WorldWideScience

Sample records for alignment-free dna barcode

  1. Fungal DNA barcoding.

    Science.gov (United States)

    Xu, Jianping

    2016-11-01

    Fungi are ubiquitous in both natural and human-made environments. They play important roles in the health of plants, animals, and humans, and in broad ecosystem functions. Thus, having an efficient species-level identification system could significantly enhance our ability to treat fungal diseases and to monitor the spatial and temporal patterns of fungal distributions and migrations. DNA barcoding is a potent approach for rapid identification of fungal specimens, generating novel species hypothesis, and guiding biodiversity and ecological studies. In this mini-review, I briefly summarize (i) the history of DNA sequence-based fungal identification; (ii) the emergence of the ITS region as the consensus primary fungal barcode; (iii) the use of the ITS barcodes to address a variety of issues on fungal diversity from local to global scales, including generating a large number of species hypothesis; and (iv) the problems with the ITS barcode region and the approaches to overcome these problems. Similar to DNA barcoding research on plants and animals, significant progress has been achieved over the last few years in terms of both the questions being addressed and the foundations being laid for future research endeavors. However, significant challenges remain. I suggest three broad areas of research to enhance the usefulness of fungal DNA barcoding to meet the current and future challenges: (i) develop a common set of primers and technologies that allow the amplification and sequencing of all fungi at both the primary and secondary barcode loci; (ii) compile a centralized reference database that includes all recognized fungal species as well as species hypothesis, and allows regular updates from the research community; and (iii) establish a consensus set of new species recognition criteria based on barcode DNA sequences that can be applied across the fungal kingdom.

  2. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    Science.gov (United States)

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.

  3. Statistical Approaches for DNA Barcoding

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Matz, M.

    2006-01-01

    The use of DNA as a tool for species identification has become known as "DNA barcoding" (Floyd et al., 2002; Hebert et al., 2003; Remigio and Hebert, 2003). The basic idea is straightforward: a small amount of DNA is extracted from the specimen, amplified and sequenced. The gene region sequenced...... is chosen so that it is nearly identical among individuals of the same species, but different between species, and therefore its sequence, can serve as an identification tag for the species ("DNA barcode"). By matching the sequence obtained from an unidentified specimen ("query" sequence) to the database...

  4. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  5. DNA barcodes of Philippine accipitrids.

    Science.gov (United States)

    Ong, Perry S; Luczon, Adrian U; Quilang, Jonas P; Sumaya, Anna Mae T; Ibañez, Jayson C; Salvador, Dennis J; Fontanilla, Ian Kendrich C

    2011-03-01

    DNA barcoding is a molecular method that rapidly identifies an individual to a known taxon or its closest relative based on a 650-bp fragment of the cytochrome c oxidase subunit I (COI). In this study, DNA barcodes of members of the family Accipitridae, including Haliastur indus (brahminy kite), Haliaeetus leucogaster (white-bellied sea eagle), Ichthyophaga ichthyaetus (grey-headed fish eagle), Spilornis holospilus (crested serpent-eagle), Spizaetus philippensis (Philippine hawk-eagle), and Pithecophaga jefferyi (Philippine eagle), are reported for the first time. All individuals sampled are kept at the Philippine Eagle Center in Davao City, Philippines. Basic local alignment search tool results demonstrated that the COI sequences for these species were unique. The COI gene trees constructed using the maximum-likelihood and neighbour-joining (NJ) methods supported the monophyly of the booted eagles of the Aquilinae and the sea eagles of the Haliaeetinae but not the kites of the Milvinae. © 2010 Blackwell Publishing Ltd.

  6. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  7. Microcoding: the second step in DNA barcoding

    NARCIS (Netherlands)

    Summerbell, R.C.; Lévesque, C.A.; Seifert, K.A.; Bovers, M.; Fell, J.W.; Diaz, M.R.; Boekhout, T.; Hoog, de G.S.; Stalpers, J.A.; Crous, P.W.

    2005-01-01

    After the process of DNA barcoding has become well advanced in a group of organisms, as it has in the economically important fungi, the question then arises as to whether shorter and literally more barcode-like DNA segments should be utilized to facilitate rapid identification and, where applicable,

  8. DNA Barcoding Investigations Bring Biology to Life

    Science.gov (United States)

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  9. DNA barcoding of Canada's skates.

    Science.gov (United States)

    Coulson, M W; Denti, D; Van Guelpen, L; Miri, C; Kenchington, E; Bentzen, P

    2011-11-01

    DNA-based identifications have been employed across broad taxonomic ranges and provide an especially useful tool in cases where external identification may be problematic. This study explored the utility of DNA barcoding in resolving skate species found in Atlantic Canadian waters. Most species were clearly resolved, expanding the utility for such identification on a taxonomically problematic group. Notably, one genus (Amblyraja) contained three of four species whose distributions do not overlap that could not be readily identified with this method. On the other hand, two common and partially sympatric species (Little and Winter skates) were readily identifiable. There were several instances of inconsistency between the voucher identification and the DNA sequence data. In some cases, these were at the intrageneric level among species acknowledged to be prone to misidentification. However, several instances of intergeneric discrepancies were also identified, suggesting either evidence of past introgressive hybridization or misidentification of vouchered specimens across broader taxonomic ranges. Such occurrences highlight the importance of retaining vouchered specimens for subsequent re-examination in the light of conflicting DNA evidence. © 2011 Blackwell Publishing Ltd.

  10. DNA barcode of Chaetognatha from Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Kidangan, F.X.; Prabhu, R.G.; Bucklin, A.; Nair, S.

    Chaetognatha are the second most abundant zooplankton group in the Indian waters Precise identification of the species is critical for biogeographical studies DNA barcodes using mitochondrial cytochrome c oxidase (COI) of seven dominant...

  11. DNA barcoding insect-host plant associations.

    Science.gov (United States)

    Jurado-Rivera, José A; Vogler, Alfried P; Reid, Chris A M; Petitpierre, Eduard; Gómez-Zurita, Jesús

    2009-02-22

    Short-sequence fragments ('DNA barcodes') used widely for plant identification and inventorying remain to be applied to complex biological problems. Host-herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcodes amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included-more than 10 per cent of the known Australian fauna-feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions.

  12. DNA BARCODING IKAN HIAS INTRODUKSI

    Directory of Open Access Journals (Sweden)

    Melta Rini Fahmi

    2017-05-01

    Full Text Available Identifikasi spesies menjadi tantangan dalam pengelolaan ikan hias introduksi baik untuk tujuan budidaya maupun konservasi. Penelitian ini bertujuan untuk melakukan identifikasi molekuler ikan hias introduksi yang beredar di pembudidaya dan pasar ikan hias Indonesia dengan menggunakan barcode DNA gen COI. Sampel ikan diperoleh dari pembudidaya dan importir ikan hias di kawasan Bandung dan Jakarta. Total DNA diekstraksi dari jaringan sirip ekor dengan menggunakan metode kolom. Amplifikasi gen target dilakukan dengan menggunakan primer FishF1, FishF2, FishR1, dan FishR2. Hasil pembacaan untai DNA disejajarkan dengan sekuen yang terdapat pada genbank melalui program BLAST. Identifikasi dilakukan melalui kekerabatan pohon filogenetik dan presentasi indeks kesamaan dengan sekuen genbank. Hasil identifikasi menunjukkan sampel yang diuji terbagi menjadi lima grup, yaitu: Synodontis terdiri atas lima spesies, Corydoras: empat spesies, Phseudoplatystoma: tiga spesies, Botia: tiga spesies, dan Leporinus: tiga spesies dengan nilai boostrap 99-100. Indeks kesamaan sekuen menunjukkan sebanyak 11 spesies memiliki indeks kesamaan 99%-100% dengan data genbank yaitu Synodontis decorus, Synodontis eupterus, Synodontis greshoffi, Botia kubotai, Botia lohachata, Rasbora erythromicron, Corydoras aeneus, Gyrinocheilus aymonieri, Eigenmannia virescens, Leporinus affinis, Phractocephalus hemioliopterus. Dua spesies teridentifikasi sebagai hasil hibridisasi (kawin silang yaitu Leopard catfish (100% identik dengan Pseudoplatystoma faciatum dan Synodontis leopard (100% identik dengan Synodontis notatus. Hasil analisis nukleotida penciri diperoleh tujuh nukleotida untuk Synodontis decora, 10 nukleotida untuk Synodontis tanganyicae, 13 nukleotida untuk Synodontis euterus, empat nukleotida untuk Synodontis notatus, dan 14 untuk Synodontis grashoffi. Kejelasan identifikasi spesies ikan menjadi kunci utama dalam budidaya, perdagangan, manajemen, konservasi, dan pengembangan

  13. DNA Barcoding on Bacteria: A Review

    Directory of Open Access Journals (Sweden)

    D. E. Lebonah

    2014-01-01

    Full Text Available Bacteria are omnipotent and they can be found everywhere. The study of bacterial pathogens has been happening from olden days to prevent epidemics, food spoilage, losses in agricultural production, and loss of lives. Modern techniques in DNA based species identification are considered. So, there is a need to acquire simple and quick identification technique. Hence, this review article covers the efficacy of DNA barcoding of bacteria. Routine DNA barcoding involves the production of PCR amplicons from particular regions to sequence them and these sequence data are used to identify or “barcode” that organism to make a distinction from other species.

  14. DNA barcodes for ecology, evolution, and conservation.

    Science.gov (United States)

    Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L

    2015-01-01

    The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed. Published by Elsevier Ltd.

  15. Universal COI primers for DNA barcoding amphibians.

    Science.gov (United States)

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians. © 2011 Blackwell Publishing Ltd.

  16. On site DNA barcoding by nanopore sequencing.

    Directory of Open Access Journals (Sweden)

    Michele Menegon

    Full Text Available Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet's biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities.

  17. DNA barcoding Bromeliaceae: achievements and pitfalls.

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Maia

    Full Text Available BACKGROUND: DNA barcoding has been successfully established in animals as a tool for organismal identification and taxonomic clarification. Slower nucleotide substitution rates in plant genomes have made the selection of a DNA barcode for land plants a much more difficult task. The Plant Working Group of the Consortium for the Barcode of Life (CBOL recommended the two-marker combination rbcL/matK as a pragmatic solution to a complex trade-off between universality, sequence quality, discrimination, and cost. METHODOLOGY/PRINCIPAL FINDINGS: It is expected that a system based on any one, or a small number of plastid genes will fail within certain taxonomic groups with low amounts of plastid variation, while performing well in others. We tested the effectiveness of the proposed CBOL Plant Working Group barcoding markers for land plants in identifying 46 bromeliad species, a group rich in endemic species from the endangered Brazilian Atlantic Rainforest. Although we obtained high quality sequences with the suggested primers, species discrimination in our data set was only 43.48%. Addition of a third marker, trnH-psbA, did not show significant improvement. This species identification failure in Bromeliaceaecould also be seen in the analysis of the GenBank's matK data set. Bromeliaceae's sequence divergence was almost three times lower than the observed for Asteraceae and Orchidaceae. This low variation rate also resulted in poorly resolved tree topologies. Among the three Bromeliaceae subfamilies sampled, Tillandsioideae was the only one recovered as a monophyletic group with high bootstrap value (98.6%. Species paraphyly was a common feature in our sampling. CONCLUSIONS/SIGNIFICANCE: Our results show that although DNA barcoding is an important tool for biodiversity assessment, it tends to fail in taxonomy complicated and recently diverged plant groups, such as Bromeliaceae. Additional research might be needed to develop markers capable to

  18. DNA barcoding Bromeliaceae: achievements and pitfalls.

    Science.gov (United States)

    Maia, Vitor Hugo; Mata, Camila Souza da; Franco, Luciana Ozório; Cardoso, Mônica Aires; Cardoso, Sérgio Ricardo Sodré; Hemerly, Adriana Silva; Ferreira, Paulo Cavalcanti Gomes

    2012-01-01

    DNA barcoding has been successfully established in animals as a tool for organismal identification and taxonomic clarification. Slower nucleotide substitution rates in plant genomes have made the selection of a DNA barcode for land plants a much more difficult task. The Plant Working Group of the Consortium for the Barcode of Life (CBOL) recommended the two-marker combination rbcL/matK as a pragmatic solution to a complex trade-off between universality, sequence quality, discrimination, and cost. It is expected that a system based on any one, or a small number of plastid genes will fail within certain taxonomic groups with low amounts of plastid variation, while performing well in others. We tested the effectiveness of the proposed CBOL Plant Working Group barcoding markers for land plants in identifying 46 bromeliad species, a group rich in endemic species from the endangered Brazilian Atlantic Rainforest. Although we obtained high quality sequences with the suggested primers, species discrimination in our data set was only 43.48%. Addition of a third marker, trnH-psbA, did not show significant improvement. This species identification failure in Bromeliaceaecould also be seen in the analysis of the GenBank's matK data set. Bromeliaceae's sequence divergence was almost three times lower than the observed for Asteraceae and Orchidaceae. This low variation rate also resulted in poorly resolved tree topologies. Among the three Bromeliaceae subfamilies sampled, Tillandsioideae was the only one recovered as a monophyletic group with high bootstrap value (98.6%). Species paraphyly was a common feature in our sampling. Our results show that although DNA barcoding is an important tool for biodiversity assessment, it tends to fail in taxonomy complicated and recently diverged plant groups, such as Bromeliaceae. Additional research might be needed to develop markers capable to discriminate species in these complex botanical groups.

  19. A laboratory information management system for DNA barcoding workflows

    NARCIS (Netherlands)

    Vu, D.; Eberhardt, U.; Szöke, S.; Groenewald, M.; Robert, V.

    2012-01-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA

  20. Exploring Canadian Echinoderm Diversity through DNA Barcodes.

    Science.gov (United States)

    Layton, Kara K S; Corstorphine, Erin A; Hebert, Paul D N

    2016-01-01

    DNA barcoding has proven an effective tool for species identification in varied groups of marine invertebrates including crustaceans, molluscs, polychaetes and echinoderms. In this study, we further validate its utility by analyzing almost half of the 300 species of Echinodermata known from Canadian waters. COI sequences from 999 specimens were assigned to 145 BINs. In most cases, species discrimination was straightforward due to the large difference (25-fold) between mean intra- (0.48%) and inter- (12.0%) specific divergence. Six species were flagged for further taxonomic investigation because specimens assigned to them fell into two or three discrete sequence clusters. The potential influence of larval dispersal capacity and glacial events on patterns of genetic diversity is discussed for 19 trans-oceanic species. Although additional research is needed to clarify biogeographic patterns and resolve taxonomic questions, this study represents an important step in the assembly of a DNA barcode library for all Canadian echinoderms, a valuable resource for future biosurveillance programs.

  1. DNA Barcoding of Philippine Herbal Medicinal Products.

    Science.gov (United States)

    Pedales, Ronniel D; Damatac, Amor M; Limbo, Carlo A; Marquez, Cielo Mae D; Navarro, Anna Isabel B; Molina, Jeanmaire

    2016-11-01

    The Philippine government established the Traditional and Alternative Medicine Act in 1997 to promote traditionally used herbal products and to provide an effective yet affordable alternative to conventional medicines. However, government regulation of herbal medicinal products (HMPs) is not stringent, relying only on submitted quality data from the manufacturer. In this study we validated the taxonomic identity of 26 plant samples contained within 22 HMPs, each produced by different local manufacturers, through DNA barcoding of the nuclear internal transcribed spacer-2 (ITS2) region. We recovered 19 ITS2 barcodes from 26 samples. These were compared to sequences in GenBank using MEGABLAST, but ambiguous results (similar max scores for different species) were phylogenetically analyzed. Twelve of the 19 samples matched the indicated species on the product label, three were equivocal in specific identity but were placed in the expected genus, and four other samples from three manufacturers contained contamination and/or substitution. GenBank's reference database was at times problematic because some sequences were lacking or were misidentified, but the database was still useful. Overall, ITS2 barcoding was successful in authenticating the HMPs, and it is recommended during the premarket evaluation process so as to obtain a certificate of registration from the government. The government should also develop a comprehensive database of barcodes for Philippine plants, and should prioritize the development of the traditional pharmacopeia because many locally produced HMPs are not indigenous.

  2. DNA barcoding in Mexico: an introduction.

    Science.gov (United States)

    Elías-Gutiérrez, M; León-Regagnon, V

    2013-11-01

    DNA barcoding has become an important current scientific trend to the understanding of the world biodiversity. In the case of mega-diverse hot spots like Mexico, this technique represents an important tool for taxonomists, allowing them to concentrate in highlighted species by the barcodes instead of analyzing entire sets of specimens. This tendency resulted in the creation of a national network named Mexican Barcode of Life (MEXBOL) which main goals are to train students, and to promote the interaction and collective work among researchers interested in this topic. As a result, the number of records in the Barcode of Life Database (BOLD) for some groups, such as the Mammalia, Actinopterygii, Polychaeta, Branchiopoda, Ostracoda, Maxillopoda, Nematoda, Pinophyta, Ascomycota and Basidiomycota place Mexico among the top ten countries in the generation of these data. This special number presents only few of the many interesting findings in this region of the world, after the use of this technique and its integration with other methodologies. © 2013 John Wiley & Sons Ltd.

  3. Highlighting Astyanax Species Diversity through DNA Barcoding

    Science.gov (United States)

    Oliveira, Carlos Alexandre Miranda; de Melo, Filipe Augusto Gonçalves; Bertaco, Vinicius de Araújo; de Astarloa, Juan M. Díaz; Rosso, Juan J.; Foresti, Fausto; Oliveira, Claudio

    2016-01-01

    DNA barcoding has been used extensively to solve taxonomic questions and identify new species. Neotropical fishes are found in a wide variety of shapes and sizes, with a large number of species yet to be described, many of which are very difficult to identify. Characidae is the most species-rich family of the Characiformes, and many of its genera are affected by taxonomic uncertainties, including the widely-distributed, species-rich genus Astyanax. In this study, we present an extensive analysis of Astyanax covering almost its entire area of occurrence, based on DNA barcoding. The use of different approaches (ABGD, GMYC and BIN) to the clustering of the sequences revealed ample consistency in the results obtained by the initial cutoff value of 2% divergence for putative species in the Neighbor-Joining analysis using the Kimura-2-parameter model. The results indicate the existence of five Astyanax lineages. Some groups, such as that composed by the trans-Andean forms, are mostly composed of well-defined species, and in others a number of nominal species are clustered together, hampering the delimitation of species, which in many cases proved impossible. The results confirm the extreme complexity of the systematics of the genus Astyanax and show that DNA barcoding can be an useful tool to address these complexes questions. PMID:27992537

  4. Identifying Fishes through DNA Barcodes and Microarrays.

    Science.gov (United States)

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N; Weber, Hannes; Blohm, Dietmar

    2010-09-07

    International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  5. Identifying Fishes through DNA Barcodes and Microarrays.

    Directory of Open Access Journals (Sweden)

    Marc Kochzius

    Full Text Available BACKGROUND: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. METHODOLOGY/PRINCIPAL FINDINGS: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S, cytochrome b (cyt b, and cytochrome oxidase subunit I (COI for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90% renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. CONCLUSIONS/SIGNIFICANCE: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  6. Internal Transcribed Spacer (ITS), an ideal DNA barcode for species ...

    African Journals Online (AJOL)

    Background: DNA barcoding is a technique used to identify species based on species-specific differences in short regions of their DNA. It is widely used in species discrimination of medicinal plants and traditional medicines. Materials and Methods: In the present study, four potential DNA barcodes, namely rbcL, matK, ...

  7. Developing DNA barcoding (matK) primers for marama bean ...

    African Journals Online (AJOL)

    DNA barcoding is based on the premise that a short standardized DNA barcoding sequence can distinguish individuals of a species because the genetic variation between species exceeds that within species. Information on genetic variation of breeding materials helps to maintain genetic diversity and sustains long term ...

  8. Contribution towards the development of a DNA barcode reference ...

    African Journals Online (AJOL)

    DNA barcoding is a widely used molecular approach for species cataloging for unambiguous identification and conservation. In the present study, DNA barcoding of some West African mammals were performed with six new mitochondrial CO1 sequences for Civettictis civetta, Tadarida nigeriae, Orycteropus afer, ...

  9. DNA Barcoding and PBL in an Australian Postsecondary College

    Science.gov (United States)

    Cross, Joseph; Garard, Helen; Currie, Tina

    2018-01-01

    DNA barcoding is increasingly being introduced into biological science educational curricula worldwide. The technique has a number of features that make it ideal for science curricula and particularly for Project-Based Learning (PBL). This report outlines the development of a DNA barcoding project in an Australian TAFE college, which also combined…

  10. Systematic identification of African Sapindaceae using DNA barcoding

    African Journals Online (AJOL)

    This research aimed at exploring the diversity of Sapindaceae in West and Central Africa with particular emphasis on identification of the plant samples as well as generation of DNA barcodes with a view to sharing the DNA barcode sequence(s) in a public database. These were achieved following standard protocols.

  11. DNA barcoding of South Africa's ornamental freshwater fish – are ...

    African Journals Online (AJOL)

    DNA barcoding of South Africa's ornamental freshwater fish – are the names reliable? ... African Journal of Aquatic Science ... Because its effective implementation requires accurate identification, the aim of the present study was to test whether DNA barcoding is a useful tool to identify freshwater fishes in the South African ...

  12. A comparison of DNA barcode clustering methods applied to ...

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... ABGD; biodiversity inventory; cluster analysis; cryptic species; cytochrome oxidase subunit I; DNA barcode of life; Fuzzy. Identification; GMYC; SAP .... set of phylogenetic trees is sampled using Bayesian Markov chain Monte Carlo ..... Critical factors for assembling a high volume of DNA barcodes. Philos.

  13. Exploring Canadian Echinoderm Diversity through DNA Barcodes.

    Directory of Open Access Journals (Sweden)

    Kara K S Layton

    Full Text Available DNA barcoding has proven an effective tool for species identification in varied groups of marine invertebrates including crustaceans, molluscs, polychaetes and echinoderms. In this study, we further validate its utility by analyzing almost half of the 300 species of Echinodermata known from Canadian waters. COI sequences from 999 specimens were assigned to 145 BINs. In most cases, species discrimination was straightforward due to the large difference (25-fold between mean intra- (0.48% and inter- (12.0% specific divergence. Six species were flagged for further taxonomic investigation because specimens assigned to them fell into two or three discrete sequence clusters. The potential influence of larval dispersal capacity and glacial events on patterns of genetic diversity is discussed for 19 trans-oceanic species. Although additional research is needed to clarify biogeographic patterns and resolve taxonomic questions, this study represents an important step in the assembly of a DNA barcode library for all Canadian echinoderms, a valuable resource for future biosurveillance programs.

  14. Identifying Chinese species of Gammarus (Crustacea: Amphipoda using DNA barcoding

    Directory of Open Access Journals (Sweden)

    HOU Zhong-E

    2009-04-01

    Full Text Available Using a standard cytochrome c oxidase I sequence, DNA barcoding has been shown to be effective to distinguish known species and to discover cryptic species. Here we assessed the efficiency of DNA barcoding for the amphipod genus Gammarus from China. The maximum intraspecific divergence for widespread species, Gammarus lacustris, was 3.5%, and mean interspecific divergence reached 21.9%. We presented a conservative benchmark for determining provisional species using maximum intraspecific divergence of Gammarus lacustris. Thirty-one species possessed distinct barcode clusters. Two species were comprised of highly divergent clades with strong neighbor-joining bootstrap values, and likely indicated the presence of cryptic species. Although DNA barcoding is effective, future identification of species of Gammarus should incorporate DNA barcoding and morphological detection.

  15. [Molecular identification in genus of Lilium based on DNA barcoding].

    Science.gov (United States)

    Zheng, Si-Hao; Li, Ya-Kang; Ren, Wei-Guang; Huang, Lin-Fang

    2014-12-01

    To establish a new method for identifying genus of Lilium by DNA barcoding technology, ITS, ITS2, psbA-trnH, matK and rbcL sequences were analyzed in term of variation of inter- and intra-species, barcoding gap, neighbor-joining tree to distinguish genus of Lilium based on 978 sequences from experimental and GenBank database, and identification efficiency was evaluated by Nearest distance and BLAST1 methods. The results showed that DNA barcoding could identify different species in genus of Lilium. ITS sequence performed higher identification efficiency, and had significant difference between intra- and inter-species. And NJ tree could also divide species into different clades. Results indicate that DNA barcoding can identify genus of Lilium accurately. ITS sequence can be the optimal barcode to identify species of Lilium.

  16. DNA barcoding of catfish: species authentication and phylogenetic assessment.

    Directory of Open Access Journals (Sweden)

    Li Lian Wong

    Full Text Available As the global market for fisheries and aquaculture products expands, mislabeling of these products has become a growing concern in the food safety arena. Molecular species identification techniques hold the potential for rapid, accurate assessment of proper labeling. Here we developed and evaluated DNA barcodes for use in differentiating United States domestic and imported catfish species. First, we sequenced 651 base-pair barcodes from the cytochrome oxidase I (COI gene from individuals of 9 species (and an Ictalurid hybrid of domestic and imported catfish in accordance with standard DNA barcoding protocols. These included domestic Ictalurid catfish, and representative imported species from the families of Clariidae and Pangasiidae. Alignment of individual sequences from within a given species revealed highly consistent barcodes (98% similarity on average. These alignments allowed the development and analyses of consensus barcode sequences for each species and comparison with limited sequences in public databases (GenBank and Barcode of Life Data Systems. Validation tests carried out in blinded studies and with commercially purchased catfish samples (both frozen and fresh revealed the reliability of DNA barcoding for differentiating between these catfish species. The developed protocols and consensus barcodes are valuable resources as increasing market and governmental scrutiny is placed on catfish and other fisheries and aquaculture products labeling in the United States.

  17. Dissecting host-associated communities with DNA barcodes

    Science.gov (United States)

    Pierce, Naomi E.

    2016-01-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes. Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481780

  18. Novel DNA barcodes for detection, idenfication and tracking of stachybotrys and chaetomium species

    DEFF Research Database (Denmark)

    Lewinska, Anna Malgorzata; Hoof, Jakob Blæsbjerg; Peuhkuri, Ruut Hannele

    2014-01-01

    and Stachybotrys. The existing DNA barcodes: ITS, SSU, LSU, B-TUB, CMD, RP and TEF-1α do not give satisfying species resolution to be considered as DNA barcodes for the two genera. Therefore, novel barcodes for them are needed. Barcode potentials, such as HOG1 a NAHA, were identified using bioinformatics...

  19. DNA barcode goes two-dimensions: DNA QR code web server.

    Science.gov (United States)

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  20. DNA barcode goes two-dimensions: DNA QR code web server.

    Directory of Open Access Journals (Sweden)

    Chang Liu

    Full Text Available The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  1. DNA Barcoding Identifies Illegal Parrot Trade.

    Science.gov (United States)

    Gonçalves, Priscila F M; Oliveira-Marques, Adriana R; Matsumoto, Tania E; Miyaki, Cristina Y

    2015-01-01

    Illegal trade threatens the survival of many wild species, and molecular forensics can shed light on various questions raised during the investigation of cases of illegal trade. Among these questions is the identity of the species involved. Here we report a case of a man who was caught in a Brazilian airport trying to travel with 58 avian eggs. He claimed they were quail eggs, but authorities suspected they were from parrots. The embryos never hatched and it was not possible to identify them based on morphology. As 29% of parrot species are endangered, the identity of the species involved was important to establish a stronger criminal case. Thus, we identified the embryos' species based on the analyses of mitochondrial DNA sequences (cytochrome c oxidase subunit I gene [COI] and 16S ribosomal DNA). Embryonic COI sequences were compared with those deposited in BOLD (The Barcode of Life Data System) while their 16S sequences were compared with GenBank sequences. Clustering analysis based on neighbor-joining was also performed using parrot COI and 16S sequences deposited in BOLD and GenBank. The results, based on both genes, indicated that 57 embryos were parrots (Alipiopsitta xanthops, Ara ararauna, and the [Amazona aestiva/A. ochrocephala] complex), and 1 was an owl. This kind of data can help criminal investigations and to design species-specific anti-poaching strategies, and demonstrate how DNA sequence analysis in the identification of bird species is a powerful conservation tool. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Identification of Meconopsis species by a DNA barcode sequence ...

    African Journals Online (AJOL)

    Deoxyribonucleic acid (DNA) barcoding is a novel technology that uses a standard DNA sequence to facilitate species identification. Species identification is necessary for the authentication of traditional plant based medicines. Although a consensus has not been agreed regarding which DNA sequences can be used as ...

  3. Wolbachia and DNA barcoding insects: patterns, potential, and problems.

    Directory of Open Access Journals (Sweden)

    M Alex Smith

    Full Text Available Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp, and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.

  4. Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems

    Science.gov (United States)

    Smith, M. Alex; Bertrand, Claudia; Crosby, Kate; Eveleigh, Eldon S.; Fernandez-Triana, Jose; Fisher, Brian L.; Gibbs, Jason; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hind, Katharine; Hrcek, Jan; Huang, Da-Wei; Janda, Milan; Janzen, Daniel H.; Li, Yanwei; Miller, Scott E.; Packer, Laurence; Quicke, Donald; Ratnasingham, Sujeevan; Rodriguez, Josephine; Rougerie, Rodolphe; Shaw, Mark R.; Sheffield, Cory; Stahlhut, Julie K.; Steinke, Dirk; Whitfield, James; Wood, Monty; Zhou, Xin

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region. PMID:22567162

  5. DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters

    Science.gov (United States)

    Mabragaña, Ezequiel; Díaz de Astarloa, Juan Martín; Hanner, Robert; Zhang, Junbin; González Castro, Mariano

    2011-01-01

    Background DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. Methodology/Principal Findings Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species), and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org). Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125) examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. Conclusions/Significance This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha taxonomy, barcodes provide

  6. DNA barcoding identifies Argentine fishes from marine and brackish waters.

    Directory of Open Access Journals (Sweden)

    Ezequiel Mabragaña

    Full Text Available BACKGROUND: DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. METHODOLOGY/PRINCIPAL FINDINGS: Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species, and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org. Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125 examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. CONCLUSIONS/SIGNIFICANCE: This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha

  7. Efficiency of ITS sequences for DNA barcoding in Passiflora (Passifloraceae).

    Science.gov (United States)

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-04-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using "best match" and "best close match" methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species.

  8. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae

    Directory of Open Access Journals (Sweden)

    Giovanna Câmara Giudicelli

    2015-04-01

    Full Text Available DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1 region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species.

  9. DNA Barcoding through Quaternary LDPC Codes.

    Directory of Open Access Journals (Sweden)

    Elizabeth Tapia

    Full Text Available For many parallel applications of Next-Generation Sequencing (NGS technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH or have intrinsic poor error correcting abilities (Hamming. Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9 at the expense of a rate of read losses just in the order of 10(-6.

  10. A laboratory information management system for DNA barcoding workflows.

    Science.gov (United States)

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  11. Patterns of DNA barcode variation in Canadian marine molluscs.

    Science.gov (United States)

    Layton, Kara K S; Martel, André L; Hebert, Paul D N

    2014-01-01

    Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0-26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%-46.5%), and showed a significant positive correlation with nearest neighbour distances. DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.

  12. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species

    Science.gov (United States)

    Min Yu; Lichao Jiao; Juan Guo; Alex C. Wiedenhoeft; Tuo He; Xiaomei Jiang; Yafang Yin

    2017-01-01

    ITS2+trnH-psbA was the best combination of DNA barcode to resolve the Dalbergia wood species studied. We demonstrate the feasibility of building a DNA barcode reference database using xylarium wood specimens.

  13. DNA barcoding of the vegetable leafminer Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Bangladesh

    Science.gov (United States)

    DNA barcoding revealed the presence of the polyphagous leafminer pest Liriomyza sativae Blanchard in Bangladesh. DNA barcode sequences for mitochondrial COI were generated for Agromyzidae larvae, pupae and adults collected from field populations across Bangladesh. BLAST sequence similarity searches ...

  14. DNA Barcoding for Identification of "Candidatus Phytoplasmas" Using a Fragment of the Elongation Factor Tu Gene

    DEFF Research Database (Denmark)

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta

    2012-01-01

    barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases. Conclusions/Significance This study demonstrates that DNA barcoding principles can be applied...... by plant health services and researchers for online phytoplasma identification....

  15. DNA barcodes for marine fungal identification and discovery

    Digital Repository Service at National Institute of Oceanography (India)

    Velmurugan, S.; Prasannakumar, C.; Manokaran, S.; AjithKumar, T.; Samkamaleson, A.; Palavesam, A.

    , monsoon, postmonsoon). DNA sequencing was performed in ABI high throughput DNA sequencer at Bioserve Biotechnologies Pvt Ltd (commercial company, India) and at Macrogen (commercial company, North Korea). DNA sequences, produced as chromatograms, were read.... The Fungi, 2nd edn. A Harcourt Science and Technology Company, p. 603. Dentinger BTM, Didukh MY, Moncalvo J, 2011. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina). PLoS One 9: e25081. Domsch KH, Gams W, Anderson TH...

  16. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives.

    Science.gov (United States)

    Mitchell, Andrew; Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world's most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests.

  17. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives.

    Directory of Open Access Journals (Sweden)

    Andrew Mitchell

    Full Text Available Helicoverpa and Heliothis species include some of the world's most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests.

  18. Influence of killing method on Lepidoptera DNA barcode recovery.

    Science.gov (United States)

    Willows-Munro, Sandi; Schoeman, M Corrie

    2015-05-01

    The global DNA barcoding initiative has revolutionized the field of biodiversity research. Such large-scale sequencing projects require the collection of large numbers of specimens, which need to be killed and preserved in a way that is both DNA-friendly and which will keep voucher specimens in good condition for later study. Factors such as time since collection, correct storage (exposure to free water and heat) and DNA extraction protocol are known to play a role in the success of downstream molecular applications. Limited data are available on the most efficient, DNA-friendly protocol for killing. In this study, we evaluate the quality of DNA barcode (cytochrome oxidase I) sequences amplified from DNA extracted from specimens collected using three different killing methods (ethyl acetate, cyanide and freezing). Previous studies have suggested that chemicals, such as ethyl acetate and formaldehyde, degraded DNA and as such may not be appropriate for the collection of insects for DNA-based research. All Lepidoptera collected produced DNA barcodes of good quality, and our study found no clear difference in nucleotide signal strength, probability of incorrect base calling and phylogenetic utility among the three different treatment groups. Our findings suggest that ethyl acetate, cyanide and freezing can all be used to collect specimens for DNA analysis. © 2014 John Wiley & Sons Ltd.

  19. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    Science.gov (United States)

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.

  20. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae.

    Directory of Open Access Journals (Sweden)

    Yuichi Oba

    Full Text Available Click beetles (Coleoptera: Elateridae represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation. These findings urge taxonomic reinvestigation of these mismatched taxa.

  1. DNA Barcoding of Japanese Click Beetles (Coleoptera, Elateridae)

    Science.gov (United States)

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa. PMID:25636000

  2. DNA barcoding in the media: does coverage of cool science reflect its social context?

    Science.gov (United States)

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life.

  3. DNA barcoding as a means for identifying medicinal plants of Pakistan

    International Nuclear Information System (INIS)

    Schori, M.; Showalter, A.M.

    2011-01-01

    DNA barcoding involves the generation of DNA sequencing data from particular genetic regions in an organism and the use of these sequence data to identify or 'barcode' that organism and distinguish it from other species. Here, DNA barcoding is being used to identify several medicinal plants found in Pakistan and distinguished them from other similar species. Several challenges to the successful implementation of plant DNA barcoding are presented and discussed. Despite these challenges, DNA barcoding has the potential to uniquely identify medicinal plants and provide quality control and standardization of the plant material supplied to the pharmaceutical industry. (author)

  4. DNA barcoding reveals a cryptic nemertean invasion in Atlantic and Mediterranean waters

    Science.gov (United States)

    Fernández-Álvarez, Fernando Ángel; Machordom, Annie

    2013-09-01

    For several groups, like nemerteans, morphology-based identification is a hard discipline, but DNA barcoding may help non-experts in the identification process. In this study, DNA barcoding is used to reveal the cryptic invasion of Pacific Cephalothrix cf. simula into Atlantic and Mediterranean coasts. Although DNA barcoding is a promising method for the identification of Nemertea, only 6 % of the known number of nemertean species is currently associated with a correct DNA barcode. Therefore, additional morphological and molecular studies are necessary to advance the utility of DNA barcoding in the characterisation of possible nemertean alien invasions.

  5. An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database

    Directory of Open Access Journals (Sweden)

    But Paul

    2010-06-01

    Full Text Available Abstract Background Thousands of plants and animals possess pharmacological properties and there is an increased interest in using these materials for therapy and health maintenance. Efficacies of the application is critically dependent on the use of genuine materials. For time to time, life-threatening poisoning is found because toxic adulterant or substitute is administered. DNA barcoding provides a definitive means of authentication and for conducting molecular systematics studies. Owing to the reduced cost in DNA authentication, the volume of the DNA barcodes produced for medicinal materials is on the rise and necessitates the development of an integrated DNA database. Description We have developed an integrated DNA barcode multimedia information platform- Medicinal Materials DNA Barcode Database (MMDBD for data retrieval and similarity search. MMDBD contains over 1000 species of medicinal materials listed in the Chinese Pharmacopoeia and American Herbal Pharmacopoeia. MMDBD also contains useful information of the medicinal material, including resources, adulterant information, medical parts, photographs, primers used for obtaining the barcodes and key references. MMDBD can be accessed at http://www.cuhk.edu.hk/icm/mmdbd.htm. Conclusions This work provides a centralized medicinal materials DNA barcode database and bioinformatics tools for data storage, analysis and exchange for promoting the identification of medicinal materials. MMDBD has the largest collection of DNA barcodes of medicinal materials and is a useful resource for researchers in conservation, systematic study, forensic and herbal industry.

  6. DNA Barcodes of Lepidoptera Reared from Yawan, Papua New Guinea

    Czech Academy of Sciences Publication Activity Database

    Miller, S. E.; Rosati, M. E.; Gewa, B.; Novotný, Vojtěch; Weiblen, G. D.; Herbert, P. D. N.

    2015-01-01

    Roč. 117, č. 2 (2015), s. 247-250 ISSN 0013-8797 R&D Projects: GA ČR(CZ) GA14-04258S Institutional support: RVO:60077344 Keywords : DNA barcodes * Lepidoptera * Papua New Guinea Subject RIV: EH - Ecology, Behaviour Impact factor: 0.593, year: 2015

  7. Identification of rays through DNA barcoding: an application for ecologists.

    Directory of Open Access Journals (Sweden)

    Florencia Cerutti-Pereyra

    Full Text Available DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the 'uarnak' complex. Two sets of problems limited the successful application of DNA barcoding: (1 the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2 insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data.

  8. Are mini DNA-barcodes sufficiently informative to resolve species ...

    Indian Academy of Sciences (India)

    Since then, the COI has been effec- tively used as 'universal DNA barcode' in several animal groups such as birds, butterflies, amphibians and fishes. ∗. For correspondence. E-mail: gravikanth@atree.org. (Hebert et al. 2003; Gu et al. 2011). However, in plants, the. COI was found to be ineffective in discriminating the taxa,.

  9. Levenshtein error-correcting barcodes for multiplexed DNA sequencing.

    Science.gov (United States)

    Buschmann, Tilo; Bystrykh, Leonid V

    2013-09-11

    High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called multiplexing approach relies on a specific DNA tag or barcode that is attached to the sequencing or amplification primer and hence appears at the beginning of the sequence in every read. After sequencing, each sample read is identified on the basis of the respective barcode sequence.Alterations of DNA barcodes during synthesis, primer ligation, DNA amplification, or sequencing may lead to incorrect sample identification unless the error is revealed and corrected. This can be accomplished by implementing error correcting algorithms and codes. This barcoding strategy increases the total number of correctly identified samples, thus improving overall sequencing efficiency. Two popular sets of error-correcting codes are Hamming codes and Levenshtein codes. Levenshtein codes operate only on words of known length. Since a DNA sequence with an embedded barcode is essentially one continuous long word, application of the classical Levenshtein algorithm is problematic. In this paper we demonstrate the decreased error correction capability of Levenshtein codes in a DNA context and suggest an adaptation of Levenshtein codes that is proven of efficiently correcting nucleotide errors in DNA sequences. In our adaption we take the DNA context into account and redefine the word length whenever an insertion or deletion is revealed. In simulations we show the superior error correction capability of the new method compared to traditional Levenshtein and Hamming based codes in the presence of multiple errors. We present an adaptation of Levenshtein codes to DNA contexts capable of correction of a pre-defined number of insertion, deletion, and substitution mutations. Our improved method is additionally capable

  10. Identification of Species in Tripterygium (Celastraceae) Based on DNA Barcoding.

    Science.gov (United States)

    Zhang, Xiaomei; Li, Na; Yao, Yuanyuan; Liang, Xuming; Qu, Xianyou; Liu, Xiang; Zhu, Yingjie; Yang, Dajian; Sun, Wei

    2016-11-01

    Species of genus Tripterygium (Celastraceae) have attracted much attention owing to their excellent effect on treating autoimmune and inflammatory diseases. However, due to high market demand causing overexploitation, natural populations of genus Tripterygium have rapidly declined. Tripterygium medicinal materials are mainly collected from the wild, making the quality of medicinal materials unstable. Additionally, identification of herbal materials from Tripterygium species and their adulterants is difficult based on morphological characters. Therefore, an accurate, convenient, and stability method is urgently needed. In this wok, we developed a DNA barcoding technique to distinguish T. wilfordii HOOK. f., T. hypoglaucum (LÉVL.) HUTCH, and T. regelii SPRAGUE et TAKEDA and their adulterants based on four uniform and standard DNA regions (internal transcribed spacer 2 (ITS2), matK, rbcL, and psbA-trnH). DNA was extracted from 26 locations of fresh leaves. Phylogenetic tree was constructed with Neighbor-Joining (NJ) method, while barcoding gap was analyzed to assess identification efficiency. Compared with the other DNA barcodes applied individually or in combination, ITS2+psbA-trnH was demonstrated as the optimal barcode. T. hypoglaucum and T. wilfordii can be considered as conspecific, while T. regelii was recognized as a separate species. Furthermore, identification of commercial Tripterygium samples was conducted using BLAST against GenBank and Species Identification System for Traditional Chinese Medicine. Our results indicated that DNA barcoding is a convenient, effective, and stability method to identify and distinguish Tripterygium and its adulterants, and could be applied as the quality control for Tripterygium medicinal preparations and monitoring of the medicinal herb trade in markets.

  11. A retrospective approach to testing the DNA barcoding method.

    Directory of Open Access Journals (Sweden)

    David G Chapple

    Full Text Available A decade ago, DNA barcoding was proposed as a standardised method for identifying existing species and speeding the discovery of new species. Yet, despite its numerous successes across a range of taxa, its frequent failures have brought into question its accuracy as a short-cut taxonomic method. We use a retrospective approach, applying the method to the classification of New Zealand skinks as it stood in 1977 (primarily based upon morphological characters, and compare it to the current taxonomy reached using both morphological and molecular approaches. For the 1977 dataset, DNA barcoding had moderate-high success in identifying specimens (78-98%, and correctly flagging specimens that have since been confirmed as distinct taxa (77-100%. But most matching methods failed to detect the species complexes that were present in 1977. For the current dataset, there was moderate-high success in identifying specimens (53-99%. For both datasets, the capacity to discover new species was dependent on the methodological approach used. Species delimitation in New Zealand skinks was hindered by the absence of either a local or global barcoding gap, a result of recent speciation events and hybridisation. Whilst DNA barcoding is potentially useful for specimen identification and species discovery in New Zealand skinks, its error rate could hinder the progress of documenting biodiversity in this group. We suggest that integrated taxonomic approaches are more effective at discovering and describing biodiversity.

  12. DNA barcode of coastal alga ( Chlorella sorokiniana ) from Ago ...

    African Journals Online (AJOL)

    Five different loci 18S, UPA, rbcl, ITS and tufA were tested for their use as deoxyribonucleic acid (DNA) barcode in this study. Although the UPA primers were designed to amplify all phototrophic algae and cyanobacteria, UPA and 18S did not amplified at all for the genus Chlorella while ITS1, ITS2 rDNA and rbcL markers ...

  13. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding.

    Science.gov (United States)

    Versteirt, V; Nagy, Z T; Roelants, P; Denis, L; Breman, F C; Damiens, D; Dekoninck, W; Backeljau, T; Coosemans, M; Van Bortel, W

    2015-03-01

    Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well-supported clusters. Intraspecific Kimura 2-parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra- and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species. © 2014 John Wiley & Sons Ltd.

  14. Analyzing mosquito (Diptera: culicidae diversity in Pakistan by DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Muhammad Ashfaq

    Full Text Available Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications.Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection. The genus Aedes (Stegomyia comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments.As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  15. Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan.

    Science.gov (United States)

    Ashfaq, Muhammad; Akhtar, Saleem; Rafi, Muhammad Athar; Mansoor, Shahid; Hebert, Paul D N

    2017-01-01

    Sequences from the DNA barcode region of the mitochondrial COI gene are an effective tool for specimen identification and for the discovery of new species. The Barcode of Life Data Systems (BOLD) (www.boldsystems.org) currently hosts 4.5 million records from animals which have been assigned to more than 490,000 different Barcode Index Numbers (BINs), which serve as a proxy for species. Because a fourth of these BINs derive from Lepidoptera, BOLD has a strong capability to both identify specimens in this order and to support studies of faunal overlap. DNA barcode sequences were obtained from 4503 moths from 329 sites across Pakistan, specimens that represented 981 BINs from 52 families. Among 379 species with a Linnaean name assignment, all were represented by a single BIN excepting five species that showed a BIN split. Less than half (44%) of the 981 BINs had counterparts in other countries; the remaining BINs were unique to Pakistan. Another 218 BINs of Lepidoptera from Pakistan were coupled with the 981 from this study before being compared with all 116,768 BINs for this order. As expected, faunal overlap was highest with India (21%), Sri Lanka (21%), United Arab Emirates (20%) and with other Asian nations (2.1%), but it was very low with other continents including Africa (0.6%), Europe (1.3%), Australia (0.6%), Oceania (1.0%), North America (0.1%), and South America (0.1%). This study indicates the way in which DNA barcoding facilitates measures of faunal overlap even when taxa have not been assigned to a Linnean species.

  16. Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding.

    Science.gov (United States)

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, Jawwad H; Khan, Arif M; Zafar, Yusuf; Mirza, M Sajjad

    2014-01-01

    Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  17. Analyzing Mosquito (Diptera: Culicidae) Diversity in Pakistan by DNA Barcoding

    Science.gov (United States)

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, Jawwad H.; Khan, Arif M.; Zafar, Yusuf; Mirza, M. Sajjad

    2014-01-01

    Background Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Methodology/Principal Findings Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010–2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0–2.4%, while congeneric species showed from 2.3–17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. Conclusions As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations. PMID:24827460

  18. DNA barcoding of sigmodontine rodents: identifying wildlife reservoirs of zoonoses.

    Science.gov (United States)

    Müller, Lívia; Gonçalves, Gislene L; Cordeiro-Estrela, Pedro; Marinho, Jorge R; Althoff, Sérgio L; Testoni, André F; González, Enrique M; Freitas, Thales R O

    2013-01-01

    Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments.

  19. DNA Barcoding of Ichthyoplankton in Hampton Roads Bay Estuary

    Science.gov (United States)

    Wilkins, N.; Rodríguez, Á. E.

    2016-02-01

    Zooplankton is composed of animals that drift within the water column. The study of zooplankton biodiversity and distribution is crucial to understand oceanic ecosystems and anticipate the effects of climate change. In this study our focus is on ichthyoplankton (fish eggs and larvae). Our aim is to employ molecular genetic techniques such as DNA barcoding to begin a detailed characterization of ichthyoplankton diversity, abundance and community structure in the Hampton Roads Bay Estuary (HRBE). A sampling of zooplankton was performed on June 19, 2015. Samples were taken with a 0.5m, 200 µm mesh net in triplicates at two stations: inner shore in the mouth of Jones Creek and 5 miles off Hampton in the lower part of Chesapeake Bay. Physical parameters (dissolved oxygen, salinity, and temperature and water transparency) were measured simultaneously. Species were identified by DNA barcoding using the mitochondrial DNA (mtDNA) of the Cytochrome Oxidase 1 (CO1) gene. Fish eggs were identified from Opistonema oglinum (Atlantic Thread Herring) at the offshore stations while, Anchoa mitchilli was found at both stations. These species are common to the area and as observed, differences in species between stations were found. O. oglinum eggs were found in the offshore stations, which is their reported habitat. A. mitchilli eggs were found in both stations; both known to exhibit a wider salinity tolerance. This work indicates that using mtDNA-CO1 barcoding is suitable to identify ichthyoplankton to the species level and helped validate DNA barcoding as a faster taxonomic approach. The long term objective of this project is to provide taxonomic composition and biodiversity assessment of ichthyoplankton in HRBE. This data will be a reference for broad monitoring programs; for a better understanding and management of ecologically and commercially important species in the HRBE. Monthly samplings will be performed for a year beginning September 2015.

  20. DNA Barcoding for Minor Crops and Food Traceability

    Directory of Open Access Journals (Sweden)

    Andrea Galimberti

    2014-01-01

    Full Text Available This outlook paper addresses the problem of the traceability of minor crops. These kinds of cultivations consist in a large number of plants locally distributed with a modest production in terms of cultivated acreage and quantity of final product. Because of globalization, the diffusion of minor crops is increasing due to their benefit for human health or their use as food supplements. Such a phenomenon implies a major risk for species substitution or uncontrolled admixture of manufactured plant products with severe consequences for the health of consumers. The need for a reliable identification system is therefore essential to evaluate the quality and provenance of minor agricultural products. DNA-based techniques can help in achieving this mission. In particular, the DNA barcoding approach has gained a role of primary importance thanks to its universality and versatility. Here, we present the advantages in the use of DNA barcoding for the characterization and traceability of minor crops based on our previous or ongoing studies at the ZooPlantLab (Milan, Italy. We also discuss how DNA barcoding may potentially be transferred from the laboratory to the food supply chain, from field to table.

  1. Building a DNA barcode library of Alaska's non-marine arthropods.

    Science.gov (United States)

    Sikes, Derek S; Bowser, Matthew; Morton, John M; Bickford, Casey; Meierotto, Sarah; Hildebrandt, Kyndall

    2017-03-01

    Climate change may result in ecological futures with novel species assemblages, trophic mismatch, and mass extinction. Alaska has a limited taxonomic workforce to address these changes. We are building a DNA barcode library to facilitate a metabarcoding approach to monitoring non-marine arthropods. Working with the Canadian Centre for DNA Barcoding, we obtained DNA barcodes from recently collected and authoritatively identified specimens in the University of Alaska Museum (UAM) Insect Collection and the Kenai National Wildlife Refuge collection. We submitted tissues from 4776 specimens, of which 81% yielded DNA barcodes representing 1662 species and 1788 Barcode Index Numbers (BINs), of primarily terrestrial, large-bodied arthropods. This represents 84% of the species available for DNA barcoding in the UAM Insect Collection. There are now 4020 Alaskan arthropod species represented by DNA barcodes, after including all records in Barcode of Life Data Systems (BOLD) of species that occur in Alaska - i.e., 48.5% of the 8277 Alaskan, non-marine-arthropod, named species have associated DNA barcodes. An assessment of the identification power of the library in its current state yielded fewer species-level identifications than expected, but the results were not discouraging. We believe we are the first to deliberately begin development of a DNA barcode library of the entire arthropod fauna for a North American state or province. Although far from complete, this library will become increasingly valuable as more species are added and costs to obtain DNA sequences fall.

  2. Identification of North Sea molluscs with DNA barcoding.

    Science.gov (United States)

    Barco, Andrea; Raupach, Michael J; Laakmann, Silke; Neumann, Hermann; Knebelsberger, Thomas

    2016-01-01

    Sequence-based specimen identification, known as DNA barcoding, is a common method complementing traditional morphology-based taxonomic assignments. The fundamental resource in DNA barcoding is the availability of a taxonomically reliable sequence database to use as a reference for sequence comparisons. Here, we provide a reference library including 579 sequences of the mitochondrial cytochrome c oxidase subunit I for 113 North Sea mollusc species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match, Best Close Match (BCM) and All Species Barcode (ASB) criteria with three different threshold values. Each identification result was compared with our prior morphology-based taxonomic assignments. Our simulation resulted in 87.7% congruent identifications (93.8% when excluding singletons). The highest number of congruent identifications was obtained with BCM and ASB and a 0.05 threshold. We also compared identifications with genetic clustering (Barcode Index Numbers, BINs) computed by the Barcode of Life Datasystem (BOLD). About 68% of our morphological identifications were congruent with BINs created by BOLD. Forty-nine sequences were clustered in 16 discordant BINs, and these were divided in two classes: sequences from different species clustered in a single BIN and conspecific sequences divided in more BINs. Whereas former incongruences were probably caused by BOLD entries in need of a taxonomic update, the latter incongruences regarded taxa requiring further investigations. These include species with amphi-Atlantic distribution, whose genetic structure should be evaluated over their entire range to produce a reliable sequence-based identification system. © 2015 John Wiley & Sons Ltd.

  3. Countering criticisms of single mitochondrial DNA gene barcoding in birds.

    Science.gov (United States)

    Baker, Allan J; Tavares, Erika Sendra; Elbourne, Rebecca F

    2009-05-01

    General criticisms of a single mtDNA gene barcodes include failure to identify newly evolved species, use of species-delimitation thresholds, effects of selective sweeps and chance occurrence of reciprocal monophyly within species, inability to deal with hybridization and incomplete lineage sorting, and superiority of multiple genes in species identification. We address these criticisms in birds because most species are known and thus provide an ideal test data set, and we argue with selected examples that with the exception of thresholds these criticisms are not problematic for avian taxonomy. Even closely related sister species of birds have distinctive COI barcodes, but it is not possible to universally apply distance thresholds based on ratios of within-species and among-species variation. Instead, more rigorous methods of species delimitation should be favoured using coalescent-based techniques that include tests of chance reciprocal monophyly, and times of lineage separation and sequence divergence. Incomplete lineage sorting is also easily detected with DNA barcodes, and usually at a younger time frame than a more slowly evolving nuclear gene. Where DNA barcodes detect divergent reciprocally monophyletic lineages, the COI sequences can be combined with multiple nuclear genes to distinguish between speciation or population subdivision arising from high female philopatry or regional selective sweeps. Although selective sweeps are increasingly invoked to explain patterns of shallow within-species coalescences in COI gene trees, caution is warranted in this conjecture because of limited sampling of individuals and the reduced power to detect additional mtDNA haplotypes with one gene. © 2009 Blackwell Publishing Ltd.

  4. Neotropical bats: estimating species diversity with DNA barcodes.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Clare

    Full Text Available DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera. This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0-11.79% with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats.

  5. A DNA barcoding approach to characterize pollen collected by honeybees.

    Directory of Open Access Journals (Sweden)

    Andrea Galimberti

    Full Text Available In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy. A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno, characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands.

  6. DNA barcoding of the ichthyofauna of Taal Lake, Philippines.

    Science.gov (United States)

    Aquilino, Sean V L; Tango, Jazzlyn M; Fontanilla, Ian K C; Pagulayan, Roberto C; Basiao, Zubaida U; Ong, Perry S; Quilang, Jonas P

    2011-07-01

    This study represents the first molecular survey of the ichthyofauna of Taal Lake and the first DNA barcoding attempt in Philippine fishes. Taal Lake, the third largest lake in the Philippines, is considered a very important fisheries resource and is home to the world's only freshwater sardine, Sardinella tawilis. However, overexploitation and introduction of exotic fishes have caused a massive decline in the diversity of native species as well as in overall productivity of the lake. In this study, 118 individuals of 23 native, endemic and introduced fishes of Taal Lake were barcoded using the partial DNA sequence of the mitochondrial cytochrome c oxidase subunit I (COI) gene. These species belong to 21 genera, 17 families and 9 orders. Divergence of sequences within and between species was determined using Kimura 2-parameter (K2P) distance model, and a neighbour-joining tree was generated with 1000 bootstrap replications using the K2P model. All COI sequences for each of the 23 species were clearly discriminated among genera. The average within species, within genus, within family and within order percent genetic divergence was 0.60%, 11.07%, 17.67% and 24.08%, respectively. Our results provide evidence that COI DNA barcodes are effective for the rapid and accurate identification of fishes and for identifying certain species that need further taxonomic investigation. © 2011 Blackwell Publishing Ltd.

  7. DNA barcode detects high genetic structure within neotropical bird species.

    Directory of Open Access Journals (Sweden)

    Erika Sendra Tavares

    Full Text Available BACKGROUND: Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. METHODS AND FINDINGS: Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520 of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21 or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20. Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. CONCLUSIONS: The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent

  8. Reliable DNA barcoding performance proved for species and island populations of comoran squamate reptiles.

    Directory of Open Access Journals (Sweden)

    Oliver Hawlitschek

    Full Text Available In the past decade, DNA barcoding became increasingly common as a method for species identification in biodiversity inventories and related studies. However, mainly due to technical obstacles, squamate reptiles have been the target of few barcoding studies. In this article, we present the results of a DNA barcoding study of squamates of the Comoros archipelago, a poorly studied group of oceanic islands close to and mostly colonized from Madagascar. The barcoding dataset presented here includes 27 of the 29 currently recognized squamate species of the Comoros, including 17 of the 18 endemic species. Some species considered endemic to the Comoros according to current taxonomy were found to cluster with non-Comoran lineages, probably due to poorly resolved taxonomy. All other species for which more than one barcode was obtained corresponded to distinct clusters useful for species identification by barcoding. In most species, even island populations could be distinguished using barcoding. Two cryptic species were identified using the DNA barcoding approach. The obtained barcoding topology, a Bayesian tree based on COI sequences of 5 genera, was compared with available multigene topologies, and in 3 cases, major incongruences between the two topologies became evident. Three of the multigene studies were initiated after initial screening of a preliminary version of the barcoding dataset presented here. We conclude that in the case of the squamates of the Comoros Islands, DNA barcoding has proven a very useful and efficient way of detecting isolated populations and promising starting points for subsequent research.

  9. Untangling taxonomy: a DNA barcode reference library for Canadian spiders.

    Science.gov (United States)

    Blagoev, Gergin A; deWaard, Jeremy R; Ratnasingham, Sujeevan; deWaard, Stephanie L; Lu, Liuqiong; Robertson, James; Telfer, Angela C; Hebert, Paul D N

    2016-01-01

    Approximately 1460 species of spiders have been reported from Canada, 3% of the global fauna. This study provides a DNA barcode reference library for 1018 of these species based upon the analysis of more than 30,000 specimens. The sequence results show a clear barcode gap in most cases with a mean intraspecific divergence of 0.78% vs. a minimum nearest-neighbour (NN) distance averaging 7.85%. The sequences were assigned to 1359 Barcode index numbers (BINs) with 1344 of these BINs composed of specimens belonging to a single currently recognized species. There was a perfect correspondence between BIN membership and a known species in 795 cases, while another 197 species were assigned to two or more BINs (556 in total). A few other species (26) were involved in BIN merges or in a combination of merges and splits. There was only a weak relationship between the number of specimens analysed for a species and its BIN count. However, three species were clear outliers with their specimens being placed in 11-22 BINs. Although all BIN splits need further study to clarify the taxonomic status of the entities involved, DNA barcodes discriminated 98% of the 1018 species. The present survey conservatively revealed 16 species new to science, 52 species new to Canada and major range extensions for 426 species. However, if most BIN splits detected in this study reflect cryptic taxa, the true species count for Canadian spiders could be 30-50% higher than currently recognized. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  10. Species-specific identification from incomplete sampling: applying DNA barcodes to monitoring invasive solanum plants.

    Science.gov (United States)

    Zhang, Wei; Fan, Xiaohong; Zhu, Shuifang; Zhao, Hong; Fu, Lianzhong

    2013-01-01

    Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling-through this, DNA barcoding will greatly benefit the current fields of its application.

  11. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species.

    Science.gov (United States)

    Yu, Min; Jiao, Lichao; Guo, Juan; Wiedenhoeft, Alex C; He, Tuo; Jiang, Xiaomei; Yin, Yafang

    2017-12-01

    ITS2+ trnH - psbA was the best combination of DNA barcode to resolve the Dalbergia wood species studied. We demonstrate the feasibility of building a DNA barcode reference database using xylarium wood specimens. The increase in illegal logging and timber trade of CITES-listed tropical species necessitates the development of unambiguous identification methods at the species level. For these methods to be fully functional and deployable for law enforcement, they must work using wood or wood products. DNA barcoding of wood has been promoted as a promising tool for species identification; however, the main barrier to extensive application of DNA barcoding to wood is the lack of a comprehensive and reliable DNA reference library of barcodes from wood. In this study, xylarium wood specimens of nine Dalbergia species were selected from the Wood Collection of the Chinese Academy of Forestry and DNA was then extracted from them for further PCR amplification of eight potential DNA barcode sequences (ITS2, matK, trnL, trnH-psbA, trnV-trnM1, trnV-trnM2, trnC-petN, and trnS-trnG). The barcodes were tested singly and in combination for species-level discrimination ability by tree-based [neighbor-joining (NJ)] and distance-based (TaxonDNA) methods. We found that the discrimination ability of DNA barcodes in combination was higher than any single DNA marker among the Dalbergia species studied, with the best two-marker combination of ITS2+trnH-psbA analyzed with NJ trees performing the best (100% accuracy). These barcodes are relatively short regions (<350 bp) and amplification reactions were performed with high success (≥90%) using wood as the source material, a necessary factor to apply DNA barcoding to timber trade. The present results demonstrate the feasibility of using vouchered xylarium specimens to build DNA barcoding reference databases.

  12. DNA Barcoding for Species Assignment: The Case of Mediterranean Marine Fishes

    Science.gov (United States)

    Landi, Monica; Dimech, Mark; Arculeo, Marco; Biondo, Girolama; Martins, Rogelia; Carneiro, Miguel; Carvalho, Gary Robert; Brutto, Sabrina Lo; Costa, Filipe O.

    2014-01-01

    Background DNA barcoding enhances the prospects for species-level identifications globally using a standardized and authenticated DNA-based approach. Reference libraries comprising validated DNA barcodes (COI) constitute robust datasets for testing query sequences, providing considerable utility to identify marine fish and other organisms. Here we test the feasibility of using DNA barcoding to assign species to tissue samples from fish collected in the central Mediterranean Sea, a major contributor to the European marine ichthyofaunal diversity. Methodology/Principal Findings A dataset of 1278 DNA barcodes, representing 218 marine fish species, was used to test the utility of DNA barcodes to assign species from query sequences. We tested query sequences against 1) a reference library of ranked DNA barcodes from the neighbouring North East Atlantic, and 2) the public databases BOLD and GenBank. In the first case, a reference library comprising DNA barcodes with reliability grades for 146 fish species was used as diagnostic dataset to screen 486 query DNA sequences from fish specimens collected in the central basin of the Mediterranean Sea. Of all query sequences suitable for comparisons 98% were unambiguously confirmed through complete match with reference DNA barcodes. In the second case, it was possible to assign species to 83% (BOLD-IDS) and 72% (GenBank) of the sequences from the Mediterranean. Relatively high intraspecific genetic distances were found in 7 species (2.2%–18.74%), most of them of high commercial relevance, suggesting possible cryptic species. Conclusion/Significance We emphasize the discriminatory power of COI barcodes and their application to cases requiring species level resolution starting from query sequences. Results highlight the value of public reference libraries of reliability grade-annotated DNA barcodes, to identify species from different geographical origins. The ability to assign species with high precision from DNA samples of

  13. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    NARCIS (Netherlands)

    Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium, [No Value

    2012-01-01

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it

  14. [Applying DNA barcoding technique to identify menthae haplocalycis herba].

    Science.gov (United States)

    Pang, Xiaohui; Xu, Haibin; Han, Jianping; Song, Jingyuan

    2012-04-01

    To identify Menthae Haplocalycis Herba and its closely related species using DNA barcoding technique. Total genomic DNA was isolated from Mentha canadensis and its closely related species. Nuclear DNA ITS2 sequences were amplified, and purified PCR products were sequenced. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner V3.0. The Kimura 2-Parameter (K2P) distances were calculated using software MEGA 5.0. Identification analyses were performed using BLAST1, Nearest Distance and neighbor-joining (NJ) methods. The intra-specific genetic distances of M. canadensis were ranged from 0 to 0.006, which were lower than inter-specific genetic distances between M. canadensis and its closely related species (0.071-0.231). All the three methods showed that ITS2 could discriminate M. canadensis from its closely related species correctly. The ITS2 region is an efficient barcode for identification of Menthae Haplocalycis Herba, which provides a scientific basis for fast and accurate identification of the herb.

  15. An Asiatic Chironomid in Brazil: morphology, DNA barcode and bionomics

    Directory of Open Access Journals (Sweden)

    Gizelle Amora

    2015-07-01

    Full Text Available In most freshwater ecosystems, aquatic insects are dominant in terms of diversity; however, there is a disproportionately low number of records of alien species when compared to other freshwater organisms. The Chironomidae is one aquatic insect family that includes some examples of alien species around the world. During a study on aquatic insects in Amazonas state (Brazil, we collected specimens of Chironomidae that are similar, at the morphological level, to Chironomus kiiensis Tokunaga and Chironomus striatipennis Kieffer, both with distributions restricted to Asia. The objectives of this study were to provide morphological information on this Chironomus population, to investigate its identity using DNA barcoding and, to provide bionomic information about this species. Chironomus DNA barcode data were obtained from GenBank and Barcode of Life Data Systems (BOLD and, together with our data, were analyzed using the neighbor-joining method with 1000 bootstrap replicates and the genetic distances were estimated using the Kimura-2-parameter. At the morphological level, the Brazilian population cannot be distinguished either from C. striatipennis or C. kiiensis, configuring a species complex but, at the molecular level our studied population is placed in a clade together with C. striatipennis, from South Korea. Bionomic characteristics of the Brazilian Chironomus population differ from the ones of C. kiiensis from Japan, the only species in this species complex with bionomic information available. The Brazilian Chironomus population has a smaller size, the double of the number of eggs and inhabits oligotrophic water, in artificial container. In the molecular analysis, populations of C. striatipennis and C. kiiensis are placed in a clade, formed by two groups: Group A (which includes populations from both named species, from different Asiatic regions and our Brazilian population and Group B (with populations of C. kiiensis from Japan and South Korea

  16. Evaluation of the DNA barcodes in Dendrobium (Orchidaceae from mainland Asia.

    Directory of Open Access Journals (Sweden)

    Songzhi Xu

    Full Text Available DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera.

  17. DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads.

    Directory of Open Access Journals (Sweden)

    Chodon Sass

    Full Text Available Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation-especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL, and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS, were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants.

  18. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    Science.gov (United States)

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  19. Building a DNA Barcode Reference Library for the True Butterflies (Lepidoptera) of Peninsula Malaysia: What about the Subspecies?

    Science.gov (United States)

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity. PMID:24282514

  20. DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation.

    Directory of Open Access Journals (Sweden)

    Ricardo Koroiva

    Full Text Available We present a DNA barcoding study of Neotropical odonates from the Upper Plata basin, Brazil. A total of 38 species were collected in a transition region of "Cerrado" and Atlantic Forest, both regarded as biological hotspots, and 130 cytochrome c oxidase subunit I (COI barcodes were generated for the collected specimens. The distinct gap between intraspecific (0-2% and interspecific variation (15% and above in COI, and resulting separation of Barcode Index Numbers (BIN, allowed for successful identification of specimens in 94% of cases. The 6% fail rate was due to a shared BIN between two separate nominal species. DNA barcoding, based on COI, thus seems to be a reliable and efficient tool for identifying Neotropical odonate specimens down to the species level. These results underscore the utility of DNA barcoding to aid specimen identification in diverse biological hotspots, areas that require urgent action regarding taxonomic surveys and biodiversity conservation.

  1. DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation.

    Science.gov (United States)

    Koroiva, Ricardo; Pepinelli, Mateus; Rodrigues, Marciel Elio; Roque, Fabio de Oliveira; Lorenz-Lemke, Aline Pedroso; Kvist, Sebastian

    2017-01-01

    We present a DNA barcoding study of Neotropical odonates from the Upper Plata basin, Brazil. A total of 38 species were collected in a transition region of "Cerrado" and Atlantic Forest, both regarded as biological hotspots, and 130 cytochrome c oxidase subunit I (COI) barcodes were generated for the collected specimens. The distinct gap between intraspecific (0-2%) and interspecific variation (15% and above) in COI, and resulting separation of Barcode Index Numbers (BIN), allowed for successful identification of specimens in 94% of cases. The 6% fail rate was due to a shared BIN between two separate nominal species. DNA barcoding, based on COI, thus seems to be a reliable and efficient tool for identifying Neotropical odonate specimens down to the species level. These results underscore the utility of DNA barcoding to aid specimen identification in diverse biological hotspots, areas that require urgent action regarding taxonomic surveys and biodiversity conservation.

  2. A Ranking System for Reference Libraries of DNA Barcodes: Application to Marine Fish Species from Portugal

    Science.gov (United States)

    Costa, Filipe O.; Landi, Monica; Martins, Rogelia; Costa, Maria H.; Costa, Maria E.; Carneiro, Miguel; Alves, Maria J.; Steinke, Dirk; Carvalho, Gary R.

    2012-01-01

    Background The increasing availability of reference libraries of DNA barcodes (RLDB) offers the opportunity to the screen the level of consistency in DNA barcode data among libraries, in order to detect possible disagreements generated from taxonomic uncertainty or operational shortcomings. We propose a ranking system to attribute a confidence level to species identifications associated with DNA barcode records from a RLDB. Here we apply the proposed ranking system to a newly generated RLDB for marine fish of Portugal. Methodology/Principal Findings Specimens (n = 659) representing 102 marine fish species were collected along the continental shelf of Portugal, morphologically identified and archived in a museum collection. Samples were sequenced at the barcode region of the cytochrome oxidase subunit I gene (COI-5P). Resultant DNA barcodes had average intra-specific and inter-specific Kimura-2-parameter distances (0.32% and 8.84%, respectively) within the range usually observed for marine fishes. All specimens were ranked in five different levels (A–E), according to the reliability of the match between their species identification and the respective diagnostic DNA barcodes. Grades A to E were attributed upon submission of individual specimen sequences to BOLD-IDS and inspection of the clustering pattern in the NJ tree generated. Overall, our study resulted in 73.5% of unambiguous species IDs (grade A), 7.8% taxonomically congruent barcode clusters within our dataset, but awaiting external confirmation (grade B), and 18.7% of species identifications with lower levels of reliability (grades C/E). Conclusion/Significance We highlight the importance of implementing a system to rank barcode records in RLDB, in order to flag taxa in need of taxonomic revision, or reduce ambiguities of discordant data. With increasing DNA barcode records publicly available, this cross-validation system would provide a metric of relative accuracy of barcodes, while enabling the

  3. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  4. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    Science.gov (United States)

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being fish larval ecology. © 2014 John Wiley & Sons Ltd.

  5. Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding.

    Science.gov (United States)

    Little, Damon P

    2014-09-01

    Ginkgo biloba L. (known as ginkgo or maidenhair tree) is a phylogenetically isolated, charismatic, gymnosperm tree. Herbal dietary supplements, prepared from G. biloba leaves, are consumed to boost cognitive capacity via improved blood perfusion and mitochondrial function. A novel DNA mini-barcode assay was designed and validated for the authentication of G. biloba in herbal dietary supplements (n = 22; sensitivity = 1.00, 95% CI = 0.59-1.00; specificity = 1.00, 95% CI = 0.64-1.00). This assay was further used to estimate the frequency of mislabeled ginkgo herbal dietary supplements on the market in the United States of America: DNA amenable to PCR could not be extracted from three (7.5%) of the 40 supplements sampled, 31 of 37 (83.8%) assayable supplements contained identifiable G. biloba DNA, and six supplements (16.2%) contained fillers without any detectable G. biloba DNA. It is hoped that this assay will be used by supplement manufacturers to ensure that their supplements contain G. biloba.

  6. DNA barcoding of feral tilapias in Philippine lakes.

    Science.gov (United States)

    Maranan, Justin Bryan D; Basiao, Zubaida U; Quilang, Jonas P

    2016-11-01

    Tilapia (Oreochromis mossambicus) was first introduced to the Philippines in 1950 for aquaculture. Since then, other species of tilapia have been introduced to the country and some of them (mainly Oreochromis niloticus) have become established in lakes and other water bodies. In this study, DNA barcoding using the mitochondrial cytochrome c oxidase subunit I (COI) gene was done to assess the reliability of morphological identification and the degree of introgression among feral tilapias (Oreochromis spp.) in seven major Philippine lakes, namely Laguna de Bay, Lake Lanao, Taal Lake, Lake Mainit, Lake Naujan, Lake Bato, and Lake Buhi. Specimens were also collected from a private hatchery in Sual, Pangasinan to serve as reference. Morphological traits, Nucleotide BLAST (BLASTn), and Translated BLAST (BLASTx) analyses were used to classify the specimens. A Neighbor-Joining tree was constructed using the Kimura 2-Parameter method, incorporating 66 COI sequences generated from the study and 20 additional reference sequences obtained from GenBank. Three Oreochromis clusters were obtained and were classified as the O. niloticus group, O. mossambicus group, and O. aureus group, with bootstrap support values of 99%, 74%, and 99%, respectively. The mean K2P genetic distances within each group were 0.008%, 0.959%, and 0.086%, respectively. The clustering of COI sequences generated from this study corresponded with the results of the BLASTn analysis. Oreochromis hybrids were also found in all the lakes. The study highlights the usefulness of DNA barcoding for molecular identification and detection of introgressed individuals, with potential applications in management of feral stocks.

  7. Towards writing the encyclopedia of life: an introduction to DNA barcoding.

    Science.gov (United States)

    Savolainen, Vincent; Cowan, Robyn S; Vogler, Alfried P; Roderick, George K; Lane, Richard

    2005-10-29

    An international consortium of major natural history museums, herbaria and other organizations has launched an ambitious project, the 'Barcode of Life Initiative', to promote a process enabling the rapid and inexpensive identification of the estimated 10 million species on Earth. DNA barcoding is a diagnostic technique in which short DNA sequence(s) can be used for species identification. The first international scientific conference on Barcoding of Life was held at the Natural History Museum in London in February 2005, and here we review the scientific challenges discussed during this conference and in previous publications. Although still controversial, the scientific benefits of DNA barcoding include: (i) enabling species identification, including any life stage or fragment, (ii) facilitating species discoveries based on cluster analyses of gene sequences (e.g. cox1 = CO1, in animals), (iii) promoting development of handheld DNA sequencing technology that can be applied in the field for biodiversity inventories and (iv) providing insight into the diversity of life.

  8. Potential use of DNA barcodes in regulatory science: applications of the Regulatory Fish Encyclopedia.

    Science.gov (United States)

    Yancy, Haile F; Zemlak, Tyler S; Mason, Jacquline A; Washington, Jewell D; Tenge, Bradley J; Nguyen, Ngoc-Lan T; Barnett, James D; Savary, Warren E; Hill, Walter E; Moore, Michelle M; Fry, Frederick S; Randolph, Spring C; Rogers, Patricia L; Hebert, Paul D N

    2008-01-01

    The use of a DNA-based identification system (DNA barcoding) founded on the mitochondrial gene cytochrome c oxidase subunit I (COI) was investigated for updating the U.S. Food and Drug Administration Regulatory Fish Encyclopedia (RFE; http://www.cfsan.fda.gov/-frf/rfe0.html). The RFE is a compilation of data used to identify fish species. It was compiled to help regulators identify species substitution that could result in potential adverse health consequences or could be a source of economic fraud. For each of many aquatic species commonly sold in the United States, the RFE includes high-resolution photographs of whole fish and their marketed product forms and species-specific biochemical patterns for authenticated fish species. These patterns currently include data from isoelectric focusing studies. In this article, we describe the generation of DNA barcodes for 172 individual authenticated fish representing 72 species from 27 families contained in the RFE. These barcode sequences can be used as an additional identification resource. In a blind study, 60 unknown fish muscle samples were barcoded, and the results were compared with the RFE barcode reference library. All 60 samples were correctly identified to species based on the barcoding data. Our study indicates that DNA barcoding can be a powerful tool for species identification and has broad potential applications.

  9. Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia).

    Science.gov (United States)

    Marescaux, Jonathan; Van Doninck, Karine

    2013-12-30

    The zebra mussel (Dreissena polymorpha) and the quagga mussel (Dreissena rostriformis bugensis) are considered as the most competitive invaders in freshwaters of Europe and North America. Although shell characteristics exist to differentiate both species, phenotypic plasticity in the genus Dreissena does not always allow a clear identification. Therefore, the need to find an accurate identification method is essential. DNA barcoding has been proven to be an adequate procedure to discriminate species. The cytochrome c oxidase subunit I mitochondrial gene (COI) is considered as the standard barcode for animals. We tested the use of this gene as an efficient DNA barcode and found that it allow rapid and accurate identification of adult Dreissena individuals.

  10. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  11. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Science.gov (United States)

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  12. Replacing Sanger with Next Generation Sequencing to improve coverage and quality of reference DNA barcodes for plants.

    Science.gov (United States)

    Wilkinson, Mike J; Szabo, Claudia; Ford, Caroline S; Yarom, Yuval; Croxford, Adam E; Camp, Amanda; Gooding, Paul

    2017-04-12

    We estimate the global BOLD Systems database holds core DNA barcodes (rbcL + matK) for about 15% of land plant species and that comprehensive species coverage is still many decades away. Interim performance of the resource is compromised by variable sequence overlap and modest information content within each barcode. Our model predicts that the proportion of species-unique barcodes reduces as the database grows and that 'false' species-unique barcodes remain >5% until the database is almost complete. We conclude the current rbcL + matK barcode is unfit for purpose. Genome skimming and supplementary barcodes could improve diagnostic power but would slow new barcode acquisition. We therefore present two novel Next Generation Sequencing protocols (with freeware) capable of accurate, massively parallel de novo assembly of high quality DNA barcodes of >1400 bp. We explore how these capabilities could enhance species diagnosis in the coming decades.

  13. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections.

    Science.gov (United States)

    Chambers, E Anne; Hebert, Paul D N

    2016-01-01

    High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale.

  14. DNA barcode data accurately assign higher spider taxa

    Directory of Open Access Journals (Sweden)

    Jonathan A. Coddington

    2016-07-01

    Full Text Available The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%. Accurate assignment of higher taxa (PIdent above which errors totaled less than 5% occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However

  15. Application of DNA barcodes in wildlife conservation in Tropical East Asia.

    Science.gov (United States)

    Wilson, John-James; Sing, Kong-Wah; Lee, Ping-Shin; Wee, Alison K S

    2016-10-01

    Over the past 50 years, Tropical East Asia has lost more biodiversity than any tropical region. Tropical East Asia is a megadiverse region with an acute taxonomic impediment. DNA barcodes are short standardized DNA sequences used for taxonomic purposes and have the potential to lessen the challenges of biodiversity inventory and assessments in regions where they are most needed. We reviewed DNA barcoding efforts in Tropical East Asia relative to other tropical regions. We suggest DNA barcodes (or metabarcodes from next-generation sequencers) may be especially useful for characterizing and connecting species-level biodiversity units in inventories encompassing taxa lacking formal description (particularly arthropods) and in large-scale, minimal-impact approaches to vertebrate monitoring and population assessments through secondary sources of DNA (invertebrate derived DNA and environmental DNA). We suggest interest and capacity for DNA barcoding are slowly growing in Tropical East Asia, particularly among the younger generation of researchers who can connect with the barcoding analogy and understand the need for new approaches to the conservation challenges being faced. © 2016 Society for Conservation Biology.

  16. DNA barcoding of a new record of epi-endophytic green algae ...

    Indian Academy of Sciences (India)

    2014-07-13

    Jul 13, 2014 ... ribosomal DNA Internal Transcribed Spacer 2 (ITS2) (Bown et al. 2003; Rinkel et al. 2012) and plastid DNA marker tufA. (Nielsen et al. 2013; Rinkel et al. 2012). While ITS1 is one of the widely used DNA barcode in plants and algae, its phylogenetic utility have not yet been assessed in Ulvella. Although it is ...

  17. Applications of three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China

    Science.gov (United States)

    Zhao, Xiaobo; Pang, Shaojun; Shan, Tifeng; Liu, Feng

    2013-03-01

    This study is part of the endeavor to construct a comprehensive DNA barcoding database for common seaweeds in China. Identifications of red seaweeds, which have simple morphology and anatomy, are sometimes difficult solely depending on morphological characteristics. In recent years, DNA barcode technique has become a more and more effective tool to help solve some of the taxonomic difficulties. Some DNA markers such as COI (cytochrome oxidase subunit I) are proposed as standardized DNA barcodes for all seaweed species. In this study, COI, UPA (universal plastid amplicon, domain V of 23S rRNA), and ITS (nuclear internal transcribed spacer) were employed to analyze common species of intertidal red seaweeds in Qingdao (119.3°-121°E, 35.35°-37.09°N). The applicability of using one or a few combined barcodes to identify red seaweed species was tested. The results indicated that COI is a sensitive marker at species level. However, not all the tested species gave PCR amplification products due to lack of the universal primers. The second barcode UPA had effective universal primers but needed to be tested for the effectiveness of resolving closely related species. More than one ITS sequence types were found in some species in this investigation, which might lead to confusion in further analysis. Therefore ITS sequence is not recommended as a universal barcode for seaweeds identification.

  18. DNA barcoding of twelve shrimp species (Crustacea: Decapoda from Turkish seas reveals cryptic diversity

    Directory of Open Access Journals (Sweden)

    R. BILGIN

    2014-05-01

    Full Text Available DNA barcoding is a useful tool for the identification and potential discovery of new species. In this study, DNA barcoding was employed by sequencing the mitochondrial cytochrome oxidase subunit I gene (COI to characterize the genetic diversity of 12 shrimp species inhabiting Turkish coastal waters and, when possible, to compare with the genetic data available from different parts of the Mediterranean and eastern Atlantic. This study also comprises the first DNA barcoding study performed in the Turkish Seas using COI. A total of 40 shrimp specimens were collected and analyzed from 9 sites. Generally, the barcoding gap criterion was successful at identifying species; hence COI appeared to be a good marker of choice for DNA barcoding in this group. Out of the 12 species investigated, five were barcoded for the first time. In six species two intraspecific clades were retrieved after the analyses. The results suggest the presence of cryptic diversity in a genetically understudied marine area, Turkish coastal waters, and further investigation in these species using population genetics, taxonomic approaches and nuclear markers is likely to result in designation of new species.

  19. Improving the Conservation of Mediterranean Chondrichthyans: The ELASMOMED DNA Barcode Reference Library.

    Directory of Open Access Journals (Sweden)

    Alessia Cariani

    Full Text Available Cartilaginous fish are particularly vulnerable to anthropogenic stressors and environmental change because of their K-selected reproductive strategy. Accurate data from scientific surveys and landings are essential to assess conservation status and to develop robust protection and management plans. Currently available data are often incomplete or incorrect as a result of inaccurate species identifications, due to a high level of morphological stasis, especially among closely related taxa. Moreover, several diagnostic characters clearly visible in adult specimens are less evident in juveniles. Here we present results generated by the ELASMOMED Consortium, a regional network aiming to sample and DNA-barcode the Mediterranean Chondrichthyans with the ultimate goal to provide a comprehensive DNA barcode reference library. This library will support and improve the molecular taxonomy of this group and the effectiveness of management and conservation measures. We successfully barcoded 882 individuals belonging to 42 species (17 sharks, 24 batoids and one chimaera, including four endemic and several threatened ones. Morphological misidentifications were found across most orders, further confirming the need for a comprehensive DNA barcoding library as a valuable tool for the reliable identification of specimens in support of taxonomist who are reviewing current identification keys. Despite low intraspecific variation among their barcode sequences and reduced samples size, five species showed preliminary evidence of phylogeographic structure. Overall, the ELASMOMED initiative further emphasizes the key role accurate DNA barcoding libraries play in establishing reliable diagnostic species specific features in otherwise taxonomically problematic groups for biodiversity management and conservation actions.

  20. BOKP: A DNA Barcode Reference Library for Monitoring Herbal Drugs in the Korean Pharmacopeia

    Directory of Open Access Journals (Sweden)

    Jinxin Liu

    2017-12-01

    Full Text Available Herbal drug authentication is an important task in traditional medicine; however, it is challenged by the limitations of traditional authentication methods and the lack of trained experts. DNA barcoding is conspicuous in almost all areas of the biological sciences and has already been added to the British pharmacopeia and Chinese pharmacopeia for routine herbal drug authentication. However, DNA barcoding for the Korean pharmacopeia still requires significant improvements. Here, we present a DNA barcode reference library for herbal drugs in the Korean pharmacopeia and developed a species identification engine named KP-IDE to facilitate the adoption of this DNA reference library for the herbal drug authentication. Using taxonomy records, specimen records, sequence records, and reference records, KP-IDE can identify an unknown specimen. Currently, there are 6,777 taxonomy records, 1,054 specimen records, 30,744 sequence records (ITS2 and psbA-trnH and 285 reference records. Moreover, 27 herbal drug materials were collected from the Seoul Yangnyeongsi herbal medicine market to give an example for real herbal drugs authentications. Our study demonstrates the prospects of the DNA barcode reference library for the Korean pharmacopeia and provides future directions for the use of DNA barcoding for authenticating herbal drugs listed in other modern pharmacopeias.

  1. A DNA barcode library for North American Ephemeroptera: progress and prospects.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Webb

    Full Text Available DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3-24.7% (mean: 12.5%, while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species.

  2. A DNA barcode library for North American Ephemeroptera: progress and prospects.

    Science.gov (United States)

    Webb, Jeffrey M; Jacobus, Luke M; Funk, David H; Zhou, Xin; Kondratieff, Boris; Geraci, Christy J; DeWalt, R Edward; Baird, Donald J; Richard, Barton; Phillips, Iain; Hebert, Paul D N

    2012-01-01

    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3-24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species.

  3. Assessing the potential of candidate DNA barcodes for identifying non-flowering seed plants.

    Science.gov (United States)

    Pang, X; Luo, H; Sun, C

    2012-09-01

    In plants, matK and rbcL have been selected as core barcodes by the Consortium for the Barcode of Life (CBOL) Plant Working Group (PWG), and ITS/ITS2 and psbA-trnH were suggested as supplementary loci. Yet, research on DNA barcoding of non-flowering seed plants has been less extensive, and the evaluation of DNA barcodes in this division has been limited thus far. Here, we evaluated seven markers (psbA-trnH, matK, rbcL, rpoB, rpoC1, ITS and ITS2) from non-flowering seed plants. The usefulness of each region was assessed using four criteria: the success rate of PCR amplification, the differential intra- and inter-specific divergences, the DNA barcoding gap and the ability to discriminate species. Among the seven loci tested, ITS2 produced the best results in the barcoding of non-flowering seed plants. In addition, we compared the abilities of the five most-recommended markers (psbA-trnH, matK, rbcL, ITS and ITS2) to identify additional species using a large database of gymnosperms from GenBank. ITS2 remained effective for species identification in a wide range of non-flowering seed plants: for the 1531 samples from 608 species of 80 diverse genera, ITS2 correctly authenticated 66% of them at the species level. In conclusion, the ITS2 region can serve as a useful barcode to discriminate non-flowering seed plants, and this study will contribute valuable information for the barcoding of plant species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Establishing a community-wide DNA barcode library as a new tool for arctic research

    DEFF Research Database (Denmark)

    Wirta, Helena; Várkonyi, Gergely; Rasmussen, Claus

    2016-01-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied a...

  5. DNA barcoding detected improper labelling and supersession of crab food served by restaurants in India.

    Science.gov (United States)

    Vartak, Vivek Rohidas; Narasimmalu, Rajendran; Annam, Pavan Kumar; Singh, Dhirendra P; Lakra, Wazir S

    2015-01-01

    Detection of improper labelling of raw and processed seafood is of global importance for reducing commercial fraud and enhancing food safety. Crabs are crustaceans with intricate morphological as well as genetic divergence among species and are popular as seafood in restaurants. Owing to the high number of crab species available, it can be difficult to identify those included in particular food dishes, thus increasing the chance of supersession. DNA barcoding is an advanced technology for detecting improper food labelling and has been used successfully to authenticate seafood. This study identified 11 edible crab species from India by classical taxonomy and developed molecular barcodes with the cytochrome c oxidase I (COI) gene. These barcodes were used as reference barcodes for detecting any improper labelling of 50 restaurant crab samples. Neighbour-joining tree analysis with COI barcodes showed distinct clusters of restaurant samples with respective reference species. The study demonstrated 100% improper labelling of restaurant samples to cover up acts of inferior crab supersession. DNA barcoding successfully identified 11 edible crabs in accordance with classical taxonomy and discerned improper crab food labelling in restaurants of India. © 2014 Society of Chemical Industry.

  6. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes.

    Science.gov (United States)

    Raupach, Michael J; Astrin, Jonas J; Hannig, Karsten; Peters, Marcell K; Stoeckle, Mark Y; Wägele, Johann-Wolfgang

    2010-09-13

    The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae. Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  7. Extent and divergence of heteroplasmy of the DNA barcoding region in Anapodisma miramae (Orthoptera: Acrididae).

    Science.gov (United States)

    Kang, Ah Rang; Kim, Min Jee; Park, In Ah; Kim, Kee Young; Kim, Iksoo

    2016-09-01

    A partial sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene is widely used as a molecular marker for species identification in animals, also termed a DNA barcode. However, the presence of more than one sequence type in a single individual, also known as heteroplasmy, is one of the shortcomings of barcode identification. In this study, we examined the extent and divergence of COI heteroplasmy, including nuclear-encoded mitochondrial pseudogenes (NUMTs), at the genomic-DNA level from 13 insect species including orthopteran Anapodisma miramae, and a long fragment of mitochondrial DNA and cDNA from A. miramae as templates. When multiple numbers of clones originated from genomic DNA were sequenced, heteroplasmy was prevalent in all species and NUMTs were observed in five species. Long fragment DNA (∼13.5 kb) also is a source of heteroplasmic amplification, but the divergent haplotypes and NUMTs obtained from genomic DNA were not detected in A. miramae. On the other hand, cDNA was relatively heteroplasmy-free. Consistently, one dominant haplotype was always obtained from the genomic DNA-origin clones in all species and also from the long fragment- and cDNA-origin clones in the two tested individuals of A. miramae. Furthermore, the dominant haplotype was identical in sequence, regardless of the DNA source in A. miramae. Thus, one possible solution to avoid the barcoding problem in relationship to heteroplasmy could be the acquisition of multiple numbers of barcoding sequences to determine a dominant haplotype that can be assigned as barcoding sequence for a given species.

  8. The role of DNA barcodes in understanding and conservation of mammal diversity in southeast Asia.

    Directory of Open Access Journals (Sweden)

    Charles M Francis

    Full Text Available BACKGROUND: Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning. METHODOLOGY AND PRINCIPAL FINDINGS: DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized. CONCLUSIONS: DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning.

  9. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    Science.gov (United States)

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  10. Identification of processed Chinese medicinal materials using DNA mini-barcoding.

    Science.gov (United States)

    Song, Ming; Dong, Gang-Qiang; Zhang, Ya-Qin; Liu, Xia; Sun, Wei

    2017-07-01

    Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psbA-trnH, rbcL, matK, trnL (UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL (UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%-20% of the processed samples, while the amplification rates of the trnL (UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL (UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Towards monitoring the sandflies (Diptera: Psychodidae) of Thailand: DNA barcoding the sandflies of Wihan Cave, Uttaradit.

    Science.gov (United States)

    Polseela, Raxsina; Jaturas, Narong; Thanwisai, Aunchalee; Sing, Kong-Wah; Wilson, John-James

    2016-09-01

    Sandflies vary in their distributions and role in pathogen transmission. Attempts to record distributions of sandflies in Thailand have faced difficulties due to their high abundance and diversity. We aim to provide an insight into the diversity of sandflies in Thailand by (i) conducting a literature review, and (ii) DNA barcoding sandflies collected from Wihan Cave where eight morphologically characterized species were recorded. DNA barcodes generated for 193 sandflies fell into 13 distinct species clusters under four genera (Chinius, Idiophlebotomus, Phlebotomus and Sergentomyia). Five of these species could be assigned Linnaean species names unambiguously and two others corresponded to characterized morphospecies. Two species represented a complex under the name Sergentomyia barraudi while the remaining four had not been recognized before in any form. The resulting species checklist and DNA barcode library contribute to a growing set of records for sandflies which is useful for monitoring and vector control.

  12. DNA barcoding of recently diverged species: relative performance of matching methods.

    Directory of Open Access Journals (Sweden)

    Robin van Velzen

    Full Text Available Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a 'barcode gap' and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based, nearest neighbor and BLAST (similarity-based, and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75% than for older species (∼97% (P<0.00001. Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001. The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2% as well as empirical data (93.1%, indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification.

  13. Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case.

    Directory of Open Access Journals (Sweden)

    Kerstin Hoef-Emden

    Full Text Available A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene. In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC, have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.

  14. BLOG 2.0: a software system for character-based species classification with DNA Barcode sequences. What it does, how to use it

    NARCIS (Netherlands)

    Weitschek, E.; Velzen, van R.; Felici, G.; Bertolazzi, P.

    2013-01-01

    BLOG (Barcoding with LOGic) is a diagnostic and character-based DNA Barcode analysis method. Its aim is to classify specimens to species based on DNA Barcode sequences and on a supervised machine learning approach, using classification rules that compactly characterize species in terms of DNA

  15. DNA barcoding as a screening tool for cryptic diversity

    DEFF Research Database (Denmark)

    Huemer, Peter; Karsholt, Ole; Mutanen, Marko

    2014-01-01

    oxidase 1) gene and/or distinct barcode gaps to the nearest neighbor support species status for all examined nominal taxa. However, in 8 taxa we observed deep splits with a maximum intraspecific barcode divergence beyond a threshold of 3%, thus indicating possible cryptic diversity. The taxonomy...... of these taxa has to be re-assessed in the future. We investigated one such deep split in Caryocolum amaurella (Hering, 1924) and found it in congruence with yet unrecognized diagnostic morphological characters and specific host-plants. The integrative species delineation leads to the description of Caryocolum...

  16. Discovery of new populations and DNA barcoding of the Arapahoe snowfly Arsapnia arapahoe (Plecoptera: Capniidae).

    Science.gov (United States)

    Heinold, Brian D; Gill, Brian A; Belcher, Thomas P; Verdone, Chris J

    2014-09-22

    The Arapahoe Snowfly, Arsapnia arapahoe (Nelson & Kondratieff)was recently discovered in six different first-order streams outside of the Cache la Poudre River Basin where it was previously considered endemic. Specimens of A. arapahoe were always collected in much lower relative abundance, 1.09% (±2.3SD), than other sympatric adult capniids. The first mitochondrial deoxyribonucleic acid (DNA) barcodes for A. arapahoe and A. coyote (Nelson & Baumann) are presented and compared with those of A. decepta. DNA barcoding was not able to differentiate between A. arapahoe and A. decepta Banks but it was able to indicate that A. coyote is specifically distinct.

  17. A checklist of the bats of Peninsular Malaysia and progress towards a DNA barcode reference library.

    Science.gov (United States)

    Lim, Voon-Ching; Ramli, Rosli; Bhassu, Subha; Wilson, John-James

    2017-01-01

    Several published checklists of bat species have covered Peninsular Malaysia as part of a broader region and/or in combination with other mammal groups. Other researchers have produced comprehensive checklists for specific localities within the peninsula. To our knowledge, a comprehensive checklist of bats specifically for the entire geopolitical region of Peninsular Malaysia has never been published, yet knowing which species are present in Peninsular Malaysia and their distributions across the region are crucial in developing suitable conservation plans. Our literature search revealed that 110 bat species have been documented in Peninsular Malaysia; 105 species have precise locality records while five species lack recent and/or precise locality records. We retrieved 18 species from records dated before the year 2000 and seven species have only ever been recorded once. Our search of Barcode of Life Datasystems (BOLD) found that 86 (of the 110) species have public records of which 48 species have public DNA barcodes available from bats sampled in Peninsular Malaysia. Based on Neighbour-Joining tree analyses and the allocation of DNA barcodes to Barcode Index Number system (BINs) by BOLD, several DNA barcodes recorded under the same species name are likely to represent distinct taxa. We discuss these cases in detail and highlight the importance of further surveys to determine the occurences and resolve the taxonomy of particular bat species in Peninsular Malaysia, with implications for conservation priorities.

  18. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    Science.gov (United States)

    Dentinger, Bryn T. M.; Didukh, Maryna Y.; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms. PMID:21966418

  19. Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China.

    Science.gov (United States)

    Chen, Juan; Zhao, Jietang; Erickson, David L; Xia, Nianhe; Kress, W John

    2015-03-01

    The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear-cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH-psbA and trnL-F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH-psbA (100%), trnL-F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH-psbA and trnL-F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers. © 2014 John Wiley & Sons Ltd.

  20. Highlights of DNA Barcoding in identification of salient microorganisms like fungi.

    Science.gov (United States)

    Dulla, E L; Kathera, C; Gurijala, H K; Mallakuntla, T R; Srinivasan, P; Prasad, V; Mopati, R D; Jasti, P K

    2016-12-01

    Fungi, the second largest kingdom of eukaryotic life, are diverse and widespread. Fungi play a distinctive role in the production of different products on industrial scale, like fungal enzymes, antibiotics, fermented foods, etc., to give storage stability and improved health to meet major global challenges. To utilize algae perfectly for human needs, and to pave the way for getting a healthy relationship with fungi, it is important to identify them in a quick and robust manner with molecular-based identification system. So, there is a technique that aims to provide a well-organized method for species level identifications and to contribute powerfully to taxonomic and biodiversity research is DNA Barcoding. DNA Barcoding is generally achieved by the retrieval of a short DNA sequence - the 'barcode' - from a standard part of the genome and that barcode is then compared with a library of reference barcode sequences derived from individuals of known identity for identification. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Developing an Apicomplexan DNA Barcoding System to Detect Blood Parasites of Small Coral Reef Fishes.

    Science.gov (United States)

    Renoux, Lance P; Dolan, Maureen C; Cook, Courtney A; Smit, Nico J; Sikkel, Paul C

    2017-08-01

    Apicomplexan parasites are obligate parasites of many species of vertebrates. To date, there is very limited understanding of these parasites in the most-diverse group of vertebrates, actinopterygian fishes. While DNA barcoding targeting the eukaryotic 18S small subunit rRNA gene sequence has been useful in identifying apicomplexans in tetrapods, identification of apicomplexans infecting fishes has relied solely on morphological identification by microscopy. In this study, a DNA barcoding method was developed that targets the 18S rRNA gene primers for identifying apicomplexans parasitizing certain actinopterygian fishes. A lead primer set was selected showing no cross-reactivity to the overwhelming abundant host DNA and successfully confirmed 37 of the 41 (90.2%) microscopically verified parasitized fish blood samples analyzed in this study. Furthermore, this DNA barcoding method identified 4 additional samples that screened negative for parasitemia, suggesting this molecular method may provide improved sensitivity over morphological characterization by microscopy. In addition, this PCR screening method for fish apicomplexans, using Whatman FTA preserved DNA, was tested in efforts leading to a more simplified field collection, transport, and sample storage method as well as a streamlining sample processing important for DNA barcoding of large sample sets.

  2. DNA barcoding as a complementary tool for conservation and valorisation of forest resources.

    Science.gov (United States)

    Laiou, Angeliki; Mandolini, Luca Aconiti; Piredda, Roberta; Bellarosa, Rosanna; Simeone, Marco Cosimo

    2013-12-30

    Since the pre-historic era, humans have been using forests as a food, drugs and handcraft reservoir. Today, the use of botanical raw material to produce pharmaceuticals, herbal remedies, teas, spirits, cosmetics, sweets, dietary supplements, special industrial compounds and crude materials constitute an important global resource in terms of healthcare and economy. In recent years, DNA barcoding has been suggested as a useful molecular technique to complement traditional taxonomic expertise for fast species identification and biodiversity inventories. In this study, in situ application of DNA barcodes was tested on a selected group of forest tree species with the aim of contributing to the identification, conservation and trade control of these valuable plant resources. The "core barcode" for land plants (rbcL, matK, and trnH-psbA) was tested on 68 tree specimens (24 taxa). Universality of the method, ease of data retrieval and correct species assignment using sequence character states, presence of DNA barcoding gaps and GenBank discrimination assessment were evaluated. The markers showed different prospects of reliable applicability. RbcL and trnH-psbA displayed 100% amplification and sequencing success, while matK did not amplify in some plant groups. The majority of species had a single haplotype. The trnH-psbA region showed the highest genetic variability, but in most cases the high intraspecific sequence divergence revealed the absence of a clear DNA barcoding gap. We also faced an important limitation because the taxonomic coverage of the public reference database is incomplete. Overall, species identification success was 66.7%. This work illustrates current limitations in the applicability of DNA barcoding to taxonomic forest surveys. These difficulties urge for an improvement of technical protocols and an increase of the number of sequences and taxa in public databases.

  3. A molecular epidemiological investigation of Ascaris on Unguja, Zanzibar using isoenyzme analysis, DNA barcoding and microsatellite DNA profiling.

    Science.gov (United States)

    Betson, Martha; Halstead, Fenella D; Nejsum, Peter; Imison, Emma; Khamis, I Simba; Sousa-Figueiredo, Jose C; Rollinson, David; Stothard, J Russell

    2011-07-01

    Ascariasis is of public health importance on the islands of Zanzibar (Unguja and Pemba). To shed light on the molecular epidemiology of this parasite, 68 Ascaris worms, obtained from 14 individuals in four Ungujan villages, were examined by isoenzyme analysis (ISA), DNA barcoding and microsatellite DNA profiling. ISA revealed genetic variation, which was confirmed by DNA barcoding. Nineteen worms recovered from individuals in Uganda were included for comparison. Sixteen unique DNA barcodes were identified, 15 on Unguja and three in Uganda with two shared between. These two barcodes were found in all four Ungujan villages. Worms from Tumbatu-Jongowe, an isolated village on an islet off Unguja, seemed particularly diverse. Within our barcodes, three exact matches were found with Chinese Ascaris retrieved from pigs, which is perhaps surprising given the present rarity of these animals on Unguja. Microsatellite profiling and population genetic analysis revealed further genetic diversity within our samples although population sub-structuring within Unguja was minor in comparison to that between Unguja and Uganda. As African Ascaris has not been subjected to detailed molecular scrutiny, this new diversity represents an important piece in its evolutionary jigsaw and such population markers are informative in monitoring worm dynamics during ongoing control. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. All rights reserved.

  4. Benefits and Limitations of DNA Barcoding and Metabarcoding in Herbal Product Authentication

    Science.gov (United States)

    Raclariu, Ancuta Cristina; Heinrich, Michael; Ichim, Mihael Cristin

    2017-01-01

    Abstract Introduction Herbal medicines play an important role globally in the health care sector and in industrialised countries they are often considered as an alternative to mono‐substance medicines. Current quality and authentication assessment methods rely mainly on morphology and analytical phytochemistry‐based methods detailed in pharmacopoeias. Herbal products however are often highly processed with numerous ingredients, and even if these analytical methods are accurate for quality control of specific lead or marker compounds, they are of limited suitability for the authentication of biological ingredients. Objective To review the benefits and limitations of DNA barcoding and metabarcoding in complementing current herbal product authentication. Method Recent literature relating to DNA based authentication of medicinal plants, herbal medicines and products are summarised to provide a basic understanding of how DNA barcoding and metabarcoding can be applied to this field. Results Different methods of quality control and authentication have varying resolution and usefulness along the value chain of these products. DNA barcoding can be used for authenticating products based on single herbal ingredients and DNA metabarcoding for assessment of species diversity in processed products, and both methods should be used in combination with appropriate hyphenated chemical methods for quality control. Conclusions DNA barcoding and metabarcoding have potential in the context of quality control of both well and poorly regulated supply systems. Standardisation of protocols for DNA barcoding and DNA sequence‐based identification are necessary before DNA‐based biological methods can be implemented as routine analytical approaches and approved by the competent authorities for use in regulated procedures. © 2017 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd. PMID:28906059

  5. DNA barcodes and citizen science provoke a diversity reappraisal for the "ring" butterflies of Peninsular Malaysia (Ypthima: Satyrinae: Nymphalidae: Lepidoptera).

    Science.gov (United States)

    Jisming-See, Shi-Wei; Sing, Kong-Wah; Wilson, John-James

    2016-10-01

    The "rings" belonging to the genus Ypthima are amongst the most common butterflies in Peninsular Malaysia. However, the species can be difficult to tell apart, with keys relying on minor and often non-discrete ring characters found on the hindwing. Seven species have been reported from Peninsular Malaysia, but this is thought to be an underestimate of diversity. DNA barcodes of 165 individuals, and wing and genital morphology, were examined to reappraise species diversity of this genus in Peninsular Malaysia. DNA barcodes collected during citizen science projects-School Butterfly Project and Peninsular Malaysia Butterfly Count-recently conducted in Peninsular Malaysia were included. The new DNA barcodes formed six groups with different Barcode Index Numbers (BINs) representing four species reported in Peninsular Malaysia. When combined with public DNA barcodes from the Barcode Of Life Datasystems, several taxonomic issues arose. We consider the taxon Y. newboldi, formerly treated as a subspecies of Y. baldus, as a distinct species. DNA barcodes also supported an earlier suggestion that Y. nebulosa is a synonym under Y. horsfieldii humei. Two BINs of the genus Ypthima comprising DNA barcodes collected during citizen science projects did not correspond to any species previously reported in Peninsular Malaysia.

  6. Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia

    Directory of Open Access Journals (Sweden)

    Jonathan Marescaux

    2013-12-01

    Full Text Available The zebra mussel (Dreissena polymorpha and the quagga mussel (Dreissena rostriformis bugensis are considered as the most competitive invaders in freshwaters of Europe and North America. Although shell characteristics exist to differentiate both species, phenotypic plasticity in the genus Dreissena does not always allow a clear identification. Therefore, the need to find an accurate identification method is essential. DNA barcoding has been proven to be an adequate procedure to discriminate species. The cytochrome c oxidase subunit 1 mitochondrial gene (COI is considered as the standard barcode for animals. We tested the use of this gene as an efficient DNA barcode and found that it allow rapid and accurate identification of adult Dreissena individuals.

  7. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA.

    Science.gov (United States)

    Kane, Nolan; Sveinsson, Saemundur; Dempewolf, Hannes; Yang, Ji Yong; Zhang, Dapeng; Engels, Johannes M M; Cronk, Quentin

    2012-02-01

    To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.

  8. Identification of ungulates used in a traditional Chinese medicine with DNA barcoding technology.

    Science.gov (United States)

    Chen, Jing; Jiang, Zhigang; Li, Chunlin; Ping, Xiaoge; Cui, Shaopeng; Tang, Songhua; Chu, Hongjun; Liu, Binwan

    2015-05-01

    Horns of Saiga antelope (Saiga tatarica) have always been an ingredient of "Lingyangjiao", a traditional Chinese medicine (TCM). Persistent hunting for Saiga antelope has already threatened the survival of critical endangered populations in wild. To control the growing pressure, CITES and Chinese government have legislated for monitoring the trade of Saiga horns. However, similar ungulate horns are difficult to identify by their morphological characteristics, which has impeded the law enforcement. Besides Saiga antelope, other seven ungulate species which have similar horns are also sold and marked as "Lingyangjiao" in TCM markets to offset shortage of Saiga antelope horns. Such species are Gazella subgutturosa, Pantholops hodgsonii, Procapra picticaudata, Procapra gutturosa, Procapra przewalskii, Capra hircus, and Ovis aries. Our study aimed at implementing DNA barcoding technology to diagnose Saiga horns and the substitutes. We successfully extracted genomic DNA from horn samples. We recovered COI sequences of 644 bp with specific primers and 349 bp with nested PCR primers designed for degraded horn samples. The mean interspecific genetic distance of data set of the 644-bp full barcodes and the 349-bp mini-barcodes was 14.96% and 15.38%, respectively, and the mean intraspecific distance was 0.24% and 0.20%, respectively. Each species formed independent clades in neighbor-joining (NJ) phylogenetic tree of the two data sets with >99% supporting values, except P. gutturosa and P. przewalskii. The deep genetic distances gap and clear species clades in NJ tree of either full barcodes or mini-barcodes suggest that barcoding technology is an effective tool to diagnose Saiga horns and their substitutes. Barcoding diagnosis protocol developed here will simplify diagnosis of "Lingyangjiao" species and will facilitate conservation of endangered ungulates involved in TCM "Lingyangjiao" markets, especially the Saiga antelope.

  9. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

    Science.gov (United States)

    Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen

    2012-04-17

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

  10. DNA Barcoding and Species Boundary Delimitation of Selected Species of Chinese Acridoidea (Orthoptera: Caelifera)

    Science.gov (United States)

    Huang, Jianhua; Zhang, Aibing; Mao, Shaoli; Huang, Yuan

    2013-01-01

    We tested the performance of DNA barcoding in Acridoidea and attempted to solve species boundary delimitation problems in selected groups using COI barcodes. Three analysis methods were applied to reconstruct the phylogeny. K2P distances were used to assess the overlap range between intraspecific variation and interspecific divergence. “Best match (BM)”, “best close match (BCM)”, “all species barcodes (ASB)” and “back-propagation neural networks (BP-based method)” were utilized to test the success rate of species identification. Phylogenetic species concept and network analysis were employed to delimitate the species boundary in eight selected species groups. The results demonstrated that the COI barcode region performed better in phylogenetic reconstruction at genus and species levels than at higher-levels, but showed a little improvement in resolving the higher-level relationships when the third base data or both first and third base data were excluded. Most overlaps and incorrect identifications may be due to imperfect taxonomy, indicating the critical role of taxonomic revision in DNA barcoding study. Species boundary delimitation confirmed the presence of oversplitting in six species groups and suggested that each group should be treated as a single species. PMID:24376533

  11. Assessment of four molecular markers as potential DNA barcodes for red algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta).

    Science.gov (United States)

    Tan, Ji; Lim, Phaik-Eem; Phang, Siew-Moi; Hong, Dang Diem; Sunarpi, H; Hurtado, Anicia Q

    2012-01-01

    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.

  12. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    Science.gov (United States)

    2013-01-01

    Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify species, even with low interspecific divergence, gives us an idea of the distribution of inter-specific genetic divergence in these megadiverse fauna. The results also revealed hidden genetic

  13. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    Science.gov (United States)

    Pereira, Luiz H G; Hanner, Robert; Foresti, Fausto; Oliveira, Claudio

    2013-03-09

    The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (2%), pointing to at least 23 strong candidates for new species. Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify species, even with low interspecific divergence, gives us an idea of the distribution of inter-specific genetic divergence in these megadiverse fauna. The results also revealed hidden genetic divergences suggestive of

  14. Character-based, population-level DNA barcoding in Mexican species of Zamia L. (Zamiaceae: Cycadales).

    Science.gov (United States)

    Nicolalde-Morejón, Fernando; Vergara-Silva, Francisco; González-Astorga, Jorge; Stevenson, Dennis W

    2010-12-01

    With the recent proposal of matK and rbcL as core plant DNA barcoding regions by the Consortium for the Barcoding of Life Plant Working Group, the construction of reference libraries in the botanical DNA barcoding initiative has entered a new phase. However, in a recent DNA barcoding study in the three Mexican genera of the gymnosperm order Cycadales, we found that neither matK nor rbcL allow high levels of molecular identification of previously established species. Our data analysis in that study rested on the "Characteristic Attributes Organization System" (CAOS), a character-based algorithm for the definition of "DNA diagnostics." Here, we use CAOS to analyze a population-level molecular data set in Zamia, one of the three cycad genera occurring in Mexico, whose populations display contrasting biogeographic patterns. Our population-level study, which includes all species in the region formally known as Megamexico, is restricted to the genome region, which showed the best single-locus molecular identification performance in our previous study-namely, the noncoding intergenic chloroplast spacer psbK-I. Our comparison of single-individual vs. population-level psbK-I datasets in Zamia indicates that CAOS analyses are sensitive to slight alignment changes, which in turn derive from the different amounts of molecular variation present in each matrix type. We, therefore, suggest that character-based studies that involve population-level data should contemplate this type of comparison between data matrices, before a set of DNA diagnostics in a given DNA barcoding reference library is considered definitive.

  15. Identification of common horsetail (Equisetum arvense L.; Equisetaceae) using Thin Layer Chromatography versus DNA barcoding

    DEFF Research Database (Denmark)

    Saslis Lagoudakis, Haris; Bruun-Lund, Sam; Iwanycki, Natalie Eva

    2015-01-01

    : a Thin Layer Chromatography approach (TLC-test) included in the European Pharmacopoeia and a DNA barcoding approach, used in recent years to identify material in herbal products. We test the potential of these methods for distinguishing and identifying these species using material from herbarium...

  16. The Use of DNA Barcoding in Identification of Genetic Diversity of ...

    African Journals Online (AJOL)

    In this study, for the first time, the use of DNA barcoding was used in identification of the genetic diversity of fish in Ugwu-omu Nike River, Enugu State, Nigeria. The fish were collected and placed in an aquarium and later transported to the Biotechnology laboratory of Godfrey Okoye University. The fish collection was ...

  17. DNA Barcoding reveals sexual dimorphism in Isotrias penedana Trematerra, 2013 (Lepidoptera: Tortricidae, Chlidanotinae).

    Science.gov (United States)

    Corley, Martin Francis Vanner; Ferreira, Sónia

    2017-01-20

    Isotrias penedana Trematerra, 2013 was described from north Portugal based on males alone. Unidentified females were associated with the males using DNA barcoding, revealing sexual dimorphism in the species. Males and females differ in forewing shape, markings, and size, with females significantly smaller than males. The female is described and illustrated for the first time. We also document the species' occurrence in northern Spain.

  18. What do they eat? Using DNA barcoding to assess diet preferences of deer

    DEFF Research Database (Denmark)

    Fløjgaard, Camilla; Ejrnæs, Rasmus

    landscapes open. However, in order to use this tool properly, we need to know more about what the animals eat compared to what is available in different habitats and how access to supplementary fodder influences the grazing effect on the vegetation. Using DNA barcoding of feces, we are investigating the diet...

  19. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    Czech Academy of Sciences Publication Activity Database

    Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; Miller, A.N.; Wingfield, M. J.; Aime, M.C.; An, K.D.; Bai, F.Y.; Barreto, R.W.; Bergeron, M.J.; Blackwell, M.; Boekhout, T.; Bogale, M.; Boonyuen, N.; Burgaz, A.R.; Buyck, B.; Cai, L.; Cai, Q.; Cardinali, G.; Chaverri, P.; Coppins, B.J.; Crespo, A.; Cubas, P.; Cummings, C.; Damm, U.; de Beer, Z.W.; de Hoog, G.S.; Del-Prado, R.; Dentinger, B.; Dieguez-Uribeondo, J.; Divakar, P.K.; Douglas, B.; Duenas, M.; Duong, T.A.; Eberhardt, U.; Edwards, J.E.; Elshahed, M.S.; Fliegerová, Kateřina; Furtado, M.; Garcia, M.A.; Ge, Z.W.; Griffith, G.W.; Griffiths, K.; Groenewald, J.Z.; Groenewald, M.; Grube, M.; Gryzenhout, M.; Guo, L.D.; Hagen, F.; Hambleton, S.; Hamelin, R.C.; Hansen, K.; Harrold, P.; Heller, G.; Herrera, C.; Hirayama, K.; Hirooka, Y.; Ho, H.M.; Hoffmann, K.; Hofstetter, V.; Hognabba, F.; Hollingsworth, P.M.; Hong, S.B.; Hosaka, K.; Houbraken, J.; Hughes, K.; Huhtinen, S.; Hyde, K.D.; James, T.; Johnson, E.M.; Johnson, J.E.; Johnston, P.R.; Jones, E.B.; Kelly, L.J.; Kirk, P.M.; Knapp, D.G.; Koljalg, U.; Kovacs, G.M.; Kurtzman, C.P.; Landvik, S.; Leavitt, S.D.; Liggenstoffer, A.S.; Liimatainen, K.; Lombard, L.; Luangsa-Ard, J.J.; Lumbsch, H.T.; Maganti, H.; Maharachchikumbura, S.S.; Martin, M.P.; May, T.W.; McTaggart, A.R.; Methven, A.S.; Meyer, W.; Moncalvo, J.M.; Mongkolsamrit, S.; Nagy, L.G.; Nilsson, R.H.; Niskanen, T.; Nyilasi, I.; Okada, G.; Okane, I.; Olariaga, I.; Otte, J.; Papp, T.; Park, D.; Petkovits, T.; Pino-Bodas, R.; Quaedvlieg, W.; Raja, H.A.; Redecker, D.; Rintoul, T.; Ruibal, C.; Sarmiento-Ramirez, J.M.; Schmitt, I.; Schussler, A.; Shearer, C.; Sotome, K.; Stefani, F.O.; Stenroos, S.; Stielow, B.; Stockinger, H.; Suetrong, S.; Suh, S.O.; Sung, G.H.; Suzuki, M.; Tanaka, K.; Tedersoo, L.; Telleria, M.T.; Tretter, E.; Untereiner, W.A.; Urbina, H.; Vagvolgyi, C.; Vialle, A.; Vu, T.D.; Walther, G.; Wang, Q.M.; Wang, Y.; Weir, B.S.; Weiss, M.; White, M.M.; Xu, J.; Yahr, R.; Yang, Z.L.; Yurkov, A.; Zamora, J.C.; Zhang, N.; Zhuang, W.Y.; Schindel, D.

    Roč. 109, č. 16 ( 2012 ), s. 6241-6246 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50450515 Keywords : DNA barcoding * fungal biodiversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.737, year: 2012

  20. Review and future prospects for DNA barcoding methods in forensic palynology.

    Science.gov (United States)

    Bell, Karen L; Burgess, Kevin S; Okamoto, Kazufusa C; Aranda, Roman; Brosi, Berry J

    2016-03-01

    Pollen can be a critical forensic marker in cases where determining geographic origin is important, including investigative leads, missing persons cases, and intelligence applications. However, its use has previously been limited by the need for a high level of specialization by expert palynologists, slow speeds of identification, and relatively poor taxonomic resolution (typically to the plant family or genus level). By contrast, identification of pollen through DNA barcoding has the potential to overcome all three of these limitations, and it may seem surprising that the method has not been widely implemented. Despite what might seem a straightforward application of DNA barcoding to pollen, there are technical issues that have delayed progress. However, recent developments of standard methods for DNA barcoding of pollen, along with improvements in high-throughput sequencing technology, have overcome most of these technical issues. Based on these recent methodological developments in pollen DNA barcoding, we believe that now is the time to start applying these techniques in forensic palynology. In this article, we discuss the potential for these methods, and outline directions for future research to further improve on the technology and increase its applicability to a broader range of situations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. The Use of DNA Barcoding in Identification of Genetic Diversity of ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Fish species revealed similar and different polymorphism and genomic classification during the experiment. ..... Zoology. McGraw-Hill Publishing Co. 23. Savolainen, V., Cowan, R. S., Vogler, A. P. (2005). Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans. Ser. B. 360: 1850 – 1811.

  2. DNA barcoding as an aid for species identification in austral black flies (Insecta: Diptera: Simuliidae).

    Science.gov (United States)

    Hernández-Triana, Luis M; Montes De Oca, Fernanda; Prosser, Sean W J; Hebert, Paul D N; Gregory, T Ryan; McMurtrie, Shelley

    2017-04-01

    In this paper, the utility of a partial sequence of the COI gene, the DNA barcoding region, for the identification of species of black flies in the austral region was assessed. Twenty-eight morphospecies were analyzed: eight of the genus Austrosimulium (four species in the subgenus Austrosimulium s. str., three species in the subgenus Novaustrosimulium, and one species unassigned to subgenus), two of the genus Cnesia, eight of Gigantodax, three of Paracnephia, one of Paraustrosimulium, and six of Simulium (subgenera Morops, Nevermannia, and Pternaspatha). The neighbour-joining tree derived from the DNA barcode sequences grouped most specimens according to species or species groups recognized by morphotaxonomic studies. Intraspecific sequence divergences within morphologically distinct species ranged from 0% to 1.8%, while higher divergences (2%-4.2%) in certain species suggested the presence of cryptic diversity. The existence of well-defined groups within S. simile revealed the likely inclusion of cryptic diversity. DNA barcodes also showed that specimens identified as C. dissimilis, C. nr. pussilla, and C. ornata might be conspecific, suggesting possible synonymy. DNA barcoding combined with a sound morphotaxonomic framework would provide an effective approach for the identification of black flies in the region.

  3. Accelerating plant DNA barcode reference library construction using herbarium specimens: improved experimental techniques.

    Science.gov (United States)

    Xu, Chao; Dong, Wenpan; Shi, Shuo; Cheng, Tao; Li, Changhao; Liu, Yanlei; Wu, Ping; Wu, Hongkun; Gao, Peng; Zhou, Shiliang

    2015-11-01

    A well-covered reference library is crucial for successful identification of species by DNA barcoding. The biggest difficulty in building such a reference library is the lack of materials of organisms. Herbarium collections are potentially an enormous resource of materials. In this study, we demonstrate that it is likely to build such reference libraries using the reconstructed (self-primed PCR amplified) DNA from the herbarium specimens. We used 179 rosaceous specimens to test the effects of DNA reconstruction, 420 randomly sampled specimens to estimate the usable percentage and another 223 specimens of true cherries (Cerasus, Rosaceae) to test the coverage of usable specimens to the species. The barcode rbcLb (the central four-sevenths of rbcL gene) and matK was each amplified in two halves and sequenced on Roche GS 454 FLX+. DNA from the herbarium specimens was typically shorter than 300 bp. DNA reconstruction enabled amplification fragments of 400-500 bp without bringing or inducing any sequence errors. About one-third of specimens in the national herbarium of China (PE) were proven usable after DNA reconstruction. The specimens in PE cover all Chinese true cherry species and 91.5% of vascular species listed in Flora of China. It is very possible to build well-covered reference libraries for DNA barcoding of vascular species in China. As exemplified in this study, DNA reconstruction and DNA-labelled next-generation sequencing can accelerate the construction of local reference libraries. By putting the local reference libraries together, a global library for DNA barcoding becomes closer to reality. © 2015 John Wiley & Sons Ltd.

  4. Detection of Avian Influenza Virus by Fluorescent DNA Barcode-based Immunoassay with Sensitivity Comparable to PCR

    DEFF Research Database (Denmark)

    Cao, Cuong; Dhumpa, Raghuram; Bang, Dang Duong

    2010-01-01

    In this paper, a coupling of fluorophore-DNA barcode and bead-based immunoassay for detecting avian influenza virus (AIV) with PCR-like sensitivity is reported. The assay is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representative barcodes. The detection...

  5. DNA barcoding as a complementary tool for conservation and valorisation of forest resources

    Directory of Open Access Journals (Sweden)

    Angeliki Laiou

    2013-12-01

    Full Text Available Since the pre-historic era, humans have been using forests as a food, drugs and handcraft reservoir. Today, the use of botanical raw material to produce pharmaceuticals, herbal remedies, teas, spirits, cosmetics, sweets, dietary supplements, special industrial compounds and crude materials constitute an important global resource in terms of healthcare and economy. In recent years, DNA barcoding has been suggested as a useful molecular technique to complement traditional taxonomic expertise for fast species identification and biodiversity inventories. In this study, in situ application of DNA barcodes was tested on a selected group of forest tree species with the aim of contributing to the identification, conservation and trade control of these valuable plant resources.The “core barcode” for land plants (rbcL, matK, and trnH-psbA was tested on 68 tree specimens (24 taxa. Universality of the method, ease of data retrieval and correct species assignment using sequence character states, presence of DNA barcoding gaps and GenBank discrimination assessment were evaluated. The markers showed different prospects of reliable applicability. RbcL and trnH-psbA displayed 100% amplification and sequencing success, while matK did not amplify in some plant groups. The majority of species had a single haplotype. The trnH-psbA region showed the highest genetic variability, but in most cases the high intra-specific sequence divergence revealed the absence of a clear DNA barcoding gap. We also faced an important limitation because the taxonomic coverage of the public reference database is incomplete. Overall, species identification success was 66.7%.This work illustrates current limitations in the applicability of DNA barcoding to taxonomic forest surveys. These difficulties urge for an improvement of technical protocols and an increase of the number of sequences and taxa in public databases.

  6. Spider hosts (Arachnida, Araneae) and wasp parasitoids (Insecta, Hymenoptera, Ichneumonidae, Ephialtini) matched using DNA barcodes

    OpenAIRE

    Miller, Jeremy; Belgers, J. Dick; Beentjes, Kevin; Zwakhals, Kees; van Helsdingen, Peter

    2013-01-01

    Abstract The study of parasitoids and their hosts suffers from a lack of reliable taxonomic data. We use a combination of morphological characters and DNA sequences to produce taxonomic determinations that can be verified with reference to specimens in an accessible collection and DNA barcode sequences posted to the Barcode of Life database (BOLD). We demonstrate that DNA can be successfully extracted from consumed host spiders and the shed pupal case of a wasp using non-destructive methods. ...

  7. Machine Learned Replacement of N-Labels for Basecalled Sequences in DNA Barcoding.

    Science.gov (United States)

    Ma, Eddie Y T; Ratnasingham, Sujeevan; Kremer, Stefan C

    2018-01-01

    This study presents a machine learning method that increases the number of identified bases in Sanger Sequencing. The system post-processes a KB basecalled chromatogram. It selects a recoverable subset of N-labels in the KB-called chromatogram to replace with basecalls (A,C,G,T). An N-label correction is defined given an additional read of the same sequence, and a human finished sequence. Corrections are added to the dataset when an alignment determines the additional read and human agree on the identity of the N-label. KB must also rate the replacement with quality value of in the additional read. Corrections are only available during system training. Developing the system, nearly 850,000 N-labels are obtained from Barcode of Life Datasystems, the premier database of genetic markers called DNA Barcodes. Increasing the number of correct bases improves reference sequence reliability, increases sequence identification accuracy, and assures analysis correctness. Keeping with barcoding standards, our system maintains an error rate of percent. Our system only applies corrections when it estimates low rate of error. Tested on this data, our automation selects and recovers: 79 percent of N-labels from COI (animal barcode); 80 percent from matK and rbcL (plant barcodes); and 58 percent from non-protein-coding sequences (across eukaryotes).

  8. Diversity of Marine-Derived Fungal Cultures Exposed by DNA Barcodes: The Algorithm Matters.

    Directory of Open Access Journals (Sweden)

    Nikos Andreakis

    Full Text Available Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290 of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS. Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs by the automatic barcode gap finder (ABGD method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters.

  9. DNA Barcode Analysis of Thrips (Thysanoptera Diversity in Pakistan Reveals Cryptic Species Complexes.

    Directory of Open Access Journals (Sweden)

    Romana Iftikhar

    Full Text Available Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27% at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%. BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci, and one predatory thrips (Aeolothrips intermedius showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  10. DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs

    Science.gov (United States)

    Sun, Shao’e; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong; Yu, Ruihai; Dai, Lina; Sun, Yan; Chen, Jun; Liu, Jun; Ni, Lehai; Feng, Yanwei; Yu, Zhenzhen; Zou, Shanmei; Lin, Jiping

    2016-01-01

    This study represents the first comprehensive molecular assessment of northwestern Pacific molluscs. In total, 2801 DNA barcodes belonging to 569 species from China, Japan and Korea were analyzed. An overlap between intra- and interspecific genetic distances was present in 71 species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match (BM), Best Close Match (BCM) and All Species Barcode (ASB) criteria with three threshold values. BM approach returned 89.15% true identifications (95.27% when excluding singletons). The highest success rate of congruent identifications was obtained with BCM at 0.053 threshold. The analysis of our barcode library together with public data resulted in 582 Barcode Index Numbers (BINs), 72.2% of which was found to be concordantly with morphology-based identifications. The discrepancies were divided in two groups: sequences from different species clustered in a single BIN and conspecific sequences divided in one more BINs. In Neighbour-Joining phenogram, 2,320 (83.0%) queries fromed 355 (62.4%) species-specific barcode clusters allowing their successful identification. 33 species showed paraphyletic and haplotype sharing. 62 cases are represented by deeply diverged lineages. This study suggest an increased species diversity in this region, highlighting taxonomic revision and conservation strategy for the cryptic complexes. PMID:27640675

  11. Evaluating the efficacy of restoration plantings through DNA barcoding of frugivorous bird diets.

    Science.gov (United States)

    Galimberti, A; Spinelli, S; Bruno, A; Mezzasalma, V; De Mattia, F; Cortis, P; Labra, M

    2016-08-01

    Frugivores are critical components of restoration programs because they are seed dispersers. Thus, knowledge about bird-plant trophic relationships is essential in the evaluation of the efficacy of restoration processes. Traditionally, the diet of frugivores is characterized by microscopically identifying plant residues in droppings, which is time-consuming, requires botanical knowledge, and cannot be used for fragments lacking detectable morphological characteristics (e.g., fragmented seeds and skins). We examined whether DNA barcoding can be used as a universal tool to rapidly characterize the diet of a frugivorous bird, Eurasian blackcap (Sylvia atricapilla). We used the DNA barcoding results to assess restoration efforts and monitor the diversity of potentially dispersed plants in a protected area in northern Italy. We collected 642 Eurasian Blackcap droppings at the restored site during the autumn migration over 3 years. Intact seeds and fragmented plant material were analyzed at 2 plastidial barcode loci (rbcL and trnH-psbA), and the resulting plant identifications were validated by comparison with a reference molecular data set of local flora. At least 17 plant species, including 7 of the 11 newly transplanted taxa, were found. Our results demonstrate the potential for DNA barcoding to be used to monitor the effectiveness of restoration plantings and to obtain information about fruit consumption and dispersal of invasive or unexpected plant species. Such an approach provides valuable information that could be used to study local plant biodiversity and to survey its evolution over time. © 2016 Society for Conservation Biology.

  12. Assembling and auditing a comprehensive DNA barcode reference library for European marine fishes.

    Science.gov (United States)

    Oliveira, L M; Knebelsberger, T; Landi, M; Soares, P; Raupach, M J; Costa, F O

    2016-12-01

    A large-scale comprehensive reference library of DNA barcodes for European marine fishes was assembled, allowing the evaluation of taxonomic uncertainties and species genetic diversity that were otherwise hidden in geographically restricted studies. A total of 4118 DNA barcodes were assigned to 358 species generating 366 Barcode Index Numbers (BIN). Initial examination revealed as much as 141 BIN discordances (more than one species in each BIN). After implementing an auditing and five-grade (A-E) annotation protocol, the number of discordant species BINs was reduced to 44 (13% grade E), while concordant species BINs amounted to 271 (78% grades A and B) and 14 other had insufficient data (grade D). Fifteen species displayed comparatively high intraspecific divergences ranging from 2·6 to 18·5% (grade C), which is biologically paramount information to be considered in fish species monitoring and stock assessment. On balance, this compilation contributed to the detection of 59 European fish species probably in need of taxonomic clarification or re-evaluation. The generalized implementation of an auditing and annotation protocol for reference libraries of DNA barcodes is recommended. © 2016 The Fisheries Society of the British Isles.

  13. A DNA barcoding approach to identify plant species in multiflower honey.

    Science.gov (United States)

    Bruni, I; Galimberti, A; Caridi, L; Scaccabarozzi, D; De Mattia, F; Casiraghi, M; Labra, M

    2015-03-01

    The purpose of this study was to test the ability of DNA barcoding to identify the plant origins of processed honey. Four multifloral honeys produced at different sites in a floristically rich area in the northern Italian Alps were examined by using the rbcL and trnH-psbA plastid regions as barcode markers. An extensive reference database of barcode sequences was generated for the local flora to determine the taxonomic composition of honey. Thirty-nine plant species were identified in the four honey samples, each of which originated from a mix of common plants belonging to Castanea, Quercus, Fagus and several herbaceous taxa. Interestingly, at least one endemic plant was found in all four honey samples, providing a clear signature for the geographic identity of these products. DNA of the toxic plant Atropa belladonna was detected in one sample, illustrating the usefulness of DNA barcoding for evaluating the safety of honey. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [DNA barcoding and its utility in commonly-used medicinal snakes].

    Science.gov (United States)

    Huang, Yong; Zhang, Yue-yun; Zhao, Cheng-jian; Xu, Yong-li; Gu, Ying-le; Huang, Wen-qi; Lin, Kui; Li, Li

    2015-03-01

    Identification accuracy of traditional Chinese medicine is crucial for the traditional Chinese medicine research, production and application. DNA barcoding based on the mitochondrial gene coding for cytochrome c oxidase subunit I (COI), are more and more used for identification of traditional Chinese medicine. Using universal barcoding primers to sequence, we discussed the feasibility of DNA barcoding method for identification commonly-used medicinal snakes (a total of 109 samples belonging to 19 species 15 genera 6 families). The phylogenetic trees using Neighbor-joining were constructed. The results indicated that the mean content of G + C(46.5%) was lower than that of A + T (53.5%). As calculated by Kimera-2-parameter model, the mean intraspecies genetic distance of Trimeresurus albolabris, Ptyas dhumnades and Lycodon rufozonatus was greater than 2%. Further phylogenetic relationship results suggested that identification of one sample of T. albolabris was erroneous. The identification of some samples of P. dhumnades was also not correct, namely originally P. korros was identified as P. dhumnades. Factors influence on intraspecific genetic distance difference of L. rufozonatus need to be studied further. Therefore, DNA barcoding for identification of medicinal snakes is feasible, and greatly complements the morphological classification method. It is necessary to further study in identification of traditional Chinese medicine.

  15. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  16. Applications of alignment-free methods in epigenomics.

    Science.gov (United States)

    Pinello, Luca; Lo Bosco, Giosuè; Yuan, Guo-Cheng

    2014-05-01

    Epigenetic mechanisms play an important role in the regulation of cell type-specific gene activities, yet how epigenetic patterns are established and maintained remains poorly understood. Recent studies have supported a role of DNA sequences in recruitment of epigenetic regulators. Alignment-free methods have been applied to identify distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles. Here, we review recent advances in such applications, including the methods to map DNA sequence to feature space, sequence comparison and prediction models. Computational studies using these methods have provided important insights into the epigenetic regulatory mechanisms.

  17. DNA Barcoding as a Reliable Method for the Authentication of Commercial Seafood Products

    Directory of Open Access Journals (Sweden)

    Silvia Nicolè

    2012-01-01

    Full Text Available Animal DNA barcoding allows researchers to identify different species by analyzing a short nucleotide sequence, typically the mitochondrial gene cox1. In this paper, we use DNA barcoding to genetically identify seafood samples that were purchased from various locations throughout Italy. We adopted a multi-locus approach to analyze the cob, 16S-rDNA and cox1 genes, and compared our sequences to reference sequences in the BOLD and GenBank online databases. Our method is a rapid and robust technique that can be used to genetically identify crustaceans, mollusks and fishes. This approach could be applied in the future for conservation, particularly for monitoring illegal trade of protected and endangered species. Additionally, this method could be used for authentication in order to detect mislabeling of commercially processed seafood.

  18. DNA barcoding of a colonial ascidian, Lissoclinum fragile (Van Name, 1902).

    Science.gov (United States)

    H Abdul, Jaffarali; Akram, Soban; Arshan, Kaleem M L

    2017-11-01

    Ascidians (tunicates) are marine benthic organisms possessing various pharmacological activities, including anti-oxidant, anti-tumour, antimicrobial, etc. They also play a key role as model organisms to study various neurobehavioral disorders. Ascidian diversity is reportedly less in India due to lack of taxonomists as well as the limitations in morphology based taxonomy. Molecular taxonomy, comprising the sequencing of cytochrome c oxidase 1 gene (barcode region) otherwise known as DNA barcoding reduces these bottlenecks. Since several species of the family Didemnidae closely resemble in morphology, the present study was aimed to develop DNA barcodes of a colonial ascidian, Lissoclinum fragile belonging to the family Didemnidae. CO1 gene of L. fragile from Thoothukudi, Mandapam, and Vizhinjam waters were sequenced and submitted in GenBank, NCBI through Barcode submission tool. BLAST results showed maximum identity (97-100%) for L. fragile collected from different stations. The pairwise genetic distances within species and genera were calculated using Kimura two parameter (K2P) and the phylogenetic tree was constructed using Neighbour-Joining Tree.

  19. DNA barcoding evaluation and implications for phylogenetic relationships in ladybird beetles (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Wang, Zheng-Liang; Wang, Tian-Zhao; Zhu, Hang-Feng; Wang, Zi-Ye; Yu, Xiao-Ping

    2018-03-08

    Ladybird beetles (Coleoptera: Coccinellidae), with broad morphological diversity, wide geographic distribution and substantial agricultural significance, are a challenging group for taxonomists and phylogenetics. As a promising tool to identify and discover new species, DNA barcoding might offer significant potential for identification, taxonomy and phylogeny of ladybird beetles. In the present study, a total of 1364 COI (cytochrome C oxidase subunit I) sequences representing 128 species from 52 genera of ladybird beetles were screened for barcoding evaluation and phylogenetic analysis. Our results from the barcoding analysis revealed that COI displays a similar level of species identification efficiency (nearly 90%) either based on Kimura two-parameter (K2P) distances calculation or on simplified neighbour-joining (NJ) tree construction. The phylogenetic relationships within the family Coccinellidae was analyzed by Bayesian-inference (BI) method. The phylogenetic results confirmed the monophyly of the subfamilies Microweisinae and Coccinellinae sensu Ślipiński (2007), and suggested that the subfamilies Coccidulinae, Chilocorinae and Scymninae are paraphyletic. However, the phylogenetic relationships among different subfamilies are not clearly defined and thus remain to be thoroughly studied. Overall, our study confirmed the usefulness of DNA barcoding for coccinellid species identification and phylogenetic inference.

  20. Refining DNA Barcoding Coupled High Resolution Melting for Discrimination of 12 Closely Related Croton Species.

    Directory of Open Access Journals (Sweden)

    Maslin Osathanunkul

    Full Text Available DNA barcoding coupled high resolution melting (Bar-HRM is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Croton (Euphorbiaceae, one of the largest genera of plants with over 1,200 species. Seven primer pairs were evaluated (matK, rbcL1, rbcL2, rbcL3, rpoC, trnL and ITS1 from four plastid regions, matK, rbcL, rpoC, and trnL, and the nuclear ribosomal marker ITS1. The primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL1 primer pair gave the lowest resolution. It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Our Bar-HRM results here also provide further support for the hypothesis that both sequence and base composition affect DNA duplex stability.

  1. DNA Barcoding of Zooplankton in the Hampton Roads Area: A Biodiversity Assessment

    Science.gov (United States)

    Salcedo, A.; Rodríguez, Á. E.; Gibson, D. M.

    2016-02-01

    The study of zooplankton biodiversity and distribution is crucial to understand oceanic ecosystems and anticipate the effects of climate change. Previously, identification of zooplankton relied in morphological identification employed by expert taxonomists. DNA barcoding, a technique that uses the mitochondrial DNA (mtDNA) Cytochrome Oxidase 1 (CO1) gene is widely used for taxonomic identification. Thus, this molecular technique will be used to begin a detailed characterization of zooplankton diversity, abundance and community structure in the Hampton Roads Area (HRA). Stations 1 (Jones Creek) and 3 (lower Chesapeake Bay) were sampled in June 19, 2015. Stations 1, 2 (James River), and 3 were sampled in September 2015. Zooplankton samples were collected in triplicates with a 0.5m, 200 µm mesh net. Physical parameters (dissolved oxygen, salinity, temperature and, water transparency) were measured. Species identified as Opistonema oglinum (Atlantic Thread Herring) and Paracalanus parvus copepods were found at station 3; Anchoa mitchilli and Acartia tonsa copepods were found at stations 1 and 3. This study indicates that mtDNA-CO1 barcoding is suitable to identify zooplankton to the species level and helps validate DNA barcoding as a faster, more accurate taxonomic approach. The long term objective of this project is to provide a comprehensive assessment of zooplankton in the HRA and to generate a reference record for broad monitoring programs; vital for a better understanding and management of ecologically and commercially important species.

  2. Assessment of the Authenticity of Herbal Dietary Supplements: Comparison of Chemical and DNA Barcoding Methods.

    Science.gov (United States)

    Pawar, Rahul S; Handy, Sara M; Cheng, Raymond; Shyong, Nicole; Grundel, Erich

    2017-07-01

    About 7 % of the U. S. population reports using botanical dietary supplements. Increased use of such supplements has led to discussions related to their authenticity and quality. Reports of adulteration with substandard materials or pharmaceuticals are of concern because such substitutions, whether inadvertent or deliberate, may reduce the efficacy of specific botanicals or lead to adverse events. Methods for verifying the identity of botanicals include macroscopic and microscopic examinations, chemical analysis, and DNA-based methods including DNA barcoding. Macroscopic and microscopic examinations may fail when a supplement consists of botanicals that have been processed beyond the ability to provide morphological characterizations. Chemical analysis of specific marker compounds encounters problems when these compounds are not distinct to a given species or when purified reference standards are not available. Recent investigations describing DNA barcoding analysis of botanical dietary supplements have raised concerns about the authenticity of the supplements themselves as well as the appropriateness of using DNA barcoding techniques with finished botanical products. We collected 112 market samples of frequently consumed botanical dietary supplements of ginkgo, soy, valerian, yohimbe, and St. John's wort and analyzed each for specific chemical markers (i.e., flavonol glycosides, total isoflavones, total valerenic acids, yohimbine, and hypericins, respectively). We used traditional DNA barcoding techniques targeting the nuclear ITS2 gene and the chloroplast gene psb A- trn H on the same samples to determine the presence of DNA of the labelled ingredient. We compared the results obtained by both methods to assess the contribution of each in determining the identity of the samples. Georg Thieme Verlag KG Stuttgart · New York.

  3. Building a Plant DNA Barcode Reference Library for a Diverse Tropical Flora: An Example from Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Craig M. Costion

    2016-02-01

    Full Text Available A foundation for a DNA barcode reference library for the tropical plants of Australia is presented here. A total of 1572 DNA barcode sequences are compiled from 848 tropical Queensland species. The dataset represents 35% of the total flora of Queensland’s Wet Tropics Bioregion, 57% of its tree species and 28% of the shrub species. For approximately half of the sampled species, we investigated the occurrence of infraspecific molecular variation in DNA barcode loci rbcLa, matK, and the trnH-psbA intergenic spacer region across previously recognized biogeographic barriers. We found preliminary support for the notion that DNA barcode reference libraries can be used as a tool for inferring biogeographic patterns at regional scales. It is expected that this dataset will find applications in taxonomic, ecological, and applied conservation research.

  4. Next-generation detection of antigen-responsive T cells using DNA barcode-labeled peptidemajor histocompatibility complex I multimers

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke Birgitte

    2016-01-01

    diversity of T cell recognition in humans. Consequently it has been impossible to comprehensively analyze T cell responsiveness in cancer, infectious and autoimmune diseases. We present and validate a novel technology that enables parallel detection of numerous different peptide-MHC responsive T cells...... in asingle sample using >1000 different peptide-MHC multimers labeled with individual DNA barcodes. After isolation of MHC multimer binding T cells their recognition are revealed by amplification and sequencing of the MHC multimer-associated DNA barcodes. The relative frequency of the sequenced DNA barcodes...... originating from a given peptide-MHC motif relates to the size of the antigenresponsive T cell population. We have demonstrated the use of large panels of >1000 DNA barcoded MHC multimers for detection of rare T cell populations of virus and cancer-restricted origin in various tissues and compared...

  5. DNA barcoding: a tool for standardization of herbal medicinal products (HMPS) of lamiaceae from pakistan

    International Nuclear Information System (INIS)

    Zahra, N.B.; Shinwari, Z.K.

    2016-01-01

    There has been a considerable interest worldwide in traditional and alternative medicine, particularly herbal products over the past few decades but the adulteration or contamination of herbal medicinal products (HMPs) is a potential threat to consumer safety. The fact highlights the importance of an effective and accurate science integrated method for taxonomic identification of the medicinal plants and their HMPs. DNA barcoding is a molecular technique which has made it possible to identify the herbs and to find the adulterants in HMPs. The current study was designed on DNA barcoding of medicinal plants of family Lamiaceae for their correct identification and to fix the problem of adulteration for protecting consumers from health risks associated with product substitution and contamination. Many Lamiaceae species are used as traditional medicines, as culinary herbs, spices and as source of essential oils. HMPs representing 32 Lamiaceae plant samples were purchased/collected from three herbal stores (Pansar stores) in Islamabad and a herbal pharmaceutical industry. We selected three plastid loci rbcL, matK and psbA-trnH to barcode these HMPs. MEGABLAST sequence comparison was performed to verify the taxonomic identity of the samples. We found four mislabeled samples and two product substitutions. The overall amplification success for rbcL and matK was 87% and 81% while psbA-trnH showed 69%. matK and psbA-trnH were able to distinguish the species relatively better with 40% success rate than rbcL (16%). On the whole we generated a total of 22 genus-level barcodes (78%) and 12 species-level barcodes (44%). The species-level identification was considerably low due to insufficient reference data and selection of plastid markers. Therefore, it is recommended to develop herbal barcode library for adequate availability of reference sequence data and addition of nuclear markers. DNA barcoding can help the regulatory authorities to devise a mechanism for quality control and

  6. DNA Barcoding of Bemisia tabaci Complex (Hemiptera: Aleyrodidae) Reveals Southerly Expansion of the Dominant Whitefly Species on Cotton in Pakistan

    OpenAIRE

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, M. Sajjad; Khan, Arif M.; Mansoor, Shahid; Shah, Ghulam S.; Zafar, Yusuf

    2014-01-01

    Background Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Methods/Principal Findings Sequence diversity in the DNA barcode region (mtCOI-5′) ...

  7. DNA extraction and barcode identification of development stages of forensically important flies in the Czech Republic.

    Science.gov (United States)

    Olekšáková, Tereza; Žurovcová, Martina; Klimešová, Vanda; Barták, Miroslav; Šuláková, Hana

    2018-04-01

    Several methods of DNA extraction, coupled with 'DNA barcoding' species identification, were compared using specimens from early developmental stages of forensically important flies from the Calliphoridae and Sarcophagidae families. DNA was extracted at three immature stages - eggs, the first instar larvae, and empty pupal cases (puparia) - using four different extraction methods, namely, one simple 'homemade' extraction buffer protocol and three commercial kits. The extraction conditions, including the amount of proteinase K and incubation times, were optimized. The simple extraction buffer method was successful for half of the eggs and for the first instar larval samples. The DNA Lego Kit and DEP-25 DNA Extraction Kit were useful for DNA extractions from the first instar larvae samples, and the DNA Lego Kit was also successful regarding the extraction from eggs. The QIAamp DNA mini kit was the most effective; the extraction was successful with regard to all sample types - eggs, larvae, and pupari.

  8. DNA reference libraries of French Guianese mosquitoes for barcoding and metabarcoding

    Science.gov (United States)

    Leroy, Céline; Guidez, Amandine; Dusfour, Isabelle; Girod, Romain; Dejean, Alain; Murienne, Jérôme

    2017-01-01

    The mosquito family (Diptera: Culicidae) constitutes the most medically important group of arthropods because certain species are vectors of human pathogens. In some parts of the world, the diversity is so high that the accurate delimitation and/or identification of species is challenging. A DNA-based identification system for all animals has been proposed, the so-called DNA barcoding approach. In this study, our objectives were (i) to establish DNA barcode libraries for the mosquitoes of French Guiana based on the COI and the 16S markers, (ii) to compare distance-based and tree-based methods of species delimitation to traditional taxonomy, and (iii) to evaluate the accuracy of each marker in identifying specimens. A total of 266 specimens belonging to 75 morphologically identified species or morphospecies were analyzed allowing us to delimit 86 DNA clusters with only 21 of them already present in the BOLD database. We thus provide a substantial contribution to the global mosquito barcoding initiative. Our results confirm that DNA barcodes can be successfully used to delimit and identify mosquito species with only a few cases where the marker could not distinguish closely related species. Our results also validate the presence of new species identified based on morphology, plus potential cases of cryptic species. We found that both COI and 16S markers performed very well, with successful identifications at the species level of up to 98% for COI and 97% for 16S when compared to traditional taxonomy. This shows great potential for the use of metabarcoding for vector monitoring and eco-epidemiological studies. PMID:28575090

  9. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well.

    Directory of Open Access Journals (Sweden)

    Aron J Fazekas

    Full Text Available A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s. We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (N = 251 samples. The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA and three non-coding (trnH-psbA, atpF-atpH, and psbK-psbI loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA to 59% (trnH-psbA of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85-100% for plastid loci, with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs. Several loci (matK, psbK-psbI, trnH-psbA were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69-71%; values that were approached by several two- and three-region combinations. This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the

  10. DNA barcodes discriminate freshwater fishes from the Paraíba do Sul River Basin, São Paulo, Brazil.

    Science.gov (United States)

    Pereira, Luiz H G; Maia, Gláucia M G; Hanner, Robert; Foresti, Fausto; Oliveira, Claudio

    2011-10-01

    Considering the promising use of DNA barcoding for species identification, the importance of the freshwater fish fauna of the Paraíba do Sul River Basin, and its advanced stage of degradation, the present study evaluated the effectiveness of DNA barcoding to identify the fish species in this basin. A total of 295 specimens representing 58 species belonging to 40 genera, 17 families, and 5 orders were sequenced. The DNA barcodes discriminated all species analyzed without ambiguity. The results showed a pronounced difference between conspecific and congeneric pair-wise sequence comparisons, demonstrating the existence of a "barcode gap" for the species analyzed. The nearest-neighbor distance analysis showed only three cases with Kimura two-parameter values lower than a 2% divergence threshold. However, the patterns of divergence observed in each case remained sufficient to discriminate each species, revealing the accuracy of DNA barcoding even cases with relatively low genetic divergence. At the other extreme, three species displayed high genetic sequence divergence among conspecifics. For two cases, Characidium alipioi and Geophagus proximus, barcoding proved effective at flagging possible new species. For another case, Astyanax bimaculatus, the use of DNA barcoding of the comparison of shared freshwater fish fauna between different basins revealed itself as highly useful in disclosing that the previously identified A. bimaculatus "cluster A" probably represents the species Astyanax altiparanae. The present study is among the first to assess the efficiency of barcoding for the Brazilian freshwater fishes. The results demonstrate the utility of barcoding to identify the fauna from this basin, contribute to an enhanced understanding of the differentiation among species, and to help flag the presence of overlooked species.

  11. Evaluation of DNA barcode candidates for the discrimination of Artemisia L.

    Science.gov (United States)

    Liu, Geyu; Ning, Huixia; Ayidaerhan, Nurbolati; Aisa, Haji Akber

    2017-11-01

    Because of the very similar morphologies and wide diversity of Artemisia L. varieties, they are difficult to identify, and there have been many arguments about the systematic classification Artemisia L., especially concerning the division of species. DNA barcode technology is used to rapidly identify species based on standard short DNA sequences. To evaluate seven candidate DNA barcodes (ITS, ITS2, psbA-trnH, rbcL, matK, rpoB, and rpoC1) regarding their ability to identify closely related species of the Artemisia genus in Xinjiang. The corresponding PCR amplification efficiency, detectable genetic divergence, identification efficiency and phylogenetic tree were assessed. We found that the internal transcribed spacer (ITS) region exhibited the highest interspecific divergence, which was significantly higher than the observed intraspecific variation and showed the highest identification efficiency, followed by ITS2, psbA-trnH and, finally, rpoB. matK, rbcL, and rpoC1 performed poorly in this evaluation. ITS, ITS2, and psbA-trnH were able to perfectly identify the tested species Artemisia annua, A. absinthium, A. rupestris, A. tonurnefortiana, A. austriaca, A. dracunculus, A. vulgaris, and A. macrocephala. Therefore, we propose the ITS, ITS2, and psbA-trnH regions as promising DNA barcodes for the closely related species of Artemisia L. in Xinjiang.

  12. Spider hosts (Arachnida, Araneae) and wasp parasitoids (Insecta, Hymenoptera, Ichneumonidae, Ephialtini) matched using DNA barcodes

    Science.gov (United States)

    2013-01-01

    Abstract The study of parasitoids and their hosts suffers from a lack of reliable taxonomic data. We use a combination of morphological characters and DNA sequences to produce taxonomic determinations that can be verified with reference to specimens in an accessible collection and DNA barcode sequences posted to the Barcode of Life database (BOLD). We demonstrate that DNA can be successfully extracted from consumed host spiders and the shed pupal case of a wasp using non-destructive methods. We found Acrodactyla quadrisculpta to be a parasitoid of Tetragnatha montana; Zatypota percontatoria and Zatypota bohemani both are parasitoids of Neottiura bimaculata. Zatypota anomala is a parasitoid of an as yet unidentified host in the family Dictynidae, but the host species may be possible to identify in the future as the library of reference sequences on BOLD continues to grow. The study of parasitoids and their hosts traditionally requires specialized knowledge and techniques, and accumulating data is a slow process. DNA barcoding could allow more professional and amateur naturalists to contribute data to this field of study. A publication venue dedicated to aggregating datasets of all sizes online is well suited to this model of distributed science. PMID:24723780

  13. Barcoding nemo: DNA-based identifications for the ornamental fish trade.

    Directory of Open Access Journals (Sweden)

    Dirk Steinke

    Full Text Available BACKGROUND: Trade in ornamental fishes represents, by far, the largest route for the importation of exotic vertebrates. There is growing pressure to regulate this trade with the goal of ensuring that species are sustainably harvested and that their point of origin is accurately reported. One important element of such regulation involves easy access to specimen identifications, a task that is currently difficult for all but specialists because of the large number of species involved. The present study represents an important first step in making identifications more accessible by assembling a DNA barcode reference sequence library for nearly half of the ornamental fish species imported into North America. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the cytochrome c oxidase subunit I (COI gene from 391 species from 8 coral reef locations revealed that 98% of these species exhibit distinct barcode clusters, allowing their unambiguous identification. Most species showed little intra-specific variation (adjusted mean = 0.21%, but nine species included two or three lineages showing much more divergence (2.19-6.52% and likely represent overlooked species complexes. By contrast, three genera contained a species pair or triad that lacked barcode divergence, cases that may reflect hybridization, young taxa or taxonomic over-splitting. CONCLUSIONS/SIGNIFICANCE: Although incomplete, this barcode library already provides a new species identification tool for the ornamental fish industry, opening a realm of applications linked to collection practices, regulatory control and conservation.

  14. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae)

    Science.gov (United States)

    Larranaga, Nerea; Hormaza, José I.

    2015-01-01

    The DNA barcode initiative aims to establish a universal protocol using short genetic sequences to discriminate among animal and plant species. Although many markers have been proposed to become the barcode of plants, the Consortium for the Barcode of Life (CBOL) Plant Working Group recommended using as a core the combination of two portions of plastid coding region, rbcL and matK. In this paper, specific markers based on matK sequences were developed for 7 closely related Annona species of agronomic interest (Annona cherimola, A. reticulata, A. squamosa, A. muricata, A. macroprophyllata, A. glabra, and A. purpurea) and the discrimination power of both rbcL and matK was tested using also sequences of the genus Annona available in the Barcode of Life Database (BOLD) data systems. The specific sequences developed allowed the discrimination among all those species tested. Moreover, the primers generated were validated in six additional species of the genus (A. liebmanniana, A. longiflora, A. montana, A. senegalensis, A. emarginata and A. neosalicifolia) and in an interspecific hybrid (A. cherimola x A. squamosa). The development of a fast, reliable and economic approach for species identification in these underutilized subtropical fruit crops in a very initial state of domestication is of great importance in order to optimize genetic resource management. PMID:26284104

  15. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae

    Directory of Open Access Journals (Sweden)

    Nerea eLarranaga

    2015-07-01

    Full Text Available The DNA barcode initiative aims to establish a universal protocol using short genetic sequences to discriminate among animal and plant species. Although many markers have been proposed to become the barcode of plants, the Consortium for the Barcode of Life (CBOL Plant Working Group recommended using as a core the combination of two portions of plastid coding region, rbcL and matK. In this paper, specific markers based on matK sequences were developed for 7 closely related Annona species of agronomic interest (Annona cherimola, A. reticulata, A. squamosa, A. muricata, A. macroprophyllata, A. glabra and A. purpurea and the discrimination power of both rbcL and matK was tested using also sequences of the genus Annona available in the Barcode of Life Database (BOLD data systems. The specific sequences developed allowed the discrimination among all those species tested. Moreover, the primers generated were validated in six additional species of the genus (A. liebmanniana, A. longiflora, A. montana, A. senegalensis, A. emarginata and A. neosalicifolia and in an interspecific hybrid (A. cherimola x A. squamosa. The development of a fast, reliable and economic approach for species identification in these underutilized subtropical fruit crops in a very initial state of domestication is of great importance in order to optimize genetic resource management.

  16. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae).

    Science.gov (United States)

    Larranaga, Nerea; Hormaza, José I

    2015-01-01

    The DNA barcode initiative aims to establish a universal protocol using short genetic sequences to discriminate among animal and plant species. Although many markers have been proposed to become the barcode of plants, the Consortium for the Barcode of Life (CBOL) Plant Working Group recommended using as a core the combination of two portions of plastid coding region, rbcL and matK. In this paper, specific markers based on matK sequences were developed for 7 closely related Annona species of agronomic interest (Annona cherimola, A. reticulata, A. squamosa, A. muricata, A. macroprophyllata, A. glabra, and A. purpurea) and the discrimination power of both rbcL and matK was tested using also sequences of the genus Annona available in the Barcode of Life Database (BOLD) data systems. The specific sequences developed allowed the discrimination among all those species tested. Moreover, the primers generated were validated in six additional species of the genus (A. liebmanniana, A. longiflora, A. montana, A. senegalensis, A. emarginata and A. neosalicifolia) and in an interspecific hybrid (A. cherimola x A. squamosa). The development of a fast, reliable and economic approach for species identification in these underutilized subtropical fruit crops in a very initial state of domestication is of great importance in order to optimize genetic resource management.

  17. Forensic botany II, DNA barcode for land plants: Which markers after the international agreement?

    Science.gov (United States)

    Ferri, G; Corradini, B; Ferrari, F; Santunione, A L; Palazzoli, F; Alu', M

    2015-03-01

    The ambitious idea of using a short piece of DNA for large-scale species identification (DNA barcoding) is already a powerful tool for scientists and the application of this standard technique seems promising in a range of fields including forensic genetics. While DNA barcoding enjoyed a remarkable success for animal identification through cytochrome c oxidase I (COI) analysis, the attempts to identify a single barcode for plants remained a vain hope for a longtime. From the beginning, the Consortium for the Barcode of Life (CBOL) showed a lack of agreement on a core plant barcode, reflecting the diversity of viewpoints. Different research groups advocated various markers with divergent set of criteria until the recent publication by the CBOL-Plant Working Group. After a four-year effort, in 2009 the International Team concluded to agree on standard markers promoting a multilocus solution (rbcL and matK), with 70-75% of discrimination to the species level. In 2009 our group firstly proposed the broad application of DNA barcoding principles as a tool for identification of trace botanical evidence through the analysis of two chloroplast loci (trnH-psbA and trnL-trnF) in plant species belonging to local flora. Difficulties and drawbacks that were encountered included a poor coverage of species in specific databases and the lack of authenticated reference sequences for the selected markers. Successful preliminary results were obtained providing an approach to progressively identify unknown plant specimens to a given taxonomic rank, usable by any non-specialist botanist or in case of a shortage of taxonomic expertise. Now we considered mandatory to update and to compare our previous findings with the new selected plastid markers (matK+rbcL), taking into account forensic requirements. Features of all the four loci (the two previously analyzed trnH-psbA+trnL-trnF and matK+rbcL) were compared singly and in multilocus solutions to assess the most suitable combination for

  18. [Hydrophidae identification through analysis on cytochrome c oxydase I(COI) and ribosome 16s rDNA gene barcode].

    Science.gov (United States)

    Liao, Li-Xi; Zeng, Ke-Wu; Tu, Peng-Fei

    2016-05-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid this problem. The gene barcodes of the 5 species of Hydrophidae, Lapemis hardwickii, Hydrophis fasciatus, Aipysurus eydouxii, Hydrophis belcher and Hydrophis lamberti, were acquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficiency by BLAST. Our results showed that the 16S rDNA sequences identified Hydrophidae briefly and the COI sequenceshad obvious difference between intra-and inter-species, indicating that DNA bar-coding was an efficiency method of Hydrophidae identification. Copyright© by the Chinese Pharmaceutical Association.

  19. DNA Barcoding and Genetic Structure Analysis of Deep-Sea Notacanthiform Fishes

    Directory of Open Access Journals (Sweden)

    David Barros-García

    2015-11-01

    Full Text Available Notacanthiformes Goodrich, 1909 is an order of deep-sea, benthopelagic or benthic fishes distributed from the continental slope to the abyssal plain, at a depth of between 125 and 4,900 m, but mostly occurring at depths of 450-2,500 m. They are characterized by an eel-like body, a snout projecting conspicuously beyond the mouth, large connective tissue nodules inserted between the pterygoid arch and maxilla and pelvic fin webs joined in the ventral midline. Fishes from this order were classified applying DNA barcoding. Cytochrome c oxidase subunit I (COI sequences belonging to new North Atlantic specimens and already deposited BOLD public records were used. The specimens from the two families of the order, Halosauridae (halosaurs and Notacanthidae (spiny eels, formed separated monophyletic clades in neighbor-joining trees and the sequences clustered as coherent species. Nine out of 16 species of Halosauridae and 9 out of 10 species of Notacanthidae were represented including 166 sequences of which 96% were successfully identified. The DNA barcode of the rare species Lipogenys gillii was obtained for the first time ever. The DNA barcode was further tested by exploring the genetic structure and historical demography of four species of notacanthiforms from five sample locations of the North Atlantic and South West Pacific. Neutrality tests, mismatch distribution and haplotype networks analyses pointed to a past bottleneck episode followed by a fast demographic expansion for all the samples. The genetic structure of the abyssal halosaur Halosauropsis macrochir showed no significant differences between the North Atlantic and South West Pacific samples. DNA barcoding was successful in validating field identifications and assigning species names to sequences of notacanthiforms worldwide. These results constitute a first example of high connectivity and gene flow in this group of deep-sea fish species. The historical demography suggests population

  20. DNA barcoding reveals polymorphism in the pygmy grasshopper Tetrix bolivari (Orthoptera, Tetrigidae)

    OpenAIRE

    zhao,ling; Ling,li-liang; Zheng,Zhe-Min

    2016-01-01

    Abstract Many pygmy grasshopper species exhibit colour-marking polymorphism. However, this polymorphism in some species, such as Tetrix bolivari , is almost unknown. The aim of this work is to identify using DNA barcoding the colour-marking polymorphic morphs of this pygmy grasshopper species collected from both grass and sand microhabitats. Analysis by NJ clustering and pairwise distances indicated that all specimens collected showing colour-marking polymorphism are species of Tetrix bolivar...

  1. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library

    Directory of Open Access Journals (Sweden)

    Kuzmina Maria L

    2012-11-01

    Full Text Available Abstract Background Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK and a supplemental ribosomal DNA (ITS2 marker for a well-studied flora near Churchill, Manitoba. Results This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years. ITS2 worked equally well for the fresh and herbarium material (89% and 88%. However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples. A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69% was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. Conclusions Our results

  2. DNA barcoding the Lepidoptera inventory of a large complex tropical conserved wildland, Area de Conservacion Guanacaste, northwestern Costa Rica.

    Science.gov (United States)

    Janzen, Daniel H; Hallwachs, Winnie

    2016-09-01

    The 37-year ongoing inventory of the estimated 15 000 species of Lepidoptera living in the 125 000 terrestrial hectares of Area de Conservacion Guanacaste, northwestern Costa Rica, has DNA barcode documented 11 000+ species, and the simultaneous inventory of at least 6000+ species of wild-caught caterpillars, plus 2700+ species of parasitoids. The inventory began with Victorian methodologies and species-level perceptions, but it was transformed in 2004 by the full application of DNA barcoding for specimen identification and species discovery. This tropical inventory of an extraordinarily species-rich and complex multidimensional trophic web has relied upon the sequencing services provided by the Canadian Centre for DNA Barcoding, and the informatics support from BOLD, the Barcode of Life Data Systems, major tools developed by the Centre for Biodiversity Genomics at the Biodiversity Institute of Ontario, and available to all through couriers and the internet. As biodiversity information flows from these many thousands of undescribed and often look-alike species through their transformations to usable product, we see that DNA barcoding, firmly married to our centuries-old morphology-, ecology-, microgeography-, and behavior-based ways of taxonomizing the wild world, has made possible what was impossible before 2004. We can now work with all the species that we find, as recognizable species-level units of biology. In this essay, we touch on some of the details of the mechanics of actually using DNA barcoding in an inventory.

  3. A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genus Bembidion Latreille, 1802 and allied taxa.

    Science.gov (United States)

    Raupach, Michael J; Hannig, Karsten; Morinière, Jérome; Hendrich, Lars

    2016-01-01

    As molecular identification method, DNA barcoding based on partial cytochrome c oxidase subunit 1 (COI) sequences has been proven to be a useful tool for species determination in many insect taxa including ground beetles. In this study we tested the effectiveness of DNA barcodes to discriminate species of the ground beetle genus Bembidion and some closely related taxa of Germany. DNA barcodes were obtained from 819 individuals and 78 species, including sequences from previous studies as well as more than 300 new generated DNA barcodes. We found a 1:1 correspondence between BIN and traditionally recognized species for 69 species (89%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for three species pairs, including two species pairs with haplotype sharing (Bembidion atrocaeruleum/Bembidion varicolor and Bembidion guttula/Bembidion mannerheimii). In contrast to this, deep intraspecific sequence divergences with distinct lineages were revealed for two species (Bembidion geniculatum/Ocys harpaloides). Our study emphasizes the use of DNA barcodes for the identification of the analyzed ground beetles species and represents an important step in building-up a comprehensive barcode library for the Carabidae in Germany and Central Europe as well.

  4. Studying genetic variability of pomegranate (Punica granatum L.) based on chloroplast DNA and barcode genes.

    Science.gov (United States)

    Hajiahmadi, Zahra; Talebi, Majid; Sayed-Tabatabaei, Badraldin Ebrahim

    2013-11-01

    Chloroplast DNA has been used extensively to analyze plant phylogenies at different taxonomic levels because of its size, organization and sequence conservation. In the present research, two chloroplastic regions, petA–psaJ, trnC–trnD and four DNA barcodes (trnH–psbA, ITS, rbcL, matK), were used to introduce suitable regions for the assessment of genetic diversity among P. granatum L. genotypes. Analysis of psbE–petL in petA–psaJ region revealed 1,300 nucleotides with 4.29 % genetic diversity among genotypes, while trnC–petN in trnC–trnD region showed 1.8 % genetic diversity. Therefore, despite the results obtained from the study of other plants, the trnC–trnD region had a low potential for the evaluation of diversity among pomegranate genotypes. Analysis of DNA barcodes in pomegranate showed that trnH–psbA (genetic diversity 2.91 %) provides the highest intra-species variation, followed by ITS (genetic diversity 0.44 %). Eighteen genotypes from different geographical origins of Iran were used to investigate psbE–petL and trnH–psbA potential as novel barcodes to determine genetic polymorphism and characterize pomegranate genotypes. The results suggested that two regions, psbE–petL and trnH–psbA, were more suitable for determining intra-species relationships of pomegranate.

  5. Evaluation of six candidate DNA barcoding loci in Ficus (Moraceae) of China.

    Science.gov (United States)

    Li, H-Q; Chen, J-Y; Wang, S; Xiong, S-Z

    2012-09-01

    Ficus, with about 755 species, diverse habits and complicated co-evolutionary history with fig wasps, is a notoriously difficult group in taxonomy. DNA barcoding is expected to bring light to the identification of Ficus but needs evaluation of candidate loci. Based on five plastid loci (rbcL, matK, trnH-psbA, psbK-psbI, atpF-atpH) and a nuclear locus [internal transcribed spacer (ITS)], we calculated genetic distances and DNA barcoding gaps individually and in combination and constructed phylogenetic trees to test their ability to distinguish the species of the genus. A total of 228 samples representing 63 putative species in Ficus (Moraceae) of China were included in this study. The results demonstrated that ITS has the most variable sites, greater intra- and inter-specific divergences, the highest species discrimination rate (72%) and higher primer universality among the single loci. It is followed by psbK-psbI and trnH-psbA with moderate variation and considerably lower species discrimination rates (about 19%), whereas matK, rbcL and atpF-atpH could not effectively separate the species. Among the possible combinations of loci, ITS + trnH-psbA performed best but only marginally improved species resolution over ITS alone (75% vs. 72%). Therefore, we recommend using ITS as a single DNA barcoding locus in Ficus. © 2012 Blackwell Publishing Ltd.

  6. DNA barcoding and traditional taxonomy: an integrated approach for biodiversity conservation.

    Science.gov (United States)

    Sheth, Bhavisha P; Thaker, Vrinda S

    2017-07-01

    Biological diversity is depleting at an alarming rate. Additionally, a vast amount of biodiversity still remains undiscovered. Taxonomy has been serving the purpose of describing, naming, and classifying species for more than 250 years. DNA taxonomy and barcoding have accelerated the rate of this process, thereby providing a tool for conservation practice. DNA barcoding and traditional taxonomy have their own inherent merits and demerits. The synergistic use of both methods, in the form of integrative taxonomy, has the potential to contribute to biodiversity conservation in a pragmatic timeframe and overcome their individual drawbacks. In this review, we discuss the basics of both these methods of biological identification (traditional taxonomy and DNA barcoding), the technical advances in integrative taxonomy, and future trends. We also present a comprehensive compilation of published examples of integrative taxonomy that refer to nine topics within biodiversity conservation. Morphological and molecular species limits were observed to be congruent in ∼41% of the 58 source studies. The majority of the studies highlighted the description of cryptic diversity through the use of molecular data, whereas research areas like endemism, biological invasion, and threatened species were less discussed in the literature.

  7. Evaluating ethanol-based sample preservation to facilitate use of DNA barcoding in routine freshwater biomonitoring programs using benthic macroinvertebrates.

    Directory of Open Access Journals (Sweden)

    Eric D Stein

    Full Text Available Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI. On average, we obtained successful COI sequences (i.e. either full or partial barcodes for between 93-99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity.

  8. Evaluating ethanol-based sample preservation to facilitate use of DNA barcoding in routine freshwater biomonitoring programs using benthic macroinvertebrates.

    Science.gov (United States)

    Stein, Eric D; White, Bryan P; Mazor, Raphael D; Miller, Peter E; Pilgrim, Erik M

    2013-01-01

    Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93-99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity.

  9. The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species.

    Science.gov (United States)

    Singh, Hemant Kumar; Parveen, Iffat; Raghuvanshi, Saurabh; Babbar, Shashi B

    2012-01-19

    Based on the testing of several loci, predominantly against floristic backgrounds, individual or different combinations of loci have been suggested as possible universal DNA barcodes for plants. The present investigation was undertaken to check the applicability of the recommended locus/loci for congeneric species with Dendrobium species as an illustrative example. Six loci, matK, rbcL, rpoB, rpoC1, trnH-psbA spacer from the chloroplast genome and ITS, from the nuclear genome, were compared for their amplification, sequencing and species discrimination success rates among multiple accessions of 36 Dendrobium species. The trnH-psbA spacer could not be considered for analysis as good quality sequences were not obtained with its forward primer. Among the tested loci, ITS, recommended by some as a possible barcode for plants, provided 100% species identification. Another locus, matK, also recommended as a universal barcode for plants, resolved 80.56% species. ITS remained the best even when sequences of investigated loci of additional Dendrobium species available on the NCBI GenBank (93, 33, 20, 18 and 17 of ITS, matK, rbcL, rpoB and rpoC1, respectively) were also considered for calculating the percent species resolution capabilities. The species discrimination of various combinations of the loci was also compared based on the 36 investigated species and additional 16 for which sequences of all the five loci were available on GenBank. Two-locus combination of matK+rbcL recommended by the Plant Working Group of Consortium for Barcoding of Life (CBOL) could discriminate 86.11% of 36 species. The species discriminating ability of this barcode was reduced to 80.77% when additional sequences available on NCBI were included in the analysis. Among the recommended combinations, the barcode based on three loci - matK, rpoB and rpoC1- resolved maximum number of species. Any recommended barcode based on the loci tested so far, is not likely to provide 100% species identification

  10. The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species

    Directory of Open Access Journals (Sweden)

    Singh Hemant

    2012-01-01

    Full Text Available Abstract Background Based on the testing of several loci, predominantly against floristic backgrounds, individual or different combinations of loci have been suggested as possible universal DNA barcodes for plants. The present investigation was undertaken to check the applicability of the recommended locus/loci for congeneric species with Dendrobium species as an illustrative example. Results Six loci, matK, rbcL, rpoB, rpoC1, trnH-psbA spacer from the chloroplast genome and ITS, from the nuclear genome, were compared for their amplification, sequencing and species discrimination success rates among multiple accessions of 36 Dendrobium species. The trnH-psbA spacer could not be considered for analysis as good quality sequences were not obtained with its forward primer. Among the tested loci, ITS, recommended by some as a possible barcode for plants, provided 100% species identification. Another locus, matK, also recommended as a universal barcode for plants, resolved 80.56% species. ITS remained the best even when sequences of investigated loci of additional Dendrobium species available on the NCBI GenBank (93, 33, 20, 18 and 17 of ITS, matK, rbcL, rpoB and rpoC1, respectively were also considered for calculating the percent species resolution capabilities. The species discrimination of various combinations of the loci was also compared based on the 36 investigated species and additional 16 for which sequences of all the five loci were available on GenBank. Two-locus combination of matK+rbcL recommended by the Plant Working Group of Consortium for Barcoding of Life (CBOL could discriminate 86.11% of 36 species. The species discriminating ability of this barcode was reduced to 80.77% when additional sequences available on NCBI were included in the analysis. Among the recommended combinations, the barcode based on three loci - matK, rpoB and rpoC1- resolved maximum number of species. Conclusions Any recommended barcode based on the loci tested so

  11. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada 1

    OpenAIRE

    Kuzmina, Maria L.; Braukmann, Thomas W. A.; Fazekas, Aron J.; Graham, Sean W.; Dewaard, Stephanie L.; Rodrigues, Anuar; Bennett, Bruce A.; Dickinson, Timothy A.; Saarela, Jeffery M.; Catling, Paul M.; Newmaster, Steven G.; Percy, Diana M.; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce

    2017-01-01

    Premise of the study: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Methods: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recov...

  12. DNA Barcoding to Improve the Taxonomy of the Afrotropical Hoverflies (Insecta: Diptera: Syrphidae.

    Directory of Open Access Journals (Sweden)

    Kurt Jordaens

    Full Text Available The identification of Afrotropical hoverflies is very difficult because of limited recent taxonomic revisions and the lack of comprehensive identification keys. In order to assist in their identification, and to improve the taxonomy of this group, we constructed a reference dataset of 513 COI barcodes of 90 of the more common nominal species from Ghana, Togo, Benin and Nigeria (W Africa and added ten publically available COI barcodes from nine nominal Afrotropical species to this (total: 523 COI barcodes; 98 nominal species; 26 genera. The identification accuracy of this dataset was evaluated with three methods (K2P distance-based, Neighbor-Joining (NJ / Maximum Likelihood (ML analysis, and using SpeciesIdentifier. Results of the three methods were highly congruent and showed a high identification success. Nine species pairs showed a low ( 0.03 maximum intraspecific K2P distance was observed in eight species and barcodes of these species not always formed single clusters in the NJ / ML analayses which may indicate the occurrence of cryptic species. Optimal K2P thresholds to differentiate intra- from interspecific K2P divergence were highly different among the three subfamilies (Eristalinae: 0.037, Syrphinae: 0.06, Microdontinae: 0.007-0.02, and among the different general suggesting that optimal thresholds are better defined at the genus level. In addition to providing an alternative identification tool, our study indicates that DNA barcoding improves the taxonomy of Afrotropical hoverflies by selecting (groups of taxa that deserve further taxonomic study, and by attributing the unknown sex to species for which only one of the sexes is known.

  13. Identification of wild-caught phlebotomine sand flies from Crete and Cyprus using DNA barcoding.

    Science.gov (United States)

    Dokianakis, Emmanouil; Tsirigotakis, Nikolaos; Christodoulou, Vasiliki; Poulakakis, Nikos; Antoniou, Maria

    2018-02-17

    Phlebotomine sand flies (Diptera: Psychodidae) are vectors of Leishmania spp., protozoan parasites responsible for a group of neglected diseases called leishmaniases. Two sand fly genera, Phlebotomus and Sergentomyia, contain species that are present in the Mediterranean islands of Crete and Cyprus where the visceral (VL), cutaneous (CL) and canine (CanLei) leishmaniases are a public health concern. The risk of transmission of different Leishmania species can be studied in an area by monitoring their vectors. Sand fly species are traditionally identified using morphological characteristics but minute differences between individuals or populations could be overlooked leading to wrong epidemiological predictions. Molecular identification of these important vectors has become, therefore, an essential tool for research tasks concerning their geographical distribution which directly relates to leishmaniasis control efforts. DNA barcoding is a widely used molecular identification method for cataloguing animal species by sequencing a fragment of the mitochondrial gene encoding cytochrome oxidase I. DNA barcoding was used to identify individuals of five sand fly species (Phlebotomus papatasi, P. similis, P. killicki, Sergentomyia minuta, S. dentata) circulating in the islands of Crete and Cyprus during the years 2011-2014. Phlebotomus papatasi is a known vector of zoonotic CL in the Middle East and it is found in both islands. Phlebotomus similis is the suspected vector of Leishmania tropica in Greece causing anthroponotic CL. Phlebotomus killicki was collected in Cyprus for the first time. Sergentomyia minuta, found to present intraspecific diversity, is discussed for its potential as a Leishmania vector. Molecular identification was consistent with the morphological identification. It successfully identified males and females, which is difficult when using only morphological characters. A phylogenetic tree was constructed based on the barcodes acquired, representing

  14. Meta-barcoding of 'dirt' DNA from soil reflects vertebrate biodiversity

    DEFF Research Database (Denmark)

    Andersen, Kenneth; Bird, Karen Lise; Rasmussen, Morten

    2012-01-01

    couple second generation high-throughput sequencing with 16S mitochondrial DNA (mtDNA) meta-barcoding, to explore the accuracy and sensitivity of 'dirt' DNA as an indicator of vertebrate diversity, from soil sampled at safari parks, zoological gardens and farms with known species compositions. PCR...... amplification was successful in the full pH range of the investigated soils (6.2 ± 0.2 to 8.3 ± 0.2), but inhibition was detected in extracts from soil of high organic content. DNA movement (leaching) through strata was evident in some sporadic cases and is influenced by soil texture and structure. We find...... that DNA from the soil surface reflects overall taxonomic richness and relative biomass of individual species. However, one species that was recently introduced was not detected. Furthermore, animal behaviour was shown to influence DNA deposition rates. The approach potentially provides a quick...

  15. Levenshtein error-correcting barcodes for multiplexed DNA sequencing

    NARCIS (Netherlands)

    Buschmann, Tilo; Bystrykh, Leonid V.

    2013-01-01

    Background: High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called

  16. The quest for a general and reliable fungal DNA barcode

    NARCIS (Netherlands)

    Robert, V.; Szöke, S.; Eberhardt, U.; Cardinali, G.; Meyer, W.; Seifert, K.A.; Levesques, A.; Lewis, C.T.

    2011-01-01

    DNA sequences are key elements for both identification and classification of living organisms. Mainly for historical reasons, a limited number of genes are currently used for this purpose. From a mathematical point of view, any DNA segment, at any location, even outside of coding regions and even if

  17. Identification of ethnomedicinal plants (Rauvolfioideae: Apocynaceae) through DNA barcoding from northeast India.

    Science.gov (United States)

    Mahadani, Pradosh; Sharma, Gouri Dutta; Ghosh, Sankar Kumar

    2013-07-01

    DNA barcode-based molecular characterization is in practice for plants, but yet lacks total agreement considering the selection of marker. Plant species of subfamily Rauvolfioideae have long been used as herbal medicine by the majority of tribal people in Northeast (NE) India and at present holds mass effect on the society. Hence, there is an urgent need of correct taxonomic inventorization vis-à-vis species level molecular characterization of important medicinal plants. To test the efficiency of matK in species delineation like DNA barcoding in Rauvolfiadae (Apocynaceae). In this study, the core DNA barcode matK and trnH-psbA sequences are examined for differentiation of selected ethnomedicinal plants of Apocynaceae. DNA from young leaves of selected species was isolated, and matK gene (~800 bp) and trnH-psbA spacer (~450 bp) of Chloroplast DNA was amplified for species level identification. The ~758 bp matK sequence in comparison to the trnH-psbA showed easy amplification, alignment, and high level of discrimination value among the medicinal Rauvolfioidae species. Intergenic spacer trnH-psbA is also exhibited persistent problem in obtaining constant bidirectional sequences. Partial matK sequences exhibited 3 indels in multiple of 3 at 5 end. Evidently, generated matK sequences are clustered cohesively, with their conspecific Genbank sequences. However, repeat structures with AT-rich regions, possessing indels in multiple of 3, could be utilized as qualitative molecular markers in further studies both at the intra-specific and shallow inter-specific levels like the intergenic spacers of CpDNA. matK sequence information could help in correct species identification for medicinal plants of Rauvolfioideae.

  18. Delineating species with DNA barcodes: a case of taxon dependent method performance in moths.

    Directory of Open Access Journals (Sweden)

    Mari Kekkonen

    Full Text Available The accelerating loss of biodiversity has created a need for more effective ways to discover species. Novel algorithmic approaches for analyzing sequence data combined with rapidly expanding DNA barcode libraries provide a potential solution. While several analytical methods are available for the delineation of operational taxonomic units (OTUs, few studies have compared their performance. This study compares the performance of one morphology-based and four DNA-based (BIN, parsimony networks, ABGD, GMYC methods on two groups of gelechioid moths. It examines 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae which were delineated by traditional taxonomy. The results reveal a striking difference in performance between the two taxa with all four DNA-based methods. OTU counts in the Elachistinae showed a wider range and a relatively low (ca. 65% OTU match with reference species while OTU counts were more congruent and performance was higher (ca. 90% in the Gelechiinae. Performance rose when only monophyletic species were compared, but the taxon-dependence remained. None of the DNA-based methods produced a correct match with non-monophyletic species, but singletons were handled well. A simulated test of morphospecies-grouping performed very poorly in revealing taxon diversity in these small, dull-colored moths. Despite the strong performance of analyses based on DNA barcodes, species delineated using single-locus mtDNA data are best viewed as OTUs that require validation by subsequent integrative taxonomic work.

  19. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case.

    Science.gov (United States)

    Seifert, Keith A; Samson, Robert A; Dewaard, Jeremy R; Houbraken, Jos; Lévesque, C André; Moncalvo, Jean-Marc; Louis-Seize, Gerry; Hebert, Paul D N

    2007-03-06

    DNA barcoding systems employ a short, standardized gene region to identify species. A 648-bp segment of mitochondrial cytochrome c oxidase 1 (CO1) is the core barcode region for animals, but its utility has not been tested in fungi. This study began with an examination of patterns of sequence divergences in this gene region for 38 fungal taxa with full CO1 sequences. Because these results suggested that CO1 could be effective in species recognition, we designed primers for a 545-bp fragment of CO1 and generated sequences for multiple strains from 58 species of Penicillium subgenus Penicillium and 12 allied species. Despite the frequent literature reports of introns in fungal mitochondrial genomes, we detected introns in only 2 of 370 Penicillium strains. Representatives from 38 of 58 species formed cohesive assemblages with distinct CO1 sequences, and all cases of sequence sharing involved known species complexes. CO1 sequence divergences averaged 0.06% within species, less than for internal transcribed spacer nrDNA or beta-tubulin sequences (BenA). CO1 divergences between species averaged 5.6%, comparable to internal transcribed spacer, but less than values for BenA (14.4%). Although the latter gene delivered higher taxonomic resolution, the amplification and alignment of CO1 was simpler. The development of a barcoding system for fungi that shares a common gene target with other kingdoms would be a significant advance.

  20. Detection of plant-based adulterants in turmeric powder using DNA barcoding.

    Science.gov (United States)

    Parvathy, V A; Swetha, V P; Sheeja, T E; Sasikumar, B

    2015-01-01

    In its powdered form, turmeric [Curcuma longa L. (Zingiberaceae)], a spice of medical importance, is often adulterated lowering its quality. The study sought to detect plant-based adulterants in traded turmeric powder using DNA barcoding. Accessions of Curcuma longa L., Curcuma zedoaria Rosc. (Zingiberaceae), and cassava starch served as reference samples. Three barcoding loci, namely ITS, rbcL, and matK, were used for PCR amplification of the reference samples and commercial samples representing 10 different companies. PCR success rate, sequencing efficiency, occurrence of SNPs, and BLAST analysis were used to assess the potential of the barcoding loci in authenticating the traded samples of turmeric. The PCR and sequencing success of the loci rbcL and ITS were found to be 100%, whereas matK showed no amplification. ITS proved to be the ideal locus because it showed greater variability than rbcL in discriminating the Curcuma species. The presence of C. zedoaria could be detected in one of the samples whereas cassava starch, wheat, barley, and rye in other two samples although the label claimed nothing other than turmeric powder in the samples. Unlabeled materials in turmeric powder are considered as adulterants or fillers, added to increase the bulk weight and starch content of the commodity for economic gains. These adulterants pose potential health hazards to consumers who are allergic to these plants, lowering the product's medicinal value and belying the claim that the product is gluten free. The study proved DNA barcoding as an efficient tool for testing the integrity and the authenticity of commercial products of turmeric.

  1. DNA barcode assessment of Ceramiales (Rhodophyta) in the intertidal zone of the northwestern Yellow Sea

    Science.gov (United States)

    Du, Guoying; Wu, Feifei; Guo, Hao; Xue, Hongfan; Mao, Yunxiang

    2015-05-01

    A total of 142 specimens of Ceramiales (Rhodophyta) were collected each month from October 2011 to November 2012 in the intertidal zone of the northwestern Yellow Sea. These specimens covered 21 species, 14 genera, and four families. Cluster analyses show that the specimens had a high diversity for the three DNA markers, namely, partial large subunit rRNA gene (LSU), universal plastid amplicon (UPA), and partial mitochondrial cytochrome c oxidase subunit I gene (COI). No intraspecific divergence was found in our collection for these markers, except for a 1-3 bp divergence in the COI of Ceramium kondoi, Symphyocladia latiuscula, and Neosiphonia japonica. Because short DNA markers were used, the phylogenetic relationships of higher taxonomic levels were hard to evaluate with poor branch support. More than half species of our collection failed to find their matched sequences owing to shortage information of DNA barcodes for macroalgae in GenBank or BOLD (Barcode of Life Data) Systems. Three specimens were presumed as Heterosiphonia crispella by cluster analyses on DNA barcodes assisted by morphological identification, which was the first record in the investigated area, implying that it might be a cryptic or invasive species in the coastal area of northwestern Yellow Sea. In the neighbor-joining trees of all three DNA markers, Heterosiphonia japonica converged with Dasya spp. and was distant from the other Heterosiphonia spp., implying that H. japonica had affinities to the genus Dasya. The LSU and UPA markers amplified and sequenced easier than the COI marker across the Ceramiales species, but the COI had a higher ability to discriminate between species.

  2. Molecular Authentication of the Traditional Medicinal Plant "Lakshman Booti" (Smithia conferta Sm.) and Its Adulterants through DNA Barcoding.

    Science.gov (United States)

    Umdale, Suraj D; Kshirsagar, Parthraj R; Lekhak, Manoj M; Gaikwad, Nikhil B

    2017-07-01

    Smithia conferta Sm. is an annual herb widely used in Indian traditional medical practice and commonly known as "Lakshman booti" in Sanskrit. Morphological resemblance among the species of genus Smithia Aiton . leads to inaccurate identification and adulteration. This causes inconsistent therapeutic effects and also affects the quality of herbal medicine. This study aimed to generate potential barcode for authentication of S. conferta and its adulterants through DNA barcoding technique. Genomic DNA extracted from S. conferta and its adulterants was used as templates for polymerase chain reaction amplification of the barcoding regions. The amplicons were directed for sequencing, and species identification was conducted using BLASTn and unweighted pair-group method with arithmetic mean trees. In addition, the secondary structures of internal transcribed spacer (ITS) 2 region were predicted. The nucleotide sequence of ITS provides species-specific single nucleotide polymorphisms and sequence divergence (22%) than psb A- trn H (10.9%) and rbc L (3.1%) sequences. The ITS barcode indicates that S. conferta and Smithia sensitiva are closely related compared to other species. ITS is the most applicable barcode for molecular authentication of S. conferta , and further chloroplast barcodes should be tested for phylogenetic analysis of genus Smithia. The present investigation is the first effort of utilization of DNA barcode for molecular authentication of S. conferta and its adulterants. Also, this study expanded the application of the ITS2 sequence data in the authentication. The ITS has been proved as a potential and reliable candidate barcode for the authentication of S. conferta . Abbreviations used: BLASTn: Basic Local Alignment Search Tool for Nucleotide; MEGA: Molecular Evolutionary Genetic Analysis; EMBL: European Molecular Biology Laboratory; psb A- trn H: Photosystem II protein D1- stuctural RNA: His tRNA gene; rbcL: Ribulose 1,5 bi-phosphate carboxylase

  3. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Oliver Hawlitschek

    2011-02-01

    Full Text Available DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data.The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n.In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  4. Are mini DNA-barcodes sufficiently informative to resolve species ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences ... 1School of Ecology and Conservation and Department of Crop Physiology, University of Agricultural Sciences,. GKVK ..... Forensic Sci. Int. Genet. 5, 181–184. Ficetola G. F., Coissac E., Zundel S., Riaz T., Shehzad W., Bessiere. J. et al. 2010 An in silico approach for the evaluation of DNA.

  5. Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host–parasitoid interactions

    Science.gov (United States)

    Hulcr, Jiří; Drozd, Pavel; Hrček, Jan

    2017-01-01

    Understanding interactions between herbivores and parasitoids is essential for successful biodiversity protection and monitoring and for biological pest control. Morphological identifications employ insect rearing and are complicated by insects’ high diversity and crypsis. DNA barcoding has been successfully used in studies of host–parasitoid interactions as it can substantially increase the recovered real host–parasitoid diversity distorted by overlooked species complexes, or by species with slight morphological differences. However, this approach does not allow the simultaneous detection and identification of host(s) and parasitoid(s). Recently, high-throughput sequencing has shown high potential for surveying ecological communities and trophic interactions. Using mock samples comprising insect larvae and their parasitoids, we tested the potential of DNA metabarcoding for identifying individuals involved in host–parasitoid interactions to different taxonomic levels, and compared it to standard DNA barcoding and morphological approaches. For DNA metabarcoding, we targeted the standard barcoding marker cytochrome oxidase subunit I using highly degenerate primers, 2*300 bp sequencing on a MiSeq platform, and RTAX classification using paired-end reads. Additionally, using a large host–parasitoid dataset from a Central European floodplain forest, we assess the completeness and usability of a local reference library by confronting the number of Barcoding Index Numbers obtained by standard barcoding with the number of morphotypes. Overall, metabarcoding recovery was high, identifying 92.8% of the taxa present in mock samples, and identification success within individual taxonomic levels did not significantly differ among metabarcoding, standard barcoding, and morphology. Based on the current local reference library, 39.4% parasitoid and 90.7% host taxa were identified to the species level. DNA barcoding estimated higher parasitoid diversity than morphotyping

  6. Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host-parasitoid interactions.

    Science.gov (United States)

    Šigut, Martin; Kostovčík, Martin; Šigutová, Hana; Hulcr, Jiří; Drozd, Pavel; Hrček, Jan

    2017-01-01

    Understanding interactions between herbivores and parasitoids is essential for successful biodiversity protection and monitoring and for biological pest control. Morphological identifications employ insect rearing and are complicated by insects' high diversity and crypsis. DNA barcoding has been successfully used in studies of host-parasitoid interactions as it can substantially increase the recovered real host-parasitoid diversity distorted by overlooked species complexes, or by species with slight morphological differences. However, this approach does not allow the simultaneous detection and identification of host(s) and parasitoid(s). Recently, high-throughput sequencing has shown high potential for surveying ecological communities and trophic interactions. Using mock samples comprising insect larvae and their parasitoids, we tested the potential of DNA metabarcoding for identifying individuals involved in host-parasitoid interactions to different taxonomic levels, and compared it to standard DNA barcoding and morphological approaches. For DNA metabarcoding, we targeted the standard barcoding marker cytochrome oxidase subunit I using highly degenerate primers, 2*300 bp sequencing on a MiSeq platform, and RTAX classification using paired-end reads. Additionally, using a large host-parasitoid dataset from a Central European floodplain forest, we assess the completeness and usability of a local reference library by confronting the number of Barcoding Index Numbers obtained by standard barcoding with the number of morphotypes. Overall, metabarcoding recovery was high, identifying 92.8% of the taxa present in mock samples, and identification success within individual taxonomic levels did not significantly differ among metabarcoding, standard barcoding, and morphology. Based on the current local reference library, 39.4% parasitoid and 90.7% host taxa were identified to the species level. DNA barcoding estimated higher parasitoid diversity than morphotyping, especially

  7. DNA barcoding reveals the diversity of sharks in Guyana coastal markets

    Directory of Open Access Journals (Sweden)

    Matthew A. Kolmann

    2017-12-01

    Full Text Available ABSTRACT A fundamental challenge for both sustainable fisheries and biodiversity protection in the Neotropics is the accurate determination of species identity. The biodiversity of the coastal sharks of Guyana is poorly understood, but these species are subject to both artisanal fishing as well as harvesting by industrialized offshore fleets. To determine what species of sharks are frequently caught and consumed along the coastline of Guyana, we used DNA barcoding to identify market specimens. We sequenced the mitochondrial co1 gene for 132 samples collected from six markets, and compared our sequences to those available in the Barcode of Life Database (BOLD and GenBank. Nearly 30% of the total sample diversity was represented by two species of Hammerhead Sharks (Sphyrna mokarran and S. lewini, both listed as Endangered by the International Union for Conservation of Nature (IUCN. Other significant portions of the samples included Sharpnose Sharks (23% - Rhizoprionodon spp., considered Vulnerable in Brazilian waters due to unregulated gillnet fisheries, and the Smalltail Shark (17% - Carcharhinus porosus. We found that barcoding provides efficient and accurate identification of market specimens in Guyana, making this study the first in over thirty years to address Guyana’s coastal shark biodiversity.

  8. DNA Barcoding Reveals Cryptic Diversity within Commercially Exploited Indo-Malay Carangidae (Teleosteii: Perciformes)

    Science.gov (United States)

    Mat Jaafar, Tun Nurul Aimi; Taylor, Martin I.; Mohd Nor, Siti Azizah; de Bruyn, Mark; Carvalho, Gary R.

    2012-01-01

    Background DNA barcodes, typically focusing on the cytochrome oxidase I gene (COI) in many animals, have been used widely as a species-identification tool. The ability of DNA barcoding to distinguish species from a range of taxa and to reveal cryptic species has been well documented. Despite the wealth of DNA barcode data for fish from many temperate regions, there are relatively few available from the Southeast Asian region. Here, we target the marine fish Family Carangidae, one of the most commercially-important families from the Indo-Malay Archipelago (IMA), to produce an initial reference DNA barcode library. Methodology/Principal Findings Here, a 652 bp region of COI was sequenced for 723 individuals from 36 putative species of Family Carangidae distributed within IMA waters. Within the newly-generated dataset, three described species exhibited conspecific divergences up to ten times greater (4.32–4.82%) than mean estimates (0.24–0.39%), indicating a discrepancy with assigned morphological taxonomic identification, and the existence of cryptic species. Variability of the mitochondrial DNA COI region was compared within and among species to evaluate the COI region's suitability for species identification. The trend in range of mean K2P distances observed was generally in accordance with expectations based on taxonomic hierarchy: 0% to 4.82% between individuals within species, 0% to 16.4% between species within genera, and 8.64% to 25.39% between genera within families. The average Kimura 2-parameter (K2P) distance between individuals, between species within genera, and between genera within family were 0.37%, 10.53% and 16.56%, respectively. All described species formed monophyletic clusters in the Neighbour-joining phylogenetic tree, although three species representing complexes of six potential cryptic species were detected in Indo-Malay Carangidae; Atule mate, Selar crumenophthalmus and Seriolina nigrofasciata. Conclusion/Significance This study confirms

  9. DNA barcoding reveals cryptic diversity within commercially exploited Indo-Malay Carangidae (Teleosteii: Perciformes.

    Directory of Open Access Journals (Sweden)

    Tun Nurul Aimi Mat Jaafar

    Full Text Available BACKGROUND: DNA barcodes, typically focusing on the cytochrome oxidase I gene (COI in many animals, have been used widely as a species-identification tool. The ability of DNA barcoding to distinguish species from a range of taxa and to reveal cryptic species has been well documented. Despite the wealth of DNA barcode data for fish from many temperate regions, there are relatively few available from the Southeast Asian region. Here, we target the marine fish Family Carangidae, one of the most commercially-important families from the Indo-Malay Archipelago (IMA, to produce an initial reference DNA barcode library. METHODOLOGY/PRINCIPAL FINDINGS: Here, a 652 bp region of COI was sequenced for 723 individuals from 36 putative species of Family Carangidae distributed within IMA waters. Within the newly-generated dataset, three described species exhibited conspecific divergences up to ten times greater (4.32-4.82% than mean estimates (0.24-0.39%, indicating a discrepancy with assigned morphological taxonomic identification, and the existence of cryptic species. Variability of the mitochondrial DNA COI region was compared within and among species to evaluate the COI region's suitability for species identification. The trend in range of mean K2P distances observed was generally in accordance with expectations based on taxonomic hierarchy: 0% to 4.82% between individuals within species, 0% to 16.4% between species within genera, and 8.64% to 25.39% between genera within families. The average Kimura 2-parameter (K2P distance between individuals, between species within genera, and between genera within family were 0.37%, 10.53% and 16.56%, respectively. All described species formed monophyletic clusters in the Neighbour-joining phylogenetic tree, although three species representing complexes of six potential cryptic species were detected in Indo-Malay Carangidae; Atule mate, Selar crumenophthalmus and Seriolina nigrofasciata. CONCLUSION/SIGNIFICANCE: This

  10. A Single-Molecule Barcoding System using Nanoslits for DNA Analysis

    Science.gov (United States)

    Jo, Kyubong; Schramm, Timothy M.; Schwartz, David C.

    Single DNA molecule approaches are playing an increasingly central role in the analytical genomic sciences because single molecule techniques intrinsically provide individualized measurements of selected molecules, free from the constraints of bulk techniques, which blindly average noise and mask the presence of minor analyte components. Accordingly, a principal challenge that must be addressed by all single molecule approaches aimed at genome analysis is how to immobilize and manipulate DNA molecules for measurements that foster construction of large, biologically relevant data sets. For meeting this challenge, this chapter discusses an integrated approach for microfabricated and nanofabricated devices for the manipulation of elongated DNA molecules within nanoscale geometries. Ideally, large DNA coils stretch via nanoconfinement when channel dimensions are within tens of nanometers. Importantly, stretched, often immobilized, DNA molecules spanning hundreds of kilobase pairs are required by all analytical platforms working with large genomic substrates because imaging techniques acquire sequence information from molecules that normally exist in free solution as unrevealing random coils resembling floppy balls of yarn. However, nanoscale devices fabricated with sufficiently small dimensions fostering molecular stretching make these devices impractical because of the requirement of exotic fabrication technologies, costly materials, and poor operational efficiencies. In this chapter, such problems are addressed by discussion of a new approach to DNA presentation and analysis that establishes scaleable nanoconfinement conditions through reduction of ionic strength; stiffening DNA molecules thus enabling their arraying for analysis using easily fabricated devices that can also be mass produced. This new approach to DNA nanoconfinement is complemented by the development of a novel labeling scheme for reliable marking of individual molecules with fluorochrome labels

  11. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies

    Science.gov (United States)

    Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi

    2015-01-01

    The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...

  12. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India.

    Science.gov (United States)

    Nithaniyal, Stalin; Newmaster, Steven G; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy

    2014-01-01

    India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value.

  13. Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques.

    Science.gov (United States)

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm(2)) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies.

  14. Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques.

    Directory of Open Access Journals (Sweden)

    Chia-Min Hsu

    Full Text Available The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC] could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm(2 were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248 of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi. Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies.

  15. Unexpectedly High Levels of Cryptic Diversity Uncovered by a Complete DNA Barcoding of Reptiles of the Socotra Archipelago.

    Directory of Open Access Journals (Sweden)

    Raquel Vasconcelos

    Full Text Available Few DNA barcoding studies of squamate reptiles have been conducted. Due to the significance of the Socotra Archipelago (a UNESCO Natural World Heritage site and a biodiversity hotspot and the conservation interest of its reptile fauna (94% endemics, we performed the most comprehensive DNA barcoding study on an island group to date to test its applicability to specimen identification and species discovery. Reptiles constitute Socotra's most important vertebrate fauna, yet their taxonomy remains under-studied. We successfully DNA-barcoded 380 individuals of all 31 presently recognized species. The specimen identification success rate is moderate to high, and almost all species presented local barcoding gaps. The unexpected high levels of intra-specific variability found within some species suggest cryptic diversity. Species richness may be under-estimated by 13.8-54.4%. This has implications in the species' ranges and conservation status that should be considered for conservation planning. Other phylogenetic studies using mitochondrial and nuclear markers are congruent with our results. We conclude that, despite its reduced length (663 base pairs, cytochrome c oxidase 1, COI, is very useful for specimen identification and for detecting intra-specific diversity, and has a good phylogenetic signal. We recommend DNA barcoding to be applied to other biodiversity hotspots for quickly and cost-efficiently flagging species discovery, preferentially incorporated into an integrative taxonomic framework.

  16. Unexpectedly High Levels of Cryptic Diversity Uncovered by a Complete DNA Barcoding of Reptiles of the Socotra Archipelago.

    Science.gov (United States)

    Vasconcelos, Raquel; Montero-Mendieta, Santiago; Simó-Riudalbas, Marc; Sindaco, Roberto; Santos, Xavier; Fasola, Mauro; Llorente, Gustavo; Razzetti, Edoardo; Carranza, Salvador

    2016-01-01

    Few DNA barcoding studies of squamate reptiles have been conducted. Due to the significance of the Socotra Archipelago (a UNESCO Natural World Heritage site and a biodiversity hotspot) and the conservation interest of its reptile fauna (94% endemics), we performed the most comprehensive DNA barcoding study on an island group to date to test its applicability to specimen identification and species discovery. Reptiles constitute Socotra's most important vertebrate fauna, yet their taxonomy remains under-studied. We successfully DNA-barcoded 380 individuals of all 31 presently recognized species. The specimen identification success rate is moderate to high, and almost all species presented local barcoding gaps. The unexpected high levels of intra-specific variability found within some species suggest cryptic diversity. Species richness may be under-estimated by 13.8-54.4%. This has implications in the species' ranges and conservation status that should be considered for conservation planning. Other phylogenetic studies using mitochondrial and nuclear markers are congruent with our results. We conclude that, despite its reduced length (663 base pairs), cytochrome c oxidase 1, COI, is very useful for specimen identification and for detecting intra-specific diversity, and has a good phylogenetic signal. We recommend DNA barcoding to be applied to other biodiversity hotspots for quickly and cost-efficiently flagging species discovery, preferentially incorporated into an integrative taxonomic framework.

  17. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions.

    Directory of Open Access Journals (Sweden)

    Michael J Raupach

    Full Text Available During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD, unique BINs were identified for 198 (96.6% of the analyzed species. Six species were characterized by two BINs (2.9%, and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%. Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%. Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761, underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences.

  18. DNA barcoding reveals neritid diversity (Mollusca: Gastropoda) diversity in Malaysian waters.

    Science.gov (United States)

    Chee, S Y; Mohd Nor, Siti Azizah

    2016-05-01

    This is the first study to identify and determine the phylogenetics of neritids found in Malaysia. In total, twelve species from the family Neritidae were recorded. Ten species were from the genus Nerita and two species were from the genus Neritina. DNA barcodes were successfully assigned to each species. Although some of these species were previously reported in the region, three are only presently reported in this study. The dendrogram showed Nerita and Neritina strongly supported in their respective monophyletic clades. Phylogenetic positions of some species appeared unstable in the trees. This could be due to the differences in a small number of nucleotides, thus minimizing genetic variation between each specimen and species.

  19. Use of rbcL and trnL-F as a two-locus DNA barcode for identification of NW-European ferns: an ecological perspective

    NARCIS (Netherlands)

    Groot, de G.A.; During, H.J.; Maas, J.W.; Schneider, H.; Erkens, R.H.J.

    2011-01-01

    Although consensus has now been reached on a general two-locus DNA barcode for land plants, the selected combination of markers (rbcL + matK) is not applicable for ferns at the moment. Yet especially for ferns, DNA barcoding is potentially of great value since fern gametophytes—while playing an

  20. DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation

    NARCIS (Netherlands)

    Vu, D; Groenewald, M; Szöke, S; Cardinali, G; Eberhardt, U; Stielow, B; de Vries, M; Verkleij, G J M; Crous, P W; Boekhout, T; Robert, V

    DNA barcoding is a global initiative for species identification through sequencing of short DNA sequence markers. Sequences of two loci, ITS and LSU, were generated as barcode data for all (ca. 9k) yeast strains included in the CBS collection, originally assigned to ca. 2 000 species. Taxonomic

  1. Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores.

    Science.gov (United States)

    Assad, Ossama N; Di Fiori, Nicolas; Squires, Allison H; Meller, Amit

    2015-01-14

    Optical sensing of solid-state nanopores is a relatively new approach that can enable high-throughput, multicolor readout from a collection of nanopores. It is therefore highly attractive for applications such as nanopore-based DNA sequencing and genotyping using DNA barcodes. However, to date optical readout has been plagued by the need to achieve sufficiently high signal-to-noise ratio (SNR) for single fluorophore sensing, while still maintaining millisecond resolution. One of the main factors degrading the optical SNR in solid-state nanopores is the high photoluminescence (PL) background emanating from the silicon nitride (SiNx) membrane in which pores are commonly fabricated. Focusing on the optical properties of SiNx nanopores we show that the local membrane PL intensity is substantially reduced, and its spectrum is shifted toward shorter wavelengths with increasing e-beam dose. This phenomenon, which is correlated with a marked photocurrent enhancement in these nanopores, is utilized to perform for the first time single molecule fluorescence detection using both green and red laser excitations. Specifically, the reduction in PL and the concurrent measurement of the nanopore photocurrent enhancement allow us to maximize the background suppression and to detect a dual color, five-unit DNA barcode with high SNR levels.

  2. Beyond the Colours: Discovering Hidden Diversity in the Nymphalidae of the Yucatan Peninsula in Mexico through DNA Barcoding

    Science.gov (United States)

    Prado, Blanca R.; Pozo, Carmen; Valdez-Moreno, Martha; Hebert, Paul D. N.

    2011-01-01

    Background Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use. Methodology/Principal Findings We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches) that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula) were previously unknown. Conclusions/Significance This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect assemblages. PMID:22132140

  3. Beyond the colours: discovering hidden diversity in the Nymphalidae of the Yucatan Peninsula in Mexico through DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Blanca R Prado

    Full Text Available BACKGROUND: Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use. METHODOLOGY/PRINCIPAL FINDINGS: We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula were previously unknown. CONCLUSIONS/SIGNIFICANCE: This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect

  4. Joining inventory by parataxonomists with DNA barcoding of a large complex tropical conserved wildland in northwestern Costa Rica.

    Science.gov (United States)

    Janzen, Daniel H; Hallwachs, Winnie

    2011-01-01

    The many components of conservation through biodiversity development of a large complex tropical wildland, Area de Conservacion Guanacaste (ACG), thrive on knowing what is its biodiversity and natural history. For 32 years a growing team of Costa Rican parataxonomists has conducted biodiversity inventory of ACG caterpillars, their food plants, and their parasitoids. In 2003, DNA barcoding was added to the inventory process. We describe some of the salient consequences for the parataxonomists of barcoding becoming part of a field biodiversity inventory process that has centuries of tradition. From the barcoding results, the parataxonomists, as well as other downstream users, gain a more fine-scale and greater understanding of the specimens they find, rear, photograph, database and deliver. The parataxonomists also need to adjust to collecting more specimens of what appear to be the "same species"--cryptic species that cannot be distinguished by eye or even food plant alone--while having to work with the name changes and taxonomic uncertainty that comes with discovering that what looked like one species may be many. These career parataxonomists, despite their lack of formal higher education, have proven very capable of absorbing and working around the additional complexity and requirements for accuracy and detail that are generated by adding barcoding to the field base of the ACG inventory. In the process, they have also gained a greater understanding of the fine details of phylogeny, relatedness, evolution, and species-packing in their own tropical complex ecosytems. There is no reason to view DNA barcoding as incompatible in any way with tropical biodiversity inventory as conducted by parataxonomists. Their year-round on-site inventory effort lends itself well to the sampling patterns and sample sizes needed to build a thorough barcode library. Furthermore, the biological understanding that comes with barcoding increases the scientific penetrance of biodiversity

  5. The diversity and biogeography of the Coleoptera of Churchill: insights from DNA barcoding

    Science.gov (United States)

    2013-01-01

    Background Coleoptera is the most diverse order of insects (>300,000 described species), but its richness diminishes at increasing latitudes (e.g., ca. 7400 species recorded in Canada), particularly of phytophagous and detritivorous species. However, incomplete sampling of northern habitats and a lack of taxonomic study of some families limits our understanding of biodiversity patterns in the Coleoptera. We conducted an intensive biodiversity survey from 2006–2010 at Churchill, Manitoba, Canada in order to quantify beetle species diversity in this model region, and to prepare a barcode library of beetles for sub-arctic biodiversity and ecological research. We employed DNA barcoding to provide estimates of provisional species diversity, including for families currently lacking taxonomic expertise, and to examine the guild structure, habitat distribution, and biogeography of beetles in the Churchill region. Results We obtained DNA barcodes from 3203 specimens representing 302 species or provisional species (the latter quantitatively defined on the basis of Molecular Operational Taxonomic Units, MOTUs) in 31 families of Coleoptera. Of the 184 taxa identified to the level of a Linnaean species name, 170 (92.4%) corresponded to a single MOTU, four (2.2%) represented closely related sibling species pairs within a single MOTU, and ten (5.4%) were divided into two or more MOTUs suggestive of cryptic species. The most diverse families were the Dytiscidae (63 spp.), Staphylinidae (54 spp.), and Carabidae (52 spp.), although the accumulation curve for Staphylinidae suggests that considerable additional diversity remains to be sampled in this family. Most of the species present are predatory, with phytophagous, mycophagous, and saprophagous guilds being represented by fewer species. Most named species of Carabidae and Dytiscidae showed a significant bias toward open habitats (wet or dry). Forest habitats, particularly dry boreal forest, although limited in extent in the

  6. Quantifying species diversity with a DNA barcoding-based method: Tibetan moth species (Noctuidae on the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Qian Jin

    Full Text Available With the ongoing loss of biodiversity, there is a great need for fast and effective ways to assess species richness and diversity: DNA barcoding provides a powerful new tool for this. We investigated this approach by focusing on the Tibetan plateau, which is one of the world's top biodiversity hotspots. There have been few studies of its invertebrates, although they constitute the vast majority of the region's diversity. Here we investigated species diversity of the lepidopteran family Noctuidae, across different environmental gradients, using measurements based on traditional morphology as well as on DNA barcoding. The COI barcode showed an average interspecific K2P distance of 9.45±2.08%, which is about four times larger than the mean intraspecific distance (1.85±3.20%. Using six diversity indices, we did not detect any significant differences in estimated species diversity between measurements based on traditional morphology and on DNA barcoding. Furthermore, we found strong positive correlations between them, indicating that barcode-based measures of species diversity can serve as a good surrogate for morphology-based measures in most situations tested. Eastern communities were found to have significantly higher diversity than Western ones. Among 22 environmental factors tested, we found that three (precipitation of driest month, precipitation of driest quarter, and precipitation of coldest quarter were significantly correlated with species diversity. Our results indicate that these factors could be the key ecological factors influencing the species diversity of the lepidopteran family Noctuidae on the Tibetan plateau.

  7. Barcoding the major Mediterranean leguminous crops by combining universal chloroplast and nuclear DNA sequence targets.

    Science.gov (United States)

    Madesis, P; Ganopoulos, I; Ralli, P; Tsaftaris, A

    2012-08-16

    The ability to discriminate all species is the ultimate target in barcoding. The Mediterranean basin is a center of origin for legumes and thus they have played a key role in feeding the Mediterranean population. It is also a region with important protected designation of origin and protected geographical indication legumes that provide income in rural areas. We evaluated the use of two chloroplast regions, trnL and rpoC1, and a nuclear internal transcriber region, ITS2, for their efficiency to barcode the main Mediterranean leguminous crops. Twenty-five legume species were studied. Plant material of pasture and legumes was obtained from the Greek GenBank and the Fodder Crops and Pastures Institute (National Agricultural Research Foundation). DNA was extracted with the Qiagen DNeasy plant mini-kit and PCR amplification was performed using the Kapa Taq DNA polymerase using primers amplifying the chloroplast trnL and rpoC1 regions or the nuclear region ITS2. PCR products were sequenced and the sequences were aligned using CLUSTAL W. Species identification based on the sequence similarity approach was performed using the GenBank database. In order to evaluate intraspecific and interspecific divergence in legumes we used Molecular Evolutionary Genetics Analysis 5 and for pairwise Kimura 2-parameter distance calculations for all 3 DNA regions (2 chloroplast regions, trnL and rpoC1, and the nuclear region ITS2). Four tree-based methods (neighbor joining and maximum parsimony, maximum likelihood, and Bayesian inference analyses) were used to exhibit the molecular identification results to represent differences as an uprooted dendrogram. Additionally, the sequence character-based method was used with DnaSP and the information from each site was treated as a character to distinguish the species from one another. The DNA regions trnL and ITS2 successfully (100%) discriminated the Mediterranean crop legume species used, while rpoC1 identified only 72% of them. Furthermore

  8. Illegal trade of regulated and protected aquatic species in the Philippines detected by DNA barcoding.

    Science.gov (United States)

    Asis, Angelli Marie Jacynth M; Lacsamana, Joanne Krisha M; Santos, Mudjekeewis D

    2016-01-01

    Illegal trade has greatly affected marine fish stocks, decreasing fish populations worldwide. Despite having a number of aquatic species being regulated, illegal trade still persists through the transport of dried or processed products and juvenile species trafficking. In this regard, accurate species identification of illegally traded marine fish stocks by DNA barcoding is deemed to be a more efficient method in regulating and monitoring trade than by morphological means which is very difficult due to the absence of key morphological characters in juveniles and processed products. Here, live juvenile eels (elvers) and dried products of sharks and rays confiscated for illegal trade were identified. Twenty out of 23 (87%) randomly selected "elvers" were identified as Anguilla bicolor pacifica and 3 (13%) samples as Anguilla marmorata. On the other hand, 4 out of 11 (36%) of the randomly selected dried samples of sharks and rays were Manta birostris. The rest of the samples were identified as Alopias pelagicus, Taeniura meyeni, Carcharhinus falciformis, Himantura fai and Mobula japonica. These results confirm that wild juvenile eels and species of manta rays are still being caught in the country regardless of its protected status under Philippine and international laws. It is evident that the illegal trade of protected aquatic species is happening in the guise of dried or processed products thus the need to put emphasis on strengthening conservation measures. This study aims to underscore the importance of accurate species identification in such cases of illegal trade and the effectivity of DNA barcoding as a tool to do this.

  9. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Science.gov (United States)

    Fields, Andrew T; Abercrombie, Debra L; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins"). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples).

  10. Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex.

    Directory of Open Access Journals (Sweden)

    James C Carolan

    Full Text Available Cryptic diversity within bumblebees (Bombus has the potential to undermine crucial conservation efforts designed to reverse the observed decline in many bumblebee species worldwide. Central to such efforts is the ability to correctly recognise and diagnose species. The B. lucorum complex (Bombus lucorum, B. cryptarum and B. magnus comprises one of the most abundant and important group of wild plant and crop pollinators in northern Europe. Although the workers of these species are notoriously difficult to diagnose morphologically, it has been claimed that queens are readily diagnosable from morphological characters. Here we assess the value of colour-pattern characters in species identification of DNA-barcoded queens from the B. lucorum complex. Three distinct molecular operational taxonomic units were identified each representing one species. However, no uniquely diagnostic colour-pattern character state was found for any of these three molecular units and most colour-pattern characters showed continuous variation among the units. All characters previously deemed to be unique and diagnostic for one species were displayed by specimens molecularly identified as a different species. These results presented here raise questions on the reliability of species determinations in previous studies and highlights the benefits of implementing DNA barcoding prior to ecological, taxonomic and conservation studies of these important key pollinators.

  11. DNA barcoding of Schistosoma haematobium on Zanzibar reveals substantial genetic diversity and two major phylogenetic groups.

    Science.gov (United States)

    Webster, Bonnie L; Culverwell, C Lorna; Khamis, I Simba; Mohammed, Khalfan A; Rollinson, David; Stothard, J Russell

    2013-11-01

    To shed light on the genetic diversity of Schistosoma haematobium on Zanzibar a DNA barcoding study was performed on parasite material isolated from different time-points 4 years apart. Substantive sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1) and the NADH-dehydrogenase subunit 1 (nad1) with 27 and 22 unique haplotypes identified respectively and 38 when both gene regions were considered. Upon phylogenetic analysis and comparison with other S. haematobium isolates, haplotypes or barcode types partitioned into two discrete major groups, designated Group 1 and Group 2. Whilst Group 1 isolates were recovered from both Zanzibar and the African mainland, Group 2 isolates were exclusive to Zanzibar. A mixture of Group 1 and 2 parasites were recovered from individual children with no child shedding parasites of a single group haplotype alone. Whilst changes in general levels of genetic diversity between the two parasite isolation time-points were observed, no obvious change in genetic diversity was detected, despite large-scale drug distribution of praziquantel during the intervening period and there was no biased of Group 1 or 2 parasites persisting at the different time-points. To assist in future genetic screening of schistosome larval stages e.g. eggs, miracidia or cercariae, two new DNA-typing assays based on group-specific PCR primers and SNaPshot™ probes have been developed to distinguish Group 1 and 2 haplotypes. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Chemical and genetic discrimination of Cistanches Herba based on UPLC-QTOF/MS and DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Sihao Zheng

    Full Text Available Cistanches Herba (Rou Cong Rong, known as "Ginseng of the desert", has a striking curative effect on strength and nourishment, especially in kidney reinforcement to strengthen yang. However, the two plant origins of Cistanches Herba, Cistanche deserticola and Cistanche tubulosa, vary in terms of pharmacological action and chemical components. To discriminate the plant origin of Cistanches Herba, a combined method system of chemical and genetic--UPLC-QTOF/MS technology and DNA barcoding--were firstly employed in this study. The results indicated that three potential marker compounds (isomer of campneoside II, cistanoside C, and cistanoside A were obtained to discriminate the two origins by PCA and OPLS-DA analyses. DNA barcoding enabled to differentiate two origins accurately. NJ tree showed that two origins clustered into two clades. Our findings demonstrate that the two origins of Cistanches Herba possess different chemical compositions and genetic variation. This is the first reported evaluation of two origins of Cistanches Herba, and the finding will facilitate quality control and its clinical application.

  13. Using DNA Barcodes to Identify Road-Killed Animals in Two Atlantic Forest Nature Reserves, Brazil.

    Directory of Open Access Journals (Sweden)

    Angélica H Klippel

    Full Text Available Road mortality is the leading source of biodiversity loss in the world, especially due to fragmentation of natural habitats and loss of wildlife. The survey of the main species victims of roadkill is of fundamental importance for the better understanding of the problem, being necessary, for this, the correct species identification. The aim of this study was to verify if DNA barcodes can be applied to identify road-killed samples that often cannot be determined morphologically. For this purpose, 222 vertebrate samples were collected in a stretch of the BR-101 highway that crosses two Discovery Coast Atlantic Forest Natural Reserves, the Sooretama Biological Reserve and the Vale Natural Reserve, in Espírito Santo, Brazil. The mitochondrial COI gene was amplified, sequenced and confronted with the BOLD database. It was possible to identify 62.16% of samples, totaling 62 different species, including Pyrrhura cruentata, Chaetomys subspinosus, Puma yagouaroundi and Leopardus wiedii considered Vulnerable in the National Official List of Species of Endangered Wildlife. The most commonly identified animals were a bat (Molossus molossus, an opossum (Didelphis aurita and a frog (Trachycephalus mesophaeus species. Only one reptile was identified using the technique, probably due to lack of reference sequences in BOLD. These data may contribute to a better understanding of the impact of roads on species biodiversity loss and to introduce the DNA barcode technique to road ecology scenarios.

  14. Identification of echinoderms (Echinodermata) from an anchialine cave in Cozumel Island, Mexico, using DNA barcodes.

    Science.gov (United States)

    Bribiesca-Contreras, Guadalupe; Solís-Marín, Francisco A; Laguarda-Figueras, Alfredo; Zaldívar-Riverón, Alejandro

    2013-11-01

    The echinoderm species richness of the Aerolito de Paraiso anchialine cave, on Cozumel Island, in the Mexican Caribbean, is assessed on the basis of morphological and DNA barcoding data. We included specimens from this cave system and from different open sea areas, and employed two different approaches for species delineation based on DNA barcoding data: a 2% cox1 divergence and the general mixed Yule-coalescent (GMYC) approaches. We subsequently compared the results derived from these approaches with our morphospecies discrimination. A total of 188 cox1 sequences belonging to specimens of four echinoderm classes were examined. The 2% cox1 divergence and GMYC approaches recovered 78 and 70 putative species, respectively, 24 and 22 of which corresponded to specimens from the anchialine system. Of 26 echinoderm species identified in the cave system, seven appear to be endemic to it. Among these are Copidaster carvenicola Solís-Marín & Laguarda-Figueras, 2010, two morphologically distinctive, undescribed species belonging to Asterinides and Ophionereis and four probably cryptic undescribed species originally assigned to Amphipholis squamata (Delle Chiaje, 1839), Astropecten duplicatus Gray, 1840, Copidaster lymani (AH Clark, 1948) and Ophiothrix angulata (Say, 1825). Further research and protection of this particularly fragile ecosystem becomes urgent because construction of tourism developments is planned nearby. © 2013 John Wiley & Sons Ltd.

  15. Identification of exotic North American crayfish in Europe by DNA barcoding

    Directory of Open Access Journals (Sweden)

    Filipová L.

    2011-05-01

    Full Text Available Several alien crayfish of North American origin have become established in Europe in recent decades, but their identification is often confusing. Our aim was to verify the taxonomic status of their European populations by DNA barcoding. We sequenced the cytochrome c oxidase subunit I (COI gene fragment of individuals representing all American crayfish known from European waters, and compared the results with reference sequences from North America. Our results confirm the morphological identification of Orconectes juvenilis from a population in eastern France, and of the marbled crayfish (Marmorkrebs, i.e., a parthenogenetic form of Procambarus fallax, from south-western Germany. Sequences of most individuals of presumed Procambarus acutus from the Netherlands were similar to American P. cf. acutus, but one was divergent, closer to a sequence of a reference individual of P. cf. zonangulus. However, divergences among three American P. cf. zonangulus samples were also high, comparable to interspecific variation within cambarid species complexes. The divergence between O. immunis from Europe and America also reached values corresponding to those observed among distinct Orconectes species. Genetic variation in the American range of these crayfish should therefore be further studied. Our study shows that DNA barcoding is useful for the rapid and accurate identification of exotic crayfish in Europe, and also provides insights into overall variation within these taxa.

  16. DNA Barcode Identification of Freshwater Snails in the Family Bithyniidae from Thailand

    Science.gov (United States)

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Ruangsittichai, Jiraporn; Ruangjirachuporn, Wipaporn; Boonmars, Thidarut; Viyanant, Vithoon; Pierossi, Paola; Hebert, Paul D. N.; Tesana, Smarn

    2013-01-01

    Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5’ region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy. PMID:24223896

  17. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Directory of Open Access Journals (Sweden)

    Andrew T Fields

    Full Text Available There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias. Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins". Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples.

  18. DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Wattoo

    2016-11-01

    Full Text Available Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny. Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST. Results: Both primers (matk+rbcl showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination. Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.

  19. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada.

    Science.gov (United States)

    Kuzmina, Maria L; Braukmann, Thomas W A; Fazekas, Aron J; Graham, Sean W; Dewaard, Stephanie L; Rodrigues, Anuar; Bennett, Bruce A; Dickinson, Timothy A; Saarela, Jeffery M; Catling, Paul M; Newmaster, Steven G; Percy, Diana M; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R; Zakharov, Evgeny V; Hebert, Paul D N

    2017-12-01

    Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa.

  20. Barcoded DNA-tag reporters for multiplex cis-regulatory analysis.

    Directory of Open Access Journals (Sweden)

    Jongmin Nam

    Full Text Available Cis-regulatory DNA sequences causally mediate patterns of gene expression, but efficient experimental analysis of these control systems has remained challenging. Here we develop a new version of "barcoded" DNA-tag reporters, "Nanotags" that permit simultaneous quantitative analysis of up to 130 distinct cis-regulatory modules (CRMs. The activities of these reporters are measured in single experiments by the NanoString RNA counting method and other quantitative procedures. We demonstrate the efficiency of the Nanotag method by simultaneously measuring hourly temporal activities of 126 CRMs from 46 genes in the developing sea urchin embryo, otherwise a virtually impossible task. Nanotags are also used in gene perturbation experiments to reveal cis-regulatory responses of many CRMs at once. Nanotag methodology can be applied to many research areas, ranging from gene regulatory networks to functional and evolutionary genomics.

  1. Calcinea of the Red Sea: providing a DNA barcode inventory with description of four new species

    KAUST Repository

    Voigt, Oliver

    2017-03-29

    The Red Sea is a biodiversity hotspot with a considerable percentage of endemic species for many marine animals. Little is known about the diversity and distribution of calcareous sponges (Porifera, Class Calcarea) in this marginal sea. Here we analysed calcareous sponges of the subclass Calcinea that were collected between 2009 and 2013 at 20 localities in the Red Sea, ranging from the Gulf of Aqaba in the north to the Farasan Islands in the south, to document the species of this region. For this, we applied an integrative approach: We defined OTUs based on the analyses of a recently suggested standard DNA marker, the LSU C-region. The analysis was complemented with a second marker, the internal transcribed spacer, for selected specimens. Ten OTUs were identified. Specimens of each OTU were morphologically examined with spicule preparations and histological sections. Accordingly, our ten OTUs represent ten species, which cover taxonomically a broad range of the subclass. By combining molecular and morphological data, we describe four new species from the Red Sea: Soleneiscus hamatus sp. nov., Ernstia arabica sp. nov., Clathrina rotundata sp. nov., and Clathrina rowi sp. nov.. One additional small specimen was closely related to “Clathrina” adusta, but due to the small size it could not be properly analysed morphologically. By providing the DNA sequences for the morphologically documented specimens in the Sponge Barcoding Database (www.spongebarcoding.org) we facilitate future DNA-assisted species identification of Red Sea Calcinea, even for small or incomplete samples, which would be insufficient for morphological identification. Application of DNA barcode methods in the subclass will help to further investigate the distribution of Calcinea in the Red Sea and adjacent regions.

  2. The Use of DNA Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.)

    DEFF Research Database (Denmark)

    Hartvig, Ida; Czako, Mihaly; Kjaer, Erik Dahl

    2015-01-01

    The genus Dalbergia contains many valuable timber species threatened by illegal logging and deforestation, but knowledge on distributions and threats is often limited and accurate species identification difficult. The aim of this study was to apply DNA barcoding methods to support conservation...

  3. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests.

    Science.gov (United States)

    Jordal, Bjarte H; Kambestad, Marius

    2014-01-01

    A comprehensive DNA barcoding library is very useful for rapid identification and detection of invasive pest species. We tested the performance of species identification in the economically most damaging group of wood-boring insects - the bark and ambrosia beetles - with particular focus on broad geographical sampling across the boreal Palearctic forests. Neighbour-joining and Bayesian analyses of cytochrome oxidase I (COI) sequences from 151 species in 40 genera revealed high congruence between morphology-based identification and sequence clusters. Inconsistencies with morphological identifications included the discovery of a likely cryptic Nearctic species of Dryocoetes autographus, the possible hybrid origin of shared mitochondrial haplotypes in Pityophthorus micrographus and P. pityographus, and a possible paraphyletic Xyleborinus saxeseni. The first record of Orthotomicus suturalis in North America was confirmed by DNA barcoding. The mitochondrial data also revealed consistent divergence across the Palearctic or Holarctic, confirmed in part by data from the large ribosomal subunit (28S). Some populations had considerable variation in the mitochondrial barcoding marker, but were invariant in the nuclear ribosomal marker. These findings must be viewed in light of the high number of nuclear insertions of mitochondrial DNA (NUMTs) detected in eight bark beetle species, suggesting the possible presence of additional cryptic NUMTs. The occurrence of paralogous COI copies, hybridization or cryptic speciation demands a stronger focus on data quality assessment in the construction of DNA barcoding databases. © 2013 John Wiley & Sons Ltd.

  4. DNA barcodes and molecular diagnostics to distinguish an introduced and native Laricobius (Coleoptera: Derodontidae) species in eastern North America

    Science.gov (United States)

    G.A. Davis; N.P. Havill; Z.N. Adelman; A. Caccone; L.T. Kok; S.M. Salom

    2011-01-01

    Molecular diagnostics based on DNA barcodes can be powerful identification tools in the absence of distinctive morphological characters for distinguishing between closely related species. A specific example is distinguishing the endemic species Laricobius rubidus from Laricobius nigrinus, a biological control agent of hemlock...

  5. Revealing Hidden Diversity of the Underestimated Neotropical Ichthyofauna: DNA Barcoding in the Recently Described Genus Megaleporinus (Characiformes: Anostomidae

    Directory of Open Access Journals (Sweden)

    Jorge L. Ramirez

    2017-10-01

    Full Text Available Molecular studies have improved our knowledge on the neotropical ichthyofauna. DNA barcoding has successfully been used in fish species identification and in detecting cryptic diversity. Megaleporinus (Anostomidae is a recently described freshwater fish genus within which taxonomic uncertainties remain. Here we assessed all nominal species of this genus using a DNA barcode approach (Cytochrome Oxidase subunit I with a broad sampling to generate a reference library, characterize new molecular lineages, and test the hypothesis that some of the nominal species represent species complexes. The analyses identified 16 (ABGD and BIN to 18 (ABGD, GMYC, and PTP different molecular operational taxonomic units (MOTUs within the 10 studied nominal species, indicating cryptic biodiversity and potential candidate species. Only Megaleporinus brinco, Megaleporinus garmani, and Megaleporinus elongatus showed correspondence between nominal species and MOTUs. Within six nominal species, a subdivision in two MOTUs was found, while Megaleporinus obtusidens was divided in three MOTUs, suggesting that DNA barcode is a very useful approach to identify the molecular lineages of Megaleporinus, even in the case of recent divergence (< 0.5 Ma. Our results thus provided molecular findings that can be used along with morphological traits to better define each species, including candidate new species. This is the most complete analysis of DNA barcode in this recently described genus, and considering its economic value, a precise species identification is quite desirable and fundamental for conservation of the whole biodiversity of this fish.

  6. Discovering hidden biodiversity: The use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems

    DEFF Research Database (Denmark)

    Jo, Hyunbin; Ventura, Marc; Vidal, Nicolas

    2015-01-01

    Formicidae, Chrysomelidae and Torbidae and the freshwater Chironomidae. The haplotype occurrence per lake was negatively correlated with lake depth and transparency. Nearly all haplotypes were only found in one fish gut from a single lake. Our results indicate that DNA barcoding of fish diets is a useful...

  7. Taxonomic note of Oberea fuscipennis (Chevrolat, 1852) based on morphological and DNA barcode data (Coleoptera, Cerambycidae, Lamiinae).

    Science.gov (United States)

    Li, Zhu; Tian, Lichao; Cuccodoro, Giulio; Chen, Li; Lu, Cheng

    2016-07-06

    Oberea fuscipennis (Chevrolat, 1852) species group is revised based on morphology and DNA barcode data. Oberea diversipes Pic, 1919 and O. infratestacea Pic, 1936 are restored from synonymy. The following two new synonymies are proposed: Oberea fuscipennis ssp. fairmairei Breuning, 1962 = Oberea diversipes Pic, 1919; and Oberea hanoiensis Pic, 1923 = O. fuscipennis (Chevrolat, 1852).

  8. A transcontinental challenge--a test of DNA barcode performance for 1,541 species of Canadian Noctuoidea (Lepidoptera.

    Directory of Open Access Journals (Sweden)

    Reza Zahiri

    Full Text Available This study provides a first, comprehensive, diagnostic use of DNA barcodes for the Canadian fauna of noctuoids or "owlet" moths (Lepidoptera: Noctuoidea based on vouchered records for 1,541 species (99.1% species coverage, and more than 30,000 sequences. When viewed from a Canada-wide perspective, DNA barcodes unambiguously discriminate 90% of the noctuoid species recognized through prior taxonomic study, and resolution reaches 95.6% when considered at a provincial scale. Barcode sharing is concentrated in certain lineages with 54% of the cases involving 1.8% of the genera. Deep intraspecific divergence exists in 7.7% of the species, but further studies are required to clarify whether these cases reflect an overlooked species complex or phylogeographic variation in a single species. Non-native species possess higher Nearest-Neighbour (NN distances than native taxa, whereas generalist feeders have lower NN distances than those with more specialized feeding habits. We found high concordance between taxonomic names and sequence clusters delineated by the Barcode Index Number (BIN system with 1,082 species (70% assigned to a unique BIN. The cases of discordance involve both BIN mergers and BIN splits with 38 species falling into both categories, most likely reflecting bidirectional introgression. One fifth of the species are involved in a BIN merger reflecting the presence of 158 species sharing their barcode sequence with at least one other taxon, and 189 species with low, but diagnostic COI divergence. A very few cases (13 involved species whose members fell into both categories. Most of the remaining 140 species show a split into two or three BINs per species, while Virbia ferruginosa was divided into 16. The overall results confirm that DNA barcodes are effective for the identification of Canadian noctuoids. This study also affirms that BINs are a strong proxy for species, providing a pathway for a rapid, accurate estimation of animal diversity.

  9. The real maccoyii: identifying tuna sushi with DNA barcodes--contrasting characteristic attributes and genetic distances.

    Directory of Open Access Journals (Sweden)

    Jacob H Lowenstein

    Full Text Available BACKGROUND: The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. METHODOLOGY/PRINCIPAL FINDINGS: Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of "white tuna" were not albacore (T. alalunga, but escolar (Lepidocybium flavorunneum, a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus or the critically endangered southern bluefin tuna (T. maccoyii, though nine restaurants that sold these species did not state these species on their menus. CONCLUSIONS/SIGNIFICANCE: The Convention on

  10. The Real maccoyii: Identifying Tuna Sushi with DNA Barcodes – Contrasting Characteristic Attributes and Genetic Distances

    Science.gov (United States)

    Lowenstein, Jacob H.; Amato, George; Kolokotronis, Sergios-Orestis

    2009-01-01

    Background The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. Methodology/Principal Findings Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of “white tuna” were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. Conclusions/Significance The Convention on International Trade

  11. Community Phylogenetics: Assessing Tree Reconstruction Methods and the Utility of DNA Barcodes

    Science.gov (United States)

    Boyle, Elizabeth E.; Adamowicz, Sarah J.

    2015-01-01

    Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagel’s λ) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities. PMID:26110886

  12. Use of ITS2 region as the universal DNA barcode for plants and animals.

    Directory of Open Access Journals (Sweden)

    Hui Yao

    Full Text Available BACKGROUND: The internal transcribed spacer 2 (ITS2 region of nuclear ribosomal DNA is regarded as one of the candidate DNA barcodes because it possesses a number of valuable characteristics, such as the availability of conserved regions for designing universal primers, the ease of its amplification, and sufficient variability to distinguish even closely related species. However, a general analysis of its ability to discriminate species in a comprehensive sample set is lacking. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, 50,790 plant and 12,221 animal ITS2 sequences downloaded from GenBank were evaluated according to sequence length, GC content, intra- and inter-specific divergence, and efficiency of identification. The results show that the inter-specific divergence of congeneric species in plants and animals was greater than its corresponding intra-specific variations. The success rates for using the ITS2 region to identify dicotyledons, monocotyledons, gymnosperms, ferns, mosses, and animals were 76.1%, 74.2%, 67.1%, 88.1%, 77.4%, and 91.7% at the species level, respectively. The ITS2 region unveiled a different ability to identify closely related species within different families and genera. The secondary structure of the ITS2 region could provide useful information for species identification and could be considered as a molecular morphological characteristic. CONCLUSIONS/SIGNIFICANCE: As one of the most popular phylogenetic markers for eukaryota, we propose that the ITS2 locus should be used as a universal DNA barcode for identifying plant species and as a complementary locus for CO1 to identify animal species. We have also developed a web application to facilitate ITS2-based cross-kingdom species identification (http://its2-plantidit.dnsalias.org.

  13. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve

    Science.gov (United States)

    Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R. Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N

    2015-01-01

    Abstract Background Comprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. New information The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies – a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic

  14. Multi-locus DNA barcoding identifies matK as a suitable marker for species identification in Hibiscus L.

    Science.gov (United States)

    Poovitha, Sundar; Stalin, Nithaniyal; Balaji, Raju; Parani, Madasamy

    2016-12-01

    The genus Hibiscus L. includes several taxa of medicinal value and species used for the extraction of natural dyes. These applications require the use of authentic plant materials. DNA barcoding is a molecular method for species identification, which helps in reliable authentication by using one or more DNA barcode marker. In this study, we have collected 44 accessions, representing 16 species of Hibiscus, distributed in the southern peninsular India, to evaluate the discriminatory power of the two core barcodes rbcLa and matK together with the suggested additional regions trnH-psbA and ITS2. No intraspecies divergence was observed among the accessions studied. Interspecies divergence was 0%-9.6% with individual markers, which increased to 0%-12.5% and 0.8%-20.3% when using two- and three-marker combinations, respectively. Differentiation of all the species of Hibiscus was possible with the matK DNA barcode marker. Also, in two-marker combinations, only those combinations with matK differentiated all the species. Though all the three-marker combinations showed 100% species differentiation, species resolution was consistently better when the matK marker formed part of the combination. These results clearly showed that matK is more suitable when compared to rbcLa, trnH-psbA, and ITS2 for species identification in Hibiscus.

  15. Bridging two scholarly islands enriches both: COI DNA barcodes for species identification versus human mitochondrial variation for the study of migrations and pathologies.

    Science.gov (United States)

    Thaler, David S; Stoeckle, Mark Y

    2016-10-01

    DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648-bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein-encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most - possibly all - synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well-curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.

  16. Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera

    Czech Academy of Sciences Publication Activity Database

    Craft, K. J.; Pauls, S. U.; Darrow, K.; Miller, S. E.; Hebert, P. D. N.; Helgen, L. E.; Novotný, Vojtěch; Weiblen, G. D.

    2010-01-01

    Roč. 107, č. 11 (2010), s. 5041-5046 ISSN 0027-8424 R&D Projects: GA ČR GA206/09/0115; GA ČR GD206/08/H044; GA AV ČR IAA600960712; GA MŠk LC06073 Grant - others:National Science Foundation(US) DEB 9628840; National Science Foundation(US) DEB 9707928; National Science Foundation(US) DEB 0211591; National Science Foundation(US) DEB 0515678; German Academy of Sciences Leopoldina(DE) BMBF-LPD 9901/8-169 Institutional research plan: CEZ:AV0Z50070508 Keywords : community ecology * DNA barcoding * phylogeography Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.771, year: 2010

  17. Revisiting species delimitation within the genus Oxystele using DNA barcoding approach.

    Science.gov (United States)

    Van Der Bank, Herman; Herbert, Dai; Greenfield, Richard; Yessoufou, Kowiyou

    2013-12-30

    The genus Oxystele, a member of the highly diverse marine gastropod superfamily Trochoidea, is endemic to southern Africa. Members of the genus include some of the most abundant molluscs on southern African shores and are important components of littoral biodiversity in rocky intertidal habitats. Species delimitation within the genus is still controversial, especially regarding the complex O. impervia / O. variegata. Here, we assessed species boundaries within the genus using DNA barcoding and phylogenetic tree reconstruction. We analysed 56 specimens using the mitochondrial gene COI. Our analysis delimits five molecular operational taxonomic units (MOTUs), and distinguishes O. impervia from O. variegata. However, we reveal important discrepancies between MOTUs and morphology-based species identification and discuss alternative hypotheses that can account for this. Finally, we indicate the need for future study that includes additional genes, and the combination of both morphology and genetic techniques (e.g. AFLP or microsatellites) to get deeper insight into species delimitation within the genus.

  18. DNA Barcode, una alternativa para identificar especies del Complejo Midas Chichlidae en Nicaragua

    Directory of Open Access Journals (Sweden)

    Lucia Páiz Medina

    2008-04-01

    Full Text Available EL COMPLEJO MIDAS CICHLIDAE (especies del género Amphilophus ha sido objeto de discusión entre diferentes grupos de científicos debido a que desde los primeros intentos de su clasificación taxonómica presentó problemas dada la similitud morfológica entre especies del Complejo. Inicialmente se pensó que era solamente una especie polimórfica pero, luego de realizar diferentes estudios, se sabe queson diferentes especies. DNA Barcode (Código de Barras genético es una técnica moderna que se está implementando en el Centro de Biología Molecular, y que pretende identificar las diferentes especies del Complejo Midas Ciclhidae utilizando una secuencia relativamente corta del gen mitocondrial COI.

  19. DNA barcode libraries provide insight into continental patterns of avian diversification.

    Directory of Open Access Journals (Sweden)

    Darío A Lijtmaer

    Full Text Available The causes for the higher biodiversity in the Neotropics as compared to the Nearctic and the factors promoting species diversification in each region have been much debated. The refuge hypothesis posits that high tropical diversity reflects high speciation rates during the Pleistocene, but this conclusion has been challenged. The present study investigates this matter by examining continental patterns of avian diversification through the analysis of large-scale DNA barcode libraries.Standardized COI datasets from the avifaunas of Argentina, the Nearctic, and the Palearctic were analyzed. Average genetic distances between closest congeners and sister species were higher in Argentina than in North America reflecting a much higher percentage of recently diverged species in the latter region. In the Palearctic genetic distances between closely related species appeared to be more similar to those of the southern Neotropics. Average intraspecific variation was similar in Argentina and North America, while the Palearctic fauna had a higher value due to a higher percentage of variable species. Geographic patterning of intraspecific structure was more complex in the southern Neotropics than in the Nearctic, while the Palearctic showed an intermediate level of complexity.DNA barcodes can reveal continental patterns of diversification. Our analysis suggests that avian species are older in Argentina than in the Nearctic, supporting the idea that the greater diversity of the Neotropical avifauna is not caused by higher recent speciation rates. Species in the Palearctic also appear to be older than those in the Nearctic. These results, combined with the patterns of geographic structuring found in each region, suggest a major impact of Pleistocene glaciations in the Nearctic, a lesser effect in the Palearctic and a mild effect in the southern Neotropics.

  20. Development of a DNA barcoding system for seagrasses: successful but not simple.

    Directory of Open Access Journals (Sweden)

    Christina Lucas

    Full Text Available Seagrasses, a unique group of submerged flowering plants, profoundly influence the physical, chemical and biological environments of coastal waters through their high primary productivity and nutrient recycling ability. They provide habitat for aquatic life, alter water flow, stabilize the ground and mitigate the impact of nutrient pollution. at the coast region. Although on a global scale seagrasses represent less than 0.1% of the angiosperm taxa, the taxonomical ambiguity in delineating seagrass species is high. Thus, the taxonomy of several genera is unsolved. While seagrasses are capable of performing both, sexual and asexual reproduction, vegetative reproduction is common and sexual progenies are always short lived and epimeral in nature. This makes species differentiation often difficult, especially for non-taxonomists since the flower as a distinct morphological trait is missing. Our goal is to develop a DNA barcoding system assisting also non-taxonomists to identify regional seagrass species. The results will be corroborated by publicly available sequence data. The main focus is on the 14 described seagrass species of India, supplemented with seagrasses from temperate regions. According to the recommendations of the Consortium for the Barcoding of Life (CBOL rbcL and matK were used in this study. After optimization of the DNA extraction method from preserved seagrass material, the respective sequences were amplified from all species analyzed. Tree- and character-based approaches demonstrate that the rbcL sequence fragment is capable of resolving up to family and genus level. Only matK sequences were reliable in resolving species and partially the ecotype level. Additionally, a plastidic gene spacer was included in the analysis to confirm the identification level. Although the analysis of these three loci solved several nodes, a few complexes remained unsolved, even when constructing a combined tree for all three loci. Our approaches

  1. Australian Sphingidae--DNA barcodes challenge current species boundaries and distributions.

    Science.gov (United States)

    Rougerie, Rodolphe; Kitching, Ian J; Haxaire, Jean; Miller, Scott E; Hausmann, Axel; Hebert, Paul D N

    2014-01-01

    We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae). We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%). Only seven species (10%) have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies.

  2. Australian Sphingidae--DNA barcodes challenge current species boundaries and distributions.

    Directory of Open Access Journals (Sweden)

    Rodolphe Rougerie

    Full Text Available MAIN OBJECTIVE: We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae. METHODS: We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. RESULTS: Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758, a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90% Australian sphingids are endemic to the continent (45% or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%. Only seven species (10% have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. MAIN CONCLUSIONS: This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies.

  3. Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions

    Science.gov (United States)

    Rougerie, Rodolphe; Kitching, Ian J.; Haxaire, Jean; Miller, Scott E.; Hausmann, Axel; Hebert, Paul D. N.

    2014-01-01

    Main Objective We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae). Methods We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. Results Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%). Only seven species (10%) have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. Main Conclusions This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies. PMID:24987846

  4. Forensic DNA barcoding and bio-response studies of animal horn products used in traditional medicine.

    Directory of Open Access Journals (Sweden)

    Dan Yan

    Full Text Available BACKGROUND: Animal horns (AHs have been applied to traditional medicine for more than thousands of years, of which clinical effects have been confirmed by the history. But now parts of AHs have been listed in the items of wildlife conservation, which limits the use for traditional medicine. The contradiction between the development of traditional medicine and the protection of wild resources has already become the common concern of zoophilists, traditional medical professionals, economists, sociologists. We believe that to strengthen the identification for threatened animals, to prevent the circulation of them, and to seek fertile animals of corresponding bioactivities as substitutes are effective strategies to solve this problem. METHODOLOGY/PRINCIPAL FINDINGS: A powerful technique of DNA barcoding based on the mitochondrial gene cytochrome c oxidase I (COI was used to identify threatened animals of Bovidae and Cervidae, as well as their illegal adulterants (including 10 species and 47 specimens. Meanwhile, the microcalorimetric technique was used to characterize the differences of bio-responses when those animal specimens acted on model organism (Escherichia coli. We found that the COI gene could be used as a universal primer to identify threatened animals and illegal adulterants mentioned above. By analyzing 223 mitochondrial COI sequences, a 100% identification success rate was achieved. We further found that the horns of Mongolian Gazelle and Red Deer could be exploited as a substitute for some functions of endangered Saiga Antelope and Sika Deer in traditional medicine, respectively. CONCLUSION/SIGNIFICANCE: Although it needs a more comprehensive evaluation of bioequivalence in order to completely solve the problem of substitutes for threatened animals, we believe that the identification (DNA barcoding of threatened animals combined with seeking substitutions (bio-response can yet be regarded as a valid strategy for establishing a balance

  5. Allopatry as a Gordian Knot for Taxonomists: Patterns of DNA Barcode Divergence in Arctic-Alpine Lepidoptera

    Science.gov (United States)

    Mutanen, Marko; Hausmann, Axel; Hebert, Paul D. N.; Landry, Jean-François; de Waard, Jeremy R.; Huemer, Peter

    2012-01-01

    Many cold adapted species occur in both montane settings and in the subarctic. Their disjunct distributions create taxonomic complexity because there is no standardized method to establish whether their allopatric populations represent single or different species. This study employs DNA barcoding to gain new perspectives on the levels and patterns of sequence divergence among populations of 122 arctic-alpine species of Lepidoptera from the Alps, Fennoscandia and North America. It reveals intraspecific variability in the barcode region ranging from 0.00–10.08%. Eleven supposedly different species pairs or groups show close genetic similarity, suggesting possible synonymy in many cases. However, a total of 33 species show evidence of cryptic diversity as evidenced by the presence of lineages with over 2% maximum barcode divergence in Europe, in North America or between the two continents. Our study also reveals cases where taxonomic names have been used inconsistently between regions and exposes misidentifications. Overall, DNA barcodes have great potential to both increase taxonomic resolution and to make decisions concerning the taxonomic status of allopatric populations more objective. PMID:23071761

  6. DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae) reveals southerly expansion of the dominant whitefly species on cotton in Pakistan.

    Science.gov (United States)

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, M Sajjad; Khan, Arif M; Mansoor, Shahid; Shah, Ghulam S; Zafar, Yusuf

    2014-01-01

    Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Sequence diversity in the DNA barcode region (mtCOI-5') was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3' to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage "Pakistan". The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and "Pakistan" were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.

  7. DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae reveals southerly expansion of the dominant whitefly species on cotton in Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Ashfaq

    Full Text Available Although whiteflies (Bemisia tabaci complex are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan.Sequence diversity in the DNA barcode region (mtCOI-5' was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3' to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage "Pakistan". The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and "Pakistan" were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan.DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.

  8. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    Science.gov (United States)

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses

  9. MtDNA barcode identification of fish larvae in the southern Great Barrier Reef – Australia

    Directory of Open Access Journals (Sweden)

    Graham G. Pegg

    2006-10-01

    Full Text Available Planktonic larvae were captured above a shallow coral reef study site on the Great Barrier Reef (GBR around spring-summer new moon periods (October-February using light trap or net capture devices. Larvae were identified to the genus or species level by comparison with a phylogenetic tree of tropical marine fish species using mtDNA HVR1 sequence data. Further analysis showed that within-species HVR1 sequence variation was typically 1-3%, whereas between-species variation for the same genus ranged up to 50%, supporting the suitability of HVR1 for species identification. Given the current worldwide interest in DNA barcoding and species identification using an alternative mtDNA gene marker (cox1, we also explored the efficacy of different primer sets for amplification of cox1 in reef fish, and its suitability for species identification. Of those tested, the Fish-F1 and -R1 primer set recently reported by Ward et al. (2005 gave the best results.

  10. The first initiative of DNA barcoding of ornamental plants from Egypt and potential applications in horticulture industry.

    Science.gov (United States)

    O Elansary, Hosam; Ashfaq, Muhammad; Ali, Hayssam M; Yessoufou, Kowiyou

    2017-01-01

    DNA barcoding relies on short and standardized gene regions to identify species. The agricultural and horticultural applications of barcoding such as for marketplace regulation and copyright protection remain poorly explored. This study examines the effectiveness of the standard plant barcode markers (matK and rbcL) for the identification of plant species in private and public nurseries in northern Egypt. These two markers were sequenced from 225 specimens of 161 species and 62 plant families of horticultural importance. The sequence recovery was similar for rbcL (96.4%) and matK (84%), but the number of specimens assigned correctly to the respective genera and species was lower for rbcL (75% and 29%) than matK (85% and 40%). The combination of rbcL and matK brought the number of correct generic and species assignments to 83.4% and 40%, respectively. Individually, the efficiency of both markers varied among different plant families; for example, all palm specimens (Arecaceae) were correctly assigned to species while only one individual of Asteraceae was correctly assigned to species. Further, barcodes reliably assigned ornamental horticultural and medicinal plants correctly to genus while they showed a lower or no success in assigning these plants to species and cultivars. For future, we recommend the combination of a complementary barcode (e.g. ITS or trnH-psbA) with rbcL + matK to increase the performance of taxa identification. By aiding species identification of horticultural crops and ornamental palms, the analysis of the barcode regions will have large impact on horticultural industry.

  11. Oligonucleotide indexing of DNA barcodes: identification of tuna and other scombrid species in food products

    Directory of Open Access Journals (Sweden)

    Botti Sara

    2010-08-01

    Full Text Available Abstract Background DNA barcodes are a global standard for species identification and have countless applications in the medical, forensic and alimentary fields, but few barcoding methods work efficiently in samples in which DNA is degraded, e.g. foods and archival specimens. This limits the choice of target regions harbouring a sufficient number of diagnostic polymorphisms. The method described here uses existing PCR and sequencing methodologies to detect mitochondrial DNA polymorphisms in complex matrices such as foods. The reported application allowed the discrimination among 17 fish species of the Scombridae family with high commercial interest such as mackerels, bonitos and tunas which are often present in processed seafood. The approach can be easily upgraded with the release of new genetic diversity information to increase the range of detected species. Results Cocktail of primers are designed for PCR using publicly available sequences of the target sequence. They are composed of a fixed 5' region and of variable 3' cocktail portions that allow amplification of any member of a group of species of interest. The population of short amplicons is directly sequenced and indexed using primers containing a longer 5' region and the non polymorphic portion of the cocktail portion. A 226 bp region of CytB was selected as target after collection and screening of 148 online sequences; 85 SNPs were found, of which 75 were present in at least two sequences. Primers were also designed for two shorter sub-fragments that could be amplified from highly degraded samples. The test was used on 103 samples of seafood (canned tuna and scomber, tuna salad, tuna sauce and could successfully detect the presence of different or additional species that were not identified on the labelling of canned tuna, tuna salad and sauce samples. Conclusions The described method is largely independent of the degree of degradation of DNA source and can thus be applied to

  12. Joining inventory by parataxonomists with DNA barcoding of a large complex tropical conserved wildland in northwestern Costa Rica.

    Directory of Open Access Journals (Sweden)

    Daniel H Janzen

    Full Text Available BACKGROUND: The many components of conservation through biodiversity development of a large complex tropical wildland, Area de Conservacion Guanacaste (ACG, thrive on knowing what is its biodiversity and natural history. For 32 years a growing team of Costa Rican parataxonomists has conducted biodiversity inventory of ACG caterpillars, their food plants, and their parasitoids. In 2003, DNA barcoding was added to the inventory process. METHODOLOGY/PRINCIPAL FINDINGS: We describe some of the salient consequences for the parataxonomists of barcoding becoming part of a field biodiversity inventory process that has centuries of tradition. From the barcoding results, the parataxonomists, as well as other downstream users, gain a more fine-scale and greater understanding of the specimens they find, rear, photograph, database and deliver. The parataxonomists also need to adjust to collecting more specimens of what appear to be the "same species"--cryptic species that cannot be distinguished by eye or even food plant alone--while having to work with the name changes and taxonomic uncertainty that comes with discovering that what looked like one species may be many. CONCLUSIONS/SIGNIFICANCE: These career parataxonomists, despite their lack of formal higher education, have proven very capable of absorbing and working around the additional complexity and requirements for accuracy and detail that are generated by adding barcoding to the field base of the ACG inventory. In the process, they have also gained a greater understanding of the fine details of phylogeny, relatedness, evolution, and species-packing in their own tropical complex ecosytems. There is no reason to view DNA barcoding as incompatible in any way with tropical biodiversity inventory as conducted by parataxonomists. Their year-round on-site inventory effort lends itself well to the sampling patterns and sample sizes needed to build a thorough barcode library. Furthermore, the biological

  13. DNA barcoding of invasive plants in China: A resource for identifying invasive plants.

    Science.gov (United States)

    Xu, Song-Zhi; Li, Zhen-Yu; Jin, Xiao-Hua

    2018-01-01

    Invasive plants have aroused attention globally for causing ecological damage and having a negative impact on the economy and human health. However, it can be extremely challenging to rapidly and accurately identify invasive plants based on morphology because they are an assemblage of many different families and many plant materials lack sufficient diagnostic characteristics during border inspections. It is therefore urgent to evaluate candidate loci and build a reliable genetic library to prevent invasive plants from entering China. In this study, five common single markers (ITS, ITS2, matK, rbcL and trnH-psbA) were evaluated using 634 species (including 469 invasive plant species in China, 10 new records to China, 16 potentially invasive plant species around the world but not introduced into China yet and 139 plant species native to China) based on three different methods. Our results indicated that ITS2 displayed largest intra- and interspecific divergence (1.72% and 91.46%). Based on NJ tree method, ITS2, ITS, matK, rbcL and trnH-psbA provided 76.84%, 76.5%, 63.21%, 52.86% and 50.68% discrimination rates, respectively. The combination of ITS + matK performed best and provided 91.03% discriminatory power, followed by ITS2 + matK (85.78%). For identifying unknown individuals, ITS + matK had 100% correct identification rate based on our database, followed by ITS/ITS2 (both 93.33%) and ITS2 + matK (91.67%). Thus, we propose ITS/ITS2 + matK as the most suitable barcode for invasive plants in China. This study also demonstrated that DNA barcoding is an efficient tool for identifying invasive species. © 2017 John Wiley & Sons Ltd.

  14. DNA barcoding of wild edible mushrooms consumed by the ethnic tribes of India.

    Science.gov (United States)

    Khaund, Polashree; Joshi, S R

    2014-10-15

    Wild edible mushrooms are consumed by the tribes of Meghalaya in the North-Eastern region of India, as part of their ethnic cuisine because of their favored organoleptic characteristics and traditionally known health benefits. Majority of these mushrooms have not yet been characterized in detail and are slowly shrinking in their natural habitats owing to anthropogenic factors and climate change. In the present study, representative specimens of ten morphologically distinct groups of wild edible mushrooms available in the traditional markets and their respective forest habitats, were subjected to multi-loci molecular characterization using SSU, ITS, RPB1 and RPB2 markers. The species identities inferred for the ten mushroom types using the SSU marker matched their morphological description in the case of four morphological groups only whereas the ITS marker successfully resolved the species identity for nine out of the ten mushroom groups under study. Both the protein coding gene markers RPB1 and RPB2 successfully resolved the species identity for three out of the ten morphologically distinct groups. Finally the most likely identity of the wild edible mushrooms under study has been suggested by matching their unique morphological characteristics with the generated DNA barcoding data. The present molecular characterization reveals the ten widely consumed wild mushroom types of Meghalaya, India to be Gomphus floccosus, Lactarius deliciosus, Lactarius volemus, Cantharellus cibarius, Tricholoma viridiolivaceum, Inocybe aff. sphaerospora, Laccaria vinaceoavellanea, Albatrellus ellisii, Ramaria maculatipes and Clavulina cristata. The final species identity generated by the ITS marker matched more accurately with the morphological characteristics/appearance of the specimens indicating the ITS region as a reliable barcode for identifying wild edible mushrooms. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A DNA-based registry for all animal species: the barcode index number (BIN system.

    Directory of Open Access Journals (Sweden)

    Sujeevan Ratnasingham

    Full Text Available Because many animal species are undescribed, and because the identification of known species is often difficult, interim taxonomic nomenclature has often been used in biodiversity analysis. By assigning individuals to presumptive species, called operational taxonomic units (OTUs, these systems speed investigations into the patterning of biodiversity and enable studies that would otherwise be impossible. Although OTUs have conventionally been separated through their morphological divergence, DNA-based delineations are not only feasible, but have important advantages. OTU designation can be automated, data can be readily archived, and results can be easily compared among investigations. This study exploits these attributes to develop a persistent, species-level taxonomic registry for the animal kingdom based on the analysis of patterns of nucleotide variation in the barcode region of the cytochrome c oxidase I (COI gene. It begins by examining the correspondence between groups of specimens identified to a species through prior taxonomic work and those inferred from the analysis of COI sequence variation using one new (RESL and four established (ABGD, CROP, GMYC, jMOTU algorithms. It subsequently describes the implementation, and structural attributes of the Barcode Index Number (BIN system. Aside from a pragmatic role in biodiversity assessments, BINs will aid revisionary taxonomy by flagging possible cases of synonymy, and by collating geographical information, descriptive metadata, and images for specimens that are likely to belong to the same species, even if it is undescribed. More than 274,000 BIN web pages are now available, creating a biodiversity resource that is positioned for rapid growth.

  16. Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae) of an Ecuadorian Mountain Forest Using DNA Barcoding

    Science.gov (United States)

    Thormann, Birthe; Ahrens, Dirk; Marín Armijos, Diego; Peters, Marcell K.; Wagner, Thomas; Wägele, Johann W.

    2016-01-01

    Background Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates. Methodology/Principal Findings Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae) of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic) species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs) (n = 284–289). Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2) and 469–481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m) had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation. Conclusions/Significance Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons), the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities

  17. Nucleotide sequence database comparison for Internal Transcribed Spacer 2 genetic region DNA barcode dermatophyte routine identification.

    Science.gov (United States)

    Normand, A C; Packeu, A; Cassagne, C; Hendrickx, M; Ranque, S; Piarroux, R

    2018-02-28

    Conventional dermatophyte identification is based on morphological features. However, recent studies have proposed to use the nucleotide sequences of the rRNA ITS region as an identification barcode of all fungi, including dermatophytes. Several nucleotide databases are available to compare sequences and thus identify isolates; however, these databases often contain mislabeled sequences that impair sequence-based identification.We evaluated five of these databases on a clinical isolate panel. We selected 292 clinical dermatophyte strains that were prospectively subjected to ITS2 nucleotide sequence analysis. Sequences were analyzed against the databases, and the results were compared to clusters obtained via DNA alignment of sequence segments. The DNA tree served as the identification standard throughout the study.According to the ITS2 sequence identification, the majority of strains (255/292) belonged to the genus Trichophyton , mainly T. rubrum complex (n=184), T. interdigitale (n=40), T. tonsurans (n=26) and T. benhamiae (n=5). Other genera included Microsporum (e.g., M canis (n=21), M. audouinii (n=10) and Nannizzia gypseum (n=3), and Epidermophyton (n=3)). Species-level identification of T. rubrum complex isolates was an issue.Overall, ITS DNA sequencing is a reliable tool to identify dermatophyte species given that a comprehensive and correctly-labeled database is consulted. As many inaccurate identification results exist in the DNA databases used for this study, reference databases must be verified frequently and amended in line with the current revisions of fungal taxonomy. Before describing a new species or adding a new DNA reference to the available databases, its position in the phylogenetic tree must be verified. Copyright © 2018 American Society for Microbiology.

  18. Spider hosts (Arachnida, Araneae and wasp parasitoids (Insecta, Hymenoptera, Ichneumonidae, Ephialtini matched using DNA barcodes

    Directory of Open Access Journals (Sweden)

    Jeremy Miller

    2013-09-01

    Full Text Available The study of parasitoids and their hosts suffers from a lack of reliable taxonomic data. We use a combination of morphological characters and DNA sequences to produce taxonomic determinations that can be verified with reference to specimens in an accessible collection and DNA barcode sequences posted to the Barcode of Life database (BOLD. We demonstrate that DNA can be successfully extracted from consumed host spiders and the shed pupal case of a wasp using non-destructive methods. We found Acrodactyla quadrisculpta to be a parasitoid of Tetragnatha montana; Zatypota percontatoria and Z. bohemani both are parasitoids of Neottiura bimaculata. Zatypota anomala is a parasitoid of an as yet unidentified host in the family Dictynidae, but the host species may be possible to identify in the future as the library of reference sequences on BOLD continues to grow. The study of parasitoids and their hosts traditionally requires specialized knowledge and techniques, and accumulating data is a slow process. DNA barcoding could allow more professional and amateur naturalists to contribute data to this field of study. A publication venue dedicated to aggregating datasets of all sizes online is well suited to this model of distributed science.

  19. Monophyly, review, six new species and DNA barcode of micropterous Afromontane Afropictinus (Heteroptera: Aradidae).

    Science.gov (United States)

    Heiss, Ernst; Grebennikov, Vasily

    2016-12-15

    The micropterous East African flat bug genus Afropictinus Heiss, 1986 (Heteroptera: Aradidae: Mezirinae) is revised. In addition to the type and only known species A. congoensis (Hoberlandt, 1956) from Rwanda, four new species from Tanzania (A. castor sp. nov., A. hylas sp. nov., A. idas sp. nov., A. nauplius sp. nov.), one new species from the Democratic Republic of the Congo (A. kahuzianus sp. nov.), and one new species from Ethiopia (A. nabu sp. nov.) are described and illustrated. An identification key is presented to all seven nominal species of Afropictinus. DNA barcodes of 28 individuals of Afropictinus species were newly generated and together with 12 sequences of other Aradidae were made publicly available at dx.doi.org/10.5883/DS-AFROPICT. These mtDNA sequences were analyzed phylogenetically using Maximum Likelihood approach with 500 bootstraps. Obtained topology reveals a monophyletic Afropictinus with high statistical support (84%), although its sister group remains elusive. Both specimens of non-Tanzanian Afropictinus species included in the study (A. kahuzianus and A. nabu) were nested among Tanzanian congeners. The internal clades within Afropictinus, except for those at species and population level, had lesser statistical support. Despite of intense sampling, no Afropictinus species was found in mountain forests of geologically young (Ngorongoro-Kilimanjaro Volcanic Belt, which suggest reduced dispersal capacities.

  20. Chemical and Genetic Discrimination of Cistanches Herba Based on UPLC-QTOF/MS and DNA Barcoding

    Science.gov (United States)

    Zheng, Sihao; Jiang, Xue; Wu, Labin; Wang, Zenghui; Huang, Linfang

    2014-01-01

    Cistanches Herba (Rou Cong Rong), known as “Ginseng of the desert”, has a striking curative effect on strength and nourishment, especially in kidney reinforcement to strengthen yang. However, the two plant origins of Cistanches Herba, Cistanche deserticola and Cistanche tubulosa, vary in terms of pharmacological action and chemical components. To discriminate the plant origin of Cistanches Herba, a combined method system of chemical and genetic –UPLC-QTOF/MS technology and DNA barcoding–were firstly employed in this study. The results indicated that three potential marker compounds (isomer of campneoside II, cistanoside C, and cistanoside A) were obtained to discriminate the two origins by PCA and OPLS-DA analyses. DNA barcoding enabled to differentiate two origins accurately. NJ tree showed that two origins clustered into two clades. Our findings demonstrate that the two origins of Cistanches Herba possess different chemical compositions and genetic variation. This is the first reported evaluation of two origins of Cistanches Herba, and the finding will facilitate quality control and its clinical application. PMID:24854031

  1. DNA barcoding of selected UAE medicinal plant species: a comparative assessment of herbarium and fresh samples.

    Science.gov (United States)

    Enan, Mohamed Rizk; Palakkott, Abdul Rasheed; Ksiksi, Taoufik Saleh

    2017-01-01

    It is commonly difficult to extract and amplify DNA from herbarium samples as they are old and preserved using different compounds. In addition, such samples are subjected to the accumulation of intrinsically produced plant substances over long periods (up to hundreds of years). DNA extraction from desert flora may pause added difficulties as many contain high levels of secondary metabolites. Herbarium samples from the Biology Department (UAE University) plant collection and fresh plant samples, collected from around Al-Ain (UAE), were used in this study. The three barcode loci for the coding genes matK, rbcL and rpoC1-were amplified. Our results showed that T. terresteris , H. robustum , T. pentandrus and Z. qatarense were amplified using all three primers for both fresh and herbaium samples. Both fresh and herbarium samples of C. comosum , however, were not amplified at all, using the three primers. Herbarium samples from A. javanica , C. imbricatum , T. aucherana and Z. simplex were not amplified with any of the three primers. For fresh samples 90, 90 and 80% of the samples were amplified using matK, rbcL and rpoC1, respectively. In short, fresh samples were significantly better amplified than those from herbarium sources, using the three primers. Both fresh and herbarium samples from one species ( C. comosum ), however, were not successfully amplified. It is also concluded that the rbcL regions showed real potentials to distinguish the UAE species under investigation into the appropriate family and genus.

  2. Molecular Identification of Dendrobium Species (Orchidaceae Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study

    Directory of Open Access Journals (Sweden)

    Shangguo Feng

    2015-09-01

    Full Text Available The over-collection and habitat destruction of natural Dendrobium populations for their commercial medicinal value has led to these plants being under severe threat of extinction. In addition, many Dendrobium plants are similarly shaped and easily confused during the absence of flowering stages. In the present study, we examined the application of the ITS2 region in barcoding and phylogenetic analyses of Dendrobium species (Orchidaceae. For barcoding, ITS2 regions of 43 samples in Dendrobium were amplified. In combination with sequences from GenBank, the sequences were aligned using Clustal W and genetic distances were computed using MEGA V5.1. The success rate of PCR amplification and sequencing was 100%. There was a significant divergence between the inter- and intra-specific genetic distances of ITS2 regions, while the presence of a barcoding gap was obvious. Based on the BLAST1, nearest distance and TaxonGAP methods, our results showed that the ITS2 regions could successfully identify the species of most Dendrobium samples examined; Second, we used ITS2 as a DNA marker to infer phylogenetic relationships of 64 Dendrobium species. The results showed that cluster analysis using the ITS2 region mainly supported the relationship between the species of Dendrobium established by traditional morphological methods and many previous molecular analyses. To sum up, the ITS2 region can not only be used as an efficient barcode to identify Dendrobium species, but also has the potential to contribute to the phylogenetic analysis of the genus Dendrobium.

  3. DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors.

    Science.gov (United States)

    Ruiz-Lopez, Freddy; Wilkerson, Richard C; Conn, Jan E; McKeon, Sascha N; Levin, David M; Quiñones, Martha L; Póvoa, Marinete M; Linton, Yvonne-Marie

    2012-02-21

    Mosquitoes belonging to the Albitarsis Group (Anopheles: Nyssorhynchus) are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution. DNA barcodes (658 bp of the mtDNA Cytochrome c Oxidase--COI) were generated for 565 An. albitarsis s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P) and Neighbor-joining analysis (NJ), for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (Anopheles: Nyssorhynchus), and compare results with Bayesian analysis. Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes) resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P) was 0.009 (range 0.002-0.014), whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020-0.056), supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (An. albitarsis s.s., An. albitarsis F, An. deaneorum, An. janconnae, An. marajoara and An. oryzalimnetes), and also support species level status for two previously detected lineages--An. albitarsis G &An. albitarsis I (designated herein). In addition, we highlight the presence of a unique mitochondrial lineage close to An. deaneorum and An. marajoara (An. albitarsis H) from Rondônia and Mato

  4. DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus of Neotropical malaria vectors

    Directory of Open Access Journals (Sweden)

    Ruiz-Lopez Freddy

    2012-02-01

    Full Text Available Abstract Background Mosquitoes belonging to the Albitarsis Group (Anopheles: Nyssorhynchus are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution. Methods DNA barcodes (658 bp of the mtDNA Cytochrome c Oxidase - COI were generated for 565 An. albitarsis s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P and Neighbor-joining analysis (NJ, for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (Anopheles: Nyssorhynchus, and compare results with Bayesian analysis. Results Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P was 0.009 (range 0.002 - 0.014, whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020 - 0.056, supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (An. albitarsis s.s., An. albitarsis F, An. deaneorum, An. janconnae, An. marajoara and An. oryzalimnetes, and also support species level status for two previously detected lineages - An. albitarsis G &An. albitarsis I (designated herein. In addition, we highlight the presence of a unique mitochondrial lineage close to An. deaneorum and An

  5. Using DNA barcoding to track seafood mislabeling in Los Angeles restaurants.

    Science.gov (United States)

    Willette, Demian A; Simmonds, Sara E; Cheng, Samantha H; Esteves, Sofia; Kane, Tonya L; Nuetzel, Hayley; Pilaud, Nicholas; Rachmawati, Rita; Barber, Paul H

    2017-10-01

    Seafood mislabeling is common in both domestic and international markets. Studies on seafood fraud often report high rates of mislabeling (e.g., >70%), but these studies have been limited to a single sampling year, which means it is difficult to assess the impact of stricter governmental truth-in-labeling regulations. We used DNA barcoding to assess seafood labeling in 26 sushi restaurants in Los Angeles over 4 years. Seafood from 3 high-end grocery stores were also sampled (n = 16) in 2014. We ordered 9 common sushi fish from menus, preserved tissue samples in 95% ethanol, extracted the genomic DNA, amplified and sequenced a portion of the mtDNA COI gene, and identified the resulting sequence to known fish sequences from the National Center for Biotechnology Information nucleotide database. We compared DNA results with the U.S. Food and Drug Administration (FDA) list of acceptable market names and retail names. We considered sushi-sample labels that were inconsistent with FDA names mislabeled. Sushi restaurants had a consistently high percentage of mislabeling (47%; 151 of 323) from 2012 to 2015, yet mislabeling was not homogenous across species. Halibut, red snapper, yellowfin tuna, and yellowtail had consistently high (15%). All sampled sushi restaurants had at least one case of mislabeling. Mislabeling of sushi-grade fish from high-end grocery stores was also identified in red snapper, yellowfin tuna, and yellowtail, but at a slightly lower frequency (42%) than sushi restaurants. Despite increased regulatory measures and media attention, we found seafood mislabeling continues to be prevalent. © 2017 Society for Conservation Biology.

  6. DNA barcoding of Neotropical black flies (Diptera: Simuliidae): Species identification and discovery of cryptic diversity in Mesoamerica.

    Science.gov (United States)

    Hernández-Triana, Luis M; Chaverri, Luis G; Rodríguez- Pérez, Mario A; Prosser, Sean W J; Hebert, Paul D N; Gregory, T Ryan; Johnson, Nick

    2015-03-18

    Although correct taxonomy is paramount for disease control programs and epidemiological studies, morphology-based taxonomy of black flies is extremely difficult. In the present study, the utility of a partial sequence of the COI gene, the DNA barcoding region, for the identification of species of black flies from Mesoamerica was assessed. A total of 32 morphospecies were analyzed, one belonging to the genus Gigantodax and 31 species to the genus Simulium and six of its subgenera (Aspathia, Eusimulium, Notolepria, Psaroniocompsa, Psilopelmia, Trichodagmia). The Neighbour Joining tree (NJ) derived from the DNA barcodes grouped most specimens according to species or species groups recognized by morphotaxonomic studies. Intraspecific sequence divergences within morphologically distinct species ranged from 0.07% to 1.65%, while higher divergences (2.05%-6.13%) in species complexes suggested the presence of cryptic diversity. The existence of well-defined groups within S. callidum (Dyar & Shannon), S. quadrivittatum Loew, and S. samboni Jennings revealed the likely inclusion of cryptic species within these taxa. In addition, the suspected presence of sibling species within S. paynei Vargas and S. tarsatum Macquart was supported. DNA barcodes also showed that specimens of species that are difficult to delimit morphologically such as S. callidum, S. pseudocallidum Díaz Nájera, S. travisi Vargas, Vargas & Ramírez-Pérez, relatives of the species complexes such as S. metallicum Bellardi s.l. (e.g., S. horacioi Okazawa & Onishi, S. jobbinsi Vargas, Martínez Palacios, Díaz Nájera, and S. puigi Vargas, Martínez Palacios & Díaz Nájera), and S. virgatum Coquillett complex (e.g., S. paynei and S. tarsatum) grouped together in the NJ analysis, suggesting they represent valid species. DNA barcoding combined with a sound morphotaxonomic framework provided an effective approach for the identification of medically important black flies species in Mesoamerica and for the

  7. Potential DNA barcodes for Melilotus species based on five single loci and their combinations.

    Directory of Open Access Journals (Sweden)

    Fan Wu

    Full Text Available Melilotus, an annual or biennial herb, belongs to the tribe Trifolieae (Leguminosae and consists of 19 species. As an important green manure crop, diverse Melilotus species have different values as feed and medicine. To identify different Melilotus species, we examined the efficiency of five candidate regions as barcodes, including the internal transcribed spacer (ITS and two chloroplast loci, rbcL and matK, and two non-coding loci, trnH-psbA and trnL-F. In total, 198 individuals from 98 accessions representing 18 Melilotus species were sequenced for these five potential barcodes. Based on inter-specific divergence, we analysed sequences and confirmed that each candidate barcode was able to identify some of the 18 species. The resolution of a single barcode and its combinations ranged from 33.33% to 88.89%. Analysis of pairwise distances showed that matK+rbcL+trnL-F+trnH-psbA+ITS (MRTPI had the greatest value and rbcL the least. Barcode gap values and similarity value analyses confirmed these trends. The results indicated that an ITS region, successfully identifying 13 of 18 species, was the most appropriate single barcode and that the combination of all five potential barcodes identified 16 of the 18 species. We conclude that MRTPI is the most effective tool for Melilotus species identification. Taking full advantage of the barcode system, a clear taxonomic relationship can be applied to identify Melilotus species and enhance their practical production.

  8. Building-up of a DNA barcode library for true bugs (insecta: hemiptera: heteroptera) of Germany reveals taxonomic uncertainties and surprises.

    Science.gov (United States)

    Raupach, Michael J; Hendrich, Lars; Küchler, Stefan M; Deister, Fabian; Morinière, Jérome; Gossner, Martin M

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance 2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)).

  9. Building-up of a DNA barcode library for true bugs (insecta: hemiptera: heteroptera of Germany reveals taxonomic uncertainties and surprises.

    Directory of Open Access Journals (Sweden)

    Michael J Raupach

    Full Text Available During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera, an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance 2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae, Lygus Hahn, 1833 (Miridae, Phytocoris Fallén, 1814 (Miridae as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833 (Aradidae or Orius niger (Wolff, 1811 (Anthocoridae.

  10. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers.

    Science.gov (United States)

    Nagy, Zoltán T; Sonet, Gontran; Glaw, Frank; Vences, Miguel

    2012-01-01

    DNA barcoding of non-avian reptiles based on the cytochrome oxidase subunit I (COI) gene is still in a very early stage, mainly due to technical problems. Using a newly developed set of reptile-specific primers for COI we present the first comprehensive study targeting the entire reptile fauna of the fourth-largest island in the world, the biodiversity hotspot of Madagascar. Representatives of the majority of Madagascan non-avian reptile species (including Squamata and Testudines) were sampled and successfully DNA barcoded. The new primer pair achieved a constantly high success rate (72.7-100%) for most squamates. More than 250 species of reptiles (out of the 393 described ones; representing around 64% of the known diversity of species) were barcoded. The average interspecific genetic distance within families ranged from a low of 13.4% in the Boidae to a high of 29.8% in the Gekkonidae. Using the average genetic divergence between sister species as a threshold, 41-48 new candidate (undescribed) species were identified. Simulations were used to evaluate the performance of DNA barcoding as a function of completeness of taxon sampling and fragment length. Compared with available multi-gene phylogenies, DNA barcoding correctly assigned most samples to species, genus and family with high confidence and the analysis of fewer taxa resulted in an increased number of well supported lineages. Shorter marker-lengths generally decreased the number of well supported nodes, but even mini-barcodes of 100 bp correctly assigned many samples to genus and family. The new protocols might help to promote DNA barcoding of reptiles and the established library of reference DNA barcodes will facilitate the molecular identification of Madagascan reptiles. Our results might be useful to easily recognize undescribed diversity (i.e. novel taxa), to resolve taxonomic problems, and to monitor the international pet trade without specialized expert knowledge.

  11. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  12. Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach.

    Science.gov (United States)

    Kinyanjui, G; Khamis, F M; Mohamed, S; Ombura, L O; Warigia, M; Ekesi, S

    2016-02-01

    Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems.

  13. DNA barcoding reveals the mislabeling of fish in a popular tourist destination in Brazil.

    Science.gov (United States)

    Staffen, Clisten Fátima; Staffen, Mari Dalva; Becker, Mariana Londero; Löfgren, Sara Emelie; Muniz, Yara Costa Netto; de Freitas, Renato Hajenius Aché; Marrero, Andrea Rita

    2017-01-01

    The consumption of raw fish has increased considerably in the West, since it is said to be potentially healthier than processed fish (for containing omega 3 and 6, essential amino acids and vitamins). However this potential benefit, as well as the taste, value and even the risk of extinction are not the same for all species of fish, constituting grounds for fraud. Using the principles of the DNA barcode we revealed mislabelling of fish in Japanese restaurants and fishmarkets in Florianópolis, a popular tourist capital in Brazil. We sequenced the COI gene of 65 samples from fisheries and 80 from restaurants and diagnosed 30% of mislabeled samples in fisheries and 26% in restaurants. We discussed that frauds may have occurred for different reasons: to circumvent surveillance on threatened species; to sell fish with sizes smaller than allowed or abundant species as being a much rarer species (law of supply); to induce product consumption using species with better taste. It should be noted that some substitutions are derived from incorrect identification and are not a fraud per se ; they are due to confusion of popular names or misunderstanding by the sellers. Therefore, we suggest the implementation of a systematic regulatory program conducted by governmental agencies to reduce mislabelling in order to avoid further damage to the community (in health and financial issues) and fish stocks.

  14. Identifying the main mosquito species in China based on DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    Full Text Available Mosquitoes are insects of the Diptera, Nematocera, and Culicidae families, some species of which are important disease vectors. Identifying mosquito species based on morphological characteristics is difficult, particularly the identification of specimens collected in the field as part of disease surveillance programs. Because of this difficulty, we constructed DNA barcodes of the cytochrome c oxidase subunit 1, the COI gene, for the more common mosquito species in China, including the major disease vectors. A total of 404 mosquito specimens were collected and assigned to 15 genera and 122 species and subspecies on the basis of morphological characteristics. Individuals of the same species grouped closely together in a Neighborhood-Joining tree based on COI sequence similarity, regardless of collection site. COI gene sequence divergence was approximately 30 times higher for species in the same genus than for members of the same species. Divergence in over 98% of congeneric species ranged from 2.3% to 21.8%, whereas divergence in conspecific individuals ranged from 0% to 1.67%. Cryptic species may be common and a few pseudogenes were detected.

  15. DNA barcoding reveals polymorphism in the pygmy grasshopper Tetrix bolivari (Orthoptera, Tetrigidae).

    Science.gov (United States)

    Zhao, Ling; Lin, Li-Liang; Zheng, Zhe-Min

    2016-01-01

    Many pygmy grasshopper species exhibit colour-marking polymorphism. However, this polymorphism in some species, such as Tetrix bolivari, is almost unknown. The aim of this work is to identify using DNA barcoding the colour-marking polymorphic morphs of this pygmy grasshopper species collected from both grass and sand microhabitats. Analysis by NJ clustering and pairwise distances indicated that all specimens collected showing colour-marking polymorphism are species of Tetrix bolivari. Haplotype network construction showed ten different haplotypes from a total of 57 Tetrix bolivari individuals with H1(82.5%) being the most common type and it also displayed low divergence within Tetrix bolivari population. The haplotype analyses were consistent with the NJ clustering. Our field census showed the frequency of Tetrix bolivari morphs differed significantly, with the rank order of morphs (from high to low) typeA1, type B1, type A2, type A3, type A4, type A5, type A6, type A7, type B2, type B3, and type B4. The most common type A morphs were without contrasting markings, while the rarer type B morphs have contrasting white markings. We suggest that type B morphs have greater camouflage effects against natural backgrounds such as grass or sand than type A morphs. Both our field census and haplotype analysis revealed that type A has higher frequency and more haplotypes than type B.

  16. DNA barcoding reveals the mislabeling of fish in a popular tourist destination in Brazil

    Directory of Open Access Journals (Sweden)

    Clisten Fátima Staffen

    2017-11-01

    Full Text Available The consumption of raw fish has increased considerably in the West, since it is said to be potentially healthier than processed fish (for containing omega 3 and 6, essential amino acids and vitamins. However this potential benefit, as well as the taste, value and even the risk of extinction are not the same for all species of fish, constituting grounds for fraud. Using the principles of the DNA barcode we revealed mislabelling of fish in Japanese restaurants and fishmarkets in Florianópolis, a popular tourist capital in Brazil. We sequenced the COI gene of 65 samples from fisheries and 80 from restaurants and diagnosed 30% of mislabeled samples in fisheries and 26% in restaurants. We discussed that frauds may have occurred for different reasons: to circumvent surveillance on threatened species; to sell fish with sizes smaller than allowed or abundant species as being a much rarer species (law of supply; to induce product consumption using species with better taste. It should be noted that some substitutions are derived from incorrect identification and are not a fraud per se; they are due to confusion of popular names or misunderstanding by the sellers. Therefore, we suggest the implementation of a systematic regulatory program conducted by governmental agencies to reduce mislabelling in order to avoid further damage to the community (in health and financial issues and fish stocks.

  17. Genetic characterization of Bactrocera fruit flies (Diptera: Tephritidae) from Northeastern India based on DNA barcodes.

    Science.gov (United States)

    Manger, Arpana; Behere, G T; Firake, D M; Sharma, Bhagawati; Deshmukh, N A; Firake, P D; Azad Thakur, N S; Ngachan, S V

    2017-07-31

    The Northeastern region of India, one of the mega biodiversity hot spots has enormous potential for the production of fruits and vegetables. Fruit flies of the genus Bactrocera Macquart are important pests of fruits and vegetables, and one of the limiting factors in successful production of these commodities. The relationship among some of the species is unclear due to their high molecular and morphological similarities. Moreover, due to the significant morphological resemblance between fruit fly species, reliable identification is very difficult task. We genetically characterized 10 fruit fly species of the genus Bactrocera by using standard DNA barcoding region of COI gene. The characterization and identification of eight species were straight forward. This study was unable to establish the molecular identity of Bactrocera sp. 2. Within the 547 bp region of partial COI gene, there were 157 variable sites of which 110 sites were parsimony informative, 153 were synonymous substitutions and 4 were non-synonymous substitutions. The estimate of genetic divergence among the ten species was in the range of 0-21.9% and the pairwise genetic distance of Bactrocera. (Bactrocera) dorsalis (Hendel) with B. (B.) carambolae was only 0.7%. Phylogenetic analysis formed separate clades for fruit and vegetable infesting fruit flies. B. (B.) aethriobasis Hardy, B. (B.) thailandica and B. (B.) tuberculata (Bezzi) have been reported for the first time from the Northeastern India. The information generated from this study would certainly have implications for pest management, taxonomy, quarantine and trade.

  18. Quality Control of the Traditional Patent Medicine Yimu Wan Based on SMRT Sequencing and DNA Barcoding

    Science.gov (United States)

    Jia, Jing; Xu, Zhichao; Xin, Tianyi; Shi, Linchun; Song, Jingyuan

    2017-01-01

    Substandard traditional patent medicines may lead to global safety-related issues. Protecting consumers from the health risks associated with the integrity and authenticity of herbal preparations is of great concern. Of particular concern is quality control for traditional patent medicines. Here, we establish an effective approach for verifying the biological composition of traditional patent medicines based on single-molecule real-time (SMRT) sequencing and DNA barcoding. Yimu Wan (YMW), a classical herbal prescription recorded in the Chinese Pharmacopoeia, was chosen to test the method. Two reference YMW samples were used to establish a standard method for analysis, which was then applied to three different batches of commercial YMW samples. A total of 3703 and 4810 circular-consensus sequencing (CCS) reads from two reference and three commercial YMW samples were mapped to the ITS2 and psbA-trnH regions, respectively. Moreover, comparison of intraspecific genetic distances based on SMRT sequencing data with reference data from Sanger sequencing revealed an ITS2 and psbA-trnH intergenic spacer that exhibited high intraspecific divergence, with the sites of variation showing significant differences within species. Using the CCS strategy for SMRT sequencing analysis was adequate to guarantee the accuracy of identification. This study demonstrates the application of SMRT sequencing to detect the biological ingredients of herbal preparations. SMRT sequencing provides an affordable way to monitor the legality and safety of traditional patent medicines. PMID:28620408

  19. DNA barcoding implicates 23 species and four orders as potential pollinators of Chinese knotweed (Persicaria chinensis) in Peninsular Malaysia.

    Science.gov (United States)

    Wong, M-M; Lim, C-L; Wilson, J-J

    2015-08-01

    Chinese knotweed (Persicaria chinensis) is of ecological and economic importance as a high-risk invasive species and a traditional medicinal herb. However, the insects associated with P. chinensis pollination have received scant attention. As a widespread invasive plant we would expect P. chinensis to be associated with a diverse group of insect pollinators, but lack of taxonomic identification capacity is an impediment to confirm this expectation. In the present study we aimed to elucidate the insect pollinators of P. chinensis in peninsular Malaysia using DNA barcoding. Forty flower visitors, representing the range of morphological diversity observed, were captured at flowers at Ulu Kali, Pahang, Malaysia. Using Automated Barcode Gap Discovery, 17 morphospecies were assigned to 23 species representing at least ten families and four orders. Using the DNA barcode library (BOLD) 30% of the species could be assigned a species name, and 70% could be assigned a genus name. The insects visiting P. chinensis were broadly similar to those previously reported as visiting Persicaria japonica, including honey bees (Apis), droneflies (Eristalis), blowflies (Lucilia) and potter wasps (Eumedes), but also included thrips and ants.

  20. Development of Chloroplast and Nuclear DNA Markers for Chinese Oaks (Quercus Subgenus Quercus and Assessment of Their Utility as DNA Barcodes

    Directory of Open Access Journals (Sweden)

    Jia Yang

    2017-05-01

    Full Text Available Chloroplast DNA (cpDNA is frequently used for species demography, evolution, and species discrimination of plants. However, the lack of efficient and universal markers often brings particular challenges for genetic studies across different plant groups. In this study, chloroplast genomes from two closely related species (Quercus rubra and Castanea mollissima in Fagaceae were compared to explore universal cpDNA markers for the Chinese oak species in Quercus subgenus Quercus, a diverse species group without sufficient molecular differentiation. With the comparison, nine and 14 plastid markers were selected as barcoding and phylogeographic candidates for the Chinese oaks. Five (psbA-trnH, matK-trnK, ycf3-trnS, matK, and ycf1 of the nine plastid candidate barcodes, with the addition of newly designed ITS and a single-copy nuclear gene (SAP, were then tested on 35 Chinese oak species employing four different barcoding approaches (genetic distance-, BLAST-, character-, and tree-based methods. The four methods showed different species identification powers with character-based method performing the best. Of the seven barcodes tested, a barcoding gap was absent in all of them across the Chinese oaks, while ITS and psbA-trnH provided the highest species resolution (30.30% with the character- and BLAST-based methods, respectively. The six-marker combination (psbA-trnH + matK-trnK + matK + ycf1 + ITS + SAP showed the best species resolution (84.85% using the character-based method for barcoding the Chinese oaks. The barcoding results provided additional implications for taxonomy of the Chinese oaks in subg. Quercus, basically identifying three major infrageneric clades of the Chinese oaks (corresponding to Groups Quercus, Cerris, and Ilex referenced to previous phylogenetic classification of Quercus. While the morphology-based allocations proposed for the Chinese oaks in subg. Quercus were challenged. A low variation rate of the chloroplast genome, and

  1. DNA barcoding of Rhododendron (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains.

    Science.gov (United States)

    Yan, Li-Jun; Liu, Jie; Möller, Michael; Zhang, Lin; Zhang, Xue-Mei; Li, De-Zhu; Gao, Lian-Ming

    2015-07-01

    The Himalaya-Hengduan Mountains encompass two global biodiversity hotspots with high levels of biodiversity and endemism. This area is one of the diversification centres of the genus Rhododendron, which is recognized as one of the most taxonomically challenging plant taxa due to recent adaptive radiations and rampant hybridization. In this study, four DNA barcodes were evaluated on 531 samples representing 173 species of seven sections of four subgenera in Rhododendron, with a high sampling density from the Himalaya-Hengduan Mountains employing three analytical methods. The varied approaches (nj, pwg and blast) had different species identification powers with blast performing best. With the pwg analysis, the discrimination rates for single barcodes varied from 12.21% to 25.19% with ITS Himalaya-Hengduan Mountains. © 2014 John Wiley & Sons Ltd.

  2. DNA barcoding unmasks overlooked diversity improving knowledge on the composition and origins of the Churchill algal flora.

    Science.gov (United States)

    Saunders, Gary W; McDevit, Daniel C

    2013-03-16

    Sampling expeditions to Churchill in the Canadian subarctic were completed with the aim of compiling a molecular-assisted survey of the macroalgal flora (seaweeds) for comparison to published accounts for this area, which are based on morphological identifications. Further, because the Churchill region was covered by ice until recently (~10,000 before present), the current algal flora has had to migrate from adjacent waters into that region. We used our DNA barcode data to predict the relative contribution of the North Atlantic and North Pacific floras (Likely Source Region) in repopulating the Churchill region following the most recent glacial retreat. We processed 422 collections representing ~50 morpho-species, which is the approximate number reported for this region, and generated DNA barcode data for 346 of these. In contrast to the morpho-species count, we recovered 57 genetic groups indicating overlooked species (this despite failing to generate barcode data for six of the ~50 morpho-species). However, we additionally uncovered numerous inconsistencies between the species that are currently listed in the Churchill flora (again as a result of overlooked species diversity, but combined with taxonomic confusion) and those identified following our molecular analyses including eight new records and another 17 genetic complexes in need of further study. Based on a comparison of DNA barcode data from the Churchill flora to collections from the contiguous Atlantic and Pacific floras we estimate that minimally 21% (possibly as much as 44%) of the Churchill flora was established by migration from the Pacific region with the balance of species arriving from the Atlantic (predominantly North American populations) following the last glacial retreat. Owing to difficulties associated with the morphological identification of macroalgae, our results indicate that current comprehension of the Canadian Arctic flora is weak. We consider that morphology-based field

  3. When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths

    Directory of Open Access Journals (Sweden)

    Hajibabaei Mehrdad

    2011-08-01

    Full Text Available Abstract Background When a specimen belongs to a species not yet represented in DNA barcode reference libraries there is disagreement over the effectiveness of using sequence comparisons to assign the query accurately to a higher taxon. Library completeness and the assignment criteria used have been proposed as critical factors affecting the accuracy of such assignments but have not been thoroughly investigated. We explored the accuracy of assignments to genus, tribe and subfamily in the Sphingidae, using the almost complete global DNA barcode reference library (1095 species available for this family. Costa Rican sphingids (118 species, a well-documented, diverse subset of the family, with each of the tribes and subfamilies represented were used as queries. We simulated libraries with different levels of completeness (10-100% of the available species, and recorded assignments (positive or ambiguous and their accuracy (true or false under six criteria. Results A liberal tree-based criterion assigned 83% of queries accurately to genus, 74% to tribe and 90% to subfamily, compared to a strict tree-based criterion, which assigned 75% of queries accurately to genus, 66% to tribe and 84% to subfamily, with a library containing 100% of available species (but excluding the species of the query. The greater number of true positives delivered by more relaxed criteria was negatively balanced by the occurrence of more false positives. This effect was most sharply observed with libraries of the lowest completeness where, for example at the genus level, 32% of assignments were false positives with the liberal criterion versus Conclusions Our results suggest that when using a strict tree-based criterion for higher taxon assignment with DNA barcodes, the likelihood of assigning a query a genus name incorrectly is very low, if a genus name is provided it has a high likelihood of being accurate, and if no genus match is available the query can nevertheless be

  4. Sliding window analyses for optimal selection of mini-barcodes, and application to 454-pyrosequencing for specimen identification from degraded DNA.

    Directory of Open Access Journals (Sweden)

    Stephane Boyer

    Full Text Available DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI is over 600 base pairs (bp, amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R. This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey DNA from 46 landsnail (predator faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1 when dealing with degraded DNA for which only small fragments can be amplified, (2 for cases where no consensus has yet been reached on the appropriate barcode gene, or (3 to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation.

  5. Sliding window analyses for optimal selection of mini-barcodes, and application to 454-pyrosequencing for specimen identification from degraded DNA.

    Science.gov (United States)

    Boyer, Stephane; Brown, Samuel D J; Collins, Rupert A; Cruickshank, Robert H; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D

    2012-01-01

    DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation.

  6. DNA barcoding the Dioscorea in China, a vital group in the evolution of monocotyledon: use of matK gene for species discrimination.

    Science.gov (United States)

    Sun, Xiao-Qin; Zhu, Ying-Jie; Guo, Jian-Lin; Peng, Bin; Bai, Ming-Ming; Hang, Yue-Yu

    2012-01-01

    Dioscorea is an important plant genus in terms of food supply and pharmaceutical applications. However, its classification and identification are controversial. DNA barcoding is a recent aid to taxonomic identification and uses a short standardized DNA region to discriminate plant species. In this study, the applicability of three candidate DNA barcodes (rbcL, matK, and psbA-trnH) to identify species within Dioscorea was tested. One-hundred and forty-eight individual plant samples of Dioscorea, encompassing 38 species, seven varieties and one subspecies, representing majority species distributed in China of this genus, were collected from its main distributing areas. Samples were assessed by PCR amplification, sequence quality, extent of specific genetic divergence, DNA barcoding gap, and the ability to discriminate between species. matK successfully identified 23.26% of all species, compared with 9.30% for rbcL and 11.63% for psbA-trnH. Therefore, matK is recommended as the best DNA barcoding candidate. We found that the combination of two or three loci achieved a higher success rate of species discrimination than one locus alone. However, experimental cost would be much higher if two or three loci, rather than a single locus, were assessed. We conclude that matK is a strong, although not perfect, candidate as a DNA barcode for Dioscorea identification. This assessment takes into account both its ability for species discrimination and the cost of experiments.

  7. A new way to contemplate Darwin's tangled bank: how DNA barcodes are reconnecting biodiversity science and biomonitoring.

    Science.gov (United States)

    Hajibabaei, Mehrdad; Baird, Donald J; Fahner, Nicole A; Beiko, Robert; Golding, G Brian

    2016-09-05

    Encompassing the breadth of biodiversity in biomonitoring programmes has been frustrated by an inability to simultaneously identify large numbers of species accurately and in a timely fashion. Biomonitoring infers the state of an ecosystem from samples collected and identified using the best available taxonomic knowledge. The advent of DNA barcoding has now given way to the extraction of bulk DNA from mixed samples of organisms in environmental samples through the development of high-throughput sequencing (HTS). This DNA metabarcoding approach allows an unprecedented view of the true breadth and depth of biodiversity, but its adoption poses two important challenges. First, bioinformatics techniques must simultaneously perform complex analyses of large datasets and translate the results of these analyses to a range of users. Second, the insights gained from HTS need to be amalgamated with concepts such as Linnaean taxonomy and indicator species, which are less comprehensive but more intuitive. It is clear that we are moving beyond proof-of-concept studies to address the challenge of implementation of this new approach for environmental monitoring and regulation. Interpreting Darwin's 'tangled bank' through a DNA lens is now a reality, but the question remains: how can this information be generated and used reliably, and how does it relate to accepted norms in ecosystem study?This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  8. Comparison of manual and semi-automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae).

    Science.gov (United States)

    Gutiérrez-López, Rafael; Martínez-de la Puente, Josué; Gangoso, Laura; Soriguer, Ramón C; Figuerola, Jordi

    2015-06-01

    The barcoding of life initiative provides a universal molecular tool to distinguish animal species based on the amplification and sequencing of a fragment of the subunit 1 of the cytochrome oxidase (COI) gene. Obtaining good quality DNA for barcoding purposes is a limiting factor, especially in studies conducted on small-sized samples or those requiring the maintenance of the organism as a voucher. In this study, we compared the number of positive amplifications and the quality of the sequences obtained using DNA extraction methods that also differ in their economic costs and time requirements and we applied them for the genetic characterization of louse flies. Four DNA extraction methods were studied: chloroform/isoamyl alcohol, HotShot procedure, Qiagen DNeasy(®) Tissue and Blood Kit and DNA Kit Maxwell(®) 16LEV. All the louse flies were morphologically identified as Ornithophila gestroi and a single COI-based haplotype was identified. The number of positive amplifications did not differ significantly among DNA extraction procedures. However, the quality of the sequences was significantly lower for the case of the chloroform/isoamyl alcohol procedure with respect to the rest of methods tested here. These results may be useful for the genetic characterization of louse flies, leaving most of the remaining insect as a voucher. © 2015 The Society for Vector Ecology.

  9. Efficacy of the core DNA barcodes in identifying processed and poorly conserved plant materials commonly used in South African traditional medicine

    Directory of Open Access Journals (Sweden)

    Ledile Mankga

    2013-12-01

    Full Text Available Medicinal plants cover a broad range of taxa, which may be phylogenetically less related but morphologically very similar. Such morphological similarity between species may lead to misidentification and inappropriate use. Also the substitution of a medicinal plant by a cheaper alternative (e.g. other non-medicinal plant species, either due to misidentification, or deliberately to cheat consumers, is an issue of growing concern. In this study, we used DNA barcoding to identify commonly used medicinal plants in South Africa. Using the core plant barcodes, matK and rbcLa, obtained from processed and poorly conserved materials sold at the muthi traditional medicine market, we tested efficacy of the barcodes in species discrimination. Based on genetic divergence, PCR amplification efficiency and BLAST algorithm, we revealed varied discriminatory potentials for the DNA barcodes. In general, the barcodes exhibited high discriminatory power, indicating their effectiveness in verifying the identity of the most common plant species traded in South African medicinal markets. BLAST algorithm successfully matched 61% of the queries against a reference database, suggesting that most of the information supplied by sellers at traditional medicinal markets in South Africa is correct. Our findings reinforce the utility of DNA barcoding technique in limiting false identification that can harm public health.

  10. DNA barcoding of Rhodiola (crassulaceae: a case study on a group of recently diversified medicinal plants from the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Zhang

    Full Text Available DNA barcoding, the identification of species using one or a few short standardized DNA sequences, is an important complement to traditional taxonomy. However, there are particular challenges for barcoding plants, especially for species with complex evolutionary histories. We herein evaluated the utility of five candidate sequences - rbcL, matK, trnH-psbA, trnL-F and the internal transcribed spacer (ITS - for barcoding Rhodiola species, a group of high-altitude plants frequently used as adaptogens, hemostatics and tonics in traditional Tibetan medicine. Rhodiola was suggested to have diversified rapidly recently. The genus is thus a good model for testing DNA barcoding strategies for recently diversified medicinal plants. This study analyzed 189 accessions, representing 47 of the 55 recognized Rhodiola species in the Flora of China treatment. Based on intraspecific and interspecific divergence and degree of monophyly statistics, ITS was the best single-locus barcode, resolving 66% of the Rhodiola species. The core combination rbcL+matK resolved only 40.4% of them. Unsurprisingly, the combined use of all five loci provided the highest discrimination power, resolving 80.9% of the species. However, this is weaker than the discrimination power generally reported in barcoding studies of other plant taxa. The observed complications may be due to the recent diversification, incomplete lineage sorting and reticulate evolution of the genus. These processes are common features of numerous plant groups in the high-altitude regions of the Qinghai-Tibetan Plateau.

  11. Sequence-based molecular phylogenetics and phylogeography of the American box turtles (Terrapene spp.) with support from DNA barcoding.

    Science.gov (United States)

    Martin, Bradley T; Bernstein, Neil P; Birkhead, Roger D; Koukl, Jim F; Mussmann, Steven M; Placyk, John S

    2013-07-01

    The classification of the American box turtles (Terrapene spp.) has remained enigmatic to systematists. Previous comprehensive phylogenetic studies focused primarily on morphology. The goal of this study was to re-assess the classification of Terrapene spp. by obtaining DNA sequence data from a broad geographic range and from all four recognized species and 11 subspecies within the genus. Tissue samples were obtained for all taxa except for Terrapene nelsoni klauberi. DNA was extracted, and the mitochondrial DNA (mtDNA) cytochrome b (Cytb) and nuclear DNA (nucDNA) glyceraldehyde-3-phosphate-dehydrogenase (GAPD) genes were amplified via polymerase chain reaction and sequenced. In addition, the mtDNA gene commonly used for DNA barcoding (cytochrome oxidase c subunit I; COI) was amplified and sequenced to calculate pairwise percent DNA sequence divergence comparisons for each Terrapene taxon. The sequence data were analyzed using maximum likelihood and Bayesian phylogenetic inference, a molecular clock, AMOVAs, SAMOVAs, haplotype networks, and pairwise percent sequence divergence comparisons. Terrapene carolina mexicana and T. c. yucatana formed a monophyletic clade with T. c. triunguis, and this clade was paraphyletic to the rest of T. carolina. Terrapene ornata ornata and T. o. luteola lacked distinction phylogenetically, and Terrapene nelsoni was confirmed to be the sister taxon of T. ornata. Terrapene c. major, T. c. bauri, and Terrapene coahuila were not well resolved for some of the analyses. The DNA barcoding results indicated that all taxa were different species (>2% sequence divergence) except for T. c. triunguis - T. c. mexicana and T. o. ornata - T. o. luteola. The results suggest that T. c. triunguis should be elevated to species status (Terrapene mexicana), and mexicana and yucatana should be included in this group as subspecies. In addition, T. o. ornata and T. o. luteola should not be considered separate subspecies. The DNA barcoding data support these

  12. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers.

    Science.gov (United States)

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), "best close match" (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our

  13. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Mofolusho O. Falade

    2016-06-01

    Full Text Available DNA barcoding has been adopted as a gold standard rapid, precise and unifying identification system for animal species and provides a database of genetic sequences that can be used as a tool for universal species identification. In this study, we employed mitochondrial genes 16S rRNA (16S and cytochrome oxidase subunit I (COI for the identification of some Nigerian freshwater catfish and Tilapia species. Approximately 655 bp were amplified from the 5′ region of the mitochondrial cytochrome C oxidase subunit I (COI gene whereas 570 bp were amplified for the 16S rRNA gene. Nucleotide divergences among sequences were estimated based on Kimura 2-parameter distances and the genetic relationships were assessed by constructing phylogenetic trees using the neighbour-joining (NJ and maximum likelihood (ML methods. Analyses of consensus barcode sequences for each species, and alignment of individual sequences from within a given species revealed highly consistent barcodes (99% similarity on average, which could be compared with deposited sequences in public databases. The nucleotide distance between species belonging to different genera based on COI ranged from 0.17% between Sarotherodon melanotheron and Coptodon zillii to 0.49% between Clarias gariepinus and C. zillii, indicating that S. melanotheron and C. zillii are closely related. Based on the data obtained, the utility of COI gene was confirmed in accurate identification of three fish species from Southwest Nigeria.

  14. Reconstructing a herbivore's diet using a novel rbcL DNA mini-barcode for plants.

    Science.gov (United States)

    Erickson, David L; Reed, Elizabeth; Ramachandran, Padmini; Bourg, Norman A; McShea, William J; Ottesen, Andrea

    2017-05-01

    Next Generation Sequencing and the application of metagenomic analyses can be used to answer questions about animal diet choice and study the consequences of selective foraging by herbivores. The quantification of herbivore diet choice with respect to native versus exotic plant species is particularly relevant given concerns of invasive species establishment and their effects on ecosystems. While increased abundance of white-tailed deer ( Odocoileus virginianus ) appears to correlate with increased incidence of invasive plant species, data supporting a causal link is scarce. We used a metabarcoding approach (PCR amplicons of the plant rbc L gene) to survey the diet of white-tailed deer (fecal samples), from a forested site in Warren County, Virginia with a comprehensive plant species inventory and corresponding reference collection of plant barcode and chloroplast sequences. We sampled fecal pellet piles and extracted DNA from 12 individual deer in October 2014. These samples were compared to a reference DNA library of plant species collected within the study area. For 72 % of the amplicons, we were able to assign taxonomy at the species level, which provides for the first time-sufficient taxonomic resolution to quantify the relative frequency at which native and exotic plant species are being consumed by white-tailed deer. For each of the 12 individual deer we collected three subsamples from the same fecal sample, resulting in sequencing 36 total samples. Using Qiime, we quantified the plant DNA found in all 36 samples, and found that variance within samples was less than variance between samples ( F  = 1.73, P  = 0.004), indicating additional subsamples may not be necessary. Species level diversity ranged from 60 to 93 OTUs per individual and nearly 70 % of all plant sequences recovered were from native plant species. The number of species detected did reduce significantly (range 4-12) when we excluded species whose OTU composed plants inventoried

  15. Sequence analysis of mtDNA COI barcode region revealed three haplotypes within Culex pipiens assemblage.

    Science.gov (United States)

    Koosha, Mona; Oshaghi, Mohammad Ali; Sedaghat, Mohammad Mehdi; Vatandoost, Hassan; Azari-Hamidian, Shahyad; Abai, Mohammad Reza; Hanafi-Bojd, Ahmad Ali; Mohtarami, Fatemeh

    2017-10-01

    Members of the Culex (Culex) pipiens assemblage are known vectors of deadly encephalitides, periodic filariasis, and West Nile virus throughout the world. However, members of this assemblage are morphologically indistinguishable or hard to distinguish and play distinct roles in transmission of the diseases. The current study aimed to provide further evidence on utility of the two most popular nuclear (ITS2-rDNA) and mitochondrial (COI barcode region) genetic markers to identify members of the assemblage. Culex pipiens assemblage specimens from different climate zones of Iran were collected and identified to species level based on morphological characteristics. Nucleotide sequences of the loci for the specimens plus available data in the GenBank were analyzed to find species specific genetic structures useful for diagnosis purposes. ITS2 region was highly divergent within species or populations suggesting lack of consistency as a reliable molecular marker. In contrast, sequence analysis of 710 bp of COI gene revealed three fixed haplotypes named here "C, T, H" within the assemblage which can be distinguished by HaeIII and AluI enzymes. There were a correlation between the haplotypes and the world climate regions, where the haplotypes H/T and C are present mainly in temperate and tropical regions of the world, respectively. In the New world, Australia, and Japan only haplotype H is found. In conjunction between tropical and temperate regions such Iran, China, and Turkey, a mix of C/H or C/H/T are present. Although, the haplotypes are not strictly species-specific, however, Cx. quinquefasciatus was mainly of haplotype C. Due to the lack of mating barrier and questionable taxonomic situation of the complex members, the mentioned haplotypes in combination with other morphological and molecular characters might be used to address the genetic structure of the studied populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Amy E Maas

    Full Text Available Thecosome pteropods (Mollusca, Gastropoda are an ecologically important, diverse, and ubiquitous group of holoplanktonic animals that are the focus of intense research interest due to their external aragonite shell and vulnerability to ocean acidification. Characterizing the response of these animals to low pH and other environmental stressors has been hampered by continued uncertainty in their taxonomic identification. An example of this confusion in species assignment is found in the genus Diacavolinia. All members of this genus were originally indentified as a single species, Cavolinia longirostris, but over the past fifty years the taxonomy has been revisited multiple times; currently the genus comprises 22 different species. This study examines five species of Diacavolinia, including four sampled in the Northeast Atlantic (78 individuals and one from the Eastern tropical North Pacific (15 individuals. Diacavolina were identified to species based on morphological characteristics according to the current taxonomy, photographed, and then used to determine the sequence of the "DNA barcoding" region of the cytochrome c oxidase subunit I (COI. Specimens from the Atlantic, despite distinct differences in shell morphology, showed polyphyly and a genetic divergence of <3% (K2P distance whereas the Pacific and Atlantic samples were more distant (≈ 19%. Comparisons of Diacavolinia spp. with other Cavolinia spp. reveal larger distances (≈ 24%. These results indicate that specimens from the Atlantic comprise a single monophyletic species and suggest possible species-level divergence between Atlantic and Pacific populations. The findings support the maintenance of Diacavolinia as a separate genus, yet emphasize the inadequacy of our current taxonomic understanding of pteropods. They highlight the need for accurate species identifications to support estimates of biodiversity, range extent and natural exposure of these planktonic calcifiers to

  17. Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding.

    Science.gov (United States)

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Del Serrone, Paola; Benelli, Giovanni

    2017-05-01

    Culex quinquefasciatus (Diptera: Culicidae) is a vector of many pathogens and parasites of humans, as well as domestic and wild animals. In urban and semi-urban Asian countries, Cx. quinquefasciatus is a main vector of nematodes causing lymphatic filariasis. In the African region, it vectors the Rift Valley fever virus, while in the USA it transmits West Nile, St. Louis encephalitis and Western equine encephalitis virus. In this study, DNA barcoding was used to explore the genetic variation of Cx. quinquefasciatus populations from 88 geographical regions. We presented a comprehensive approach analyzing the effectiveness of two gene markers, i.e. CO1 and 16S rRNA. The high threshold genetic divergence of CO1 (0.47%) gene was reported as an ideal marker for molecular identification of this mosquito vector. Furthermore, null substitutions were lower in CO1 if compared to 16S rRNA, which influenced its differentiating potential among Indian haplotypes. NJ tree was well supported with high branch values for CO1 gene than 16S rRNA, indicating ideal genetic differentiation among haplotypes. TCS haplotype network revealed 14 distinct clusters. The intra- and inter-population polymorphism were calculated among the global and Indian Cx. quinquefasciatus lineages. The genetic diversity index Tajima' D showed negative values for all the 4 intra-population clusters (G2-4, G10). Fu's FS showed negative value for G10 cluster, which was significant and indicated recent population expansion. However, the G2-G4 (i.e. Indian lineages) had positive values, suggesting a bottleneck effect. Overall, our research firstly shed light on the genetic differences among the haplotypes of Cx. quinquefasciatus species complex, adding basic knowledge to the molecular ecology of this important mosquito vector. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods.

    Directory of Open Access Journals (Sweden)

    Ai-bing Zhang

    Full Text Available Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish and two representing non-coding ITS barcodes (rust fungi and brown algae. Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ and Maximum likelihood (ML methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40% for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37% for 1094 brown algae queries, both using ITS barcodes.

  19. Selection of DNA barcoding loci and phylogenetic study of a medicinal and endemic plant, Plectranthus asirensis J.R.I. Wood from Saudi Arabia.

    Science.gov (United States)

    Al-Qurainy, F; Khan, S; Nadeem, M; Tarroum, M; Al-Ameri, A

    2014-08-07

    Genuine medicinal plant materials are very important for potential crude drug production, which can be used to cure many human diseases. DNA barcoding of medicinal plants is an effective way to identify adulterated or contaminated market materials, but it can be quite challenging to generate barcodes and analyze the data to determine discrimination power. The molecular phylogeny of a plant species infers its relationship to other species. We screened the various loci of the nuclear and chloroplast genome for the barcoding of Plectranthus asirensis, an endemic plant of Saudi Arabia. The chloroplast genome loci such as rps16 and rpoB showed maximum similarity to taxa of the same and other genera via BLAST of the National Center for Biotechnology Information (NCBI) GenBank database; hence, they are less preferable for the development of a DNA barcode. However, nrDNA-ITS and chloroplast loci rbcL and rpoC1 showed less similarity via BLAST of the NCBI GenBank database; therefore, they could be used for DNA barcoding for this species.

  20. Bioinformatic analysis of barcoded cDNA libraries for small RNA profiling by next-generation sequencing.

    Science.gov (United States)

    Farazi, Thalia A; Brown, Miguel; Morozov, Pavel; Ten Hoeve, Jelle J; Ben-Dov, Iddo Z; Hovestadt, Volker; Hafner, Markus; Renwick, Neil; Mihailović, Aleksandra; Wessels, Lodewyk F A; Tuschl, Thomas

    2012-10-01

    The characterization of post-transcriptional gene regulation by small regulatory RNAs of 20-30 nt length, particularly miRNAs and piRNAs, has become a major focus of research in recent years. A prerequisite for the characterization of small RNAs is their identification and quantification across different developmental stages, normal and diseased tissues, as well as model cell lines. Here we present a step-by-step protocol for the bioinformatic analysis of barcoded cDNA libraries for small RNA profiling generated by Illumina sequencing, thereby facilitating miRNA and other small RNA profiling of large sample collections. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species records for British Columbia.

    Science.gov (United States)

    Erasmus, Daniel J; Yurkowski, Emily A; Huber, Dezene P W

    2018-01-01

    Anthropogenic pressures on aquatic systems have placed a renewed focus on biodiversity of aquatic macroinvertebrates. By combining classical taxonomy and DNA barcoding we identified 39 species of caddisflies from the Crooked River, a unique and sensitive system in the southernmost arctic watershed in British Columbia. Our records include three species never before recorded in British Columbia: Lepidostoma togatum (Lepidostomatidae), Ceraclea annulicornis (Leptoceridae), and possibly Cheumatopsyche harwoodi (Hydropsychidae). Three other specimens may represent new occurrence records and a number of other records seem to be substantial observed geographic range expansions within British Columbia.

  2. A systematic study on Endotribelos Grodhaus (Diptera: Chironomidae) from Brazil including DNA barcoding to link males and females.

    Science.gov (United States)

    Trivinho-Strixino, Susana; Pepinelli, Mateus

    2015-03-18

    Six new species of Endotribelos from Brazil are described and illustrated as male, female, pupa and larva: E. bicolor sp. n., E. fulvidus sp. n., E. jaragua sp. n., E. jiboia sp. n., E. semibruneus sp. n. and E. sublettei sp. n. The female of E. calophylli Roque & Trivinho-Strixino and the larvae of four unknown morphotypes are also described. Keys including males and larvae of all known species of Endotribelos are provided. Adults' males and females from five species were linked using DNA Barcoding mtCOI sequences.

  3. An economic analysis of private incentives to adopt DNA barcoding technology for fish species authentication in Canada.

    Science.gov (United States)

    Ugochukwu, Albert I; Hobbs, Jill E; Phillips, Peter W B; Gray, Richard

    2015-12-01

    The increasing spate of species substitution and mislabelling in fish markets has become a concern to the public and a challenge to both the food industry and regulators. Species substitution and mislabelling within fish supply chains occurs because of price incentives to misrepresent products for economic gain. Emerging authenticity technologies, such as the DNA barcoding technology that has been used to identify plants and animal (particularly fish) species through DNA sequencing, offer a potential technological solution to this information problem. However, the adoption of these authenticity technologies depends also on economic factors. The present study uses economic welfare analysis to examine the effects of species substitution and mislabelling in fish markets, and examines the feasibility of the technology for a typical retail store in Canada. It is assumed that increased accuracy of the technology in detecting fraud and enforcement of legal penalties and other associated costs would be likely to discourage cheating. Empirical results suggest that DNA barcoding technology would be feasible presently for a typical retail store only if authentication is done in a third party laboratory, as it may not be feasible on an individual retail store level once fixed and other associated costs of the technology are considered.

  4. A DNA barcode library of the beetle reference collection (Insecta: Coleoptera in the National Science Museum, Korea

    Directory of Open Access Journals (Sweden)

    Sang Woo Jung

    2016-06-01

    Full Text Available Coleoptera is a group of insects that are most diverse among insect resources. Although used as indicator species and applied in developing new drugs, it is difficult to identify them quickly. Since the development of a method using mitochondrial DNA information for identification, studies have been conducted in Korea to swiftly and accurately identify species. The National Science Museum of Korea (NSMK has been collecting and morphologically identifying domestic reference insects since 2013, and building a database of DNA barcodes with digital images. The NSMK completed construction of a database of digital images and DNA barcodes of 60 beetle species in the Korean National Research Information System. A total of 179 specimens and 60 species were used for the analysis, and the averages of intraspecific and interspecific variations were 0.70±0.45% and 26.34±6.01%, respectively, with variation rates ranging from 0% to 1.45% and 9.83% to 56.23%, respectively.

  5. Morphological description and DNA barcoding study of sand rice (Agriophyllum squarrosum, Chenopodiaceae) collected in Kazakhstan.

    Science.gov (United States)

    Genievskaya, Yuliya; Abugalieva, Saule; Zhubanysheva, Aibatsha; Turuspekov, Yerlan

    2017-11-14

    Sand rice (Agriophyllum squarrosum (L.) Moq.) is an annual shrub-like plant adapted to the mobile sand dunes in desert and semi-desert regions of Asia. It has a balanced nutrient composition with relatively high concentration of lipids and proteins, which results in its nutrition being similar to legumes. Sand rice's proteins contain the full range of essential amino acids. However, calories content is more similar to wheat. These features together with desert stress resistance make sand rice a potential food crop resilient to ongoing climate change. It is also an important fodder crop (on young stages of growth) for cattle in arid regions of Kazakhstan. In our work, sand rice samples were collected from two distant regions of Kazakhstan as a part of the nation-wide project to determine genetic variation of the native flora. Samples were collected in western and southeastern parts of Kazakhstan separated by distances of up to 1300 km. Sequences of the nuclear ribosomal DNA ITS1-5.8S-ITS2 region and the chloroplast matK gene confirmed the identity of species defined by morphological traits. Comparison with GenBank sequences revealed polymorphic sequence positions among Kazakh populations and GenBank references, and suggested a distinction among local populations of sand rice. The phylogenetic analysis of nucleotide sequences showed a clear partition of A. squarrosum (L.) Moq. from Agriophyllum minus Fisch. & C.A. Mey, which grows in the same sand dunes environment. DNA barcoding analyses of ITS and matK sequences showed a segregation of A. squarrosum from A. minus into separate clades in Maximum-Likelhood dendrograms. ITS analysis can be successfully used to characterize A. squarrosum populations growing quite distant from each other. The data obtained in this work provide the basis for further investigations on A. squarrosum population structure and may play a role in the screening of sand rice plants growing in desert and semi-desert environments of Central Asia

  6. A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean)

    Science.gov (United States)

    Bucklin, Ann; Ortman, Brian D.; Jennings, Robert M.; Nigro, Lisa M.; Sweetman, Christopher J.; Copley, Nancy J.; Sutton, Tracey; Wiebe, Peter H.

    2010-12-01

    Species diversity of the metazoan holozooplankton assemblage of the Sargasso Sea, Northwest Atlantic Ocean, was examined through coordinated morphological taxonomic identification of species and DNA sequencing of a ˜650 base-pair region of mitochondrial cytochrome oxidase I (mtCOI) as a DNA barcode (i.e., short sequence for species recognition and discrimination). Zooplankton collections were made from the surface to 5,000 meters during April, 2006 on the R/V R.H. Brown. Samples were examined by a ship-board team of morphological taxonomists; DNA barcoding was carried out in both ship-board and land-based DNA sequencing laboratories. DNA barcodes were determined for a total of 297 individuals of 175 holozooplankton species in four phyla, including: Cnidaria (Hydromedusae, 4 species; Siphonophora, 47); Arthropoda (Amphipoda, 10; Copepoda, 34; Decapoda, 9; Euphausiacea, 10; Mysidacea, 1; Ostracoda, 27); and Mollusca (Cephalopoda, 8; Heteropoda, 6; Pteropoda, 15); and Chaetognatha (4). Thirty species of fish (Teleostei) were also barcoded. For all seven zooplankton groups for which sufficient data were available, Kimura-2-Parameter genetic distances were significantly lower between individuals of the same species (mean=0.0114; S.D. 0.0117) than between individuals of different species within the same group (mean=0.3166; S.D. 0.0378). This difference, known as the barcode gap, ensures that mtCOI sequences are reliable characters for species identification for the oceanic holozooplankton assemblage. In addition, DNA barcodes allow recognition of new or undescribed species, reveal cryptic species within known taxa, and inform phylogeographic and population genetic studies of geographic variation. The growing database of "gold standard" DNA barcodes serves as a Rosetta Stone for marine zooplankton, providing the key for decoding species diversity by linking species names, morphology, and DNA sequence variation. In light of the pivotal position of zooplankton in ocean

  7. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çeşme-Karaburun Peninsula (Turkey).

    Science.gov (United States)

    Theodoridis, Spyros; Stefanaki, Anastasia; Tezcan, Meltem; Aki, Cuneyt; Kokkini, Stella; Vlachonasios, Konstantinos E

    2012-07-01

    The plant family Labiatae (Lamiaceae) is known for its fine medicinal and aromatic herbs like lavender, mint, oregano, sage and thyme and is a rich source of essential oils for the food, pharmaceutical and cosmetic industry. Besides its great economic importance, the Labiatae family contributes significantly to the endemic flora of Greece and Turkey. Owing to its economic and biological significance and to the difficult identification based on morphological characters of several of its taxa, the Labiatae family is an ideal case for developing DNA barcodes. The purpose of this study is to evaluate the utility of DNA barcoding on a local scale in discriminating Labiatae species in Chios Island (Greece) and the adjacent Çeşme-Karaburun Peninsula (Turkey). We chose three cpDNA regions (matK, rbcL, trnH-psbA) that were proposed by previous studies and tested them either as single region or as multiregion barcodes based on the criteria determined by Consortium for the Barcode of Life (CBOL). Our results show that matK and trnH-psbA taken as useful in discriminating species of the Labiatae, for the species we examined, as any multiregion combination. matK and trnH-psbA could serve as single-region barcodes for Labiatae species contributing to the conservation and the trade control of valuable plant resources. © 2012 Blackwell Publishing Ltd.

  8. DNA barcodes to identify species and explore diversity in the Adelgidae (Insecta: Hemiptera: Aphidoidea)

    Science.gov (United States)

    R.G. Foottit; H.E.L. Maw; N.P. Havill; R.G. Ahern; M.E. Montgomery

    2009-01-01

    The Adelgidae are relatively small, cryptic insects, exhibiting complex life cycles with parthenogenetic reproduction. Due to these characteristics, the taxonomy of the group is problematic. Here, we test the effectiveness of the standard 658-bp barcode fragment from the 5'-end of the mitochondrial cytochrome c oxidase 1 gene (COI) in...

  9. Identification of Lygus hesperus by DNA barcoding reveals insignificant levels of genetic structure among distant and habitat diverse populations.

    Directory of Open Access Journals (Sweden)

    Changqing Zhou

    Full Text Available BACKGROUND: The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification. METHODOLOGY/PRINCIPAL FINDINGS: This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of F(st and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years migration of the western tarnished plant bug into agricultural habitats across the western United States. CONCLUSIONS/SIGNIFICANCE: This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study.

  10. DNA barcoding reveals mislabeling of imported fish products in Nansha new port of Guangzhou, Guangdong province, China.

    Science.gov (United States)

    Yan, Shuai; Lai, Guiyan; Li, Li; Xiao, Hao; Zhao, Ming; Wang, Ming

    2016-07-01

    In the present study, we employed a DNA barcoding approach to authenticate the species of fish imported via one port in China. The fish were identified as smallmouth scad based on morphological characteristics, Alepes apercna (Perciformes, Carangidae), but were labeled as Rastrelliger brachysoma (Perciformes, Scombridae). Fragments of the partial mitochondrial cytochrome c oxidase 1 (COI) gene were sequenced from 12 specimens, and their phylogenetic relationship was subsequently examined. The phylogenetic analysis demonstrated that all of the individuals formed a monophyletic cluster with high bootstrap values and were placed in a sister group with the ancestor of Alepes vari and Alepes melanoptera. The K2P genetic distances at an intraspecific level were significantly smaller than those at an interspecific level. Our results indicated that the fish were A. apercna, rather than R. brachysoma, which confirms the morphological analysis. This study presents a practical demonstration of the use of DNA barcoding to prevent fraud in international trade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance.

    Science.gov (United States)

    Handy, Sara M; Deeds, Jonathan R; Ivanova, Natalia V; Hebert, Paul D N; Hanner, Robert H; Ormos, Andrea; Weigt, Lee A; Moore, Michelle M; Yancy, Haile F

    2011-01-01

    The U.S. Food and Drug Administration is responsible for ensuring that the nation's food supply is safe and accurately labeled. This task is particularly challenging in the case of seafood where a large variety of species are marketed, most of this commodity is imported, and processed product is difficult to identify using traditional morphological methods. Reliable species identification is critical for both foodborne illness investigations and for prevention of deceptive practices, such as those where species are intentionally mislabeled to circumvent import restrictions or for resale as species of higher value. New methods that allow accurate and rapid species identifications are needed, but any new methods to be used for regulatory compliance must be both standardized and adequately validated. "DNA barcoding" is a process by which species discriminations are achieved through the use of short, standardized gene fragments. For animals, a fragment (655 base pairs starting near the 5' end) of the cytochrome c oxidase subunit 1 mitochondrial gene has been shown to provide reliable species level discrimination in most cases. We provide here a protocol with single-laboratory validation for the generation of DNA barcodes suitable for the identification of seafood products, specifically fish, in a manner that is suitable for FDA regulatory use.

  12. DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata: resurrection of L. herculeus (Savigny, 1826.

    Directory of Open Access Journals (Sweden)

    Samuel W James

    Full Text Available The widely studied and invasive earthworm, Lumbricus terrestris L., 1758 has been the subject of nomenclatural debate for many years. However these disputes were not based on suspicions of heterogeneity, but rather on the descriptions and nomenclatural acts associated with the species name. Large numbers of DNA barcode sequences of the cytochrome oxidase I obtained for nominal L. terrestris and six congeneric species reveal that there are two distinct lineages within nominal L. terrestris. One of those lineages contains the Swedish population from which the name-bearing specimen of L. terrestris was obtained. The other contains the population from which the syntype series of Enterion herculeum Savigny, 1826 was collected. In both cases modern and old representatives yielded barcode sequences allowing us to clearly establish that these are two distinct species, as different from one another as any other pair of congeners in our data set. The two are morphologically indistinguishable, except by overlapping size-related characters. We have designated a new neotype for L. terrestris. The newly designated neotype and a syntype of L. herculeus yielded DNA adequate for sequencing part of the cytochrome oxidase I gene (COI. The sequence data make possible the objective determination of the identities of earthworms morphologically identical to L. terrestris and L. herculeus, regardless of body size and segment number. Past work on nominal L. terrestris could have been on either or both species, although L. herculeus has yet to be found outside of Europe.

  13. DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826).

    Science.gov (United States)

    James, Samuel W; Porco, David; Decaëns, Thibaud; Richard, Benoit; Rougerie, Rodolphe; Erséus, Christer

    2010-12-29

    The widely studied and invasive earthworm, Lumbricus terrestris L., 1758 has been the subject of nomenclatural debate for many years. However these disputes were not based on suspicions of heterogeneity, but rather on the descriptions and nomenclatural acts associated with the species name. Large numbers of DNA barcode sequences of the cytochrome oxidase I obtained for nominal L. terrestris and six congeneric species reveal that there are two distinct lineages within nominal L. terrestris. One of those lineages contains the Swedish population from which the name-bearing specimen of L. terrestris was obtained. The other contains the population from which the syntype series of Enterion herculeum Savigny, 1826 was collected. In both cases modern and old representatives yielded barcode sequences allowing us to clearly establish that these are two distinct species, as different from one another as any other pair of congeners in our data set. The two are morphologically indistinguishable, except by overlapping size-related characters. We have designated a new neotype for L. terrestris. The newly designated neotype and a syntype of L. herculeus yielded DNA adequate for sequencing part of the cytochrome oxidase I gene (COI). The sequence data make possible the objective determination of the identities of earthworms morphologically identical to L. terrestris and L. herculeus, regardless of body size and segment number. Past work on nominal L. terrestris could have been on either or both species, although L. herculeus has yet to be found outside of Europe.

  14. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta).

    Science.gov (United States)

    Robba, Lavinia; Russell, Stephen J; Barker, Gary L; Brodie, Juliet

    2006-08-01

    The red algae, a remarkably diverse group of organisms, are difficult to identify using morphology alone. Following the proposal to use the mitochondrial cytochrome c oxidase subunit I (cox1) for DNA barcoding animals, we assessed the use of this gene in the identification of red algae using 48 samples plus 31 sequences obtained from GenBank. The data set spanned six orders of red algae: the Bangiales, Ceramiales, Corallinales, Gigartinales, Gracilariales and Rhodymeniales. The results indicated that species could be discriminated. Intraspecific variation was between 0 and 4 bp over 539 bp analyzed except in Mastocarpus stellatus (0-14 bp) and Gracilaria gracilis (0-11 bp). Cryptic diversity was found in Bangia fuscopurpurea, Corallina officinalis, G. gracilis, M. stellatus, Porphyra leucosticta and P. umbilicalis. Interspecific variation across all taxa was between 28 and 148 bp, except for G. gracilis and M. stellatus. A comparison of cox1 with the plastid Rubisco spacer for Porphyra species revealed that it was a more sensitive marker in revealing incipient speciation and cryptic diversity. The cox1 gene has the potential to be used for DNA barcoding of red algae, although a good taxonomic foundation coupled with extensive sampling of taxa is essential for the development of an effective identification system.

  15. Where taxonomy based on subtle morphological differences is perfectly mirrored by huge genetic distances: DNA barcoding in Protura (Hexapoda).

    Science.gov (United States)

    Resch, Monika Carol; Shrubovych, Julia; Bartel, Daniela; Szucsich, Nikolaus U; Timelthaler, Gerald; Bu, Yun; Walzl, Manfred; Pass, Günther

    2014-01-01

    Protura is a group of tiny, primarily wingless hexapods living in soil habitats. Presently about 800 valid species are known. Diagnostic characters are very inconspicuous and difficult to recognize. Therefore taxonomic work constitutes an extraordinary challenge which requires special skills and experience. Aim of the present pilot project was to examine if DNA barcoding can be a useful additional approach for delimiting and determining proturan species. The study was performed on 103 proturan specimens, collected primarily in Austria, with additional samples from China and Japan. The animals were examined with two markers, the DNA barcoding region of the mitochondrial COI gene and a fragment of the nuclear 28S rDNA (Divergent Domain 2 and 3). Due to the minuteness of Protura a modified non-destructive DNA-extraction method was used which enables subsequent species determination. Both markers separated the examined proturans into highly congruent well supported clusters. Species determination was performed without knowledge of the results of the molecular analyses. The investigated specimens comprise a total of 16 species belonging to 8 genera. Remarkably, morphological determination in all species exactly mirrors molecular clusters. The investigation revealed unusually huge genetic COI distances among the investigated proturans, both maximal intraspecific distances (0-21.3%), as well as maximal congeneric interspecifical distances (up to 44.7%). The study clearly demonstrates that the tricky morphological taxonomy in Protura has a solid biological background and that accurate species delimitation is possible using both markers, COI and 28S rDNA. The fact that both molecular and morphological analyses can be performed on the same individual will be of great importance for the description of new species and offers a valuable new tool for biological and ecological studies, in which proturans have generally remained undetermined at species level.

  16. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada1

    Science.gov (United States)

    Kuzmina, Maria L.; Braukmann, Thomas W. A.; Fazekas, Aron J.; Graham, Sean W.; Dewaard, Stephanie L.; Rodrigues, Anuar; Bennett, Bruce A.; Dickinson, Timothy A.; Saarela, Jeffery M.; Catling, Paul M.; Newmaster, Steven G.; Percy, Diana M.; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P.; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R.; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2017-01-01

    Premise of the study: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Methods: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Results: Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Discussion: Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa. PMID:29299394

  17. The chloroplast DNA locus psbZ-trnfM as a potential barcode marker in Phoenix L. (Arecaceae

    Directory of Open Access Journals (Sweden)

    Marco Ballardini

    2013-12-01

    Full Text Available The genus Phoenix (Arecaceae comprises 14 species distributed from Cape Verde Islands to SE Asia. It includes the economically important species Phoenix dactylifera. The paucity of differential morphological and anatomical useful characters, and interspecific hybridization, make identification of Phoenix species difficult. In this context, the development of reliable DNA markers for species and hybrid identification would be of great utility. Previous studies identified a 12 bp polymorphic chloroplast minisatellite in the trnG(GCC-trnfM(CAU spacer, and showed its potential for species identification in Phoenix. In this work, in order to develop an efficient DNA barcode marker for Phoenix, a longer cpDNA region (700 bp comprising the mentioned minisatellite, and located between the psbZ and trnfM(CAU genes, was sequenced. One hundred and thirty-six individuals, representing all Phoenix species except P. andamanensis, were analysed. The minisatellite showed 2-7 repetitions of the 12 bp motif, with 1-3 out of seven haplotypes per species. Phoenix reclinata and P. canariensis had species-specific haplotypes. Additional polymorphisms were found in the flanking regions of the minisatellite, including substitutions, indels and homopolymers. All this information allowed us to identify unambiguously eight out of the 13 species, and overall 80% of the individuals sampled. Phoenix rupicola and P. theophrasti had the same haplotype, and so had P. atlantica, P. dactylifera, and P. sylvestris (the “date palm complex” sensu Pintaud et al. 2013. For these species, additional molecular markers will be required for their unambiguous identification. The psbZ-trnfM(CAU region therefore could be considered as a good basis for the establishment of a DNA barcoding system in Phoenix, and is potentially useful for the identification of the female parent in Phoenix hybrids.

  18. The chloroplast DNA locus psbZ-trnfM as a potential barcode marker in Phoenix L. (Arecaceae)

    Science.gov (United States)

    Ballardini, Marco; Mercuri, Antonio; Littardi, Claudio; Abbas, Summar; Couderc, Marie; Ludeña, Bertha; Pintaud, Jean-Christophe

    2013-01-01

    Abstract The genus Phoenix (Arecaceae) comprises 14 species distributed from Cape Verde Islands to SE Asia. It includes the economically important species Phoenix dactylifera. The paucity of differential morphological and anatomical useful characters, and interspecific hybridization, make identification of Phoenix species difficult. In this context, the development of reliable DNA markers for species and hybrid identification would be of great utility. Previous studies identified a 12 bp polymorphic chloroplast minisatellite in the trnG (GCC)-trnfM (CAU) spacer, and showed its potential for species identification in Phoenix. In this work, in order to develop an efficient DNA barcode marker for Phoenix, a longer cpDNA region (700 bp) comprising the mentioned minisatellite, and located between the psbZ and trnfM (CAU) genes, was sequenced. One hundred and thirty-six individuals, representing all Phoenix species except P. andamanensis,were analysed. The minisatellite showed 2-7 repetitions of the 12 bp motif, with 1-3 out of seven haplotypes per species. Phoenix reclinata and P. canariensis had species-specific haplotypes. Additional polymorphisms were found in the flanking regions of the minisatellite, including substitutions, indels and homopolymers. All this information allowed us to identify unambiguously eight out of the 13 species, and overall 80% of the individuals sampled. Phoenix rupicola and P. theophrasti had the same haplotype, and so had P. atlantica, P. dactylifera, and P. sylvestris (the “date palm complex” sensu Pintaud et al. 2013). For these species, additional molecular markers will be required for their unambiguous identification. The psbZ-trnfM (CAU) region therefore could be considered as a good basis for the establishment of a DNA barcoding system in Phoenix, and is potentially useful for the identification of the female parent in Phoenix hybrids. PMID:24453552

  19. Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project.

    Science.gov (United States)

    Osmundson, Todd W; Robert, Vincent A; Schoch, Conrad L; Baker, Lydia J; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1-2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa.

  20. Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera.

    Science.gov (United States)

    Mutanen, Marko; Kivelä, Sami M; Vos, Rutger A; Doorenweerd, Camiel; Ratnasingham, Sujeevan; Hausmann, Axel; Huemer, Peter; Dincă, Vlad; van Nieukerken, Erik J; Lopez-Vaamonde, Carlos; Vila, Roger; Aarvik, Leif; Decaëns, Thibaud; Efetov, Konstantin A; Hebert, Paul D N; Johnsen, Arild; Karsholt, Ole; Pentinsaari, Mikko; Rougerie, Rodolphe; Segerer, Andreas; Tarmann, Gerhard; Zahiri, Reza; Godfray, H Charles J

    2016-11-01

    The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer" to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the

  1. DNA barcodes reveal that the widespread European tortricid moth Phalonidia manniana (Lepidoptera: Tortricidae) is a mixture of two species

    DEFF Research Database (Denmark)

    Mutanen, Marko; Aarvik, Leif; Huemer, Peter

    2012-01-01

    , 1845, sp. rev. Their biologies also differ, P. manniana feeding in stems of Mentha and Lycopus (Lamiaceae) and P. udana feeding in stems of Lysimachia thyrsiflora and L. vulgaris (Primulaceae). We provide re-descriptions of both taxa and DNA barcodes for North European Phalonidia and Gynnidomorpha...

  2. Cryptic diversity in Australian stick insects (Insecta; Phasmida) uncovered by the DNA barcoding approach.

    Science.gov (United States)

    Velonà, A; Brock, P D; Hasenpusch, J; Mantovani, B

    2015-05-18

    The barcoding approach was applied to analyze 16 Australian morphospecies of the order Phasmida, with the aim to test if it could be suitable as a tool for phasmid species identification and if its discrimination power would allow uncovering of cryptic diversity. Both goals were reached. Eighty-two specimens representing twelve morphospecies (Sipyloidea sp. A, Candovia annulata, Candovia sp. A, Candovia sp. B, Candovia sp. C, Denhama austrocarinata, Xeroderus kirbii, Parapodacanthus hasenpuschorum, Tropidoderus childrenii, Cigarrophasma tessellatum, Acrophylla wuelfingi, Eurycantha calcarata) were correctly recovered as clades through the molecular approach, their sequences forming monophyletic and well-supported clusters. In four instances, Neighbor-Joining tree and barcoding gap analyses supported either a specific (Austrocarausius mercurius, Anchiale briareus) or a subspecific (Anchiale austrotessulata, Extatosoma tiaratum) level of divergence within the analyzed morphospecies. The lack of an appropriate database of homologous coxI sequences prevented more detailed identification of undescribed taxa.

  3. DNA barcode sequencing from old type specimens as a tool in taxonomy: a case study in the diverse genus Eois (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Patrick Strutzenberger

    Full Text Available In this study we report on the sequencing of the COI barcode region from 96 historical specimens (92 type specimens +4 non-types of Eois. Eois is a diverse clade of tropical geometrid moths and is the target of a number of ongoing studies on life-histories, phylogeny, co-evolution with host plants or parasitoids, and diversity patterns across temporal and spatial dimensions. The unequivocal application of valid names is crucial for all aspects of biodiversity research as well as monitoring and conservation efforts. The availability of barcodes from historical type specimens has the potential to facilitate the much-needed acceleration of species description. We performed non-destructive DNA extraction on the abdomens of Eois specimens between 79 and 157 years of age. We used six primer combinations (recovering between 109 and 130 bp each to target the full-length barcode sequence of each specimen. We were able to obtain sequences for 91 of 96 specimens (success rate 94.8%. Sequence length ranged from 121 bp to full barcode sequences (658 bp, the average sequence length was ~500 bp. We detected a moderately strong and statistically significant negative correlation between specimen age and total sequence length, which is in agreement with expectations. The abdomen proved to be an exceedingly valuable source of DNA in old specimens of Lepidoptera. Barcode sequences obtained in this study are currently being used in an effort towards a step-wise taxonomic revision of Eois. We encourage that DNA barcodes obtained from types specimens should be included in all species descriptions and revisions whenever feasible.

  4. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenbao [Central South University, School of Pharmaceutical Sciences (China); Zhou, Bo, E-mail: zhoubo1771@163.com [The Affiliated Zhongda Hospital of Southeast University, Department of Gerontology (China); Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang, E-mail: lengxigyky@163.com [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College (China)

    2013-09-15

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 {mu}m in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL{sup -1} to 10 ng mL{sup -1}. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  5. DNA barcodes and species distribution models evaluate threats of global climate changes to genetic diversity: a case study from Nanorana parkeri (Anura: Dicroglossidae).

    Science.gov (United States)

    Zhou, Wei-wei; Zhang, Bao-lin; Chen, Hong-man; Jin, Jie-qiong; Yang, Jun-xiao; Wang, Yun-yu; Jiang, Ke; Murphy, Robert W; Zhang, Ya-ping; Che, Jing

    2014-01-01

    Anthropogenic global climate changes are one of the greatest threats to biodiversity. Distribution modeling can predict the effects of climate changes and potentially their effects on genetic diversity. DNA barcoding quickly identifies patterns of genetic diversity. As a case study, we use DNA barcodes and distribution models to predict threats under climate changes in the frog Nanorana parkeri, which is endemic to the Qinghai-Tibetan Plateau. Barcoding identifies major lineages W and E. Lineage W has a single origin in a refugium and Lineage E derives from three refugia. All refugia locate in river valleys and each greatly contributes to the current level of intraspecific genetic diversity. Species distribution models suggest that global climate changes will greatly influence N. parkeri, especially in the level of genetic diversity, because two former refugia will fail to provide suitable habitat. Our pipeline provides a novel application of DNA barcoding and has important implications for the conservation of biodiversity in southern areas of the Qinghai-Tibetan Plateau.

  6. DNA barcodes and species distribution models evaluate threats of global climate changes to genetic diversity: a case study from Nanorana parkeri (Anura: Dicroglossidae.

    Directory of Open Access Journals (Sweden)

    Wei-wei Zhou

    Full Text Available Anthropogenic global climate changes are one of the greatest threats to biodiversity. Distribution modeling can predict the effects of climate changes and potentially their effects on genetic diversity. DNA barcoding quickly identifies patterns of genetic diversity. As a case study, we use DNA barcodes and distribution models to predict threats under climate changes in the frog Nanorana parkeri, which is endemic to the Qinghai-Tibetan Plateau. Barcoding identifies major lineages W and E. Lineage W has a single origin in a refugium and Lineage E derives from three refugia. All refugia locate in river valleys and each greatly contributes to the current level of intraspecific genetic diversity. Species distribution models suggest that global climate changes will greatly influence N. parkeri, especially in the level of genetic diversity, because two former refugia will fail to provide suitable habitat. Our pipeline provides a novel application of DNA barcoding and has important implications for the conservation of biodiversity in southern areas of the Qinghai-Tibetan Plateau.

  7. Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences.

    Science.gov (United States)

    Kim, W J; Ji, Y; Choi, G; Kang, Y M; Yang, S; Moon, B C

    2016-08-05

    This study was performed to identify and analyze the phylogenetic relationship among four herbaceous species of the genus Paeonia, P. lactiflora, P. japonica, P. veitchii, and P. suffruticosa, using DNA barcodes. These four species, which are commonly used in traditional medicine as Paeoniae Radix and Moutan Radicis Cortex, are pharmaceutically defined in different ways in the national pharmacopoeias in Korea, Japan, and China. To authenticate the different species used in these medicines, we evaluated rDNA-internal transcribed spacers (ITS), matK and rbcL regions, which provide information capable of effectively distinguishing each species from one another. Seventeen samples were collected from different geographic regions in Korea and China, and DNA barcode regions were amplified using universal primers. Comparative analyses of these DNA barcode sequences revealed species-specific nucleotide sequences capable of discriminating the four Paeonia species. Among the entire sequences of three barcodes, marker nucleotides were identified at three positions in P. lactiflora, eleven in P. japonica, five in P. veitchii, and 25 in P. suffruticosa. Phylogenetic analyses also revealed four distinct clusters showing homogeneous clades with high resolution at the species level. The results demonstrate that the analysis of these three DNA barcode sequences is a reliable method for identifying the four Paeonia species and can be used to authenticate Paeoniae Radix and Moutan Radicis Cortex at the species level. Furthermore, based on the assessment of amplicon sizes, inter/intra-specific distances, marker nucleotides, and phylogenetic analysis, rDNA-ITS was the most suitable DNA barcode for identification of these species.

  8. Identification of maca (Lepidium meyenii Walp.) and its adulterants by a DNA-barcoding approach based on the ITS sequence.

    Science.gov (United States)

    Chen, Jin-Jin; Zhao, Qing-Sheng; Liu, Yi-Lan; Zha, Sheng-Hua; Zhao, Bing

    2015-09-01

    Maca (Lepidium meyenii) is an herbaceous plant that grows in high plateaus and has been used as both food and folk medicine for centuries because of its benefits to human health. In the present study, ITS (internal transcribed spacer) sequences of forty-three maca samples, collected from different regions or vendors, were amplified and analyzed. The ITS sequences of nineteen potential adulterants of maca were also collected and analyzed. The results indicated that the ITS sequence of maca was consistent in all samples and unique when compared with its adulterants. Therefore, this DNA-barcoding approach based on the ITS sequence can be used for the molecular identification of maca and its adulterants. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  9. High-throughput discovery of T cell epitopes in type 1 diabetes using DNA barcode labelledpeptide-MHC multimers

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte; Bentzen, Amalie Kai; Overgaard, A. Julie

    2016-01-01

    applying a novel technology where the selection of MHC-multimer binding T cells is followed by amplification and sequencing of MHC multimer-associated DNA barcodes revealing their recognition. This technique enables simultaneous detection of >1000 specificities. Identifying post translational modifications...... as T cell targets in other autoimmune diseases. We used netMHC prediction algorithm to identify 764 epitopes from Insulin, GAD65, IA-2 and ZnT8 restricted to HLA-A2, A24, B8 and B15. Among these 91 peptide sequences were susceptible for citrullination. We evaluate the MHC-affinity of both...... the citrullinated and non-citrullinated library, to identify potential neo-epitopes and to understand the impact of citrullination on MHC affinity. In parallel we will analyse peripheral blood lymphocytes from 50 T1D patients for immune reactivity against the full library. The large library screen will be conducted...

  10. Alpha taxonomy of the genus Kessleria Nowicki, 1864, revisited in light of DNA-barcoding (Lepidoptera, Yponomeutidae

    Directory of Open Access Journals (Sweden)

    Peter Huemer

    2015-05-01

    Full Text Available The taxonomy of Kessleria, a highly specialized montane genus of Yponomeutidae with larval host restriction to Saxifragaceae and Celastraceae (Saxifraga spp. – subgenus Kessleria; Saxifraga spp. and Parnassia spp. – subgenus Hofmannia, is revised based on external morphology, genitalia and DNA barcodes. An integrative taxonomic approach supports the existence of 29 species in Europe (the two known species from Asia and North America are not treated herein. A full 658 bp fragment of COI was obtained from 135 specimens representing 24 species, a further seven sequences are >560 bp. Five new species are described: Kessleria cottiensis sp. n. (Prov. Torino, Italy; Dep. Hautes Alpes, France, Kessleria dimorpha sp. n. (Dep. Alpes-de-Haute-Provence, France, Kessleria alpmaritimae sp. n. (Dep. Alpes-Maritimes, France, Kessleria apenninica sp. n. (Prov. Rieti, Prov. L´Aquila, Italy, and Kessleria orobiae sp. n. (Prov. Bergamo, Italy.

  11. DNA barcoding and the differentiation between North American and West European Phormia regina (Diptera, Calliphoridae, Chrysomyinae)

    Science.gov (United States)

    Jordaens, Kurt; Sonet, Gontran; Braet, Yves; De Meyer, Marc; Backeljau, Thierry; Goovaerts, Frankie; Bourguignon, Luc; Desmyter, Stijn

    2013-01-01

    Abstract Phormia regina (the black fly) is a common Holarctic blow fly species which serves as a primary indicator taxon to estimate minimal post mortem intervals. It is also a major research model in physiological and neurological studies on insect feeding. Previous studies have shown a sequence divergence of up to 4.3% in the mitochondrial COI gene between W European and N American P. regina populations. Here, we DNA barcoded P. regina specimens from six N American and 17 W European populations and confirmed a mean sequence divergence of ca. 4% between the populations of the two continents, while sequence divergence within each continent was a ten-fold lower. Comparable mean mtDNA sequence divergences were observed for COII (3.7%) and cyt b (5.3%), but mean divergence was lower for 16S (0.4–0.6%). Intercontinental divergence at nuclear DNA was very low (≤ 0.1% for both 28S and ITS2), and we did not detect any morphological differentiation between N American and W European specimens. Therefore, we consider the strong differentiation at COI, COII and cyt b as intraspecific mtDNA sequence divergence that should be taken into account when using P. regina in forensic casework or experimental research. PMID:24453556

  12. Cytochrome c oxidase subunit 1 gene as a DNA barcode for discriminating Trypanosoma cruzi DTUs and closely related species.

    Science.gov (United States)

    Rodrigues, Marina Silva; Morelli, Karina Alessandra; Jansen, Ana Maria

    2017-10-16

    The DNA barcoding system using the cytochrome c oxidase subunit 1 mitochondrial gene (cox1 or COI) is highly efficient for discriminating vertebrate and invertebrate species. In the present study, we examined the suitability of cox1 as a marker for Trypanosoma cruzi identification from other closely related species. Additionally, we combined the sequences of cox1 and the nuclear gene glucose-6-phosphate isomerase (GPI) to evaluate the occurrence of mitochondrial introgression and the presence of hybrid genotypes. Sixty-two isolates of Trypanosoma spp. obtained from five of the six Brazilian biomes (Amazon Forest, Atlantic Forest, Caatinga, Cerrado and Pantanal) were sequenced for cox1 and GPI gene fragments. Phylogenetic trees were reconstructed using neighbor-joining, maximum likelihood, parsimony and Bayesian inference methods. Molecular species delimitation was evaluated through pairwise intraspecific and interspecific distances, Automatic Barcode Gap Discovery, single-rate Poisson Tree Processes and multi-rate Poisson Tree Processes. Both cox1 and GPI genes recognized and differentiated T. cruzi, Trypanosoma cruzi marinkellei, Trypanosoma dionisii and Trypanosoma rangeli. Cox1 discriminated Tcbat, TcI, TcII, TcIII and TcIV. Additionally, TcV and TcVI were identified as a single group. Cox1 also demonstrated diversity in the discrete typing units (DTUs) TcI, TcII and TcIII and in T. c. marinkellei and T. rangeli. Cox1 and GPI demonstrated TcI and TcII as the most genetically distant branches, and the position of the other T. cruzi DTUs differed according to the molecular marker. The tree reconstructed with concatenated cox1 and GPI sequences confirmed the separation of the subgenus Trypanosoma (Schizotrypanum) sp. and the T. cruzi DTUs TcI, TcII, TcIII and TcIV. The evaluation of single nucleotide polymorphisms (SNPs) was informative for DTU differentiation using both genes. In the cox1 analysis, one SNP differentiated heterozygous hybrids from TcIV sequences

  13. DNA Barcoding of the parasitoid wasp subfamily Doryctinae (Hymenoptera: Braconidae) from Chamela, Mexico

    Science.gov (United States)

    Gutiérrez-Arellano, Daniela; Gutiérrez-Arellano, Claudia Renata

    2015-01-01

    Abstract Background and aims. The Doryctinae is a considerably diverse, poorly studied group of parasitoid wasps and one of the most diverse subfamilies within Braconidae. Taxonomic knowledge of this group remains highly incomplete, specially in the tropics. In Mexico, it has been reported as the subfamily with the highest number of recorded genera. A preliminary Barcoding study carried out in the Chamela region, located near the Mexican pacific coast in Jalisco, identified 185 barcoding species of Dorytinae assigned to 19 identified doryctine genera. This work updates the later study, representing a three years effort to assess the species richness of this subfamily for the Chamela region. Materials and methods. Ten collecting field trips of 5 to 10 days each were carried out from June 2009 to May 2011. A 2% divergence criterion using the BIN system implemented in BOLD was followed in order to establish species boundaries among the specimens that were collected. Results and conclusions. A total of 961 specimens were collected, from which 883 COI sequences were obtained. The sequences generated corresponded to 289 barcoding species and 30 identified genera. The most speciose genera were Heterospilus Haliday (170 spp.), Ecphylus Förster (19 spp.), Allorhogas Gahan (15 spp.) and Callihormius Ashmead (14 spp.). Addition of previously collected material increased the diversity of the subfamily in the region to 34 genera and 290 species. Paraphyly of Heterospilus with respect to Neoheterospilus and Heterospathius was again recovered. Twenty new species and two new genera (Sabinita Belokobylskij, Zaldívar-Riverón et Martínez, Ficobolus Martínez, Belokobylskij et Zaldívar-Riverón) have been described so far from the material collected in this work. PMID:26023287

  14. DNA barcoding the genus Chara: molecular evidence recovers fewer taxa than the classical morphological approach.

    Science.gov (United States)

    Schneider, Susanne C; Rodrigues, Anuar; Moe, Therese Fosholt; Ballot, Andreas

    2015-04-01

    Charophytes (Charales) are benthic algae with a complex morphology. They are vulnerable to ecosystem changes, such as eutrophication, and are red-listed in many countries. Accurate identification of Chara species is critical for understanding their diversity and for documenting changes in species distribution. Species delineation is, however, complicated, because of high phenotypic plasticity. We used barcodes of the ITS2, matK and rbcL regions to test if the distribution of barcode haplotypes among individuals is consistent with species boundaries as they are currently understood. The study included freshly collected and herbarium material of 91 specimens from 10 European countries, Canada and Argentina. Results showed that herbarium specimens are useful as a source of material for genetic analyses for aquatic plants like Chara. rbcL and matK had highest sequence recoverability, but rbcL had a somewhat lower discriminatory power than ITS2 and matK. The tree resulting from the concatenated data matrix grouped the samples into six main groups contrary to a traditional morphological approach that consisted of 14 different taxa. A large unresolved group consisted of C. intermedia, C. hispida, C. horrida, C. baltica, C. polyacantha, C. rudis, C. aculeolata, and C. corfuensis. A second unresolved group consisted of C. virgata and C. strigosa. The taxa within each of the unresolved groups shared identical barcode sequences on the 977 positions of the concatenated data matrix. The morphological differences of taxa within both unresolved groups include the number and length of spine cells, stipulodes, and bract cells. We suggest that these morphological traits have less taxonomic relevance than hitherto assumed. © 2015 Phycological Society of America.

  15. The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes.

    Directory of Open Access Journals (Sweden)

    Antton Alberdi

    Full Text Available Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%. As prey we detected one dipteran genus (Tipulidae and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae, and one at genus level (Rhyacia sp., Noctuidae. Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level, mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats.

  16. DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan.

    Directory of Open Access Journals (Sweden)

    Shang-Yin Vanson Liu

    Full Text Available BACKGROUND: An increasing awareness of the vulnerability of sharks to exploitation by shark finning has contributed to a growing concern about an unsustainable shark fishery. Taiwan's fleet has the 4th largest shark catch in the world, accounting for almost 6% of the global figures. Revealing the diversity of sharks consumed by Taiwanese is important in designing conservation plans. However, fins make up less than 5% of the total body weight of a shark, and their bodies are sold as filets in the market, making it difficult or impossible to identify species using morphological traits. METHODS: In the present study, we adopted a DNA barcoding technique using a 391-bp fragment of the mitochondrial cytochrome oxidase I (COI gene to examine the diversity of shark filets and fins collected from markets and restaurants island-wide in Taiwan. RESULTS: Amongst the 548 tissue samples collected and sequenced, 20 major clusters were apparent by phylogenetic analyses, each of them containing individuals belonging to the same species (most with more than 95% bootstrap values, corresponding to 20 species of sharks. Additionally, Alopias pelagicus, Carcharhinus falciformis, Isurus oxyrinchus, and Prionace glauca consisted of 80% of the samples we collected, indicating that these species might be heavily consumed in Taiwan. Approximately 5% of the tissue samples used in this study were identified as species listed in CITES Appendix II, including two species of Sphyrna, C. longimanus and Carcharodon carcharias. CONCLUSION: DNA barcoding provides an alternative method for understanding shark species composition when species-specific data is unavailable. Considering the global population decline, stock assessments of Appendix II species and highly consumed species are needed to accomplish the ultimate goal of shark conservation.

  17. DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan.

    Science.gov (United States)

    Liu, Shang-Yin Vanson; Chan, Chia-Ling Carynn; Lin, Oceana; Hu, Chieh-Shen; Chen, Chaolun Allen

    2013-01-01

    An increasing awareness of the vulnerability of sharks to exploitation by shark finning has contributed to a growing concern about an unsustainable shark fishery. Taiwan's fleet has the 4th largest shark catch in the world, accounting for almost 6% of the global figures. Revealing the diversity of sharks consumed by Taiwanese is important in designing conservation plans. However, fins make up less than 5% of the total body weight of a shark, and their bodies are sold as filets in the market, making it difficult or impossible to identify species using morphological traits. In the present study, we adopted a DNA barcoding technique using a 391-bp fragment of the mitochondrial cytochrome oxidase I (COI) gene to examine the diversity of shark filets and fins collected from markets and restaurants island-wide in Taiwan. Amongst the 548 tissue samples collected and sequenced, 20 major clusters were apparent by phylogenetic analyses, each of them containing individuals belonging to the same species (most with more than 95% bootstrap values), corresponding to 20 species of sharks. Additionally, Alopias pelagicus, Carcharhinus falciformis, Isurus oxyrinchus, and Prionace glauca consisted of 80% of the samples we collected, indicating that these species might be heavily consumed in Taiwan. Approximately 5% of the tissue samples used in this study were identified as species listed in CITES Appendix II, including two species of Sphyrna, C. longimanus and Carcharodon carcharias. DNA barcoding provides an alternative method for understanding shark species composition when species-specific data is unavailable. Considering the global population decline, stock assessments of Appendix II species and highly consumed species are needed to accomplish the ultimate goal of shark conservation.

  18. Insights into species diversity of associated crustose coralline algae (Corallinophycidae, Rhodophyta with Atlantic European maerl beds using DNA barcoding

    Directory of Open Access Journals (Sweden)

    Cristina Pardo

    2017-10-01

    Full Text Available DNA barcoding in combination with morpho-anatomical analysis was applied to study the diversity of crustose coralline algae associated to two maerl beds from two protected Atlantic European areas from Brittany and Galicia —France and Spain, respectively—. Given the records of gametophytes of the maerl species Phymatolithon calcareum under crustose growth-forms, and that associated crustose coralline algae appear to be involved in the recruitment of new maerl plants, we compared the species composition between the associated crustose coralline algae to Breton and Galician maerl beds with the maerl species identified in these beds in previous DNA barcoding surveys. Our molecular results revealed higher species diversity in associated crustose coralline algae than in maerl-forming species. Nine taxa of crustose coralline algae were found in both study areas: four in Brittany and five in Galicia. Three species from Brittany were identified as Phymatolithon calcareum, Phymatolithon lamii, and Lithophyllum hibernicum. The remaining six ones were assigned to the genera Phymatolithon and Mesophyllum, along with Lithothamnion and Lithophyllum. Morpho-anatomical examination of diagnostic characters corroborated our molecular identification. Our results showed that the most representative genus of crustose coralline algae in Brittany was Phymatolithon, while in Galicia was Mesophyllum. In Brittany, Phymatolithon calcareum was found under both growth-forms, maerl and crustose coralline algae, the latter assigned to the gametophyte stage by the presence of uniporate conceptacles. The recruitment of new maerl plants involving associated crustose coralline algae with maerl beds may occur, but only we can affirm it for Phymatolithon calcareum in Brittany. By contrast, the different species composition between both growth-forms in the Galician maerl beds would indicate that the fragmentation of own free-living maerl species appears to be the most common

  19. The Foraging Ecology of the Mountain Long-Eared Bat Plecotus macrobullaris Revealed with DNA Mini-Barcodes

    Science.gov (United States)

    Alberdi, Antton; Garin, Inazio; Aizpurua, Ostaizka; Aihartza, Joxerra

    2012-01-01

    Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%). As prey we detected one dipteran genus (Tipulidae) and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae), and one at genus level (Rhyacia sp., Noctuidae). Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level), mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units) at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats. PMID:22545129

  20. DNA barcoding of human-biting black flies (Diptera: Simuliidae) in Thailand.

    Science.gov (United States)

    Pramual, Pairot; Thaijarern, Jiraporn; Wongpakam, Komgrit

    2016-12-01

    Black flies (Diptera: Simuliidae) are important insect vectors and pests of humans and animals. Accurate identification, therefore, is important for control and management. In this study, we used mitochondrial cytochrome oxidase I (COI) barcoding sequences to test the efficiency of species identification for the human-biting black flies in Thailand. We used human-biting specimens because they enabled us to link information with previous studies involving the immature stages. Three black fly taxa, Simulium nodosum, S. nigrogilvum and S. doipuiense complex, were collected. The S. doipuiense complex was confirmed for the first time as having human-biting habits. The COI sequences revealed considerable genetic diversity in all three species. Comparisons to a COI sequence library of black flies in Thailand and in a public database indicated a high efficiency for specimen identification for S. nodosum and S. nigrogilvum, but this method was not successful for the S. doipuiense complex. Phylogenetic analyses revealed two divergent lineages in the S. doipuiense complex. Human-biting specimens formed a separate clade from other members of this complex. The results are consistent with the Barcoding Index Number System (BINs) analysis that found six BINs in the S. doipuiense complex. Further taxonomic work is needed to clarify the species status of these human-biting specimens. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Efficiency of matK, rbcL, trnH-psbA, and trnL-F (cpDNA) to Molecularly Authenticate Philippine Ethnomedicinal Apocynaceae Through DNA Barcoding.

    Science.gov (United States)

    Cabelin, Vincent Louie Domingo; Alejandro, Grecebio Jonathan Duran

    2016-05-01

    The Philippines is home to some ethnomedicinal Apocynaceae that has been used to cure common ailments. They are perceived to be safe, but misidentification can lead to substitution and adulteration. Morphological characters are primarily utilized to identify these species but a new method utilizing molecular characters called DNA barcoding has emerged. In this study, the efficiency of matK, rbcL, trnH-psbA, and trnL-F to molecularly authenticate selected Apocynaceae species were tested. Genomic DNA from silica-dried leaf samples were isolated and used as a template for generating DNA barcodes. Pair-wise sequence divergence using Kimura-2-Parameter was used to analyze inter-specific and intraspecific variations among the barcodes, whereas basic local alignment search tool (BLAST) and neighbor-joining (NJ) analyses were employed to examine discrimination success. The results show that matK is the best barcode for Apocynaceae as it has the highest amplification and sequencing success together with rbcL while having high inter-specific and low intra-specific divergence relative to the other candidate barcodes. Furthermore, matK provided the highest discrimination both in BLAST and NJ analyses. This study proposes the use of matK as the principal barcode for Apocynaceae. Both matK and rbcL have higher universality compared to trnH-psbA and trnL-F matK has relatively high inter-specific divergence and very minimal intra-specific divergencematK is the best barcode to molecularly authenticate Apocynaceae with either trnH-psbA or trnL-F as supplements. Abbreviations used: K2P: Kimura-2-parameter, BLAST: Basic local alignment search tool, NJ: Neighbor-joining.

  2. Integrating early detection with DNA barcoding: species identification of a non-native monitor lizard (Squamata: Varanidae) carcass in Mississippi, U.S.A.

    Science.gov (United States)

    Reed, Robert N.; Hopken, Matthew W.; Steen, David A.; Falk, Bryan G.; Piaggio, Antoinette J.

    2016-01-01

    Early detection of invasive species is critical to increasing the probability of successful management. At the primary stage of an invasion, invasive species are easier to control as the population is likely represented by just a few individuals. Detection of these first few individuals can be challenging, particularly if they are cryptic or otherwise characterized by low detectability. The engagement of members of the public may be critical to early detection as there are far more citizen s on the landscape than trained biologists. However, it can be difficult to assess the credibility of public reporting, especially when a diagnostic digital image or a physical specimen in good condition are lacking. DNA barcoding can be used for verification when morphological identification of a specimen is not possible or uncertain (i.e., degraded or partial specimen). DNA barcoding relies on obtaining a DNA sequence from a relatively small fragment of mitochondrial DNA and comparing it to a database of sequences containing a variety of expertly identified species. He rein we report the successful identification of a degraded specimen of a non-native, potentially invasive reptile species (Varanus niloticus) via DNA barcoding, after discovery and reporting by a member of the public.

  3. Utility of mtDNA-COI Barcode Region for Phylogenetic Relationship and Diagnosis of Five Common Pest Cockroaches

    Directory of Open Access Journals (Sweden)

    Saedeh Sadat Hashemi-Aghdam

    2017-06-01

    Full Text Available Background: Cockroaches are of vital importance medically and hygienically as they can disperse human patho­genic agents and are especially responsible for food contamination and spreading of food borne pathogens. In this study, part of mtDNA-COI gene of five common pest cockroaches was tested for diagnostic and phylogenetic pur­poses.Methods: We have described barcode region of mtDNA-COI gene of five cockroach species: Blattella germanica, Blatta orientalis, Periplaneta americana, Shelfordella lateralis, and Supella longipalpa, along with the development of a PCR-RFLP method for rapid detection and differentiation of these health pest species.Results: The PCR generates a single 710 bp-sized amplicon in all cockroach specimens, followed by direct se­quencing. AluI predicted from the sequencing data provided different RFLP profiles among five species. There was a significant intra-species variation within the American cockroach populations, but no genetic variation within other species. Accordingly, phylogenetic analysis demonstrates common monophyly for cockroach families in agreement with conventional taxonomy. However S. longipalpa (Ectobiidae diverged as an early ancestor of other cockroaches and was not associated with other Ectobiidae.Conclusion: The PCR-RFLP protocol might be useful when the conventional taxonomic methods are not able to identify specimens, particularly when only small body parts of specimens are available or they are in a decaying condition. mtDNA-COI gene shows potentially useful for studying phylogenetic relationships of Blattodea order.

  4. DNA barcoding of two solitary ascidians, Herdmania momus Savigny, 1816 and Microcosmus squamiger Michaelsen, 1927 from Thoothukudi coast, India.

    Science.gov (United States)

    Jaffar Ali, H Abdul; Ahmed, N Shabeer

    2016-07-01

    Morphology-based taxonomical studies of ascidians in India are meagre due to lack of ascidian taxonomist and limitations inherent in conventional system-based identification. The use of short fragment of mitochondrial DNA sequence is proving highly useful in identifying species in a situation where, the traditional morphology-based identification is difficult. In the present study, two adult solitary ascidians collected from the Thoothukudi coast were morphologically identified as Herdmania momus Savigny, 1816 and Microcosmus squamiger Michaelsen, 1927. The genomic DNA of these ascidians was isolated, COI gene was amplified, sequenced and submitted to the GenBank under the accession numbers KM058116, KM411616 and KJ944390. Homology search result using BLAST showed that H. momus showed 100% matched with other H. momus, while M. squamiger showed similarity with Pyura herdmani, a member of the same family Pyuridae. The phylogenetic and genetic distance was maximum in interspecies than in intraspecies. These COI sequences will allow the identification of the species through DNA barcoding technique. Here, we report for the first time the COI gene of H. momus, Savigny 1816 from the Indian coast.

  5. Genetic barcodes

    Science.gov (United States)

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  6. DNA barcoding to identify species of phlebotomine sand fly (Diptera: Psychodidae) in the mixed leishmaniasis focus of the Colombian Caribbean.

    Science.gov (United States)

    Romero-Ricardo, Luis; Lastre-Meza, Natalia; Pérez-Doria, Alveiro; Bejarano, Eduar E

    2016-07-01

    Identification of the species of phlebotomine sand flies present in each focus of leishmaniasis is necessary to incriminate vectors and implement vector control strategies. Although the cytochrome oxidase I (COI) gene has been proposed as a barcode for the identification of animal species, less than 20% of New World phlebotomines have been characterized to date. In this study DNA barcoding was used to identify phlebotomine species of the mixed leishmaniasis focus in the Colombian Caribbean by means of three evolutionary models: Kimura's two parameter (K2P) nucleotide substitution model, that of (Tamura and Nei, 1993) (TN93) and proportional sequence divergence (p-distances). A 681bp sequence of the COI gene was obtained from 66 individuals belonging to 19 species of the genus Lutzomyia (Lu. abonnenci, Lu. atroclavata, Lu. bicolor, Lu. carpenteri, Lu. cayennensis cayennensis, Lu. dubitans, Lu. evansi, Lu. gomezi, Lu. gorbitzi, Lu. longipalpis, Lu. micropyga, Lu. migonei, Lu. panamensis, Lu. (Psathyromyia) sp., Lu. rangeliana, Lu. serrana, Lu. shannoni, Lu. trinidadensis and Lu. venezuelensis) and one of Brumptomyia (B. mesai). The genetic divergence values for TN93 among individuals of the same species fluctuated up to 3.2% (vs. 2.9% for K2P and 2.8% for p-distances), while the values between species ranged from 8.8-43.7% (vs. 6.8-19.6% for K2P and 6.6-17.4% for p-distances). A dendrogram constructed by means of the Neighbor-Joining method grouped phlebotomines into 20 clusters according to species, with bootstrap values of up to 100% in those with more than one individual. However, loss of the phylogenetic signal of the gene COI was observed at the supraspecific level as a consequence of substitutional saturation. In conclusion, irrespective of the evolutionary model selected, all phlebotomines were correctly assigned to species, showing 100% concordance with morphological identification. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. International Barcode of Life Project : Engaging Developing Nations ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    DNA barcoding is a new tool for taxonomic research. The DNA barcode is a very short standardized DNA sequence in a well-known gene. It provides a secure and less complicated way of identifying the species to which an animal, plant or fungus belongs than traditional observation. The barcoding tool was developed by ...

  8. DNA barcoding simplifies environmental risk assessment of genetically modified crops in biodiverse regions.

    Science.gov (United States)

    Nzeduru, Chinyere V; Ronca, Sandra; Wilkinson, Mike J

    2012-01-01

    Transgenes encoding for insecticidal crystal (Cry) proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM) crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs) represents a major element of the Environmental Risk Assessments (ERAs) used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata) in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs) spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins). Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level) and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored.

  9. DNA barcoding simplifies environmental risk assessment of genetically modified crops in biodiverse regions.

    Directory of Open Access Journals (Sweden)

    Chinyere V Nzeduru

    Full Text Available Transgenes encoding for insecticidal crystal (Cry proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs represents a major element of the Environmental Risk Assessments (ERAs used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins. Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored.

  10. How many species and under what names? Using DNA barcoding and GenBank data for west Central African amphibian conservation.

    Directory of Open Access Journals (Sweden)

    Jessica L Deichmann

    Full Text Available Development projects in west Central Africa are proceeding at an unprecedented rate, often with little concern for their effects on biodiversity. In an attempt to better understand potential impacts of a road development project on the anuran amphibian community, we conducted a biodiversity assessment employing multiple methodologies (visual encounter transects, auditory surveys, leaf litter plots and pitfall traps to inventory species prior to construction of a new road within the buffer zone of Moukalaba-Doudou National Park, Gabon. Because of difficulties in morphological identification and taxonomic uncertainty of amphibian species observed in the area, we integrated a DNA barcoding analysis into the project to improve the overall quality and accuracy of the species inventory. Based on morphology alone, 48 species were recognized in the field and voucher specimens of each were collected. We used tissue samples from specimens collected at our field site, material available from amphibians collected in other parts of Gabon and the Republic of Congo to initiate a DNA barcode library for west Central African amphibians. We then compared our sequences with material in GenBank for the genera recorded at the study site to assist in identifications. The resulting COI and 16S barcode library allowed us to update the number of species documented at the study site to 28, thereby providing a more accurate assessment of diversity and distributions. We caution that because sequence data maintained in GenBank are often poorly curated by the original submitters and cannot be amended by third-parties, these data have limited utility for identification purposes. Nevertheless, the use of DNA barcoding is likely to benefit biodiversity inventories and long-term monitoring, particularly for taxa that can be difficult to identify based on morphology alone; likewise, inventory and monitoring programs can contribute invaluable data to the DNA barcode library and

  11. DNA barcoding and morphological analysis for rapid identification of most economically important crop-infesting Sunn pests belonging to Eurygaster Laporte, 1833 (Hemiptera, Scutelleridae

    Directory of Open Access Journals (Sweden)

    Mikhail Y. Syromyatnikov

    2017-10-01

    Full Text Available The genus Eurygaster Laporte, 1833 includes ten species five of which inhabit the European part of Russia. The harmful species of the genus is E. integriceps. Eurygaster species identification based on the morphological traits is very difficult, while that of the species at the egg or larval stages is extremely difficult or impossible. Eurygaster integriceps, E. maura, and E. testudinaria differ only slightly between each other morphologically, E. maura and E. testudinaria being almost indiscernible. DNA barcoding based on COI sequences have shown that E. integriceps differs significantly from these closely related species, which enables its rapid and accurate identification. Based on COI nucleotide sequences, three species of Sunn pests, E. maura, E. testudinarius, E. dilaticollis, could not be differentiated from each other through DNA barcoding. The difference in the DNA sequences between the COI gene of E. integriceps and COI genes of E. maura and E. testudinarius was more than 4%. In the present study DNA barcoding of two Eurygaster species was performed for the first time on E. integriceps, the most dangerous pest in the genus, and E. dilaticollis that only inhabits natural ecosystems. The PCR-RFLP method was developed in this work for the rapid identification of E. integriceps.

  12. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    Directory of Open Access Journals (Sweden)

    W John Kress

    2010-11-01

    Full Text Available Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  13. DNA barcoding approaches for fishing authentication of exploited grouper species including the endangered and legally protected goliath grouper Epinephelus itajara

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Torres

    2013-09-01

    Full Text Available Fishing strategies are constantly changing to meet the needs for new or alternative food sources. Consequently, management of fishing activities regarding rates of exploitation is essential, as a number of resources have reached situations of overexploitation. The aim of the present study was to use DNA barcoding from the goliath grouper and other exploited epinephelids in order to provide procedures for DNA authentication to be used as evidence for combating putative illegal fishing. The species studied were Epinephelus adscensionis, Mycteroperca bonaci, Mycteroperca interstitialis, Epinephelus itajara, Mycteroperca venenosa, Epinephelus mystacinus, Dermatolepis inermis, Alphestes afer, Cephalopholis fulva, Mycteroperca acutirostris, Rypticus saponaceus, Mycteroperca marginata and Epinephelus morio. Four of these species are the main epinephelids fished in the Atlantic Ocean. Differential patterns of polymerase chain reaction–restriction fragment length polymorphism were obtained from the species and additional single nucleotide polymorphisms were also detected among the four main epinephelids studied. The procedures proved very efficient and we suggest their applicability to the other fish groups as a way to control illegal capture and retail around the world, especially in cases in which filleting and other forms of de-characterization cause a lack of morpho-anatomical key characters.

  14. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity

    Science.gov (United States)

    Dincă, Vlad; Montagud, Sergio; Talavera, Gerard; Hernández-Roldán, Juan; Munguira, Miguel L.; García-Barros, Enrique; Hebert, Paul D. N.; Vila, Roger

    2015-01-01

    How common are cryptic species - those overlooked because of their morphological similarity? Despite its wide-ranging implications for biology and conservation, the answer remains open to debate. Butterflies constitute the best-studied invertebrates, playing a similar role as birds do in providing models for vertebrate biology. An accurate assessment of cryptic diversity in this emblematic group requires meticulous case-by-case assessments, but a preview to highlight cases of particular interest will help to direct future studies. We present a survey of mitochondrial genetic diversity for the butterfly fauna of the Iberian Peninsula with unprecedented resolution (3502 DNA barcodes for all 228 species), creating a reliable system for DNA-based identification and for the detection of overlooked diversity. After compiling available data for European butterflies (5782 sequences, 299 species), we applied the Generalized Mixed Yule-Coalescent model to explore potential cryptic diversity at a continental scale. The results indicate that 27.7% of these species include from two to four evolutionary significant units (ESUs), suggesting that cryptic biodiversity may be higher than expected for one of the best-studied invertebrate groups and regions. The ESUs represent important units for conservation, models for studies of evolutionary and speciation processes, and sentinels for future research to unveil hidden diversity. PMID:26205828

  15. DNA barcoding for species identification from dried and powdered plant parts: a case study with authentication of the raw drug market samples of Sida cordifolia.

    Science.gov (United States)

    Vassou, Sophie Lorraine; Kusuma, G; Parani, Madasamy

    2015-03-15

    The majority of the plant materials used in herbal medicine is procured from the markets in the form of dried or powdered plant parts. It is essential to use authentic plant materials to derive the benefits of herbal medicine. However, establishing the identity of these plant materials by conventional taxonomy is extremely difficult. Here we report a case study in which the species identification of the market samples of Sida cordifolia was done by DNA barcoding. As a prelude to species identification by DNA barcoding, 13 species of Sida were collected, and a reference DNA barcode library was developed using rbcL, matK, psbA-trnH and ITS2 markers. Based on the intra-species and inter-species divergence observed, psbA-trnH and ITS2 were found to be the best two-marker combination for species identification of the market samples. The study showed that none of the market samples belonged to the authentic species, S. cordifolia. Seventy-six per cent of the market samples belonged to other species of Sida. The predominant one was Sida acuta (36%) followed by S. spinosa (20%), S. alnifolia (12%), S. scabrida (4%) and S. ravii (4%). Such substitutions may not only fail to give the expected therapeutic effect, but may also give undesirable effects as in case of S. acuta which contains a 6-fold higher amount of ephedrine compared to the roots of S. cordifolia. The remaining 24% of the samples were from other genera such as Abutilon sp. (8%), Ixonanthes sp., Terminalia sp., Fagonia sp., and Tephrosia sp. (4% each). This observation is in contrast to the belief that medicinal plants are generally substituted or adulterated with closely related species. The current study strongly suggests that the raw drug market samples of herbal medicines need to be properly authenticated before use, and DNA barcoding has been found to be suitable for this purpose. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Review of the Eulamprotes wilkella species-group based on morphology and DNA barcodes, with descriptions of new taxa (Lepidoptera, Gelechiidae)

    DEFF Research Database (Denmark)

    Huemer, Peter; Elsner, Gustav; Karsholt, Ole

    2013-01-01

    The Eulamprotes wilkella species-group is revised based on morphological characters and on DNA barcodes of the mtCOI (Cytochrome c Oxidase 1) gene. Adult morphology combined with sequence information for 9 species supports the existence of 12 species, 7 of which are described as new to science: E....... kailai Karsholt & Huemer sp. nov. (Kazakhstan, Kyrgizia, Russia: Buryatia, Tuva Republic) and E. gemerensis Elsner sp. nov. (Slovakia). E. buvati Leraut, 1991 syn. nov. is synonymized with E. ochricapilla (Rebel, 1903)....

  17. [The species traceability of the ultrafine powder and the cell wall-broken powder of herbal medicine based on DNA barcoding].

    Science.gov (United States)

    Xiang, Li; Tang, Huan; Cheng, Jin-le; Chen, Yi-long; Deng, Wen; Zheng, Xia-sheng; Lai, Zhi-tian; Chen, Shi-lin

    2015-12-01

    Ultrafine powder and cell wall-broken powder of herbal medicine lack of the morphological characters and microscopic identification features. This makes it hard to identify herb's authenticity with traditional methods. We tested ITS2 sequence as DNA barcode in identification of herbal medicine in ultrafine powder and cell wall-broken powder in this study. We extracted genomic DNAs of 93 samples of 31 representative herbal medicines (28 species), which include whole plant, roots and bulbs, stems, leaves, flowers, fruits and seeds. The ITS2 sequences were amplified and sequenced bidirectionally. The ITS2 sequences were identified using Basic Local Alignment Search Tool (BLAST) method in the GenBank database and DNA barcoding system to identify the herbal medicine. The genetic distance was analyzed using the Kimura 2-parameter (K2P) model and the Neighbor-joining (NJ) phylogenetic tree was constructed using MEGA 6.0. The results showed that DNA can be extracted successfully from 93 samples and high quality ITS2 sequences can be amplified. All 31 herbal medicines can get correct identification via BLAST method. The ITS2 sequences of raw material medicines, ultrafine powder and cell wall-broken powder have same sequence in 26 herbal medicines, while the ITS2 sequences in other 5 herbal medicines exhibited variation. The maximum intraspecific genetic-distances of each species were all less than the minimum interspecific genetic distances. ITS2 sequences of each species are all converged to their standard DNA barcodes using NJ method. Therefore, using ITS2 barcode can accurately and effectively distinguish ultrafine powder and cell wall-broken powder of herbal medicine. It provides a new molecular method to identify ultrafine powder and cell wall-broken powder of herbal medicine in the quality control and market supervision.

  18. Using DNA barcoding to detect adulteration in different herbal plant-based products in the United Arab Emirates: Proof of concept and validation.

    Science.gov (United States)

    Mosa, Kareem A; Soliman, Sameh; El-Keblawy, Ali; Ali, Muna Abdalla; Hassan, Hessa Ali; Tamim, Aysha Ali Bin; Al-Ali, Moza Mohamed

    2018-04-08

    Commercially available herbal and medicinal plants-based products are susceptible to substitution or contamination with other unlabeled or undesired materials. This will reduce the quality of the product, and may lead to intoxication and allergy. DNA Barcoding is a molecular technology that allows the identification of plant materials at the species level, by sequencing short stretches of standardized gene sequences from nuclear or organelle genome in an easy, rapid, accurate and cost-effective manner. The aim of this research is to apply DNA barcoding to investigate the authenticity of commercially available herbal and medicinal plant-based products within the UAE markets. A total of 30 samples were analyzed, covering six different herbal products (Thyme, Cardamom, Anise, Basil, Turmeric, and Ginger), obtained in fresh and dried forms. DNA was extracted and three barcode loci including (rbcL), (matK) and (ITS) were amplified, sequenced and analyzed by BLAST. In terms of amplification efficiency, the results suggest that rbcl is the most suitable marker for species identification giving 75% of successful amplifications, followed by ITS with 66.67%, whereas matK had the lowest with 18.52%. Adulteration was detected in two samples, ginger powder and dry thyme leaves samples. The adulterants were from Triticum and Oryza genera. Clearly, the results from this report provide an evidence that DNA barcoding technique is efficient in the recognition of commercial plant products. Thus it can be considered as a fast effective reliable method to detect adulteration in plant-based products in the UAE market. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding.

    Science.gov (United States)

    Seethapathy, Gopalakrishnan Saroja; Ganesh, Doss; Santhosh Kumar, Jayanthinagar Urumarudappa; Senthilkumar, Umapathy; Newmaster, Steven G; Ragupathy, Subramanyam; Uma Shaanker, Ramanan; Ravikanth, Gudasalamani

    2015-07-01

    Medicinal plants such as Cassia, Senna, and Chamaecrista (belonging to the family Fabaceae) are well known for their laxative properties. They are extensively used within indigenous health care systems in India and several other countries. India exports over 5000 metric tonnes per year of these specific herbal products, and the demand for natural health product market is growing at approximately 10-15% annually. The raw plant material used as active ingredients is almost exclusively sourced from wild populations. Consequently, it is widely suspected that the commercial herbal products claiming to contain these species may be adulterated or contaminated. In this study, we have attempted to assess product authentication and the extent of adulteration in the herbal trade of these species using DNA barcoding. Our method includes four common DNA barcode regions: ITS, matK, rbcL, and psbA-trnH. Analysis of market samples revealed considerable adulteration of herbal products: 50% in the case of Senna auriculata, 37% in Senna tora, and 8% in Senna alexandrina. All herbal products containing Cassia fistula were authentic, while the species under the genus Chamaecrista were not in trade. Our results confirm the suspicion that there is rampant herbal product adulteration in Indian markets. DNA barcodes such as that demonstrated in this study could be effectively used as a regulatory tool to control the adulteration of herbal products and contribute to restoring quality assurance and consumer confidence in natural health products.

  20. Revision of the West Palaearctic Polistes Latreille, with the descriptions of two species – an integrative approach using morphology and DNA barcodes (Hymenoptera, Vespidae

    Directory of Open Access Journals (Sweden)

    Christian Schmid-Egger

    2017-11-01

    Full Text Available The genus Polistes is revised for the West Palaearctic region based on morphology and DNA barcodes. The revision includes all known West Palaearctic species, raising the number of species in Europe to 14 and to 17 for the West Palaearctic realm. DNA barcodes were recovered from 15 species, 14 of which belong to the subgenus Polistes, and one, P. wattii, to the subgenus Gyrostoma. An integrative taxonomic approach combining morphology and molecular data (DNA barcoding was employed to resolve longstanding taxonomic problems in this group. Two species, P. austroccidentalis van Achterberg & Neumeyer, sp. n. (= P. semenowi auctt. from W and SW Europe and P. maroccanus Schmid-Egger, sp. n. from Morocco are described as new. Polistes bucharensis Erichson, 1849, and P. foederatus Kohl, 1898, were restored from synonymy. The following new synonyms are proposed: P. sulcifer Zimmermann, 1930, and Pseudopolistes sulcifer var. similator Zirngiebl, 1955, under P. semenowi Morawitz, 1889, syn. n.; Polistes iranus Guiglia, 1976, Polistes gallica var. ornata Weyrauch, 1938 and Polistes gallicus muchei Gusenleitner, 1976, under P. bucharensis Erichson, 1849, syn. n.; Polistes omissus var. ordubadensis Zirngiebl, 1955, and P. hellenicus Arens, 2011, under Polistes mongolicus du Buysson, 1911, syn. n. An illustrated key includes all species and additionally three species from the subgenera Aphanilopterus Meunier, 1888 and Gyrostoma Kirby, 1828 (including a Nearctic species recently introduced to Spain and two species occurring in Egypt, the Arabian Peninsula, and SW Asia. A phylogenetic analysis using Bayesian inference provides insights into phylogenetic relationships within the genus Polistes.

  1. Use of rbcL and trnL-F as a two-locus DNA barcode for identification of NW-European ferns: an ecological perspective.

    Directory of Open Access Journals (Sweden)

    G Arjen de Groot

    2011-01-01

    Full Text Available Although consensus has now been reached on a general two-locus DNA barcode for land plants, the selected combination of markers (rbcL + matK is not applicable for ferns at the moment. Yet especially for ferns, DNA barcoding is potentially of great value since fern gametophytes--while playing an essential role in fern colonization and reproduction--generally lack the morphological complexity for morphology-based identification and have therefore been underappreciated in ecological studies. We evaluated the potential of a combination of rbcL with a noncoding plastid marker, trnL-F, to obtain DNA-identifications for fern species. A regional approach was adopted, by creating a reference database of trusted rbcL and trnL-F sequences for the wild-occurring homosporous ferns of NW-Europe. A combination of parsimony analyses and distance-based analyses was performed to evaluate the discriminatory power of the two-region barcode. DNA was successfully extracted from 86 tiny fern gametophytes and was used as a test case for the performance of DNA-based identification. Primer universality proved high for both markers. Based on the combined rbcL + trnL-F dataset, all genera as well as all species with non-equal chloroplast genomes formed their own well supported monophyletic clade, indicating a high discriminatory power. Interspecific distances were larger than intraspecific distances for all tested taxa. Identification tests on gametophytes showed a comparable result. All test samples could be identified to genus level, species identification was well possible unless they belonged to a pair of Dryopteris species with completely identical chloroplast genomes. Our results suggest a high potential of the combined use of rbcL and trnL-F as a two-locus cpDNA barcode for identification of fern species. A regional approach may be preferred for ecological tests. We here offer such a ready-to-use barcoding approach for ferns, which opens the way for answering a

  2. DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region

    Directory of Open Access Journals (Sweden)

    Padmalatha S Rai

    2012-01-01

    Full Text Available Background : Herbal drugs used to treat illness according to Ayurveda are often misidentified or adulterated with similar plant materials. Objective: To aid taxonomical identification, we used DNA barcoding to evaluate authentic and substitute samples of herb and phylogenetic relationship of four medicinal plants of family Asparagaceace and Asclepiadaceae. Materials and Methods : DNA extracted from dry root samples of two authentic and two substitutes of four specimens belonging to four species were subjected to polymerase chain reaction (PCR and DNA sequencing. Primers for nuclear DNA (nu ITS2 and plastid DNA (matK and rpoC1 were used for PCR and sequence analysis was performed by Clustal W. The intraspecific variation and interspecific divergence were calculated using MEGA V 4.0. Statistical Analysis : Kimura′s two parameter model, neighbor joining and bootstrapping methods were used in this work. Results: The result indicates the efficiency of amplification for ITS2 candidate DNA barcodes was 100% for four species tested. The average interspecific divergence is 0.12 and intraspecific variation was 0.232 in the case of two Asparagaceae species. In two Asclepiadaceae species, average interspecific divergence and intraspecific variation were 0.178 and 0.004 respectively. Conclusions: Our findings show that the ITS2 region can effectively discriminate Asparagus racemosus and Hemidesmus indicus from its substitute samples and hence can resolve species admixtures in raw samples. The ITS2 region may be used as one of the standard DNA barcodes to identify closely related species of family Asclepiadaceae but was noninformative for Asparagaceae species suggesting a need for the development of new markers for each family. More detailed studies involving more species and substitutes are warranted.

  3. Reconstructing a herbivore’s diet using a novel rbcL DNA mini-barcode for plants

    Science.gov (United States)

    Erickson, David L.; Reed, Elizabeth; Ramachandran, Padmini; Bourg, Norman; McShea, William J.; Ottesen, Andrea

    2017-01-01

    Next Generation Sequencing and the application of metagenomic analyses can be used to answer questions about animal diet choice and study the consequences of selective foraging by herbivores. The quantification of herbivore diet choice with respect to native versus exotic plant species is particularly relevant given concerns of invasive species establishment and their effects on ecosystems. While increased abundance of white-tailed deer (Odocoileus virginianus) appears to correlate with increased incidence of invasive plant species, data supporting a causal link is scarce. We used a metabarcoding approach (PCR amplicons of the plant rbcL gene) to survey the diet of white-tailed deer (fecal samples), from a forested site in Warren County, Virginia with a comprehensive plant species inventory and corresponding reference collection of plant barcode and chloroplast sequences. We sampled fecal pellet piles and extracted DNA from 12 individual deer in October 2014. These samples were compared to a reference DNA library of plant species collected within the study area. For 72 % of the amplicons, we were able to assign taxonomy at the species level, which provides for the first time—sufficient taxonomic resolution to quantify the relative frequency at which native and exotic plant species are being consumed by white-tailed deer. For each of the 12 individual deer we collected three subsamples from the same fecal sample, resulting in sequencing 36 total samples. Using Qiime, we quantified the plant DNA found in all 36 samples, and found that variance within samples was less than variance between samples (F = 1.73, P = 0.004), indicating additional subsamples may not be necessary. Species level diversity ranged from 60 to 93 OTUs per individual and nearly 70 % of all plant sequences recovered were from native plant species. The number of species detected did reduce significantly (range 4–12) when we excluded species whose OTU composed behaviour may favour

  4. DNA barcoding reveals diversity of Hymenoptera and the dominance of parasitoids in a sub-arctic environment

    Directory of Open Access Journals (Sweden)

    Stahlhut Julie K

    2013-01-01

    Full Text Available Abstract Background Insect diversity typically declines with increasing latitude, but previous studies have shown conflicting latitude-richness gradients for some hymenopteran parasitoids. However, historical estimates of insect diversity and species richness can be difficult to confirm or compare, because they may be based upon dissimilar methods. As a proxy for species identification, we used DNA barcoding to identify molecular operational taxonomic units (MOTUs for 7870 Hymenoptera specimens collected near Churchill, Manitoba, from 2004 through 2010. Results We resolved 1630 MOTUs for this collection, of which 75% (1228 were ichneumonoids (Ichneumonidae + Braconidae and 91% (1484 were parasitoids. We estimate the total number of Hymenoptera MOTUs in this region at 2624-2840. Conclusions The diversity of parasitoids in this sub-Arctic environment implies a high diversity of potential host species throughout the same range. We discuss these results in the contexts of resolving interspecific interactions that may include cryptic species, and developing reproducible methods to estimate and compare species richness across sites and between surveys, especially when morphological specialists are not available to identify every specimen.

  5. Description, DNA barcode and phylogeny of a new species, Macrobrachium abrahami (Decapoda: Palaemonidae) from Kerala, India.

    Science.gov (United States)

    Pillai, P M; Unnikrishnan, V; Kumar, U Suresh

    2014-02-28

    Macrobrachium abrahami, new species is described from Vamanapuram River, Kerala, South India. DNA bar-coding using Cytochrome B gene sequences has elucidated the taxonomic status of the new species and the ML tree reveals that M. abrahami sp. nov., is phylogenetically close to M. prabhakarani, but morphologically more similar to M. scabriculum. However, the species shares certain morphological characters with M. scabriculum, M. prabhakarani and M. lanatum, but differs remarkably from these three species in distinctive diagnostic characters: rostrum moderately long, convex, distal end directed upwards, rostral formula 12-15/2-3 with 5-6 postorbital teeth, and carapace glabrous. In larger second chelate leg, fingers stout, pubescence restricted to their base; proximal half of cutting edge with fifteen denticles. In smaller second chelate leg, cutting edge of both fingers carry six small denticles situated proximally, distal one comparatively larger. Delicate setae are seen throughout the palm. A row of dark chromatophores is present along the posterio-dorsal margin of uropodal exopods and endopods, close to the base of uropodal setae. The thickness of each band of the row is almost equal to the thickness of uropodal setae.

  6. The Species and Origin of Shark Fins in Taiwan's Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis.

    Directory of Open Access Journals (Sweden)

    Po-Shun Chuang

    Full Text Available The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus, the pelagic thresher shark (A. pelagicus, the smooth hammerhead shark (Sphyrna zygaena, and the scalloped hammerhead shark (S. lewini. This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks.

  7. The Species and Origin of Shark Fins in Taiwan's Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis.

    Science.gov (United States)

    Chuang, Po-Shun; Hung, Tzu-Chiao; Chang, Hung-An; Huang, Chien-Kang; Shiao, Jen-Chieh

    2016-01-01

    The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus), the pelagic thresher shark (A. pelagicus), the smooth hammerhead shark (Sphyrna zygaena), and the scalloped hammerhead shark (S. lewini). This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks.

  8. DNA barcoding techniques used to identify the shared ichthyofauna between the Pantanal floodplain and Upper Parana River.

    Science.gov (United States)

    da Costa-Silva, Guilherme J; Yuldi Ashikaga, Fernando; Kioko Shimabukuro Dias, Cristiane; Garcia Pereira, Luiz Henrique; Foresti, Fausto; Oliveira, Claudio

    2017-11-20

    The biological invasion process is widely debated topic, as the population depletion of some species and the extinction of others are related to this process. To accelerate the identification of species and to detect non-native forms, new tools are being developed, such as those based on genetic markers. This study aimed to use Barcode DNA methodology to identify fish species that had translocated between the Parana and Paraguay River Basins. Based on a database of two studies that were conducted in these regions, 289 sequences of Cytochrome Oxidase C subunit 1 (COI) were used for General Mixed Youle Coalecent (GMYC) analysis, including 29 morphospecies that were sampled in both river basins. As a result, we observed that while some morphospecies have low variation, demonstrating a recent occupation of the basins, other morphospecies probably represent species complexes. A third of the morphospecies had well-defined lineages but not enough to be treated as different Molecular Operational Taxonomic Units (MOTUs). These results demonstrate that human interventions possibly participated in the distribution of some lineages. However, biogeographical historical processes are also important for the morphospecies distribution. The data suggest that the number of species that are present in these two basins is underestimated and that human actions can irreversibly affect the natural history of the species in these regions.

  9. Reassessment of Species Diversity of the Subfamily Denticollinae (Coleoptera: Elateridae through DNA Barcoding.

    Directory of Open Access Journals (Sweden)

    Taeman Han

    Full Text Available The subfamily Denticollinae is a taxonomically diverse group in the family Elateridae. Denticollinae includes many morphologically similar species and crop pests, as well as many undescribed species at each local fauna. To construct a rapid and reliable identification system for this subfamily, the effectiveness of molecular species identification was assessed based on 421 cytochrome c oxidase subunit I (COI sequences of 84 morphologically identified species. Among the 84 morphospecies, molecular species identification of 60 species (71.4% was consistent with their morphological identifications. Six cryptic and/or pseudocryptic species with large genetic divergence (>5% were confirmed by their sympatric or allopatric distributions. However, 18 species, including a subspecies, had ambiguous genetic distances and shared overlapping intra- and interspecific genetic distances (range: 2.12%-3.67% suggesting incomplete lineage sorting, introgression of mitochondrial genome, or affection by endosymbionts, such as Wolbachia infection, between species and simple genetic variation within species. In this study, we propose a conservative threshold of 3.6% for convenient molecular operational taxonomic unit (MOTU identification in the subfamily Denticollinae based on the results of pairwise genetic distances analyses using neighbor-joining, mothur, Automatic Barcode Gap Discovery analysis, and tree-based species delimitation by Poisson Tree Processes analysis. Using the 3.6% threshold, we identified 87 MOTUs and found 8 MOTUs in the interval between 2.5% to 3.5%. Evaluation of MOTUs identified in this range requires integrative species delimitation, including review of morphological and ecological differences as well as sensitive genetic markers. From this study, we confirmed that COI sequence is useful for reassessing species diversity for polymorphic and polytypic species occurring in sympatric and allopatric distributions, and for a single species having

  10. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae and evaluation of potential DNA barcoding markers

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2017-08-01

    Full Text Available The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum, Adelphocoris suturalis, Ade. fasciaticollis and Ade. lineolatus. We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage were well conserved among these mirids. Four protein-coding genes (PCGs (cox1, cox3, nad1 and nad3 had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs (nad4 and nad5 showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (<0.59, but the Ka/Ks values of cox1-barcode sequences were always larger than 1 (1.34 –15.20, indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + (Trigonotylus + (Adelphocoris + (Apolygus + Lygus, as revealed by nad4, nad5, rrnL and the combined 22 transfer RNA genes (tRNAs, respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes (nad4, nad5 and rrnL and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification

  11. DNA barcodes effectively identify the morphologically similar Common Opossum (Didelphis marsupialis) and Virginia Opossum (Didelphis virginiana) from areas of sympatry in Mexico.

    Science.gov (United States)

    Cervantes, Fernando A; Arcangeli, Jésica; Hortelano-Moncada, Yolanda; Borisenko, Alex V

    2010-12-01

    Two morphologically similar species of opossum from the genus Didelphis-Didelphis virginiana and Didelphis marsupialis-cooccur sympatrically in Mexico. High intraspecific variation complicates their morphological discrimination, under both field and museum conditions. This study aims to evaluate the utility and reliability of using DNA barcodes (short standardized genome fragments used for DNA-based identification) to distinguish these two species. Sequences of the cytochrome c oxidase subunit I (Cox1) mitochondrial gene were obtained from 12 D. marsupialis and 29 D. virginiana individuals and were compared using the neighbor-joining (NJ) algorithm with Kimura's two-parameter (K2P) model of nucleotide substitution. Average K2P distances were 1.56% within D. virginiana and 1.65% in D. marsupialis. Interspecific distances between D. virginiana and D. marsupialis varied from 7.8 to 9.3% and their barcode sequences formed distinct non-overlapping clusters on NJ trees. All sympatric specimens of both species were effectively discriminated, confirming the utility of Cox1 barcoding as a tool for taxonomic identification of these morphologically similar taxa.

  12. Stability and Accuracy Assessment of Identification of Traditional Chinese Materia Medica Using DNA Barcoding: A Case Study on Flos Lonicerae Japonicae

    Directory of Open Access Journals (Sweden)

    Dianyun Hou

    2013-01-01

    Full Text Available DNA barcoding is a novel molecular identification method that aids in identifying traditional Chinese materia medica using traditional identification techniques. However, further study is needed to assess the stability and accuracy of DNA barcoding. Flos Lonicerae Japonicae, a typical medicinal flower, is widely used in China, Korea, and other Southeast Asian countries. However, Flos Lonicerae Japonicae and its closely related species have been misused and traded at varying for a wide range of prices. Therefore, Flos Lonicerae Japonicae must be accurately identified. In this study, the ITS2 and psbA-trnH regions were amplified by polymerase chain reaction (PCR. Sequence assembly was performed using CodonCode Aligner V 3.5.4. The intra- versus inter-specific variations were assessed using six metrics and “barcoding gaps.” Species identification was conducted using BLAST1 and neighbor-joining (NJ trees. Results reveal that ITS2 and psbA-trnH exhibited an average intraspecific divergence of 0.001 and 0, respectively, as well as an average inter-specific divergence of 0.0331 and 0.0161. The identification efficiency of ITS2 and psbA-trnH evaluated using BLAST1 was 100%. Flos Lonicerae Japonicae was formed into one clade through the NJ trees. Therefore, Flos Lonicerae Japonicae can be stably and accurately identified through the ITS2 and psbA-trnH regions, respectively.

  13. Cultivar-level phylogeny using chloroplast DNA barcode psbK-psbI spacers for identification of Emirati date palm (Phoenix dactylifera L.) varieties.

    Science.gov (United States)

    Enan, M R; Ahmed, A

    2016-08-05

    The efficacy of genetic material for use as DNA barcodes is under constant evaluation and improvement as new barcodes offering better resolution and efficiency of amplification for specific species groups are identified. In this study, the chloroplast intergenic spacer psbK-psbI was evaluated for the first time as a DNA barcode for distinguishing date palm cultivars. Nucleotide sequences were aligned using MEGA 6.0 to calculate pairwise divergence among the cultivars. The analyzed data illustrated a considerable level of variability in the genetic pool of the selected cultivars (0.009). In fact, five haplotypes were detected among 30 cultivars examined, yielding a haplotype diversity of 0.685. An unweighted pair group method with arithmetic mean phylogenetic tree was constructed and shows a well-defined relationship among date palm cultivar varieties. On the other hand, selective neutrality investigations using Tajima test and Fu and Li tests were negative, providing evidence that date palm has been undergoing rapid expansion and recent population growth. Thus, we suggest that the psbK-psbI spacer can be successfully used to construct reliable phylogenetic trees for P. dactylifera.

  14. DNA barcoding of western North American taxa: Leymus (Poaceae) and Lepidium (Brassicaceae)

    Science.gov (United States)

    Catherine Mae Culumber

    2007-01-01

    My objective was to determine if polymorphic information from the 18S-5.8S-26S nuclear ribosomal DNA internal transcribed spacer regions and the trnK-psbA, trnK-rps16 chloroplast DNA spacer regions is sufficient 1) to identify a plant specimen to the species level, and 2) to establish the phylogenetic relationship between species. The first study examined the...

  15. Evaluating the Species Boundaries of Green Microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta Using Integrative Taxonomy and DNA Barcoding with Further Implications for the Species Identification in Environmental Samples.

    Directory of Open Access Journals (Sweden)

    Tatyana Darienko

    Full Text Available Integrative taxonomy is an approach for defining species and genera by taking phylogenetic, morphological, physiological, and ecological data into account. This approach is appropriate for microalgae, where morphological convergence and high levels of morphological plasticity complicate the application of the traditional classification. Although DNA barcode markers are well-established for animals, fungi, and higher plants, there is an ongoing discussion about suitable markers for microalgae and protists because these organisms are genetically more diverse compared to the former groups. To solve these problems, we assess the usage of a polyphasic approach combining phenotypic and genetic parameters for species and generic characterization. The application of barcode markers for database queries further allows conclusions about the 'coverage' of culture-based approaches in biodiversity studies and integrates additional aspects into modern taxonomic concepts. Although the culture-dependent approach revealed three new lineages, which are described as new species in this paper, the culture-independent analyses discovered additional putative new species. We evaluated three barcode markers (V4, V9 and ITS-2 regions, nuclear ribosomal operon and studied the morphological and physiological plasticity of Coccomyxa, which became a model organism because its whole genome sequence has been published. In addition, several biotechnological patents have been registered for Coccomyxa. Coccomyxa representatives are distributed worldwide, are free-living or in symbioses, and colonize terrestrial and aquatic habitats. We investigated more than 40 strains and reviewed the biodiversity and biogeographical distribution of Coccomyxa species using DNA barcoding. The genus Coccomyxa formed a monophyletic group within the Trebouxiophyceae separated into seven independent phylogenetic lineages representing species. Summarizing, the combination of different characteristics

  16. The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling.

    Directory of Open Access Journals (Sweden)

    F Andrew Jones

    Full Text Available Plants interact with each other, nutrients, and microbial communities in soils through extensive root networks. Understanding these below ground interactions has been difficult in natural systems, particularly those with high plant species diversity where morphological identification of fine roots is difficult. We combine DNA-based root identification with a DNA barcode database and above ground stem locations in a floristically diverse lowland tropical wet forest on Barro Colorado Island, Panama, where all trees and lianas >1 cm diameter have been mapped to investigate richness patterns below ground and model rooting distributions.DNA barcode loci, particularly the cpDNA locus trnH-psba, can be used to identify fine and small coarse roots to species. We recovered 33 species of roots from 117 fragments sequenced from 12 soil cores. Despite limited sampling, we recovered a high proportion of the known species in the focal hectare, representing approximately 14% of the measured woody plant richness. This high value is emphasized by the fact that we would need to sample on average 13 m(2 at the seedling layer and 45 m(2 for woody plants >1 cm diameter to obtain the same number of species above ground. Results from inverse models parameterized with the locations and sizes of adults and the species identifications of roots and sampling locations indicates a high potential for distal underground interactions among plants.DNA barcoding techniques coupled with modeling approaches should be broadly applicable to studying root distributions in any mapped vegetation plot. We discuss the implications of our results and outline how second-generation sequencing technology and environmental sampling can be combined to increase our understanding of how root distributions influence the potential for plant interactions in natural ecosystems.

  17. The utility of rbcl and matk regions for dna barcoding analysis of the genus suaeda (amaranthaceae) species

    International Nuclear Information System (INIS)

    Munir, U.; Perveen, A.; Qamarunnisa, S.

    2015-01-01

    The genus Suaeda (Forssk.) belongs to the family Chenopodiaceae. Identification of Suaeda species based on morphological data is quite difficult due to high phenotypic plasticity, few distinguishable and many overlapping characters. In current research, the efficiency of rbcL and matK (plants core barcode regions) for species identification of the genus Suaeda was assessed. The determination of intraspecific and interspecific divergence, assessment of barcoding gap, reconstruction of phylogenetic trees and evaluation of barcode regions for species identification (based on best match and best close match) were carried out. The results revealed that rbcL showed comparatively less overlapping for the distribution of interspecific and intraspecific divergence. In addition, the highest discriminating ability for correct species identification was also observed in this region. Therefore, rbcL was found to be a significant barcode region for the identification of Suaeda species. (author)

  18. Converting Panax ginseng DNA and chemical fingerprints into two-dimensional barcode.

    Science.gov (United States)

    Cai, Yong; Li, Peng; Li, Xi-Wen; Zhao, Jing; Chen, Hai; Yang, Qing; Hu, Hao

    2017-07-01

    In this study, we investigated how to convert the Panax ginseng DNA sequence code and chemical fingerprints into a two-dimensional code. In order to improve the compression efficiency, GATC2Bytes and digital merger compression algorithms are proposed. HPLC chemical fingerprint data of 10 groups of P. ginseng from Northeast China and the internal transcribed spacer 2 (ITS2) sequence code as the DNA sequence code were ready for conversion. In order to convert such data into a two-dimensional code, the following six steps were performed: First, the chemical fingerprint characteristic data sets were obtained through the inflection filtering algorithm. Second, precompression processing of such data sets is undertaken. Third, precompression processing was undertaken with the P. ginseng DNA (ITS2) sequence codes. Fourth, the precompressed chemical fingerprint data and the DNA (ITS2) sequence code were combined in accordance with the set data format. Such combined data can be compressed by Zlib, an open source data compression algorithm. Finally, the compressed data generated a two-dimensional code called a quick response code (QR code). Through the abovementioned converting process, it can be found that the number of bytes needed for storing P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can be greatly reduced. After GTCA2Bytes algorithm processing, the ITS2 compression rate reaches 75% and the chemical fingerprint compression rate exceeds 99.65% via filtration and digital merger compression algorithm processing. Therefore, the overall compression ratio even exceeds 99.36%. The capacity of the formed QR code is around 0.5k, which can easily and successfully be read and identified by any smartphone. P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can form a QR code after data processing, and therefore the QR code can be a perfect carrier of the authenticity and quality of P. ginseng information. This study provides a theoretical

  19. DNA barcode for genetic traceability of Nile Perch and Nile Tilapia

    International Nuclear Information System (INIS)

    Avossa, Valeria

    2017-01-01

    For this study, mitochondrial DNA was extracted from 55 fish samples (26 Nile Perch Samples and 29 Nile Tilapia Samples collected from 3 different Ugandan regions of Lake Victoria. In order to optimize the PCR method, we also extracted DNA from two other different fish samples: one from Italy and one from a Viennese market. The COI gene was amplified using universal primers (COI2, COI3, cocktails of 8 and 4 primers respectively). After the amplification step, the amplicons were analysed using gel electrophoresis , in order to establish that the set primers worked well in the samples. The positive results of an agarose gel electrophoresis analysis with the PCR amplicons (amplicons length ~700pb) are shown.

  20. Converting Panax ginseng DNA and chemical fingerprints into two-dimensional barcode

    Directory of Open Access Journals (Sweden)

    Yong Cai

    2017-07-01

    Conclusion: P. ginseng chemical fingerprints and its DNA (ITS2 sequence code can form a QR code after data processing, and therefore the QR code can be a perfect carrier of the authenticity and quality of P. ginseng information. This study provides a theoretical basis for the development of a quality traceability system of traditional Chinese medicine based on a two-dimensional code.

  1. Revisiting species delimitation within the genus Oxystele using DNA barcoding approach

    OpenAIRE

    Van Der Bank,Herman; Herbert,D.G.; Greenfield,Richard; Yessoufou,Kowiyou

    2013-01-01

    Abstract The genus Oxystele, a member of the highly diverse marine gastropod superfamily Trochoidea, is endemic to southern Africa. Members of the genus include some of the most abundant molluscs on southern African shores and are important components of littoral biodiversity in rocky intertidal habitats. Species delimitation within the genus is still controversial, especially regarding the complex O. impervia / O. variegata. Here, we assessed species boundaries within the genus using DNA bar...

  2. How and why DNA barcodes underestimate the diversity of microbial eukaryotes.

    Directory of Open Access Journals (Sweden)

    Gwenael Piganeau

    Full Text Available BACKGROUND: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. PRINCIPAL FINDINGS: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependent. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. CONCLUSIONS: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous "cryptic species" will become

  3. DNA barcoding of Vietnamese bent-toed geckos (Squamata: Gekkonidae: Cyrtodactylus) and the description of a new species.

    Science.gov (United States)

    Nguyen, Sang Ngoc; Yang, Jun-Xiao; Le, Thanh-Ngan Thi; Nguyen, Luan Thanh; Orlov, Nikolai L; Hoang, Chung Van; Nguyen, Truong Quang; Jin, Jie-Qiong; Rao, Ding-Qi; Hoang, Thao Ngoc; Che, Jing; Murphy, Robert W; Zhang, Ya-Ping

    2014-03-26

    Species of bent-toed gecko (Cyrtodactylus) in Vietnam have been described at a rate of nearly four species per year since 2007 mostly based on morphological data. A tool that guides species delimitation will accelerate the rate of documentation, and at a time when the recognition of species greatly benefits conservation. We use DNA barcoding using COI (550 bp) to re-examine the levels of genetic divergence and taxonomic status of 21 described species of Vietnamese bent-toed geckos. Tree-based analyses resolve all sampled species and identify potential undescribed taxa. Kimura 2-parameter genetic distances between the described species average 21.0±4.2% and range from 4.3% to 28.7%. Further, our analyses discover two potentially new species from Vietnam, two from Laos and one from China. Herein we describe the new species Cyrtodactylus puhuensis sp. nov. from Vietnam on the basis of both genetics and morphology. Genetically, it differs from the remaining species by an average K2P distance of 24.0±1.8%. Morphologically, the new species is diagnosed by its medium-size (snout-vent length 79.24 mm and tail length 82.59 mm, for the single known individual), in having a series of moderately enlarged transverse subcaudals and a series of moderately enlarged femoral scales that extend from precloacal scales, in possessing femoral scales without pores, with males having five precloacal pores, and in exhibiting 8 supralabials, 10 infralabials, 23 narrow subdigital lamellae on its fourth toe, and 36 transverse ventrals.

  4. Alignment-free phylogeny of whole genomes using underlying subwords

    Directory of Open Access Journals (Sweden)

    Comin Matteo

    2012-12-01

    Full Text Available Abstract Background With the progress of modern sequencing technologies a large number of complete genomes are now available. Traditionally the comparison of two related genomes is carried out by sequence alignment. There are cases where these techniques cannot be applied, for example if two genomes do not share the same set of genes, or if they are not alignable to each other due to low sequence similarity, rearrangements and inversions, or more specifically to their lengths when the organisms belong to different species. For these cases the comparison of complete genomes can be carried out only with ad hoc methods that are usually called alignment-free methods. Methods In this paper we propose a distance function based on subword compositions called Underlying Approach (UA. We prove that the matching statistics, a popular concept in the field of string algorithms able to capture the statistics of common words between two sequences, can be derived from a small set of “independent” subwords, namely the irredundant common subwords. We define a distance-like measure based on these subwords, such that each region of genomes contributes only once, thus avoiding to count shared subwords a multiple number of times. In a nutshell, this filter discards subwords occurring in regions covered by other more significant subwords. Results The Underlying Approach (UA builds a scoring function based on this set of patterns, called underlying. We prove that this set is by construction linear in the size of input, without overlaps, and can be efficiently constructed. Results show the validity of our method in the reconstruction of phylogenetic trees, where the Underlying Approach outperforms the current state of the art methods. Moreover, we show that the accuracy of UA is achieved with a very small number of subwords, which in some cases carry meaningful biological information. Availability http://www.dei.unipd.it/∼ciompin/main/underlying.html

  5. Maintenance of host DNA integrity in field-preserved mosquito (Diptera: Culicidae) blood meals for identification by DNA barcoding.

    Science.gov (United States)

    Reeves, Lawrence E; Holderman, Chris J; Gillett-Kaufman, Jennifer L; Kawahara, Akito Y; Kaufman, Phillip E

    2016-09-15

    Determination of the interactions between hematophagous arthropods and their hosts is a necessary component to understanding the transmission dynamics of arthropod-vectored pathogens. Current molecular methods to identify hosts of blood-fed arthropods require the preservation of host DNA to serve as an amplification template. During transportation to the laboratory and storage prior to molecular analysis, genetic samples need to be protected from nucleases, and the degradation effects of hydrolysis, oxidation and radiation. Preservation of host DNA contained in field-collected blood-fed specimens has an additional caveat: suspension of the degradative effects of arthropod digestion on host DNA. Unless effective preservation methods are implemented promptly after blood-fed specimens are collected, host DNA will continue to degrade. Preservation methods vary in their efficacy, and need to be selected based on the logistical constraints of the research program. We compared four preservation methods (cold storage at -20 °C, desiccation, ethanol storage of intact mosquito specimens and crushed specimens on filter paper) for field storage of host DNA from blood-fed mosquitoes across a range of storage and post-feeding time periods. The efficacy of these techniques in maintaining host DNA integrity was evaluated using a polymerase chain reaction (PCR) to detect the presence of a sufficient concentration of intact host DNA templates for blood meal analysis. We applied a logistic regression model to assess the effects of preservation method, storage time and post-feeding time on the binomial response variable, amplification success. Preservation method, storage time and post-feeding time all significantly impacted PCR amplification success. Filter papers and, to a lesser extent, 95 % ethanol, were the most effective methods for the maintenance of host DNA templates. Amplification success of host DNA preserved in cold storage at -20 °C and desiccation was poor. Our data

  6. Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean.

    Science.gov (United States)

    Valdez-Moreno, Martha; Quintal-Lizama, Carolina; Gómez-Lozano, Ricardo; García-Rivas, María Del Carmen

    2012-01-01

    In the Mexican Caribbean, the exotic lionfish Pterois volitans has become a species of great concern because of their predatory habits and rapid expansion onto the Mesoamerican coral reef, the second largest continuous reef system in the world. This is the first report of DNA identification of stomach contents of lionfish using the barcode of life reference database (BOLD). We confirm with barcoding that only Pterois volitans is apparently present in the Mexican Caribbean. We analyzed the stomach contents of 157 specimens of P. volitans from various locations in the region. Based on DNA matches in the Barcode of Life Database (BOLD) and GenBank, we identified fishes from five orders, 14 families, 22 genera and 34 species in the stomach contents. The families with the most species represented were Gobiidae and Apogonidae. Some prey taxa are commercially important species. Seven species were new records for the Mexican Caribbean: Apogon mosavi, Coryphopterus venezuelae, C. thrix, C. tortugae, Lythrypnus minimus, Starksia langi and S. ocellata. DNA matches, as well as the presence of intact lionfish in the stomach contents, indicate some degree of cannibalism, a behavior confirmed in this species by the first time. We obtained 45 distinct crustacean prey sequences, from which only 20 taxa could be identified from the BOLD and GenBank databases. The matches were primarily to Decapoda but only a single taxon could be identified to the species level, Euphausia americana. This technique proved to be an efficient and useful method, especially since prey species could be identified from partially-digested remains. The primary limitation is the lack of comprehensive coverage of potential prey species in the region in the BOLD and GenBank databases, especially among invertebrates.

  7. Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean.

    Directory of Open Access Journals (Sweden)

    Martha Valdez-Moreno

    Full Text Available BACKGROUND: In the Mexican Caribbean, the exotic lionfish Pterois volitans has become a species of great concern because of their predatory habits and rapid expansion onto the Mesoamerican coral reef, the second largest continuous reef system in the world. This is the first report of DNA identification of stomach contents of lionfish using the barcode of life reference database (BOLD. METHODOLOGY/PRINCIPAL FINDINGS: We confirm with barcoding that only Pterois volitans is apparently present in the Mexican Caribbean. We analyzed the stomach contents of 157 specimens of P. volitans from various locations in the region. Based on DNA matches in the Barcode of Life Database (BOLD and GenBank, we identified fishes from five orders, 14 families, 22 genera and 34 species in the stomach contents. The families with the most species represented were Gobiidae and Apogonidae. Some prey taxa are commercially important species. Seven species were new records for the Mexican Caribbean: Apogon mosavi, Coryphopterus venezuelae, C. thrix, C. tortugae, Lythrypnus minimus, Starksia langi and S. ocellata. DNA matches, as well as the presence of intact lionfish in the stomach contents, indicate some degree of cannibalism, a behavior confirmed in this species by the first time. We obtained 45 distinct crustacean prey sequences, from which only 20 taxa could be identified from the BOLD and GenBank databases. The matches were primarily to Decapoda but only a single taxon could be identified to the species level, Euphausia americana. CONCLUSIONS/SIGNIFICANCE: This technique proved to be an efficient and useful method, especially since prey species could be identified from partially-digested remains. The primary limitation is the lack of comprehensive coverage of potential prey species in the region in the BOLD and GenBank databases, especially among invertebrates.

  8. Molecular investigation on Iranian widow spider Latrodectus tredecimguttatus based on DNA barcode analysis

    Directory of Open Access Journals (Sweden)

    Maryam Mollaiizadeh

    2017-09-01

    Full Text Available Objective: To identify the caught samples of Latrodectus tredecimguttatus (L. tredecimguttatus to the species level and to compare the obtained sequences with those of them that have been submitted in GenBank in Bojnurd district, located in north-east part of Iran. Methods: Samples were collected from different places of Bojnurd district using direct search method and were transferred to insectary. After then, by using valid morphological keys, samples were identified to the species level. Moreover, the DNA related to some samples was extracted by the use of different methods such as Collins, phenol-chloroform, salting-out and G-Spin kit. Finally, COI gene was studied by PCR amplification. Results: Totally, two egg sacs were collected as well as two mature female spiders. According to the lab results, by the use of molecular methods, 50 spiderlings belonging to an egg sac was evaluated. The results of PCR assay revealed that the best way for DNA extraction was salting- out method. Finally, the sequence of the partial mtDNA-COI of Latrodectus tredecimguttatus (L. tredecimguttatus sample was submitted to GenBank. The results showed an identity of 99% of the studied samples with those of GenBank. Conclusions: Widow spiders are widely spread in different parts of the world and their bites cause death. It is important to study these samples by the use of molecular methods and then to produce them in a mass volume in order to fight and extract their venom for provision of anti-serum. To the best of our knowledge, this is the first molecular survey on spiders in Iran. Finally, the assessment of the human protection against the specific Iranian L. tredecimguttatus anti-venom is suggested.

  9. Species-level para- and polyphyly in DNA barcode gene trees

    DEFF Research Database (Denmark)

    Mutanen, Marko; Kivelä, Sami M.; Vos, Rutger A.

    2016-01-01

    between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer...... to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling...

  10. A new species of bromeliad-feeding Cephaloleia Chevrolat (Coleoptera, Chrysomelidae, Cassidinae from Costa Rica: evidence from DNA barcodes, larval and adult morphology and insect diets

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Robledo

    2015-01-01

    Full Text Available The Neotropical genus Cephaloleia Chevrolat (Coleoptera: Chrysomelidae: Cassidinae includes 214 species distributed from the south of Mexico to Argentina. Cephaloleia beetles feed mostly on plants from the order Zingiberales. The interactions between Cephaloleia beetles and their Zingiberales host plants is proposed as one of the oldest and most conservative associations. Here we describe a new species of Cephaloleia (C. kuprewiczae sp. n. that feeds on two species of bromeliads (Pitcairnia arcuata and P. brittoniana, Bromeliaceae: Pitcairnioideae. Cephaloleia kuprewiczae was previously described as Cephaloleia histrionica. This study includes evidence from DNA barcodes (COI, larval and adult morphology and insect diets that separates C. kuprewiczae from C. histrionica as a new species.

  11. A new species of bromeliad-feeding Cephaloleia Chevrolat (Coleoptera, Chrysomelidae, Cassidinae) from Costa Rica: evidence from DNA barcodes, larval and adult morphology and insect diets

    Science.gov (United States)

    García-Robledo, Carlos; Staines, Charles L.; Kress, W. John

    2015-01-01

    Abstract The Neotropical genus Cephaloleia Chevrolat (Coleoptera: Chrysomelidae: Cassidinae) includes 214 species distributed from the south of Mexico to Argentina. Cephaloleia beetles feed mostly on plants from the order Zingiberales. The interactions between Cephaloleia beetles and their Zingiberales host plants is proposed as one of the oldest and most conservative associations. Here we describe a new species of Cephaloleia (Cephaloleia kuprewiczae sp. n.) that feeds on two species of bromeliads (Pitcairnia arcuata and Pitcairnia brittoniana, Bromeliaceae: Pitcairnioideae). Cephaloleia kuprewiczae was previously described as Cephaloleia histrionica. This study includes evidence from DNA barcodes (COI), larval and adult morphology and insect diets that separates Cephaloleia kuprewiczae from Cephaloleia histrionica as a new species. PMID:25685006

  12. Potential use of DNA barcodes in regulatory science: identification of the U.S. Food and Drug Administration's "Dirty 22," contributors to the spread of foodborne pathogens.

    Science.gov (United States)

    Jones, Yolanda L; Peters, Sharla M; Weland, Chris; Ivanova, Natalia V; Yancy, Haile F

    2013-01-01

    The U.S. Food, Drug, and Cosmetic Act prohibits the distribution of food that is adulterated, and the regulatory mission of the U.S. Food and Drug Administration (FDA) is to enforce this Act. FDA field laboratories have identified the 22 most common pests that contribute to the spread of foodborne disease (the "Dirty 22"). The current method of detecting filth and extraneous material (tails, legs, carcasses, etc.) is visual inspection using microscopy. Because microscopy can be time-consuming and may yield inaccurate and/or nonspecific results due to lack of expertise, an alternative method of detecting these adulterants is needed. In this study, we sequenced DNA from the 5' region of the cytochrome oxidase I gene of these 22 common pests that contribute to the spread of foodborne pathogens. Here, we describe the generation of DNA barcodes for all 22 species. To date, this is the first attempt to develop a sequence-based regulatory database and systematic primer strategy to identify these FDA-targeted species. DNA barcoding can be a powerful tool that can aid the FDA in promoting the protection and safety of the U.S. food supply.

  13. Potential for DNA-based identification of Great Lakes fauna: Match and mismatch between taxa inventories and DNA barcode libraries

    Science.gov (United States)

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to biotic condition assessment and non-native species early-detection monitoring. However, the abi...

  14. eDNA Barcoding: Using Next-Generation Sequencing of Environmental DNA for Detection and Identification of Cetacean Species

    Science.gov (United States)

    2015-09-30

    mmi.oregonstate.edu/ccgl LONG - TERM GOALS We are developing next-generation sequencing and digital (d)PCR methodology for detection and species...ubiquitous DNA sequencing for surveys of biodiversity more efficient and affordable in the near future. RELATED PROJECTS None to date.

  15. Long-range barcode labeling-sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng; Zhang, Tao; Singh, Kanwar K.; Pennacchio, Len A.; Froula, Jeff L.; Eng, Kevin S.

    2016-10-18

    Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.

  16. DNA barcoding unveils skate (Chondrichthyes: Rajidae species diversity in ‘ray’ products sold across Ireland and the UK

    Directory of Open Access Journals (Sweden)

    Andrew Mark Griffiths

    2013-08-01

    Full Text Available Skates are widely consumed across the globe, but many large species are subject to considerable concern regarding their conservation and management. Within Europe such issues have recently driven policy changes so that, for the first time, reports of skate landings now have to be made under species-specific names. Total allowable catches have also been established for many groups, which have been set to zero for a number of the most vulnerable species (e.g., Dipturus batis, Raja undulata and Rostoraja alba. Whilst accurate species identification has become an important issue for landings, the sale of skates is still usually made under a blanket term of “skate” or “ray”. The matter of identifying species of skate is further complicated by their morphologically conservative nature and the fact that they are commercially valued for their wings. Thus, before sale their bodies are usually discarded (i.e., “winged” and often skinned, making morphological identification impossible. For the first time, DNA barcoding (of the mitochondrial COI gene was applied to samples of skate wings from retail outlets across the British Isles, providing insight into which species are sold for consumption. A total of 98 wing samples were analysed, revealing that six species were sold; blonde ray (Raja brachyura, spotted ray (Raja montagui, thornback ray (Raja clavata, cuckoo ray (Leucoraja naevus small-eyed ray (Raja microocellata and shagreen ray (Leucoraja fullonica. Statistical testing demonstrated that there were significant differences in the species sold in the distinct retail groups which suggests complex drivers behind the patterns of sale in skates. The results also indicate that endangered species are not commonly being passed on to consumers. In addition, the practice of selling skate wings under ambiguous labels is highlighted as it makes it extremely difficult for consumers to exercise a right to avoid species of conservation concern

  17. DNA barcoding unveils skate (Chondrichthyes: Rajidae) species diversity in ‘ray’ products sold across Ireland and the UK

    Science.gov (United States)

    Egan, Aaron; Fox, Jennifer; Greenfield, Adam; Mariani, Stefano

    2013-01-01

    Skates are widely consumed across the globe, but many large species are subject to considerable concern regarding their conservation and management. Within Europe such issues have recently driven policy changes so that, for the first time, reports of skate landings now have to be made under species-specific names. Total allowable catches have also been established for many groups, which have been set to zero for a number of the most vulnerable species (e.g., Dipturus batis, Raja undulata and Rostoraja alba). Whilst accurate species identification has become an important issue for landings, the sale of skates is still usually made under a blanket term of “skate” or “ray”. The matter of identifying species of skate is further complicated by their morphologically conservative nature and the fact that they are commercially valued for their wings. Thus, before sale their bodies are usually discarded (i.e., “winged”) and often skinned, making morphological identification impossible. For the first time, DNA barcoding (of the mitochondrial COI gene) was applied to samples of skate wings from retail outlets across the British Isles, providing insight into which species are sold for consumption. A total of 98 wing samples were analysed, revealing that six species were sold; blonde ray (Raja brachyura), spotted ray (Raja montagui), thornback ray (Raja clavata), cuckoo ray (Leucoraja naevus) small-eyed ray (Raja microocellata) and shagreen ray (Leucoraja fullonica). Statistical testing demonstrated that there were significant differences in the species sold in the distinct retail groups which suggests complex drivers behind the patterns of sale in skates. The results also indicate that endangered species are not commonly being passed on to consumers. In addition, the practice of selling skate wings under ambiguous labels is highlighted as it makes it extremely difficult for consumers to exercise a right to avoid species of conservation concern. Interestingly, a

  18. The sandflies (Diptera: Psychodidae, Phlebotominae) in military camps in northern Afghanistan (2007-2009), as identified by morphology and DNA 'barcoding'.

    Science.gov (United States)

    Krüger, A; Strüven, L; Post, R J; Faulde, M

    2011-03-01

    As part of a continuous, standardized programme of monitoring the Leishmania vectors in German military camps in northern Afghanistan between 2007 and 2009, a detailed taxonomic analysis of the endemic sandfly fauna, as sampled using light and odour-baited traps, was conducted. Of the 10 sandfly species that were recorded, six may serve as enzootic and/or zooanthroponotic vectors of parasites causing human leishmaniasis. The use of a simple DNA-'barcoding' technique based on the mitochondrial cyt b gene, to identify the collected sandflies to species level, revealed (1) a clear discrimination between the potential vector species, (2) clustering of species within most subgenera, and (3) particularly high heterogeneity within the subgenus Paraphlebotomus (Phlebotomus alexandri being grouped with Ph. papatasi rather than with other Paraphlebotomus species). The data also indicate a high level of genetic heterogeneity within the subgenus Sergentomyia but close similarity between Sergentomyia sintoni and Sergentomyia murgabiensis. The morphological similarity of many medically important sandflies can make species identification difficult, if not impossible. The new DNA-barcoding techniques may provide powerful discriminatory tools in the future.

  19. Molecular Identification and Traceability of Illegal Trading inLignobrycon myersi(Teleostei: Characiformes), a Threatened Brazilian Fish Species, Using DNA Barcode.

    Science.gov (United States)

    Rodrigues, Alexandre Dos Santos; Brandão, José Henrique Souza Galdino; Bitencourt, Jamille de Araújo; Jucá-Chagas, Ricardo; Sampaio, Iracilda; Schneider, Horácio; Affonso, Paulo Roberto Antunes de Mello

    Lignobrycon myersi is a threatened freshwater fish species and endemic of a few coastal rivers in northeastern Brazil. Even though the Brazilian laws prohibit the fisheries of threatened species, L. myersi is occasionally found in street markets, being highly appreciated by local population. In order to provide a reliable DNA barcode dataset for L. myersi , we compared mitochondrial sequences of cytochrome c oxidase subunit I (COI) from fresh, frozen, and salt-preserved specimens. Phylogenetically related species ( Triportheus spp.) and other fish species ( Astyanax fasciatus ) commonly mixed with L. myersi in street markets were also included to test the efficiency of molecular identification. In spite of the differences in conservation processes and advanced deterioration of some commercial samples, high-quality COI sequences were obtained and effective in discriminating L. myersi specimens. In addition, while populations from Contas and Almada River basins seem to comprise a single evolutionary lineage, the specimens from Cachoeira River were genetically differentiated, indicating population structuring. Therefore, DNA barcoding has proved to be useful to trace the illegal trading of L. myersi and to manage threatened populations, which should focus on conservation of distinct genetic stocks and mitigation on human impacts along their range.

  20. A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses

    Science.gov (United States)

    Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.

    2016-01-01

    ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all