIONAL HIGHER ORDER BROER-KAUP EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    张解放; 刘宇陆

    2002-01-01

    By using the extended homogeneous balance method, the localized coherentstructures are studied. A nonlinear transformation was first established, and then thelinearization form was obtained based on the extended homogeneous balance method for thehigher order ( 2 + 1 ) -dimensional Broer-Kaup equations. Starting from this linearizationform equation, a variable separation solution with the entrance of some arbitrary functionsand some arbitrary parameters was constructed. The quite rich localized coherent structureswere revealed. This method, which can be generalized to other (2 + 1 )-dimensionalnonlinear evolution equation, is simple and powerful.

  14. Localized vorticity enhancement through superhelical coherent structure in observed tornadic supercells

    CERN Document Server

    Büker, Marcus; Wurman, Joshua; Kosiba, Karen; Marquis, James

    2014-01-01

    New diagnostic methods are presented for localized, barotropic vorticity evolution in tornadic environments. These methods focus on superhelicity, a quantity shown to be strongly related to local maxima in vorticity tendency. Mobile Doppler radar retrievals from three well-known cases of tornadogenesis were studied with this new approach. The results show promise for detecting and tracking coherent dynamical features known to be related to tornadogenesis, as well as detecting signals of imminent tornadogenesis at an earlier stage than vorticity tendency analysis. Furthermore, these methods may provide physical insight into vortex-vortex interactions and vortex modes in the vicinity of the mesocyclone.

  15. A Cuckoo Search Algorithm with Complex Local Search Method for Solving Engineering Structural Optimization Problem

    Directory of Open Access Journals (Sweden)

    Qu Chiwen

    2016-01-01

    Full Text Available The standard cuckoo search algorithm is of low accuracy and easy to fall into local optimal value in the later evolution. In this paper, an improved cuckoo algorithm is proposed. Dynamic change of parameter of probability is introduced to improve the convergence speed. Complex method is quoted to improve the capabilities of local search algorithm. A non-fixed multi-segment mapping penalty function is adopted to realize constraint processing algorithms. The results of the optimization problem constrained by standard test functions and two engineering design show that this algorithm is effective for solving constrained optimization problems and suitable for engineering design and other constrained optimization problems.

  16. Local structural distortions and their role in superconductivity in SmFeAsO1−xFx superconductors

    International Nuclear Information System (INIS)

    EXAFS studies at the As K edge as a function of temperature were carried out in SmFeAsO1−xFx (x = 0 and 0.2) compounds to understand the role of local structural distortions in superconductivity observed in F-doped compounds. A significant correlation between the thermal variation of local structural parameters such as anion height and superconducting onset is found in the fluorinated compounds. Such a variation in anion height is absent in the non-superconducting compound. An increase in the Fe-As bond distance just below the superconducting onset temperature indicates a similarity between the distortions observed in the high-TC cuprates and these Fe-based superconductors. (papers)

  17. Theoretical studies of the local structure and spin Hamiltonian parameters for Rh{sup 2+}:ZnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chang-Chun, E-mail: ccding626@163.com; Wu, Shao-Yi; Kuang, Min-Quan; Cheng, Yong-Kun; Zhang, Li-Juan

    2014-10-15

    By establishing the perturbation formulas of the spin Hamiltonian parameters (anisotropic g factors and hyperfine structure constants) for a rhombically compressed 4d{sup 7} cluster, the EPR spectra and local structure are theoretically investigated for Rh{sup 2+}:ZnWO{sub 4}. Due to the Jahn–Teller effect, the impurity center shows slight axial compression of about 0.002 nm along the Z-axis and the perpendicular angular variation of about 6° for the planar impurity–ligand bonds. These lattice deformations transform the significant elongation (by about 0.031 nm) of host Zn{sup 2+} site into slight compression in the impurity center. The local distortion of the Jahn–Teller nature is discussed.

  18. Local-Group tests of dark-matter Concordance Cosmology: Towards a new paradigm for structure formation?

    CERN Document Server

    Kroupa, P; de Boer, K S; Dabringhausen, J; Pawlowski, M S; Boily, C M; Jerjen, H; Forbes, D; Hensler, G; Del Popolo, A; Metz, M

    2010-01-01

    (abridged) Predictions of the Concordance Cosmological Model (CCM) of the structures in the environment of large spiral galaxies are compared with observed properties of Local Group galaxies. Five new possibly irreconcilable problems are uncovered. However, the Local Group properties provide hints that may lead to a solution of the above problems The DoS and bulge--satellite correlation suggest that dissipational events forming bulges are related to the processes forming phase-space correlated satellite populations. Such events are well known to occur since in galaxy encounters energy and angular momentum are expelled in the form of tidal tails, which can fragment to form populations of tidal-dwarf galaxies (TDGs) and associated star clusters. If Local Group satellite galaxies are to be interpreted as TDGs then the sub-structure predictions of CCM are internally in conflict. All findings thus suggest that the CCM does not account for the Local Group observations and that therefore existing as well as new viab...

  19. New localized excitations and cross-like fractal structures to the (2+1)-dimensional Broer–Kaup system

    Indian Academy of Sciences (India)

    Zitian Li

    2014-09-01

    A broad general variable separation solution with two arbitrary lower-dimensional functions of the (2+1)-dimensional Broer–Kaup (BK) equations was derived by means of a projective equation method and a variable separation hypothesis. Based on the derived variable separation excitation, some new special types of localized solutions such as oscillating solitons, instantonlike and cross-like fractal structures are revealed by selecting appropriate functions of the general variable separation solution.

  20. Local chemical distribution and electronic structure of Ge1-x T x DMS single crystals (T=Cr, Mn, Fe)

    International Nuclear Information System (INIS)

    The spatial concentration distribution and local electronic structure of ferromagnetic Ge1-x T x (T=Cr, Mn, Fe) DMS single crystals have been investigated by using scanning photoelectron microscopy (SPEM), X-ray absorption spectroscopy (XAS), and photoemission spectroscopy (PES). It is found that doped T ions in Ge1-x T x crystals are chemically phase-separated, suggesting that the observed ferromagnetism arises from the phase-separated T-rich phases in Ge1-x T x

  1. Phosphorylation on histidine is accompanied by localized structural changes in the phosphocarrier protein, HPr from Bacillus subtilis.

    OpenAIRE

    Jones, B. E.; Rajagopal, P.; Klevit, R. E.

    1997-01-01

    The histidine-containing protein (HPr) of bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) serves a central role in a series of phosphotransfer reactions used for the translocation of sugars across cell membranes. These studies report the high-definition solution structures of both the unphosphorylated and histidine phosphorylated (P-His) forms of HPr from Bacillus subtilis. Consistent with previous NMR studies, local conformational adjustments occur upon phosphorylation of...

  2. On one class of functions with complicated local structure that the solutions of infinite systems of functional equations

    OpenAIRE

    Serbenyuk, Symon

    2016-01-01

    The article is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are discovered. The functional equations system, that the function from the given class of functions is a solution of the system is indicated. The ...

  3. Modelling of spatial structure of divertor footprints caused by edge-localized modes mitigated by magnetic perturbations

    OpenAIRE

    Cahyna, Pavel; Becoulet, Marina; Huijsmans, Guido T. A.; Orain, Francois; Morales, Jorge; Kirk, Andrew; Thornton, Andrew J.; Pamela, Stanislas; Panek, Radomir; Hoelzl, Matthias

    2016-01-01

    Resonant magnetic perturbations (RMPs) can mitigate the edge-localized modes (ELMs), i.e. cause a change of the ELM character towards smaller energy loss and higher frequency. During mitigation a change of the spatial structure of ELM loads on divertor was observed on DIII-D and MAST: the power is deposited predominantly in the footprint structures formed by the magnetic perturbation. In the present contribution we develop a theory explaining this effect, based on the idea that part of the EL...

  4. Identification of locally available structural material as co-substrate for organic waste composting in Tamil Nadu, India.

    Science.gov (United States)

    Springer, C; Heldt, N

    2016-06-01

    Owing to the lack in structural strength while composting certain kinds of organic wastes, 11 co-substrates were tested that are generally locally available in rural areas of northern Tamil Nadu, India. In addition to the classical composting parameters such as carbon/nitrogen ratio, moisture content, dry matter and organic dry matter, a compression test was conducted to evaluate the structural strength and the suitability as bulking agent for composting processes. Additionally, with respect to the climatic conditions in India, the water holding capacity was also evaluated. PMID:27126983

  5. Local Atomic Structure of Martensitic Ni$_{2+x}$Mn$_{1-x}$Ga: An EXAFS Study

    OpenAIRE

    Bhobe, P. A.; Priolkar, K. R.; Sarode, P R

    2006-01-01

    The local atomic structure of Ni$_{2+x}$Mn$_{1-x}$Ga with 0 $\\le$ $x$ $\\le$ 0.16 alloys was explored using Mn and Ga K-edge Extended X-ray Absorption Fine Structure (EXAFS) measurement. Inorder to study the atomic re-arrangements that occur upon martensitic transformation, room temperature and low temperature EXAFS were recorded. The changes occurring in the L2$_1$ unit cell and the bond lengths obtained from the analysis enables us to determine the modulation amplitudes over which the consti...

  6. EXAFS AND XANES STUDIES ON THE LOCAL STRUCTURES OF METAL IONS IN METAL DOPED MgO SYSTEMS

    OpenAIRE

    Asakura, K.; Iwasawa, Y.; Kuroda, H.

    1986-01-01

    The local structures around the metals in metal-doped MgO catalysts were studied by EXAFS and XANES spectroscopies in connection with their catalysis which markedly depends on the kinds of doped metal ions. In the M-MgO samples (M=Ni2+, Cu2+, and Co2+), the M ions occupied the octahedral sites of MgO lattice by replacement with Mg2+. On the other hand, in the system of M-MgO samples (M = Fe3+ and Cr3+ ) the M ions existed as the cluster structure with a Koch-Cohen type M4-framework. The pair ...

  7. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    OpenAIRE

    Hyun Woo Nho; Yogesh Kalegowda; Hyun-Joon Shin; Tae Hyun Yoon

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC ...

  8. Socio-political structure of Tokat at the bases of the local elections

    OpenAIRE

    D. Ali Arslan; Mehmet Karataş2; Sadettin Baştürk; Gülten Arslan

    2013-01-01

    The major ofjective of this study was to examine and discuss the political structure of Tokat and its place in the general political structure of Turkish society by using methods and techniques of political sociology. Structural-functionalist approach was used as the theoretical base. In the other words the formation of political power in Tokat and the overall operation and changing regularities were investigated. Both the province of Tokat and Tokat city center selected as the sampling group...

  9. Sensor structure concepts for the analysis or local radiation exposure of biological samples at terahertz and millimeter wave frequencies

    Science.gov (United States)

    Dornuf, Fabian; Dörr, Roland; Lämmle, David; Schlaak, Helmut F.; Krozer, Viktor

    2016-03-01

    We have studied several sensor concepts for biomedical applications operating in the millimeter wave and terahertz range. On one hand, rectangular waveguide structure were designed and extended with microfluidic channels. In this way a simple analysis of aqueous solutions at various waveguide bands is possible. In our case, we focused on the frequency range between 75 GHz and 110 GHz. On the other hand, planar sensor structures for aqueous solutions have been developed based on coplanar waveguides. With these planar sensors it is possible to concentrate the interaction volume on small sensor areas, which achieve a local exposure of the radiation to the sample. When equipping the sensor with microfluidic structures the sample volume could be reduced significantly and enabled a localized interaction with the sensor areas. The sensors are designed to exhibit a broadband behavior up to 300 GHz. Narrow-band operation can also be achieved for potentially increased sensitivity by using resonant structures. Several tests with Glucose dissolved in water show promising results for the distinction of different glucose levels at millimeter wave frequencies. The planar structures can also be used for the exposure of biological cells or cell model systems like liposomes with electromagnetic radiation. Several studies are planned to distinguish on one hand the influence of millimeter wave exposure on biological systems and also to have a spectroscopic method which enables the analysis of cell processes, like membrane transport processes, with millimeter wave and terahertz frequencies by focusing the electric field directly on the analyzing sample.

  10. Locally Anisotropic Structures and Nonlinear Connections in Einstein and Gauge Gravity

    CERN Document Server

    Vacaru, S I; Vacaru, Sergiu I.; Dehnen, Heinz

    2000-01-01

    We analyze local anisotropies induced by anholonomic frames and associated nonlinear connections in general relativity and extensions to affine Poincare and de Sitter gauge gravity and different types of Kaluza-Klein theories. We construct some new classes of cosmological solutions of gravitational field equations describing Friedmann-Robertson-Walker like universes with rotation (ellongated and flattened) ellipsoidal or torus symmetry.

  11. Nuclear binding energies: global collective structures and local shell-model correlations

    International Nuclear Information System (INIS)

    In this contribution the global behaviour of nuclear binding energies, or alternatively two-neutron separation energies, are studied. Recent high-precision mass measurements show local deviations from an overall macroscopic behaviour, and it is shown how a consistent and simultaneously description of both can be given within the Interacting Boson Model. (orig.)

  12. Local buckling of aluminium structures exposed to fire. Part 1: Tests

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.

    2009-01-01

    This paper describes an experimental investigation into local buckling of compressed aluminium alloy sections at elevated temperatures. Stress-strain relationships are derived based on uniaxial tensile tests. A special test set-up with a furnace is developed to test slender square hollow sections an

  13. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    Science.gov (United States)

    Polat, Orhan; Özer, Ćaglar

    2016-04-01

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  14. Correlation between local clusters and structure of Al71Cu29 melt

    Institute of Scientific and Technical Information of China (English)

    陈莹; 边秀房; 孙民华; 王丽

    2003-01-01

    The structures of Al1-4Cu1-2 clusters were optimized by B3LYP method and the six geometries ground states were obtained. Al71Cu29 alloy melt has been investigated using X-ray diffractometry at 700℃. The experimental data were compared with calculated results to find the relation between the structures of Al-Cu clusters and melt structure. It is shown that there exists a strong interaction between Al and Cu atoms. The bond length in some geometries is very close to the experimental atomic distance. Such optimized geometries have close correlation with the liquid structure of Al-Cu alloy.

  15. Physical modeling of river spanning rock structures: Evaluating interstitial flow, local hydraulics, downstream scour development, and structure stability

    Science.gov (United States)

    Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.

    2009-01-01

    Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.

  16. Development of the local and average structure of a V-Mo-Nb oxide catalyst with Mo5O14-like structure during synthesis from nanostructured precursors

    International Nuclear Information System (INIS)

    A combination of X-ray and neutron PDF measurements with powder diffraction and EXAFS data was used to determine the structures of a V-Mo-Nb-oxide catalyst and its poorly crystallized precursors that exhibit the strongest catalytic activities. The crystalline material belongs to space group P(bar 4)21m, a = 22.8, c = 4.002, and is build up of pentagonal MeO7 bipyramids surrounded by edge sharing Me-octahedrons (Me = Mo, V, Nb). In the average structure all MeO7 units are at the same z-level, while the local structure analysis shows systematic shifts along [001]. Samples synthesized at 300 C and 400 C exhibit a nanostructure, whose local structure predates the final crystalline structure. Initial nanoparticles are spherical and grow predominantly along the c-axis. The successful analysis required a reverse analysis that took the crystalline material as starting model for the samples synthesized at lower temperatures.

  17. RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs

    DEFF Research Database (Denmark)

    Radhakrishnan, Sabarinathan; Tafer, Hakim; Seemann, Ernst Stefan; Hofacker, Ivo L.; Stadler, Peter F.; Gorodkin, Jan

    2013-01-01

    Structural characteristics are essential for the functioning of many noncoding RNAs and cis-regulatory elements of mRNAs. SNPs may disrupt these structures, interfere with their molecular function, and hence cause a phenotypic effect. RNA folding algorithms can provide detailed insights into stru...

  18. HMM-based prediction for protein structural motifs' two local properties: solvent accessibility and backbone torsion angles.

    Science.gov (United States)

    Yu, Jianyong; Xiang, Leijun; Hong, Jiang; Zhang, Weidong

    2013-02-01

    Protein structure prediction is often assisted by predicting one-dimensional structural properties including relative solvent accessibility (RSA) surface and backbone torsion angles (BTA) of residues, and these two properties are continuously varying variables because proteins can move freely in a three-dimensional space. Instead of subdividing them into a few arbitrarily defined states that many popular approaches used, this paper proposes an integrated system for realvalue prediction of protein structural motifs' two local properties, based on the modified Hidden Markov Model that we previously presented. The model was used to capture the relevance of RSA and the dependency of BTA between adjacent residues along the local protein chain in motifs with definite probabilities. These two properties were predicted according to their own probability distribution. The method was applied to a protein fragment library. For nine different classes of motifs, real values of RSA were predicted with mean absolute error (MAE) of 0.122-0.175 and Pearson's correlation coefficient (PCC) of 0.623-0.714 between predicted and actual RSA. Meanwhile, real values of BTA were obtained with MAE of 8.5⁰-29.4⁰ for Φ angles, 11.2⁰-38.5⁰ for ψ angles and PCC of 0.601-0.716 for Φ, 0.597-0.713 for ψ. The results were compared with well-known Real-SPINE Server, and indicate the proposed method may at least serve as the foundation to obtain better local properties from structural motifs for protein structure prediction. PMID:22894152

  19. INTERCONNECTIONS BETWEEN THE ECONOMIC STRUCTURE OF LOCAL SPENDING AND ECONOMIC GROWTH IN ROMANIA

    OpenAIRE

    Bilan Irina; Oprea Florin

    2015-01-01

    The issue of the effects of government interventions, explicitly of the taxes and expenditures of local public authorities, has generated substantial debate over time, and still gives rise to numerous controversies in theory and practice. Following the Keynesian path of reasoning, it is, at least theoretically, admitted that it is possible to influence the socio-economic activities and support for economic growth by means of government spending, but different other factors act towards enhanci...

  20. The action of local anesthetics on myelin structure and nerve conduction in toad sciatic nerve.

    OpenAIRE

    Mateu, L; Morán, O; Padrón, R; Borgo, M; Vonasek, E; Márquez, G; Luzzati, V.

    1997-01-01

    X-ray scattering and electrophysiological experiments were performed on toad sciatic nerves in the presence of local anesthetics. In vitro experiments were performed on dissected nerves superfused with Ringer's solutions containing procaine, lidocaine, tetracaine, or dibucaine. In vivo experiments were performed on nerves dissected from animals anesthesized by targeted injections of tetracaine-containing solutions. In all cases the anesthetics were found to have the same effects on the x-ray ...