WorldWideScience

Sample records for alignment-free evolutionary conservation

  1. Building evolutionary resilience for conserving biodiversity under climate change.

    Science.gov (United States)

    Sgrò, Carla M; Lowe, Andrew J; Hoffmann, Ary A

    2011-03-01

    Evolution occurs rapidly and is an ongoing process in our environments. Evolutionary principles need to be built into conservation efforts, particularly given the stressful conditions organisms are increasingly likely to experience because of climate change and ongoing habitat fragmentation. The concept of evolutionary resilience is a way of emphasizing evolutionary processes in conservation and landscape planning. From an evolutionary perspective, landscapes need to allow in situ selection and capture high levels of genetic variation essential for responding to the direct and indirect effects of climate change. We summarize ideas that need to be considered in planning for evolutionary resilience and suggest how they might be incorporated into policy and management to ensure that resilience is maintained in the face of environmental degradation.

  2. Background Adjusted Alignment-Free Dissimilarity Measures Improve the Detection of Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Kujin Tang

    2018-04-01

    Full Text Available Horizontal gene transfer (HGT plays an important role in the evolution of microbial organisms including bacteria. Alignment-free methods based on single genome compositional information have been used to detect HGT. Currently, Manhattan and Euclidean distances based on tetranucleotide frequencies are the most commonly used alignment-free dissimilarity measures to detect HGT. By testing on simulated bacterial sequences and real data sets with known horizontal transferred genomic regions, we found that more advanced alignment-free dissimilarity measures such as CVTree and d2* that take into account the background Markov sequences can solve HGT detection problems with significantly improved performance. We also studied the influence of different factors such as evolutionary distance between host and donor sequences, size of sliding window, and host genome composition on the performances of alignment-free methods to detect HGT. Our study showed that alignment-free methods can predict HGT accurately when host and donor genomes are in different order levels. Among all methods, CVTree with word length of 3, d2* with word length 3, Markov order 1 and d2* with word length 4, Markov order 1 outperform others in terms of their highest F1-score and their robustness under the influence of different factors.

  3. An Evolutionary View of Tiger Conservation

    OpenAIRE

    Luo, Shu-Jin; Kim, Jae-Heup; Johnson, Warren E; van der Walt, Joelle; Martenson, Janice; Yuhki, Naoya; Miquelle, Dale G; Uphyrkina, Olga; Goodrich, John M; Quigley, Howard B; Tilson, Ronald; Brady, Gerald; Martelli, Paolo; Subramaniam, Vellayan; McDougal, Charles

    2004-01-01

    Eight traditional subspecies of tiger (Panthera tigris), of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular ...

  4. Strategies for measuring evolutionary conservation of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2008-02-01

    Full Text Available Abstract Background Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential. Results We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons. Conclusion Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.

  5. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes

    Science.gov (United States)

    von der Heyden, Sophie

    2017-03-01

    Anthropogenic activities are having devastating impacts on marine systems with numerous knock-on effects on trophic functioning, species interactions and an accelerated loss of biodiversity. Establishing conservation areas can not only protect biodiversity, but also confer resilience against changes to coral reefs and their inhabitants. Planning for protection and conservation in marine systems is complex, but usually focuses on maintaining levels of biodiversity and protecting special and unique landscape features while avoiding negative impacts to socio-economic benefits. Conversely, the integration of evolutionary processes that have shaped extant species assemblages is rarely taken into account. However, it is as important to protect processes as it is to protect patterns for maintaining the evolutionary trajectories of populations and species. This review focuses on different approaches for integrating genetic analyses, such as phylogenetic diversity, phylogeography and the delineation of management units, temporal and spatial monitoring of genetic diversity and quantification of adaptive variation for protecting evolutionary resilience, into marine spatial planning, specifically for coral reef fishes. Many of these concepts are not yet readily applied to coral reef fish studies, but this synthesis highlights their potential and the importance of including historical processes into systematic biodiversity planning for conserving not only extant, but also future, biodiversity and its evolutionary potential.

  6. Does the evolutionary conservation of microsatellite loci imply function?

    Energy Technology Data Exchange (ETDEWEB)

    Shriver, M.D.; Deka, R.; Ferrell, R.E. [Univ. of Pittsburgh, PA (United States)] [and others

    1994-09-01

    Microsatellites are highly polymorphic tandem arrays of short (1-6 bp) sequence motifs which have been found widely distributed in the genomes of all eukaryotes. We have analyzed allele frequency data on 16 microsatellite loci typed in the great apes (human, chimp, orangutan, and gorilla). The majority of these loci (13) were isolated from human genomic libraries; three were cloned from chimpanzee genomic DNA. Most of these loci are not only present in all apes species, but are polymorphic with comparable levels of heterozygosity and have alleles which overlap in size. The extent of divergence of allele frequencies among these four species were studies using the stepwise-weighted genetic distance (Dsw), which was previously shown to conform to linearity with evolutionary time since divergence for loci where mutations exist in a stepwise fashion. The phylogenetic tree of the great apes constructed from this distance matrix was consistent with the expected topology, with a high bootstrap confidence (82%) for the human/chimp clade. However, the allele frequency distributions of these species are 10 times more similar to each other than expected when they were calibrated with a conservative estimate of the time since separation of humans and the apes. These results are in agreement with sequence-based surveys of microsatellites which have demonstrated that they are highly (90%) conserved over short periods of evolutionary time (< 10 million years) and moderately (30%) conserved over long periods of evolutionary time (> 60-80 million years). This evolutionary conservation has prompted some authors to speculate that there are functional constraints on microsatellite loci. In contrast, the presence of directional bias of mutations with constraints and/or selection against aberrant sized alleles can explain these results.

  7. Differences in evolutionary pressure acting within highly conserved ortholog groups

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-07-01

    Full Text Available Abstract Background In highly conserved widely distributed ortholog groups, the main evolutionary force is assumed to be purifying selection that enforces sequence conservation, with most divergence occurring by accumulation of neutral substitutions. Using a set of ortholog groups from prokaryotes, with a single representative in each studied organism, we asked the question if this evolutionary pressure is acting similarly on different subgroups of orthologs defined as major lineages (e.g. Proteobacteria or Firmicutes. Results Using correlations in entropy measures as a proxy for evolutionary pressure, we observed two distinct behaviors within our ortholog collection. The first subset of ortholog groups, called here informational, consisted mostly of proteins associated with information processing (i.e. translation, transcription, DNA replication and the second, the non-informational ortholog groups, mostly comprised of proteins involved in metabolic pathways. The evolutionary pressure acting on non-informational proteins is more uniform relative to their informational counterparts. The non-informational proteins show higher level of correlation between entropy profiles and more uniformity across subgroups. Conclusion The low correlation of entropy profiles in the informational ortholog groups suggest that the evolutionary pressure acting on the informational ortholog groups is not uniform across different clades considered this study. This might suggest "fine-tuning" of informational proteins in each lineage leading to lineage-specific differences in selection. This, in turn, could make these proteins less exchangeable between lineages. In contrast, the uniformity of the selective pressure acting on the non-informational groups might allow the exchange of the genetic material via lateral gene transfer.

  8. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  9. Evolutionary Conservation of the Components in the TOR Signaling Pathways.

    Science.gov (United States)

    Tatebe, Hisashi; Shiozaki, Kazuhiro

    2017-11-01

    Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that controls multiple cellular processes upon various intracellular and extracellular stimuli. Since its first discovery, extensive studies have been conducted both in yeast and animal species including humans. Those studies have revealed that TOR forms two structurally and physiologically distinct protein complexes; TOR complex 1 (TORC1) is ubiquitous among eukaryotes including animals, yeast, protozoa, and plants, while TOR complex 2 (TORC2) is conserved in diverse eukaryotic species other than plants. The studies have also identified two crucial regulators of mammalian TORC1 (mTORC1), Ras homolog enriched in brain (RHEB) and RAG GTPases. Of these, RAG regulates TORC1 in yeast as well and is conserved among eukaryotes with the green algae and land plants as apparent exceptions. RHEB is present in various eukaryotes but sporadically missing in multiple taxa. RHEB, in the budding yeast Saccharomyces cerevisiae , appears to be extremely divergent with concomitant loss of its function as a TORC1 regulator. In this review, we summarize the evolutionarily conserved functions of the key regulatory subunits of TORC1 and TORC2, namely RAPTOR, RICTOR, and SIN1. We also delve into the evolutionary conservation of RHEB and RAG and discuss the conserved roles of these GTPases in regulating TORC1.

  10. Late replication domains are evolutionary conserved in the Drosophila genome.

    Science.gov (United States)

    Andreyenkova, Natalya G; Kolesnikova, Tatyana D; Makunin, Igor V; Pokholkova, Galina V; Boldyreva, Lidiya V; Zykova, Tatyana Yu; Zhimulev, Igor F; Belyaeva, Elena S

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.

  11. Evolutionary rescue: linking theory for conservation and medicine.

    Science.gov (United States)

    Alexander, Helen K; Martin, Guillaume; Martin, Oliver Y; Bonhoeffer, Sebastian

    2014-12-01

    Evolutionary responses that rescue populations from extinction when drastic environmental changes occur can be friend or foe. The field of conservation biology is concerned with the survival of species in deteriorating global habitats. In medicine, in contrast, infected patients are treated with chemotherapeutic interventions, but drug resistance can compromise eradication of pathogens. These contrasting biological systems and goals have created two quite separate research communities, despite addressing the same central question of whether populations will decline to extinction or be rescued through evolution. We argue that closer integration of the two fields, especially of theoretical understanding, would yield new insights and accelerate progress on these applied problems. Here, we overview and link mathematical modelling approaches in these fields, suggest specific areas with potential for fruitful exchange, and discuss common ideas and issues for empirical testing and prediction.

  12. Evolutionary conservation and changes in insect TRP channels

    Directory of Open Access Journals (Sweden)

    Tominaga Makoto

    2009-09-01

    Full Text Available Abstract Background TRP (Transient Receptor Potential channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. Results All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA. NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. Conclusion The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP

  13. Evolutionary Conservation of ABA Signaling for Stomatal Closure1[OPEN

    Science.gov (United States)

    Huang, Yuqing; Dai, Fei; Franks, Peter J.; Nevo, Eviatar; Soltis, Douglas E.; Soltis, Pamela S.; Xue, Dawei; Zhang, Guoping; Pogson, Barry J.

    2017-01-01

    Abscisic acid (ABA)-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 million years ago. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis (Arabidopsis thaliana) and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA-responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report, to our knowledge, new molecular and physiological evidence for the presence of active stomatal control in ferns. PMID:28232585

  14. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer.

    Directory of Open Access Journals (Sweden)

    Raquel Bromberg

    2016-06-01

    Full Text Available Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz.

  15. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer

    Science.gov (United States)

    Grishin, Nick V.; Otwinowski, Zbyszek

    2016-01-01

    Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. PMID:27336403

  16. Investigating evolutionary conservation of dendritic cell subset identity and functions

    Directory of Open Access Journals (Sweden)

    Thien-Phong eVu Manh

    2015-06-01

    Full Text Available Dendritic cells (DC were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types

  17. Evolutionary Conservation of ABA Signaling for Stomatal Closure.

    Science.gov (United States)

    Cai, Shengguan; Chen, Guang; Wang, Yuanyuan; Huang, Yuqing; Marchant, D Blaine; Wang, Yizhou; Yang, Qian; Dai, Fei; Hills, Adrian; Franks, Peter J; Nevo, Eviatar; Soltis, Douglas E; Soltis, Pamela S; Sessa, Emily; Wolf, Paul G; Xue, Dawei; Zhang, Guoping; Pogson, Barry J; Blatt, Michael R; Chen, Zhong-Hua

    2017-06-01

    Abscisic acid (ABA)-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 million years ago. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis ( Arabidopsis thaliana ) and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA-responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis and Hordeum vulgare The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P proliferum and Nephrolepis exaltata In summary, we report, to our knowledge, new molecular and physiological evidence for the presence of active stomatal control in ferns. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions.

    Science.gov (United States)

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and

  19. Sequence comparison alignment-free approach based on suffix tree and L-words frequency.

    Science.gov (United States)

    Soares, Inês; Goios, Ana; Amorim, António

    2012-01-01

    The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  20. Sequence Comparison Alignment-Free Approach Based on Suffix Tree and L-Words Frequency

    Directory of Open Access Journals (Sweden)

    Inês Soares

    2012-01-01

    Full Text Available The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions. In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L—L-words—in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  1. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  2. Evolutionary biology in biodiversity science, conservation, and policy: a call to action.

    Science.gov (United States)

    Hendry, Andrew P; Lohmann, Lúcia G; Conti, Elena; Cracraft, Joel; Crandall, Keith A; Faith, Daniel P; Häuser, Christoph; Joly, Carlos A; Kogure, Kazuhiro; Larigauderie, Anne; Magallón, Susana; Moritz, Craig; Tillier, Simon; Zardoya, Rafael; Prieur-Richard, Anne-Hélène; Walther, Bruno A; Yahara, Tetsukazu; Donoghue, Michael J

    2010-05-01

    Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant. We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans. We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology. In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.

  3. Applications of alignment-free methods in epigenomics.

    Science.gov (United States)

    Pinello, Luca; Lo Bosco, Giosuè; Yuan, Guo-Cheng

    2014-05-01

    Epigenetic mechanisms play an important role in the regulation of cell type-specific gene activities, yet how epigenetic patterns are established and maintained remains poorly understood. Recent studies have supported a role of DNA sequences in recruitment of epigenetic regulators. Alignment-free methods have been applied to identify distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles. Here, we review recent advances in such applications, including the methods to map DNA sequence to feature space, sequence comparison and prediction models. Computational studies using these methods have provided important insights into the epigenetic regulatory mechanisms.

  4. Widespread evolutionary conservation of alternatively spliced exons in caenorhabditis

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob L; Penny, David

    2007-01-01

    Alternative splicing (AS) contributes to increased transcriptome and proteome diversity in various eukaryotic lineages. Previous studies showed low levels of conservation of alternatively spliced (cassette) exons within mammals and within dipterans. We report a strikingly different pattern in Cae...

  5. Cross-species genome-wide identification of evolutionary conserved microproteins

    DEFF Research Database (Denmark)

    Straub, Daniel; Wenkel, Stephan

    2017-01-01

    Protein concept beyond transcription factors to other protein families. Here, we reveal potential microProtein candidates in several plant and animal reference genomes. A large number of these microProteins are species-specific while others evolved early and are evolutionary highly conserved. Most known micro...

  6. Evolutionary conservation of species' roles in food webs.

    Science.gov (United States)

    Stouffer, Daniel B; Sales-Pardo, Marta; Sirer, M Irmak; Bascompte, Jordi

    2012-03-23

    Studies of ecological networks (the web of interactions between species in a community) demonstrate an intricate link between a community's structure and its long-term viability. It remains unclear, however, how much a community's persistence depends on the identities of the species present, or how much the role played by each species varies as a function of the community in which it is found. We measured species' roles by studying how species are embedded within the overall network and the subsequent dynamic implications. Using data from 32 empirical food webs, we find that species' roles and dynamic importance are inherent species attributes and can be extrapolated across communities on the basis of taxonomic classification alone. Our results illustrate the variability of roles across species and communities and the relative importance of distinct species groups when attempting to conserve ecological communities.

  7. Alignment-free phylogeny of whole genomes using underlying subwords

    Directory of Open Access Journals (Sweden)

    Comin Matteo

    2012-12-01

    Full Text Available Abstract Background With the progress of modern sequencing technologies a large number of complete genomes are now available. Traditionally the comparison of two related genomes is carried out by sequence alignment. There are cases where these techniques cannot be applied, for example if two genomes do not share the same set of genes, or if they are not alignable to each other due to low sequence similarity, rearrangements and inversions, or more specifically to their lengths when the organisms belong to different species. For these cases the comparison of complete genomes can be carried out only with ad hoc methods that are usually called alignment-free methods. Methods In this paper we propose a distance function based on subword compositions called Underlying Approach (UA. We prove that the matching statistics, a popular concept in the field of string algorithms able to capture the statistics of common words between two sequences, can be derived from a small set of “independent” subwords, namely the irredundant common subwords. We define a distance-like measure based on these subwords, such that each region of genomes contributes only once, thus avoiding to count shared subwords a multiple number of times. In a nutshell, this filter discards subwords occurring in regions covered by other more significant subwords. Results The Underlying Approach (UA builds a scoring function based on this set of patterns, called underlying. We prove that this set is by construction linear in the size of input, without overlaps, and can be efficiently constructed. Results show the validity of our method in the reconstruction of phylogenetic trees, where the Underlying Approach outperforms the current state of the art methods. Moreover, we show that the accuracy of UA is achieved with a very small number of subwords, which in some cases carry meaningful biological information. Availability http://www.dei.unipd.it/∼ciompin/main/underlying.html

  8. An evolutionary model for protein-coding regions with conserved RNA structure

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Forsberg, Roald; Meyer, Irmtraud Margret

    2004-01-01

    Here we present a model of nucleotide substitution in protein-coding regions that also encode the formation of conserved RNA structures. In such regions, apparent evolutionary context dependencies exist, both between nucleotides occupying the same codon and between nucleotides forming a base pair...... in the RNA structure. The overlap of these fundamental dependencies is sufficient to cause "contagious" context dependencies which cascade across many nucleotide sites. Such large-scale dependencies challenge the use of traditional phylogenetic models in evolutionary inference because they explicitly assume...... evolutionary independence between short nucleotide tuples. In our model we address this by replacing context dependencies within codons by annotation-specific heterogeneity in the substitution process. Through a general procedure, we fragment the alignment into sets of short nucleotide tuples based on both...

  9. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    Science.gov (United States)

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a

  10. Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Bilsland Elizabeth

    2007-08-01

    Full Text Available Abstract Background The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. Results We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. Conclusion Evolutionary conservation of uORFs in yeasts can be traced up to 100

  11. Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced, and wild populations

    NARCIS (Netherlands)

    McDougall, P.T.; Réale, D.; Sol, D.; Reader, S.M.

    2006-01-01

    We argue that animal temperament is an important concept for wildlife conservation science and review causes and consequences of evolutionary changes in temperament traits that may occur in captive-breeding programmes. An evolutionary perspective is valid because temperament traits are heritable,

  12. Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers.

    Directory of Open Access Journals (Sweden)

    Richard W Lusk

    2010-01-01

    Full Text Available The clustering of transcription factor binding sites in developmental enhancers and the apparent preferential conservation of clustered sites have been widely interpreted as proof that spatially constrained physical interactions between transcription factors are required for regulatory function. However, we show here that selection on the composition of enhancers alone, and not their internal structure, leads to the accumulation of clustered sites with evolutionary dynamics that suggest they are preferentially conserved. We simulated the evolution of idealized enhancers from Drosophila melanogaster constrained to contain only a minimum number of binding sites for one or more factors. Under this constraint, mutations that destroy an existing binding site are tolerated only if a compensating site has emerged elsewhere in the enhancer. Overlapping sites, such as those frequently observed for the activator Bicoid and repressor Krüppel, had significantly longer evolutionary half-lives than isolated sites for the same factors. This leads to a substantially higher density of overlapping sites than expected by chance and the appearance that such sites are preferentially conserved. Because D. melanogaster (like many other species has a bias for deletions over insertions, sites tended to become closer together over time, leading to an overall clustering of sites in the absence of any selection for clustered sites. Since this effect is strongest for the oldest sites, clustered sites also incorrectly appear to be preferentially conserved. Following speciation, sites tend to be closer together in all descendent species than in their common ancestors, violating the common assumption that shared features of species' genomes reflect their ancestral state. Finally, we show that selection on binding site composition alone recapitulates the observed number of overlapping and closely neighboring sites in real D. melanogaster enhancers. Thus, this study calls into

  13. Accurate discrimination of conserved coding and non-coding regions through multiple indicators of evolutionary dynamics

    Directory of Open Access Journals (Sweden)

    Pesole Graziano

    2009-09-01

    Full Text Available Abstract Background The conservation of sequences between related genomes has long been recognised as an indication of functional significance and recognition of sequence homology is one of the principal approaches used in the annotation of newly sequenced genomes. In the context of recent findings that the number non-coding transcripts in higher organisms is likely to be much higher than previously imagined, discrimination between conserved coding and non-coding sequences is a topic of considerable interest. Additionally, it should be considered desirable to discriminate between coding and non-coding conserved sequences without recourse to the use of sequence similarity searches of protein databases as such approaches exclude the identification of novel conserved proteins without characterized homologs and may be influenced by the presence in databases of sequences which are erroneously annotated as coding. Results Here we present a machine learning-based approach for the discrimination of conserved coding sequences. Our method calculates various statistics related to the evolutionary dynamics of two aligned sequences. These features are considered by a Support Vector Machine which designates the alignment coding or non-coding with an associated probability score. Conclusion We show that our approach is both sensitive and accurate with respect to comparable methods and illustrate several situations in which it may be applied, including the identification of conserved coding regions in genome sequences and the discrimination of coding from non-coding cDNA sequences.

  14. Evolutionary conservation of the ribosomal biogenesis factor Rbm19/Mrd1: implications for function.

    Directory of Open Access Journals (Sweden)

    Yvonne Kallberg

    Full Text Available Ribosome biogenesis in eukaryotes requires coordinated folding and assembly of a pre-rRNA into sequential pre-rRNA-protein complexes in which chemical modifications and RNA cleavages occur. These processes require many small nucleolar RNAs (snoRNAs and proteins. Rbm19/Mrd1 is one such protein that is built from multiple RNA-binding domains (RBDs. We find that Rbm19/Mrd1 with five RBDs is present in all branches of the eukaryotic phylogenetic tree, except in animals and Choanoflagellates, that instead have a version with six RBDs and Microsporidia which have a minimal Rbm19/Mrd1 protein with four RBDs. Rbm19/Mrd1 therefore evolved as a multi-RBD protein very early in eukaryotes. The linkers between the RBDs have conserved properties; they are disordered, except for linker 3, and position the RBDs at conserved relative distances from each other. All but one of the RBDs have conserved properties for RNA-binding and each RBD has a specific consensus sequence and a conserved position in the protein, suggesting a functionally important modular design. The patterns of evolutionary conservation provide information for experimental analyses of the function of Rbm19/Mrd1. In vivo mutational analysis confirmed that a highly conserved loop 5-β4-strand in RBD6 is essential for function.

  15. Evolutionary conservation of the ribosomal biogenesis factor Rbm19/Mrd1: implications for function.

    Science.gov (United States)

    Kallberg, Yvonne; Segerstolpe, Åsa; Lackmann, Fredrik; Persson, Bengt; Wieslander, Lars

    2012-01-01

    Ribosome biogenesis in eukaryotes requires coordinated folding and assembly of a pre-rRNA into sequential pre-rRNA-protein complexes in which chemical modifications and RNA cleavages occur. These processes require many small nucleolar RNAs (snoRNAs) and proteins. Rbm19/Mrd1 is one such protein that is built from multiple RNA-binding domains (RBDs). We find that Rbm19/Mrd1 with five RBDs is present in all branches of the eukaryotic phylogenetic tree, except in animals and Choanoflagellates, that instead have a version with six RBDs and Microsporidia which have a minimal Rbm19/Mrd1 protein with four RBDs. Rbm19/Mrd1 therefore evolved as a multi-RBD protein very early in eukaryotes. The linkers between the RBDs have conserved properties; they are disordered, except for linker 3, and position the RBDs at conserved relative distances from each other. All but one of the RBDs have conserved properties for RNA-binding and each RBD has a specific consensus sequence and a conserved position in the protein, suggesting a functionally important modular design. The patterns of evolutionary conservation provide information for experimental analyses of the function of Rbm19/Mrd1. In vivo mutational analysis confirmed that a highly conserved loop 5-β4-strand in RBD6 is essential for function.

  16. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction

    DEFF Research Database (Denmark)

    Teppa, Elin; Wilkins, Angela D.; Nielsen, Morten

    2012-01-01

    within a multiple sequence alignment to investigate their predictive potential and degree of overlap. Results: Our results demonstrate that the different methods included in the benchmark in general can be divided into three groups with a limited mutual overlap. One group containing real-value...... Evolutionary Trace (rvET) methods and conservation, another containing mutual information (MI) methods, and the last containing methods designed explicitly for the identification of specificity determining positions (SDPs): integer-value Evolutionary Trace (ivET), SDPfox, and XDET. In terms of prediction of CR......, we find using a proximity score integrating structural information (as the sum of the scores of residues located within a given distance of the residue in question) that only the methods from the first two groups displayed a reliable performance. Next, we investigated to what degree proximity scores...

  17. Evolutionary conservation of P-selectin glycoprotein ligand-1 primary structure and function

    Directory of Open Access Journals (Sweden)

    Schapira Marc

    2007-09-01

    Full Text Available Abstract Background P-selectin glycoprotein ligand-1 (PSGL-1 plays a critical role in recruiting leukocytes in inflammatory lesions by mediating leukocyte rolling on selectins. Core-2 O-glycosylation of a N-terminal threonine and sulfation of at least one tyrosine residue of PSGL-1 are required for L- and P-selectin binding. Little information is available on the intra- and inter-species evolution of PSGL-1 primary structure. In addition, the evolutionary conservation of selectin binding site on PSGL-1 has not been previously examined in detail. Therefore, we performed multiple sequence alignment of PSGL-1 amino acid sequences of 14 mammals (human, chimpanzee, rhesus monkey, bovine, pig, rat, tree-shrew, bushbaby, mouse, bat, horse, cat, sheep and dog and examined mammalian PSGL-1 interactions with human selectins. Results A signal peptide was predicted in each sequence and a propeptide cleavage site was found in 9/14 species. PSGL-1 N-terminus is poorly conserved. However, each species exhibits at least one tyrosine sulfation site and, except in horse and dog, a T [D/E]PP [D/E] motif associated to the core-2 O-glycosylation of a N-terminal threonine. A mucin-like domain of 250–280 amino acids long was disclosed in all studied species. It lies between the conserved N-terminal O-glycosylated threonine (Thr-57 in human and the transmembrane domain, and contains a central region exhibiting a variable number of decameric repeats (DR. Interspecies and intraspecies polymorphisms were observed. Transmembrane and cytoplasmic domain sequences are well conserved. The moesin binding residues that serve as adaptor between PSGL-1 and Syk, and are involved in regulating PSGL-1-dependent rolling on P-selectin are perfectly conserved in all analyzed mammalian sequences. Despite a poor conservation of PSGL-1 N-terminal sequence, CHO cells co-expressing human glycosyltransferases and human, bovine, pig or rat PSGL-1 efficiently rolled on human L- or P

  18. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human.

    Directory of Open Access Journals (Sweden)

    Marek Ostaszewski

    Full Text Available The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.

  19. I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation

    Directory of Open Access Journals (Sweden)

    Evelyn L. Jensen

    2016-08-01

    Full Text Available In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability. We applied this metric to a phylogenetic network based on mitochondrial control region data from extant and recently extinct giant Galápagos tortoises, a highly endangered group of closely related species. We found that the restoration of two extinct species (a project currently underway will contribute the greatest gain in phylogenetic diversity, and present an ordered list of rankings that is the optimum complementarity set for conservation prioritization.

  20. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  1. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    Science.gov (United States)

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  2. Evolutionary conserved regulation of HIF-1β by NF-κB.

    Directory of Open Access Journals (Sweden)

    Patrick van Uden

    2011-01-01

    Full Text Available Hypoxia Inducible Factor-1 (HIF-1 is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs and Factor Inhibiting HIF (FIH respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB-mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango and HIF-α (sima levels and activity (Hph/fatiga, ImpL3/ldha in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF-related pathologies including ageing, ischemia, and cancer.

  3. Evolutionary conserved regulation of HIF-1β by NF-κB.

    Science.gov (United States)

    van Uden, Patrick; Kenneth, Niall S; Webster, Ryan; Müller, H Arno; Mudie, Sharon; Rocha, Sonia

    2011-01-27

    Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB-mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF-related pathologies including ageing, ischemia, and cancer.

  4. Cavity types and microclimate: implications for ecological, evolutionary, and conservation studies.

    Science.gov (United States)

    Amat-Valero, M; Calero-Torralbo, M A; Václav, R; Valera, F

    2014-11-01

    The abiotic conditions of the immediate environment of organisms are key factors for a better understanding of ecological and evolutionary processes. Yet, information in this regard is biased towards some habitat types, landscapes, and organisms. Here, we present a 2-year comparative study of the microclimatic properties (temperature, relative humidity, and their fluctuation) of three cavity types (nest boxes, cavities in bridges, and burrows in sandy cliffs) in an arid environment. We found marked and consistent months-long differences in microclimate among the three cavity types. Nest boxes were colder than the other cavity types, with temperature oscillations being an order of magnitude higher than in other cavity types. In contrast, microclimate was very stable in burrows and cavities in bridges, the former being generally warmer and drier than the latter. We also discuss the biological implications of microclimatic conditions and its variation in different cavity types by presenting two case studies, namely the temperature-humidity index and water vapor pressure during the hatching period of an endotherm and the chilling period during the diapause of an ectotherm ectoparasite. We stress the need for comparative studies of the same organisms subjected to different microclimates given the important ecological, evolutionary, and conservation implications.

  5. A comparative genomics approach revealed evolutionary dynamics of microsatellite imperfection and conservation in genus Gossypium.

    Science.gov (United States)

    Ahmed, Muhammad Mahmood; Shen, Chao; Khan, Anam Qadir; Wahid, Muhammad Atif; Shaban, Muhammad; Lin, Zhongxu

    2017-01-01

    Ongoing molecular processes in a cell could target microsatellites, a kind of repetitive DNA, owing to length variations and motif imperfection. Mutational mechanisms underlying such kind of genetic variations have been extensively investigated in diverse organisms. However, obscure impact of ploidization, an evolutionary process of genome content duplication prevails mostly in plants, on non-coding DNA is poorly understood. Genome sequences of diversely originated plant species were examined for genome-wide motif imperfection pattern, and various analytical tools were employed to canvass characteristic relationships among repeat density, imperfection and length of microsatellites. Moreover, comparative genomics approach aided in exploration of microsatellites conservation footprints in Gossypium evolution. Based on our results, motif imperfection in repeat length was found intricately related to genomic abundance of imperfect microsatellites among 13 genomes. Microsatellite decay estimation depicted slower decay of long motif repeats which led to predominant abundance of 5-nt repeat motif in Gossypium species. Short motif repeats exhibited rapid decay through the evolution of Gossypium lineage ensuing drastic decrease of 2-nt repeats, of which, "AT" motif type dilapidated in cultivated tetraploids of cotton. The outcome could be a directive to explore comparative evolutionary footprints of simple non-coding genetic elements i.e., repeat elements, through the evolution of genus-specific characteristics in cotton genomes.

  6. Evolutionary and molecular analysis of Dof transcription factors identified a conserved motif for intercellular protein trafficking.

    Science.gov (United States)

    Chen, Huan; Ahmad, Munawar; Rim, Yeonggil; Lucas, William J; Kim, Jae-Yean

    2013-06-01

    · Cell-to-cell trafficking of transcription factors (TFs) has been shown to play an important role in the regulation of plant developmental events, but the evolutionary relationship between cell-autonomous and noncell-autonomous (NCA) TFs remains elusive. · AtDof4.1, named INTERCELLULAR TRAFFICKING DOF 1 (ITD1), was chosen as a representative NCA member to explore this evolutionary relationship. Using domain structure-function analyses and swapping studies, we examined the cell-to-cell trafficking of plant-specific Dof TF family members across Arabidopsis and other species. · We identified a conserved intercellular trafficking motif (ITM) that is necessary and sufficient for selective cell-to-cell trafficking and can impart gain-of-function cell-to-cell movement capacity to an otherwise cell-autonomous TF. The functionality of related motifs from Dof members across the plant kingdom extended, surprisingly, to a unicellular alga that lacked plasmodesmata. By contrast, the algal homeodomain related to the NCA KNOX homeodomain was either inefficient or unable to impart such cell-to-cell movement function. · The Dof ITM appears to predate the evolution of selective plasmodesmal trafficking in the plant kingdom, which may well have acted as a molecular template for the evolution of Dof proteins as NCA TFs. However, the ability to efficiently traffic for KNOX homeodomain (HD) proteins may have been acquired during the evolution of early nonvascular plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Evolutionary plasticity of habenular asymmetry with a conserved efferent connectivity pattern.

    Directory of Open Access Journals (Sweden)

    Aldo Villalón

    Full Text Available The vertebrate habenulae (Hb is an evolutionary conserved dorsal diencephalic nuclear complex that relays information from limbic and striatal forebrain regions to the ventral midbrain. One key feature of this bilateral nucleus is the presence of left-right differences in size, cytoarchitecture, connectivity, neurochemistry and/or gene expression. In teleosts, habenular asymmetry has been associated with preferential innervation of left-right habenular efferents into dorso-ventral domains of the midbrain interpeduncular nucleus (IPN. However, the degree of conservation of this trait and its relation to the structural asymmetries of the Hb are currently unknown. To address these questions, we performed the first systematic comparative analysis of structural and connectional asymmetries of the Hb in teleosts. We found striking inter-species variability in the overall shape and cytoarchitecture of the Hb, and in the frequency, strength and to a lesser degree, laterality of habenular volume at the population level. Directional asymmetry of the Hb was either to the left in D. rerio, E. bicolor, O. latipes, P. reticulata, B. splendens, or to the right in F. gardneri females. In contrast, asymmetry was absent in P. scalare and F. gardneri males at the population level, although in these species the Hb displayed volumetric asymmetries at the individual level. Inter-species variability was more pronounced across orders than within a single order, and coexisted with an overall conserved laterotopic representation of left-right habenular efferents into dorso-ventral domains of the IPN. These results suggest that the circuit design involving the Hb of teleosts promotes structural flexibility depending on developmental, cognitive and/or behavioural pressures, without affecting the main midbrain connectivity output, thus unveiling a key conserved role of this connectivity trait in the function of the circuit. We propose that ontogenic plasticity in habenular

  8. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    Science.gov (United States)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  9. Extreme evolutionary conservation of functionally important regions in H1N1 influenza proteome.

    Directory of Open Access Journals (Sweden)

    Samantha Warren

    Full Text Available The H1N1 subtype of influenza A virus has caused two of the four documented pandemics and is responsible for seasonal epidemic outbreaks, presenting a continuous threat to public health. Co-circulating antigenically divergent influenza strains significantly complicates vaccine development and use. Here, by combining evolutionary, structural, functional, and population information about the H1N1 proteome, we seek to answer two questions: (1 do residues on the protein surfaces evolve faster than the protein core residues consistently across all proteins that constitute the influenza proteome? and (2 in spite of the rapid evolution of surface residues in influenza proteins, are there any protein regions on the protein surface that do not evolve? To answer these questions, we first built phylogenetically-aware models of the patterns of surface and interior substitutions. Employing these models, we found a single coherent pattern of faster evolution on the protein surfaces that characterizes all influenza proteins. The pattern is consistent with the events of inter-species reassortment, the worldwide introduction of the flu vaccine in the early 80's, as well as the differences caused by the geographic origins of the virus. Next, we developed an automated computational pipeline to comprehensively detect regions of the protein surface residues that were 100% conserved over multiple years and in multiple host species. We identified conserved regions on the surface of 10 influenza proteins spread across all avian, swine, and human strains; with the exception of a small group of isolated strains that affected the conservation of three proteins. Surprisingly, these regions were also unaffected by genetic variation in the pandemic 2009 H1N1 viral population data obtained from deep sequencing experiments. Finally, the conserved regions were intrinsically related to the intra-viral macromolecular interaction interfaces. Our study may provide further insights

  10. Conservation of the Keap1-Nrf2 System: An Evolutionary Journey through Stressful Space and Time

    Directory of Open Access Journals (Sweden)

    Yuji Fuse

    2017-03-01

    Full Text Available The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Its regulatory mechanisms, e.g., stress-sensing mechanism, proteasome-based regulation of Nrf2 activity and selection of target genes, have been elucidated mainly in mammals. In addition, emerging model animals, such as zebrafish, fruit fly and Caenorhabditis elegans, have been shown to have similar anti-stress systems to mammals, suggesting that analogous defense systems are widely conserved throughout the animal kingdom. Experimental evidence in lower animals provides important information beyond mere laboratory-confined utility, such as regarding how these systems transformed during evolution, which may help characterize the mammalian system in greater detail. Recent advances in genome projects of both model and non-model animals have provided a great deal of useful information toward this end. We herein review the research on Keap1-Nrf2 and its analogous systems in both mammals and lower model animals. In addition, by comparing the amino acid sequences of Nrf2 and Keap1 proteins from various species, we can deduce the evolutionary history of the anti-stress system. This combinatorial approach using both experimental and genetic data will suggest perspectives of approach for researchers studying the stress response.

  11. Patterns of evolutionary conservation of essential genes correlate with their compensability.

    Directory of Open Access Journals (Sweden)

    Tobias Bergmiller

    2012-06-01

    Full Text Available Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability-that is, by how easily they can be functionally replaced, for example through increased expression of other genes.

  12. Comparing the evolutionary conservation between human essential genes, human orthologs of mouse essential genes and human housekeeping genes.

    Science.gov (United States)

    Lv, Wenhua; Zheng, Jiajia; Luan, Meiwei; Shi, Miao; Zhu, Hongjie; Zhang, Mingming; Lv, Hongchao; Shang, Zhenwei; Duan, Lian; Zhang, Ruijie; Jiang, Yongshuai

    2015-11-01

    Human housekeeping genes are often confused with essential human genes, and several studies regard both types of genes as having the same level of evolutionary conservation. However, this is not necessarily the case. To clarify this, we compared the differences between human housekeeping genes and essential human genes with respect to four aspects: the evolutionary rate (dN/dS), protein sequence identity, single-nucleotide polymorphism (SNP) density and level of linkage disequilibrium (LD). The results showed that housekeeping genes had lower evolutionary rates, higher sequence identities, lower SNP densities and higher levels of LD compared with essential genes. Together, these findings indicate that housekeeping and essential genes are two distinct types of genes, and that housekeeping genes have a higher level of evolutionary conservation. Therefore, we suggest that researchers should pay careful attention to the distinctions between housekeeping genes and essential genes. Moreover, it is still controversial whether we should substitute human orthologs of mouse essential genes for human essential genes. Therefore, we compared the evolutionary features between human orthologs of mouse essential genes and human housekeeping genes and we got inconsistent results in long-term and short-term evolutionary characteristics implying the irrationality of simply replacing human essential genes with human orthologs of mouse essential genes. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Integrating Traditional and Evolutionary Knowledge in Biodiversity Conservation: a Population Level Case Study

    Directory of Open Access Journals (Sweden)

    Dylan J. Fraser

    2006-12-01

    Full Text Available Despite their dual importance in the assessment of endangered/threatened species, there have been few attempts to integrate traditional ecological knowledge (TEK and evolutionary biology knowledge (EBK at the population level. We contrasted long-term aboriginal TEK with previously obtained EBK in the context of seasonal migratory habits and population biology of a salmonid fish, brook charr, (Salvelinus fontinalis inhabiting a large, remote postglacial lake. Compilation of TEK spanning four decades involved analytical workshops, semidirective interviews, and collaborative fieldwork with local aboriginal informants and fishing guides. We found that TEK complemented EBK of brook charr by providing concordant and additional information about (1 population viability; (2 breeding areas and migration patterns of divergent populations; and (3 the behavioral ecology of populations within feeding areas; all of which may ultimately affect the maintenance of population diversity. Aboriginal concerns related to human pressures on this species, not revealed by EBK, also help to focus future conservation initiatives for divergent populations and to encourage restoration of traditional fishing practices. However, relative to EBK, the relevance of TEK to salmonid biodiversity conservation was evident mainly at a smaller spatial scale, for example, that of individual rivers occupied by populations or certain lake sectors. Nevertheless, EBK was only collected over a 4-yr period, so TEK provided an essential long-term temporal window to evaluate population differences and persistence. We concluded that, despite different conceptual underpinnings, spatially and temporally varying TEK and EBK both contribute to the knowledge base required to achieve sustainability and effective biodiversity conservation planning for a given species. Such integration may be particularly relevant in many isolated regions, where intraspecific diversity can go unrecognized due to sparse

  14. Transcriptional regulation of an evolutionary conserved intergenic region of CDT2-INTS7.

    Directory of Open Access Journals (Sweden)

    Hiroki Nakagawa

    2008-01-01

    Full Text Available In the mammalian genome, a substantial number of gene pairs (approximately 10% are arranged head-to-head on opposite strands within 1,000 base pairs, and separated by a bidirectional promoter(s that generally drives the co-expression of both genes and results in functional coupling. The significance of unique genomic configuration remains elusive.Here we report on the identification of an intergenic region of non-homologous genes, CDT2, a regulator of DNA replication, and an integrator complex subunit 7 (INTS7, an interactor of the largest subunit of RNA polymerase II. The CDT2-INTS7 intergenic region is 246 and 245 base pairs long in human and mouse respectively and is evolutionary well-conserved among several mammalian species. By measuring the luciferase activity in A549 cells, the intergenic human sequence was shown to be able to drive the reporter gene expression in either direction and notably, among transcription factors E2F, E2F1 approximately E2F4, but not E2F5 and E2F6, this sequence clearly up-regulated the reporter gene expression exclusively in the direction of the CDT2 gene. In contrast, B-Myb, c-Myb, and p53 down-regulated the reporter gene expression in the transcriptional direction of the INTS7 gene. Overexpression of E2F1 by adenoviral-mediated gene transfer resulted in an increased CDT2, but not INTS7, mRNA level. Real-time polymerase transcription (RT-PCR analyses of the expression pattern for CDT2 and INTS7 mRNA in human adult and fetal tissues and cell lines revealed that transcription of these two genes are asymmetrically regulated. Moreover, the abundance of mRNA between mouse and rat tissues was similar, but these patterns were quite different from the results obtained from human tissues.These findings add a unique example and help to understand the mechanistic insights into the regulation of gene expression through an evolutionary conserved intergenic region of the mammalian genome.

  15. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    Science.gov (United States)

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  16. Phylogenic inference using alignment-free methods for applications in microbial community surveys using 16s rRNA gene.

    Directory of Open Access Journals (Sweden)

    Yifei Zhang

    Full Text Available The diversity of microbiota is best explored by understanding the phylogenetic structure of the microbial communities. Traditionally, sequence alignment has been used for phylogenetic inference. However, alignment-based approaches come with significant challenges and limitations when massive amounts of data are analyzed. In the recent decade, alignment-free approaches have enabled genome-scale phylogenetic inference. Here we evaluate three alignment-free methods: ACS, CVTree, and Kr for phylogenetic inference with 16s rRNA gene data. We use a taxonomic gold standard to compare the accuracy of alignment-free phylogenetic inference with that of common microbiome-wide phylogenetic inference pipelines based on PyNAST and MUSCLE alignments with FastTree and RAxML. We re-simulate fecal communities from Human Microbiome Project data to evaluate the performance of the methods on datasets with properties of real data. Our comparisons show that alignment-free methods are not inferior to alignment-based methods in giving accurate and robust phylogenic trees. Moreover, consensus ensembles of alignment-free phylogenies are superior to those built from alignment-based methods in their ability to highlight community differences in low power settings. In addition, the overall running times of alignment-based and alignment-free phylogenetic inference are comparable. Taken together our empirical results suggest that alignment-free methods provide a viable approach for microbiome-wide phylogenetic inference.

  17. Evolutionary conservation of sequence and secondary structures inCRISPR repeats

    Energy Technology Data Exchange (ETDEWEB)

    Kunin, Victor; Sorek, Rotem; Hugenholtz, Philip

    2006-09-01

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel class of direct repeats, separated by unique spacer sequences of similar length, that are present in {approx}40% of bacterial and all archaeal genomes analyzed to date. More than 40 gene families, called CRISPR-associated sequences (CAS), appear in conjunction with these repeats and are thought to be involved in the propagation and functioning of CRISPRs. It has been proposed that the CRISPR/CAS system samples, maintains a record of, and inactivates invasive DNA that the cell has encountered, and therefore constitutes a prokaryotic analog of an immune system. Here we analyze CRISPR repeats identified in 195 microbial genomes and show that they can be organized into multiple clusters based on sequence similarity. All individual repeats in any given cluster were inferred to form characteristic RNA secondary structure, ranging from non-existent to pronounced. Stable secondary structures included G:U base pairs and exhibited multiple compensatory base changes in the stem region, indicating evolutionary conservation and functional importance. We also show that the repeat-based classification corresponds to, and expands upon, a previously reported CAS gene-based classification including specific relationships between CRISPR and CAS subtypes.

  18. An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol.

    Directory of Open Access Journals (Sweden)

    Amy W Lasek

    Full Text Available Anaplastic lymphoma kinase (Alk is a gene expressed in the nervous system that encodes a receptor tyrosine kinase commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol. Database analyses revealed that Alk expression levels in the brains of recombinant inbred mice are negatively correlated with ethanol-induced ataxia and ethanol consumption. We therefore tested Alk gene knockout mice and found that they sedate longer in response to high doses of ethanol and consume more ethanol than wild-type mice. Finally, sequencing of human ALK led to the discovery of four polymorphisms associated with a low level of response to ethanol, an intermediate phenotype that is predictive of future alcohol use disorders (AUDs. These results suggest that Alk plays an evolutionary conserved role in ethanol-related behaviors. Moreover, ALK may be a novel candidate gene conferring risk for AUDs as well as a potential target for pharmacological intervention.

  19. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change

    Science.gov (United States)

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-01-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little

  20. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.

    Science.gov (United States)

    DeSalvo, Michael K; Hindle, Samantha J; Rusan, Zeid M; Orng, Souvinh; Eddison, Mark; Halliwill, Kyle; Bainton, Roland J

    2014-01-01

    Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

  1. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.

    Directory of Open Access Journals (Sweden)

    Michael K DeSalvo

    2014-11-01

    Full Text Available AbstractCentral nervous system (CNS function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with FACS and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ABC and SLC transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

  2. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes.

    Directory of Open Access Journals (Sweden)

    Martin Poot

    2011-05-01

    Full Text Available Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC development.From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC and those covered by copy number variations (CNV yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10(-5.This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.

  3. [Morphologic variation of the parthenogenetic lizard Aspidoscelis rodecki (Squamata: Teiidae): evolutionary and conservation implications].

    Science.gov (United States)

    Elizalde-Rocha, Sandra P; Méndez-de la Cruz, Fausto R; Méndez-Sánchez, J Fernando; Granados-González, Gisela; Hernândez-Gallegos, Oswaldo

    2008-12-01

    Post-formational divergence has been used for the recognition of new parthenogenetic species. Currently, the parthenogenetic lizard Aspidoscelis rodecki McCoy and Maslin 1962 is recognized as a single taxon that was derived from a single, parthenogenetically capable, hybrid. This lizard had been derived via hybridization between individuals of two gonochoristic species, Aspidoscelis ungusticeps Cope 1878 and Aspidoscelis deppii Wiegmann 1834. The distribution of A. rodecki includes Isla Contoy and Isla Mujeres and the adjacent mainland of Quintana Roo, México. Previous studies have found post-formational divergence in genetic, chromatic and life-history characteristics among a continental population (Puerto Juárez) and an insular population (Isla Contoy). A meristic analysis was carried out to evaluate the morphological divergence among both populations of A. rodecki. We used 38 individuals from Puerto Juárez and 23 individuals from Isla Contoy. Nine meristic characters with discrimination value among species of the genus Aspidoscelis were used in both univariate (t-Student) and multivariate analyses (principal components and canonical variate analysis). According to both analyses, Puerto Juárez is meristically distinguishable from Isla Contoy. Both populations differ in five meristic characters and were a high correct classification in the canonical variate analysis: 97% of Puerto Juárez and 100% of Isla Contoy. A small sample from Isla Mujeres and a single specimen from Punta Sam (mainland) may represent different morphological groups. Due to the patterns of phenotypic variation, A. rodecki is considered as a single variable parthenogenetic species with high priority to conservation. The populations of A. rodecki have been extremely affected by the tourism developers. If the habitat of the parthenogenetic lizard (beach grasses) is allowed to stay, the expansion by the developers will not affect the survivorship of these populations. Nevertheless, the first

  4. Single-Base Resolution Map of Evolutionary Constraints and Annotation of Conserved Elements across Major Grass Genomes

    Science.gov (United States)

    Liang, Pingping; Saqib, Hafiz Sohaib Ahmed; Zhang, Xingtan; Zhang, Liangsheng

    2018-01-01

    Abstract Conserved noncoding sequences (CNSs) are evolutionarily conserved DNA sequences that do not encode proteins but may have potential regulatory roles in gene expression. CNS in crop genomes could be linked to many important agronomic traits and ecological adaptations. Compared with the relatively mature exon annotation protocols, efficient methods are lacking to predict the location of noncoding sequences in the plant genomes. We implemented a computational pipeline that is tailored to the comparisons of plant genomes, yielding a large number of conserved sequences using rice genome as the reference. In this study, we used 17 published grass genomes, along with five monocot genomes as well as the basal angiosperm genome of Amborella trichopoda. Genome alignments among these genomes suggest that at least 12.05% of the rice genome appears to be evolving under constraints in the Poaceae lineage, with close to half of the evolutionarily constrained sequences located outside protein-coding regions. We found evidence for purifying selection acting on the conserved sequences by analyzing segregating SNPs within the rice population. Furthermore, we found that known functional motifs were significantly enriched within CNS, with many motifs associated with the preferred binding of ubiquitous transcription factors. The conserved elements that we have curated are accessible through our public database and the JBrowse server. In-depth functional annotations and evolutionary dynamics of the identified conserved sequences provide a solid foundation for studying gene regulation, genome evolution, as well as to inform gene isolation for cereal biologists. PMID:29378032

  5. In situ conservation-harnessing natural and human-derived evolutionary forces to ensure future crop adaptation.

    Science.gov (United States)

    Bellon, Mauricio R; Dulloo, Ehsan; Sardos, Julie; Thormann, Imke; Burdon, Jeremy J

    2017-12-01

    Ensuring the availability of the broadest possible germplasm base for agriculture in the face of increasingly uncertain and variable patterns of biotic and abiotic change is fundamental for the world's future food supply. While ex situ conservation plays a major role in the conservation and availability of crop germplasm, it may be insufficient to ensure this. In situ conservation aims to maintain target species and the collective genotypes they represent under evolution. A major rationale for this view is based on the likelihood that continued exposure to changing selective forces will generate and favor new genetic variation and an increased likelihood that rare alleles that may be of value to future agriculture are maintained. However, the evidence that underpins this key rationale remains fragmented and has not been examined systematically, thereby decreasing the perceived value and support for in situ conservation for agriculture and food systems and limiting the conservation options available. This study reviews evidence regarding the likelihood and rate of evolutionary change in both biotic and abiotic traits for crops and their wild relatives, placing these processes in a realistic context in which smallholder farming operates and crop wild relatives continue to exist. It identifies areas of research that would contribute to a deeper understanding of these processes as the basis for making them more useful for future crop adaptation.

  6. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  7. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait

    Directory of Open Access Journals (Sweden)

    Shirai Leila T

    2012-02-01

    Full Text Available Abstract Background The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. Results We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eyespot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. Conclusions The evolutionary history of gene

  8. Identification of an evolutionary conserved SURF-6 domain in a family of nucleolar proteins extending from human to yeast

    International Nuclear Information System (INIS)

    Polzikov, Mikhail; Zatsepina, Olga; Magoulas, Charalambos

    2005-01-01

    The mammalian SURF-6 protein is localized in the nucleolus, yet its function remains elusive in the recently characterized nucleolar proteome. We discovered by searching the Protein families database that a unique evolutionary conserved SURF-6 domain is present in the carboxy-terminal of a novel family of eukaryotic proteins extending from human to yeast. By using the enhanced green fluorescent protein as a fusion protein marker in mammalian cells, we show that proteins from distantly related taxonomic groups containing the SURF-6 domain are localized in the nucleolus. Deletion sequence analysis shows that multiple regions of the SURF-6 protein are capable of nucleolar targeting independently of the evolutionary conserved domain. We identified that the Saccharomyces cerevisiae member of the SURF-6 family, named rrp14 or ykl082c, has been categorized in yeast databases to interact with proteins involved in ribosomal biogenesis and cell polarity. These results classify SURF-6 as a new family of nucleolar proteins in the eukaryotic kingdom and point out that SURF-6 has a distinct domain within the known nucleolar proteome that may mediate complex protein-protein interactions for analogous processes between yeast and mammalian cells

  9. Using evolutionary conserved modules in gene networks as a strategy to leverage high throughput gene expression queries.

    Directory of Open Access Journals (Sweden)

    Jeanne M Serb

    Full Text Available BACKGROUND: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seed-network of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. CONCLUSIONS/SIGNIFICANCE: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will

  10. Evolutionary diversification of aminopeptidase N in Lepidoptera by conserved clade-specific amino acid residues.

    Science.gov (United States)

    Hughes, Austin L

    2014-07-01

    Members of the aminopepidase N (APN) gene family of the insect order Lepidoptera (moths and butterflies) bind the naturally insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis. Phylogenetic analysis of amino acid sequences of seven lepidopteran APN classes provided strong support for the hypothesis that lepidopteran APN2 class arose by gene duplication prior to the most recent common ancestor of Lepidoptera and Diptera. The Cry toxin-binding region (BR) of lepidopteran and dipteran APNs was subject to stronger purifying selection within APN classes than was the remainder of the molecule, reflecting conservation of catalytic site and adjoining residues within the BR. Of lepidopteran APN classes, APN2, APN6, and APN8 showed the strongest evidence of functional specialization, both in expression patterns and in the occurrence of conserved derived amino acid residues. The latter three APN classes also shared a convergently evolved conserved residue close to the catalytic site. APN8 showed a particularly strong tendency towards class-specific conserved residues, including one of the catalytic site residues in the BR and ten others in close vicinity to the catalytic site residues. The occurrence of class-specific sequences along with the conservation of enzymatic function is consistent with the hypothesis that the presence of Cry toxins in the environment has been a factor shaping the evolution of this multi-gene family. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Conservation genomics reveals multiple evolutionary units within Bell’s Vireo (Vireo bellii).

    Science.gov (United States)

    Klicka, Luke B.; Kus, Barbara E.; Title, Pascal O.; Burns, Kevin J.

    2016-01-01

    The Bell’s Vireo (Vireo bellii) is a widespread North American species of bird that has declined since the mid-1960s primarily due to habitat modification. Throughout its range, Bell’s Vireo populations are regulated under varying degrees of protection; however, the species has never been characterized genetically. Therefore, the current taxonomy used to guide management decisions may misrepresent the true evolutionary history for the species. We sequenced 86 individuals for ND2 and genotyped 48 individuals for genome-wide SNPs to identify distinct lineages within Bell’s Vireo. Phylogenetic analyses uncovered two distinct clades that are separated in the arid southwestern United States, near the border of the Chihuahuan and Sonoran Deserts. These clades diverged from each other approximately 1.11–2.04 mya. The timing of diversification, geographic location, and niche modeling of the east/west divergence suggest vicariance as a mode of diversification for these two lineages. Analyses of the SNP dataset provided additional resolution and indicated the Least Bell’s Vireo populations are a distinct evolutionary lineage. Our genetic evidence, together with information from morphology and behavior, suggests that the Bell’s Vireo complex involves two species, each containing two separate subspecies. This new information has implications for the federal, state and other listing status of Bell’s Vireo throughout its range.

  12. Evolutionary Genomics and Conservation of the Endangered Przewalski’s Horse

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Ermini, Luca; Schubert, Mikkel

    2015-01-01

    Przewalski’s horses (PHs, Equus ferus ssp. przewalskii) were discovered in the Asian steppes in the 1870s and represent the last remaining true wild horses. PHs became extinct in the wild in the 1960s but survived in captivity, thanks to major conservation efforts. The current population is still...

  13. RV-Typer: A Web Server for Typing of Rhinoviruses Using Alignment-Free Approach.

    Directory of Open Access Journals (Sweden)

    Pandurang S Kolekar

    Full Text Available Rhinoviruses (RV are increasingly being reported to cause mild to severe infections of respiratory tract in humans. RV are antigenically the most diverse species of the genus Enterovirus and family Picornaviridae. There are three species of RV (RV-A, -B and -C, with 80, 32 and 55 serotypes/types, respectively. Antigenic variation is the main limiting factor for development of a cross-protective vaccine against RV.Serotyping of Rhinoviruses is carried out using cross-neutralization assays in cell culture. However, these assays become laborious and time-consuming for the large number of strains. Alternatively, serotyping of RV is carried out by alignment-based phylogeny of both protein and nucleotide sequences of VP1. However, serotyping of RV based on alignment-based phylogeny is a multi-step process, which needs to be repeated every time a new isolate is sequenced. In view of the growing need for serotyping of RV, an alignment-free method based on "return time distribution" (RTD of amino acid residues in VP1 protein has been developed and implemented in the form of a web server titled RV-Typer. RV-Typer accepts nucleotide or protein sequences as an input and computes return times of di-peptides (k = 2 to assign serotypes. The RV-Typer performs with 100% sensitivity and specificity. It is significantly faster than alignment-based methods. The web server is available at http://bioinfo.net.in/RV-Typer/home.html.

  14. Alignment-free and high-frequency compensation in face hallucination.

    Science.gov (United States)

    Chen, Yen-Wei; Sasatani, So; Han, Xian-Hua

    2014-01-01

    Face hallucination is one of learning-based super resolution techniques, which is focused on resolution enhancement of facial images. Though face hallucination is a powerful and useful technique, some detailed high-frequency components cannot be recovered. It also needs accurate alignment between training samples. In this paper, we propose a high-frequency compensation framework based on residual images for face hallucination method in order to improve the reconstruction performance. The basic idea of proposed framework is to reconstruct or estimate a residual image, which can be used to compensate the high-frequency components of the reconstructed high-resolution image. Three approaches based on our proposed framework are proposed. We also propose a patch-based alignment-free face hallucination. In the patch-based face hallucination, we first segment facial images into overlapping patches and construct training patch pairs. For an input low-resolution (LR) image, the overlapping patches are also used to obtain the corresponding high-resolution (HR) patches by face hallucination. The whole HR image can then be reconstructed by combining all of the HR patches. Experimental results show that the high-resolution images obtained using our proposed approaches can improve the quality of those obtained by conventional face hallucination method even if the training data set is unaligned.

  15. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in Lamprey phagocytes.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Havixbeck

    Full Text Available In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey, like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus and lamprey (P. marinus hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of

  16. Structural proteomics of minimal organisms: conservation ofprotein fold usage and evolutionary implications

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou

    2006-03-15

    Background: Determining the complete repertoire of proteinstructures for all soluble, globular proteins in a single organism hasbeen one of the major goals of several structural genomics projects inrecent years. Results: We report that this goal has nearly been reachedfor several "minimal organisms"--parasites or symbionts with reducedgenomes--for which over 95 percent of the soluble, globular proteins maynow be assigned folds, overall 3-D backbone structures. We analyze thestructures of these proteins as they relate to cellular functions, andcompare conservation off old usage between functional categories. We alsocompare patterns in the conservation off olds among minimal organisms andthose observed between minimal organisms and other bacteria. Conclusion:We find that proteins performing essential cellular functions closelyrelated to transcription and translation exhibit a higher degree ofconservation in fold usage than proteins in other functional categories.Folds related to transcription and translation functional categories werealso over represented in minimal organisms compared to otherbacteria.

  17. Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull

    OpenAIRE

    Piekarski, Nadine; Gross, Joshua B.; Hanken, James

    2014-01-01

    Development of the vertebrate skull has been studied intensively for more than 150 years, yet many essential features remain unresolved. One such feature is the extent to which embryonic derivation of individual bones is evolutionarily conserved or labile. We perform long-term fate mapping using GFP-transgenic axolotl and Xenopus laevis to document the contribution of individual cranial neural crest streams to the osteocranium in these amphibians. Here we show that the axolotl pattern is stri...

  18. Metazoan Remaining Genes for Essential Amino Acid Biosynthesis: Sequence Conservation and Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Igor R. Costa

    2014-12-01

    Full Text Available Essential amino acids (EAA consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS and betaine-homocysteine S-methyltransferase (BHMT diverged from the expected Tree of Life (ToL relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  19. Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast.

    Science.gov (United States)

    Maegawa, Kentaro; Takii, Rumi; Ushimaru, Takashi; Kozaki, Akiko

    2015-10-01

    Target of rapamycin (TOR) is a conserved eukaryotic serine/threonine kinase that functions as a central controller of cell growth. TOR protein is structurally defined by the presence several conserved domains such as the HEAT repeat, focal adhesion target (FAT), FKBP12/rapamycin binding (FRB), kinase, and FATC domains starting from the N-terminus. In most eukaryotes, TOR forms two distinct physical and functional complexes, which are termed as TOR complex 1 (TORC1) and TORC2. However, plants contain only TORC1 components, i.e., TOR, Raptor, and LST8. In this study, we analyzed the gene structure and functions of TORC components in rice to understand the properties of the TOR complex in plants. Comparison of the locations of introns in these genes among rice and other eukaryotes showed that they were well conserved among plants except for Chlamydomonas. Moreover, the intron positions in the coding sequence of human Raptor and LST8 were closer to those of plants than of fly or nematode. Complementation tests of rice TOR (OsTOR) components in yeast showed that although OsTOR did not complement yeast tor mutants, chimeric TOR, which consisted of the HEAT repeat and FAT domain from yeast and other regions from rice, rescued the tor mutants, indicating that the HEAT repeat and FAT domains are important for species-specific signaling. OsRaptor perfectly complemented a kog1 (yeast Raptor homolog) mutant, and OsLST8 partially complemented an lst8 mutant. Together, these data suggest the importance of the N-terminal region of the TOR, HEAT, and FAT domains for functional diversification of the TOR complex.

  20. When Heterotrimeric G Proteins Are Not Activated by G Protein-Coupled Receptors: Structural Insights and Evolutionary Conservation.

    Science.gov (United States)

    DiGiacomo, Vincent; Marivin, Arthur; Garcia-Marcos, Mikel

    2018-01-23

    Heterotrimeric G proteins are signal-transducing switches conserved across eukaryotes. In humans, they work as critical mediators of intercellular communication in the context of virtually any physiological process. While G protein regulation by G protein-coupled receptors (GPCRs) is well-established and has received much attention, it has become recently evident that heterotrimeric G proteins can also be activated by cytoplasmic proteins. However, this alternative mechanism of G protein regulation remains far less studied than GPCR-mediated signaling. This Viewpoint focuses on recent advances in the characterization of a group of nonreceptor proteins that contain a sequence dubbed the "Gα-binding and -activating (GBA) motif". So far, four proteins present in mammals [GIV (also known as Girdin), DAPLE, CALNUC, and NUCB2] and one protein in Caenorhabditis elegans (GBAS-1) have been described as possessing a functional GBA motif. The GBA motif confers guanine nucleotide exchange factor activity on Gαi subunits in vitro and activates G protein signaling in cells. The importance of this mechanism of signal transduction is highlighted by the fact that its dysregulation underlies human diseases, such as cancer, which has made the proteins attractive new candidates for therapeutic intervention. Here we discuss recent discoveries on the structural basis of GBA-mediated activation of G proteins and its evolutionary conservation and compare them with the better-studied mechanism mediated by GPCRs.

  1. Evolutionary Conservation and Diversification of the Translation Initiation Apparatus in Trypanosomatids

    Directory of Open Access Journals (Sweden)

    Alexandra Zinoviev

    2012-01-01

    Full Text Available Trypanosomatids are ancient eukaryotic parasites that migrate between insect vectors and mammalian hosts, causing a range of diseases in humans and domestic animals. Trypanosomatids feature a multitude of unusual molecular features, including polycistronic transcription and subsequent processing by trans-splicing and polyadenylation. Regulation of protein coding genes is posttranscriptional and thus, translation regulation is fundamental for activating the developmental program of gene expression. The spliced-leader RNA is attached to all mRNAs. It contains an unusual hypermethylated cap-4 structure in its 5 end. The cap-binding complex, eIF4F, has gone through evolutionary changes in accordance with the requirement to bind cap-4. The eIF4F components in trypanosomatids are highly diverged from their orthologs in higher eukaryotes, and their potential functions are discussed. The cap-binding activity in all eukaryotes is a target for regulation and plays a similar role in trypanosomatids. Recent studies revealed a novel eIF4E-interacting protein, involved in directing stage-specific and stress-induced translation pathways. Translation regulation during stress also follows unusual regulatory cues, as the increased translation of Hsp83 following heat stress is driven by a defined element in the 3 UTR, unlike higher eukaryotes. Overall, the environmental switches experienced by trypanosomatids during their life cycle seem to affect their translational machinery in unique ways.

  2. Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa

    Directory of Open Access Journals (Sweden)

    Löffelhardt Wolfgang

    2008-11-01

    Full Text Available Abstract Background Cyanelles, the peptidoglycan-armored plastids of glaucocystophytes, occupy a unique bridge position in between free-living cyanobacteria and chloroplasts. In some respects they side with cyanobacteria whereas other features are clearly shared with chloroplasts. The Sec translocase, an example for "conservative sorting" in the course of evolution, is found in the plasma membrane of all prokaryotes, in the thylakoid membrane of chloroplasts and in both these membrane types of cyanobacteria. Results In this paper we present evidence for a dual location of the Sec translocon in the thylakoid as well as inner envelope membranes of the cyanelles from Cyanophora paradoxa, i. e. conservative sorting sensu stricto. The prerequisite was the generation of specific antisera directed against cyanelle SecY that allowed immunodetection of the protein on SDS gels from both membrane types separated by sucrose density gradient floatation centrifugation. Immunoblotting of blue-native gels yielded positive but differential results for both the thylakoid and envelope Sec complexes, respectively. In addition, heterologous antisera directed against components of the Toc/Tic translocons and binding of a labeled precursor protein were used to discriminate between inner and outer envelope membranes. Conclusion The envelope translocase can be envisaged as a prokaryotic feature missing in higher plant chloroplasts but retained in cyanelles, likely for protein transport to the periplasm. Candidate passengers are cytochrome c6 and enzymes of peptidoglycan metabolism. The minimal set of subunits of the Toc/Tic translocase of a primitive plastid is proposed.

  3. Phylogeography of Camellia taliensis (Theaceae inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2012-06-01

    Full Text Available Abstract Background As one of the most important but seriously endangered wild relatives of the cultivated tea, Camellia taliensis harbors valuable gene resources for tea tree improvement in the future. The knowledge of genetic variation and population structure may provide insights into evolutionary history and germplasm conservation of the species. Results Here, we sampled 21 natural populations from the species' range in China and performed the phylogeography of C. taliensis by using the nuclear PAL gene fragment and chloroplast rpl32-trnL intergenic spacer. Levels of haplotype diversity and nucleotide diversity detected at rpl32-trnL (h = 0.841; π = 0.00314 were almost as high as at PAL (h = 0.836; π = 0.00417. Significant chloroplast DNA population subdivision was detected (GST = 0.988; NST = 0.989, suggesting fairly high genetic differentiation and low levels of recurrent gene flow through seeds among populations. Nested clade phylogeographic analysis of chlorotypes suggests that population genetic structure in C. taliensis has been affected by habitat fragmentation in the past. However, the detection of a moderate nrDNA population subdivision (GST = 0.222; NST = 0.301 provided the evidence of efficient pollen-mediated gene flow among populations and significant phylogeographical structure (NST > GST; P PAL haplotypes indicates that phylogeographical pattern of nrDNA haplotypes might be caused by restricted gene flow with isolation by distance, which was also supported by Mantel’s test of nrDNA haplotypes (r = 0.234, P  Conclusions We found that C. taliensis showed fairly high genetic differentiation resulting from restricted gene flow and habitat fragmentation. This phylogeographical study gives us deep insights into population structure of the species and conservation strategies for germplasm sampling and developing in situ conservation of natural populations.

  4. Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull.

    Science.gov (United States)

    Piekarski, Nadine; Gross, Joshua B; Hanken, James

    2014-12-01

    Development of the vertebrate skull has been studied intensively for more than 150 years, yet many essential features remain unresolved. One such feature is the extent to which embryonic derivation of individual bones is evolutionarily conserved or labile. We perform long-term fate mapping using GFP-transgenic axolotl and Xenopus laevis to document the contribution of individual cranial neural crest streams to the osteocranium in these amphibians. Here we show that the axolotl pattern is strikingly similar to that in amniotes; it likely represents the ancestral condition for tetrapods. Unexpectedly, the pattern in Xenopus is much different; it may constitute a unique condition that evolved after anurans diverged from other amphibians. Such changes reveal an unappreciated relation between life history evolution and cranial development and exemplify 'developmental system drift', in which interspecific divergence in developmental processes that underlie homologous characters occurs with little or no concomitant change in the adult phenotype.

  5. An Evolutionary-Conserved Function of Mammalian Notch Family Members as Cell Adhesion Molecules

    Science.gov (United States)

    Murata, Akihiko; Yoshino, Miya; Hikosaka, Mari; Okuyama, Kazuki; Zhou, Lan; Sakano, Seiji; Yagita, Hideo; Hayashi, Shin-Ichi

    2014-01-01

    Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion. PMID:25255288

  6. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

    Science.gov (United States)

    Teng, Tun-Chien; Lai, Wei-Che

    2014-12-15

    This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).

  7. Species-specific detection of Candida tropicalis using evolutionary conserved intein DNA sequences.

    Science.gov (United States)

    Rajasekharan, S K; Ray, A K; Ramesh, S; Kannappan Mohanvel, S

    2018-02-10

    Inteins (internal proteins) are self-splicing transportable genetic elements present in conserved regions of housekeeping genes. The study highlights the importance of intein as a potential diagnostic marker for species-specific identification of Candida tropicalis, a rapidly emerging opportunistic human pathogen. Initial steps of primer validation, sequence alignment, phylogenetic tree analysis, gel electrophoresis and real-time polymerase chain reaction (PCR) assays were performed to confirm the specificity of the designed primers. The primers were selective for C. tropicalis with 100% inclusivity and showed no cross-species or cross-genera matches. The established technique is a prototype for developing multifaceted PCR assays and for point-of-care testing in near future. Development of molecular markers for specific detection of microbial pathogens using real-time polymerase chain reaction (PCR) is an appealing and challenging technique. A real-time PCR is an emerging technology frequently used to detect the aetiologic agents. In recent times, designing species-specific primers for pathogen detection is gaining momentum. The method offers rapid, accurate and cost-effective strategy to identify the target, thus providing sufficient time to instigate appropriate chemotherapy. The study highlights the use of intein DNA sequence as molecular markers for species-specific identification of Candida tropicalis. The study also offers a prototype model for developing multifaceted PCR assays using intein DNA sequences, and provides a developmental starting point for point-of-care testing in near future. © 2018 The Society for Applied Microbiology.

  8. Evolutionary history and identification of conservation units in the giant otter, Pteronura brasiliensis.

    Science.gov (United States)

    Pickles, R S A; Groombridge, J J; Zambrana Rojas, V D; Van Damme, P; Gottelli, D; Kundu, S; Bodmer, R; Ariani, C V; Iyengar, A; Jordan, W C

    2011-12-01

    The giant otter, Pteronura brasiliensis, occupies a range including the major drainage basins of South America, yet the degree of structure that exists within and among populations inhabiting these drainages is unknown. We sequenced portions of the mitochondrial DNA (mtDNA) cytochrome b (612bp) and control region (383 bp) genes in order to determine patterns of genetic variation within the species. We found high levels of mtDNA haplotype diversity (h = 0.93 overall) and support for subdivision into four distinct groups of populations, representing important centers of genetic diversity and useful units for prioritizing conservation within the giant otter. We tested these results against the predictions of three hypotheses of Amazonian diversification (Pleistocene Refugia, Paleogeography, and Hydrogeology). While the phylogeographic pattern conformed to the predictions of the Refugia Hypothesis, molecular dating using a relaxed clock revealed the phylogroups diverged from one another between 1.69 and 0.84 Ma, ruling out the influence of Late Pleistocene glacial refugia. However, the role of Plio-Pleistocene climate change could not be rejected. While the molecular dating also makes the influence of geological arches according to the Paleogeography Hypothesis extremely unlikely, the recent Pliocene formation of the Fitzcarrald Arch and its effect of subsequently altering drainage pattern could not be rejected. The data presented here support the interactions of both climatic and hydrological changes resulting from geological activity in the Plio-Pleistocene, in shaping the phylogeographic structure of the giant otter. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Synthesis and assessment methods for an edge-alignment-free hybrid image

    Science.gov (United States)

    Sripian, Peeraya; Yamaguchi, Yasushi

    2017-07-01

    A hybrid image allows multiple image interpretations to be modulated by the viewing distance. It can be constructed on the basis of the multiscale perceptual mechanisms of the human visual system by combining the low and high spatial frequencies of two different images. The hybrid image was introduced as an experimental tool for visual recognition study in terms of spatial frequency perception. To produce a compelling hybrid image, the original hybrid image synthesis method could only use similar shapes of source images that were aligned in the edges. If any two different images can be hybrid, it would be beneficial as a new experimental tool. In addition, there is no measure for the actual perception of spatial frequency, whether a single spatial frequency or both spatial frequencies are perceived from the hybrid stimulus. This paper describes two methods for synthesizing a hybrid image from dissimilar shape images or unaligned images; this hybrid image is known as an "edge-alignment-free hybrid image." A noise-inserted method can be done by intentionally inserting and enhancing noises into the high-frequency image. With this method, the low-frequency blobs are covered with high-frequency noises when viewed up close. A color-inserted method uses complementary color gratings in the background of the high-frequency image to emphasize the high-frequency image when viewed up close, whereas the gratings disappear when viewed from far away. To ascertain that our approach successfully separates the spatial frequency at each viewing distance, we measured this property using our proposed assessment method. Our proposed method allows the experimenter to quantify the probability of perceiving both spatial frequencies and a single spatial frequency in a hybrid image. The experimental results confirmed that our proposed synthesis methods successfully hid the low-frequency image and emphasized the high-frequency image at a close viewing distance. At the same time, the

  10. Spt-Ada-Gcn5-Acetyltransferase (SAGA Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination.

    Directory of Open Access Journals (Sweden)

    Rakesh Srivastava

    Full Text Available The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses.

  11. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  12. Comprehensive characterization of evolutionary conserved breakpoints in four New World Monkey karyotypes compared to Chlorocebus aethiops and Homo sapiens.

    Science.gov (United States)

    Fan, Xiaobo; Supiwong, Weerayuth; Weise, Anja; Mrasek, Kristin; Kosyakova, Nadezda; Tanomtong, Alongkoad; Pinthong, Krit; Trifonov, Vladimir A; Cioffi, Marcelo de Bello; Grothmann, Pierre; Liehr, Thomas; Oliveira, Edivaldo H C de

    2015-11-01

    Comparative cytogenetic analysis in New World Monkeys (NWMs) using human multicolor banding (MCB) probe sets were not previously done. Here we report on an MCB based FISH-banding study complemented with selected locus-specific and heterochromatin specific probes in four NWMs and one Old World Monkey (OWM) species, i.e. in Alouatta caraya (ACA), Callithrix jacchus (CJA), Cebus apella (CAP), Saimiri sciureus (SSC), and Chlorocebus aethiops (CAE), respectively. 107 individual evolutionary conserved breakpoints (ECBs) among those species were identified and compared with those of other species in previous reports. Especially for chromosomal regions being syntenic to human chromosomes 6, 8, 9, 10, 11, 12 and 16 previously cryptic rearrangements could be observed. 50.4% (54/107) NWM-ECBs were colocalized with those of OWMs, 62.6% (62/99) NWM-ECBs were related with those of Hylobates lar (HLA) and 66.3% (71/107) NWM-ECBs corresponded with those known from other mammalians. Furthermore, human fragile sites were aligned with the ECBs found in the five studied species and interestingly 66.3% ECBs colocalized with those fragile sites (FS). Overall, this study presents detailed chromosomal maps of one OWM and four NWM species. This data will be helpful to further investigation on chromosome evolution in NWM and hominoids in general and is prerequisite for correct interpretation of future sequencing based genomic studies in those species.

  13. Conservation genetics of evolutionary lineages of the endangered mountain yellow-legged frog, Rana muscosa (Amphibia: Ranidae), in southern California

    Science.gov (United States)

    Schoville, Sean D.; Tustall, Tate S.; Vredenburg, Vance T.; Backlin, Adam R.; Gallegos, Elizabeth; Wood, Dustin A.; Fisher, Robert N.

    2011-01-01

    Severe population declines led to the listing of southern California Rana muscosa (Ranidae) as endangered in 2002. Nine small populations inhabit watersheds in three isolated mountain ranges, the San Gabriel, San Bernardino and San Jacinto. One population from the Dark Canyon tributary in the San Jacinto Mountains has been used to establish a captive breeding population at the San Diego Zoo Institute for Conservation Research. Because these populations may still be declining, it is critical to gather information on how genetic variation is structured in these populations and what historical inter-population connectivity existed between populations. Additionally, it is not clear whether these populations are rapidly losing genetic diversity due to population bottlenecks. Using mitochondrial and microsatellite data, we examine patterns of genetic variation in southern California and one of the last remaining populations of R. muscosa in the southern Sierra Nevada. We find low levels of genetic variation within each population and evidence of genetic bottlenecks. Additionally, substantial population structure is evident, suggesting a high degree of historical isolation within and between mountain ranges. Based on estimates from a multi-population isolation with migration analysis, these populations diversified during glacial episodes of the Pleistocene, with little gene flow during population divergence. Our data demonstrate that unique evolutionary lineages of R. muscosa occupy each mountain range in southern California and should be managed separately. The captive breeding program at Dark Canyon is promising, although mitigating the loss of neutral genetic diversity relative to the natural population might require additional breeding frogs.

  14. Patterns of evolutionary conservation of ascorbic acid-related genes following whole-genome triplication in Brassica rapa.

    Science.gov (United States)

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Du, Jianchang; Li, Ying

    2014-12-31

    Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in B. rapa. The nucleobase-ascorbate transporter (NAT) gene family and AsA l-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in B. rapa and they mainly diverged 12-18 Ma accompanied by the Brassica-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in B. rapa than in A. thaliana, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in B. rapa. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. USING ECO-EVOLUTIONARY INDIVIDUAL-BASED MODELS TO INVESTIGATE SPATIALLY-DEPENDENT PROCESSES IN CONSERVATION GENETICS

    Science.gov (United States)

    Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...

  16. Conservation.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  17. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (pinaceae): range-wide evolutionary history and implications for conservation

    Science.gov (United States)

    Kevin M. Potter; Valerie D. Hipkins; Mary F. Mahalovich; Robert E. Means

    2013-01-01

    Premise of the study: Ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic...

  18. Conservation genetics of the genus Martes: Assessing within-species movements, units to conserve, and connectivity across ecological and evolutionary time [Chapter 17

    Science.gov (United States)

    Michael K. Schwartz; Aritz Ruiz-Gonzalez; Ryuchi Masuda; Cino Pertoldi

    2012-01-01

    Understanding the physical and temporal factors that structure Martes populations is essential to the conservation and management of the 8 recognized Martes species. Recently, advances in 3 distinct subdisciplines in molecular ecology have provided insights into historical and contemporary environmental factors that have created population substructure and influenced...

  19. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy.

    Science.gov (United States)

    Zuo, Guanghong; Hao, Bailin

    2015-10-01

    A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/ without login requirements. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  20. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy

    Directory of Open Access Journals (Sweden)

    Guanghong Zuo

    2015-10-01

    Full Text Available A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/ without login requirements.

  1. An evolutionary conserved region (ECR in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    Directory of Open Access Journals (Sweden)

    Haddley Kate

    2011-05-01

    Full Text Available Abstract Background Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs, in which the degree of conservation can be comparable with exonic regions suggesting functional significance. Results We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1 supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. Conclusion Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a a strong enhancer that functions in neurons and b a transcription factor that may modulate the function of that enhancer.

  2. Functional comparison of the nematode Hox gene lin-39 in C. elegans and P. pacificus reveals evolutionary conservation of protein function despite divergence of primary sequences.

    Science.gov (United States)

    Grandien, K; Sommer, R J

    2001-08-15

    Hox transcription factors have been implicated in playing a central role in the evolution of animal morphology. Many studies indicate the evolutionary importance of regulatory changes in Hox genes, but little is known about the role of functional changes in Hox proteins. In the nematodes Pristionchus pacificus and Caenorhabditis elegans, developmental processes can be compared at the cellular, genetic, and molecular levels and differences in gene function can be identified. The Hox gene lin-39 is involved in the regulation of nematode vulva development. Comparison of known lin-39 mutations in P. pacificus and C. elegans revealed both conservation and changes of gene function. Here, we study evolutionary changes of lin-39 function using hybrid transgenes and site-directed mutagenesis in an in vivo assay using C. elegans lin-39 mutants. Our data show that despite the functional differences of LIN-39 between the two species, Ppa-LIN-39, when driven by Cel-lin-39 regulatory elements, can functionally replace Cel-lin-39. Furthermore, we show that the MAPK docking and phosphorylation motifs unique for Cel-LIN-39 are dispensable for Cel-lin-39 function. Therefore, the evolution of lin-39 function is driven by changes in regulatory elements rather than changes in the protein itself.

  3. Comparative genomics identifies the mouse Bmp3 promoter and an upstream evolutionary conserved region (ECR in mammals.

    Directory of Open Access Journals (Sweden)

    Jonathan W Lowery

    Full Text Available The Bone Morphogenetic Protein (BMP pathway is a multi-member signaling cascade whose basic components are found in all animals. One member, BMP3, which arose more recently in evolution and is found only in deuterostomes, serves a unique role as an antagonist to both the canonical BMP and Activin pathways. However, the mechanisms that control BMP3 expression, and the cis-regulatory regions mediating this regulation, remain poorly defined. With this in mind, we sought to identify the Bmp3 promoter in mouse (M. musculus through functional and comparative genomic analyses. We found that the minimal promoter required for expression in resides within 0.8 kb upstream of Bmp3 in a region that is highly conserved with rat (R. norvegicus. We also found that an upstream region abutting the minimal promoter acts as a repressor of the minimal promoter in HEK293T cells and osteoblasts. Strikingly, a portion of this region is conserved among all available eutherian mammal genomes (47/47, but not in any non-eutherian animal (0/136. We also identified multiple conserved transcription factor binding sites in the Bmp3 upstream ECR, suggesting that this region may preserve common cis-regulatory elements that govern Bmp3 expression across eutherian mammals. Since dysregulation of BMP signaling appears to play a role in human health and disease, our findings may have application in the development of novel therapeutics aimed at modulating BMP signaling in humans.

  4. The panmixia paradigm of eastern Pacific olive ridley turtles revised: consequences for their conservation and evolutionary biology.

    Science.gov (United States)

    López-Castro, M C; Rocha-Olivares, A

    2005-10-01

    Previous studies of the olive ridley Lepidochelys olivacea population structure in the tropical eastern Pacific have indicated the existence of a single panmictic population ranging from Costa Rica to Mexico. This information has been used to design specific management measures to conserve primary nesting beaches in Mexico. However, little is known about olive ridleys in the Baja California Peninsula, their northernmost reproductive limit, where recent observations have shown differences in nesting female behaviour and size of hatchlings relative to other continental rookeries. We used mtDNA control region sequences from 137 turtles from five continental and four peninsular nesting sites to determine whether such differences correspond to a genetic distinction of Baja California olive ridleys or to phenotypic plasticity associated with the extreme environmental nesting conditions of this region. We found that genetic diversity in peninsular turtles was significantly lower than in continental nesting colonies. Analysis of molecular variance revealed a significant population structure (Phi ST = 0.048, P = 0.006) with the inclusion of peninsular samples. Our results: (i) suggest that the observed phenotypic variation may be associated with genetic differentiation and reproductive isolation; (ii) support the recent colonization of the eastern Pacific by Lepidochelys; (iii) reveal genetic signatures of historical expansion and colonization events; and (iv) significantly challenge the notion of a single genetic and conservation unit of olive ridleys in the eastern Pacific. We conclude that conservation measures for olive ridleys in Mexico should be revised to grant peninsular beaches special attention.

  5. GUTSS: An Alignment-Free Sequence Comparison Method for Use in Human Intestinal Microbiome and Fecal Microbiota Transplantation Analysis.

    Directory of Open Access Journals (Sweden)

    Mitchell J Brittnacher

    Full Text Available Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS metagenomic sequence are lacking.We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray-Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT.Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical evaluation of

  6. GUTSS: An Alignment-Free Sequence Comparison Method for Use in Human Intestinal Microbiome and Fecal Microbiota Transplantation Analysis.

    Science.gov (United States)

    Brittnacher, Mitchell J; Heltshe, Sonya L; Hayden, Hillary S; Radey, Matthew C; Weiss, Eli J; Damman, Christopher J; Zisman, Timothy L; Suskind, David L; Miller, Samuel I

    2016-01-01

    Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS) metagenomic sequence are lacking. We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray-Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS) software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT) studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT. Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical evaluation of human microbiomes

  7. Bloom Filter Trie: an alignment-free and reference-free data structure for pan-genome storage.

    Science.gov (United States)

    Holley, Guillaume; Wittler, Roland; Stoye, Jens

    2016-01-01

    High throughput sequencing technologies have become fast and cheap in the past years. As a result, large-scale projects started to sequence tens to several thousands of genomes per species, producing a high number of sequences sampled from each genome. Such a highly redundant collection of very similar sequences is called a pan-genome. It can be transformed into a set of sequences "colored" by the genomes to which they belong. A colored de Bruijn graph (C-DBG) extracts from the sequences all colored k-mers, strings of length k, and stores them in vertices. In this paper, we present an alignment-free, reference-free and incremental data structure for storing a pan-genome as a C-DBG: the bloom filter trie (BFT). The data structure allows to store and compress a set of colored k-mers, and also to efficiently traverse the graph. Bloom filter trie was used to index and query different pangenome datasets. Compared to another state-of-the-art data structure, BFT was up to two times faster to build while using about the same amount of main memory. For querying k-mers, BFT was about 52-66 times faster while using about 5.5-14.3 times less memory. We present a novel succinct data structure called the Bloom Filter Trie for indexing a pan-genome as a colored de Bruijn graph. The trie stores k-mers and their colors based on a new representation of vertices that compress and index shared substrings. Vertices use basic data structures for lightweight substrings storage as well as Bloom filters for efficient trie and graph traversals. Experimental results prove better performance compared to another state-of-the-art data structure. https://www.github.com/GuillaumeHolley/BloomFilterTrie.

  8. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains.

    Science.gov (United States)

    Pritchard, Leighton; Holden, Nicola J; Bielaszewska, Martina; Karch, Helge; Toth, Ian K

    2012-01-01

    An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to

  9. Phylogeography of the endangered rosewood Dalbergia nigra (Fabaceae): insights into the evolutionary history and conservation of the Brazilian Atlantic Forest

    Science.gov (United States)

    Ribeiro, R A; Lemos-Filho, J P; Ramos, A C S; Lovato, M B

    2011-01-01

    The Brazilian rosewood (Dalbergia nigra) is an endangered tree endemic to the central Brazilian Atlantic Forest, one of the world's most threatened biomes. The population diversity, phylogeographic structure and demographic history of this species were investigated using the variation in the chloroplast DNA (cpDNA) sequences of 185 individuals from 19 populations along the geographical range of the species. Fifteen haplotypes were detected in the analysis of 1297 bp from two non-coding sequences, trnV-trnM and trnL. We identified a strong genetic structure (FST=0.62, Pclimatic changes in the central part of the Atlantic forest, with cycles of forest expansion and contraction, may have led to repeated vicariance events, resulting in the genetic differentiation of these groups. Based on comparisons among the populations of large reserves and small, disturbed fragments of the same phylogeographic group, we also found evidence of recent anthropogenic effects on genetic diversity. The results were also analysed with the aim of contributing to the conservation of D. nigra. We suggest that the three phylogeographic groups could be considered as three distinct management units. Based on the genetic diversity and uniqueness of the populations, we also indicate priority areas for conservation. PMID:20517347

  10. Comparative analysis of complete genomes reveals gene loss, acquisition and acceleration of evolutionary rates in Metazoa, suggests a prevalence of evolution via gene acquisition and indicates that the evolutionary rates in animals tend to be conserved.

    Science.gov (United States)

    Babenko, Vladimir N; Krylov, Dmitri M

    2004-01-01

    In this study we systematically examined the differences between the proteomes of Metazoa and other eukaryotes. Metazoans (Homo sapiens, Ceanorhabditis elegans and Drosophila melanogaster) were compared with a plant (Arabidopsis thaliana), fungi (Saccharomyces cerevisiae and Schizosaccaromyces pombe) and Encephalitozoan cuniculi. We identified 159 gene families that were probably lost in the Metazoan branch and 1263 orthologous families that were specific to Metazoa and were likely to have originated in their last common ancestor (LCA). We analyzed the evolutionary rates of pan-eukaryotic protein families and identified those with higher rates in animals. The acceleration was shown to occur in: (i) the LCA of Metazoa or (ii) independently in the Metazoan phyla. A high proportion of the accelerated Metazoan protein families was found to participate in translation and ribosome biogenesis, particularly mitochondrial. By functional analysis we show that no metabolic pathway in animals evolved faster than in other organisms. We conclude that evolution in the LCA of Metazoa was extensive and proceeded largely by gene duplication and/or invention rather than by modification of extant proteins. Finally, we show that the rate of evolution of a gene family in animals has a clear, but not absolute, tendency to be conserved.

  11. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system?

    Science.gov (United States)

    De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger

    2016-01-15

    Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Evolutionary conservation advice for despotic populations: habitat heterogeneity favours conflict and reduces productivity in Seychelles magpie robins

    Science.gov (United States)

    López-Sepulcre, Andrés; Kokko, Hanna; Norris, Ken

    2010-01-01

    Individual preferences for good habitat are often thought to have a beneficial stabilizing effect for populations. However, if individuals preferentially compete for better-quality territories, these may become hotspots of conflict. We show that, in an endangered species, this process decreases the productivity of favoured territories to the extent that differences in productivity between territories disappear. Unlike predictions from current demographic theory on site-dependent population regulation (ideal despotic distribution), we show that population productivity is reduced if resources are distributed unevenly in space. Competition for high-quality habitat can thus have detrimental consequences for populations even though it benefits individuals. Manipulating conflict (e.g. by reducing variation in habitat quality) can therefore prove an effective conservation measure in species with strong social or territorial conflict. PMID:20534612

  13. Exploring climate niches of ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western United States: Implications for evolutionary history and conservation

    Science.gov (United States)

    Shinneman, Douglas; Means, Robert E.; Potter, Kevin M.; Hipkins, Valerie D.

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with

  14. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation.

    Science.gov (United States)

    Shinneman, Douglas J; Means, Robert E; Potter, Kevin M; Hipkins, Valerie D

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete

  15. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains.

    Directory of Open Access Journals (Sweden)

    Leighton Pritchard

    Full Text Available BACKGROUND: An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. METHODOLOGY/PRINCIPAL FINDINGS: Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. CONCLUSIONS/SIGNIFICANCE: Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high

  16. The evolutionary conservation of the core components necessary for the extrinsic apoptotic signaling pathway, in Medaka fish

    Directory of Open Access Journals (Sweden)

    Kominami Katsuya

    2007-06-01

    Full Text Available Abstract Background Death receptors on the cell surface and the interacting cytosolic molecules, adaptors and initiator caspases, are essential as core components of the extrinsic apoptotic signaling pathway. While the apoptotic machinery governing the extrinsic signaling pathway is well characterized in mammals, it is not fully understood in fish. Results We identified and characterized orthologs of mammalian Fas, FADD and caspase-8 that correspond to the death receptor, adaptor and initiator caspase, from the Medaka fish (Oryzias latipes. Medaka Fas, caspase-8 and FADD exhibited protein structures similar to that of their mammalian counterparts, containing a death domain (DD, a death effector domain (DED or both. Functional analyses indicated that these molecules possess killing activity in mammalian cell lines upon overexpression or following activation by apoptotic stimuli, suggesting similar pro-apoptotic functions in the extrinsic pathway as those in mammals. Genomic sequence analysis revealed that the Medaka fas (tnfrsf6, fadd and caspase-8 (casp8 genes are organized in a similar genomic structure as the mammalian genes. Database search and phylogenetic analysis revealed that the fas gene, but not the fadd and casp8 genes, appear to be present only in vertebrates. Conclusion Our results indicate that the core components necessary for the extrinsic apoptotic pathway are evolutionarily conserved in function and structure across vertebrate species. Based on these results, we presume the mechanism of apoptosis induction via death receptors was evolutionarily established during the appearance of vertebrates.

  17. Molecular Characterization and Expression Profiling of Brachypodium distachyon L. Cystatin Genes Reveal High Evolutionary Conservation and Functional Divergence in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Saminathan Subburaj

    2017-05-01

    Full Text Available Cystatin is a class of proteins mainly involved in cysteine protease inhibition and plant growth and development, as well as tolerance under various abiotic stresses. In this study, we performed the first comprehensive analysis of the molecular characterization and expression profiling in response to various abiotic stresses of the cystatin gene family in Brachypodium distachyon, a novel model plant for Triticum species with huge genomes. Comprehensive searches of the Brachypodium genome database identified 25 B. distachyon cystatin (BdC genes that are distributed unevenly on chromosomes; of these, nine and two were involved in tandem and segmental duplication events, respectively. All BdC genes had similar exon/intron structural organization, with three conserved motifs similar to those from other plant species, indicating their high evolutionary conservation. Expression profiling of 10 typical BdC genes revealed ubiquitous expression in different organs at varying expression levels. BdC gene expression in seedling leaves was particularly highly induced by various abiotic stresses, including the plant hormone abscisic acid and various environmental cues (cold, H2O2, CdCl2, salt, and drought. Interestingly, most BdC genes were significantly upregulated under multiple abiotic stresses, including BdC15 under all stresses, BdC7-2 and BdC10 under five stresses, and BdC7-1, BdC2-1, BdC14, and BdC12 under four stresses. The putative metabolic pathways of cytastin genes in response to various abiotic stresses mainly involve the aberrant protein degradation pathway and reactive oxygen species (ROS-triggered programmed cell death signaling pathways. These observations provide a better understanding of the structural and functional characteristics of the plant cystatin gene family.

  18. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids.

    Science.gov (United States)

    Li, Yushuang; Song, Tian; Yang, Jiasheng; Zhang, Yi; Yang, Jialiang

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector.

  19. An alignment-free method to find similarity among protein sequences via the general form of Chou's pseudo amino acid composition.

    Science.gov (United States)

    Gupta, M K; Niyogi, R; Misra, M

    2013-01-01

    In this paper, we propose a method to create the 60-dimensional feature vector for protein sequences via the general form of pseudo amino acid composition. The construction of the feature vector is based on the contents of amino acids, total distance of each amino acid from the first amino acid in the protein sequence and the distribution of 20 amino acids. The obtained cosine distance metric (also called the similarity matrix) is used to construct the phylogenetic tree by the neighbour joining method. In order to show the applicability of our approach, we tested it on three proteins: 1) ND5 protein sequences from nine species, 2) ND6 protein sequences from eight species, and 3) 50 coronavirus spike proteins. The results are in agreement with known history and the output from the multiple sequence alignment program ClustalW, which is widely used. We have also compared our phylogenetic results with six other recently proposed alignment-free methods. These comparisons show that our proposed method gives a more consistent biological relationship than the others. In addition, the time complexity is linear and space required is less as compared with other alignment-free methods that use graphical representation. It should be noted that the multiple sequence alignment method has exponential time complexity.

  20. Remembering the evolutionary Freud.

    Science.gov (United States)

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  1. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  2. Functional comparison of the nematode Hox gene lin-39 in C. elegans and P. pacificus reveals evolutionary conservation of protein function despite divergence of primary sequences

    OpenAIRE

    Grandien, Kaj; Sommer, Ralf J.

    2001-01-01

    Hox transcription factors have been implicated in playing a central role in the evolution of animal morphology. Many studies indicate the evolutionary importance of regulatory changes in Hox genes, but little is known about the role of functional changes in Hox proteins. In the nematodes Pristionchus pacificus and Caenorhabditis elegans, developmental processes can be compared at the cellular, genetic, and molecular levels and differences in gene function can be identified. The Hox gene lin-3...

  3. Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes.

    Science.gov (United States)

    Seligmann, Hervé

    2018-04-03

    Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evolutionary Demography

    DEFF Research Database (Denmark)

    Levitis, Daniel

    2015-01-01

    of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness...

  5. Evolutionary thinking

    Science.gov (United States)

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  6. Evolutionary Demography

    DEFF Research Database (Denmark)

    Levitis, Daniel

    2015-01-01

    Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...... of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness...

  7. Evolutionary Awareness

    Directory of Open Access Journals (Sweden)

    Gregory Gorelik

    2014-10-01

    Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  8. Evolutionary macroecology

    Directory of Open Access Journals (Sweden)

    José Alexandre F. Diniz-Filho

    2013-10-01

    Full Text Available Macroecology focuses on ecological questions at broad spatial and temporal scales, providing a statistical description of patterns in species abundance, distribution and diversity. More recently, historical components of these patterns have begun to be investigated more deeply. We tentatively refer to the practice of explicitly taking species history into account, both analytically and conceptually, as ‘evolutionary macroecology’. We discuss how the evolutionary dimension can be incorporated into macroecology through two orthogonal and complementary data types: fossils and phylogenies. Research traditions dealing with these data have developed more‐or‐less independently over the last 20–30 years, but merging them will help elucidate the historical components of diversity gradients and the evolutionary dynamics of species’ traits. Here we highlight conceptual and methodological advances in merging these two research traditions and review the viewpoints and toolboxes that can, in combination, help address patterns and unveil processes at temporal and spatial macro‐scales.

  9. Evolutionary Expectations

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    , they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary...

  10. Comparative genetic structure in pines: evolutionary and conservation consequences Estructura genética comparada en pinos: consecuencias evolutivas y para la conservación

    Directory of Open Access Journals (Sweden)

    PATRICIA DELGADO

    2002-03-01

    Full Text Available Pines have been the focus of several studies that estimate population genetic parameters using both allozymes and chloroplast single sequence repeats (SSRs. Also, the genus has also been recently studied using molecular systematics so that we now have a more clear understanding of their evolutionary history. With this background we studied comparatively the genetic structure in pines. Expected heterozygosity is particularly constant with a 99 % confidence interval between 0.19 and 0.23 in species that have been studied until now using allozymes. There is a significant proportion of species (9/41 that show high population differentiation estimates (Fst = or larger than 0.15 and five of these have large and wingless seeds probably associated with low densities, bird dispersal mechanisms and resistance to water stress. These species include the North American pinyon pines. Outcrossing rates are also constant among species from both subgenus Pinus and subgenus Strobus, which probably reflects a selective limit to the amount of deleterious alleles that can be maintained in pine species and this also affects inbreeding levels. We also explored the data published using microsatellites in pines and conclude that these markers uncover a higher proportion of variation and genetic differentiation as expected and that the evolutionary models that are used to derive the population genetic structure estimators should take into account other sources of mutation (point mutations, larger insertions and or deletions and duplications to better understand the comparative applications of these molecular markersLos pinos han sido el objeto de varios estudios para estimar los parámetros genéticos de la población utilizando tanto aloenzimas como fragmentos repetidos de secuencia sencilla (RSSs de cloroplasto. Este género también ha sido estudiado recientemente utilizando sistemática molecular de tal manera que ahora tenemos un entendimiento más claro de su

  11. Intramolecular cross-linking in a bacterial homolog of mammalian SLC6 neurotransmitter transporters suggests an evolutionary conserved role of transmembrane segments 7 and 8

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Loland, Claus Juul; Goldberg, Naomi

    2005-01-01

    transporters has recently been identified in prokaryotes. Here we have probed structural relationships in a 'microdoman' corresponding to the extracellular ends of transmembrane segments (TM) 7 and 8 in one of these homologs, the tryptophan transporter TnaT from Symbiobacterium thermophilum. We found...... that simultaneous - but not individual - substitution of Ala286 at the top of TM7 and Met311 at the top of TM8 with cysteines conferred sensitivity to submicromolar concentrations of Hg(2+) as assessed in a [(3)H]tryptophan uptake assay. Because Hg(2+) can cross-link pairs of cysteines, this suggests close...... proximity between TM 7 and 8 in the tertiary structure of TnaT as previously suggested for the mammalian counterparts. Furthermore, the inhibition of uptake upon cross-linking the two cysteines provides indirect support for a conserved conformational role of these transmembrane domains in the transport...

  12. Multiple Identified Neurons and Peripheral Nerves Innervating the Prothoracic Defense Glands in Stick Insects Reveal Evolutionary Conserved and Novel Elements of a Chemical Defense System

    Directory of Open Access Journals (Sweden)

    Johannes Strauß

    2017-11-01

    Full Text Available The defense glands in the dorsal prothorax are an important autapomorphic trait of stick insects (Phasmatodea. Here, we study the functional anatomy and neuronal innervation of the defense glands in Anisomorpha paromalus (Westwood, 1859 (Pseudophasmatinae, a species which sprays its defense secretions when disturbed or attacked. We use a neuroanatomical approach to identify the nerves innervating the gland muscles and the motoneurons with axons in the different nerves. The defense gland is innervated by nerves originating from two segments, the subesophageal ganglion (SOG, and the prothoracic ganglion. Axonal tracing confirms the gland innervation via the anterior subesophageal nerve, and two intersegmental nerves, the posterior subesophageal nerve, and the anterior prothoracic nerve. Axonal tracing of individual nerves reveals eight identified neuron types in the subesophageal or prothoracic ganglion. The strongest innervating nerve of the gland is the anterior subesophageal nerve, which also supplies dorsal longitudinal thorax muscles (neck muscles by separate nerve branches. Tracing of individual nerve branches reveals different sets of motoneurons innervating the defense gland (one ipsilateral and one contralateral subesophageal neuron or the neck muscle (ventral median neurons. The ipsilateral and contralateral subesophageal neurons have no homologs in related taxa like locusts and crickets, and thus evolved within stick insects with the differentiation of the defense glands. The overall innervation pattern suggests that the longitudinal gland muscles derived from dorsal longitudinal neck muscles. In sum, the innervating nerves for dorsal longitudinal muscles are conserved in stick insects, while the neuronal control system was specialized with conserved motoneurons for the persisting neck muscles, and evolutionarily novel subesophageal and prothoracic motoneurons innervating the defense gland.

  13. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  14. Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs.

    Science.gov (United States)

    Daugeron, Marie-Claire; Lenstra, Tineke L; Frizzarin, Martina; El Yacoubi, Basma; Liu, Xipeng; Baudin-Baillieu, Agnès; Lijnzaad, Philip; Decourty, Laurence; Saveanu, Cosmin; Jacquier, Alain; Holstege, Frank C P; de Crécy-Lagard, Valérie; van Tilbeurgh, Herman; Libri, Domenico

    2011-08-01

    The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t(6)A(37)) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t(6)A(37) formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis.

  15. Expression analysis of Egr-1 ortholog in metamorphic brain of honeybee (Apis mellifera L.): Possible evolutionary conservation of roles of Egr in eye development in vertebrates and insects.

    Science.gov (United States)

    Ugajin, Atsushi; Watanabe, Takayuki; Uchiyama, Hironobu; Sasaki, Tetsuhiko; Yajima, Shunsuke; Ono, Masato

    2016-09-16

    Specific genes quickly transcribed after extracellular stimuli without de novo protein synthesis are known as immediate early genes (IEGs) and are thought to contribute to learning and memory processes in the mature nervous system of vertebrates. A recent study revealed that the homolog of Early growth response protein-1 (Egr-1), which is one of the best-characterized vertebrate IEGs, shared similar properties as a neural activity-dependent gene in the adult brain of insects. With regard to the roles of vertebrate Egr-1 in neural development, the contribution to the development and growth of visual systems has been reported. However, in insects, the expression dynamics of the Egr-1 homologous gene during neural development remains poorly understood. Our expression analysis demonstrated that AmEgr, a honeybee homolog of Egr-1, was transiently upregulated in the developing brain during the early to mid pupal stages. In situ hybridization and 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry revealed that AmEgr was mainly expressed in post-mitotic cells in optic lobes, the primary visual center of the insect brain. These findings suggest the evolutionarily conserved role of Egr homologs in the development of visual systems in vertebrates and insects. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Historical ecology meets conservation and evolutionary genetics: a secondary contact zone between Carabus violaceus (Coleoptera, Carabidae populations inhabiting ancient and recent woodlands in north-western Germany

    Directory of Open Access Journals (Sweden)

    Andrea Matern

    2011-05-01

    Full Text Available Only very few cases have documented that an increase in connectivity after a period of fragmentation in ecological time has had an effect on the distribution, genetic structure and morphology of stenotopic species. In this study we present an example of clinal variability in a woodland ground beetle as a result of changes in the connectivity of a landscape during the last two centuries. The study area hosts both the nominate form C. violaceus s. str. and the subspecies C. v. purpurascens, which is ranked as a distinct species by some authors. We studied 12 Carabus violaceus populations from a 30 km transect of ancient and recent forests in north-western Germany. We analyzed three polymorphic enzyme loci, classified the elytron sculpture and measured the shape of the aedeagus tip of the specimens. C. violaceus showed secondary gradients both in allozyme markers and morphometric characters in our study area. A genetic differentiation of 16% between the populations is high but lies within the range of intraspecific variability in habitat specialists of the genus Carabus. Populations had no significant deficit of heterozygotes. We found many hybrid populations in terms of morphological properties. This study highlights the conservation value of ancient woodland and the consequences of landscape connectivity and defragmentation on the genetic setting of a ground beetle. Moreover, it shows that differences in the external shape of male genitalia do not prevent gene flow within the genus Carabus. Thus, the establishment of species status should not exclusively be based on this property.

  17. First karyotypical description of two American Ciconiiform birds, Mycteria americana (Ciconiidae and Platalea ajaja (Threskiornithidae and its significance for the chromosome evolutionary and biological conservation approaches

    Directory of Open Access Journals (Sweden)

    Mercival Roberto Francisco

    2000-12-01

    Full Text Available The karyotypes of Mycteria americana (Ciconiidae and Platalea ajaja (Threskiornithidae are described. Both species have a diploid number of 2n = 72. There are slight chromosome morphology differences, which could be related to distinct chromosome evolution pathways of these two families. Besides a better understanding of the chromosome relationships among Ciconiiformes, this first chromosome characterization of M. americana and P. ajaja is an important tool for the conservation of both species.No presente trabalho foram descritos os cariótipos de Mycteria americana (Ciconiidae e Platalea ajaja (Threskiornithidae. Embora ambas as espécies tenham apresentado o número diplóide 2n = 72, foram observadas diferenças na morfologia cariotípica resultantes de processos evolutivos distintos que parecem ocorrer entre as duas famílias. Além de contribuir para um melhor entendimento da evolução cromossômica dentro da ordem Ciconiiformes, a caracterização cariotípica de M. americana e P. ajaja vem representar uma importante ferramenta para a realização de planos de manejo e conservação destas espécies.

  18. Bayesian phylogeny analysis of vertebrate serpins illustrates evolutionary conservation of the intron and indels based six groups classification system from lampreys for ∼500 MY

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    2015-06-01

    Full Text Available The serpin superfamily is characterized by proteins that fold into a conserved tertiary structure and exploits a sophisticated and irreversible suicide-mechanism of inhibition. Vertebrate serpins are classified into six groups (V1–V6, based on three independent biological features—genomic organization, diagnostic amino acid sites and rare indels. However, this classification system was based on the limited number of mammalian genomes available. In this study, several non-mammalian genomes are used to validate this classification system using the powerful Bayesian phylogenetic method. This method supports the intron and indel based vertebrate classification and proves that serpins have been maintained from lampreys to humans for about 500 MY. Lampreys have fewer than 10 serpins, which expand into 36 serpins in humans. The two expanding groups V1 and V2 have SERPINB1/SERPINB6 and SERPINA8/SERPIND1 as the ancestral serpins, respectively. Large clusters of serpins are formed by local duplications of these serpins in tetrapod genomes. Interestingly, the ancestral HCII/SERPIND1 locus (nested within PIK4CA possesses group V4 serpin (A2APL1, homolog of α2-AP/SERPINF2 of lampreys; hence, pointing to the fact that group V4 might have originated from group V2. Additionally in this study, details of the phylogenetic history and genomic characteristics of vertebrate serpins are revisited.

  19. Evolutionary Finance

    OpenAIRE

    Igor V. Evstigneev; Thorsten Hens; Klaus Reiner Schenk-Hoppé

    2008-01-01

    Evolutionary finance studies the dynamic interaction of investment strategies in financial markets. This market interaction generates a stochastic wealth dynamics on a heterogenous population of traders through the fluctuation of asset prices and their random payoffs. Asset prices are endogenously determined through short-term market clearing. Investors' portfolio choices are characterized by investment strategies which provide a descriptive model of decision behavior. The mathematical framew...

  20. The Principal Forces of Oocyte Polarity Are Evolutionary Conserved but May Not Affect the Contribution of the First Two Blastomeres to the Blastocyst Development in Mammals.

    Directory of Open Access Journals (Sweden)

    Sayyed-Morteza Hosseini

    Full Text Available Oocyte polarity and embryonic patterning are well-established features of development in lower species. Whether a similar form of pre-patterning exists in mammals is currently under hot debate in mice. This study investigated this issue for the first time in ovine as a large mammal model. Microsurgical trisection of unfertilized MII-oocytes revealed that cortical cytoplasm around spindle (S contained significant amounts of total maternal mRNAs and proteins compared to matched cytoplast hemispheres that were located either near (NS or far (FS -to-spindle. RT-qPCR provided striking examples of maternal mRNA localized to subcellular substructures S (NPM2, GMNN, H19, PCAF, DNMT3A, DNMT1, and STELLA, NS (SOX2, NANOG, POU5F1, and TET1, and FS (GCN of MII oocyte. Immunoblotting revealed that specific maternal proteins DNMT3A and NANOG were asymmetrically enriched in MII-spindle-half of the oocytes. Topological analysis of sperm entry point (SEP revealed that sperm preferentially entered via the MII-spindle-half of the oocytes. Even though, the topological position of first cleavage plane with regard to SEP was quite stochastic. Spatial comparison of lipid content revealed symmetrical distribution of lipids between 2-cell blastomeres. Lineage tracing using Dil, a fluorescent dye, revealed that while the progeny of leading blastomere of 2-cell embryos contributed to more cells in the developed blastocysts compared to lagging counterpart, the contributions of leading and lagging blastomeres to the embryonic-abembryonic parts of the developed blastocysts were almost unbiased. And finally, separated sister blastomeres of 2-cell embryos had an overall similar probability to arrest at any stage before the blastocyst (2-cell, 4-cell, 8-cell, and morula or to achieve the blastocyst stage. It was concluded that the localization of maternal mRNAs and proteins at the spindle are evolutionarily conserved between mammals unfertilized ovine oocyte could be considered

  1. Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer

    OpenAIRE

    Qian Zhang; Se-Ran Jun; Michael Leuze; David Ussery; Intawat Nookaew

    2017-01-01

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral ?tree of life?. However, due to the lack of evolutionary...

  2. Evolutionary institutionalism.

    Science.gov (United States)

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  3. Incorporating evolutionary principles into environmental management and policy

    DEFF Research Database (Denmark)

    Lankau, Richard; Jørgensen, Peter Søgaard; Harris, David J.

    2011-01-01

    As policymakers and managers work to mitigate the effects of rapid anthropogenic environmental changes, they need to consider organisms’ responses. In light of recent evidence that evolution can be quite rapid, this now includes evolutionary responses. Evolutionary principles have a long history...... in conservation biology, and the necessary next step for the field is to consider ways in which conservation policy makers and managers can proactively manipulate evolutionary processes to achieve their goals. In this review, we aim to illustrate the potential conservation benefits of an increased understanding...... of evolutionary history and prescriptive manipulation of three basic evolutionary factors: selection, variation, and gene flow. For each, we review and propose ways that policy makers and managers can use evolutionary thinking to preserve threatened species, combat pest species, or reduce undesirable evolutionary...

  4. Remarkable evolutionary conservation of SOX14 orthologues

    Indian Academy of Sciences (India)

    SOX14 Canis familiaris, 5. SOX14 Equus cabalus, 6. SOX14 Bos taurus, 7. SOX14 Mus musculus, 8. SOX14 Rattus norvegicus,. 9. SOX14 Monodelphis domestica, 10. SOX14 Ornithorinchus anatinus, 11. SOX14. Gallus gallus, 12. SOX14 Xenopus tropicalis, 13. SOX14 Danio rerio, 14. SOX14. Oreochromis aureus, 15.

  5. Remarkable evolutionary conservation of SOX14 orthologues

    Indian Academy of Sciences (India)

    ing early development and they have been implicated in cell- fate decisions in numerous ... ventral border of the limb activates Sox14 (Uchikawa et al. 1999). .... Jelena Popovic and Milena Stevanovic. Table 2. Sequence analysis of SOX14 orthologues. Sequence identity with. GC content GC3 value human. Species.

  6. Remarkable evolutionary conservation of SOX14 orthologues

    Indian Academy of Sciences (India)

    similar amino acid residues are shaded grey. N: N- terminus of SOX14, specific for B2 group of SOX proteins; HMG domain: High Mobility Group binding domain; GBHR: Group B Homology Region; B, C, E, F and G, SOX14 specific regions; A, h1, h2 and h3, SOX14/SOX21 homology regions. 1. SOX14 Homo sapiens, 2.

  7. Remarkable evolutionary conservation of SOX14 orthologues

    Indian Academy of Sciences (India)

    PCR based approach was used to identify Sox14 of goat, cow and rat, while nucleotide and amino acid sequence alignments and mapping were performed using information currently available in public database. Comparative sequence analysis revealed remarkable identity among Sox14 orthologues and helped us to ...

  8. Remarkable evolutionary conservation of SOX14 orthologues

    Indian Academy of Sciences (India)

    species, including human, mouse, platypus, chicken and fish. Sox14 expression is restricted to a limited population of neu- rons in the developing brain and spinal cord of mouse and. Keywords. comparative analysis; comparative mapping; molecular evolution; Sox genes; SOX14 orthologues. Journal of Genetics, Vol.

  9. Evolutionary principles and their practical application

    Science.gov (United States)

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966

  10. Passivity and Evolutionary Game Dynamics

    KAUST Repository

    Park, Shinkyu

    2018-03-21

    This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.

  11. Evolutionary principles and their practical application

    DEFF Research Database (Denmark)

    Hendry, A. P.; Kinnison, M. T.; Heino, M.

    2011-01-01

    are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design......Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles...

  12. Fixism and conservation science.

    Science.gov (United States)

    Robert, Alexandre; Fontaine, Colin; Veron, Simon; Monnet, Anne-Christine; Legrand, Marine; Clavel, Joanne; Chantepie, Stéphane; Couvet, Denis; Ducarme, Frédéric; Fontaine, Benoît; Jiguet, Frédéric; le Viol, Isabelle; Rolland, Jonathan; Sarrazin, François; Teplitsky, Céline; Mouchet, Maud

    2017-08-01

    The field of biodiversity conservation has recently been criticized as relying on a fixist view of the living world in which existing species constitute at the same time targets of conservation efforts and static states of reference, which is in apparent disagreement with evolutionary dynamics. We reviewed the prominent role of species as conservation units and the common benchmark approach to conservation that aims to use past biodiversity as a reference to conserve current biodiversity. We found that the species approach is justified by the discrepancy between the time scales of macroevolution and human influence and that biodiversity benchmarks are based on reference processes rather than fixed reference states. Overall, we argue that the ethical and theoretical frameworks underlying conservation research are based on macroevolutionary processes, such as extinction dynamics. Current species, phylogenetic, community, and functional conservation approaches constitute short-term responses to short-term human effects on these reference processes, and these approaches are consistent with evolutionary principles. © 2016 Society for Conservation Biology.

  13. Attractive evolutionary equilibria

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary

  14. Evolutionary Creation: Moving beyond the Evolution versus Creation Debate

    Science.gov (United States)

    Lamoureux, Denis O.

    2010-01-01

    Evolutionary creation offers a conservative Christian approach to evolution. It explores biblical faith and evolutionary science through a Two Divine Books model and proposes a complementary relationship between Scripture and science. The Book of God's Words discloses the spiritual character of the world, while the Book of God's Works reveals the…

  15. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Evolutionary Biology Today - The Domain of Evolutionary Biology ... Keywords. Evolution; natural selection; biodiversity; fitness; adaptation. Author Affiliations. Amitabh Joshi1. Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research P.Box 6436, Jakkur Bangalore 560 065, India.

  16. Aligning science and policy to achieve evolutionarily enlightened conservation.

    Science.gov (United States)

    Cook, Carly N; Sgrò, Carla M

    2017-06-01

    There is increasing recognition among conservation scientists that long-term conservation outcomes could be improved through better integration of evolutionary theory into management practices. Despite concerns that the importance of key concepts emerging from evolutionary theory (i.e., evolutionary principles and processes) are not being recognized by managers, there has been little effort to determine the level of integration of evolutionary theory into conservation policy and practice. We assessed conservation policy at 3 scales (international, national, and provincial) on 3 continents to quantify the degree to which key evolutionary concepts, such as genetic diversity and gene flow, are being incorporated into conservation practice. We also evaluated the availability of clear guidance within the applied evolutionary biology literature as to how managers can change their management practices to achieve better conservation outcomes. Despite widespread recognition of the importance of maintaining genetic diversity, conservation policies provide little guidance about how this can be achieved in practice and other relevant evolutionary concepts, such as inbreeding depression, are mentioned rarely. In some cases the poor integration of evolutionary concepts into management reflects a lack of decision-support tools in the literature. Where these tools are available, such as risk-assessment frameworks, they are not being adopted by conservation policy makers, suggesting that the availability of a strong evidence base is not the only barrier to evolutionarily enlightened management. We believe there is a clear need for more engagement by evolutionary biologists with policy makers to develop practical guidelines that will help managers make changes to conservation practice. There is also an urgent need for more research to better understand the barriers to and opportunities for incorporating evolutionary theory into conservation practice. © 2016 Society for Conservation

  17. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Evolutionary Biology Today - What do Evolutionary Biologists do? Amitabh Joshi. Series Article Volume 8 Issue 2 February 2003 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General ... Using some examples of classical games, we show how evolutionary game theory can help understand behavioural decisions of animals.

  19. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Amitabh Joshi studies and teaches evolutionary genetics and population ecology at the Jawaharlal. Nehru Centre for Advanced. Scientific Research,. Bangalore. His current research interests are in life- history evolution, the evolutionary genetics of biological clocks, and small population and meta population dynamics.

  20. Methodological problems in evolutionary biology. XII. Against evolutionary ethics.

    NARCIS (Netherlands)

    vd Steen, W.J.

    1999-01-01

    Evolutionary ethics has recently become popular again. Some of its representatives elaborate new attempts to derive ethics from evolutionary biology. The attempts, like previous ones, fail because they commit the naturalistic fallacy. Premises from evolutionary biology together with normative

  1. Nonlinearity, Conservation Law and Shocks

    Indian Academy of Sciences (India)

    the Mathematics. Olympiad in India. Phoolan Prasad. We present in two parts, a mathematical theory of conservation laws using the language of physics. In Part I we explain the concept of a special type of nonlinearity which appears in an important class of evolutionary processes governed by hyperbolic partial differential.

  2. Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae.

    Science.gov (United States)

    Edholm, Eva-Stina; Goyos, Ana; Taran, Joseph; De Jesús Andino, Francisco; Ohta, Yuko; Robert, Jacques

    2014-06-01

    Nonclassical MHC class Ib (class Ib) genes are a family of highly diverse and rapidly evolving genes wherein gene numbers, organization, and expression markedly differ even among closely related species rendering class Ib phylogeny difficult to establish. Whereas among mammals there are few unambiguous class Ib gene orthologs, different amphibian species belonging to the anuran subfamily Xenopodinae exhibit an unusually high degree of conservation among multiple class Ib gene lineages. Comparative genomic analysis of class Ib gene loci of two divergent (~65 million years) Xenopodinae subfamily members Xenopus laevis (allotetraploid) and Xenopus tropicalis (diploid) shows that both species possess a large cluster of class Ib genes denoted as Xenopus/Silurana nonclassical (XNC/SNC). Our study reveals two distinct phylogenetic patterns among these genes: some gene lineages display a high degree of flexibility, as demonstrated by species-specific expansion and contractions, whereas other class Ib gene lineages have been maintained as monogenic subfamilies with very few changes in their nucleotide sequence across divergent species. In this second category, we further investigated the XNC/SNC10 gene lineage that in X. laevis is required for the development of a distinct semi-invariant T cell population. We report compelling evidence of the remarkable high degree of conservation of this gene lineage that is present in all 12 species of the Xenopodinae examined, including species with different degrees of ploidy ranging from 2, 4, 8 to 12 N. This suggests that the critical role of XNC10 during early T cell development is conserved in amphibians.

  3. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... evolutionary algorithms, such as memetic algorithms, which have emerged as a very promising tool for solving many real-world problems in a multitude of areas of science and technology. Moreover, parallel evolutionary combinatorial optimization has been presented. Search operators, which are crucial in all...

  4. Evolutionary Mechanisms for Loneliness

    Science.gov (United States)

    Cacioppo, John T.; Cacioppo, Stephanie; Boomsma, Dorret I.

    2013-01-01

    Robert Weiss (1973) conceptualized loneliness as perceived social isolation, which he described as a gnawing, chronic disease without redeeming features. On the scale of everyday life, it is understandable how something as personally aversive as loneliness could be regarded as a blight on human existence. However, evolutionary time and evolutionary forces operate at such a different scale of organization than we experience in everyday life that personal experience is not sufficient to understand the role of loneliness in human existence. Research over the past decade suggests a very different view of loneliness than suggested by personal experience, one in which loneliness serves a variety of adaptive functions in specific habitats. We review evidence on the heritability of loneliness and outline an evolutionary theory of loneliness, with an emphasis on its potential adaptive value in an evolutionary timescale. PMID:24067110

  5. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory

    Science.gov (United States)

    Ferriere, Regis; Legendre, Stéphane

    2013-01-01

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163

  6. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory.

    Science.gov (United States)

    Ferriere, Regis; Legendre, Stéphane

    2013-01-19

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause 'evolutionary suicide'. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called 'evolutionary trapping'. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps.

  7. Sequence analysis, identification of evolutionary conserved motifs and expression analysis of murine tcof1 provide further evidence for a potential function for the gene and its human homologue, TCOF1.

    Science.gov (United States)

    Dixon, J; Hovanes, K; Shiang, R; Dixon, M J

    1997-05-01

    The gene mutated in Treacher Collins syndrome, an autosomal dominant disorder of facial development, has recently been cloned. While the function of the predicted protein, Treacle, is unknown, it has been shown to share a number of features with the highly phosphorylated nucleolar phosphoproteins, which play a role in nucleolar-cytoplasmic transport. In the current study, the murine homologue of the Treacher Collins syndrome gene has been isolated and shown to encode a low complexity, serine/alanine-rich protein of 133 kDa. Interspecies comparison indicates that the proteins display 61.5% identity, with the level of conservation being greatest in the regions of acidic/basic amino acid repeats and nuclear localization signals. These features are shared with the nucleolar phosphoproteins. Confirmation that the gene isolated in the current study is orthologous with the Treacher Collins syndrome gene was provided by the demonstration that it mapped to central mouse chromosome 18 in a conserved syntenic region with human chromosome 5q21-q33. Expression analysis in the mouse indicated that the gene was expressed in a wide variety of embryonic and adult tissues. Peak levels of expression in the developing embryo were observed at the edges of the neural folds immediately prior to fusion, and also in the developing branchial arches at the times of critical morphogenetic events. These observations support a role for the gene in the development of the craniofacial complex and provide further evidence that the gene encodes a protein which may be involved in nucleolar-cytoplasmic transport.

  8. Evolutionary rate variation and RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Knudsen, B.; Andersen, E.S.; Damgaard, C.

    2004-01-01

    Predicting RNA secondary structure using evolutionary history can be carried out by using an alignment of related RNA sequences with conserved structure. Accurately determining evolutionary substitution rates for base pairs and single stranded nucleotides is a concern for methods based on this type...... by applying rates derived from tRNA and rRNA to the prediction of the much more rapidly evolving 5'-region of HIV-1. We find that the HIV-1 prediction is in agreement with experimental data, even though the relative evolutionary rate between A and G is significantly increased, both in stem and loop regions...

  9. Tree Contractions and Evolutionary Trees

    OpenAIRE

    Kao, Ming-Yang

    2001-01-01

    An evolutionary tree is a rooted tree where each internal vertex has at least two children and where the leaves are labeled with distinct symbols representing species. Evolutionary trees are useful for modeling the evolutionary history of species. An agreement subtree of two evolutionary trees is an evolutionary tree which is also a topological subtree of the two given trees. We give an algorithm to determine the largest possible number of leaves in any agreement subtree of two trees T_1 and ...

  10. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  11. Paleoanthropology and evolutionary theory.

    Science.gov (United States)

    Tattersall, Ian

    2012-01-01

    Paleoanthropologists of the first half of the twentieth century were little concerned either with evolutionary theory or with the technicalities and broader implications of zoological nomenclature. In consequence, the paleoanthropological literature of the period consisted largely of a series of descriptions accompanied by authoritative pronouncements, together with a huge excess of hominid genera and species. Given the intellectual flimsiness of the resulting paleoanthropological framework, it is hardly surprising that in 1950 the ornithologist Ernst Mayr met little resistance when he urged the new postwar generation of paleoanthropologists to accept not only the elegant reductionism of the Evolutionary Synthesis but a vast oversimplification of hominid phylogenetic history and nomenclature. Indeed, the impact of Mayr's onslaught was so great that even when developments in evolutionary biology during the last quarter of the century brought other paleontologists to the realization that much more has been involved in evolutionary histories than the simple action of natural selection within gradually transforming lineages, paleoanthropologists proved highly reluctant to follow. Even today, paleoanthropologists are struggling to reconcile an intuitive realization that the burgeoning hominid fossil record harbors a substantial diversity of species (bringing hominid evolutionary patterns into line with that of other successful mammalian families), with the desire to cram a huge variety of morphologies into an unrealistically minimalist systematic framework. As long as this theoretical ambivalence persists, our perception of events in hominid phylogeny will continue to be distorted.

  12. Applying Evolutionary Anthropology

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  13. Domain architecture conservation in orthologs

    Science.gov (United States)

    2011-01-01

    Background As orthologous proteins are expected to retain function more often than other homologs, they are often used for functional annotation transfer between species. However, ortholog identification methods do not take into account changes in domain architecture, which are likely to modify a protein's function. By domain architecture we refer to the sequential arrangement of domains along a protein sequence. To assess the level of domain architecture conservation among orthologs, we carried out a large-scale study of such events between human and 40 other species spanning the entire evolutionary range. We designed a score to measure domain architecture similarity and used it to analyze differences in domain architecture conservation between orthologs and paralogs relative to the conservation of primary sequence. We also statistically characterized the extents of different types of domain swapping events across pairs of orthologs and paralogs. Results The analysis shows that orthologs exhibit greater domain architecture conservation than paralogous homologs, even when differences in average sequence divergence are compensated for, for homologs that have diverged beyond a certain threshold. We interpret this as an indication of a stronger selective pressure on orthologs than paralogs to retain the domain architecture required for the proteins to perform a specific function. In general, orthologs as well as the closest paralogous homologs have very similar domain architectures, even at large evolutionary separation. The most common domain architecture changes observed in both ortholog and paralog pairs involved insertion/deletion of new domains, while domain shuffling and segment duplication/deletion were very infrequent. Conclusions On the whole, our results support the hypothesis that function conservation between orthologs demands higher domain architecture conservation than other types of homologs, relative to primary sequence conservation. This supports the

  14. Dynamic conservation of forest genetic resources in 33 European countries

    NARCIS (Netherlands)

    Lefevre, F.; Koskela, J.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C.; Vries, de S.M.G.

    2013-01-01

    Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across

  15. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  16. The population genetics of evolutionary rescue.

    Directory of Open Access Journals (Sweden)

    H Allen Orr

    2014-08-01

    Full Text Available Evolutionary rescue occurs when a population that is threatened with extinction by an environmental change adapts to the change sufficiently rapidly to survive. Here we extend the mathematical theory of evolutionary rescue. In particular, we model evolutionary rescue to a sudden environmental change when adaptation involves evolution at a single locus. We consider adaptation using either new mutations or alleles from the standing genetic variation that begin rare. We obtain several results: i the total probability of evolutionary rescue from either new mutation or standing variation; ii the conditions under which rescue is more likely to involve a new mutation versus an allele from the standing genetic variation; iii a mathematical description of the U-shaped curve of total population size through time, conditional on rescue; and iv the time until the average population size begins to rebound as well as the minimal expected population size experienced by a rescued population. Our analysis requires taking into account a subtle population-genetic effect (familiar from the theory of genetic hitchhiking that involves "oversampling" of those lucky alleles that ultimately sweep to high frequency. Our results are relevant to conservation biology, experimental microbial evolution, and medicine (e.g., the dynamics of antibiotic resistance.

  17. Molluscan Evolutionary Development

    DEFF Research Database (Denmark)

    Wanninger, Andreas Wilhelm Georg; Koop, Damien; Moshel-Lynch, Sharon

    2008-01-01

    Brought together by Winston F. Ponder and David R. Lindberg, thirty-six experts on the evolution of the Mollusca provide an up-to-date review of its evolutionary history. The Mollusca are the second largest animal phylum and boast a fossil record of over 540 million years. They exhibit remarkable...

  18. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    An `evolutionary transition in individuality' or `major transition' is a transformation in the hierarchical level at which natural selection operates on a population. In this article I give an abstract (i.e. level-neutral and substrate-neutral) articulation of the transition process in order to precisely understand how such processes can ...

  19. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... collectivist life forms have spread through the population, the situation – the terms of the evolutionary game – have changed. Where initially there ...... Kerr B and Godfrey-Smith P 2002 Individualist and multi-level perspectives on selection in structured populations. Biol. Philos. 17 477–517. Kirk DL 1998 ...

  20. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    IAS Admin

    After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.

  1. Editorial overview: Evolutionary psychology

    NARCIS (Netherlands)

    Gangestad, S.W.; Tybur, J.M.

    2016-01-01

    Functional approaches in psychology - which ask what behavior is good for - are almost as old as scientific psychology itself. Yet sophisticated, generative functional theories were not possible until developments in evolutionary biology in the mid-20th century. Arising in the last three decades,

  2. Evolutionary trends in Heteroptera

    NARCIS (Netherlands)

    Cobben, R.H.

    1968-01-01

    1. This work, the first volume of a series dealing with evolutionary trends in Heteroptera, is concerned with the egg system of about 400 species. The data are presented systematically in chapters 1 and 2 with a critical review of the literature after each family.

    2. Chapter 3 evaluates facts

  3. Interfaces in evolutionary games

    Science.gov (United States)

    Kolotev, Sergei; Malyutin, Aleksandr; Burovski, Evgeni; Shchur, Lev

    2018-01-01

    We investigate geometrical aspects of a spatial evolutionary game. The game is based on the Prisoner’s dilemma. We analyze the geometrical structure of the space distribution of cooperators and defectors in the steady-state regime of evolution. We develop algorithm for the identification of the interfaces between clusters of cooperators and defectors, and measure fractal properties of the interfaces.

  4. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... was to define a major transition by identifying a pattern that is common across an otherwise diverse set of ... been many major evolutionary events that this definition of a transition excludes. The evolution of ...... fragmentation periodic, or brings it under endogenous con- trol. So the mechanisms are far from ...

  5. Evolutionary perspectives on ageing.

    Science.gov (United States)

    Reichard, Martin

    2017-10-01

    From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evolutionary Developmental Psychology.

    Science.gov (United States)

    Geary, David C.; Bjorklund, David F.

    2000-01-01

    Describes evolutionary developmental psychology as the study of the genetic and ecological mechanisms that govern the development of social and cognitive competencies common to all human beings and the epigenetic (gene-environment interactions) processes that adapt these competencies to local conditions. Outlines basic assumptions and domains of…

  7. Applications of Evolutionary Computation

    NARCIS (Netherlands)

    Mora, Antonio M.; Squillero, Giovanni; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Smith, Stephen L; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Mora, Antonio M.; Squillero, Giovanni; Jan, Mathieu; Matthias, M; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Esparcia-Alcazar, Anna I; Silva, Sara; Agapitos, Alexandros; Cotta, Carlos; De Falco, Ivanoe; Cioppa, Antonio Della; Diwold, Konrad; Ekart, Aniko; Tarantino, Ernesto; Vega, Francisco Fernandez De; Burelli, Paolo; Sim, Kevin; Cagnoni, Stefano; Simoes, Anabela; Merelo, J.J.; Urquhart, Neil; Haasdijk, Evert; Zhang, Mengjie; Squillero, Giovanni; Eiben, A E; Tettamanzi, Andrea G B; Glette, Kyrre; Rohlfshagen, Philipp; Schaefer, Robert; Caserta, Marco; Ramirez, Adriana; Voß, Stefan

    2015-01-01

    The application of genetic and evolutionary computation to problems in medicine has increased rapidly over the past five years, but there are specific issues and challenges that distinguish it from other real-world applications. Obtaining reliable and coherent patient data, establishing the clinical

  8. Conservation Value

    OpenAIRE

    Tisdell, Clement A.

    2010-01-01

    This paper outlines the significance of the concept of conservation value and discusses ways in which it is determined paying attention to views stemming from utilitarian ethics and from deontological ethics. The importance of user costs in relation to economic decisions about the conservation and use of natural resources is emphasised. Particular attention is given to competing views about the importance of conserving natural resources in order to achieve economic sustainability. This then l...

  9. Are hotspots of evolutionary potential adequately protected in southern California?

    Science.gov (United States)

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  10. Genome Trees from Conservation Profiles.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The concept of the genome tree depends on the potential evolutionary significance in the clustering of species according to similarities in the gene content of their genomes. In this respect, genome trees have often been identified with species trees. With the rapid expansion of genome sequence data it becomes of increasing importance to develop accurate methods for grasping global trends for the phylogenetic signals that mutually link the various genomes. We therefore derive here the methodological concept of genome trees based on protein conservation profiles in multiple species. The basic idea in this derivation is that the multi-component "presence-absence" protein conservation profiles permit tracking of common evolutionary histories of genes across multiple genomes. We show that a significant reduction in informational redundancy is achieved by considering only the subset of distinct conservation profiles. Beyond these basic ideas, we point out various pitfalls and limitations associated with the data handling, paving the way for further improvements. As an illustration for the methods, we analyze a genome tree based on the above principles, along with a series of other trees derived from the same data and based on pair-wise comparisons (ancestral duplication-conservation and shared orthologs. In all trees we observe a sharp discrimination between the three primary domains of life: Bacteria, Archaea, and Eukarya. The new genome tree, based on conservation profiles, displays a significant correspondence with classically recognized taxonomical groupings, along with a series of departures from such conventional clusterings.

  11. The evolutionary strata of DARPP-32 tail implicates hierarchical ...

    Indian Academy of Sciences (India)

    Predicted phosphorylation sites on DARPP-32 show conservation across vertebrates. Phylogenetics analysis indicates evolutionary strata of phosphorylation site acquisition at the C-terminus, suggesting functional expansion of DARPP-32, where more diverse signalling cues may involve in regulating DARPP-32 in ...

  12. Evolutionary change and phylogenetic relationships in light of ...

    Indian Academy of Sciences (India)

    2015-04-20

    Apr 20, 2015 ... from bacteria to animals, have acquired and conserved genes derived from other organisms, which has placed horizontal gene transfer, or HGT (the process of incorporation of new genetic material to host genomes, also known as lateral gene transfer, or LTG), in the realm of evolutionary biology.

  13. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.

    Directory of Open Access Journals (Sweden)

    Benjamin R Jack

    2016-05-01

    Full Text Available Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.

  14. Evolutionary problems in centrosome and centriole biology.

    Science.gov (United States)

    Ross, L; Normark, B B

    2015-05-01

    Centrosomes have been an enigma to evolutionary biologists. Either they have been the subject of ill-founded speculation or they have been ignored. Here, we highlight evolutionary paradoxes and problems of centrosome and centriole evolution and seek to understand them in the light of recent advances in centrosome biology. Most evolutionary accounts of centrosome evolution have been based on the hypothesis that centrosomes are replicators, independent of the nucleus and cytoplasm. It is now clear, however, that this hypothesis is not tenable. Instead, centrosomes are formed de novo each cell division, with the presence of an old centrosome regulating, but not essential for, the assembly of a new one. Centrosomes are the microtubule-organizing centres of cells. They can potentially affect sensory and motor characters (as the basal body of cilia), as well as the movements of chromosomes during cell division. This latter role does not seem essential, however, except in male meiosis, and the reasons for this remain unclear. Although the centrosome is absent in some taxa, when it is present, its structure is extraordinarily conserved: in most taxa across eukaryotes, it does not appear to evolve at all. And yet a few insect groups display spectacular hypertrophy of the centrioles. We discuss how this might relate to the unusual reproductive system found in these insects. Finally, we discuss why the fate of centrosomes in sperm and early embryos might differ between different groups of animals. © 2015 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  15. The four cornerstones of Evolutionary Toxicology.

    Science.gov (United States)

    Bickham, John W

    2011-05-01

    Evolutionary Toxicology is the study of the effects of chemical pollutants on the genetics of natural populations. Research in Evolutionary Toxicology uses experimental designs familiar to the ecotoxicologist with matched reference and contaminated sites and the selection of sentinel species. It uses the methods of molecular genetics and population genetics, and is based on the theories and concepts of evolutionary biology and conservation genetics. Although it is a relatively young field, interest is rapidly growing among ecotoxicologists and more and more field studies and even controlled laboratory experiments are appearing in the literature. A number of population genetic impacts have been observed in organisms exposed to pollutants which I refer to here as the four cornerstones of Evolutionary Toxicology. These include (1) genome-wide changes in genetic diversity, (2) changes in allelic or genotypic frequencies caused by contaminant-induced selection acting at survivorship loci, (3) changes in dispersal patterns or gene flow which alter the genetic relationships among populations, and (4) changes in allelic or genotypic frequencies caused by increased mutation rates. It is concluded that population genetic impacts of pollution exposure are emergent effects that are not necessarily predictable from the mode of toxicity of the pollutant. Thus, to attribute an effect to a particular contaminant requires a careful experimental design which includes selection of appropriate reference sites, detailed chemistry analyses of environmental samples and tissues, and the use of appropriate biomarkers to establish exposure and effect. This paper describes the field of Evolutionary Toxicology and discusses relevant field studies and their findings. © Springer Science+Business Media, LLC 2011

  16. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    In Evolutionary genetics: from molecules to morphology (ed. R. S. Singh and C. B. Krimbas), pp. 609–627. Cambridge Uni- versity Press, Cambridge. Houle D. 2001 Characters as the units of evolutionary change. In The character concept in evolutionary biology. (ed. G. P. Wagner), pp. 109–140. Academic Press, San Diego.

  17. Catchments as conservation units for riverine biodiversity | Wishart ...

    African Journals Online (AJOL)

    The geological structure and longitudinal nature of river systems provide a possible barrier to the dispersal of lotic organisms. This has the potential to drive evolutionary processes such as genetic differentiation and subsequent allopatric speciation. In the conservation of lotic ecosystems population and evolutionary ...

  18. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    Science.gov (United States)

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  19. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  20. Evolutionary approaches to understanding sleep.

    Science.gov (United States)

    Lee Kavanau, J

    2005-04-01

    A major controversy over REM sleep's role in memory processing may owe to inadequate allowances for the highly conservative nature of evolutionary adaptations. The controversy hinges on whether NREM sleep, alone, retains primitive memory processing capabilities. The selective pressure for primitive sleep, is thought to have been the need to obviate conflicts between enormous neural processing requirements of complex visual analysis and split-second control of movements, on the one hand, and memory processing, on the other. The most efficient memory processing during mammalian and avian sleep appears to be a two-step process: synapses in individual component circuits of events are reinforced primarily by slow brain waves during NREM sleep, with the reinforced components temporally bound by fast waves, and manifested as dreams, during REM sleep. This dual action could account for partitioning of sleep periods into multiple NREM-REM cycles. It is proposed that in the absence of REM sleep, all needed memory processing can be accomplished by NREM sleep, alone, though less efficiently. Many symptoms of fatal familial insomnia are attributed to subnormal nightly reinforcement of brain circuitry because of almost total loss of sleep, and compensatory responses thereto during waking. During this disorder, sensory circuitry seemingly is spared by virtue of its supernormal reinforcement during almost continuous waking. Contrariwise, sparing of an adult's 'higher faculties' in encephalitis lethargica appears to owe to supernormal circuit reinforcement during almost continuous sleep.

  1. Anxiety: an evolutionary approach.

    OpenAIRE

    Bateson, M; Brilot, B; Nettle, D

    2011-01-01

    Anxiety disorders are among the most common mental illnesses, with huge attendant suffering. Current treatments are not universally effective, suggesting that a deeper understanding of the causes of anxiety is needed. To understand anxiety disorders better, it is first necessary to understand the normal anxiety response. This entails considering its evolutionary function as well as the mechanisms underlying it. We argue that the function of the human anxiety response, and homologues in other ...

  2. Evolutionary Dynamics of Globalization

    OpenAIRE

    Naci Canpolat; Hüseyin Ozel

    2008-01-01

    The expansion of markets –globalization– was reversed during early 20th century and unfettered markets gave in to the welfare state and central planning. But the markets have been striking back since the early 1980s. Governments are withdrawn from economic activities, and many structural market reforms are implemented. Now the question is: Can the forces that market expansion create again reverse this expansion? This paper seeks an answer to this question by constructing an evolutionary game ...

  3. Computational evolutionary perception.

    Science.gov (United States)

    Hoffman, Donald D; Singh, Manish

    2012-01-01

    Marr proposed that human vision constructs "a true description of what is there". He argued that to understand human vision one must discover the features of the world it recovers and the constraints it uses in the process. Bayesian decision theory (BDT) is used in modem vision research as a probabilistic framework for understanding human vision along the lines laid out by Marr. Marr's contribution to vision research is substantial and justly influential. We propose, however, that evolution by natural selection does not, in general, favor perceptions that are true descriptions of the objective world. Instead, research with evolutionary games shows that perceptual systems tuned solely to fitness routinely outcompete those tuned to truth. Fitness functions depend not just on the true state of the world, but also on the organism, its state, and the type of action. Thus, fitness and truth are distinct. Natural selection depends only on expected fitness. It shapes perceptual systems to guide fitter behavior, not to estimate truth. To study perception in an evolutionary context, we introduce the framework of Computational Evolutionary Perception (CEP). We show that CEP subsumes BDT, and reinterprets BDT as evaluating expected fitness rather than estimating truth.

  4. Asymmetric Evolutionary Games.

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  5. Asymmetric Evolutionary Games.

    Directory of Open Access Journals (Sweden)

    Alex McAvoy

    2015-08-01

    Full Text Available Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  6. Multispecies genetic objectives in spatial conservation planning.

    Science.gov (United States)

    Nielsen, Erica S; Beger, Maria; Henriques, Romina; Selkoe, Kimberly A; von der Heyden, Sophie

    2017-08-01

    Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear-cut guidance on how genetic features can be incorporated into conservation-planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation-priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected-area networks that appropriately preserve community-level evolutionary patterns. © 2016 Society for Conservation Biology.

  7. Reshaping conservation

    DEFF Research Database (Denmark)

    Funder, Mikkel; Danielsen, Finn; Ngaga, Yonika

    2013-01-01

    members strengthen the monitoring practices to their advantage, and to some extent move them beyond the reach of government agencies and conservation and development practitioners. This has led to outcomes that are of greater social and strategic value to communities than the original 'planned' benefits......, although the monitoring scheme has also to some extent become dominated by local 'conservation elites' who negotiate the terrain between the state and other community members. Our findings suggest that we need to move beyond simplistic assumptions of community strategies and incentives in participatory...... conservation and allow for more adaptive and politically explicit governance spaces in protected area management....

  8. Conservation Evo-Devo: Preserving Biodiversity by Understanding Its Origins.

    Science.gov (United States)

    Campbell, Calum S; Adams, Colin E; Bean, Colin W; Parsons, Kevin J

    2017-10-01

    Unprecedented rates of species extinction increase the urgency for effective conservation biology management practices. Thus, any improvements in practice are vital and we suggest that conservation can be enhanced through recent advances in evolutionary biology, specifically advances put forward by evolutionary developmental biology (i.e., evo-devo). There are strong overlapping conceptual links between conservation and evo-devo whereby both fields focus on evolutionary potential. In particular, benefits to conservation can be derived from some of the main areas of evo-devo research, namely phenotypic plasticity, modularity and integration, and mechanistic investigations of the precise developmental and genetic processes that determine phenotypes. Using examples we outline how evo-devo can expand into conservation biology, an opportunity which holds great promise for advancing both fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evolutionary hotspots in the Mojave Desert

    Science.gov (United States)

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  10. Nuclear myosin is ubiquitously expressed and evolutionary conserved in vertebrates

    Czech Academy of Sciences Publication Activity Database

    Kahle, Michal; Přidalová, Jarmila; Špaček, M.; Dzijak, Rastislav; Hozák, Pavel

    2007-01-01

    Roč. 127, č. 2 (2007), s. 139-184 ISSN 0948-6143 R&D Projects: GA ČR GA204/04/0108; GA AV ČR IAA5039202; GA MŠk LC545; GA ČR GD204/05/H023 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50520514 Keywords : Nuclear myosin I * Transcription * Chromatin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.893, year: 2007

  11. Evolutionary patterns and processes

    DEFF Research Database (Denmark)

    Leonardi, Michela; Sanz, Pablo Librado; Der Sarkissian, Clio

    2017-01-01

    Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates......, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution-time, allowing a wealth of fundamental evolutionary...

  12. Molluscan Evolutionary Development

    DEFF Research Database (Denmark)

    Wanninger, Andreas Wilhelm Georg; Koop, Damien; Moshel-Lynch, Sharon

    2008-01-01

    Brought together by Winston F. Ponder and David R. Lindberg, thirty-six experts on the evolution of the Mollusca provide an up-to-date review of its evolutionary history. The Mollusca are the second largest animal phylum and boast a fossil record of over 540 million years. They exhibit remarkable...... anatomical diversity and include the bivalves (scallops, oysters, and clams), gastropods (limpets, snails, and slugs), and cephalopods (squid, cuttlefish, and octopus). This study treats each major taxon and supplies general information as well as overviews of evolution and phylogeny using data from...... different sources--morphological, ultrastructural, molecular, developmental, and from the fossil record....

  13. Evolutionary phenomena in galaxies

    International Nuclear Information System (INIS)

    Beckman, J.E.; Pagel, B.E.J.

    1989-01-01

    This book reviews the subject of evolutionary phenomena in galaxies, bringing together contributions by experts on all the relevant physics and astrophysics necessary to understand galaxies and how they work. The book is based on the proceedings of a conference held in July 1988 in Puerto de la Cruz, Tenerife which was timed to coincide with the first year of operation of the 4.2 m William Herschel Telescope. The broad topics covered include formation of galaxies and their ages, stellar dynamics, galactic scale gas and its role in star formation and the production and distribution of the chemical elements within galaxies. (author)

  14. Evolutionary genomics of Entamoeba

    Science.gov (United States)

    Weedall, Gareth D.; Hall, Neil

    2011-01-01

    Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population structure. The imminent expansion of the amount genome data will greatly improve our knowledge of the genus and of pathogenic species within it. PMID:21288488

  15. Evolutionary divergence of chloroplast FAD synthetase proteins

    Directory of Open Access Journals (Sweden)

    Arilla-Luna Sonia

    2010-10-01

    Full Text Available Abstract Background Flavin adenine dinucleotide synthetases (FADSs - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity.

  16. Predicting loss of evolutionary history: Where are we?

    Science.gov (United States)

    Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine

    2017-02-01

    The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic

  17. Core principles of evolutionary medicine

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  18. Practical advantages of evolutionary computation

    Science.gov (United States)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  19. Conservation endocrinology

    Science.gov (United States)

    McCormick, Stephen; Romero, L. Michael

    2017-01-01

    Endocrinologists can make significant contributions to conservation biology by helping to understand the mechanisms by which organisms cope with changing environments. Field endocrine techniques have advanced rapidly in recent years and can provide substantial information on the growth, stress, and reproductive status of individual animals, thereby providing insight into current and future responses of populations to changes in the environment. Environmental stressors and reproductive status can be detected nonlethally by measuring a number of endocrine-related endpoints, including steroids in plasma, living and nonliving tissue, urine, and feces. Information on the environmental or endocrine requirements of individual species for normal growth, development, and reproduction will provide critical information for species and ecosystem conservation. For many taxa, basic information on endocrinology is lacking, and advances in conservation endocrinology will require approaches that are both “basic” and “applied” and include integration of laboratory and field approaches.

  20. Conservation of native Pacific trout diversity in Western North America

    Science.gov (United States)

    Brooke E. Penaluna; Alicia Abadía-Cardoso; Jason B. Dunham; Francisco J. García-Dé León; Robert E. Gresswell; Arturo Ruiz Luna; Eric B. Taylor; Bradley B. Shepard; Robert Al-Chokhachy; Clint C. Muhlfeld; Kevin R. Bestgen; Kevin Rogers; Marco A. Escalante; Ernest R. Keeley; Gabriel M. Temple; Jack E. Williams; Kathleen R. Matthews; Ron Pierce; Richard L. Mayden; Ryan P. Kovach; John Carlos Garza; Kurt D. Fausch

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review...

  1. Evolutionary explanations for natural language: criteria from evolutionary biology

    NARCIS (Netherlands)

    Zuidema, W.; de Boer, B.

    2008-01-01

    Theories of the evolutionary origins of language must be informed by empirical and theoretical results from a variety of different fields. Complementing recent surveys of relevant work from linguistics, animal behaviour and genetics, this paper surveys the requirements on evolutionary scenarios that

  2. Studies in evolutionary agroecology

    DEFF Research Database (Denmark)

    Wille, Wibke

    difference between optimal individual and optimal population performance increases with strong competition among individuals. Thus dense populations make ideal environments to exert forms of selection pressure deviating from natural selection. The first part of this study investigates the central hypothesis...... of Evolutionary Agroecology that the highest yielding individuals do not necessarily perform best as a population. The investment of resources into strategies and structures increasing individual competitive ability carries a cost. If a whole population consists of individuals investing resources to compete...... with each other, it will have a negative impact on the population performance. While high density results in strong competition, it also increases the potential for cooperation. The other aspect of this study has been to investigate the possibility of improving the yield and weed suppression potential...

  3. Evolutionary games under incompetence.

    Science.gov (United States)

    Kleshnina, Maria; Filar, Jerzy A; Ejov, Vladimir; McKerral, Jody C

    2018-02-26

    The adaptation process of a species to a new environment is a significant area of study in biology. As part of natural selection, adaptation is a mutation process which improves survival skills and reproductive functions of species. Here, we investigate this process by combining the idea of incompetence with evolutionary game theory. In the sense of evolution, incompetence and training can be interpreted as a special learning process. With focus on the social side of the problem, we analyze the influence of incompetence on behavior of species. We introduce an incompetence parameter into a learning function in a single-population game and analyze its effect on the outcome of the replicator dynamics. Incompetence can change the outcome of the game and its dynamics, indicating its significance within what are inherently imperfect natural systems.

  4. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  5. Environmental evolutionary graph theory.

    Science.gov (United States)

    Maciejewski, Wes; Puleo, Gregory J

    2014-11-07

    Understanding the influence of an environment on the evolution of its resident population is a major challenge in evolutionary biology. Great progress has been made in homogeneous population structures while heterogeneous structures have received relatively less attention. Here we present a structured population model where different individuals are best suited to different regions of their environment. The underlying structure is a graph: individuals occupy vertices, which are connected by edges. If an individual is suited for their vertex, they receive an increase in fecundity. This framework allows attention to be restricted to the spatial arrangement of suitable habitat. We prove some basic properties of this model and find some counter-intuitive results. Notably, (1) the arrangement of suitable sites is as important as their proportion, and (2) decreasing the proportion of suitable sites may result in a decrease in the fixation time of an allele. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Colorful Conservation

    Science.gov (United States)

    Skophammer, Karen

    2011-01-01

    Some people only think about conservation on Earth Day. Being in the "art business" however, this author is always conscious of the many products she thinks get wasted when they could be reused, recycled, and restored--especially in a school building and art room. In this article, she describes an art lesson that allows students to paint…

  7. [Conservation Units.

    Science.gov (United States)

    Texas Education Agency, Austin.

    Each of the six instructional units deals with one aspect of conservation: forests, water, rangeland, minerals (petroleum), and soil. The area of the elementary school curriculum with which each correlates is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the…

  8. Topics of Evolutionary Computation 2001

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    This booklet contains the student reports from the course: Topics of Evolutionary Computation, Fall 2001, given by Thiemo Krink, Rene Thomsen and Rasmus K. Ursem......This booklet contains the student reports from the course: Topics of Evolutionary Computation, Fall 2001, given by Thiemo Krink, Rene Thomsen and Rasmus K. Ursem...

  9. Fixation Time for Evolutionary Graphs

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.

  10. Evolutionary dynamics in structured populations

    Science.gov (United States)

    Nowak, Martin A.; Tarnita, Corina E.; Antal, Tibor

    2010-01-01

    Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces. PMID:20008382

  11. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  12. Contemporary issues in evolutionary biology

    Indian Academy of Sciences (India)

    We are delighted to bring to the readers, a set of peer-reviewed papers on evolutionary biology, published as a special issue of the Journal of Genetics. These papers emanated from ruminations upon and discussions at the Foundations of. Evolutionary Theory: the Ongoing Synthesis meeting at Coorg, India, in February ...

  13. Individual-based modeling of ecological and evolutionary processes

    Science.gov (United States)

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  14. Evolutionary Explanations of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Igor Kardum

    2008-12-01

    Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.

  15. How competition affects evolutionary rescue

    Science.gov (United States)

    Osmond, Matthew Miles; de Mazancourt, Claire

    2013-01-01

    Populations facing novel environments can persist by adapting. In nature, the ability to adapt and persist will depend on interactions between coexisting individuals. Here we use an adaptive dynamic model to assess how the potential for evolutionary rescue is affected by intra- and interspecific competition. Intraspecific competition (negative density-dependence) lowers abundance, which decreases the supply rate of beneficial mutations, hindering evolutionary rescue. On the other hand, interspecific competition can aid evolutionary rescue when it speeds adaptation by increasing the strength of selection. Our results clarify this point and give an additional requirement: competition must increase selection pressure enough to overcome the negative effect of reduced abundance. We therefore expect evolutionary rescue to be most likely in communities which facilitate rapid niche displacement. Our model, which aligns to previous quantitative and population genetic models in the absence of competition, provides a first analysis of when competitors should help or hinder evolutionary rescue. PMID:23209167

  16. Insights from life history theory for an explicit treatment of trade-offs in conservation biology.

    Science.gov (United States)

    Charpentier, Anne

    2015-06-01

    As economic and social contexts become more embedded within biodiversity conservation, it becomes obvious that resources are a limiting factor in conservation. This recognition is leading conservation scientists and practitioners to increasingly frame conservation decisions as trade-offs between conflicting societal objectives. However, this framing is all too often done in an intuitive way, rather than by addressing trade-offs explicitly. In contrast, the concept of trade-off is a keystone in evolutionary biology, where it has been investigated extensively. I argue that insights from evolutionary theory can provide methodological and theoretical support to evaluating and quantifying trade-offs in biodiversity conservation. I reviewed the diverse ways in which trade-offs have emerged within the context of conservation and how advances from evolutionary theory can help avoid the main pitfalls of an implicit approach. When studying both evolutionary trade-offs (e.g., reproduction vs. survival) and conservation trade-offs (e.g., biodiversity conservation vs. agriculture), it is crucial to correctly identify the limiting resource, hold constant the amount of this resource when comparing different scenarios, and choose appropriate metrics to quantify the extent to which the objectives have been achieved. Insights from studies in evolutionary theory also reveal how an inadequate selection of conservation solutions may result from considering suboptimal rather than optional solutions when examining whether a trade-off exits between 2 objectives. Furthermore, the shape of a trade-off curve (i.e., whether the relationship between 2 objectives follows a concave, convex, or linear form) is known to affect crucially the definition of optimal solutions in evolutionary biology and very likely affects decisions in biodiversity conservation planning too. This interface between evolutionary biology and biodiversity conservation can therefore provide methodological guidance to

  17. Dynamic conservation of forest genetic resources in 33 European countries

    OpenAIRE

    Lefévre, François; Kraigher, Hojka; Westergren, Marjana

    2013-01-01

    Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we ...

  18. Exporting conservation

    OpenAIRE

    LTRA-12

    2012-01-01

    Metadata only record Soil degradation represents a major threat to food security, particularly in mountainous regions of Southeast Asia, where rainfall can wash away inches of topsoil. This article presents conservation agriculture as a potential solution, focusing on the work that North Carolina Agricultural and Technical State University conducts in Southeast Asia in conjunction with regional partners as part of the Sustainable Agriculture and Natural Resource Management (SANREM) collabo...

  19. Patterns of evolutionary constraints on genes in humans

    Directory of Open Access Journals (Sweden)

    Lopez-Bigas Nuria

    2008-10-01

    Full Text Available Abstract Background Different regions in a genome evolve at different rates depending on structural and functional constraints. Some genomic regions are highly conserved during metazoan evolution, while other regions may evolve rapidly, either in all species or in a lineage-specific manner. A strong or even moderate change in constraints in functional regions, for example in coding regions, can have significant evolutionary consequences. Results Here we discuss a novel framework, 'BaseDiver', to classify groups of genes in humans based on the patterns of evolutionary constraints on polymorphic positions in their coding regions. Comparing the nucleotide-level divergence among mammals with the extent of deviation from the ancestral base in the human lineage, we identify patterns of evolutionary pressure on nonsynonymous base-positions in groups of genes belonging to the same functional category. Focussing on groups of genes in functional categories, we find that transcription factors contain a significant excess of nonsynonymous base-positions that are conserved in other mammals but changed in human, while immunity related genes harbour mutations at base-positions that evolve rapidly in all mammals including humans due to strong preference for advantageous alleles. Genes involved in olfaction also evolve rapidly in all mammals, and in humans this appears to be due to weak negative selection. Conclusion While recent studies have identified genes under positive selection in humans, our approach identifies evolutionary constraints on Gene Ontology groups identifying changes in humans relative to some of the other mammals.

  20. Evolutionary Tracks for Betelgeuse

    Science.gov (United States)

    Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Quynh Lan, Nguyen; Herczeg, Gregory J.; Dearborn, David S. P.

    2016-03-01

    We have constructed a series of nonrotating quasi-hydrostatic evolutionary models for the M2 Iab supergiant Betelgeuse (α Orionis). Our models are constrained by multiple observed values for the temperature, luminosity, surface composition, and mass loss for this star, along with the parallax distance and high-resolution imagery that determines its radius. We have then applied our best-fit models to analyze the observed variations in surface luminosity and the size of detected surface bright spots as the result of up-flowing convective material from regions of high temperature in the surface convective zone. We also attempt to explain the intermittently observed periodic variability in a simple radial linear adiabatic pulsation model. Based on the best fit to all observed data, we suggest a best progenitor mass estimate of {20}-3+5 {M}⊙ and a current age from the start of the zero-age main sequence of 8.0-8.5 Myr based on the observed ejected mass while on the giant branch.

  1. Industrial Applications of Evolutionary Algorithms

    CERN Document Server

    Sanchez, Ernesto; Tonda, Alberto

    2012-01-01

    This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the

  2. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time

    KAUST Repository

    Pinsky, Malin L.

    2016-12-15

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.

  3. Evolutionary Origin of Euglena.

    Science.gov (United States)

    Zakryś, Bożena; Milanowski, Rafał; Karnkowska, Anna

    2017-01-01

    Euglenids (Excavata, Discoba, Euglenozoa, Euglenida) is a group of free-living, single-celled flagellates living in the aquatic environments. The uniting and unique morphological feature of euglenids is the presence of a cell covering called the pellicle. The morphology and organization of the pellicle correlate well with the mode of nutrition and cell movement. Euglenids exhibit diverse modes of nutrition, including phagotrophy and photosynthesis. Photosynthetic species (Euglenophyceae) constitute a single subclade within euglenids. Their plastids embedded by three membranes arose as the result of a secondary endosymbiosis between phagotrophic eukaryovorous euglenid and the Pyramimonas-related green alga. Within photosynthetic euglenids three evolutionary lineages can be distinguished. The most basal lineage is formed by one mixotrophic species, Rapaza viridis. Other photosynthetic euglenids are split into two groups: predominantly marine Eutreptiales and freshwater Euglenales. Euglenales are divided into two families: Phacaceae, comprising three monophyletic genera (Discoplastis, Lepocinclis, Phacus) and Euglenaceae with seven monophyletic genera (Euglenaformis, Euglenaria, Colacium, Cryptoglena, Strombomonas, Trachelomonas, Monomorphina) and polyphyletic genus Euglena. For 150 years researchers have been studying Euglena based solely on morphological features what resulted in hundreds of descriptions of new taxa and many artificial intra-generic classification systems. In spite of the progress towards defining Euglena, it still remains polyphyletic and morphologically almost undistinguishable from members of the recently described genus Euglenaria; members of both genera have cells undergoing metaboly (dynamic changes in cell shape), large chloroplasts with pyrenoids and monomorphic paramylon grains. Model organisms Euglena gracilis Klebs, the species of choice for addressing fundamental questions in eukaryotic biochemistry, cell and molecular biology, is a

  4. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  5. Defining fitness in evolutionary models

    Indian Academy of Sciences (India)

    jgen/087/04/0339-0348. Keywords. fitness; invasion exponent; adaptive dynamics; game theory; Lyapunov exponent; invasibility; Malthusian parameter. Abstract. The analysis of evolutionary models requires an appropriate definition for fitness.

  6. Evolutionary Processes and Mental Deficiency

    Science.gov (United States)

    Spitz, Herman H.

    1973-01-01

    The author hypothesizes that central nervous system damage of deficiency associated with mental retardation affects primarily those cortical processes which developed at a late stage in man's evolutionary history. (Author)

  7. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  8. Evolutionary computation for trading systems

    OpenAIRE

    Kaucic, Massimiliano

    2008-01-01

    2007/2008 Evolutionary computations, also called evolutionary algorithms, consist of several heuristics, which are able to solve optimization tasks by imitating some aspects of natural evolution. They may use different levels of abstraction, but they are always working on populations of possible solutions for a given task. The basic idea is that if only those individuals of a population which meet a certain selection criteria reproduce, while the remaining individuals die, the ...

  9. Freud: the first evolutionary psychologist?

    Science.gov (United States)

    LeCroy, D

    2000-04-01

    An evolutionary perspective on attachment theory and psychoanalytic theory brings these two fields together in interesting ways. Application of the evolutionary principle of parent-offspring conflict to attachment theory suggests that attachment styles represent context-sensitive, evolved (adaptive) behaviors. In addition, an emphasis on offspring counter-strategies to adult reproductive strategies leads to consideration of attachment styles as overt manifestations of psychodynamic mediating processes, including the defense mechanisms of repression and reaction formation.

  10. Evolutionary paths of streptococcal and staphylococcal superantigens

    Directory of Open Access Journals (Sweden)

    Okumura Kayo

    2012-08-01

    Full Text Available Abstract Background Streptococcus pyogenes (GAS harbors several superantigens (SAgs in the prophage region of its genome, although speG and smez are not located in this region. The diversity of SAgs is thought to arise during horizontal transfer, but their evolutionary pathways have not yet been determined. We recently completed sequencing the entire genome of S. dysgalactiae subsp. equisimilis (SDSE, the closest relative of GAS. Although speG is the only SAg gene of SDSE, speG was present in only 50% of clinical SDSE strains and smez in none. In this study, we analyzed the evolutionary paths of streptococcal and staphylococcal SAgs. Results We compared the sequences of the 12–60 kb speG regions of nine SDSE strains, five speG+ and four speG–. We found that the synteny of this region was highly conserved, whether or not the speG gene was present. Synteny analyses based on genome-wide comparisons of GAS and SDSE indicated that speG is the direct descendant of a common ancestor of streptococcal SAgs, whereas smez was deleted from SDSE after SDSE and GAS split from a common ancestor. Cumulative nucleotide skew analysis of SDSE genomes suggested that speG was located outside segments of steeper slopes than the stable region in the genome, whereas the region flanking smez was unstable, as expected from the results of GAS. We also detected a previously undescribed staphylococcal SAg gene, selW, and a staphylococcal SAg -like gene, ssl, in the core genomes of all Staphylococcus aureus strains sequenced. Amino acid substitution analyses, based on dN/dS window analysis of the products encoded by speG, selW and ssl suggested that all three genes have been subjected to strong positive selection. Evolutionary analysis based on the Bayesian Markov chain Monte Carlo method showed that each clade included at least one direct descendant. Conclusions Our findings reveal a plausible model for the comprehensive evolutionary pathway of streptococcal and

  11. Conservation of the Ethiopian church forests

    DEFF Research Database (Denmark)

    Aerts, Raf; Ortveld, Koev van; November, Eva

    2016-01-01

    communities and related these to environmental variables and potential natural vegetation, (3) identified the main challenges to biodiversity conservation in view of plant population dynamics and anthropogenic disturbances, and (4) present guidelines for management and policy. The 394 forests identified...... and evolutionary potential of species may be threatened by isolation, small sizes of tree species populations and disturbance, especially when considering climate change. Forest management interventions are essential and should be supported by environmental education and other forms of public engagement....

  12. Evolutionary foundations for cancer biology.

    Science.gov (United States)

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  13. Evolutionary genomics of environmental pollution.

    Science.gov (United States)

    Whitehead, Andrew

    2014-01-01

    Chemical toxins have been a persistent source of evolutionary challenges throughout the history of life, and deep within the genomic storehouse of evolutionary history lay ancient adaptations to diverse chemical poisons. However, the rate of change of contemporary environments mediated by human-introduced pollutants is rapidly screening this storehouse and severely testing the adaptive potential of many species. In this chapter, we briefly review the deep history of evolutionary adaptation to environmental toxins, and then proceed to describe the attributes of stressors and populations that may facilitate contemporary adaptation to pollutants introduced by humans. We highlight that phenotypes derived to enable persistence in polluted habitats may be multi-dimensional, requiring global genome-scale tools and approaches to uncover their mechanistic basis, and include examples of recent progress in the field. The modern tools of genomics offer promise for discovering how pollutants interact with genomes on physiological timescales, and also for discovering what genomic attributes of populations may enable resistance to pollutants over evolutionary timescales. Through integration of these sophisticated genomics tools and approaches with an understanding of the deep historical forces that shaped current populations, a more mature understanding of the mechanistic basis of contemporary ecological-evolutionary dynamics should emerge.

  14. Evolutionary inevitability of sexual antagonism.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2014-02-07

    Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.

  15. Alignment-free three-dimensional optical metamaterials.

    Science.gov (United States)

    Zhao, Yang; Shi, Jinwei; Sun, Liuyang; Li, Xiaoqin; Alù, Andrea

    2014-03-05

    Three-dimensional optical metamaterials based on multilayers typically rely on critical vertical alignment to achieve the desired functionality. Here the conditions under which three-dimensional metamaterials with different functionalities may be realized without constraints on alignment are analyzed and demonstrated experimentally. This study demonstrates that the release of alignment constraints for multilayered metamaterials is allowed, while their anomalous interaction with light is preserved. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Complicated evolutionary patterns of microRNAs in vertebrates.

    Science.gov (United States)

    Wang, XiaOwo; Zhang, XueGong; Li, YanDa

    2008-06-01

    MicroRNAs (miRNAs) are a class of approximately 22 nt long endogenous non-coding RNAs that play important regulatory roles in diverse organisms. Up to now, little is known about the evolutionary properties of these crucial regulators. Most miRNAs were thought to be phylogenetically conserved, but recently, a number of poorly-conserved miRNAs have been reported and miRNA innovation is shown to be an ongoing process. In this work, through the characterization of an miRNA super family, we studied the evolutionary patterns of miRNAs in vertebrates. Recently generated miRNAs seem to evolve rapidly during a certain period following their emergence. Multiple lineage-specific expansions were observed. Homolgous premiRNAs may produce mature products from the opposite stem arms following tandem duplications, which may have important contribution to miRNA innovation. Our observations of miRNAs' complicated evolutionary patterns support the notion that these key regulatory molecules may play very active roles in evolution.

  17. The evolutionary psychology of hunger.

    Science.gov (United States)

    Al-Shawaf, Laith

    2016-10-01

    An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evolutionary Aesthetics and Print Advertising

    Directory of Open Access Journals (Sweden)

    Kamil Luczaj

    2015-06-01

    Full Text Available The article analyzes the extent to which predictions based on the theory of evolutionary aesthetics are utilized by the advertising industry. The purpose of a comprehensive content analysis of print advertising is to determine whether the items indicated by evolutionists such as animals, flowers, certain types of landscapes, beautiful humans, and some colors are part of real advertising strategies. This article has shown that many evolutionary hypotheses (although not all of them are supported by empirical data. Along with these hypotheses, some inferences from Bourdieu’s cultural capital theory were tested. It turned out that advertising uses both biological schemata and cultural patterns to make an image more likable.

  19. Diversity-Guided Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    2002-01-01

    Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...

  20. Achieving open access to conservation science.

    Science.gov (United States)

    Fuller, Richard A; Lee, Jasmine R; Watson, James E M

    2014-12-01

    Conservation science is a crisis discipline in which the results of scientific enquiry must be made available quickly to those implementing management. We assessed the extent to which scientific research published since the year 2000 in 20 conservation science journals is publicly available. Of the 19,207 papers published, 1,667 (8.68%) are freely downloadable from an official repository. Moreover, only 938 papers (4.88%) meet the standard definition of open access in which material can be freely reused providing attribution to the authors is given. This compares poorly with a comparable set of 20 evolutionary biology journals, where 31.93% of papers are freely downloadable and 7.49% are open access. Seventeen of the 20 conservation journals offer an open access option, but fewer than 5% of the papers are available through open access. The cost of accessing the full body of conservation science runs into tens of thousands of dollars per year for institutional subscribers, and many conservation practitioners cannot access pay-per-view science through their workplace. However, important initiatives such as Research4Life are making science available to organizations in developing countries. We urge authors of conservation science to pay for open access on a per-article basis or to choose publication in open access journals, taking care to ensure the license allows reuse for any purpose providing attribution is given. Currently, it would cost $51 million to make all conservation science published since 2000 freely available by paying the open access fees currently levied to authors. Publishers of conservation journals might consider more cost effective models for open access and conservation-oriented organizations running journals could consider a broader range of options for open access to nonmembers such as sponsorship of open access via membership fees. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for

  1. Origin of the fittest: link between emergent variation and evolutionary change as a critical question in evolutionary biology

    Science.gov (United States)

    Badyaev, Alexander V.

    2011-01-01

    In complex organisms, neutral evolution of genomic architecture, associated compensatory interactions in protein networks and emergent developmental processes can delineate the directions of evolutionary change, including the opportunity for natural selection. These effects are reflected in the evolution of developmental programmes that link genomic architecture with a corresponding functioning phenotype. Two recent findings call for closer examination of the rules by which these links are constructed. First is the realization that high dimensionality of genotypes and emergent properties of autonomous developmental processes (such as capacity for self-organization) result in the vast areas of fitness neutrality at both the phenotypic and genetic levels. Second is the ubiquity of context- and taxa-specific regulation of deeply conserved gene networks, such that exceptional phenotypic diversification coexists with remarkably conserved generative processes. Establishing the causal reciprocal links between ongoing neutral expansion of genomic architecture, emergent features of organisms' functionality, and often precisely adaptive phenotypic diversification therefore becomes an important goal of evolutionary biology and is the latest reincarnation of the search for a framework that links development, functioning and evolution of phenotypes. Here I examine, in the light of recent empirical advances, two evolutionary concepts that are central to this framework—natural selection and inheritance—the general rules by which they become associated with emergent developmental and homeostatic processes and the role that they play in descent with modification. PMID:21490021

  2. Origin of the fittest: link between emergent variation and evolutionary change as a critical question in evolutionary biology.

    Science.gov (United States)

    Badyaev, Alexander V

    2011-07-07

    In complex organisms, neutral evolution of genomic architecture, associated compensatory interactions in protein networks and emergent developmental processes can delineate the directions of evolutionary change, including the opportunity for natural selection. These effects are reflected in the evolution of developmental programmes that link genomic architecture with a corresponding functioning phenotype. Two recent findings call for closer examination of the rules by which these links are constructed. First is the realization that high dimensionality of genotypes and emergent properties of autonomous developmental processes (such as capacity for self-organization) result in the vast areas of fitness neutrality at both the phenotypic and genetic levels. Second is the ubiquity of context- and taxa-specific regulation of deeply conserved gene networks, such that exceptional phenotypic diversification coexists with remarkably conserved generative processes. Establishing the causal reciprocal links between ongoing neutral expansion of genomic architecture, emergent features of organisms' functionality, and often precisely adaptive phenotypic diversification therefore becomes an important goal of evolutionary biology and is the latest reincarnation of the search for a framework that links development, functioning and evolution of phenotypes. Here I examine, in the light of recent empirical advances, two evolutionary concepts that are central to this framework-natural selection and inheritance-the general rules by which they become associated with emergent developmental and homeostatic processes and the role that they play in descent with modification.

  3. Animal models and conserved processes

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2012-09-01

    Full Text Available Abstract Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is

  4. Animal models and conserved processes.

    Science.gov (United States)

    Greek, Ray; Rice, Mark J

    2012-09-10

    The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. We conclude that even the presence of conserved processes is insufficient for inter-species extrapolation when the trait or response

  5. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    ral selection is provided by studies—sometimes characterized as evolutionary ecology—that attempt to understand how and why particular fitness functions are defined on the distribution of phenotypes in a population by its ecology. Studying how the interaction between phenotype and environment results in a fitness ...

  6. Conceptual foundations of evolutionary thought

    Indian Academy of Sciences (India)

    2017-07-04

    Jul 4, 2017 ... Home; Journals; Journal of Genetics; Volume 96; Issue 3. Conceptual foundations of evolutionary thought. K. P. MOHANAN. Perspectives Volume 96 Issue 3 July 2017 pp 401-412. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/jgen/096/03/0401-0412. Abstract ...

  7. Evolutionary robotics–A review

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various ...

  8. Haldane and modern evolutionary genetics

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 5. Haldane and modern evolutionary genetics. BRIAN CHARLESWORTH. HALDANE AT 125 Volume 96 Issue 5 November 2017 pp 773-782. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/jgen/096/05/0773-0782. Keywords.

  9. Scalable Computing for Evolutionary Genomics

    NARCIS (Netherlands)

    Prins, J.C.P.; Belhachemi, D.; Möller, S.; Smant, G.

    2012-01-01

    Genomic data analysis in evolutionary biology is becoming so computationally intensive that analysis of multiple hypotheses and scenarios takes too long on a single desktop computer. In this chapter, we discuss techniques for scaling computations through parallelization of calculations, after giving

  10. Evolutionary Biology Research in India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...

  11. Realism, Relativism, and Evolutionary Psychology

    NARCIS (Netherlands)

    Derksen, M.

    Against recent attempts to forge a reconciliation between constructionism and realism, I contend that, in psychology at least, stirring up conflict is a more fruitful strategy. To illustrate this thesis, I confront a school of psychology with strong realist leanings, evolutionary psychology, with

  12. Cryptic eco-evolutionary dynamics.

    Science.gov (United States)

    Kinnison, Michael T; Hairston, Nelson G; Hendry, Andrew P

    2015-12-01

    Natural systems harbor complex interactions that are fundamental parts of ecology and evolution. These interactions challenge our inclinations and training to seek the simplest explanations of patterns in nature. Not least is the likelihood that some complex processes might be missed when their patterns look similar to predictions for simpler mechanisms. Along these lines, theory and empirical evidence increasingly suggest that environmental, ecological, phenotypic, and genetic processes can be tightly intertwined, resulting in complex and sometimes surprising eco-evolutionary dynamics. The goal of this review is to temper inclinations to unquestioningly seek the simplest explanations in ecology and evolution, by recognizing that some eco-evolutionary outcomes may appear very similar to purely ecological, purely evolutionary, or even null expectations, and thus be cryptic. We provide theoretical and empirical evidence for observational biases and mechanisms that might operate among the various links in eco-evolutionary feedbacks to produce cryptic patterns. Recognition that cryptic dynamics can be associated with outcomes like stability, resilience, recovery, or coexistence in a dynamically changing world provides added impetus for finding ways to study them. © 2015 New York Academy of Sciences.

  13. Darwinian foundations for evolutionary economics

    NARCIS (Netherlands)

    Stoelhorst, J.W.

    2008-01-01

    This paper engages with the methodological debate on the contribution of Darwinism to Veblen's (1898) evolutionary research program for economics. I argue that ontological continuity, generalized Darwinism, and multi-level selection are necessary building blocks for an explanatory framework that can

  14. Evolutionary Psychology and Intelligence Research

    Science.gov (United States)

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative…

  15. Diversity-Guided Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    2002-01-01

    Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few algorit...

  16. Testing evolutionary theories of menopause.

    Science.gov (United States)

    Shanley, Daryl P; Sear, Rebecca; Mace, Ruth; Kirkwood, Thomas B L

    2007-12-07

    Why do women cease fertility rather abruptly through menopause at an age well before generalized senescence renders child rearing biologically impossible? The two main evolutionary hypotheses are that menopause serves either (i) to protect mothers from rising age-specific maternal mortality risks, thereby protecting their highly dependent younger children from death if the mother dies or (ii) to provide post-reproductive grandmothers who enhance their inclusive fitness by helping to care and provide for their daughters' children. Recent theoretical work indicates that both factors together are necessary if menopause is to provide an evolutionary advantage. However, these ideas need to be tested using detailed data from actual human life histories lived under reasonably 'natural' conditions; for obvious reasons, such data are extremely scarce. We here describe a study based on a remarkably complete dataset from The Gambia. The data provided quantitative estimates for key parameters for the theoretical model, which were then used to assess the actual effects on fitness. Empirically based numerical analysis of this nature is essential if the enigma of menopause is to be explained satisfactorily in evolutionary terms. Our results point to the distinctive (and perhaps unique) role of menopause in human evolution and provide important support for the hypothesized evolutionary significance of grandmothers.

  17. Defining fitness in evolutionary models

    Indian Academy of Sciences (India)

    2008-12-23

    Dec 23, 2008 ... The analysis of evolutionary models requires an appropriate definition for fitness. ..... of dimorphism for dormancy in plants (Cohen 1966). .... yses have assumed nonoverlapping generations (i.e. no age- structure). The solution to defining fitness when the environ- ment is spatially variable and there is a ...

  18. Evolutionary dynamics of mammalian karyotypes

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-12-01

    Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....

  19. Euryhalinity in an evolutionary context

    Science.gov (United States)

    Schultz, Eric T.; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    This chapter focuses on the evolutionary importance and taxonomic distribution of euryhalinity. Euryhalinity refers to broad halotolerance and broad halohabitat distribution. Salinity exposure experiments have demonstrated that species vary tenfold in their range of tolerable salinity levels, primarily because of differences in upper limits. Halotolerance breadth varies with the species’ evolutionary history, as represented by its ordinal classification, and with the species’ halohabitat. Freshwater and seawater species tolerate brackish water; their empirically-determined fundamental haloniche is broader than their realized haloniche, as revealed by the halohabitats they occupy. With respect to halohabitat distribution, a minority of species (basal actinopterygian fishes, is largely absent from orders arising from intermediate nodes, and reappears in the most derived taxa. There is pronounced family-level variability in the tendency to be halohabitat-euryhaline, which may have arisen during a burst of diversification following the Cretaceous-Palaeogene extinction. Low prevalence notwithstanding, euryhaline species are potent sources of evolutionary diversity. Euryhalinity is regarded as a key innovation trait whose evolution enables exploitation of new adaptive zone, triggering cladogenesis. We review phylogenetically-informed studies that demonstrate freshwater species diversifying from euryhaline ancestors through processes such as landlocking. These studies indicate that some euryhaline taxa are particularly susceptible to changes in halohabitat and subsequent diversification, and some geographic regions have been hotspots for transitions to freshwater. Comparative studies on mechanisms among multiple taxa and at multiple levels of biological integration are needed to clarify evolutionary pathways to, and from, euryhalinity.

  20. Ernst Mayr and Evolutionary Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology. Renee M Borges. General Article Volume 10 Issue 7 July 2005 pp 21-33. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Evolutionary Biology Research in India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...

  2. Evolutionary robotics – A review

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    to solve this problem. This paper provides a survey on some of these important studies carried out in the recent past. Keywords. Evolutionary robotics; genetic ... neural network (NN) (Kosko 1994), to study the interaction between evolution and learning. .... After GA-based learning of the neural controller, the navigation.

  3. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation.

    Science.gov (United States)

    Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting

    2017-09-12

    Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.

  4. Evolutionary analysis of FAM83H in vertebrates.

    Directory of Open Access Journals (Sweden)

    Wushuang Huang

    Full Text Available Amelogenesis imperfecta is a group of disorders causing abnormalities in enamel formation in various phenotypes. Many mutations in the FAM83H gene have been identified to result in autosomal dominant hypocalcified amelogenesis imperfecta in different populations. However, the structure and function of FAM83H and its pathological mechanism have yet to be further explored. Evolutionary analysis is an alternative for revealing residues or motifs that are important for protein function. In the present study, we chose 50 vertebrate species in public databases representative of approximately 230 million years of evolution, including 1 amphibian, 2 fishes, 7 sauropsidas and 40 mammals, and we performed evolutionary analysis on the FAM83H protein. By sequence alignment, conserved residues and motifs were indicated, and the loss of important residues and motifs of five special species (Malayan pangolin, platypus, minke whale, nine-banded armadillo and aardvark was discovered. A phylogenetic time tree showed the FAM83H divergent process. Positive selection sites in the C-terminus suggested that the C-terminus of FAM83H played certain adaptive roles during evolution. The results confirmed some important motifs reported in previous findings and identified some new highly conserved residues and motifs that need further investigation. The results suggest that the C-terminus of FAM83H contain key conserved regions critical to enamel formation and calcification.

  5. Global loss of avian evolutionary uniqueness in urban areas.

    Science.gov (United States)

    Ibáñez-Álamo, Juan Diego; Rubio, Enrique; Benedetti, Yanina; Morelli, Federico

    2017-08-01

    Urbanization, one of the most important anthropogenic impacts on Earth, is rapidly expanding worldwide. This expansion of urban land-covered areas is known to significantly reduce different components of biodiversity. However, the global evidence for this effect is mainly focused on a single diversity measure (species richness) with a few local or regional studies also supporting reductions in functional diversity. We have used birds, an important ecological group that has been used as surrogate for other animals, to investigate the hypothesis that urbanization reduces the global taxonomical and/or evolutionary diversity. We have also explored whether there is evidence supporting that urban bird communities are evolutionarily homogenized worldwide in comparison with nonurban ones by means of using evolutionary distinctiveness (how unique are the species) of bird communities. To our knowledge, this is the first attempt to quantify the effect of urbanization in more than one single diversity measure as well as the first time to look for associations between urbanization and phylogenetic diversity at a large spatial scale. Our findings show a strong and globally consistent reduction in taxonomic diversity in urban areas, which is also synchronized with the evolutionary homogenization of urban bird communities. Despite our general patterns, we found some regional differences in the intensity of the effect of cities on bird species richness or evolutionary distinctiveness, suggesting that conservation efforts should be adapted locally. Our findings might be useful for conservationists and policymakers to minimize the impact of urban development on Earth's biodiversity and help design more realistic conservation strategies. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  6. Towards a mechanistic foundation of evolutionary theory.

    Science.gov (United States)

    Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt

    2017-02-15

    Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

  7. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Cassell, Gail H; Gutierrez-Fuentes, Jose A; Barquero, Fernando; Nombela, Cesar

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  8. Evolutionary history of the porpoise family (Phocoenidae) : A perspective from mitogenomes

    NARCIS (Netherlands)

    Ben Chehida, Yacine; Aguilar, A. A.; Borrell, A.; Ferreira, M.; Taylor, B.L.; Rojas-Bracho, L.; Robertson, K.; Thumloup, Julie; Schumacher, C.; Vikingsson, G.A.; Morin, Phillip A.; Fontaine, Michael Christophe

    2017-01-01

    The six species of porpoises inhabit the cold waters of the globe, displaying a textbook example of anti-tropical distribution in marine mammals. Nevertheless, the evolutionary history of the porpoises still remained poorly understood, but this knowledge is crucial to illuminate the conservation

  9. Testing evolutionary hypotheses for phenotypic divergence using landscape genetics.

    Science.gov (United States)

    Funk, W Chris; Murphy, Melanie A

    2010-02-01

    Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence (Garant et al. 2007) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation (Coyne & Orr 2004). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica (Fig. 1). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation-by-distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.

  10. The citation field of evolutionary economics

    NARCIS (Netherlands)

    Dolfsma, Wilfred; Leydesdorff, Loet

    2010-01-01

    Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal

  11. Schroedinger operators and evolutionary strategies

    International Nuclear Information System (INIS)

    Asselmeyer, T.

    1997-01-01

    First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution

  12. The evolutionary portrait of metazoan NAD salvage.

    Science.gov (United States)

    Carneiro, João; Duarte-Pereira, Sara; Azevedo, Luísa; Castro, L Filipe C; Aguiar, Paulo; Moreira, Irina S; Amorim, António; Silva, Raquel M

    2013-01-01

    Nicotinamide Adenine Dinucleotide (NAD) levels are essential for cellular homeostasis and survival. Main sources of intracellular NAD are the salvage pathways from nicotinamide, where Nicotinamide phosphoribosyltransferases (NAMPTs) and Nicotinamidases (PNCs) have a key role. NAMPTs and PNCs are important in aging, infection and disease conditions such as diabetes and cancer. These enzymes have been considered redundant since either one or the other exists in each individual genome. The co-occurrence of NAMPT and PNC was only recently detected in invertebrates though no structural or functional characterization exists for them. Here, using expression and evolutionary analysis combined with homology modeling and protein-ligand docking, we show that both genes are expressed simultaneously in key species of major invertebrate branches and emphasize sequence and structural conservation patterns in metazoan NAMPT and PNC homologues. The results anticipate that NAMPTs and PNCs are simultaneously active, raising the possibility that NAD salvage pathways are not redundant as both are maintained to fulfill the requirement for NAD production in some species.

  13. The evolutionary portrait of metazoan NAD salvage.

    Directory of Open Access Journals (Sweden)

    João Carneiro

    Full Text Available Nicotinamide Adenine Dinucleotide (NAD levels are essential for cellular homeostasis and survival. Main sources of intracellular NAD are the salvage pathways from nicotinamide, where Nicotinamide phosphoribosyltransferases (NAMPTs and Nicotinamidases (PNCs have a key role. NAMPTs and PNCs are important in aging, infection and disease conditions such as diabetes and cancer. These enzymes have been considered redundant since either one or the other exists in each individual genome. The co-occurrence of NAMPT and PNC was only recently detected in invertebrates though no structural or functional characterization exists for them. Here, using expression and evolutionary analysis combined with homology modeling and protein-ligand docking, we show that both genes are expressed simultaneously in key species of major invertebrate branches and emphasize sequence and structural conservation patterns in metazoan NAMPT and PNC homologues. The results anticipate that NAMPTs and PNCs are simultaneously active, raising the possibility that NAD salvage pathways are not redundant as both are maintained to fulfill the requirement for NAD production in some species.

  14. Evolutionary dynamics of Newcastle disease virus

    Science.gov (United States)

    Miller, P.J.; Kim, L.M.; Ip, Hon S.; Afonso, C.L.

    2009-01-01

    A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution. ?? 2009 Elsevier Inc.

  15. Evolutionary stability of sex chromosomes in snakes.

    Science.gov (United States)

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  16. Incorporating Development Into Evolutionary Psychology

    OpenAIRE

    David F. Bjorklund

    2016-01-01

    Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants’ and ch...

  17. Evolutionary dynamics of diploid populations

    Science.gov (United States)

    Desimone, Ralph; Newman, Timothy

    2003-10-01

    There has been much recent interest in constructing computer models of evolutionary dynamics. Typically these models focus on asexual population dynamics, which are appropriate for haploid organsims such as bacteria. Using a recently developed ``genome template'' model, we extend the algorithm to a sexual population of diploid organisms. We will present some early results showing the temporal evolution of mean fitness and genetic variation, and compare this to typical results from haploid populations.

  18. Natural pedagogy as evolutionary adaptation

    OpenAIRE

    Csibra, Gergely; Gergely, György

    2011-01-01

    We propose that the cognitive mechanisms that enable the transmission of cultural knowledge by communication between individuals constitute a system of ‘natural pedagogy’ in humans, and represent an evolutionary adaptation along the hominin lineage. We discuss three kinds of arguments that support this hypothesis. First, natural pedagogy is likely to be human-specific: while social learning and communication are both widespread in non-human animals, we know of no example of social learning by...

  19. Evolutionary Theories in Environmental and Resource Economics: Approaches and Applications

    NARCIS (Netherlands)

    van den Bergh, J.C.J.M.; Gowdy, J.M.

    2000-01-01

    Recent advances in evolutionary theory have important implications for environmental economics. A short overview is offered of evolutionary thinking in economics. Subsequently, major concepts and approaches in evolutionary biology and evolutionary economics are presented and compared. Attention is

  20. Incorporating Development Into Evolutionary Psychology

    Directory of Open Access Journals (Sweden)

    David F. Bjorklund

    2016-09-01

    Full Text Available Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants’ and children’s behavior/cognition/brains. The concept of evolved probabilistic cognitive mechanisms is introduced, defined as information processing mechanisms evolved to solve recurrent problems faced by ancestral populations that are expressed in a probabilistic fashion in each individual in a generation and are based on the continuous and bidirectional interaction over time at all levels of organization, from the genetic through the cultural. Early perceptual/cognitive biases result in behavior that, when occurring in a species-typical environment, produce continuous adaptive changes in behavior (and cognition, yielding adaptive outcomes. Examples from social learning and tool use are provided, illustrating the development of adaptations via evolved probabilistic cognitive mechanisms. The integration of developmental concepts into mainstream evolutionary psychology (and evolutionary concepts into mainstream developmental psychology will provide a clearer picture of what it means to be human.

  1. Evolutionary computation and QSAR research.

    Science.gov (United States)

    Aguiar-Pulido, Vanessa; Gestal, Marcos; Cruz-Monteagudo, Maykel; Rabuñal, Juan R; Dorado, Julian; Munteanu, Cristian R

    2013-06-01

    The successful high throughput screening of molecule libraries for a specific biological property is one of the main improvements in drug discovery. The virtual molecular filtering and screening relies greatly on quantitative structure-activity relationship (QSAR) analysis, a mathematical model that correlates the activity of a molecule with molecular descriptors. QSAR models have the potential to reduce the costly failure of drug candidates in advanced (clinical) stages by filtering combinatorial libraries, eliminating candidates with a predicted toxic effect and poor pharmacokinetic profiles, and reducing the number of experiments. To obtain a predictive and reliable QSAR model, scientists use methods from various fields such as molecular modeling, pattern recognition, machine learning or artificial intelligence. QSAR modeling relies on three main steps: molecular structure codification into molecular descriptors, selection of relevant variables in the context of the analyzed activity, and search of the optimal mathematical model that correlates the molecular descriptors with a specific activity. Since a variety of techniques from statistics and artificial intelligence can aid variable selection and model building steps, this review focuses on the evolutionary computation methods supporting these tasks. Thus, this review explains the basic of the genetic algorithms and genetic programming as evolutionary computation approaches, the selection methods for high-dimensional data in QSAR, the methods to build QSAR models, the current evolutionary feature selection methods and applications in QSAR and the future trend on the joint or multi-task feature selection methods.

  2. Testing evolutionary convergence on Europa

    International Nuclear Information System (INIS)

    Chela-Flores, Julian

    2002-11-01

    A major objective in solar system exploration is the insertion of appropriate biology-oriented experiments in future missions. We discuss various reasons for suggesting that this type of research be considered a high priority for feasibility studies and, subsequently, for technological development of appropriate melters and submersibles. Based on numerous examples, we argue in favour of the assumption that Darwin's theory is valid for the evolution of life anywhere in the universe. We have suggested how to obtain preliminary insights into the question of the distribution of life in the universe. Universal evolution of intelligent behaviour is at the end of an evolutionary pathway, in which evolution of ion channels in the membrane of microorganisms occurs in its early stages. Further, we have argued that a preliminary test of this conjecture is feasible with experiments on the Europan surface or ocean, involving evolutionary biosignatures (ion channels). This aspect of the exploration for life in the solar system should be viewed as a complement to the astronomical approach for the search of evidence of the later stages of the evolutionary pathways towards intelligent behaviour. (author)

  3. What's wrong with evolutionary biology?

    Science.gov (United States)

    Welch, John J

    2017-01-01

    There have been periodic claims that evolutionary biology needs urgent reform, and this article tries to account for the volume and persistence of this discontent. It is argued that a few inescapable properties of the field make it prone to criticisms of predictable kinds, whether or not the criticisms have any merit. For example, the variety of living things and the complexity of evolution make it easy to generate data that seem revolutionary (e.g. exceptions to well-established generalizations, or neglected factors in evolution), and lead to disappointment with existing explanatory frameworks (with their high levels of abstraction, and limited predictive power). It is then argued that special discontent stems from misunderstandings and dislike of one well-known but atypical research programme: the study of adaptive function, in the tradition of behavioural ecology. To achieve its goals, this research needs distinct tools, often including imaginary agency, and a partial description of the evolutionary process. This invites mistaken charges of narrowness and oversimplification (which come, not least, from researchers in other subfields), and these chime with anxieties about human agency and overall purpose. The article ends by discussing several ways in which calls to reform evolutionary biology actively hinder progress in the field.

  4. Evolutionary ecology of virus emergence.

    Science.gov (United States)

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  5. Evolutionary dynamics of group formation.

    Science.gov (United States)

    Javarone, Marco Alberto; Marinazzo, Daniele

    2017-01-01

    Group formation is a quite ubiquitous phenomenon across different animal species, whose individuals cluster together forming communities of diverse size. Previous investigations suggest that, in general, this phenomenon might have similar underlying reasons across the interested species, despite genetic and behavioral differences. For instance improving the individual safety (e.g. from predators), and increasing the probability to get food resources. Remarkably, the group size might strongly vary from species to species, e.g. shoals of fishes and herds of lions, and sometimes even within the same species, e.g. tribes and families in human societies. Here we build on previous theories stating that the dynamics of group formation may have evolutionary roots, and we explore this fascinating hypothesis from a purely theoretical perspective, with a model using the framework of Evolutionary Game Theory. In our model we hypothesize that homogeneity constitutes a fundamental ingredient in these dynamics. Accordingly, we study a population that tries to form homogeneous groups, i.e. composed of similar agents. The formation of a group can be interpreted as a strategy. Notably, agents can form a group (receiving a 'group payoff'), or can act individually (receiving an 'individual payoff'). The phase diagram of the modeled population shows a sharp transition between the 'group phase' and the 'individual phase', characterized by a critical 'individual payoff'. Our results then support the hypothesis that the phenomenon of group formation has evolutionary roots.

  6. Cancer research meets evolutionary biology.

    Science.gov (United States)

    Pepper, John W; Scott Findlay, C; Kassen, Rees; Spencer, Sabrina L; Maley, Carlo C

    2009-02-01

    There is increasing evidence that Darwin's theory of evolution by natural selection provides insights into the etiology and treatment of cancer. On a microscopic scale, neoplastic cells meet the conditions for evolution by Darwinian selection: cell reproduction with heritable variability that affects cell survival and replication. This suggests that, like other areas of biological and biomedical research, Darwinian theory can provide a general framework for understanding many aspects of cancer, including problems of great clinical importance. With the availability of raw molecular data increasing rapidly, this theory may provide guidance in translating data into understanding and progress. Several conceptual and analytical tools from evolutionary biology can be applied to cancer biology. Two clinical problems may benefit most from the application of Darwinian theory: neoplastic progression and acquired therapeutic resistance. The Darwinian theory of cancer has especially profound implications for drug development, both in terms of explaining past difficulties, and pointing the way toward new approaches. Because cancer involves complex evolutionary processes, research should incorporate both tractable (simplified) experimental systems, and also longitudinal observational studies of the evolutionary dynamics of cancer in laboratory animals and in human patients. Cancer biology will require new tools to control the evolution of neoplastic cells.

  7. Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units

    Science.gov (United States)

    C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery

    2013-01-01

    Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...

  8. Conserving Phylogenetic Diversity Can Be a Poor Strategy for Conserving Functional Diversity.

    Science.gov (United States)

    Mazel, Florent; Mooers, Arne O; Riva, Giulio Valentino Dalla; Pennell, Matthew W

    2017-11-01

    For decades, academic biologists have advocated for making conservation decisions in light of evolutionary history. Specifically, they suggest that policy makers should prioritize conserving phylogenetically diverse assemblages. The most prominent argument is that conserving phylogenetic diversity (PD) will also conserve diversity in traits and features (functional diversity [FD]), which may be valuable for a number of reasons. The claim that PD-maximized ("maxPD") sets of taxa will also have high FD is often taken at face value and in cases where researchers have actually tested it, they have done so by measuring the phylogenetic signal in ecologically important functional traits. The rationale is that if traits closely mirror phylogeny, then saving the maxPD set of taxa will tend to maximize FD and if traits do not have phylogenetic structure, then saving the maxPD set of taxa will be no better at capturing FD than criteria that ignore PD. Here, we suggest that measuring the phylogenetic signal in traits is uninformative for evaluating the effectiveness of using PD in conservation. We evolve traits under several different models and, for the first time, directly compare the FD of a set of taxa that maximize PD to the FD of a random set of the same size. Under many common models of trait evolution and tree shapes, conserving the maxPD set of taxa will conserve more FD than conserving a random set of the same size. However, this result cannot be generalized to other classes of models. We find that under biologically plausible scenarios, using PD to select species can actually lead to less FD compared with a random set. Critically, this can occur even when there is phylogenetic signal in the traits. Predicting exactly when we expect using PD to be a good strategy for conserving FD is challenging, as it depends on complex interactions between tree shape and the assumptions of the evolutionary model. Nonetheless, if our goal is to maintain trait diversity, the fact

  9. Evolutionary analysis of the TPP-dependent enzyme family.

    Science.gov (United States)

    Costelloe, Seán J; Ward, John M; Dalby, Paul A

    2008-01-01

    The evolutionary relationships of the thiamine pyrophosphate (TPP)-dependent family of enzymes was investigated by generation of a neighbor joining phylogenetic tree using sequences from the conserved pyrophosphate (PP) and pyrimidine (Pyr) binding domains of 17 TPP-dependent enzymes. This represents the most comprehensive analysis of TPP-dependent enzyme evolution to date. The phylogeny was shown to be robust by comparison with maximum likelihood trees generated for each individual enzyme and also broadly confirms the evolutionary history proposed recently from structural comparisons alone (Duggleby 2006). The phylogeny is most parsimonious with the TPP enzymes having arisen from a homotetramer which subsequently diverged into an alpha(2)beta(2) heterotetramer. The relationship between the PP- and Pyr-domains and the recruitment of additional protein domains was examined using the transketolase C-terminal (TKC)-domain as an example. This domain has been recruited by several members of the family and yet forms no part of the active site and has unknown function. Removal of the TKC-domain was found to increase activity toward beta-hydroxypyruvate and glycolaldehyde. Further truncations of the Pyr-domain yielded several variants with retained activity. This suggests that the influence of TKC-domain recruitment on the evolution of the mechanism and specificity of transketolase (TK) has been minor, and that the smallest functioning unit of TK comprises the PP- and Pyr-domains, whose evolutionary histories extend to all TPP-dependent enzymes.

  10. In silico analysis of evolutionary patterns in restriction endonucleases.

    Science.gov (United States)

    Singh, Tiratha Raj; Pardasani, Kamal Raj

    2009-01-01

    Restriction endonucleases represent one of the best studied examples of DNA binding proteins. Type II restriction endonucleases recognize short sequences of foreign DNA and cleave the target on both strands with remarkable sequence specificity. Type II restriction endonucleases are part of restriction modification systems. Restriction modification systems occur ubiquitously among bacteria and archaea. Restriction endonucleases are indispensable tools in molecular biology and biotechnology. They are important model system for specific protein-nucleic acid interactions and also serve as good example for investigating structural, functional and evolutionary relationships among various biomolecules. The interaction between restriction endonucleases and their recognition sequences plays a crucial role in biochemical activities like catalytic site/metal binding, DNA repair and recombination etc. We study various patterns in restriction endonucleases type II and analyzed their structural, functional and evolutionary role. Our studies support X-ray crystallographic studies, arguing for divergence and molecular evolution. Conservation patterns of the nuclease superfamily have also been analyzed by estimating site-specific evolutionary rates for the analyzed structures related to respective chains in this study.

  11. Expanding the eco-evolutionary context of herbicide resistance research.

    Science.gov (United States)

    Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M

    2014-09-01

    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.

  12. Diversity, Biodiversity, Conservation, and Sustainability

    Directory of Open Access Journals (Sweden)

    Joao Carlos Marques

    2001-01-01

    Full Text Available The concepts of diversity and biodiversity are analysed regarding their historical emergence, and their intrinsic meaning and differences are discussed. Through a brief synopsis, difficulties usually experienced by statisticians in capturing the dynamics of diversity are analysed and main problems identified. The shift from diversity to the more holistic biodiversity as a working concept is appraised in terms of the novelty involved. Through a number of examples, the way the two concepts capture natural cyclic changes is analysed, and their reciprocal and complementary relations are approached theoretically. The way diversity could develop from the stores of biodiversity as its active expression through selective and evolutionary processes is described. Through the use of a very simple dynamic model, the concepts of diversity and biodiversity are analysed in extremely opposite hypothetical scenarios. Comparisons with natural situations are made and the theoretical implications from the conservation point of view are discussed. These support the opinion that conservation undertaken in restricted and protected areas is not self-sustainable, needing permanent external intervention to regulate internal processes, and in the long run will most probably lead in the direction of obsolescence and extinction. Finally, the relations between diversity, biodiversity, and sustainability are approached. The vagueness of the sustainability concept is discussed. Preservation of biodiversity is then defended as one of the best available indicators to assist us in fixing boundaries which may help to provide a more precise definition of sustainability.

  13. ChIP-seq Identification of Weakly Conserved Heart Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Blow, Matthew J.; McCulley, David J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Bristow, James; Ren, Bing; Black, Brian L.; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

    2010-07-01

    Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme non-coding sequence conservation successfully predicts enhancers active in many tissues, but fails to identify substantial numbers of heart enhancers. Here we used ChIP-seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over three thousand candidate heart enhancers genome-wide. Compared to other tissues studied at this time-point, most candidate heart enhancers are less deeply conserved in vertebrate evolution. Nevertheless, the testing of 130 candidate regions in a transgenic mouse assay revealed that most of them reproducibly function as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary constraint of embryonic enhancers can vary depending on tissue type.

  14. Incorporating phylogenetic information for the definition of floristic districts in hyper-diverse Amazon forests: implications for conservation

    NARCIS (Netherlands)

    Guevara, J.E.; Pitman, N.C.A.; ter Steege, H.; Mogollón, H.; Ceron, C.; Palacios, W.; Oleas, N.; Fine, P.V.A.

    2017-01-01

    Using complementary metrics to evaluate phylogenetic diversity can facilitate the delimitation of floristic units and conservation priority areas. In this study, we describe the spatial patterns of phylogenetic alpha and beta diversity, phylogenetic endemism, and evolutionary distinctiveness of the

  15. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    Science.gov (United States)

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  16. Multiple explanations in Darwinian evolutionary theory.

    Science.gov (United States)

    Bock, Walter J

    2010-03-01

    Variational evolutionary theory as advocated by Darwin is not a single theory, but a bundle of related but independent theories, namely: (a) variational evolution; (b) gradualism rather than large leaps; (c) processes of phyletic evolution and of speciation; (d) causes for the formation of varying individuals in populations and for the action of selective agents; and (e) all organisms evolved from a common ancestor. The first four are nomological-deductive explanations and the fifth is historical-narrative. Therefore evolutionary theory must be divided into nomological and historical theories which are both testable against objective empirical observations. To be scientific, historical evolutionary theories must be based on well corroborated nomological theories, both evolutionary and functional. Nomological and general historical evolutionary theories are well tested and must be considered as strongly corroborated scientific theories. Opponents of evolutionary theory are concerned only with historical evolutionary theories, having little interest in nomological theory. Yet given a well corroborated nomological evolutionary theory, historical evolutionary theories follow automatically. If understood correctly, both forms of evolutionary theories stand on their own as corroborated scientific theories and should not be labeled as facts.

  17. Barnacle cement: a polymerization model based on evolutionary concepts

    Science.gov (United States)

    Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel

    2009-01-01

    Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892

  18. Evolutionary Accessibility of Mutational Pathways

    Science.gov (United States)

    Franke, Jasper; Klözer, Alexander; de Visser, J. Arjan G. M.; Krug, Joachim

    2011-01-01

    Functional effects of different mutations are known to combine to the total effect in highly nontrivial ways. For the trait under evolutionary selection (‘fitness’), measured values over all possible combinations of a set of mutations yield a fitness landscape that determines which mutational states can be reached from a given initial genotype. Understanding the accessibility properties of fitness landscapes is conceptually important in answering questions about the predictability and repeatability of evolutionary adaptation. Here we theoretically investigate accessibility of the globally optimal state on a wide variety of model landscapes, including landscapes with tunable ruggedness as well as neutral ‘holey’ landscapes. We define a mutational pathway to be accessible if it contains the minimal number of mutations required to reach the target genotype, and if fitness increases in each mutational step. Under this definition accessibility is high, in the sense that at least one accessible pathway exists with a substantial probability that approaches unity as the dimensionality of the fitness landscape (set by the number of mutational loci) becomes large. At the same time the number of alternative accessible pathways grows without bounds. We test the model predictions against an empirical 8-locus fitness landscape obtained for the filamentous fungus Aspergillus niger. By analyzing subgraphs of the full landscape containing different subsets of mutations, we are able to probe the mutational distance scale in the empirical data. The predicted effect of high accessibility is supported by the empirical data and is very robust, which we argue reflects the generic topology of sequence spaces. Together with the restrictive assumptions that lie in our definition of accessibility, this implies that the globally optimal configuration should be accessible to genome wide evolution, but the repeatability of evolutionary trajectories is limited owing to the presence of a

  19. Evolutionary Origin of the Proepicardium

    Directory of Open Access Journals (Sweden)

    Elena Cano

    2013-05-01

    Full Text Available The embryonic epicardium and the cardiac mesenchyme derived from it are critical to heart development. The embryonic epicardium arises from an extracardiac progenitor tissue called the proepicardium, a proliferation of coelomic cells located at the limit between the liver and the sinus venosus. A proepicardium has not been described in invertebrates, and the evolutionary origin of this structure in vertebrates is unknown. We herein suggest that the proepicardium might be regarded as an evolutionary derivative from an ancient pronephric external glomerulus that has lost its excretory role. In fact, we previously described that the epicardium arises by cell migration from the primordia of the right pronephric external glomerulus in a representative of the most primitive vertebrate lineage, the lamprey Petromyzon marinus. In this review, we emphasize the striking similarities between the gene expression profiles of the proepicardium and the developing kidneys, as well as the parallelisms in the signaling mechanisms involved in both cases. We show some preliminary evidence about the existence of an inhibitory mechanism blocking glomerular differentiation in the proepicardium. We speculate as to the possibility that this developmental link between heart and kidney can be revealing a phylogenetically deeper association, supported by the existence of a heart-kidney complex in Hemichordates. Finally, we suggest that primitive hematopoiesis could be related with this heart-kidney complex, thus accounting for the current anatomical association of the hematopoietic stem cells with an aorta-gonad-mesonephros area. In summary, we think that our hypothesis can provide new perspectives on the evolutionary origin of the vertebrate heart.

  20. The evolutionary origins of patriarchy.

    Science.gov (United States)

    Smuts, B

    1995-03-01

    This article argues that feminist analyses of patriarchy should be expanded to address the evolutionary basis of male motivation to control female sexuality. Evidence from other primates of male sexual coercion and female resistance to it indicates that the sexual conflicts of interest that underlie patriarchy predate the emergence of the human species. Humans, however, exhibit more extensive male dominance and male control of female sexuality than is shown by most other primates. Six hypotheses are proposed to explain how, over the course of human evolution, this unusual degree of gender inequality came about. This approach emphasizes behavioral flexibility, cross-cultural variability in the degree of partriarchy, and possibilities for future change.

  1. Policy folklists and evolutionary theory.

    Science.gov (United States)

    O'Neill, Barry

    2014-07-22

    Policy folklists present a set of alleged historical facts seen as relevant to some social issue. Although the validity of these folklists is dubious, leaders and writers circulate them in the media, variants arise, and the lists continue on, sometimes for decades. Folklists are repeated because their messages are appealing and their users are credible. Because folklists are on the record, we can examine their origins and changes. This report draws an analogy with evolutionary theory and suggests that biological mechanisms of self-repair, boundary maintenance, plasticity, speciation, and predation have significant interpretations for folklists, and clarify how the lists win the credence of otherwise skeptical people.

  2. Evolutionary Games and Social Conventions

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg

    2007-01-01

    Some thirty years ago Lewis published his Convention: A Philosophical Study (Lewis, 2002). This laid the foundation for a game-theoretic approach to social conventions, but became more famously known for its seminal analysis of common knowledge; the concept receiving its canonical analysis...... which any theory of convention must revolve. In response, the so-called evolutionary turn has developed. While retaining the broad framework, in which games are described in terms of strategies and payoffs, this marks a transition from the classical assumptions of perfect rationality and common...

  3. Dynamic conservation of forest genetic resources in 33 European countries.

    Science.gov (United States)

    Lefèvre, François; Koskela, Jarkko; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C; Schüler, Silvio; Bozzano, Michele; Alizoti, Paraskevi; Bakys, Remigijus; Baldwin, Cathleen; Ballian, Dalibor; Black-Samuelsson, Sanna; Bednarova, Dagmar; Bordács, Sándor; Collin, Eric; de Cuyper, Bart; de Vries, Sven M G; Eysteinsson, Thröstur; Frýdl, Josef; Haverkamp, Michaela; Ivankovic, Mladen; Konrad, Heino; Koziol, Czesław; Maaten, Tiit; Notivol Paino, Eduardo; Oztürk, Hikmet; Pandeva, Ivanova Denitsa; Parnuta, Gheorghe; Pilipovič, Andrej; Postolache, Dragos; Ryan, Cathal; Steffenrem, Arne; Varela, Maria Carolina; Vessella, Federico; Volosyanchuk, Roman T; Westergren, Marjana; Wolter, Frank; Yrjänä, Leena; Zariŋa, Inga

    2013-04-01

    Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies. © 2012 Society for Conservation Biology.

  4. Evolutionary genomics of LysM genes in land plants

    Directory of Open Access Journals (Sweden)

    Stacey Gary

    2009-08-01

    Full Text Available Abstract Background The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns and lipo-chitin (nodulation factors in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. Results We show that LysM-containing proteins display a wide range of complex domain architectures. However, only a simple core architecture is conserved across kingdoms. Each individual kingdom appears to have evolved a distinct array of domain architectures. We show that early plant lineages acquired four characteristic architectures and progressively lost several primitive architectures. We report plant LysM phylogenies and associated gene, protein and genomic features, and infer the relative timing of duplications of LYK genes. Conclusion We report a domain architecture catalogue of LysM proteins across all kingdoms. The unique pattern of LysM protein domain architectures indicates the presence of distinctive evolutionary paths in individual kingdoms. We describe a comparative and evolutionary genomics study of LysM genes in plant kingdom. One of the two groups of tandemly arrayed plant LYK genes likely resulted from an ancient genome duplication followed by local genomic rearrangement, while the origin of the other groups of tandemly arrayed LYK genes remains obscure. Given the fact that no animal LysM motif-containing genes have been functionally characterized, this study provides clues to functional characterization of plant LysM genes and is also informative with regard to evolutionary and functional studies of animal LysM genes.

  5. Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system.

    Science.gov (United States)

    Mordhorst, Bethany R; Wilson, Miranda L; Conant, Gavin C

    2016-01-01

    In this review, we discuss the way that insights from evolutionary theory and systems biology shed light on form and function in mammalian reproductive systems. In the first part of the review, we contrast the rapid evolution seen in some reproductive genes with the generally conservative nature of development. We discuss directional selection and coevolution as potential drivers of rapid evolution in sperm and egg proteins. Such rapid change is very different from the highly conservative nature of later embryo development. However, it is not unique, as some regions of the sex chromosomes also show elevated rates of evolutionary change. To explain these contradictory trends, we argue that it is not reproductive functions per se that induce rapid evolution. Rather, it is the fact that biotic interactions, such as speciation events and sexual conflict, have no evolutionary endpoint and hence can drive continuous evolutionary changes. Returning to the question of sex chromosome evolution, we discuss the way that recent advances in evolutionary genomics and systems biology and, in particular, the development of a theory of gene balance provide a better understanding of the evolutionary patterns seen on these chromosomes. We end the review with a discussion of a surprising and incompletely understood phenomenon observed in early embryos: namely the Warburg effect, whereby glucose is fermented to lactate and alanine rather than respired to carbon dioxide. We argue that evolutionary insights, from both yeasts and tumor cells, help to explain the Warburg effect, and that new metabolic modeling approaches are useful in assessing the potential sources of the effect.

  6. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change

    OpenAIRE

    Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C.

    2014-01-01

    A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species p...

  7. Evolutionary developmental biology its roots and characteristics.

    Science.gov (United States)

    Morange, Michel

    2011-09-01

    The rise of evolutionary developmental biology was not the progressive isolation and characterization of developmental genes and gene networks. Many obstacles had to be overcome: the idea that all genes were more or less involved in development; the evidence that developmental processes in insects had nothing in common with those of vertebrates. Different lines of research converged toward the creation of evolutionary developmental biology, giving this field of research its present heterogeneity. This does not prevent all those working in the field from sharing the conviction that a precise characterization of evolutionary variations is required to fully understand the evolutionary process. Some evolutionary developmental biologists directly challenge the Modern Synthesis. I propose some ways to reconcile these apparently opposed visions of evolution. The turbulence seen in evolutionary developmental biology reflects the present entry of history into biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Conceptual Barriers to Progress Within Evolutionary Biology.

    Science.gov (United States)

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  9. The structure of microbial evolutionary theory.

    Science.gov (United States)

    Sapp, J

    2007-12-01

    The study of microbial phylogeny and evolution has emerged as an interdisciplinary synthesis, divergent in both methods and concepts from the classical evolutionary biology. The deployment of macromolecular sequencing in microbial classification has provided a deep evolutionary taxonomy hitherto deemed impossible. Microbial phylogenetics has greatly transformed the landscape of evolutionary biology, not only in revitalizing the field in the pursuit of life's history over billions of years, but also in transcending the structure of thought that has shaped evolutionary theory since the time of Darwin. A trio of primary phylogenetic lineages, along with the recognition of symbiosis and lateral gene transfer as fundamental processes of evolutionary innovation, are core principles of microbial evolutionary biology today. Their scope and significance remain contentious among evolutionists.

  10. The Evolving Theory of Evolutionary Radiations.

    Science.gov (United States)

    Simões, M; Breitkreuz, L; Alvarado, M; Baca, S; Cooper, J C; Heins, L; Herzog, K; Lieberman, B S

    2016-01-01

    Evolutionary radiations have intrigued biologists for more than 100 years, and our understanding of the patterns and processes associated with these radiations continues to grow and evolve. Recently it has been recognized that there are many different types of evolutionary radiation beyond the well-studied adaptive radiations. We focus here on multifarious types of evolutionary radiations, paying special attention to the abiotic factors that might trigger diversification in clades. We integrate concepts such as exaptation, species selection, coevolution, and the turnover-pulse hypothesis (TPH) into the theoretical framework of evolutionary radiations. We also discuss other phenomena that are related to, but distinct from, evolutionary radiations that have relevance for evolutionary biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Evolutionary Puzzle of Suicide

    Directory of Open Access Journals (Sweden)

    Henri-Jean Aubin

    2013-12-01

    Full Text Available Mechanisms of self-destruction are difficult to reconcile with evolution’s first rule of thumb: survive and reproduce. However, evolutionary success ultimately depends on inclusive fitness. The altruistic suicide hypothesis posits that the presence of low reproductive potential and burdensomeness toward kin can increase the inclusive fitness payoff of self-removal. The bargaining hypothesis assumes that suicide attempts could function as an honest signal of need. The payoff may be positive if the suicidal person has a low reproductive potential. The parasite manipulation hypothesis is founded on the rodent—Toxoplasma gondii host-parasite model, in which the parasite induces a “suicidal” feline attraction that allows the parasite to complete its life cycle. Interestingly, latent infection by T. gondii has been shown to cause behavioral alterations in humans, including increased suicide attempts. Finally, we discuss how suicide risk factors can be understood as nonadaptive byproducts of evolved mechanisms that malfunction. Although most of the mechanisms proposed in this article are largely speculative, the hypotheses that we raise accept self-destructive behavior within the framework of evolutionary theory.

  12. Evolutionary development of tensegrity structures.

    Science.gov (United States)

    Lobo, Daniel; Vico, Francisco J

    2010-09-01

    Contributions from the emerging fields of molecular genetics and evo-devo (evolutionary developmental biology) are greatly benefiting the field of evolutionary computation, initiating a promise of renewal in the traditional methodology. While direct encoding has constituted a dominant paradigm, indirect ways to encode the solutions have been reported, yet little attention has been paid to the benefits of the proposed methods to real problems. In this work, we study the biological properties that emerge by means of using indirect encodings in the context of form-finding problems. A novel indirect encoding model for artificial development has been defined and applied to an engineering structural-design problem, specifically to the discovery of tensegrity structures. This model has been compared with a direct encoding scheme. While the direct encoding performs similarly well to the proposed method, indirect-based results typically outperform the direct-based results in aspects not directly linked to the nature of the problem itself, but to the emergence of properties found in biological organisms, like organicity, generalization capacity, or modularity aspects which are highly valuable in engineering. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Evolutionary potential games on lattices

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, György, E-mail: szabo@mfa.kfki.hu; Borsos, István, E-mail: borsos@mfa.kfki.hu

    2016-04-05

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.

  14. Evolutionary potential games on lattices

    International Nuclear Information System (INIS)

    Szabó, György; Borsos, István

    2016-01-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.

  15. Evolutionary Biology Needs Wild Microbiomes.

    Science.gov (United States)

    Hird, Sarah M

    2017-01-01

    The microbiome is a vital component to the evolution of a host and much of what we know about the microbiome derives from studies on humans and captive animals. But captivity alters the microbiome and mammals have unique biological adaptations that affect their microbiomes (e.g., milk). Birds represent over 30% of known tetrapod diversity and possess their own suite of adaptations relevant to the microbiome. In a previous study, we showed that 59 species of birds displayed immense variation in their microbiomes and host (bird) taxonomy and ecology were most correlated with the gut microbiome. In this Frontiers Focused Review, I put those results in a broader context by discussing how collecting and analyzing wild microbiomes contributes to the main goals of evolutionary biology and the specific ways that birds are unique microbial hosts. Finally, I outline some of the methodological considerations for adding microbiome sampling to the research of wild animals and urge researchers to do so. To truly understand the evolution of a host, we need to understand the millions of microorganisms that inhabit it as well: evolutionary biology needs wild microbiomes.

  16. Evolutionary epistemology a multiparadigm program

    CERN Document Server

    Pinxten, Rik

    1987-01-01

    This volume has its already distant origin in an inter­national conference on Evolutionary Epistemology the editors organized at the University of Ghent in November 1984. This conference aimed to follow up the endeavor started at the ERISS (Epistemologically Relevant Internalist Sociology of Science) conference organized by Don Campbell and Alex Rosen­ berg at Cazenovia Lake, New York, in June 1981, whilst in­ jecting the gist of certain current continental intellectual developments into a debate whose focus, we thought, was in danger of being narrowed too much, considering the still underdeveloped state of affairs in the field. Broadly speaking, evolutionary epistemology today con­ sists of two interrelated, yet qualitatively distinct inves­ tigative efforts. Both are drawing on Darwinian concepts, which may explain why many people have failed to discriminate them. One is the study of the evolution of the cognitive apparatus of living organisms, which is first and foremost the province of biologists and...

  17. Evolutionary expansion of the Monogenea.

    Science.gov (United States)

    Kearn, G C

    1994-12-01

    The evolutionary expansion of the monogeneans has taken place in parallel with the diversification of the fish-like vertebrates. In this article the main trends in monogenean evolution are traced from a hypothetical skin-parasitic ancestor on early vertebrates. Special consideration is given to the following topics: early divergence between skin feeders and blood feeders; diversification and specialization of the haptor for attachment to skin; transfer from host to host, viviparity and the success of the gyrodactylids; predation on skin parasites and camouflage; colonization of the buccal and branchial cavities; diversification and specialization of the haptor for attachment to the gills; phoresy in gill parasites; the development of endoparasitism and the origin of the cestodes; the success of dactylogyroidean gill parasites; the uniqueness of the polyopisthocotyleans; ovoviviparity and the colonization of the tetrapods. Host specificity has been the guiding force of coevolution between monogeneans and their vertebrate hosts, but the establishment of monogeneans on unrelated hosts sharing the same environment (host-switching) may have been underestimated. Host-switching has provided significant opportunities for evolutionary change of direction and is probably responsible for the establishment of monogeneans on cephalopod molluscs, on the hippopotamus and possibly on chelonians. There are indications that host-switching may be more common in monogeneans that spread by direct transfer of adults/juveniles from host to host. A limitation on the further expansion of monogeneans is the need for water for the dispersal of the infective larva (oncomiracidium).

  18. The emerging empirics of evolutionary economic geography

    OpenAIRE

    Ron Boschma; KOen Frenken

    2010-01-01

    Following last decadeÕs programmatic papers on Evolutionary Economic Geography, we report on recent empirical advances and how this empirical work can be positioned vis-ˆ-vis other strands of research in economic geography. First, we review studies on the path dependent nature of clustering, and how the evolutionary perspective relates to that of New Economic Geography. Second, we discuss research on agglomeration externalities in Regional Science, and how Evolutionary Economic Geography cont...

  19. Evolutionary computation for dynamic optimization problems

    CERN Document Server

    Yao, Xin

    2013-01-01

    This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.

  20. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  1. Conservation genetics in transition to conservation genomics

    DEFF Research Database (Denmark)

    Ouborg, N. Joop; Pertoldi, Cino; Loeschcke, Volker

    2010-01-01

    in conservation biology. This has allowed assessment of the impact of genetic drift on genetic variation, of the level of inbreeding within populations, and of the amount of gene flow between or within populations. Recent developments in genomic techniques, including next generation sequencing, whole genome scans...... and gene-expression pattern analysis, have made it possible to step up from a limited number of neutral markers to genome-wide estimates of functional genetic variation. Here, we focus on how the transition of conservation genetics to conservation genomics leads to insights into the dynamics of selectively...

  2. Global Patterns of Evolutionary Distinct and Globally Endangered Amphibians and Mammals

    Science.gov (United States)

    Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E. M.; Isaac, Nick J. B.

    2013-01-01

    Background Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The “EDGE of Existence” programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Methods and Principal Findings Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Conclusions Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme. PMID:23691071

  3. Evolutionary relationships between papovaviruses and their hosts.

    Science.gov (United States)

    Scherneck, S; Feunteun, J; Vogel, F; Boettger, M; Krause, H; Prokoph, H; Zimmermann, W; Geissler, E

    1983-01-01

    The papovaviridae family consists of two genera, the papillomaviruses (PV) and the polyomaviruses (Py-V). Both genera are distinguished by morphological (larger sizes of the PV) and several biological characteristics. The genomes of either of the two genera share highly conserved DNA regions and a common antigenic determinant, located in their major capsid polypeptides. On the basis of these data an evolutionary relationship among the members of PV and Py-V, respectively, has been suggested. No homology has been found for either DNA- or protein sequences between PV and Py-V and the question of a common ancestor for both viral genera remains open. We have started to characterize the genome of a papilloma producing papovavirus of the Syrian hamster (HaPV). Most of the known biological characteristics of the HaPV suggest it should be classified as a papilloma-like virus. However, the molecular weight of about 3.5 X 10(6) daltons found for the circular duplex DNA lies within the range given for SV 40 and polyoma virus (Py). Analysis of the HaPV genome by cleavage with 21 different restriction endonucleases, location of specific binding sites of phage T 4 gene 32 protein and E. coli RNA polymerase on the viral DNA demonstrated that the HaPV differed distinctly from all other currently known papovaviruses. The HaPV genome was also analyzed by filter hybridization and electron microscopy under conditions of varied stringency for nucleotide sequence homology with the genomes of different papovaviruses of both genera. Whereas no homologous DNA regions could be found between the genomes of HaPV and the human PV types 1 and 4, only under nonstringent conditions (Tm-43 degrees C) stable hybrids were formed between HaPV-, SV 40- and the DNA of a PV isolated from Mastomys natalensis (MnPV). On the other hand extensive homology was detected between the genomes of HaPV and Py even under stringent hybridization conditions (Tm-28 degrees C). The homologous DNA segments mapped on the

  4. Paradoxes in Biodiversity Conservation

    OpenAIRE

    David Pearce

    2005-01-01

    Biodiversity is important for human wellbeing, but it is declining. Measures to conserve biodiversity are essential but may be a waste of effort if several paradoxes are not addressed. The highest levels of diversity are in nations least able to practise effective conservation. The flow of funds to international biodiversity conservation appears trivial when compared to the scale of biodiversity loss. International agreements may not actually protect or conserve more than what would have been...

  5. Conservation Action Handbook.

    Science.gov (United States)

    National Rifle Association, Washington, DC.

    Conservation problems are identified, with some suggestions for action. General areas covered are: Wildlife Conservation, Soil Conservation, Clean Water, Air Pollution Action, and Outdoor Recreation Action. Appendices list private organizations or agencies concerned with natural resource use and/or management, congressional committees considering…

  6. Evolution and conservation of plant NLR functions

    Directory of Open Access Journals (Sweden)

    Florence eJacob

    2013-09-01

    Full Text Available In plants and animals, nucleotide-binding domain and leucine-rich repeats (NLR–containing proteins play pivotal roles in innate immunity. Despite their similar biological functions and protein architecture, comparative genome-wide analyses of NLRs and genes encoding NLR-like proteins suggest that plant and animal NLRs have independently arisen in evolution. Furthermore, the demonstration of interfamily transfer of plant NLR functions from their original species to phylogenetically distant species implies evolutionary conservation of the underlying immune principle across plant taxonomy. In this review we discuss plant NLR evolution and summarise recent insights into plant NLR signalling mechanisms, which might constitute evolutionarily conserved NLR-mediated immune mechanisms.

  7. Numerical and Evolutionary Optimization Workshop

    CERN Document Server

    Trujillo, Leonardo; Legrand, Pierrick; Maldonado, Yazmin

    2017-01-01

    This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Throu...

  8. Quantum Mechanics predicts evolutionary biology.

    Science.gov (United States)

    Torday, J S

    2018-01-11

    Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018. Published by Elsevier Ltd.

  9. Markov Networks in Evolutionary Computation

    CERN Document Server

    Shakya, Siddhartha

    2012-01-01

    Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...

  10. Language and imagination: Evolutionary explorations.

    Science.gov (United States)

    Reuland, Eric

    2017-10-01

    This article provides a functional analysis of the conditions for language to emerge, and analyzes its role in imagination. It starts with some initial reflections on imagination and its evolutionary beginnings in relation to the role of working memory and tool use by chimpanzees and humans up to modernity. It then presents an analysis of what it takes to develop language, and how language gives rise to higher orders of imagination. An important theme in the discussion is which of the changes in the development leading to language may have been gradual and which changes must reflect a discontinuity. It concludes with a paradoxical property of imagination: One part of our mind is able to imagine and create systems that another part of our mind is unable to deal with. It shows how this tension manifests itself in the notion of an impossible language, but crucially also in conceptions of human society at large. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Steps towards an evolutionary physics

    CERN Document Server

    Tiezzi, E

    2006-01-01

    If thermodynamics is to physics as logic is to philosophy, recent theoretical advancements lend new coherence to the marvel and dynamism of life on Earth. Enzo Tiezzi's "Steps Towards an Evolutionary Physics" is a primer and guide, to those who would to stand on the shoulders of giants to attain this view: Heisenberg, Planck, Bateson, Varela, and Prigogine as well as notable contemporary scientists. The adventure of such a free and enquiring spirit thrives not so much on answers as on new questions. The book offers a new gestalt on the uncertainty principle and concept of probability. A wide range of examples, enigmas, and paradoxes lead one's imagination on an exquisite dance. Among the applications are: songs and shapes of nature, oscillatory reactions, orientors, goal functions and configurations of processes, and "dissipative structures and the city". Ecodynamics is a new science, which proposes a cross-fertilization between Charles Darwin and Ilya Prigogine. As an enigma in thermodynamics, Entropy forms ...

  12. Notes on an evolutionary medicine.

    Science.gov (United States)

    Weiner, H

    1998-01-01

    Medicine does not have a comprehensive theory of health, ill-health, and disease. Its explanations of disease are firmly rooted in pathological anatomy brought about by infection, intoxication, trauma, and mutations in genes. Because medical concepts have been influenced mainly by classical physics, it is mechanistic, materialistic, deterministic, reductionistic, linear-causal, and strongly biased toward proximate explanations of disease. Of late, many thoughtful persons have attempted to provide medicine with a more comprehensive theory that integrates the documented roles of physical, social, environmental, and psychological factors in the etiology and pathogenesis of ill-health and disease (eg, Refs. 1-3). Until very recently (4), no one has clearly pointed out that such a comprehensive theory should be guided by the concepts of evolutionary and organismic biology. Darwin's great theory states that evolution is "driven," but not exclusively so, by natural and sexual selection. Natural selection acts on variants that differ in adaptive capacities. Those capable of adaptation survive to reproduce. Failure to adapt reduces reproductive fitness and success, and leads to injury or death. But this formulation could be expanded to regard ill-health and disease as adaptive failures, whereas health usually may be conceived of as equivalent to adaptive success. Adaptations are determined by many factors-genetic, morphological, physiological, and behavioral. Selective pressures are many and varied. However, social primates are at a selective advantage, and are among the most successful species and varieties. Social behavior (eg, support) seems to enhance the chances of survival and reproductive fitness. Physiological (immunological, metabolic, cardiovascular) and behavioral adaptations are geared specifically for interactions with the environment. Emotions have evolved as ways of matching physiological responses with environmental demands and signaling the organism's state

  13. Evolutionary design assistants for architecture

    Directory of Open Access Journals (Sweden)

    N. Onur Sönmez

    2015-04-01

    Full Text Available In its parallel pursuit of an increased competitivity for design offices and more pleasurable and easier workflows for designers, artificial design intelligence is a technical, intellectual, and political challenge. While human-machine cooperation has become commonplace through Computer Aided Design (CAD tools, a more improved collaboration and better support appear possible only through an endeavor into a kind of artificial design intelligence, which is more sensitive to the human perception of affairs. Considered as part of the broader Computational Design studies, the research program of this quest can be called Artificial / Autonomous / Automated Design (AD. The current available level of Artificial Intelligence (AI for design is limited and a viable aim for current AD would be to develop design assistants that are capable of producing drafts for various design tasks. Thus, the overall aim of this thesis is the development of approaches, techniques, and tools towards artificial design assistants that offer a capability for generating drafts for sub-tasks within design processes. The main technology explored for this aim is Evolutionary Computation (EC, and the target design domain is architecture. The two connected research questions of the study concern, first, the investigation of the ways to develop an architectural design assistant, and secondly, the utilization of EC for the development of such assistants. While developing approaches, techniques, and computational tools for such an assistant, the study also carries out a broad theoretical investigation into the main problems, challenges, and requirements towards such assistants on a rather overall level. Therefore, the research is shaped as a parallel investigation of three main threads interwoven along several levels, moving from a more general level to specific applications. The three research threads comprise, first, theoretical discussions and speculations with regard to both

  14. Structured synthesis of MEMS using evolutionary approaches

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Achiche, Sofiane

    2008-01-01

    In this paper, we discuss the hierarchy that is involved in a typical MEMS design and how evolutionary approaches can be used to automate the hierarchical synthesis process for MEMS. The paper first introduces the flow of a structured MEMS design process and emphasizes that system-level lumped...... the integrated design automation idea using these evolutionary approaches....

  15. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  16. Evolutionary Biology in the Medical School Curriculum.

    Science.gov (United States)

    Neese, Randolph M.; Schiffman, Joshua D.

    2003-01-01

    Presents a study in which a questionnaire was given to deans at North American medical schools to determine which aspects of evolutionary biology are included in the curricula and the factors that influence this. Suggests that most future physicians should learn evolutionary biology as undergraduates if they are to learn it at all. (Author/NB)

  17. Handbook of differential equations evolutionary equations

    CERN Document Server

    Dafermos, CM

    2008-01-01

    The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts

  18. On the Evolutionary Stability of Bargaining Inefficiency

    DEFF Research Database (Denmark)

    Poulsen, Anders

    This paper investigates whether 'tough' bargaining behavior, which gives rise to inefficiency, can be evolutionary stable. We show that in a two-stage Nash Demand Game tough behavior survives. Indeed, almost all the surplus may be wasted. We also study the Ultimatum Game. Here evolutionary...

  19. Toward a unifying framework for evolutionary processes.

    Science.gov (United States)

    Paixão, Tiago; Badkobeh, Golnaz; Barton, Nick; Çörüş, Doğan; Dang, Duc-Cuong; Friedrich, Tobias; Lehre, Per Kristian; Sudholt, Dirk; Sutton, Andrew M; Trubenová, Barbora

    2015-10-21

    The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Democratizing evolutionary biology, lessons from insects

    DEFF Research Database (Denmark)

    Dunn, Robert Roberdeau; Beasley, DeAnna E.

    2016-01-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales...

  1. Oversimplifying Evolutionary Psychology Leads to Explanatory Gaps

    Science.gov (United States)

    Tate, Chuck; Ledbetter, Jay N.

    2010-01-01

    Comments on Evolutionary psychology: Controversies, questions, prospects, and limitations by Confer et al. They argued that SST cannot explain the existence of either homosexuality or suicide within the human species. We contend that a sufficiently nuanced evolutionary position has no difficulties explaining either phenomenon. Also in this…

  2. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  3. 7 CFR 12.23 - Conservation plans and conservation systems.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Conservation plans and conservation systems. 12.23 Section 12.23 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.23 Conservation plans and conservation systems. (a) Use of...

  4. Ethics of conservation triage

    Directory of Open Access Journals (Sweden)

    Kerrie A Wilson

    2016-09-01

    Full Text Available Conservation triage seems to be at a stalemate between those who accept triage based on utilitarian rationalization, and those that reject it based on a number of ethical principles. We argue that without considered attention to the ethics of conservation triage we risk further polarization in the field of conservation. We draw lessons from the medical sector, where triage is more intuitive and acceptable, and also from disaster planning, to help navigate the challenges that triage entails for conservation science, practice, and policy. We clarify the consequentialist, deontological, and virtue ethical stances that influence the level of acceptance of triage. We emphasize the ethical dimensions of conservation triage in principle and in practice, particularly in the context of stakeholder diversity, a wide range of possible objectives and actions, broader institutions, and significant uncertainties. A focus on a more diverse set of ethics, more considered choice of triage as a conservation tool, open communication of triage objectives and protocols, greater consideration of risk preferences, and regular review and adaptation of triage protocols is required for conservation triage to become more acceptable among diverse conservation practitioners, institutions, and the general public. Accepting conservation triage as fundamentally an ethical problem would foster more open dialogue and constructive debate about the role of conservation triage in a wider system of care.

  5. Inflated impact factors? The true impact of evolutionary papers in non-evolutionary journals.

    Directory of Open Access Journals (Sweden)

    Erik Postma

    Full Text Available Amongst the numerous problems associated with the use of impact factors as a measure of quality are the systematic differences in impact factors that exist among scientific fields. While in theory this can be circumvented by limiting comparisons to journals within the same field, for a diverse and multidisciplinary field like evolutionary biology, in which the majority of papers are published in journals that publish both evolutionary and non-evolutionary papers, this is impossible. However, a journal's overall impact factor may well be a poor predictor for the impact of its evolutionary papers. The extremely high impact factors of some multidisciplinary journals, for example, are by many believed to be driven mostly by publications from other fields. Despite plenty of speculation, however, we know as yet very little about the true impact of evolutionary papers in journals not specifically classified as evolutionary. Here I present, for a wide range of journals, an analysis of the number of evolutionary papers they publish and their average impact. I show that there are large differences in impact among evolutionary and non-evolutionary papers within journals; while the impact of evolutionary papers published in multidisciplinary journals is substantially overestimated by their overall impact factor, the impact of evolutionary papers in many of the more specialized, non-evolutionary journals is significantly underestimated. This suggests that, for evolutionary biologists, publishing in high-impact multidisciplinary journals should not receive as much weight as it does now, while evolutionary papers in more narrowly defined journals are currently undervalued. Importantly, however, their ranking remains largely unaffected. While journal impact factors may thus indeed provide a meaningful qualitative measure of impact, a fair quantitative comparison requires a more sophisticated journal classification system, together with multiple field

  6. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans.

    Science.gov (United States)

    Kim, Dennis H; Ausubel, Frederick M

    2005-02-01

    Genetic and functional genomic approaches have begun to define the molecular determinants of pathogen resistance in Caenorhabditis elegans. Conserved signal transduction components are required for pathogen resistance, including a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. We suggest that this pathway is an ancestral innate immune signaling pathway present in the common ancestor of nematodes, arthropods and vertebrates, which is likely to predate the involvement of canonical Toll signaling pathways in innate immunity. We anticipate that the study of pathogen resistance in C. elegans will continue to provide evolutionary and mechanistic insights into the signal transduction and physiology of innate immunity.

  7. Conservation: Toward firmer ground

    Science.gov (United States)

    1975-01-01

    The following aspects of energy conservation were discussed: conservation history and goals, conservation modes, conservation accounting-criteria, and a method to overcome obstacles. The conservation modes tested fall into one of the following categories: reduced energy consumption, increased efficiency of energy utilization, or substitution of one or more forms of energy for another which is in shorter supply or in some sense thought to be of more value. The conservation accounting criteria include net energy reduction, economic, and technical criteria. A method to overcome obstacles includes (approaches such as: direct personal impact (life style, income, security, aspiration), an element of crisis, large scale involvement of environmental, safety, and health issues, connections to big government, big business, big politics, involvement of known and speculative science and technology, appeal to moral and ethical standards, the transient nature of opportunities to correct the system.

  8. Econometric modelling of conservation

    International Nuclear Information System (INIS)

    Parker, J.C.; Seal, D.J.

    1990-01-01

    The issue of energy conservation in general, and conservation in the natural gas markets in particular, has recently had a much lower profile than in the past, when energy prices were significantly higher and energy costs composed a much larger proportion of industrial operating costs than today. The recent downward trend in energy prices has diverted attention away from this issue. In the face of expected significant real price increases, increasing pressure from environmental groups, and directives on the part of regulator authorities, conservation is once again becoming a topic of consideration in the energy industry. From the point of view of gas demand forecasting, conservation has received too little attention. The intentions of this paper are to establish the need for forecasting conservation in the natural gas utility sector, and to construct a model of industrial demand which incorporates conservation and is appropriate for use as a forecasting tool

  9. High-order epistasis shapes evolutionary trajectories.

    Science.gov (United States)

    Sailer, Zachary R; Harms, Michael J

    2017-05-01

    High-order epistasis-where the effect of a mutation is determined by interactions with two or more other mutations-makes small, but detectable, contributions to genotype-fitness maps. While epistasis between pairs of mutations is known to be an important determinant of evolutionary trajectories, the evolutionary consequences of high-order epistasis remain poorly understood. To determine the effect of high-order epistasis on evolutionary trajectories, we computationally removed high-order epistasis from experimental genotype-fitness maps containing all binary combinations of five mutations. We then compared trajectories through maps both with and without high-order epistasis. We found that high-order epistasis strongly shapes the accessibility and probability of evolutionary trajectories. A closer analysis revealed that the magnitude of epistasis, not its order, predicts is effects on evolutionary trajectories. We further find that high-order epistasis makes it impossible to predict evolutionary trajectories from the individual and paired effects of mutations. We therefore conclude that high-order epistasis profoundly shapes evolutionary trajectories through genotype-fitness maps.

  10. Evolutionary dynamics from a variational principle

    Science.gov (United States)

    Klimek, Peter; Thurner, Stefan; Hanel, Rudolf

    2010-07-01

    We demonstrate with a thought experiment that fitness-based population dynamical approaches to evolution are not able to make quantitative, falsifiable predictions about the long-term behavior of some evolutionary systems. A key characteristic of evolutionary systems is the ongoing endogenous production of new species. These novel entities change the conditions for already existing species. Even Darwin’s Demon, a hypothetical entity with exact knowledge of the abundance of all species and their fitness functions at a given time, could not prestate the impact of these novelties on established populations. We argue that fitness is always a posteriori knowledge—it measures but does not explain why a species has reproductive success or not. To overcome these conceptual limitations, a variational principle is proposed in a spin-model-like setup of evolutionary systems. We derive a functional which is minimized under the most general evolutionary formulation of a dynamical system, i.e., evolutionary trajectories causally emerge as a minimization of a functional. This functional allows the derivation of analytic solutions of the asymptotic diversity for stochastic evolutionary systems within a mean-field approximation. We test these approximations by numerical simulations of the corresponding model and find good agreement in the position of phase transitions in diversity curves. The model is further able to reproduce stylized facts of timeseries from several man-made and natural evolutionary systems. Light will be thrown on how species and their fitness landscapes dynamically coevolve.

  11. Evolutionary psychology. Controversies, questions, prospects, and limitations.

    Science.gov (United States)

    Confer, Jaime C; Easton, Judith A; Fleischman, Diana S; Goetz, Cari D; Lewis, David M G; Perilloux, Carin; Buss, David M

    2010-01-01

    Evolutionary psychology has emerged over the past 15 years as a major theoretical perspective, generating an increasing volume of empirical studies and assuming a larger presence within psychological science. At the same time, it has generated critiques and remains controversial among some psychologists. Some of the controversy stems from hypotheses that go against traditional psychological theories; some from empirical findings that may have disturbing implications; some from misunderstandings about the logic of evolutionary psychology; and some from reasonable scientific concerns about its underlying framework. This article identifies some of the most common concerns and attempts to elucidate evolutionary psychology's stance pertaining to them. These include issues of testability and falsifiability; the domain specificity versus domain generality of psychological mechanisms; the role of novel environments as they interact with evolved psychological circuits; the role of genes in the conceptual structure of evolutionary psychology; the roles of learning, socialization, and culture in evolutionary psychology; and the practical value of applied evolutionary psychology. The article concludes with a discussion of the limitations of current evolutionary psychology. 2009 APA, all rights reserved.

  12. Phylogenetic inference with weighted codon evolutionary distances.

    Science.gov (United States)

    Criscuolo, Alexis; Michel, Christian J

    2009-04-01

    We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.

  13. Handbook on energy conservation

    International Nuclear Information System (INIS)

    1989-12-01

    This book shows energy situation in recent years, which includes reserves of energy resource in the world, crude oil production records in OPEC and non OPEC, supply and demand of energy in important developed countries, prospect of supply and demand of energy and current situation of energy conservation in developed countries. It also deals with energy situation in Korea reporting natural resources status, energy conservation policy, measurement for alternative energy, energy management of Korea, investment in equipment and public education for energy conservation.

  14. Evolutionary Dynamics of Biological Auctions

    Science.gov (United States)

    Chatterjee, Krishnendu; Reiter, Johannes G.; Nowak, Martin A.

    2011-01-01

    Many scenarios in the living world, where individual organisms compete for winning positions (or resources), have properties of auctions. Here we study the evolution of bids in biological auctions. For each auction n individuals are drawn at random from a population of size N. Each individual makes a bid which entails a cost. The winner obtains a benefit of a certain value. Costs and benefits are translated into reproductive success (fitness). Therefore, successful bidding strategies spread in the population. We compare two types of auctions. In “biological all-pay auctions” the costs are the bid for every participating individual. In “biological second price all-pay auctions” the cost for everyone other than the winner is the bid, but the cost for the winner is the second highest bid. Second price all-pay auctions are generalizations of the “war of attrition” introduced by Maynard Smith. We study evolutionary dynamics in both types of auctions. We calculate pairwise invasion plots and evolutionarily stable distributions over the continuous strategy space. We find that the average bid in second price all-pay auctions is higher than in all-pay auctions, but the average cost for the winner is similar in both auctions. In both cases the average bid is a declining function of the number of participants, n. The more individuals participate in an auction the smaller is the chance of winning, and thus expensive bids must be avoided. PMID:22120126

  15. Evolutionary dynamics under interactive diversity

    Science.gov (United States)

    Su, Qi; Li, Aming; Wang, Long

    2017-10-01

    As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.

  16. The Evolutionary Origins of Hierarchy.

    Directory of Open Access Journals (Sweden)

    Henok Mengistu

    2016-06-01

    Full Text Available Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments. Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  17. Natural pedagogy as evolutionary adaptation.

    Science.gov (United States)

    Csibra, Gergely; Gergely, György

    2011-04-12

    We propose that the cognitive mechanisms that enable the transmission of cultural knowledge by communication between individuals constitute a system of 'natural pedagogy' in humans, and represent an evolutionary adaptation along the hominin lineage. We discuss three kinds of arguments that support this hypothesis. First, natural pedagogy is likely to be human-specific: while social learning and communication are both widespread in non-human animals, we know of no example of social learning by communication in any other species apart from humans. Second, natural pedagogy is universal: despite the huge variability in child-rearing practices, all human cultures rely on communication to transmit to novices a variety of different types of cultural knowledge, including information about artefact kinds, conventional behaviours, arbitrary referential symbols, cognitively opaque skills and know-how embedded in means-end actions. Third, the data available on early hominin technological culture are more compatible with the assumption that natural pedagogy was an independently selected adaptive cognitive system than considering it as a by-product of some other human-specific adaptation, such as language. By providing a qualitatively new type of social learning mechanism, natural pedagogy is not only the product but also one of the sources of the rich cultural heritage of our species.

  18. Flourishing: An Evolutionary Concept Analysis.

    Science.gov (United States)

    Agenor, Christine; Conner, Norma; Aroian, Karen

    2017-11-01

    Mental health is an important measure of public health (WHO, 2004); however, nursing practice and research continues to prioritize mental illness, rather than well-being (Wand, 2011). Flourishing is a recent concept in the field of well-being. The term has been used sparingly in nursing practice and research, and conceptual clarification is needed to promote comprehensive understanding of the phenomenon. The purpose of this study is to critically analyze flourishing, assess the maturity of the concept, and provide recommendations for future research, education, and practice. The concept of flourishing was analyzed using the evolutionary approach to concept analysis (Rodgers, 2000). A search for articles on flourishing within the context of well-being was conducted through CINAHL, MEDLINE, and PsycINFO. A sample of 32 articles and 1 book was reviewed. Data were reviewed for concept attributes, antecedents, consequences, surrogate terms and related concepts. Four models of flourishing were identified with six overlapping attributes: meaning, positive relationships, engagement, competence, positive emotion, and self-esteem. Limited longitudinal and predictive studies have been conducted, but there is evidence for several antecedents and outcomes of flourishing. Research is ongoing primarily in psychology and sociology and is lacking in other disciplines. The concept of flourishing is immature; however, evidence is building for related concepts. A lack of consistent terminology regarding flourishing prevents knowledge development of flourishing as a distinct concept. Further multidisciplinary research is needed to establish standard operational and conceptual definitions and develop effective interventions.

  19. Evolutionary optimization of protein folding.

    Directory of Open Access Journals (Sweden)

    Cédric Debès

    Full Text Available Nature has shaped the make up of proteins since their appearance, [Formula: see text]3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last [Formula: see text]1.5 billion years that began during the "big bang" of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions.

  20. Cell lineages and fate maps in tunicates: conservation and modification.

    Science.gov (United States)

    Nishida, Hiroki; Stach, Thomas

    2014-10-01

    Comparison of features of the cell lineages and fate maps of early embryos between related species is useful in inferring developmental mechanisms and amenable to evolutionary considerations. We present cleavage patterns, cell lineage trees, and fate maps of ascidian and appendicularian embryos side by side to facilitate comparison. This revealed a number of significant differences in cleavage patterns and cell lineage trees, whereas the fate maps were found to be conserved. This fate map similarity can be extended to vertebrates, thus representing the fate map characteristics of chordates. Cleavage patterns and cell lineages may have been modified during evolution without any drastic changes in fate maps. Selective pressures that constrain developmental mechanisms at early embryonic stages might not be so strong as long as embryos are still able to generate a chordate-type fate map. Aquatic chordates share similar fate maps and morphogenetic movements during gastrulation and neurulation, eventually developing into tadpole-shaped larvae. As swimming by tail beats, and not by cilia, is advantageous, selective pressure may maintain the basic elements of the tadpole shape. We also discuss the evolutionary origin of the vertebrate neural crest and the embryonic origin of the appendicularian heart to illustrate the usefulness of cell lineage data. From an evolutionary standpoint, cell lineages behave like other characteristics such as morphology or protein sequences. Both novel and primitive features are present in extant organisms, and it is of interest to identify the relative degree of evolutionary conservation as well as the level at which homology is inferred.

  1. Multiple coding and the evolutionary properties of RNA secondary structure.

    Science.gov (United States)

    Huynen, M A; Konings, D A; Hogeweg, P

    1993-11-21

    This article evaluates evolutionary properties of the transition from RNA primary sequence to RNA secondary structure. It focuses on the restrictions that the conservation of a protein code in an RNA sequence puts on its potential to evolve towards a specific secondary structure. Restricting the mutations to those that do not affect the coding for a protein restricts both the accessibility and the connectivity of the sequence space. The accessibility is restricted because only certain point mutations are allowed. The connectivity is restricted because no insertions and deletions are allowed. Simulating an evolutionary search process for a specific secondary structure shows that (i) the reduction of allowable point mutations allows for adaptation to some large-scale topology, but strongly reduces the possibility of small-scale adaptations, (ii) the abolition of insertions and deletions has very little effect on the results of the search process. During the evolutionary search process for a secondary structure with a specific topology and a high frequency of base-pairing the quasispecies moves into a subspace in which the similarity between secondary structures of neighboring sequences is relatively high. Increased similarity between second structures of neighboring sequences is also found in the Rev responsive element (RRE) in the lentiviruses Caprine arthritis-encephalitis virus and Visna virus. In these viruses a biased nucleotide frequency in the RRE region suggests that selection for the RRE RNA secondary structure affects the amino acid sequence of the env gene. Our results show a variation in the ruggedness of fitness landscapes which are based on a high degree of epistatic interactions. Fitness landscapes play an essential role, not only in biotic evolution, but also in all kinds of optimization processes (Hill Climbing, Simulated Annealing, Genetic Algorithms, etc). Variation in their ruggedness should therefore be taken into account in the analysis of these

  2. Evolutionary distinctiveness of the endangered Kemp's ridley sea turtle.

    Science.gov (United States)

    Bowen, B W; Meylan, A B; Avise, J C

    1991-08-22

    The endangered Kemp's ridley sea turtle (Lepidochelys kempi) nests almost exclusively at a single locality in the western Gulf of Mexico, whereas the olive ridley (L. olivacea) nests globally in warm oceans. Morphological similarities between kempi and olivacea, and a geographical distribution that "...makes no sense at all under modern conditions of climate and geography", raise questions about the degree of evolutionary divergence between these taxa. Analysis of mitochondrial (mt) DNA restriction sites shows that Kemp's ridley is distinct from the olive ridley in matriarchal phylogeny, and that the two are sister taxa with respect to other marine turtles. Separation of olive and the Kemp's ridley lineages may date to formation of the Isthmus of Panama, whereas the global spread of the olive ridley lineage occurred recently. In contrast to recent examples in which molecular genetic assessments challenged systematic assignments underlying conservation programmes, our mtDNA data corroborate the taxonomy of an endangered form.

  3. Oxytocin mediated behavior in invertebrates: An evolutionary perspective.

    Science.gov (United States)

    Lockard, Meghan A; Ebert, Margaret S; Bargmann, Cornelia I

    2017-02-01

    The molecular and functional conservation of oxytocin-related neuropeptides in behavior is striking. In animals separated by at least 600 million years of evolution, from roundworms to humans, oxytocin homologs play critical roles in the modulation of reproductive behavior and other biological functions. Here, we review the roles of oxytocin in invertebrate behavior from an evolutionary perspective. We begin by tracing the evolution of oxytocin through the invertebrate animal lineages, and then describe common themes in invertebrate behaviors that are mediated by oxytocin-related peptides, including reproductive behavior, learning and memory, food arousal, and predator/prey relationships. Finally, we discuss interesting future directions that have recently become experimentally tractable. Studying oxytocin in invertebrates offers precise insights into the activity of neuropeptides on well-defined neural circuits; the principles that emerge may also be represented in the more complex vertebrate brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 128-142, 2017. © 2016 Wiley Periodicals, Inc.

  4. Evolutionary theory and the naturalist fallacy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2008-01-01

    The article is an invited response to a target article by Joseph Carroll entitled "An evolutionary paradigm for literary study". It argues that the target article  misuse the fact that works of art are based on adaptations that were fitness-enhancing in the era of evolutionary adaptations to claim...... that great work of art are also automatically fitness-enhancing in the present day environment, at that there are simple correllations between whether a work of art has a high aesthetic value and whether it is fitness-enhancing or not.  Keywords :  Evolutionary aesthetics, film theory, literary theory...

  5. Evolutionary theory and the naturalist fallacy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2008-01-01

    that great work of art are also automatically fitness-enhancing in the present day environment, at that there are simple correllations between whether a work of art has a high aesthetic value and whether it is fitness-enhancing or not.  Keywords :  Evolutionary aesthetics, film theory, literary theory......The article is an invited response to a target article by Joseph Carroll entitled "An evolutionary paradigm for literary study". It argues that the target article  misuse the fact that works of art are based on adaptations that were fitness-enhancing in the era of evolutionary adaptations to claim...

  6. Conserved and species-specific alternative splicing in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Favorov Alexander V

    2007-12-01

    Full Text Available Abstract Background Alternative splicing has been shown to be one of the major evolutionary mechanisms for protein diversification and proteome expansion, since a considerable fraction of alternative splicing events appears to be species- or lineage-specific. However, most studies were restricted to the analysis of cassette exons in pairs of genomes and did not analyze functionality of the alternative variants. Results We analyzed conservation of human alternative splice sites and cassette exons in the mouse and dog genomes. Alternative exons, especially minor-isofom ones, were shown to be less conserved than constitutive exons. Frame-shifting alternatives in the protein-coding regions are less conserved than frame-preserving ones. Similarly, the conservation of alternative sites is highest for evenly used alternatives, and higher when the distance between the sites is divisible by three. The rate of alternative-exon and site loss in mouse is slightly higher than in dog, consistent with faster evolution of the former. The evolutionary dynamics of alternative sites was shown to be consistent with the model of random activation of cryptic sites. Conclusion Consistent with other studies, our results show that minor cassette exons are less conserved than major-alternative and constitutive exons. However, our study provides evidence that this is caused not only by exon birth, but also lineage-specific loss of alternative exons and sites, and it depends on exon functionality.

  7. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  9. Global priorities for conservation across multiple dimensions of mammalian diversity.

    Science.gov (United States)

    Brum, Fernanda T; Graham, Catherine H; Costa, Gabriel C; Hedges, S Blair; Penone, Caterina; Radeloff, Volker C; Rondinini, Carlo; Loyola, Rafael; Davidson, Ana D

    2017-07-18

    Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to ( i ) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity-taxonomic, phylogenetic, and traits-and ( ii ) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts.

  10. The Roles and Evolutionary Patterns of Intronless Genes in Deuterostomes

    Directory of Open Access Journals (Sweden)

    Ming Zou

    2011-01-01

    Full Text Available Genes without introns are a characteristic feature of prokaryotes, but there are still a number of intronless genes in eukaryotes. To study these eukaryotic genes that have prokaryotic architecture could help to understand the evolutionary patterns of related genes and genomes. Our analyses revealed a number of intronless genes that reside in 6 deuterostomes (sea urchin, sea squirt, zebrafish, chicken, platypus, and human. We also determined the conservation for each intronless gene in archaea, bacteria, fungi, plants, metazoans, and other eukaryotes. Proportions of intronless genes that are inherited from the common ancestor of archaea, bacteria, and eukaryotes in these species were consistent with their phylogenetic positions, with more proportions of ancient intronless genes residing in more primitive species. In these species, intronless genes belong to different cellular roles and gene ontology (GO categories, and some of these functions are very basic. Part of intronless genes is derived from other intronless genes or multiexon genes in each species. In conclusion, we showed that a varying number and proportion of intronless genes reside in these 6 deuterostomes, and some of them function importantly. These genes are good candidates for subsequent functional and evolutionary analyses specifically.

  11. Conservation genetics in transition to conservation genomics

    NARCIS (Netherlands)

    Ouborg, N. Joop; Pertoldi, Cino; Loeschcke, Volker; Bijlsma, Kuke; Hedrick, Phil W.

    Over the past twenty years conservation genetics has progressed from being mainly a theory-based field of population biology to a full-grown empirical discipline. Technological developments in molecular genetics have led to extensive use of neutral molecular markers such as microsatellites in

  12. Biodiversity Conservation and Conservation Biotechnology Tools

    Science.gov (United States)

    This special issue is dedicated to the in vitro tools and methods used to conserve the genetic diversity of rare and threatened species from around the world. Species that are on the brink of extinction, due to the rapid loss of genetic diversity and habitat, come mainly from resource poor areas the...

  13. Paradigms for parasite conservation.

    Science.gov (United States)

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  14. Conservation genetics of the Philippine tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago primate.

    Science.gov (United States)

    Brown, Rafe M; Weghorst, Jennifer A; Olson, Karen V; Duya, Mariano R M; Barley, Anthony J; Duya, Melizar V; Shekelle, Myron; Neri-Arboleda, Irene; Esselstyn, Jacob A; Dominy, Nathaniel J; Ong, Perry S; Moritz, Gillian L; Luczon, Adrian; Diesmos, Mae Lowe L; Diesmos, Arvin C; Siler, Cameron D

    2014-01-01

    Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.

  15. [Evolutionary Concept Analysis of Spirituality].

    Science.gov (United States)

    Ko, Il Sun; Choi, So Young; Kim, Jin Sook

    2017-04-01

    This study was done to clarify attributes, antecedents, and consequences of spirituality. Rodgers's evolutionary concept analysis was used to analyze fifty seven studies from the literature related to spirituality as it appears in systematic literature reviews of theology, medicine, counseling & psychology, social welfare, and nursing. Spirituality was found to consist of two dimensions and eight attributes: 1) vertical dimension: 'intimacy and connectedness with God' and 'holy life and belief', 2) horizontal dimension: 'self-transcendence', 'meaning and purpose in life', 'self-integration', and 'self-creativity' in relationship with self, 'connectedness' and 'trust' in relationship with others·neighbors·nature. Antecedents of spirituality were socio-demographic, religious, psychological, and health related characteristics. Consequences of spirituality were positive and negative. Being positive included 'life centered on God' in vertical dimension, and among horizontal dimension 'joy', 'hope', 'wellness', 'inner peace', and 'self-actualization' in relationship with self, 'doing in love' and 'extended life toward neighbors and the world' in relationship with others·neighbors·nature. Being negative was defined as having 'guilt', 'inner conflict', 'loneliness', and 'spiritual distress'. Facilitators of spirituality were stressful life events and experiences. Spirituality is a multidimensional concept. Unchangeable attributes of spirituality are 'connectedness with God', 'self-transcendence', 'meaning of life' and 'connectedness with others·nature'. Unchangeable consequences of spirituality are 'joy' and 'hope'. The findings suggest that the dimensional framework of spirituality can be used to assess the current spiritual state of patients. Based on these results, the development of a Korean version of the scale measuring spirituality is recommended. © 2017 Korean Society of Nursing Science

  16. Evolutionary biology and life histories

    Directory of Open Access Journals (Sweden)

    Brown, C. R.

    2004-06-01

    Full Text Available The demographic processes that drive the spread of populations through environments and in turn determine the abundance of organisms are the same demographic processes that drive the spread of genes through populations and in turn determine gene frequencies and fitness. Conceptually, marked similarities exist in the dynamic processes underlying population ecology and those underlying evolutionary biology. Central to an understanding of both disciplines is life history and its component demographic rates, such as survival, fecundity, and age of first breeding, and biologists from both fields have a vested interest in good analytical machinery for the estimation and analysis of these demographic rates. In the EURING conferences, we have been striving since the mid 1980s to promote a quantitative understanding of demographic rates through interdisciplinary collaboration between ecologists and statisticians. From the ecological side, the principal impetus has come from population biology, and in particular from wildlife biology, but the importance of good quantitative insights into demographic processes has long been recognized by a number of evolutionary biologists (e.g., Nichols & Kendall, 1995; Clobert, 1995; Cooch et al., 2002. In organizing this session, we have aimed to create a forum for those committed to gaining the best possible understanding of evolutionary processes through the application of modern quantitative methods for the collection and interpretation of data on marked animal populations. Here we present a short overview of the material presented in the session on evolutionary biology and life histories. In a plenary talk, Brown & Brown (2004 explored how mark–recapture methods have allowed a better understanding of the evolution of group–living and alternative reproductive tactics in colonial cliff swallows (Petrochelidon pyrrhonota. By estimating the number of transient birds passing through colonies of different sizes, they

  17. Archives: Madagascar Conservation & Development

    African Journals Online (AJOL)

    Items 1 - 24 of 24 ... Archives: Madagascar Conservation & Development. Journal Home > Archives: Madagascar Conservation & Development. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ...

  18. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  19. Biodiversity Conservation in Asia

    OpenAIRE

    Dale Squires

    2014-01-01

    Asian's remarkable economic growth brought many benefits but also fuelled threats to its ecosystems and biodiversity. Economic growth brings biodiversity threats but also conservation opportunities. Continued biodiversity loss is inevitable, but the types, areas and rates of biodiversity loss are not. Prioritising biodiversity conservation, tempered by what is tractable, remains a high priority. Policy and market distortions and failures significantly underprice biodiversity, undermine ecosys...

  20. Madagascar Conservation & Development

    African Journals Online (AJOL)

    Madagascar Conservation & Development welcomes the results of original research, field surveys, advances in field and laboratory techniques, book reviews, and informal status reports from research, conservation, development and management programs and in-field projects in Madagascar. In addition, notes on changes ...

  1. Conservation of Beclardia macrostachya

    African Journals Online (AJOL)

    admpather

    emphasis need to be placed on conservation and also protection of plants from poaching. Effective management of ... The conservation of any taxon requires information about the ecogeographic structure of the target taxon and such ... The main aspects considered for understanding the biology of this orchid were the study.

  2. Conservation in transportation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-30

    A nationwide examination was made of grassroots energy conservation programs related to transportation. Information compiled from civic groups, trade associations, and corporations is included on driver awareness/mass transit; travel; and ride sharing. It is concluded that a willingness by the public to cooperate in transportation energy conservation exists and should be exploited. (LCL)

  3. Conservation: Threatened by Luxury.

    Science.gov (United States)

    Webb, Thomas J

    2016-06-20

    When animals are traded in lucrative international luxury markets, individuals really do matter to conservation. Identifying the intrinsic and extrinsic factors that make some species especially vulnerable to this kind of threat helps set guidelines for more effective conservation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Home Energy Conservation Primer.

    Science.gov (United States)

    DeLuca, V. William; And Others

    This guide was prepared to support a program of training for community specialists in contemporary and practical techniques of home energy conservation. It is designed to assist professionals in efficient operation of energy conservation programs and to provide ideas for expanding education operations. Eight major sections are presented: (1)…

  5. Introducing Conservation of Momentum

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  6. [Evolutionary medicine: an emergent basic science].

    Science.gov (United States)

    Spotorno, Angel E

    2005-02-01

    Evolutionary Medicine is an emergent basic science that offers new and varied perspectives to the comprehension of human health. The application of classic evolutionary theories (descent with modification, and natural selection) to the human organism, to its pathogens, and their mutual co-evolution, provides new explanations about why we get sick, how we can prevent this, and how we can heal. Medicine has focused mainly on the proximate or immediate causes of diseases and the treatment of symptoms, and very little on its evolutionary or mediate causes. For instance, the present human genome and phenotypes are essentially paleolithic ones: they are not adapted to modern life style, thus favoring the so-called diseases of civilization (ie: ateroesclerosis, senescence, myopia, phobias, panic attacks, stress, reproductive cancers). With the evolutionary approach, post-modern medicine is detecting better the vulnerabilities, restrictions, biases, adaptations and maladaptations of human body, its actual diseases, and its preventions.

  7. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  8. Mean-Potential Law in Evolutionary Games

    Science.gov (United States)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  9. Evolutionary medicine: its scope, interest and potential

    Science.gov (United States)

    Stearns, Stephen C.

    2012-01-01

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host–pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous. PMID:22933370

  10. The active evolutionary lives of echinoderm larvae.

    Science.gov (United States)

    Raff, R A; Byrne, M

    2006-09-01

    Echinoderms represent a researchable subset of a dynamic larval evolutionary cosmos. Evolution of echinoderm larvae has taken place over widely varying time scales from the origins of larvae of living classes in the early Palaeozoic, approximately 500 million years ago, to recent, rapid and large-scale changes that have occurred within living genera within a span of less than a million years to a few million years. It is these recent evolutionary events that offer a window into processes of larval evolution operating at a micro-evolutionary level of evolution of discrete developmental mechanisms. We review the evolution of the diverse larval forms of living echinoderms to outline the origins of echinoderm larval forms, their diversity among living echinoderms, molecular clocks and rates of larval evolution, and finally current studies on the roles of developmental regulatory mechanisms in the rapid and radical evolutionary changes observed between closely related congeneric species.

  11. A Philosophical Perspective on Evolutionary Systems Biology.

    Science.gov (United States)

    O'Malley, Maureen A; Soyer, Orkun S; Siegal, Mark L

    2015-03-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB's progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology.

  12. Evolutionary optimization of production materials workflow processes

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    We present an evolutionary optimisation technique for stochastic production processes, which is able to find improved production materials workflow processes with respect to arbitrary combinations of numerical quantities associated with the production process. Working from a core fragment...

  13. Litter feedbacks, evolutionary change and exotic plant

    NARCIS (Netherlands)

    Eppinga, M.B.; Kaproth, M.A.; Collins, A.R.; Molofsky, J.

    2011-01-01

    1. Understanding the mechanisms driving exotic plant invasions is important for designing successful invader control strategies. Previous studies have highlighted different invasion mechanisms, including alteration of nutrient cycles through plant–soil feedback and evolutionary change toward more

  14. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    and enhance the global search ability. A large number of tests show that the proposed algorithm has higher convergence speed and better optimizing ability than quantum evolutionary algorithm, real-coded quantum evolutionary algorithm and hybrid quantum genetic algorithm. Tests also show that when chaos......A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form...... a perfect distribution in feasible solution space in advantage of randomicity and non-repetitive ergodicity of chaos, the simple quantum rotation gate to update non-optimal individuals of population to reduce amount of computation, and the hybrid chaotic search strategy to speed up its convergence...

  15. Deciphering morphology in Triatominae: the evolutionary signals.

    Science.gov (United States)

    Dujardin, J P; Costa, J; Bustamante, D; Jaramillo, N; Catalá, S

    2009-01-01

    Many species of Triatominae show evidence for morphological plasticity. Frequent taxonomic questions arose from this variability leading to disputes about describing new subspecies, species or even genera. We suggest this phenotypic flexibility is primarily an intraspecific feature, but with potential for evolutionary changes. We present arguments for a selection regime leading to the separation of species having low developmental canalization into morphologically distinct ecotypes. We suggest that these ecotypes, or morphs, or forms, may have evolutionary importance even if gene flow still exists between them. Thus, although we consider the morphological plasticity of Triatominae as an intraspecific trait, we defend the idea that it might represent a common evolutionary route to new species. Speciation processes in Triatominae could result from disruptive selection regimes combined with weak developmental canalization. Added to this basic pattern, accidental events could hasten evolutionary change. We suggest the heterosis as one of them.

  16. Evolutionary and mechanistic theories of aging.

    Science.gov (United States)

    Hughes, Kimberly A; Reynolds, Rose M

    2005-01-01

    Senescence (aging) is defined as a decline in performance and fitness with advancing age. Senescence is a nearly universal feature of multicellular organisms, and understanding why it occurs is a long-standing problem in biology. Here we present a concise review of both evolutionary and mechanistic theories of aging. We describe the development of the general evolutionary theory, along with the mutation accumulation, antagonistic pleiotropy, and disposable soma versions of the evolutionary model. The review of the mechanistic theories focuses on the oxidative stress resistance, cellular signaling, and dietary control mechanisms of life span extension. We close with a discussion of how an approach that makes use of both evolutionary and molecular analyses can address a critical question: Which of the mechanisms that can cause variation in aging actually do cause variation in natural populations?

  17. Evolutionary Robotics: What, Why, and Where to

    Directory of Open Access Journals (Sweden)

    Stephane eDoncieux

    2015-03-01

    Full Text Available Evolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of evolution based on a new kind of experimentalism. The use of robots as a substrate can help address questions that are difficult, if not impossible, to investigate through computer simulations or biological studies. In this paper we consider the main achievements of evolutionary robotics, focusing particularly on its contributions to both engineering and biology. We briefly elaborate on methodological issues, review some of the most interesting findings, and discuss important open issues and promising avenues for future work.

  18. Conserved superenergy currents

    International Nuclear Information System (INIS)

    Lazkoz, Ruth; Senovilla, Jose M M; Vera, Rauel

    2003-01-01

    We exploit once again the analogy between the energy-momentum tensor and the so-called 'superenergy' tensors in order to build conserved currents in the presence of Killing vectors. First of all, we derive the divergence-free property of the gravitational superenergy currents under very general circumstances, even if the superenergy tensor is not divergence-free itself. The associated conserved quantities are explicitly computed for the Reissner-Nordstroem and Schwarzschild solutions. The remaining cases, when the above currents are not conserved, lead to the possibility of an interchange of some superenergy quantities between the gravitational and other physical fields in such a manner that the total, mixed, current may be conserved. Actually, this possibility has been recently proved to hold for the Einstein-Klein-Gordon system of field equations. By using an adequate family of known exact solutions, we present explicit and completely non-obvious examples of such mixed conserved currents

  19. Tests of conservation laws

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1988-01-01

    For quite a while it has been realized that some discrete quantum numbers are conserved in some interactions but not in others. The most conspicuous cases are parity P, charge conjugation C, and the product CP which are conserved in strong and electromagnetic interactions but not in weak interactions. The question arises whether for some of the other conserved quantities, which are conserved in strong, electromagnetic and weak interactions, there is an interaction intermediate in strength between weak and gravitational which violates these quantum numbers, e.g., baryon number B and lepton number L. The possibility exists that these conservation laws, if they are broken at all, are only broken by the gravitational force which would make the mass of an intermediate boson which induces the break-down equal to the Planck mass. (orig.)

  20. Japan's energy conservation policy

    International Nuclear Information System (INIS)

    Yoda, Kenichi

    1990-01-01

    This article reviews developments in Japanese energy conservation since the 1970s. The industrial sector has achieved the greatest success, due to industrial restructuring as well as improvements in energy efficiency. In the residential/commercial sector, the efficiency of appliances has been much improved. Although improvements have been made in the fuel efficiency of passenger cars, energy consumption in the transportation sector has risen slightly owing to increased transport of passengers and freight. The overall responsibility for energy conservation policy rests with the Ministry of International Trade and Industry. MITI is also responsible for implementing specific conservation policies in regard to the industrial and commercial sectors. In the residential sector, MITI works with the Ministry of Construction and in the transportation sector with the Ministry of Transport. To realize the goals of energy conservation policy through general research, dissemination of public information and other activities, MITI works with the Energy Conservation Center (ECC). (author). 2 figs, 3 tabs

  1. Endogenous money: the evolutionary versus revolutionary views

    OpenAIRE

    Louis-Philippe Rochon; Sergio Rossi

    2013-01-01

    The purpose of this paper is to shed light on the endogenous nature of money. Contrary to the established post-Keynesian, or evolutionary, view, this paper argues that money has always been endogenous, irrespective of the historical period. Instead of the evolutionary theory of money and banking that can be traced back to Chick (1986), this paper puts forward a revolutionary definition of endogenous money consistent with many aspects of post-Keynesian economics as well as with the monetary ci...

  2. Predicting virus emergence amid evolutionary noise

    OpenAIRE

    Geoghegan, Jemma L.; Holmes, Edward C.

    2017-01-01

    The study of virus disease emergence, whether it can be predicted and how it might be prevented, has become a major research topic in biomedicine. Here we show that efforts to predict disease emergence commonly conflate fundamentally different evolutionary and epidemiological time scales, and are likely to fail because of the enormous number of unsampled viruses that could conceivably emerge in humans. Although we know much about the patterns and processes of virus evolution on evolutionary t...

  3. Plant polyadenylation factors: conservation and variety in the polyadenylation complex in plants.

    Science.gov (United States)

    Hunt, Arthur G; Xing, Denghui; Li, Qingshun Q

    2012-11-20

    Polyadenylation, an essential step in eukaryotic gene expression, requires both cis-elements and a plethora of trans-acting polyadenylation factors. The polyadenylation factors are largely conserved across mammals and fungi. The conservation seems also extended to plants based on the analyses of Arabidopsis polyadenylation factors. To extend this observation, we systemically identified the orthologs of yeast and human polyadenylation factors from 10 plant species chosen based on both the availability of their genome sequences and their positions in the evolutionary tree, which render them representatives of different plant lineages. The evolutionary trajectories revealed several interesting features of plant polyadenylation factors. First, the number of genes encoding plant polyadenylation factors was clearly increased from "lower" to "higher" plants. Second, the gene expansion in higher plants was biased to some polyadenylation factors, particularly those involved in RNA binding. Finally, while there are clear commonalities, the differences in the polyadenylation apparatus were obvious across different species, suggesting an ongoing process of evolutionary change. These features lead to a model in which the plant polyadenylation complex consists of a conserved core, which is rather rigid in terms of evolutionary conservation, and a panoply of peripheral subunits, which are less conserved and associated with the core in various combinations, forming a collection of somewhat distinct complex assemblies. The multiple forms of plant polyadenylation complex, together with the diversified polyA signals may explain the intensive alternative polyadenylation (APA) and its regulatory role in biological functions of higher plants.

  4. Evolutionary computation in zoology and ecology.

    Science.gov (United States)

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  5. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  6. Why an extended evolutionary synthesis is necessary.

    Science.gov (United States)

    Müller, Gerd B

    2017-10-06

    Since the last major theoretical integration in evolutionary biology-the modern synthesis (MS) of the 1940s-the biosciences have made significant advances. The rise of molecular biology and evolutionary developmental biology, the recognition of ecological development, niche construction and multiple inheritance systems, the '-omics' revolution and the science of systems biology, among other developments, have provided a wealth of new knowledge about the factors responsible for evolutionary change. Some of these results are in agreement with the standard theory and others reveal different properties of the evolutionary process. A renewed and extended theoretical synthesis, advocated by several authors in this issue, aims to unite pertinent concepts that emerge from the novel fields with elements of the standard theory. The resulting theoretical framework differs from the latter in its core logic and predictive capacities. Whereas the MS theory and its various amendments concentrate on genetic and adaptive variation in populations, the extended framework emphasizes the role of constructive processes, ecological interactions and systems dynamics in the evolution of organismal complexity as well as its social and cultural conditions. Single-level and unilinear causation is replaced by multilevel and reciprocal causation. Among other consequences, the extended framework overcomes many of the limitations of traditional gene-centric explanation and entails a revised understanding of the role of natural selection in the evolutionary process. All these features stimulate research into new areas of evolutionary biology.

  7. Evolutionary theories of aging and longevity.

    Science.gov (United States)

    Gavrilov, Leonid A; Gavrilova, Natalia S

    2002-02-07

    The purpose of this article is to provide students and researchers entering the field of aging studies with an introduction to the evolutionary theories of aging, as well as to orient them in the abundant modern scientific literature on evolutionary gerontology. The following three major evolutionary theories of aging are discussed: 1) the theory of programmed death suggested by August Weismann, 2) the mutation accumulation theory of aging suggested by Peter Medawar, and 3) the antagonistic pleiotropy theory of aging suggested by George Williams. We also discuss a special case of the antagonistic pleiotropy theory, the disposable soma theory developed by Tom Kirkwood and Robin Holliday. The theories are compared with each other as well as with recent experimental findings. At present the most viable evolutionary theories are the mutation accumulation theory and the antagonistic pleiotropy theory; these theories are not mutually exclusive, and they both may become a part of a future unifying theory of aging. Evolutionary theories of aging are useful because they open new opportunities for further research by suggesting testable predictions, but they have also been harmful in the past when they were used to impose limitations on aging studies. At this time, the evolutionary theories of aging are not ultimate completed theories, but rather a set of ideas that themselves require further elaboration and validation. This theoretical review article is written for a wide readership.

  8. Linkage disequilibrium of evolutionarily conserved regions in the human genome

    Directory of Open Access Journals (Sweden)

    Johnson Todd A

    2006-12-01

    Full Text Available Abstract Background The strong linkage disequilibrium (LD recently found in genic or exonic regions of the human genome demonstrated that LD can be increased by evolutionary mechanisms that select for functionally important loci. This suggests that LD might be stronger in regions conserved among species than in non-conserved regions, since regions exposed to natural selection tend to be conserved. To assess this hypothesis, we used genome-wide polymorphism data from the HapMap project and investigated LD within DNA sequences conserved between the human and mouse genomes. Results Unexpectedly, we observed that LD was significantly weaker in conserved regions than in non-conserved regions. To investigate why, we examined sequence features that may distort the relationship between LD and conserved regions. We found that interspersed repeats, and not other sequence features, were associated with the weak LD tendency in conserved regions. To appropriately understand the relationship between LD and conserved regions, we removed the effect of repetitive elements and found that the high degree of sequence conservation was strongly associated with strong LD in coding regions but not with that in non-coding regions. Conclusion Our work demonstrates that the degree of sequence conservation does not simply increase LD as predicted by the hypothesis. Rather, it implies that purifying selection changes the polymorphic patterns of coding sequences but has little influence on the patterns of functional units such as regulatory elements present in non-coding regions, since the former are generally restricted by the constraint of maintaining a functional protein product across multiple exons while the latter may exist more as individually isolated units.

  9. Conservation, biodiversity and infectious disease: scientific evidence and policy implications

    Science.gov (United States)

    Young, Hillary S.; Wood, Chelsea L.; Kilpatrick, A. Marm; Lafferty, Kevin D.; Nunn, Charles L.; Vincent, Jeffrey R.

    2017-01-01

    Habitat destruction and infectious disease are dual threats to nature and people. The potential to simultaneously advance conservation and human health has attracted considerable scientific and popular interest; in particular, many authors have justified conservation action by pointing out potential public health benefits . One major focus of this debate—that biodiversity conservation often decreases infectious disease transmission via the dilution effect—remains contentious. Studies that test for a dilution effect often find a negative association between a diversity metric and a disease risk metric, but how such associations should inform conservation policy remains unclear for several reasons. For one, diversity and infection risk have many definitions, making it possible to identify measures that conform to expectations. Furthermore, the premise that habitat destruction consistently reduces biodiversity is in question, and disturbance or conservation can affect disease in many ways other than through biodiversity change. To date, few studies have examined the broader set of mechanisms by which anthropogenic disturbance or conservation might increase or decrease infectious disease risk to human populations. Due to interconnections between biodiversity change, economics and human behaviour, moving from ecological theory to policy action requires understanding how social and economic factors affect conservation.This Theme Issue arose from a meeting aimed at synthesizing current theory and data on ‘biodiversity, conservation and infectious disease’ (4–6 May 2015). Ecologists, evolutionary biologists, economists, epidemiologists, veterinary scientists, public health professionals, and conservation biologists from around the world discussed the latest research on the ecological and socio-economic links between conservation, biodiversity and infectious disease, and the open questions and controversies in these areas. By combining ecological understanding

  10. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  11. A survey of evolutionary policy: normative and positive dimensions

    NARCIS (Netherlands)

    van den Bergh, J.C.J.M.; Kallis, G.

    2013-01-01

    We explore public policy from the perspective of evolutionary analysis. Potential entry points for developing a normative evolutionary policy theory are examined, which involves a critical examination of the related idea of "evolutionary progress". The meaning of evolutionary policy is next studied

  12. Evolutionary Biology Instruction: What Students Gain from Learning through Inquiry.

    Science.gov (United States)

    Dremock, Fae, Ed.

    2002-01-01

    This bulletin features articles on real world evolutionary biology, revolutionary classroom science, a review of new curricula in evolutionary biology, and the use of case studies to illustrate points in evolutionary biology. The articles are: (1) "'Real World' Evolutionary Biology: A Pragmatic Quest. Interview with BioQUEST's John Jungck" (Harvey…

  13. The relative importance of regional, local, and evolutionary factors structuring cryptobenthic coral-reef assemblages

    Science.gov (United States)

    Ahmadia, Gabby N.; Tornabene, Luke; Smith, David J.; Pezold, Frank L.

    2018-03-01

    Factors shaping coral-reef fish species assemblages can operate over a wide range of spatial scales (local versus regional) and across both proximate and evolutionary time. Niche theory and neutral theory provide frameworks for testing assumptions and generating insights about the importance of local versus regional processes. Niche theory postulates that species assemblages are an outcome of evolutionary processes at regional scales followed by local-scale interactions, whereas neutral theory presumes that species assemblages are formed by largely random processes drawing from regional species pools. Indo-Pacific cryptobenthic coral-reef fishes are highly evolved, ecologically diverse, temporally responsive, and situated on a natural longitudinal diversity gradient, making them an ideal group for testing predictions from niche and neutral theories and effects of regional and local processes on species assemblages. Using a combination of ecological metrics (fish density, diversity, assemblage composition) and evolutionary analyses (testing for phylogenetic niche conservatism), we demonstrate that the structure of cryptobenthic fish assemblages can be explained by a mixture of regional factors, such as the size of regional species pools and broad-scale barriers to gene flow/drivers of speciation, coupled with local-scale factors, such as the relative abundance of specific microhabitat types. Furthermore, species of cryptobenthic fishes have distinct microhabitat associations that drive significant differences in assemblage community structure between microhabitat types, and these distinct microhabitat associations are phylogenetically conserved over evolutionary timescales. The implied differential fitness of cryptobenthic fishes across varied microhabitats and the conserved nature of their ecology are consistent with predictions from niche theory. Neutral theory predictions may still hold true for early life-history stages, where stochastic factors may be more

  14. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role.

    Directory of Open Access Journals (Sweden)

    István Miklós

    2012-02-01

    Full Text Available HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ and on the carboxy-terminal region of the extracellular domain (CAED of the human amyloid precursor protein (APP and a taxonomically well defined group of APP orthologues (APPOs. In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001. The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the "transcription binding site turnover." CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1 and Amyloid-like protein 2 (APLP2. Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N and English (H6R mutations in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs.

  15. Phylogenetically-informed priorities for amphibian conservation.

    Directory of Open Access Journals (Sweden)

    Nick J B Isaac

    Full Text Available The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species' threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species' phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our 'top 100' list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history.

  16. Phylogenetically-informed priorities for amphibian conservation.

    Science.gov (United States)

    Isaac, Nick J B; Redding, David W; Meredith, Helen M; Safi, Kamran

    2012-01-01

    The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species' threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list) for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species' phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our 'top 100' list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history.

  17. Phylogenetically-Informed Priorities for Amphibian Conservation

    Science.gov (United States)

    Isaac, Nick J. B.; Redding, David W.; Meredith, Helen M.; Safi, Kamran

    2012-01-01

    The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species’ threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list) for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species’ phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our ‘top 100‘ list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history. PMID:22952807

  18. Tourism and Conservation

    DEFF Research Database (Denmark)

    Budeanu, Adriana

    2017-01-01

    to draw benefits from tourism developments or to decline participation in tourism with only little or no losses of sources of income and wealth. If tourism should fulfil sustainability goals related to conservation, poverty, and human development, it needs consistent governmental intervention...... into the process of commodification of nature in order to examine the institutional, economic, and social conditions that enable destinations to benefit from conservation through tourism. Using examples from conservation-based tourism projects in Tanzania, the paper makes a critical examination...

  19. Climate Change and Conservation

    Directory of Open Access Journals (Sweden)

    LEDIG, F. Thomas

    2012-01-01

    Full Text Available Conserving forest genetic resources and, indeed, preventing species extinctions will be complicated by the expected changes in climate projected for the next century and beyond. This paper uses case examples from rare spruces (Picea sp. from North America to discuss the interplay of conservation, genetics, and climate change. New models show how climate change will affect these spruces, making it necessary to relocate them if they are to survive, a tool known as assisted migration or, preferably, assisted colonization. The paper concludes with some speculation on the broader implications of climate change, and the relevance of conservation to preserving the necessary ecological services provided by forests.

  20. Making conservation research more relevant for conservation practitioners

    NARCIS (Netherlands)

    Laurance, W.F.; Koster, H.; Grooten, M.; Anderson, A.B.; Zuidema, P.A.; Zwick, S.; Zagt, R.J.; Lynam, A.J.; Linkie, M.; Anten, N.P.R.

    2012-01-01

    Conservation scientists and practitioners share many of the same goals. Yet in a majority of cases, we argue, research conducted by academic conservation scientists actually makes surprisingly few direct contributions to environmental conservation. We illustrate how researchers can increase the

  1. Evolutionary response of landraces to climate change in centers of crop diversity.

    Science.gov (United States)

    Mercer, Kristin L; Perales, Hugo R

    2010-09-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.

  2. Confronting and resolving competing values behind conservation objectives.

    Science.gov (United States)

    Karp, Daniel S; Mendenhall, Chase D; Callaway, Elizabeth; Frishkoff, Luke O; Kareiva, Peter M; Ehrlich, Paul R; Daily, Gretchen C

    2015-09-01

    Diverse motivations for preserving nature both inspire and hinder its conservation. Optimal conservation strategies may differ radically depending on the objective. For example, creating nature reserves may prevent extinctions through protecting severely threatened species, whereas incentivizing farmland hedgerows may benefit people through bolstering pest-eating or pollinating species. Win-win interventions that satisfy multiple objectives are alluring, but can also be elusive. To achieve better outcomes, we developed and implemented a practical typology of nature conservation framed around seven common conservation objectives. Using an intensively studied bird assemblage in southern Costa Rica as a case study, we applied the typology in the context of biodiversity's most pervasive threat: habitat conversion. We found that rural habitats in a varied tropical landscape, comprising small farms, villages, forest fragments, and forest reserves, provided biodiversity-driven processes that benefit people, such as pollination, seed dispersal, and pest consumption. However, species valued for their rarity, endemism, and evolutionary distinctness declined in farmland. Conserving tropical forest on farmland increased species that international tourists value, but not species discussed in Costa Rican newspapers. Despite these observed trade-offs, our analyses also revealed promising synergies. For example, we found that maintaining forest cover surrounding farms in our study region would likely enhance most conservation objectives at minimal expense to others. Overall, our typology provides a framework for resolving the competing objectives of modern conservation.

  3. Transmissible cancers in an evolutionary context.

    Science.gov (United States)

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for

  4. Hearing Conservation Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Hearing Conservation Team focuses on ways to identify the early stages of noise-induced damage to the human ear.Our current research involves the evaluation of...

  5. Birds of Conservation Concern

    Data.gov (United States)

    Department of the Interior — The 1988 amendment to the Fish and Wildlife Conservation Act mandates the U.S. Fish and Wildlife Service (USFWS) to “identify species, subspecies, and populations of...

  6. Monitoring for conservation.

    Science.gov (United States)

    Nichols, James D; Williams, Byron K

    2006-12-01

    Human-mediated environmental changes have resulted in appropriate concern for the conservation of ecological systems and have led to the development of many ecological monitoring programs worldwide. Many programs that are identified with the purpose of 'surveillance' represent an inefficient use of conservation funds and effort. Here, we revisit the 1964 paper by Platt and argue that his recommendations about the conduct of science are equally relevant to the conduct of ecological monitoring programs. In particular, we argue that monitoring should not be viewed as a stand-alone activity, but instead as a component of a larger process of either conservation-oriented science or management. Corresponding changes in monitoring focus and design would lead to substantial increases in the efficiency and usefulness of monitoring results in conservation.

  7. Madagascar Conservation & Development

    African Journals Online (AJOL)

    Madagascar Conservation & Development. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 1 (2014) >. Log in or Register to get access to full text downloads.

  8. Metro Conservation Corridors

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Metro Conservation Corridors (MeCC) grow out of the natural resource analysis work done by the DNR in the late '90's, documented in the Metro Greenprint...

  9. Mesocycles in conserving plastics

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2016-01-01

    driven by the need to balance the requirements for reversibility in conservation practices with the artist’s intent and significance. Developments within each of the three mesocycles from the 1990s to date are discussed in this article. Environmental science and toxicology of waste plastics offer a novel......Analysis suggests that progress in conservation of plastics objects and artworks can be described by a series of overlapping mesocycles. Focus has been placed for periods of 5-10 years each on determining the degradation pathways in the 1990s, developing strategies to inhibit those pathways from...... plastics has been the origin of the data describing lifetimes. By contrast, mesocycles in developing suitable storage and display microclimates for plastics have mirrored preventive conservation practices for natural polymeric materials. The rate of the third mesocycle, interventive conservation, has been...

  10. Conservation of wading birds

    Science.gov (United States)

    Kushlan, J.A.

    1996-01-01

    The conservation and management of wading birds has received considerable attention over the past twenty years, through research, population monitoring, habitat protection, and through activities of specialist groups devoted to all three groups, the herons, ibises and allies, and flamingos. While populations are best known in North America, greatest advances in knowledge may have come in Australasia. The status of most species and many populations is now sufficiently known to allow assessment of risk. Conservation and management techniques allow creation of global and regional action plans for conservation of many species. Global action plans are being developed, but few regional plans have been undertaken. Management of nesting sites is now particularly well appreciated. Although known in broad stroke, much remains to be learned about managing feeding habitat. Problems related to disturbance, conflict with humans, habitat loss, contaminants and other environmental stresses remain for some species and many populations. New challenges lie in creating conservation action that account for genetic stocks.

  11. A Resource Conservation Unit.

    Science.gov (United States)

    Porter, Philip D.

    1979-01-01

    Describes a variety of learning activities for teaching elementary and junior high students about air, water, and energy conservation techniques. Suggests community resources, social studies objectives, language skills, and 20 activities. (CK)

  12. The sequence, structure and evolutionary features of HOTAIR in mammals

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2011-04-01

    Full Text Available Abstract Background An increasing number of long noncoding RNAs (lncRNAs have been identified recently. Different from all the others that function in cis to regulate local gene expression, the newly identified HOTAIR is located between HoxC11 and HoxC12 in the human genome and regulates HoxD expression in multiple tissues. Like the well-characterised lncRNA Xist, HOTAIR binds to polycomb proteins to methylate histones at multiple HoxD loci, but unlike Xist, many details of its structure and function, as well as the trans regulation, remain unclear. Moreover, HOTAIR is involved in the aberrant regulation of gene expression in cancer. Results To identify conserved domains in HOTAIR and study the phylogenetic distribution of this lncRNA, we searched the genomes of 10 mammalian and 3 non-mammalian vertebrates for matches to its 6 exons and the two conserved domains within the 1800 bp exon6 using Infernal. There was just one high-scoring hit for each mammal, but many low-scoring hits were found in both mammals and non-mammalian vertebrates. These hits and their flanking genes in four placental mammals and platypus were examined to determine whether HOTAIR contained elements shared by other lncRNAs. Several of the hits were within unknown transcripts or ncRNAs, many were within introns of, or antisense to, protein-coding genes, and conservation of the flanking genes was observed only between human and chimpanzee. Phylogenetic analysis revealed discrete evolutionary dynamics for orthologous sequences of HOTAIR exons. Exon1 at the 5' end and a domain in exon6 near the 3' end, which contain domains that bind to multiple proteins, have evolved faster in primates than in other mammals. Structures were predicted for exon1, two domains of exon6 and the full HOTAIR sequence. The sequence and structure of two fragments, in exon1 and the domain B of exon6 respectively, were identified to robustly occur in predicted structures of exon1, domain B of exon6 and

  13. 76 FR 22785 - Wetland Conservation

    Science.gov (United States)

    2011-04-25

    ... 7 CFR Part 12 RIN 0578-AA58 Wetland Conservation AGENCY: Office of the Secretary, United States... concerning the Natural Resources Conservation Service's (NRCS) coordination responsibilities. DATES..., Director, Ecological Sciences Division, U.S. Department of Agriculture, Natural Resources Conservation...

  14. A teleofunctional account of evolutionary mismatch.

    Science.gov (United States)

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  15. Evolutionary accounts of human behavioural diversity

    Science.gov (United States)

    Brown, Gillian R.; Dickins, Thomas E.; Sear, Rebecca; Laland, Kevin N.

    2011-01-01

    Human beings persist in an extraordinary range of ecological settings, in the process exhibiting enormous behavioural diversity, both within and between populations. People vary in their social, mating and parental behaviour and have diverse and elaborate beliefs, traditions, norms and institutions. The aim of this theme issue is to ask whether, and how, evolutionary theory can help us to understand this diversity. In this introductory article, we provide a background to the debate surrounding how best to understand behavioural diversity using evolutionary models of human behaviour. In particular, we examine how diversity has been viewed by the main subdisciplines within the human evolutionary behavioural sciences, focusing in particular on the human behavioural ecology, evolutionary psychology and cultural evolution approaches. In addition to differences in focus and methodology, these subdisciplines have traditionally varied in the emphasis placed on human universals, ecological factors and socially learned behaviour, and on how they have addressed the issue of genetic variation. We reaffirm that evolutionary theory provides an essential framework for understanding behavioural diversity within and between human populations, but argue that greater integration between the subfields is critical to developing a satisfactory understanding of diversity. PMID:21199836

  16. Eco-Evolutionary Theory and Insect Outbreaks.

    Science.gov (United States)

    Páez, David J; Dukic, Vanja; Dushoff, Jonathan; Fleming-Davies, Arietta; Dwyer, Greg

    2017-06-01

    Eco-evolutionary theory argues that population cycles in consumer-resource interactions are partly driven by natural selection, such that changes in densities and changes in trait values are mutually reinforcing. Evidence that the theory explains cycles in nature, however, is almost nonexistent. Experimental tests of model assumptions are logistically impractical for most organisms, while for others, evidence that population cycles occur in nature is lacking. For insect baculoviruses in contrast, tests of model assumptions are straightforward, and there is strong evidence that baculoviruses help drive population cycles in many insects, including the gypsy moth that we study here. We therefore used field experiments with the gypsy moth baculovirus to test two key assumptions of eco-evolutionary models of host-pathogen population cycles: that reduced host infection risk is heritable and that it is costly. Our experiments confirm both assumptions, and inserting parameters estimated from our data into eco-evolutionary insect-outbreak models gives cycles closely resembling gypsy moth outbreak cycles in North America, whereas standard models predict unrealistic stable equilibria. Our work shows that eco-evolutionary models are useful for explaining outbreaks of forest insect defoliators, while widespread observations of intense selection on defoliators in nature and of heritable and costly resistance in defoliators in the lab together suggest that eco-evolutionary dynamics may play a general role in defoliator outbreaks.

  17. Initialization strategies and diversity in evolutionary timetabling.

    Science.gov (United States)

    Burke, E K; Newall, J P; Weare, R F

    1998-01-01

    This document seeks to provide a scientific basis by which different initialization algorithms for evolutionary timetabling may be compared. Seeding the initial population may be used to improve initial quality and provide a better starting point for the evolutionary algorithm. This must be tempered against the consideration that if the seeding algorithm produces very similar solutions, then the loss of genetic diversity may well lead to a worse final solution. Diversity, we hope, provides a good indication of how good the final solution will be, although only by running the evolutionary algorithm will the exact result be found. We will investigate the effects of heuristic seeding by taking quality and diversity measures of populations generated by heuristic initialization methods on both random and real-life data, as well as assessing the long-term performance of an evolutionary algorithm (found to work well on the timetabling problem) when using heuristic initialization. This will show how the use of heuristic initialization strategies can substantially improve the performance of evolutionary algorithms for the timetabling problem.

  18. Conservation Kickstart- Catalyzing Conservation Initiatives Worldwide

    Science.gov (United States)

    Treinish, G.

    2014-12-01

    Adventurers and Scientists for Conservation (ASC) is a nonprofit organization that collects environmental data to catalyze conservation initiatives worldwide. Adventure athletes have the skills and motivation to reach the most remote corners of the world. ASC utilizes those skills to provide the scientific community with data while providing the outdoor community with purpose beyond the personal high of reaching a summit or rowing across an ocean. We carefully select projects, choosing partnerships that will maximize the impact of ASC volunteers. Each project must have a clear path to a tangible conservation outcome and demonstrate a clear need for our brand of volunteers. We partner with government agencies, universities, and independant reseachers to kickstart data collection efforts around the world. Last year, through a partnership with the Olympic National Forest, 20 volunteers from the Seattle area set up and monitored camera traps in an effort to survey for costal Pacific marten. Our work led to the species' listing as "critically imperiled" with NatureServe. A partnership with the inaugural Great Pacific Race, engaging trans-Pacific rowing teams, searched for microplastics in the Pacific Ocean as part of our ongoing microplastics campaign. In a multi-year partnership with the American Prairie Reserve (APR), ASC volunteer crews live and work on the Reserve collecting wildlife data year round. The data we obtain directly informs the Reserve's wildlife management decisions. On this project, our crews have safely and effectively navigated temperature extremes from -30 degrees to 100+ degrees while traveling in a remote location. We are currently scouting projects in the Okavango Delta of Botswana and the rainforest of Suriname where we will be able to cover large amounts of area in a short periord of time. ASC is at the crossroads of the adventure and coservation science communities. Our approach of answering specific questions by using highly skilled and

  19. Evolutionary origins of hepatitis A virus in small mammals.

    Science.gov (United States)

    Drexler, Jan Felix; Corman, Victor M; Lukashev, Alexander N; van den Brand, Judith M A; Gmyl, Anatoly P; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G; Lemon, Stanley M; Drosten, Christian

    2015-12-08

    Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses.

  20. Lamarck and the adaptive conservation of life

    Directory of Open Access Journals (Sweden)

    Galera, Andrés

    2009-12-01

    Full Text Available This paper studies Lamarck’s evolutionary thought through four analytic elements. Firstly, Lamarckian construction of a founding evolutionary archetype. Secondly, the interpretation of nature as a material system where the organic change represents a continuous process aimed at the adaptative conservation of life. Thirdly, the definition of a genealogical process on the origin of species which identifies the natural method. Fourthly, the redefinition of the concept of species applying the arguments of temporary relativity and individual instability.

    En este artículo se estudia el ideario evolucionista lamarckiano desarrollando cuatro elementos analíticos. Primero, la elaboración de un arquetipo evolutivo fundacional. Segundo, la interpretación de la naturaleza como un sistema material donde el cambio orgánico da sentido a un proceso continuo dirigido a la conservación de la vida. Tercero, la definición de un principio genealógico sobre el origen de las especies que identifica el método natural. Cuarto, la reformulación del concepto de especie utilizando los argumentos de relatividad temporal e inestabilidad individual.

  1. Evolutionary Sound Synthesis Controlled by Gestural Data

    Directory of Open Access Journals (Sweden)

    Jose Fornari

    2011-05-01

    Full Text Available This article focuses on the interdisciplinary research involving Computer Music and Generative Visual Art. We describe the implementation of two interactive artistic systems based on principles of Gestural Data (WILSON, 2002 retrieval and self-organization (MORONI, 2003, to control an Evolutionary Sound Synthesis method (ESSynth. The first implementation uses, as gestural data, image mapping of handmade drawings. The second one uses gestural data from dynamic body movements of dance. The resulting computer output is generated by an interactive system implemented in Pure Data (PD. This system uses principles of Evolutionary Computation (EC, which yields the generation of a synthetic adaptive population of sound objects. Considering that music could be seen as “organized sound” the contribution of our study is to develop a system that aims to generate "self-organized sound" – a method that uses evolutionary computation to bridge between gesture, sound and music.

  2. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  3. Evolutionary stability concepts in a stochastic environment

    Science.gov (United States)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2017-09-01

    Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.

  4. Democratizing evolutionary biology, lessons from insects.

    Science.gov (United States)

    Dunn, Robert R; Beasley, DeAnna E

    2016-12-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This review highlights how insect-based citizen science has led to the expansion of specimen collections and reframed research questions in light of new observations and unexpected discoveries. Given the rapid expansion of human-modified (and inhabited) environments, the degree to which the public can participate in insect-based citizen science will allow us to track and monitor evolutionary trends at a global scale. Copyright © 2016. Published by Elsevier Inc.

  5. Studying AMPK in an Evolutionary Context.

    Science.gov (United States)

    Jain, Arpit; Roustan, Valentin; Weckwerth, Wolfram; Ebersberger, Ingo

    2018-01-01

    The AMPK protein kinase forms the heart of a complex network controlling the metabolic activities in a eukaryotic cell. Unraveling the steps by which this pathway evolved from its primordial roots in the last eukaryotic common ancestor to its present status in contemporary species has the potential to shed light on the evolution of eukaryotes. A homolog search for the proteins interacting in this pathway is considerably straightforward. However, interpreting the results, when reconstructing the evolutionary history of the pathway over larger evolutionary distances, bears a number of pitfalls. With this in mind, we present a protocol to trace a metabolic pathway across contemporary species and backward in evolutionary time. Alongside the individual analysis steps, we provide guidelines for data interpretation generalizing beyond the analysis of AMPK.

  6. Infrastructure system restoration planning using evolutionary algorithms

    Science.gov (United States)

    Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.

  7. Ageing research on vertebrates shows knowledge gaps and opportunities for species conservation and management

    DEFF Research Database (Denmark)

    Conde, Dalia Amor

    is constant when species reach maturity. The implications of these assumptions have strong consequences not only in the development of evolutionary theories of ageing and population ecology but also in species conservation. By modeling mortality of different species of vertebrates we show that different...

  8. On Reciprocal Causation in the Evolutionary Process.

    Science.gov (United States)

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach

  9. A framework for evolutionary systems biology.

    Science.gov (United States)

    Loewe, Laurence

    2009-02-24

    Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  10. From computers to cultivation: reconceptualizing evolutionary psychology

    Directory of Open Access Journals (Sweden)

    Louise eBarrett

    2014-08-01

    Full Text Available Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behaviour, and the rigour with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific computational mechanisms, or modules (the massive modularity hypothesis. Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive represent a true alternative to standard computational approaches, with an emphasis on cognitive integration or the extended mind hypothesis in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human ‘mind-making’ within an evolutionarily-informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach.

  11. Evolutionary cost management in the nuclear industry

    International Nuclear Information System (INIS)

    Lombardi, C.G.; Mazzini, R.A.

    1986-01-01

    The reader is urged to consider the material in ''The Evolutionary Theory of Cost Management'' carefully before proceeding with the material in this paper. The recommendations in this paper flow from the revised line of thinking generated by the evolutionary approach. The suggestions will be difficult to accept in the absence of an understanding of the underlying theory. Although the authors briefly discuss some of the theory, it is nevertheless recommended that the reader develop a fuller understanding of the concepts by studying the prior paper

  12. Evolutionary change in continuous reaction norms

    DEFF Research Database (Denmark)

    Murren, Courtney J; Maclean, Heidi J; Diamond, Sarah E

    2014-01-01

    Understanding the evolution of reaction norms remains a major challenge in ecology and evolution. Investigating evolutionary divergence in reaction norm shapes between populations and closely related species is one approach to providing insights. Here we use a meta-analytic approach to compare...... or species. These results show that evolutionary divergence of curvature is common and should be considered an important aspect of plasticity, together with slope. Biological details about traits and environments, including cryptic variation expressed in novel environmental conditions, may be critical...

  13. Evolutionary Graphs with Frequency Dependent Fitness

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory was recently proposed by Lieberman et al. in 2005. In the previous papers about evolutionary graphs (EGs), the fitness of the residents in the EGs is in general assumed to be unity, and the fitness of a mutant is assumed to be a constant r. We aim to extend EG to general cases in this paper, namely, the fitness of a mutant is heavily dependent upon frequency. The corresponding properties for these new EGs are analyzed, and the fixation probability is obtained for large population.

  14. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  15. Evolutionary dynamics of complex communications networks

    CERN Document Server

    Karyotis, Vasileios; Papavassiliou, Symeon

    2013-01-01

    Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to

  16. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2015-11-10

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Conserved sex chromosomes across adaptively radiated Anolis lizards.

    Science.gov (United States)

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina; Kratochvíl, Lukáš

    2014-07-01

    Vertebrates possess diverse sex-determining systems, which differ in evolutionary stability among particular groups. It has been suggested that poikilotherms possess more frequent turnovers of sex chromosomes than homoiotherms, whose effective thermoregulation can prevent the emergence of the sex reversals induced by environmental temperature. Squamate reptiles used to be regarded as a group with an extensive variability in sex determination; however, we document how the rather old radiation of lizards from the genus Anolis, known for exceptional ecomorphological variability, was connected with stability in sex chromosomes. We found that 18 tested species, representing most of the phylogenetic diversity of the genus, share the gene content of their X chromosomes. Furthermore, we discovered homologous sex chromosomes in species of two genera (Sceloporus and Petrosaurus) from the family Phrynosomatidae, serving here as an outgroup to Anolis. We can conclude that the origin of sex chromosomes within iguanas largely predates the Anolis radiation and that the sex chromosomes of iguanas remained conserved for a significant part of their evolutionary history. Next to therian mammals and birds, Anolis lizards therefore represent another adaptively radiated amniote clade with conserved sex chromosomes. We argue that the evolutionary stability of sex-determining systems may reflect an advanced stage of differentiation of sex chromosomes rather than thermoregulation strategy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  18. Evolutionary thinking: "A conversation with Carter Phipps about the role of evolutionary thinking in modern culture".

    Science.gov (United States)

    Hunt, Tam

    2014-12-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps.

  19. Weak correlation between sequence conservation in promoter regions and in protein-coding regions of human-mouse orthologous gene pairs

    Directory of Open Access Journals (Sweden)

    Nakai Kenta

    2008-04-01

    Full Text Available Abstract Background Interspecies sequence comparison is a powerful tool to extract functional or evolutionary information from the genomes of organisms. A number of studies have compared protein sequences or promoter sequences between mammals, which provided many insights into genomics. However, the correlation between protein conservation and promoter conservation remains controversial. Results We examined promoter conservation as well as protein conservation for 6,901 human and mouse orthologous genes, and observed a very weak correlation between them. We further investigated their relationship by decomposing it based on functional categories, and identified categories with significant tendencies. Remarkably, the 'ribosome' category showed significantly low promoter conservation, despite its high protein conservation, and the 'extracellular matrix' category showed significantly high promoter conservation, in spite of its low protein conservation. Conclusion Our results show the relation of gene function to protein conservation and promoter conservation, and revealed that there seem to be nonparallel components between protein and promoter sequence evolution.

  20. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.

    Directory of Open Access Journals (Sweden)

    Dwi Susanti

    Full Text Available Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420-dependent sulfite reductase (Fsr where N- and C-terminal halves (Fsr-N and Fsr-C are homologs of F(420H(2 dehydrogenase and dissimilatory sulfite reductase (Dsr, respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP, both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest, carrying a coupled siroheme-[Fe(4-S(4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex, with group I features, a Dsr-type peripheral [Fe(4-S(4] cluster and an additional [Fe(4-S(4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4-S(4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420H(2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago biologically produced sulfide deposit.

  1. Evolutionary molecular cytogenetics of catarrhine primates: past, present and future.

    Science.gov (United States)

    Stanyon, R; Rocchi, M; Bigoni, F; Archidiacono, N

    2012-01-01

    The catarrhine primates were the first group of species studied with comparative molecular cytogenetics. Many of the fundamental techniques and principles of analysis were initially applied to comparisons in these primates, including interspecific chromosome painting, reciprocal chromosome painting and the extensive use of cloned DNA probes for evolutionary analysis. The definition and importance of chromosome syntenies and associations for a correct cladistics analysis of phylogenomic relationships were first applied to catarrhines. These early chromosome painting studies vividly illustrated a striking conservation of the genome between humans and macaques. Contemporarily, it also revealed profound differences between humans and gibbons, a group of species more closely related to humans, making it clear that chromosome evolution did not follow a molecular clock. Chromosome painting has now been applied to more that 60 primate species and the translocation history has been mapped onto the major taxonomic divisions in the tree of primate evolution. In situ hybridization of cloned DNA probes, primarily BAC-FISH, also made it possible to more precisely map breakpoints with spanning and flanking BACs. These studies established marker order and disclosed intrachromosomal rearrangements. When applied comparatively to a range of primate species, they led to the discovery of evolutionary new centromeres as an important new category of chromosome evolution. BAC-FISH studies are intimately connected to genome sequencing, and probes can usually be assigned to a precise location in the genome assembly. This connection ties molecular cytogenetics securely to genome sequencing, assuring that molecular cytogenetics will continue to have a productive future in the multidisciplinary science of phylogenomics. Copyright © 2012 S. Karger AG, Basel.

  2. The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic

    Directory of Open Access Journals (Sweden)

    Silberman Jeffrey D

    2006-11-01

    Full Text Available Abstract Background Glycolysis and subsequent fermentation is the main energy source for many anaerobic organisms. The glycolytic pathway consists of ten enzymatic steps which appear to be universal amongst eukaryotes. However, it has been shown that the origins of these enzymes in specific eukaryote lineages can differ, and sometimes involve lateral gene transfer events. We have conducted an expressed sequence tag (EST survey of the anaerobic flagellate Trimastix pyriformis to investigate the nature of the evolutionary origins of the glycolytic enzymes in this relatively unstudied organism. Results We have found genes in the Trimastix EST data that encode enzymes potentially catalyzing nine of the ten steps of the glycolytic conversion of glucose to pyruvate. Furthermore, we have found two different enzymes that in principle could catalyze the conversion of phosphoenol pyruvate (PEP to pyruvate (or the reverse reaction as part of the last step in glycolysis. Our phylogenetic analyses of all of these enzymes revealed at least four cases where the relationship of the Trimastix genes to homologs from other species is at odds with accepted organismal relationships. Although lateral gene transfer events likely account for these anomalies, with the data at hand we were not able to establish with confidence the bacterial donor lineage that gave rise to the respective Trimastix enzymes. Conclusion A number of the glycolytic enzymes of Trimastix have been transferred laterally from bacteria instead of being inherited from the last common eukaryotic ancestor. Thus, despite widespread conservation of the glycolytic biochemical pathway across eukaryote diversity, in a number of protist lineages the enzymatic components of the pathway have been replaced by lateral gene transfer from disparate evolutionary sources. It remains unclear if these replacements result from selectively advantageous properties of the introduced enzymes or if they are neutral

  3. In Vivo Characterization of a Vertebrate Ultra-conserved Enhancer

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Francis; Nobrega, Marcelo A.; Plajzer-Frick, Ingrid; Holt, Amy; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len

    2004-10-01

    Genomic sequence comparisons between human, mouse and pufferfish (Takifugu rubripes (Fugu))have revealed a set of extremely conserved noncoding sequences. While this high degree of sequence conservation suggests severe evolutionary constraint and predicts a lack of tolerance to change in order to retain in vivo functionality, such elements have been minimally explored experimentally. In this study, we describe the in-depth characterization of an ancient conserved enhancer, Dc2 located near the dachshund gene, which displays a human-Fugu identity of 84 percent over 424 basepairs (bp). In addition to this large overall conservation, we find that Dc2 is characterized by the presence of a large block of sequence (144 bp) that is completely identical between human, mouse, chicken, zebrafish and Fugu. Through the testing of reporter vector constructs in transgenic mice, we observed that the 424 bp Dc2 conserved element is necessary and sufficient for brain tissue enhancer activity. In vivo analyses also revealed that the 144 bp 100 percent conserved sequence is necessary, but not sufficient, to replicate Dc2 enhancer function. However, the introduction of two separate 16 bp insertions into the highly conserved enhancer core did not cause any detectable modification of its in vivo activity. Our observations indicate that the 144 bp 100 percent conserved element is tolerant of change at least at the resolution of this transgenic mouse assay and suggest that purifying selection on Dc2 sequence might not be as strong as we predicted or that some unknown property also constrains this highly conserved enhancer sequence.

  4. CASSIOPE: An expert system for conserved regions searches

    Directory of Open Access Journals (Sweden)

    Grusea Simona

    2009-09-01

    Full Text Available Abstract Background Understanding genome evolution provides insight into biological mechanisms. For many years comparative genomics and analysis of conserved chromosomal regions have helped to unravel the mechanisms involved in genome evolution and their implications for the study of biological systems. Detection of conserved regions (descending from a common ancestor not only helps clarify genome evolution but also makes it possible to identify quantitative trait loci (QTLs and investigate gene function. The identification and comparison of conserved regions on a genome scale is computationally intensive, making process automation essential. Three key requirements are necessary: consideration of phylogeny to identify orthologs between multiple species, frequent updating of the annotation and panel of compared genomes and computation of statistical tests to assess the significance of identified conserved gene clusters. Results We developed a modular system superimposed on a multi-agent framework, called CASSIOPE (Clever Agent System for Synteny Inheritance and Other Phenomena in Evolution. CASSIOPE automatically identifies statistically significant conserved regions between multiple genomes based on automated phylogenies and statistical testing. Conserved regions were searched for in 19 species and 1,561 hits were found. To our knowledge, CASSIOPE is the first system to date that integrates evolutionary biology-based concepts and fulfills all three key requirements stated above. All results are available at http://194.57.197.245/cassiopeWeb/displayCluster?clusterId=1 Conclusion CASSIOPE makes it possible to study conserved regions from a chosen query genetic region and to infer conserved gene clusters based on phylogenies and statistical tests assessing the significance of these conserved regions. Source code is freely available, please contact: Pierre.pontarotti@univ-provence.fr

  5. Local conservation scores without a priori assumptions on neutral substitution rates.

    Science.gov (United States)

    Dingel, Janis; Hanus, Pavol; Leonardi, Niccolò; Hagenauer, Joachim; Zech, Jürgen; Mueller, Jakob C

    2008-04-11

    Comparative genomics aims to detect signals of evolutionary conservation as an indicator of functional constraint. Surprisingly, results of the ENCODE project revealed that about half of the experimentally verified functional elements found in non-coding DNA were classified as unconstrained by computational predictions. Following this observation, it has been hypothesized that this may be partly explained by biased estimates on neutral evolutionary rates used by existing sequence conservation metrics. All methods we are aware of rely on a comparison with the neutral rate and conservation is estimated by measuring the deviation of a particular genomic region from this rate. Consequently, it is a reasonable assumption that inaccurate neutral rate estimates may lead to biased conservation and constraint estimates. We propose a conservation signal that is produced by local Maximum Likelihood estimation of evolutionary parameters using an optimized sliding window and present a Kullback-Leibler projection that allows multiple different estimated parameters to be transformed into a conservation measure. This conservation measure does not rely on assumptions about neutral evolutionary substitution rates and little a priori assumptions on the properties of the conserved regions are imposed. We show the accuracy of our approach (KuLCons) on synthetic data and compare it to the scores generated by state-of-the-art methods (phastCons, GERP, SCONE) in an ENCODE region. We find that KuLCons is most often in agreement with the conservation/constraint signatures detected by GERP and SCONE while qualitatively very different patterns from phastCons are observed. Opposed to standard methods KuLCons can be extended to more complex evolutionary models, e.g. taking insertion and deletion events into account and corresponding results show that scores obtained under this model can diverge significantly from scores using the simpler model. Our results suggest that discriminating among the

  6. Local conservation scores without a priori assumptions on neutral substitution rates

    Directory of Open Access Journals (Sweden)

    Hagenauer Joachim

    2008-04-01

    Full Text Available Abstract Background Comparative genomics aims to detect signals of evolutionary conservation as an indicator of functional constraint. Surprisingly, results of the ENCODE project revealed that about half of the experimentally verified functional elements found in non-coding DNA were classified as unconstrained by computational predictions. Following this observation, it has been hypothesized that this may be partly explained by biased estimates on neutral evolutionary rates used by existing sequence conservation metrics. All methods we are aware of rely on a comparison with the neutral rate and conservation is estimated by measuring the deviation of a particular genomic region from this rate. Consequently, it is a reasonable assumption that inaccurate neutral rate estimates may lead to biased conservation and constraint estimates. Results We propose a conservation signal that is produced by local Maximum Likelihood estimation of evolutionary parameters using an optimized sliding window and present a Kullback-Leibler projection that allows multiple different estimated parameters to be transformed into a conservation measure. This conservation measure does not rely on assumptions about neutral evolutionary substitution rates and little a priori assumptions on the properties of the conserved regions are imposed. We show the accuracy of our approach (KuLCons on synthetic data and compare it to the scores generated by state-of-the-art methods (phastCons, GERP, SCONE in an ENCODE region. We find that KuLCons is most often in agreement with the conservation/constraint signatures detected by GERP and SCONE while qualitatively very different patterns from phastCons are observed. Opposed to standard methods KuLCons can be extended to more complex evolutionary models, e.g. taking insertion and deletion events into account and corresponding results show that scores obtained under this model can diverge significantly from scores using the simpler model

  7. Information, conservation and retrieval

    International Nuclear Information System (INIS)

    Eng, T.; Norberg, E.; Torbacke, J.

    1996-12-01

    The seminar took place on the Swedish ship for transportation of radioactive wastes, M/S Sigyn, which at summer time is used for exhibitions. The seminar treated items related to general information needs in society and questions related to radioactive waste, i.e. how knowledge about a waste repository should be passed on to future generations. Three contributions are contained in the report from the seminar and are indexed separately: 'Active preservation - otherwise no achieves'; 'The conservation and dissemination of information - A democratic issue'; and, 'Conservation and retrieval of information - Elements of a strategy to inform future societies about nuclear waste repositories'

  8. Energy conservation in industry

    International Nuclear Information System (INIS)

    Pembleton, P.

    1992-01-01

    Energy Conservation in Industry is the first number in the Energy and Environmental Series of the Industrial and Technological Information Bank (INTIB). The Series supersedes the INECA Journal and reflects the broader information programme undertaken by INTIB. The present number of the Series contains contributions from three major international databases and five topic-specific sources, including three United Nations Organizations. The present publication consists of a recent technical report on a current topic: reducing energy loss in four industrial sectors and improving energy conservation through waste-heat recovery, followed by two sections containing abstracts of technical materials

  9. Information, conservation and retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Eng, T. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Norberg, E. [National Swedish Archives, Stockholm (Sweden); Torbacke, J. [Stockholm Univ. (Sweden). Dept. of History; Jensen, M. [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1996-12-01

    The seminar took place on the Swedish ship for transportation of radioactive wastes, M/S Sigyn, which at summer time is used for exhibitions. The seminar treated items related to general information needs in society and questions related to radioactive waste, i.e. how knowledge about a waste repository should be passed on to future generations. Three contributions are contained in the report from the seminar and are indexed separately: `Active preservation - otherwise no achieves`; `The conservation and dissemination of information - A democratic issue`; and, `Conservation and retrieval of information - Elements of a strategy to inform future societies about nuclear waste repositories`.

  10. Evolutionary loss of melanogenesis in the tunicate Molgula occulta

    Directory of Open Access Journals (Sweden)

    Claudia Racioppi

    2017-07-01

    Full Text Available Abstract Background Analyzing close species with diverse developmental modes is instrumental for investigating the evolutionary significance of physiological, anatomical and behavioral features at a molecular level. Many examples of trait loss are known in metazoan populations living in dark environments. Tunicates are the closest living relatives of vertebrates and typically present a lifecycle with distinct motile larval and sessile adult stages. The nervous system of the motile larva contains melanized cells associated with geotactic and light-sensing organs. It has been suggested that these are homologous to vertebrate neural crest-derived melanocytes. Probably due to ecological adaptation to distinct habitats, several species of tunicates in the Molgulidae family have tailless (anural larvae that fail to develop sensory organ-associated melanocytes. Here we studied the evolution of Tyrosinase family genes, indispensible for melanogenesis, in the anural, unpigmented Molgula occulta and in the tailed, pigmented Molgula oculata by using phylogenetic, developmental and molecular approaches. Results We performed an evolutionary reconstruction of the tunicate Tyrosinase gene family: in particular, we found that M. oculata possesses genes predicted to encode one Tyrosinase (Tyr and three Tyrosinase-related proteins (Tyrps while M. occulta has only Tyr and Tyrp.a pseudogenes that are not likely to encode functional proteins. Analysis of Tyr sequences from various M. occulta individuals indicates that different alleles independently acquired frameshifting short indels and/or larger mobile genetic element insertions, resulting in pseudogenization of the Tyr locus. In M. oculata, Tyr is expressed in presumptive pigment cell precursors as in the model tunicate Ciona robusta. Furthermore, a M. oculata Tyr reporter gene construct was active in the pigment cell precursors of C. robusta embryos, hinting at conservation of the regulatory network underlying

  11. G protein-coupled time travel: evolutionary aspects of GPCR research.

    Science.gov (United States)

    Römpler, Holger; Stäubert, Claudia; Thor, Doreen; Schulz, Angela; Hofreiter, Michael; Schöneberg, Torsten

    2007-02-01

    The common seven-transmembrane-domain (TMD) architecture of G protein-coupled receptors (GPCRs) has been preserved over a vast period of time, and highly conserved amino acid motifs and residues have evolved to establish ligand and signal transduction specificities. The mining of evolutionary data from sequenced genomes and targeted retrieved orthologs has proven helpful for understanding the physiological relevance of individual GPCRs and for interpreting the clinical significance of GPCR mutations in structural terms. Sequence analysis of GPCR pseudogenes, which are considered as genomic traces of past functions, as well as recent success in sequence analysis of GPCR genes from extinct species, provide further information. This review discusses recent advances and approaches aimed at developing a better understanding of GPCR biology based on evolutionary data.

  12. The Radiata and the evolutionary origins of the bilaterian body plan

    Science.gov (United States)

    Martindale, Mark Q.; Finnerty, John R.; Henry, Jonathan Q.

    2002-01-01

    The apparent conservation of cellular and molecular developmental mechanisms observed in a handful of bilaterian metazoans has spawned a "race" to reconstruct the bilaterian ancestor. Knowledge of this ancestor would permit us to reconstruct the evolutionary changes that have occurred along specific bilaterian lineages. However, comparisons among extant bilaterians provide an unnecessarily limited view of the ancestral bilaterian. Since the original bilaterians are believed by many to be derived from a radially symmetrical ancestor, additional evidence might be obtained by examining present-day radially symmetrical animals. We briefly review pertinent features of the body plans of the extant radial eumetazoan phyla, the Cnidaria, and Ctenophora, in the context of revealing potential evolutionary links to the bilaterians.

  13. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms

    Directory of Open Access Journals (Sweden)

    Achal Rastogi

    2015-07-01

    Full Text Available Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.

  14. Evolutionary heritage influences amazon tree ecology

    NARCIS (Netherlands)

    Souza, De Fernanda Coelho; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J.W.; Chave, Jerome; Galbraith, David R.; Gonzalez, Gabriela Lopez; Mendoza, Abel Monteagudo; Toby Pennington, R.; Poorter, Lourens; Arets, E.J.M.M.; Boot, Rene G.A.; Meer, van der Peter J.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of

  15. Evolutionary Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  16. Bone Adaptation as an Evolutionary Process

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The internal bone adaptation of the proximal femur is considered. A three-dimensional finite element model of the proximal femur is used. The bone remodeling in this work is numerically described byan evolutionary remodeling scheme with anisotropic material parameters andtime-dependent loading...

  17. Molecular serotype and evolutionary lineage of Listeria ...

    African Journals Online (AJOL)

    The molecular serotypes and the evolutionary lineage of Listeria monocytogenes isolated from various foods in Nigeria are yet to be documented. Consequently, popular uncooked food items known locally as Okazi Utazi, Onugbu, Ogbono, Garri and Egusi obtained from plants botanically known as Gnetum africanum, ...

  18. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  19. Food processing optimization using evolutionary algorithms | Enitan ...

    African Journals Online (AJOL)

    Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...

  20. The essence of Schumpeter's evolutionary economics

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    Schumpeter’s unique type of evolutionary analysis can hardly be understood unless we recognise that he developed it in relation to a study of the strength and weaknesses of the Walrasian form of neoclassical economics. The paper demonstrates that Schumpeter’s major steps were already performed...