WorldWideScience

Sample records for alignment-free dna barcode

  1. Efficient alignment-free DNA barcode analytics

    OpenAIRE

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient ...

  2. DNA mini-barcodes.

    Science.gov (United States)

    Hajibabaei, Mehrdad; McKenna, Charly

    2012-01-01

    Conventional DNA barcoding uses an approximately 650 bp DNA barcode of the mitochondrial gene COI for species identification in animal groups. Similar size fragments from chloroplast genes have been proposed as barcode markers for plants. While PCR amplification and sequencing of a 650 bp fragment is consistent in freshly collected and well-preserved specimens, it is difficult to obtain a full-length barcode in older museum specimens and samples which have been preserved in formalin or similar DNA-unfriendly preservatives. A comparable issue may prevent effective DNA-based authentication and testing in processed biological materials, such as food products, pharmaceuticals, and nutraceuticals. In these cases, shorter DNA sequences-mini-barcodes-have been robustly recovered and shown to be effective in identifying majority of specimens to a species level. Furthermore, short DNA regions can be utilized via high-throughput sequencing platforms providing an inexpensive and comprehensive means of large-scale species identification. These properties of mini-barcodes, coupled with the availability of standardized and universal primers make mini-barcodes a feasible option for DNA barcode analysis in museum samples and applied diagnostic and environmental biodiversity analysis.

  3. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences

    OpenAIRE

    Pratas, Diogo; Silva, Raquel M; Pinho, Armando J.; Ferreira, Paulo J.S.G.

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrat...

  4. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  5. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  6. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences.

    Science.gov (United States)

    Pratas, Diogo; Silva, Raquel M; Pinho, Armando J; Ferreira, Paulo J S G

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrate the power and usefulness of the method we give complete chromosomal information maps for the pairs human-chimpanzee and human-orangutan. The tool by means of which these results were obtained has been made publicly available and is described in detail. PMID:25984837

  7. DNA Barcoding of Marine Metazoa

    Science.gov (United States)

    Bucklin, Ann; Steinke, Dirk; Blanco-Bercial, Leocadio

    2011-01-01

    More than 230,000 known species representing 31 metazoan phyla populate the world's oceans. Perhaps another 1,000,000 or more species remain to be discovered. There is reason for concern that species extinctions may outpace discovery, especially in diverse and endangered marine habitats such as coral reefs. DNA barcodes (i.e., short DNA sequences for species recognition and discrimination) are useful tools to accelerate species-level analysis of marine biodiversity and to facilitate conservation efforts. This review focuses on the usual barcode region for metazoans: a ˜648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, forensics, and seafood safety. More controversially, barcodes have been used to delimit species boundaries, reveal cryptic species, and discover new species. Emerging frontiers are the use of barcodes for rapid and increasingly automated biodiversity assessment by high-throughput sequencing, including environmental barcoding and the use of barcodes to detect species for which formal identification or scientific naming may never be possible.

  8. Statistical Approaches for DNA Barcoding

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Matz, M.

    2006-01-01

    The use of DNA as a tool for species identification has become known as "DNA barcoding" (Floyd et al., 2002; Hebert et al., 2003; Remigio and Hebert, 2003). The basic idea is straightforward: a small amount of DNA is extracted from the specimen, amplified and sequenced. The gene region sequenced...... is chosen so that it is nearly identical among individuals of the same species, but different between species, and therefore its sequence, can serve as an identification tag for the species ("DNA barcode"). By matching the sequence obtained from an unidentified specimen ("query" sequence) to the database...

  9. 2D Barcode for DNA Encoding

    CERN Document Server

    Purcaru, Elena

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  10. 2D Barcode for DNA Encoding

    Directory of Open Access Journals (Sweden)

    Elena Purcaru

    2011-09-01

    Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  11. Choosing and Using a Plant DNA Barcode

    OpenAIRE

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the ...

  12. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske;

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  13. DNA Bar-Coding for Phytoplasma Identification

    DEFF Research Database (Denmark)

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta;

    2013-01-01

    Phytoplasma identi fi cation has proved dif fi cult due to their inability to be maintained in vitro. DNA barcoding is an identi fi cation method based on comparison of a short DNA sequence with known sequences from a database. A DNA barcoding tool has been developed for phytoplasma identi fi cat...

  14. 2D Barcode for DNA Encoding

    OpenAIRE

    Elena Purcaru; Cristian Toma

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...

  15. DNA Barcoding Investigations Bring Biology to Life

    Science.gov (United States)

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  16. DNA barcoding amphibians and reptiles.

    Science.gov (United States)

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  17. A DNA barcode for land plants.

    Science.gov (United States)

    2009-08-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  18. A DNA barcode for land plants

    Science.gov (United States)

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  19. A DNA barcode for land plants

    OpenAIRE

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank,Michelle; Chase, Mark W.; Cowan, Robyn S; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quali...

  20. DNA Barcoding for Honey Biodiversity

    Directory of Open Access Journals (Sweden)

    Alice Valentini

    2010-04-01

    Full Text Available Honey is produced by honeybees from nectar and from secretions of living plants. It reflects the honeybees’ diet and the local plant communities. Honey also shows different plant compositions in different geographical locations. We propose a new method for studying the plant diversity and the geographical origin of honey using a DNA barcoding approach that combines universal primers and massive parallel pyrosequencing. To test this method we use two commercial honeys, one from a regional origin and one composed of a worldwide mix of different honeys. We demonstrate that the method proposed here is fast, simple to implement, more robust than classical methods, and therefore suitable for analyzing plant diversity in honey.

  1. DNA barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera.

    Directory of Open Access Journals (Sweden)

    Robert G Foottit

    Full Text Available BACKGROUND: Many studies have shown the suitability of sequence variation in the 5' region of the mitochondrial cytochrome c oxidase I (COI gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. CONCLUSIONS/SIGNIFICANCE: This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage.

  2. Plant DNA barcoding in China

    Institute of Scientific and Technical Information of China (English)

    De-Zhu LI; Jian-Quan LIU; Zhi-Duan CHEN; Hong WANG; Xue-Jun GE; Shi-Liang ZHOU; Lian-Ming GAO; Cheng-Xin FU; Shi-Lin CHEN

    2011-01-01

    @@ Identification is the keystone of biology (Bell, 1986).However, to biologists and students of biology, the total numbers of species that must be identified far outnumber the names commonly used in English, Chinese, or other living languages.In addition, the identification cues vary greatly between different taxonomical groups.Even for the taxonomists with long training and experience, it is difficult to remember all specific terms for a given group, e.g., Orchidaceae or Poaceae, without help of floristic books or monographs.It takes much time and effort to train a taxonomist, at a time when fewer and fewer young students are interested in this "classical" and "out-of-style", but extremely important, discipline.Many students elect to learn the more "advanced'' and "modem" biological disciples like molecular biology and biochemistry.Thus, in China and therest of the world, taxonomists are themselves becoming "endangered".The rise of the DNA barcoding is expected to mitigate, at least in part, this dilemma.

  3. DNA Barcoding on Bacteria: A Review

    Directory of Open Access Journals (Sweden)

    D. E. Lebonah

    2014-01-01

    Full Text Available Bacteria are omnipotent and they can be found everywhere. The study of bacterial pathogens has been happening from olden days to prevent epidemics, food spoilage, losses in agricultural production, and loss of lives. Modern techniques in DNA based species identification are considered. So, there is a need to acquire simple and quick identification technique. Hence, this review article covers the efficacy of DNA barcoding of bacteria. Routine DNA barcoding involves the production of PCR amplicons from particular regions to sequence them and these sequence data are used to identify or “barcode” that organism to make a distinction from other species.

  4. DNA barcoding in Mexico: an introduction.

    Science.gov (United States)

    Elías-Gutiérrez, M; León-Regagnon, V

    2013-11-01

    DNA barcoding has become an important current scientific trend to the understanding of the world biodiversity. In the case of mega-diverse hot spots like Mexico, this technique represents an important tool for taxonomists, allowing them to concentrate in highlighted species by the barcodes instead of analyzing entire sets of specimens. This tendency resulted in the creation of a national network named Mexican Barcode of Life (MEXBOL) which main goals are to train students, and to promote the interaction and collective work among researchers interested in this topic. As a result, the number of records in the Barcode of Life Database (BOLD) for some groups, such as the Mammalia, Actinopterygii, Polychaeta, Branchiopoda, Ostracoda, Maxillopoda, Nematoda, Pinophyta, Ascomycota and Basidiomycota place Mexico among the top ten countries in the generation of these data. This special number presents only few of the many interesting findings in this region of the world, after the use of this technique and its integration with other methodologies.

  5. Universal COI primers for DNA barcoding amphibians.

    Science.gov (United States)

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.

  6. Application of PDF417 symbology for 'DNA Barcoding'.

    Science.gov (United States)

    Kumar, N Pradeep; Rajavel, A R; Jambulingam, P

    2008-05-01

    DNA sequences consisting of about 600 base pairs of the 5' region of the cytochrome c oxidase subunit 1 (COI) gene has been proposed as DNA Barcodes for taxonomical identification of species in different animals. We evaluated the application of two-dimensional barcodes for 'DNA Barcoding'. 'PDF417' symbology was applied to convert DNA Barcode sequences already proposed [N. Pradeep Kumar, A.R. Rajavel, R. Natarajan, P. Jambulingam, DNA Barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J. Med. Entomol. 77 (2007) 1-7.] for 10 different species of mosquitoes prevalent in India. Decoding of these digital images using 2-D scanner and a suitable software reproduced the input DNA sequences unchanged. This analysis indicated the utility of PDF417 for 'DNA Barcoding', which could be of definite use for taxonomic documentation of animals. PMID:18282635

  7. A laboratory information management system for DNA barcoding workflows

    NARCIS (Netherlands)

    Vu, D.; Eberhardt, U.; Szöke, S.; Groenewald, M.; Robert, V.

    2012-01-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA

  8. Identifying Canadian freshwater fishes through DNA barcodes.

    Directory of Open Access Journals (Sweden)

    Nicolas Hubert

    Full Text Available BACKGROUND: DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5' region of the mitochondrial cytochrome c oxidase I (COI gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. METHODOLOGY/PRINCIPAL FINDINGS: We bi-directionally sequenced the standard 652 bp "barcode" region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%. Most species were represented by multiple individuals (7.6 on average, the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases. The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. CONCLUSIONS/SIGNIFICANCE: The present study evidenced that freshwater fish

  9. DNA barcoding and phylogenetic relationships in Timaliidae.

    Science.gov (United States)

    Huang, Z H; Ke, D H

    2015-01-01

    The Timaliidae, a diverse family of oscine passerine birds, has long been a subject of debate regarding its phylogeny. The mitochondrial cytochrome c oxidase subunit I (COI) gene has been used as a powerful marker for identification and phylogenetic studies of animal species. In the present study, we analyzed the COI barcodes of 71 species from 21 genera belonging to the family Timaliidae. Every bird species possessed a barcode distinct from that of other bird species. Kimura two-parameter (K2P) distances were calculated between barcodes. The average genetic distance between species was 18 times higher than the average genetic distance within species. The neighbor-joining method was used to construct a phylogenetic tree and all the species could be discriminated by their distinct clades within the phylogenetic tree. The results indicate that some currently recognized babbler genera might not be monophyletic, with the COI gene data supporting the hypothesis of polyphyly for Garrulax, Alcippe, and Minla. Thus, DNA barcoding is an effective molecular tool for Timaliidae species identification and phylogenetic inference. PMID:26125793

  10. Comprehensive DNA barcode coverage of North American birds

    OpenAIRE

    Kerr, Kevin C. R.; Mark Y Stoeckle; Carla J. Dove; Weigt, Lee A.; Charles M. Francis; Hebert, Paul D. N.

    2007-01-01

    DNA barcoding seeks to assemble a standardized reference library for DNA-based identification of eukaryotic species. The utility and limitations of this approach need to be tested on well-characterized taxonomic assemblages. Here we provide a comprehensive DNA barcode analysis for North American birds including 643 species representing 93% of the breeding and pelagic avifauna of the USA and Canada. Most (94%) species possess distinct barcode clusters, with average neighbour-joining bootstrap ...

  11. Advancing taxonomy and bioinventories with DNA barcodes

    Science.gov (United States)

    2016-01-01

    We use three examples—field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae—to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the ‘taxonomic impediment’, especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481791

  12. Advancing taxonomy and bioinventories with DNA barcodes.

    Science.gov (United States)

    Miller, Scott E; Hausmann, Axel; Hallwachs, Winnie; Janzen, Daniel H

    2016-09-01

    We use three examples-field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae-to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the 'taxonomic impediment', especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481791

  13. Identifying Fishes through DNA Barcodes and Microarrays.

    Directory of Open Access Journals (Sweden)

    Marc Kochzius

    Full Text Available BACKGROUND: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. METHODOLOGY/PRINCIPAL FINDINGS: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S, cytochrome b (cyt b, and cytochrome oxidase subunit I (COI for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90% renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. CONCLUSIONS/SIGNIFICANCE: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  14. Defining operational taxonomic units using DNA barcode data

    OpenAIRE

    Blaxter, Mark; Mann, Jenna; Chapman, Tom; Thomas, Fran; Whitton, Claire; Floyd, Robin; Abebe, Eyualem

    2005-01-01

    The scale of diversity of life on this planet is a significant challenge for any scientific programme hoping to produce a complete catalogue, whatever means is used. For DNA barcoding studies, this difficulty is compounded by the realization that any chosen barcode sequence is not the gene 'for' speciation and that taxa have evolutionary histories. How are we to disentangle the confounding effects of reticulate population genetic processes? Using the DNA barcode data from meiofaunal surveys, ...

  15. Identification of herbal medicinal materials using DNA barcodes

    Institute of Scientific and Technical Information of China (English)

    Ming LI; Hui CAO; Paul Pui-Hay BUT; pang-Chui SHAW

    2011-01-01

    Herbal medicinal materials have been used worldwide for centuries to maintain health and to treat disease. However, adulteration of herbal medicines remains a major concern of users and industry for reasons of safety and efficacy. Identification of herbal medicinal materials by DNA technology has been widely applied,started from the mid-1990s. In recent years, DNA barcoding of global plant species using four standard barcodes (rbcL, matK, trnH-psbA and ITS) has been a major focus in the fields of biodiversity and conservation. These DNA barcodes can also be used as reliable tools to facilitate the identification of herbal medicinal materials for the safe use of herbs, quality control, and forensic investigation. Many studies have applied these DNA barcodes for the identification of herbal medicinal species and their adulterants. The present article reviews efforts in the identification of herbal medicinal materials using the standard DNA barcodes and other DNA sequence-based markers.

  16. DNA barcoding: species delimitation in tree peonies

    Institute of Scientific and Technical Information of China (English)

    ZHANG JinMei; WANG JianXiu; XIA Tao; ZHOU ShiLiang

    2009-01-01

    Delimitations of species are crucial for correct and precise identification of taxa. Unfortunately "spe-cies" is more a subjective than an objective concept in taxonomic practice due to difficulties in re-vealing patterns of infra- or inter-specific variations. Molecular phylogenetic studies at the population level solve this problem and lay a sound foundation for DNA barcoding. In this paper we exemplify the necessity of adopting a phylogenetic concept of species in DNA barcoding for tree peonies (Paeonia sect. Moutan). We used 40 samples representing all known populations of rare and endangered species and several populations of widely distributed tree peonies. All currently recognized species and majorbvariants have been included in this study. Four chloroplast gene fragments, I.e. ndhF, rps16-trnQ, trnL.F and trnS-G (a total of 5040 characters, 96 variable and 69 parsimony-informative characters) and one variable and single-copy nuclear GPAT gene fragment (2093-2197 bp, 279 variable and 148 parsi-mony-informative characters) were used to construct phylogenetic relationships among the taxa. The evolutionary lineages revealed by the nuclear gene and the chloroplast genes are inconsistent with the current circumscriptions of P. Decomposita, P. Jishanensis, P. Qiui, and P. Rockii based on morphology. The inconsistencies come from (1) significant chloroplast gene divergence but little nuclear GPAT gene divergence among population systems of P. Decomposita + P. Rockii, and (2) well-diverged nuclear GPAT gene but little chloroplast gene divergence between P. Jishanensis and P. Qiui. The incongruence of the phylogenies based on the chloroplast genes and the nuclear GPAT gene is probably due to the chloro-plast capture event in evolutionary history, as no reproductive barriers exist to prevent inter-specific hybridization. We also evaluated the suitability of these genes for use as DNA barcodes for tree peonies. The variability of chloroplast genes among well

  17. Identifying Fishes through DNA Barcodes and Microarrays

    Science.gov (United States)

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N.; Weber, Hannes; Blohm, Dietmar

    2010-01-01

    Background International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of “DNA barcoding” and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the “position of label” effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products. PMID

  18. A DNA mini-barcode for land plants.

    Science.gov (United States)

    Little, Damon P

    2014-05-01

    Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). PMID:24286499

  19. [Screening potential DNA barcode regions of genus Papaver].

    Science.gov (United States)

    Zhang, Shuang; Liu, Yu-jing; Wu, Yan-sheng; Cao, Ying; Yuan, Yuan

    2015-08-01

    DNA barcoding is an effective technique in species identification. To determine the candidate sequences which can be used as DNA barcode to identify in Papaver genus, five potential sequences (ITS, matK, psbA-trnH, rbcL, trnL-trnF) were screened. 69 sequences were downloaded from Genbank, including 21 ITS sequences, 10 matK sequences, 8 psbA-trnH sequences, 14 rbcL sequences and 16 trnL-trnF sequences. Mega 6.0 was used to analysis the comparison of sequences. By the methods of calculating the distances in intraspecific and interspecific divergences, evaluating DNA barcoding gap and constructing NJ and UPMGA phylogenetic trees. The sequence trnL-trnF performed best. In conclusion, trnL-trnF can be considered as a novel DNA barcode in Papaver genus, other four sequences can be as combination barcode for identification. PMID:26677693

  20. Identifying Chinese species of Gammarus (Crustacea: Amphipoda) using DNA barcoding

    Institute of Scientific and Technical Information of China (English)

    Zhong-e HOU; Zhu LI; Shu-qiang LI

    2009-01-01

    Using a standard cytochrome c oxidase I sequence, DNA barcoding has been shown to be effective to distinguish known species and to discover cryptic species. Here we assessed the efficiency of DNA barcoding for the amphipod genus Gammarus from China. The maximum intraspecific divergence for widespread species, Gammarus lacustris, was 3.5%, and mean interspecific divergence reached 21.9%. We presented a conservative benchmark for determining provisional species using maximum intraspecific divergence of Gammarus lacustris. Thirty-one species possessed distinct barcode clusters. Two species were comprised of highly divergent clades with strong neighbor-joining bootstrap values, and likely indicated the presence of cryptic species. Although DNA barcoding is effective, future identification of species of Gammarus should incorporate DNA barcoding and morphological detection[Current Zoology 55(2):158-164,2009].

  1. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    Science.gov (United States)

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.

  2. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum).

    Science.gov (United States)

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation. PMID:26752741

  3. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum).

    Science.gov (United States)

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation.

  4. DNA Barcode Goes Two-Dimensions: DNA QR Code Web Server

    OpenAIRE

    Chang Liu; Linchun Shi; Xiaolan Xu; Huan Li; Hang Xing; Dong Liang; Kun Jiang; Xiaohui Pang; Jingyuan Song; Shilin Chen

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three diff...

  5. DNA barcoding in animal species: progress, potential and pitfalls.

    Science.gov (United States)

    Waugh, John

    2007-02-01

    Despite 250 years of work in systematics, the majority of species remains to be identified. Rising extinction rates and the need for increased biological monitoring lend urgency to this task. DNA sequencing, with key sequences serving as a "barcode", has therefore been proposed as a technology that might expedite species identification. In particular, the mitochondrial cytochrome c oxidase subunit 1 gene has been employed as a possible DNA marker for species and a number of studies in a variety of taxa have accordingly been carried out to examine its efficacy. In general, these studies demonstrate that DNA barcoding resolves most species, although some taxa have proved intractable. In some studies, barcoding provided a means of highlighting potential cryptic, synonymous or extinct species as well as matching adults with immature specimens. Higher taxa, however, have not been resolved as accurately as species. Nonetheless, DNA barcoding appears to offer a means of identifying species and may become a standard tool. PMID:17226815

  6. Dissecting host-associated communities with DNA barcodes.

    Science.gov (United States)

    Baker, Christopher C M; Bittleston, Leonora S; Sanders, Jon G; Pierce, Naomi E

    2016-09-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481780

  7. Multilocus inference of species trees and DNA barcoding.

    Science.gov (United States)

    Mallo, Diego; Posada, David

    2016-09-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481787

  8. DNA Barcode Authentication of Saw Palmetto Herbal Dietary Supplements

    OpenAIRE

    Little, Damon P.; Jeanson, Marc L.

    2013-01-01

    Herbal dietary supplements made from saw palmetto (Serenoa repens; Arecaceae) fruit are commonly consumed to ameliorate benign prostate hyperplasia. A novel DNA mini–barcode assay to accurately identify [specificity = 1.00 (95% confidence interval = 0.74–1.00); sensitivity = 1.00 (95% confidence interval = 0.66–1.00); n = 31] saw palmetto dietary supplements was designed from a DNA barcode reference library created for this purpose. The mini–barcodes were used to estimate the frequency of mis...

  9. A DNA Barcoding Approach to Characterize Pollen Collected by Honeybees

    OpenAIRE

    Andrea Galimberti; Fabrizio De Mattia; Ilaria Bruni; Daniela Scaccabarozzi; Anna Sandionigi; Michela Barbuto; Maurizio Casiraghi; Massimo Labra

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The datab...

  10. Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems

    OpenAIRE

    M. Alex Smith; Claudia Bertrand; Kate Crosby; Eveleigh, Eldon S.; Jose Fernandez-Triana; Fisher, Brian L.; Jason Gibbs; Mehrdad Hajibabaei; Winnie Hallwachs; Katharine Hind; Jan Hrcek; Da-Wei Huang; Milan Janda; Janzen, Daniel H.; Yanwei Li

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Us...

  11. Barcode van DNA. Democratisering van de taxonomie door digitaal identificatiesysteem

    OpenAIRE

    Bakker, F.T.

    2011-01-01

    Het herkennen van biologische soorten aan de hand van een gestandaardiseerde DNA-barcode heeft de laatste tijd een enorme vlucht genomen. Gedreven door aan de ene kant de biodiversiteitscrises en de mogelijke global change, en aan de andere kant zowel razendsnelle technologische vooruitgang als ook het vooruitzicht dat niet genoeg klassieke taxonomen worden opgeleid voor de nabije toekomst, lijkt DNA-barcoding zich een strategische plek te veroveren op huidige, al dan niet toegepaste, biodive...

  12. The Practical Evaluation of DNA Barcode Efficacy*

    OpenAIRE

    Spouge, John L.; Mariño-Ramírez, Leonardo

    2012-01-01

    This chapter describes a workflow for measuring the efficacy of a barcode in identifying species. First, assemble individual sequence databases corresponding to each barcode marker. A controlled collection of taxonomic data is preferable to GenBank data, because GenBank data can be problematic, particularly when comparing barcodes based on more than one marker. To ensure proper controls when evaluating species identification, specimens not having a sequence in every marker database should be ...

  13. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode.

    Science.gov (United States)

    Françoso, E; Arias, M C

    2013-09-01

    Bees (Apidae), of which there are more than 19 900 species, are extremely important for ecosystem services and economic purposes, so taxon identity is a major concern. The goal of this study was to optimize the DNA barcode technique based on the Cytochrome c oxidase (COI) mitochondrial gene region. This approach has previously been shown to be useful in resolving taxonomic inconsistencies and for species identification when morphological data are poor. Specifically, we designed and tested new primers and standardized PCR conditions to amplify the barcode region for bees, focusing on the corbiculate Apids. In addition, primers were designed to amplify small COI amplicons and tested with pinned specimens. Short barcode sequences were easily obtained for some Bombus century-old museum specimens and shown to be useful as mini-barcodes. The new primers and PCR conditions established in this study proved to be successful for the amplification of the barcode region for all species tested, regardless of the conditions of tissue preservation. We saw no evidence of Wolbachia or numts amplification by these primers, and so we suggest that these new primers are of broad value for corbiculate bee identification through DNA barcode.

  14. DNA barcoding the native flowering plants and conifers of Wales.

    Directory of Open Access Journals (Sweden)

    Natasha de Vere

    Full Text Available We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species. Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85% are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments, formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

  15. DNA barcode goes two-dimensions: DNA QR code web server.

    Science.gov (United States)

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications. PMID:22574113

  16. DNA barcode goes two-dimensions: DNA QR code web server.

    Directory of Open Access Journals (Sweden)

    Chang Liu

    Full Text Available The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  17. DNA barcoding of Gaultheria L.in China (Ericaceae: Vaccinioideae)

    Institute of Scientific and Technical Information of China (English)

    He REN; Lu LU; Hong WANG; De-Zhu LI

    2011-01-01

    Four DNA barcoding loci,chloroplast loci rbcL,matK,trnH-psbA,and nuclear locus internal transcribed spacer (ITS),were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P-distance,Wilcoxon signed rank test,and tree-based analyses.This study included 186 individuals from 89 populations representing 30 species.For all individuals,single locus markers showed high levels of sequencing universality but were ineffective for species resolvability.Polymerase chain reaction amplification and sequencing were successful for all four loci.Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH-psbA.A combination ofmatK and ITS was the most efficient DNA barcode among all studied regions,however,they do not represent an appropriate candidate barcode for Chinese Gaultheria,by which only 11 out of 30 species can be separated.Loci rbcL,matK,and trnH-psbA,which were recently proposed as universal plant barcodes,have a very poor capacity for species separation for Chinese Gaultheria.DNA barcodes may be reliable tools to identify the evolutionary units of this group,so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.

  18. The Barcode of Life Data Portal: bridging the biodiversity informatics divide for DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Indra Neil Sarkar

    Full Text Available With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence-based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form--often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG of the Consortium for the Barcode of Life (CBOL, the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum.

  19. The changing epitome of species identification - DNA barcoding.

    Science.gov (United States)

    Ajmal Ali, M; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M A; Pandey, Arun K; Lee, Joongku

    2014-07-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The 'DNA barcodes' show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  20. DNA Barcoding of Catfish: Species Authentication and Phylogenetic Assessment

    OpenAIRE

    Wong, Li Lian; Peatman, Eric; Lu, Jianguo; Kucuktas, Huseyin; He, Shunping; Zhou, Chuanjiang; Na-Nakorn, Uthairat; Liu, Zhanjiang

    2011-01-01

    As the global market for fisheries and aquaculture products expands, mislabeling of these products has become a growing concern in the food safety arena. Molecular species identification techniques hold the potential for rapid, accurate assessment of proper labeling. Here we developed and evaluated DNA barcodes for use in differentiating United States domestic and imported catfish species. First, we sequenced 651 base-pair barcodes from the cytochrome oxidase I (COI) gene from individuals of ...

  1. A comparative analysis of DNA barcode microarray feature size

    OpenAIRE

    Ammar, Ron; SMITH, ANDREW M.; Heisler, Lawrence E.; Giaever, Guri; Nislow, Corey

    2009-01-01

    Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platfor...

  2. A comparative analysis of DNA barcode microarray feature size

    OpenAIRE

    Smith Andrew M; Ammar Ron; Heisler Lawrence E; Giaever Guri; Nislow Corey

    2009-01-01

    Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarra...

  3. ycf1, the most promising plastid DNA barcode of land plants

    OpenAIRE

    Wenpan Dong; Chao Xu; Changhao Li; Jiahui Sun; Yunjuan Zuo; Shuo Shi; Tao Cheng; Junjie Guo; Shiliang Zhou

    2015-01-01

    A DNA barcode is a DNA fragment used to identify species. For land plants, DNA fragments of plastid genome could be the primary consideration. Unfortunately, most of the plastid candidate barcodes lack species-level resolution. The identification of DNA barcodes of high resolution at species level is critical to the success of DNA barcoding in plants. We searched the available plastid genomes for the most variable regions and tested the best candidates using both a large number of tree specie...

  4. DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters

    Science.gov (United States)

    Mabragaña, Ezequiel; Díaz de Astarloa, Juan Martín; Hanner, Robert; Zhang, Junbin; González Castro, Mariano

    2011-01-01

    Background DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. Methodology/Principal Findings Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species), and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org). Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125) examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. Conclusions/Significance This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha taxonomy, barcodes provide

  5. DNA barcoding identifies Argentine fishes from marine and brackish waters.

    Directory of Open Access Journals (Sweden)

    Ezequiel Mabragaña

    Full Text Available BACKGROUND: DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. METHODOLOGY/PRINCIPAL FINDINGS: Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species, and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org. Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125 examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. CONCLUSIONS/SIGNIFICANCE: This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha

  6. Q-Bank Phytoplasma: A DNA Barcoding Tool for Phytoplasma Identification

    DEFF Research Database (Denmark)

    Contaldo, Nicoletta; Paltrinieri, Samanta; Makarova, Olga;

    2015-01-01

    DNA barcoding is an identification method based on comparison of a short DNA sequence with known sequences from a database. A DNA barcoding tool has been developed for phytoplasma identification. This phytoplasma DNA barcoding protocol based on the tuf gene has been shown to identify phytoplasmas...

  7. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae

    Directory of Open Access Journals (Sweden)

    Giovanna Câmara Giudicelli

    2015-04-01

    Full Text Available DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1 region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species.

  8. A laboratory information management system for DNA barcoding workflows.

    Science.gov (United States)

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out. PMID:22344310

  9. A laboratory information management system for DNA barcoding workflows.

    Science.gov (United States)

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  10. DNA条形码技术%DNA barcode technology

    Institute of Scientific and Technical Information of China (English)

    马英; 鲁亮

    2012-01-01

    DNA条形码是一种利用短的DNA序列对物种进行鉴定的技术.文中简略介绍了DNA条形码的背景知识和原理,举例说明其在物种分类、鉴定及遗传多样性等方面的广泛应用研究,并讨论了该技术在生物分类应用中可能存在的一些问题.%DNA barcode is a diagnostic technique in which short DNA sequences can be used for species identification. In this article, the background knowledge and principles of DNA barcode were reviewed simply. Also illustrated application research on classification, identification and genetic diversity in species and some existed problems of DNA barcode.

  11. DNA barcoding, phylogenetic relationships and speciation of snappers (genus Lutjanus)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The phylogenetic relationships of 13 snapper species from the South China Sea have been established using the combined DNA sequences of three full-length mitochondrial genes (COI, COII and CYTB) and two partial nuclear genes (RAG1, RAG2). The 13 species (genus Lutjanus) were selected after DNA barcoding 72 individuals, representing 20 species. Our study suggests that although DNA barcoding aims to develop species identification systems, it may also be useful in the construction of phylogenies by aiding the selection of taxa. Combined mitochondrial and nuclear gene data has an advantage over an individual dataset because of its higher resolving power.

  12. Patterns of DNA Barcode Variation in Canadian Marine Molluscs

    Science.gov (United States)

    Layton, Kara K.S.; Martel, André L.; Hebert, Paul DN.

    2014-01-01

    Background Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. Methodology/Principal Findings This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0–26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%–46.5%), and showed a significant positive correlation with nearest neighbour distances. Conclusions/Significance DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad

  13. Novel DNA barcodes for detection, idenfication and tracking of stachybotrys and chaetomium species

    DEFF Research Database (Denmark)

    Lewinska, Anna Malgorzata; Nielsen, Jakob Birkedal; Peuhkuri, Ruut Hannele;

    2014-01-01

    Detection and identification of indoor fungi in water-damaged buildings is crucial for preventi and control of fungal growth. This study focuses on a molecular method called DNA barcoding. evaluates commonly used sequences in DNA barcoding for fungal species identification Chaetomium and...... Stachybotrys. The existing DNA barcodes: ITS, SSU, LSU, B-TUB, CMD, RP and TEF-1α do not give satisfying species resolution to be considered as DNA barcodes for the two genera. Therefore, novel barcodes for them are needed. Barcode potentials, such as HOG1 a NAHA, were identified using bioinformatics and are...

  14. DNA Barcoding and the International Barcode of Life Project in China

    Institute of Scientific and Technical Information of China (English)

    CHE Jing; HUANG Dawei; LI Dezhu; MA Juncai; ZHANG Yaping

    2010-01-01

    @@ 1.Scientific and Social Benefits of DNA Barcoding Along with the accelerated global trade and climate change,the needs for sustainable development and for understanding biodiversity are increasing.Rapid and accurate species identification and sustainable utility of biodiversity resources have become a great need for the world.

  15. DNA Barcodes for Marine Biodiversity: Moving Fast Forward?

    Directory of Open Access Journals (Sweden)

    Adriana E. Radulovici

    2010-03-01

    Full Text Available ‘Biodiversity’ means the variety of life and it can be studied at different levels (genetic, species, ecosystem and scales (spatial and temporal. Last decades showed that marine biodiversity has been severely underestimated at all levels. In order to investigate diversity patterns and underlying processes, there is a need to know what species live in the marine environment. An emerging tool for species identification, DNA barcoding can reliably assign unknown specimens to known species, also flagging potential cryptic species and genetically distant populations. This paper will review the role of DNA barcoding for the study of marine biodiversity at the species level.

  16. A DNA barcoding approach in the study of tardigrades

    Directory of Open Access Journals (Sweden)

    Michele Cesari

    2013-05-01

    Full Text Available DNA barcoding is a technique proposed by Hebert and co-workers in 2003 for discriminating species through analysis of a single gene barcode locus. It aims to obtain a better taxonomic resolution than that achieved through morphological studies, and to avoid the decline in taxonomic knowledge. Today DNA barcoding is a global enterprise, and the implementation of the idea has seen a rapid rise (more than 1900 papers published to date on different organisms. Nonetheless, controversy still arises regarding barcoding and taxonomy. It is important to note that DNA barcoding does not focus on building a tree-of-life or on doing DNA taxonomy, even though sometimes it has been used for these purposes. DNA barcoding rather focuses on producing a universal molecular identification key based on strong taxonomic knowledge that should be included in the barcode reference library. In the phylum Tardigrada, DNA barcoding represents a recent approach to species identification and to help in solving taxonomic problems, especially considering the diminutive size of these animals and the paucity of morphological characters useful for taxonomy. In the framework of the MoDNA Project (Morphology and DNA, carried out by our research group in collaboration with several colleagues, we are combining the study of a fragment of the mitochondrial cytochrome c oxidase subunit I gene (cox1 with morphological data, in a wide sense (cuticular structures, chromosomes, data on sex ratio and reproduction, to form an integrative taxonomy approach for tardigrade species identification. We believe that without verified reference sequences from voucher specimens that have been authenticated by qualified taxonomists, there is no reliable library for newly generated sequences with which to be compared. Methods and protocols for standardized results are focused on obtaining tight correspondence between tardigrade morphology (and egg shell morphology, when useful, possibly both light and

  17. Assessment of candidate plant DNA barcodes using the Rutaceae family

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention.Here,seven regions (psbA-trnH,matK,ycf5,rpoC1,rbcL,ITS2,and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae.To evaluate each barcode’s utility for species authentication,PCR amplification efficiency,genetic divergence,and barcoding gaps were assessed.We found that the ITS2 region exhibited the highest inter-specific divergence,and that this was significantly higher than the intra-specific variation in the "DNA barcoding gap" assessment and Wilcoxon two-sample tests.The ITS2 locus had the highest identification efficiency among all tested regions.In a previous study,we found that ITS2 was able to discriminate a wide range of plant taxa,and here we confirmed that ITS2 was also able to discriminate a number of closely related species.Therefore,we propose that ITS2 is a promising candidate barcode for plant species identification.

  18. Design of 240,000 orthogonal 25mer DNA barcode probes

    OpenAIRE

    Xu, Qikai; Schlabach, Michael R.; Hannon, Gregory J.; Elledge, Stephen J.

    2009-01-01

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the ...

  19. DNA barcoding in the media: does coverage of cool science reflect its social context?

    Science.gov (United States)

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life.

  20. DNA barcoding in the media: does coverage of cool science reflect its social context?

    Science.gov (United States)

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life. PMID:27463361

  1. DNA barcoding as a means for identifying medicinal plants of Pakistan

    International Nuclear Information System (INIS)

    DNA barcoding involves the generation of DNA sequencing data from particular genetic regions in an organism and the use of these sequence data to identify or 'barcode' that organism and distinguish it from other species. Here, DNA barcoding is being used to identify several medicinal plants found in Pakistan and distinguished them from other similar species. Several challenges to the successful implementation of plant DNA barcoding are presented and discussed. Despite these challenges, DNA barcoding has the potential to uniquely identify medicinal plants and provide quality control and standardization of the plant material supplied to the pharmaceutical industry. (author)

  2. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    Science.gov (United States)

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.

  3. An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database

    Directory of Open Access Journals (Sweden)

    But Paul

    2010-06-01

    Full Text Available Abstract Background Thousands of plants and animals possess pharmacological properties and there is an increased interest in using these materials for therapy and health maintenance. Efficacies of the application is critically dependent on the use of genuine materials. For time to time, life-threatening poisoning is found because toxic adulterant or substitute is administered. DNA barcoding provides a definitive means of authentication and for conducting molecular systematics studies. Owing to the reduced cost in DNA authentication, the volume of the DNA barcodes produced for medicinal materials is on the rise and necessitates the development of an integrated DNA database. Description We have developed an integrated DNA barcode multimedia information platform- Medicinal Materials DNA Barcode Database (MMDBD for data retrieval and similarity search. MMDBD contains over 1000 species of medicinal materials listed in the Chinese Pharmacopoeia and American Herbal Pharmacopoeia. MMDBD also contains useful information of the medicinal material, including resources, adulterant information, medical parts, photographs, primers used for obtaining the barcodes and key references. MMDBD can be accessed at http://www.cuhk.edu.hk/icm/mmdbd.htm. Conclusions This work provides a centralized medicinal materials DNA barcode database and bioinformatics tools for data storage, analysis and exchange for promoting the identification of medicinal materials. MMDBD has the largest collection of DNA barcodes of medicinal materials and is a useful resource for researchers in conservation, systematic study, forensic and herbal industry.

  4. Counting animal species with DNA barcodes: Canadian insects.

    Science.gov (United States)

    Hebert, Paul D N; Ratnasingham, Sujeevan; Zakharov, Evgeny V; Telfer, Angela C; Levesque-Beaudin, Valerie; Milton, Megan A; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R

    2016-09-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy.This article is part of the

  5. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cell

    Science.gov (United States)

    Agasti, Sarit S.; Liong, Monty; Peterson, Vanessa M.; Lee, Hakho; Weissleder, Ralph

    2012-01-01

    DNA barcoding is an attractive technology as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here, we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells. PMID:23092113

  6. DNA barcoding of Brazilian sea turtles (Testudines

    Directory of Open Access Journals (Sweden)

    Sarah M. Vargas

    2009-01-01

    Full Text Available Five out of the seven recognized species of sea turtles (Testudines occur on the Brazilian coast. The Barcode Initiative is an effort to undertake a molecular inventory of Earth biodiversity. Cytochrome Oxidase c subunit I (COI molecular tags for sea turtle species have not yet been described. In this study, COI sequences for the five species of sea turtles that occur in Brazil were generated. These presented widely divergent haplotypes. All observed values were on the same range as those already described for other animal groups: the overall mean distance was 8.2%, the mean distance between families (Dermochelyidae and Cheloniidae 11.7%, the mean intraspecific divergence 0.34%, and the mean distance within Cheloniidae 6.4%, this being 19-fold higher than the mean divergence observed within species. We obtained species-specific COI barcode tags that can be used for identifying each of the marine turtle species studied.

  7. A DNA Barcode Library for Korean Chironomidae (Insecta: Diptera) and Indexes for Defining Barcode Gap

    OpenAIRE

    Kim, Sungmin; Song, Kyo-Hong; Ree, Han-Il; Kim, Won

    2011-01-01

    Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified l...

  8. A comparative analysis of DNA barcode microarray feature size

    Directory of Open Access Journals (Sweden)

    Smith Andrew M

    2009-10-01

    Full Text Available Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density, but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO collection used for screens of pooled yeast (Saccharomyces cerevisiae deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density.

  9. DNA Barcode Authentication of Saw Palmetto Herbal Dietary Supplements

    Science.gov (United States)

    Little, Damon P.; Jeanson, Marc L.

    2013-01-01

    Herbal dietary supplements made from saw palmetto (Serenoa repens; Arecaceae) fruit are commonly consumed to ameliorate benign prostate hyperplasia. A novel DNA mini–barcode assay to accurately identify [specificity = 1.00 (95% confidence interval = 0.74–1.00); sensitivity = 1.00 (95% confidence interval = 0.66–1.00); n = 31] saw palmetto dietary supplements was designed from a DNA barcode reference library created for this purpose. The mini–barcodes were used to estimate the frequency of mislabeled saw palmetto herbal dietary supplements on the market in the United States of America. Of the 37 supplements examined, amplifiable DNA could be extracted from 34 (92%). Mini–barcode analysis of these supplements demonstrated that 29 (85%) contain saw palmetto and that 2 (6%) supplements contain related species that cannot be legally sold as herbal dietary supplements in the United States of America. The identity of 3 (9%) supplements could not be conclusively determined. PMID:24343362

  10. A retrospective approach to testing the DNA barcoding method.

    Directory of Open Access Journals (Sweden)

    David G Chapple

    Full Text Available A decade ago, DNA barcoding was proposed as a standardised method for identifying existing species and speeding the discovery of new species. Yet, despite its numerous successes across a range of taxa, its frequent failures have brought into question its accuracy as a short-cut taxonomic method. We use a retrospective approach, applying the method to the classification of New Zealand skinks as it stood in 1977 (primarily based upon morphological characters, and compare it to the current taxonomy reached using both morphological and molecular approaches. For the 1977 dataset, DNA barcoding had moderate-high success in identifying specimens (78-98%, and correctly flagging specimens that have since been confirmed as distinct taxa (77-100%. But most matching methods failed to detect the species complexes that were present in 1977. For the current dataset, there was moderate-high success in identifying specimens (53-99%. For both datasets, the capacity to discover new species was dependent on the methodological approach used. Species delimitation in New Zealand skinks was hindered by the absence of either a local or global barcoding gap, a result of recent speciation events and hybridisation. Whilst DNA barcoding is potentially useful for specimen identification and species discovery in New Zealand skinks, its error rate could hinder the progress of documenting biodiversity in this group. We suggest that integrated taxonomic approaches are more effective at discovering and describing biodiversity.

  11. DNA barcoding works in practice but not in (neutral theory.

    Directory of Open Access Journals (Sweden)

    Mark Y Stoeckle

    Full Text Available BACKGROUND: DNA barcode differences within animal species are usually much less than differences among species, making it generally straightforward to match unknowns to a reference library. Here we aim to better understand the evolutionary mechanisms underlying this usual "barcode gap" pattern. We employ avian barcode libraries to test a central prediction of neutral theory, namely, intraspecific variation equals 2 Nµ, where N is population size and µ is mutations per site per generation. Birds are uniquely suited for this task: they have the best-known species limits, are well represented in barcode libraries, and, most critically, are the only large group with documented census population sizes. In addition, we ask if mitochondrial molecular clock measurements conform to neutral theory prediction of clock rate equals µ. RESULTS: Intraspecific COI barcode variation was uniformly low regardless of census population size (n = 142 species in 15 families. Apparent outliers reflected lumping of reproductively isolated populations or hybrid lineages. Re-analysis of a published survey of cytochrome b variation in diverse birds (n = 93 species in 39 families further confirmed uniformly low intraspecific variation. Hybridization/gene flow among species/populations was the main limitation to DNA barcode identification. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first large study of animal mitochondrial diversity using actual census population sizes and the first to test outliers for population structure. Our finding of universally low intraspecific variation contradicts a central prediction of neutral theory and is not readily accounted for by commonly proposed ad hoc modifications. We argue that the weight of evidence-low intraspecific variation and the molecular clock-indicates neutral evolution plays a minor role in mitochondrial sequence evolution. As an alternate paradigm consistent with empirical data, we propose extreme

  12. A universal DNA mini-barcode for biodiversity analysis

    OpenAIRE

    Hebert Paul DN; Hickey Donal A; Landry Jean-François; Singer Gregory AC; Meusnier Isabelle; Hajibabaei Mehrdad

    2008-01-01

    Abstract Background The goal of DNA barcoding is to develop a species-specific sequence library for all eukaryotes. A 650 bp fragment of the cytochrome c oxidase 1 (CO1) gene has been used successfully for species-level identification in several animal groups. It may be difficult in practice, however, to retrieve a 650 bp fragment from archival specimens, (because of DNA degradation) or from environmental samples (where universal primers are needed). Results We used a bioinformatics analysis ...

  13. Detection Tuna and Processed Products Based Protein and DNA Barcoding

    OpenAIRE

    Nuring Wulansari; Mala Nurilamala; Nurjanah

    2015-01-01

    Tuna is the second largest fishery commodity in Indonesia after the shrimp. Since the high demand and the limited stock of tuna resulted in fraudulent chance. Authentication is required to meassure consumers regarding the accuracy of its labeling and food safety. In this study, the authentication was based on protein and DNA barcoding using cytochrome-b gene (cyt-b) of the mitochondrial DNA as the target of gene. Primer of cyt b gene was designed based on the tuna species. This...

  14. Untangling taxonomy: a DNA barcode reference library for Canadian spiders.

    Science.gov (United States)

    Blagoev, Gergin A; deWaard, Jeremy R; Ratnasingham, Sujeevan; deWaard, Stephanie L; Lu, Liuqiong; Robertson, James; Telfer, Angela C; Hebert, Paul D N

    2016-01-01

    Approximately 1460 species of spiders have been reported from Canada, 3% of the global fauna. This study provides a DNA barcode reference library for 1018 of these species based upon the analysis of more than 30,000 specimens. The sequence results show a clear barcode gap in most cases with a mean intraspecific divergence of 0.78% vs. a minimum nearest-neighbour (NN) distance averaging 7.85%. The sequences were assigned to 1359 Barcode index numbers (BINs) with 1344 of these BINs composed of specimens belonging to a single currently recognized species. There was a perfect correspondence between BIN membership and a known species in 795 cases, while another 197 species were assigned to two or more BINs (556 in total). A few other species (26) were involved in BIN merges or in a combination of merges and splits. There was only a weak relationship between the number of specimens analysed for a species and its BIN count. However, three species were clear outliers with their specimens being placed in 11-22 BINs. Although all BIN splits need further study to clarify the taxonomic status of the entities involved, DNA barcodes discriminated 98% of the 1018 species. The present survey conservatively revealed 16 species new to science, 52 species new to Canada and major range extensions for 426 species. However, if most BIN splits detected in this study reflect cryptic taxa, the true species count for Canadian spiders could be 30-50% higher than currently recognized. PMID:26175299

  15. DNA barcoding of sigmodontine rodents: identifying wildlife reservoirs of zoonoses.

    Directory of Open Access Journals (Sweden)

    Lívia Müller

    Full Text Available Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera, mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera. Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments.

  16. DNA Barcoding of Sigmodontine Rodents: Identifying Wildlife Reservoirs of Zoonoses

    Science.gov (United States)

    Müller, Lívia; Gonçalves, Gislene L.; Cordeiro-Estrela, Pedro; Marinho, Jorge R.; Althoff, Sérgio L.; Testoni, André. F.; González, Enrique M.; Freitas, Thales R. O.

    2013-01-01

    Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments. PMID:24244670

  17. Analyzing mosquito (Diptera: culicidae diversity in Pakistan by DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Muhammad Ashfaq

    Full Text Available BACKGROUND: Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. METHODOLOGY/PRINCIPAL FINDINGS: Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection. The genus Aedes (Stegomyia comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. CONCLUSIONS: As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  18. DNA barcoding birds: from field collection to data analysis.

    Science.gov (United States)

    Lijtmaer, Darío A; Kerr, Kevin C R; Stoeckle, Mark Y; Tubaro, Pablo L

    2012-01-01

    As of February 2011, COI DNA barcode sequences (a 648-bp segment of the 5' end of the mitochondrial gene cytochrome c oxidase I, the standard DNA barcode for animals) have been collected from over 23,000 avian specimens representing 3,800 species, more than one-third of the world's avifauna. Here, we detail the methodology for obtaining DNA barcodes from birds, covering the entire process from field collection to data analysis. We emphasize key aspects of the process and describe in more detail those that are particularly relevant in the case of birds. We provide elemental information about collection of specimens, detailed protocols for DNA extraction and PCR, and basic aspects of sequencing methodology. In particular, we highlight the primer pairs and thermal cycling profiles associated with successful amplification and sequencing from a broad range of avian species. Finally, we succinctly review the methodology for data analysis, including the detection of errors (such as contamination, misidentifications, or amplification of pseudogenes), assessment of species resolution, detection of divergent intraspecific lineages, and identification of unknown specimens. PMID:22684955

  19. DNA Barcoding for Minor Crops and Food Traceability

    Directory of Open Access Journals (Sweden)

    Andrea Galimberti

    2014-01-01

    Full Text Available This outlook paper addresses the problem of the traceability of minor crops. These kinds of cultivations consist in a large number of plants locally distributed with a modest production in terms of cultivated acreage and quantity of final product. Because of globalization, the diffusion of minor crops is increasing due to their benefit for human health or their use as food supplements. Such a phenomenon implies a major risk for species substitution or uncontrolled admixture of manufactured plant products with severe consequences for the health of consumers. The need for a reliable identification system is therefore essential to evaluate the quality and provenance of minor agricultural products. DNA-based techniques can help in achieving this mission. In particular, the DNA barcoding approach has gained a role of primary importance thanks to its universality and versatility. Here, we present the advantages in the use of DNA barcoding for the characterization and traceability of minor crops based on our previous or ongoing studies at the ZooPlantLab (Milan, Italy. We also discuss how DNA barcoding may potentially be transferred from the laboratory to the food supply chain, from field to table.

  20. Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates

    Science.gov (United States)

    Molecular methods, such as DNA barcoding, have the potential in enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biom...

  1. Neotropical bats: estimating species diversity with DNA barcodes.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Clare

    Full Text Available DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera. This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0-11.79% with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats.

  2. DNA barcoding: complementing morphological identification of mosquito species in Singapore

    OpenAIRE

    Chan, Abigail; Chiang, Lee-Pei; Hapuarachchi, Hapuarachchige C; Tan, Cheong-Huat; Pang, Sook-Cheng; Lee, Ruth; Lee, Kim-Sung; Ng, Lee-Ching; Lam-Phua, Sai-Gek

    2014-01-01

    Background Taxonomy that utilizes morphological characteristics has been the gold standard method to identify mosquito species. However, morphological identification is challenging when the expertise is limited and external characters are damaged because of improper specimen handling. Therefore, we explored the applicability of mitochondrial cytochrome C oxidase subunit 1 (COI) gene-based DNA barcoding as an alternative tool to identify mosquito species. In the present study, we compared the ...

  3. Patterns of DNA Barcode Variation in Canadian Marine Molluscs

    OpenAIRE

    Layton, Kara K. S.; Martel, André L.; Hebert, Paul D. N.

    2014-01-01

    BACKGROUND: Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonst...

  4. DNA barcoding for species Identification in prepared fishery products

    OpenAIRE

    ANNA MOTTOLA; PATRIZIA MARCHETTI; MARILISA BOTTARO; ANGELA DI PINTO

    2014-01-01

    Considering that seafood mislabeling has been widely reported throughout the world and that the authentication of food components is one of the key issues in food quality, the aim of this study was to use DNA barcoding to investigate the prevalence of mislabeling among fresh prepared fishery products from markets and supermarkets located in Apulia (SE Italy). The study reveals a high occurrence of species mislabeling (42%) in the prepared fillet products, further evidence of the need for incr...

  5. DNA barcoding in diverse educational settings: five case studies

    Science.gov (United States)

    Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-01-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5–18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481792

  6. A DNA barcoding approach to characterize pollen collected by honeybees.

    Science.gov (United States)

    Galimberti, Andrea; De Mattia, Fabrizio; Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands. PMID:25296114

  7. DNA barcoding and taxonomy: dark taxa and dark texts.

    Science.gov (United States)

    Page, Roderic D M

    2016-09-01

    Both classical taxonomy and DNA barcoding are engaged in the task of digitizing the living world. Much of the taxonomic literature remains undigitized. The rise of open access publishing this century and the freeing of older literature from the shackles of copyright have greatly increased the online availability of taxonomic descriptions, but much of the literature of the mid- to late-twentieth century remains offline ('dark texts'). DNA barcoding is generating a wealth of computable data that in many ways are much easier to work with than classical taxonomic descriptions, but many of the sequences are not identified to species level. These 'dark taxa' hamper the classical method of integrating biodiversity data, using shared taxonomic names. Voucher specimens are a potential common currency of both the taxonomic literature and sequence databases, and could be used to help link names, literature and sequences. An obstacle to this approach is the lack of stable, resolvable specimen identifiers. The paper concludes with an appeal for a global 'digital dashboard' to assess the extent to which biodiversity data are available online.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481786

  8. DNA barcoding and taxonomy: dark taxa and dark texts.

    Science.gov (United States)

    Page, Roderic D M

    2016-09-01

    Both classical taxonomy and DNA barcoding are engaged in the task of digitizing the living world. Much of the taxonomic literature remains undigitized. The rise of open access publishing this century and the freeing of older literature from the shackles of copyright have greatly increased the online availability of taxonomic descriptions, but much of the literature of the mid- to late-twentieth century remains offline ('dark texts'). DNA barcoding is generating a wealth of computable data that in many ways are much easier to work with than classical taxonomic descriptions, but many of the sequences are not identified to species level. These 'dark taxa' hamper the classical method of integrating biodiversity data, using shared taxonomic names. Voucher specimens are a potential common currency of both the taxonomic literature and sequence databases, and could be used to help link names, literature and sequences. An obstacle to this approach is the lack of stable, resolvable specimen identifiers. The paper concludes with an appeal for a global 'digital dashboard' to assess the extent to which biodiversity data are available online.This article is part of the themed issue 'From DNA barcodes to biomes'.

  9. DNA barcoding in diverse educational settings: five case studies.

    Science.gov (United States)

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481792

  10. A DNA barcoding approach to characterize pollen collected by honeybees.

    Directory of Open Access Journals (Sweden)

    Andrea Galimberti

    Full Text Available In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy. A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno, characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands.

  11. DNA barcoding in diverse educational settings: five case studies.

    Science.gov (United States)

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'.

  12. DNA barcoding of Pedicularis L.(Orobanchaceae): Evaluating four universal barcode loci in a large and hemiparasitic genus

    Institute of Scientific and Technical Information of China (English)

    Wen-Bin YU; pan-Hui HUANG; Richard H. REE; Min-Lu LIU; De-Zhu LI; Hong WANG

    2011-01-01

    One application ofDNA barcoding is species identification based on sequences of a short and standardized DNA region.In plants,various DNA regions,alone or in combination,have been proposed and investigated,but consensus on a universal plant barcode remains elusive.In this study,we tested the utility of four candidate barcoding regions (rbcL,matK,trnH-psbA,and internal transcribed spacer (ITS)) as DNA barcodes for discriminating species in a large and hemiparasitic genus Pedicularis (Orobanchaceae).Amplification and sequencing was successful using single primer pairs for rbcL,trnH-psbA,and ITS,whereas two primer pairs were required for matK.Patterns of sequence divergence commonly showed a “barcoding gap”,that is,a bimodal frequency distribution of pairwise distances representing genetic diversity within and between species,respectively Considering primer universality,ease of amplification and sequencing,and performance in discriminating species,we found the most effective single-region barcode for Pedicularis to be ITS,and the most effective two-region barcode to be rbcL +ITS.Both discriminated at least 78% of the 88 species and correctly identified at least 89% of the sequences in our sample,and were effective in placing unidentified samples in known species groups.Our results suggest that DNA barcoding has the potential to aid taxonomic research in Pedicularis,a species-rich cosmopolitan clade much in need of revision,as well as ecological studies in its center of diversity,the Hengduan Mountains region of China.

  13. Reliable DNA barcoding performance proved for species and island populations of comoran squamate reptiles.

    Directory of Open Access Journals (Sweden)

    Oliver Hawlitschek

    Full Text Available In the past decade, DNA barcoding became increasingly common as a method for species identification in biodiversity inventories and related studies. However, mainly due to technical obstacles, squamate reptiles have been the target of few barcoding studies. In this article, we present the results of a DNA barcoding study of squamates of the Comoros archipelago, a poorly studied group of oceanic islands close to and mostly colonized from Madagascar. The barcoding dataset presented here includes 27 of the 29 currently recognized squamate species of the Comoros, including 17 of the 18 endemic species. Some species considered endemic to the Comoros according to current taxonomy were found to cluster with non-Comoran lineages, probably due to poorly resolved taxonomy. All other species for which more than one barcode was obtained corresponded to distinct clusters useful for species identification by barcoding. In most species, even island populations could be distinguished using barcoding. Two cryptic species were identified using the DNA barcoding approach. The obtained barcoding topology, a Bayesian tree based on COI sequences of 5 genera, was compared with available multigene topologies, and in 3 cases, major incongruences between the two topologies became evident. Three of the multigene studies were initiated after initial screening of a preliminary version of the barcoding dataset presented here. We conclude that in the case of the squamates of the Comoros Islands, DNA barcoding has proven a very useful and efficient way of detecting isolated populations and promising starting points for subsequent research.

  14. Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead.

    Science.gov (United States)

    Joly, Simon; Davies, T Jonathan; Archambault, Annie; Bruneau, Anne; Derry, Alison; Kembel, Steven W; Peres-Neto, Pedro; Vamosi, Jana; Wheeler, Terry A

    2014-03-01

    Ten years after DNA barcoding was initially suggested as a tool to identify species, millions of barcode sequences from more than 1100 species are available in public databases. While several studies have reviewed the methods and potential applications of DNA barcoding, most have focused on species identification and discovery, and relatively few have addressed applications of DNA barcoding data to ecology. These data, and the associated information on the evolutionary histories of taxa that they can provide, offer great opportunities for ecologists to investigate questions that were previously difficult or impossible to address. We present an overview of potential uses of DNA barcoding relevant in the age of ecoinformatics, including applications in community ecology, species invasion, macroevolution, trait evolution, food webs and trophic interactions, metacommunities, and spatial ecology. We also outline some of the challenges and potential advances in DNA barcoding that lie ahead.

  15. DNA barcode detects high genetic structure within neotropical bird species.

    Directory of Open Access Journals (Sweden)

    Erika Sendra Tavares

    Full Text Available BACKGROUND: Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. METHODS AND FINDINGS: Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520 of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21 or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20. Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. CONCLUSIONS: The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent

  16. DNA barcoding provides distinction between Radix Astragali and its adulterants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on variable nuclear and/or organellar DNA sequences among vastly divergent species as well as morphologically indistinguishable species, DNA barcoding is widely applicable in species identification, biodiversity studies, forensic analyses, and authentication of medicinal plants. The roots of Astragalus membranaceus and A. membranaceus var. mongholica are commonly used as Radix Astragali in several Asian countries, including China, Japan, and Korea. However, in addition to the two species recorded in the Chinese Pharmacopoeia, there are twenty-three species from different genera including Astragalus, Oxytropis, Hedysarum, and Glycyrrhiza, which have been used as adulterants not only in trading markets but also by the herbal medicine industry. Therefore, a simple, reliable, and accurate classification method is important for distinguishing authentic Radix Astragali from its adulterants. In this study, we acquired data for 37 samples from four related genera within the family Fabaceae. Then we compared four candidate DNA barcoding markers using ITS, matK, rbcL, and coxI sequences from nuclear, chloroplast, and mitochondrial genomes, all commonly used for plants to identify genetic variations among genera, intraspecies, and interspecies. We observed higher divergences among genera and interspecies for ITS, which have the average Kimura 2-parameter distances of 4.5% and 14.1%, respectively, whereas matK was found to have sufficient divergence at the intraspecific level. Moreover, two indels detected in the matK sequence are useful for PCR studies in distinguishing Radix Astragali from its adulterants. This study suggests that the combined barcoding regions of ITS and matK are superior barcodes for Radix Astragali and further studies should focus on evaluating the applicability and accuracy of such combined markers for a wide range of traditional Chinese herbs.

  17. DNA barcoding of the Lemnaceae, a family of aquatic monocots

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2010-09-01

    Full Text Available Abstract Background Members of the aquatic monocot family Lemnaceae (commonly called duckweeds represent the smallest and fastest growing flowering plants. Their highly reduced morphology and infrequent flowering result in a dearth of characters for distinguishing between the nearly 38 species that exhibit these tiny, closely-related and often morphologically similar features within the same family of plants. Results We developed a simple and rapid DNA-based molecular identification system for the Lemnaceae based on sequence polymorphisms. We compared the barcoding potential of the seven plastid-markers proposed by the CBOL (Consortium for the Barcode of Life plant-working group to discriminate species within the land plants in 97 accessions representing 31 species from the family of Lemnaceae. A Lemnaceae-specific set of PCR and sequencing primers were designed for four plastid coding genes (rpoB, rpoC1, rbcL and matK and three noncoding spacers (atpF-atpH, psbK-psbI and trnH-psbA based on the Lemna minor chloroplast genome sequence. We assessed the ease of amplification and sequencing for these markers, examined the extent of the barcoding gap between intra- and inter-specific variation by pairwise distances, evaluated successful identifications based on direct sequence comparison of the "best close match" and the construction of a phylogenetic tree. Conclusions Based on its reliable amplification, straightforward sequence alignment, and rates of DNA variation between species and within species, we propose that the atpF-atpH noncoding spacer could serve as a universal DNA barcoding marker for species-level identification of duckweeds.

  18. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters.

    Science.gov (United States)

    Hadi, Sámed I I A; Santana, Hugo; Brunale, Patrícia P M; Gomes, Taísa G; Oliveira, Márcia D; Matthiensen, Alexandre; Oliveira, Marcos E C; Silva, Flávia C P; Brasil, Bruno S A F

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker. PMID:26900844

  19. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters.

    Directory of Open Access Journals (Sweden)

    Sámed I I A Hadi

    Full Text Available This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2 markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92% of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker.

  20. DNA barcoding of Dalbergia spp. from Western Ghats in India

    Directory of Open Access Journals (Sweden)

    R. M. Bhagwat

    2011-01-01

    Full Text Available (Abstract selected from presentation in National Conference on Biodiversity of Medicinal and Aromatic Plants: Collection, Characterization and Utilization, held at Anand, India during November 24-25, 2010   The Western Ghats (WG in India are well known for their rich and unique assemblage of flora and fauna, and are amongst the 25 biodiversity hotspots identified in the world. Dalbergia (family: Fabaceae is an important member of the WG flora; valued for decorative and often fragrant wood (rosewood, African blackwood, sisu and is rich in aromatic oils. There is taxonomic confusion with respect to several Dalbergia species as these often have more than one species names. Hence, the size of the Dalbergia genus remains disputed. DNA barcoding is modern biotechnological tool which can distinguish among species that look alike. It is also useful in medicinal formulations to identify adulterants. Although DNA barcoding is well established ly accepted barcode is still lacking in plants. Hence, the main objective of this study is to develop a unique barcode for quick, accurate and reliable species identification using the Dalbergia genus as a model system. Leaf samples from 15 accessions each, belonging to six validated Dalbergia species (D. melanoxylon, D. candenatensis, D. rubiginosa, D. latifolia, D. volubilis and D. paniculata were collected from different locations in WG and DNA extractions have been carried out from these as well as characterized herbaria samples. Total 37 primer pairs specific to several chloroplast genes (matK, rpoC, rpoB, rbcL, accD, ndhJ, ycf5 and trnH-psbA as well as the nuclear genes were evaluated in the samples and 16 of these have been standardized for the six Dalbergia species. We are currently targeting the DNA sequences corresponding to matK, rpoc, rpoB, rbcl, trnH-psbA and nuclear ITS. Based on the preliminary sequence data, the resolution of the species differentiation using the rpoB and rbcL genes individually was

  1. Rapid DNA barcoding analysis of large datasets using the composition vector method

    OpenAIRE

    Chu, Ka Hou; Xu, Minli; Li, Chi Pang

    2009-01-01

    Background Sequence alignment is the rate-limiting step in constructing profile trees for DNA barcoding purposes. We recently demonstrated the feasibility of using unaligned rRNA sequences as barcodes based on a composition vector (CV) approach without sequence alignment (Bioinformatics 22:1690). Here, we further explored the grouping effectiveness of the CV method in large DNA barcode datasets (COI, 18S and 16S rRNA) from a variety of organisms, including birds, fishes, nematodes and crustac...

  2. DNA barcoding:species delimitation in tree peonies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Delimitations of species are crucial for correct and precise identification of taxa.Unfortunately "spe-cies" is more a subjective than an objective concept in taxonomic practice due to difficulties in revealing patterns of infra-or inter-specific variations.Molecular phylogenetic studies at the population level solve this problem and lay a sound foundation for DNA barcoding.In this paper we exemplify the necessity of adopting a phylogenetic concept of species in DNA barcoding for tree peonies(Paeonia sect.Moutan).We used 40 samples representing all known populations of rare and endangered species and several populations of widely distributed tree peonies.All currently recognized species and major variants have been included in this study.Four chloroplast gene fragments,i.e.ndhF,rps16-trnQ,trnL-F and trnS-G(a total of 5040 characters,96 variable and 69 parsimony-informative characters) and one variable and single-copy nuclear GPAT gene fragment(2093?2197 bp,279 variable and 148 parsi-mony-informative characters) were used to construct phylogenetic relationships among the taxa.The evolutionary lineages revealed by the nuclear gene and the chloroplast genes are inconsistent with the current circumscriptions of P.decomposita,P.jishanensis,P.qiui,and P.rockii based on morphology.The inconsistencies come from(1) significant chloroplast gene divergence but little nuclear GPAT gene divergence among population systems of P.decomposita + P.rockii,and(2) well-diverged nuclear GPAT gene but little chloroplast gene divergence between P.jishanensis and P.qiui.The incongruence of the phylogenies based on the chloroplast genes and the nuclear GPAT gene is probably due to the chloro-plast capture event in evolutionary history,as no reproductive barriers exist to prevent inter-specific hybridization.We also evaluated the suitability of these genes for use as DNA barcodes for tree peonies.The variability of chloroplast genes among well-defined species or population systems of a

  3. Application of DNA barcodes in Hedyotis L.(Spermacoceae, Rubiaceae)

    Institute of Scientific and Technical Information of China (English)

    Xing GUO; Mark P.SIMMONS; paul Pui-Hay BUT; Pang-Chui SHAW; Rui-Jiang WANG

    2011-01-01

    The potential application of DNA barcodes of plastid (matK, trnH-psbA, petD, and rbcL) and nuclear (internal transcribed spacer (ITS) of rDNA) DNA regions was investigated for 25 Hedyotis taxa. The ITS showed the best species discrimination by resolving 23 of the species as exclusive lineages with no shared alleles between any of the 24 distinct species (H. Assimilis and H. Mellii are not supported as distinct species based on our molecular and morphological data). Conversely, rbcL performed the worst and only resolved 10 of the species as exclusive lineages, and 10 species with shared alleles. Using ITS has the advantage of high PCR amplification success and it provides good intra- and interspecific variation distribution patterns. The most powerful plastid markers were petD and trnH-psbA, but we could amplify and sequence trnH-psbA for only 83% of the accessions sampled. Combination of ITS and petD performed extremely well, with all 24 of the distinct species resolved as exclusive lineages and no shared alleles between any of the distinct species. We therefore recommend ITS, or a combination of ITS and petD, as the standard DNA barcode in Hedyotis, but acknowledge that there are no shared alleles between distinct species for marK and rbcL combined.

  4. DNA barcoding for species assignment: the case of Mediterranean marine fishes.

    Directory of Open Access Journals (Sweden)

    Monica Landi

    Full Text Available BACKGROUND: DNA barcoding enhances the prospects for species-level identifications globally using a standardized and authenticated DNA-based approach. Reference libraries comprising validated DNA barcodes (COI constitute robust datasets for testing query sequences, providing considerable utility to identify marine fish and other organisms. Here we test the feasibility of using DNA barcoding to assign species to tissue samples from fish collected in the central Mediterranean Sea, a major contributor to the European marine ichthyofaunal diversity. METHODOLOGY/PRINCIPAL FINDINGS: A dataset of 1278 DNA barcodes, representing 218 marine fish species, was used to test the utility of DNA barcodes to assign species from query sequences. We tested query sequences against 1 a reference library of ranked DNA barcodes from the neighbouring North East Atlantic, and 2 the public databases BOLD and GenBank. In the first case, a reference library comprising DNA barcodes with reliability grades for 146 fish species was used as diagnostic dataset to screen 486 query DNA sequences from fish specimens collected in the central basin of the Mediterranean Sea. Of all query sequences suitable for comparisons 98% were unambiguously confirmed through complete match with reference DNA barcodes. In the second case, it was possible to assign species to 83% (BOLD-IDS and 72% (GenBank of the sequences from the Mediterranean. Relatively high intraspecific genetic distances were found in 7 species (2.2%-18.74%, most of them of high commercial relevance, suggesting possible cryptic species. CONCLUSION/SIGNIFICANCE: We emphasize the discriminatory power of COI barcodes and their application to cases requiring species level resolution starting from query sequences. Results highlight the value of public reference libraries of reliability grade-annotated DNA barcodes, to identify species from different geographical origins. The ability to assign species with high precision from DNA

  5. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil.

    Science.gov (United States)

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha; Peixoto, Alexandre Afranio

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23-19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil.

  6. Imagining Sisyphus happy: DNA barcoding and the unnamed majority.

    Science.gov (United States)

    Blaxter, Mark

    2016-09-01

    The vast majority of life on the Earth is physically small, and is classifiable as micro- or meiobiota. These organisms are numerically dominant and it is likely that they are also abundantly speciose. By contrast, the vast majority of taxonomic effort has been expended on 'charismatic megabionts': larger organisms where a wealth of morphology has facilitated Linnaean species definition. The hugely successful Linnaean project is unlikely to be extensible to the totality of approximately 10 million species in a reasonable time frame and thus alternative toolkits and methodologies need to be developed. One such toolkit is DNA barcoding, particularly in its metabarcoding or metagenetics mode, where organisms are identified purely by the presence of a diagnostic DNA sequence in samples that are not processed for morphological identification. Building on secure Linnaean foundations, classification of unknown (and unseen) organisms to molecular operational taxonomic units (MOTUs) and deployment of these MOTUs in biodiversity science promises a rewarding resolution to the Sisyphean task of naming all the world's species.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481781

  7. DNA Barcode for Identifying Folium Artemisiae Argyi from Counterfeits.

    Science.gov (United States)

    Mei, Quanxi; Chen, Xiaolu; Xiang, Li; Liu, Yue; Su, Yanyan; Gao, Yuqiao; Dai, Weibo; Dong, Pengpeng; Chen, Shilin

    2016-01-01

    Folium Artemisiae Argyi is an important herb in traditional Chinese medicine. It is commonly used in moxibustion, medicine, etc. However, identifying Artemisia argyi is difficult because this herb exhibits similar morphological characteristics to closely related species and counterfeits. To verify the applicability of DNA barcoding, ITS2 and psbA-trnH were used to identify A. argyi from 15 closely related species and counterfeits. Results indicated that total DNA was easily extracted from all the samples and that both ITS2 and psbA-trnH fragments can be easily amplified. ITS2 was a more ideal barcode than psbA-trnH and ITS2+psbA-trnH to identify A. argyi from closely related species and counterfeits on the basis of sequence character, genetic distance, and tree methods. The sequence length was 225 bp for the 56 ITS2 sequences of A. argyi, and no variable site was detected. For the ITS2 sequences, A. capillaris, A. anomala, A. annua, A. igniaria, A. maximowicziana, A. princeps, Dendranthema vestitum, and D. indicum had single nucleotide polymorphisms (SNPs). The intraspecific Kimura 2-Parameter distance was zero, which is lower than the minimum interspecific distance (0.005). A. argyi, the closely related species, and counterfeits, except for Artemisia maximowicziana and Artemisia sieversiana, were separated into pairs of divergent clusters by using the neighbor joining, maximum parsimony, and maximum likelihood tree methods. Thus, the ITS2 sequence was an ideal barcode to identify A. argyi from closely related species and counterfeits to ensure the safe use of this plant. PMID:27582332

  8. Classification of sharks in the Egyptian Mediterranean waters using morphological and DNA barcoding approaches.

    Directory of Open Access Journals (Sweden)

    Marie Moftah

    Full Text Available The identification of species constitutes the first basic step in phylogenetic studies, biodiversity monitoring and conservation. DNA barcoding, i.e. the sequencing of a short standardized region of DNA, has been proposed as a new tool for animal species identification. The present study provides an update on the composition of shark in the Egyptian Mediterranean waters off Alexandria, since the latest study to date was performed 30 years ago, DNA barcoding was used in addition to classical taxonomical methodologies. Thus, 51 specimen were DNA barcoded for a 667 bp region of the mitochondrial COI gene. Although DNA barcoding aims at developing species identification systems, some phylogenetic signals were apparent in the data. In the neighbor-joining tree, 8 major clusters were apparent, each of them containing individuals belonging to the same species, and most with 100% bootstrap value. This study is the first to our knowledge to use DNA barcoding of the mitochondrial COI gene in order to confirm the presence of species Squalus acanthias, Oxynotus centrina, Squatina squatina, Scyliorhinus canicula, Scyliorhinus stellaris, Mustelus mustelus, Mustelus punctulatus and Carcharhinus altimus in the Egyptian Mediterranean waters. Finally, our study is the starting point of a new barcoding database concerning shark composition in the Egyptian Mediterranean waters (Barcoding of Egyptian Mediterranean Sharks [BEMS], http://www.boldsystems.org/views/projectlist.php?&#Barcoding%20Fish%20%28FishBOL%29.

  9. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    OpenAIRE

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple-sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple-sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are u...

  10. DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads.

    Directory of Open Access Journals (Sweden)

    Chodon Sass

    Full Text Available Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation-especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL, and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS, were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants.

  11. DNA barcoding for species Identification in prepared fishery products

    Directory of Open Access Journals (Sweden)

    ANNA MOTTOLA

    2014-06-01

    Full Text Available Considering that seafood mislabeling has been widely reported throughout the world and that the authentication of food components is one of the key issues in food quality, the aim of this study was to use DNA barcoding to investigate the prevalence of mislabeling among fresh prepared fishery products from markets and supermarkets located in Apulia (SE Italy. The study reveals a high occurrence of species mislabeling (42% in the prepared fillet products, further evidence of the need for increased traceability and assessment of the authenticity of food products. Given the increasing demand for transparency in the food industry and the enforcement of proper labeling have provided a driving force for the development of suitable analytical methodologies for species identification. There is therefore a great need to develop fast and reliable methods to identify meat species and to quantify their levels in seafood products, in order to ensure product quality and thus to protect consumers. The study provides further evidence that molecular investigations based on DNA barcoding may be one of the most powerful tools for the assessment of species identity, food traceability, safety and fraud.

  12. DNA barcoding of marine ornamental fishes from India.

    Science.gov (United States)

    Bamaniya, Dhaval C; Pavan-Kumar, A; Gireesh-Babu, P; Sharma, Niti; Reang, Dhalongsaih; Krishna, Gopal; Lakra, W S

    2016-09-01

    India has rich marine ornamental fish diversity with 400 fish species distributed in Gulf of Munnar/Palk Bay, Gulf of Kutch, and in reefs around Andaman & Nicobar and Lakshadweep Islands. Marine ornamental fish identification at the field level is very difficult because of their high diversity and profound changes in appearance during their developmental stages and camouflage. To facilitate ornamental fish trading with ease and in compliance with the biodiversity act, DNA barcoding technique could be used to accurately identify species. In this study, DNA barcodes were generated for 31 species of commercially important marine ornamental fishes from India. The average genetic distance (K2P model) within species, genus, and family was 0.446, 13.08, and 20.09%, respectively. Intraspecific variation has increased several folds (15-20 times) after including conspecific sequences from different geographical locations. The presence of allopatric lineages/cryptic species was observed in the Indo-pacific region. The NJ tree constructed based on K2P values showed distinct clusters shared by congeneric species specific to populations.

  13. DNA barcoding of marine ornamental fishes from India.

    Science.gov (United States)

    Bamaniya, Dhaval C; Pavan-Kumar, A; Gireesh-Babu, P; Sharma, Niti; Reang, Dhalongsaih; Krishna, Gopal; Lakra, W S

    2016-09-01

    India has rich marine ornamental fish diversity with 400 fish species distributed in Gulf of Munnar/Palk Bay, Gulf of Kutch, and in reefs around Andaman & Nicobar and Lakshadweep Islands. Marine ornamental fish identification at the field level is very difficult because of their high diversity and profound changes in appearance during their developmental stages and camouflage. To facilitate ornamental fish trading with ease and in compliance with the biodiversity act, DNA barcoding technique could be used to accurately identify species. In this study, DNA barcodes were generated for 31 species of commercially important marine ornamental fishes from India. The average genetic distance (K2P model) within species, genus, and family was 0.446, 13.08, and 20.09%, respectively. Intraspecific variation has increased several folds (15-20 times) after including conspecific sequences from different geographical locations. The presence of allopatric lineages/cryptic species was observed in the Indo-pacific region. The NJ tree constructed based on K2P values showed distinct clusters shared by congeneric species specific to populations. PMID:25703851

  14. Detection Tuna and Processed Products Based Protein and DNA Barcoding

    Directory of Open Access Journals (Sweden)

    Nuring Wulansari

    2015-11-01

    Full Text Available Tuna is the second largest fishery commodity in Indonesia after the shrimp. Since the high demand and the limited stock of tuna resulted in fraudulent chance. Authentication is required to meassure consumers regarding the accuracy of its labeling and food safety. In this study, the authentication was based on protein and DNA barcoding using cytochrome-b gene (cyt-b of the mitochondrial DNA as the target of gene. Primer of cyt b gene was designed based on the tuna species. This study aimed to identify the authenticity of tuna fresh and its processed products through protein using SDS-PAGE and DNA barcoding techniques. The phases of this research were protein electrophoresis by SDS-PAGE, DNA extraction, PCR amplification, electrophoresis and sequencing. Samples of fresh fish (Tu1, Tu2, Tu3, Tu4, and Tu5 and processed tuna (canned and steak were successfully extracted. Result showed that SDS-PAGE proved the damage of proteins in the processed tuna, so this method was not appropriate if it is used to identify the authenticity of tuna. PCR electrophoresis results showed that the samples of tuna, tuna steak, sushi, meat ball, abon, and caned tuna were successfully amplified in the range of 500-750 bp except Ka3, which was in line with the target of DNA (620 bp. Resulted sequences of Tu2, Tu3, Tu4 and Tu5 were identified according the results of morphometric namely T. albacares, while Tu1 was identified as T. obesus with homology level of 99%. Processed tunas (steak and canned tuna were identified as T. albacares, as stated on the labels.

  15. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species

    Science.gov (United States)

    Chen, Shilin; Yao, Hui; Han, Jianping; Liu, Chang; Song, Jingyuan; Shi, Linchun; Zhu, Yingjie; Ma, Xinye; Gao, Ting; Pang, Xiaohui; Luo, Kun; Li, Ying; Li, Xiwen; Jia, Xiaocheng; Lin, Yulin; Leon, Christine

    2010-01-01

    Background The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Methodology/Principal Findings Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. Conclusions The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa. PMID:20062805

  16. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species.

    Directory of Open Access Journals (Sweden)

    Shilin Chen

    Full Text Available BACKGROUND: The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2 of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. CONCLUSIONS: The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.

  17. Building a DNA barcode reference library for the true butterflies (Lepidoptera of Peninsula Malaysia: what about the subspecies?

    Directory of Open Access Journals (Sweden)

    John-James Wilson

    Full Text Available The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92% and revealed that most subspecies possessed unique DNA barcodes (84%. In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity.

  18. Building a DNA Barcode Reference Library for the True Butterflies (Lepidoptera) of Peninsula Malaysia: What about the Subspecies?

    Science.gov (United States)

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity. PMID:24282514

  19. Enhancing the detection of barcoded reads in high throughput DNA sequencing data by controlling the false discovery rate

    NARCIS (Netherlands)

    Buschmann, Tilo; Zhang, Rong; Brash, Douglas E.; Bystrykh, Leonid V.

    2014-01-01

    Background: DNA barcodes are short unique sequences used to label DNA or RNA-derived samples in multiplexed deep sequencing experiments. During the demultiplexing step, barcodes must be detected and their position identified. In some cases (e. g., with PacBio SMRT), the position of the barcode and D

  20. Efficiency of DNA barcodes for species delimitation: A case in Pterygiella Oliv.(Orobanchaceae)

    Institute of Scientific and Technical Information of China (English)

    Li-Na DONG; Alexandra H. WORTLEY; Hong WANG; De-Zhu LI; Lu LU

    2011-01-01

    DNA barcoding is becoming an increasingly popular means to identify species. The obscure discrimination in the genus Pterygiella calls into question the re-assessment of the criterion for species delimitation. We collected 20 individuals, representing all five described species of this genus in its distributional range. The aim was to use three proposed barcode DNA regions (rbcL, matK, and ITS) to diagnose Pterygiella species, and examine which barcode is more suitable for discerning the congeneric and related species. The results showed that the core barcodes matK and rbcL were comparatively less effective. However, the ITS region, especially ITS-1and ITS-2, successfully identified all species in the genus. Furthermore, the secondary structure of ITS-2 RNA, especially compensatory base changes, appears complementary to classical primary sequence analysis for DNA barcoding.

  1. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species

    OpenAIRE

    Shilin Chen; Hui Yao; Jianping Han; Chang Liu; Jingyuan Song; Linchun Shi; Yingjie Zhu; Xinye Ma; Ting Gao; Xiaohui Pang; Kun Luo; Ying Li; Xiwen Li; Xiaocheng Jia; Yulin Lin

    2010-01-01

    BACKGROUND: The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared seven candidate DNA barcod...

  2. Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species

    OpenAIRE

    Sribash Roy; Antariksh Tyagi; Virendra Shukla; Anil Kumar; Singh, Uma M.; Lal Babu Chaudhary; Bhaskar Datt; Bag, Sumit K.; Singh, Pradhyumna K.; Nair, Narayanan K.; Tariq Husain; Rakesh Tuli

    2010-01-01

    BACKGROUND: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome--ITS...

  3. New universal matK primers for DNA barcoding angiosperms

    Institute of Scientific and Technical Information of China (English)

    Jing YU; Jian-Hua XUE; Shi-Liang ZHOU

    2011-01-01

    The chloroplast maturase K gene (matK) is one of the most variable coding genes of angiosperms and has been suggested to be a "barcode" for land plants. However, matK exhibits low amplification and sequencing rates due to low universality of currently available primers and mononucleotide repeats. To resolve these technical problems, we evaluated the entire matK region to find a region of 600-800 bp that is highly variable, represents the best of all matK regions with priming sites conservative enough to design universal primers, and avoids the mononucleotide repeats. After careful evaluation, a region in the middle was chosen and a pair of primers named natK472F and matK1248R was designed to amplify and sequence the matK fragment of approximately 776 bp. This region encompasses the most variable sites, represents the entire matK region best, and also exhibits high amplification rates and quality of sequences. The universality of this primer pair was tested using 58 species from 47 families of angiosperm plants. The primers showed a strong amplification (93.1%) and sequencing (92.6%)successes in the species tested. We propose that the new primers will solve, in part, the problems encountered when using matK and promote the adoption of matK as a DNA barcode for angiosperms.

  4. DNA barcoding as a tool for coral reef conservation

    Science.gov (United States)

    Neigel, J.; Domingo, A.; Stake, J.

    2007-09-01

    DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5' portion of the mitochondrial gene, cytochrome oxidase subunit I ( COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.

  5. Using DNA barcoding to assess Caribbean reef fish biodiversity: expanding taxonomic and geographic coverage.

    Directory of Open Access Journals (Sweden)

    Lee A Weigt

    Full Text Available This paper represents a DNA barcode data release for 3,400 specimens representing 521 species of fishes from 6 areas across the Caribbean and western central Atlantic regions (FAO Region 31. Merged with our prior published data, the combined efforts result in 3,964 specimens representing 572 species of marine fishes and constitute one of the most comprehensive DNA barcoding "coverages" for a region reported to date. The barcode data are providing new insights into Caribbean shorefish diversity, allowing for more and more accurate DNA-based identifications of larvae, juveniles, and unknown specimens. Examples are given correcting previous work that was erroneous due to database incompleteness.

  6. Genetic identification of two species of Pleuronichthys byDNA barcoding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; ZHANG Yan; GAO Tianxiang; LI Pengfei; XU Hanxiang

    2011-01-01

    DNA barcoding is a new method for biological taxonomy,offering the ability to identify species from fragments in any life-history stage.Pleuronichthys cornutus and P.japonicus are two morphologically similar species.Pleuronichthys japonicus has never been found previously in China.However,in this study,we identified both species using DNA barcoding (cytochrome c oxidase subunit I (COI)),the mtDNA control region and cytochrome b.The results reveal that:1) intraspecific variation in the DNA barcode is much less than interspecific variation; 2) the two morphologically similar species were placed into separate clades distinguishable by high bootstrap values; 3) COI barcodes are more powerful for identifying the two species than the other two mtDNA fragments.

  7. Identification through DNA barcoding of Tabanidae (Diptera) vectors of surra disease in India.

    Science.gov (United States)

    Banerjee, Dhriti; Kumar, Vikas; Maity, Aniruddha; Ghosh, Biswatosh; Tyagi, Kaomud; Singha, Devkant; Kundu, Shantanu; Laskar, Boni Amin; Naskar, Atanu; Rath, Shibananda

    2015-10-01

    Horse flies and deer flies are common names applied to members of the family Tabanidae (Diptera). Tabanid flies are pestiferous and of veterinary and medical importance, with about 244 species in India. They are major vectors of Trypanosoma evansi that causes trypanosomiasis (surra disease). Lack of stable morphological characters, and scarcity of taxonomic expertise, is major impediments for accurate species identification of these important pest and disease vectors. Molecular data, especially DNA barcode data, has been widely used in the identification of Diptera of economic importance. We evaluated the utility of DNA barcode data to discriminate the vectors of surra disease (trypanosomiasis) from India. We used barcode gap and reciprocal monophyly (neighbor-joining and Bayesian tree) criteria to analyze barcode data. A total of 46 specimens belonging to 7 species under four genera in two subfamilies were used for this study. DNA barcode data was not available previously for these species. Analysis revealed that all morphologically identifiable species can be discriminated using DNA barcoding data. Further, our study clearly demonstrated the presence of cryptic species in Chrysops dispar. Moreover, we revealed that closely related species without stable taxonomic distinguishing characters in the "Tabanus striatus species complex" can be discriminated using DNA barcode data. PMID:26126785

  8. ycf1, the most promising plastid DNA barcode of land plants.

    Science.gov (United States)

    Dong, Wenpan; Xu, Chao; Li, Changhao; Sun, Jiahui; Zuo, Yunjuan; Shi, Shuo; Cheng, Tao; Guo, Junjie; Zhou, Shiliang

    2015-01-01

    A DNA barcode is a DNA fragment used to identify species. For land plants, DNA fragments of plastid genome could be the primary consideration. Unfortunately, most of the plastid candidate barcodes lack species-level resolution. The identification of DNA barcodes of high resolution at species level is critical to the success of DNA barcoding in plants. We searched the available plastid genomes for the most variable regions and tested the best candidates using both a large number of tree species and seven well-sampled plant groups. Two regions of the plastid gene ycf1, ycf1a and ycf1b, were the most variable loci that were better than existing plastid candidate barcodes and can serve as a barcode of land plants. Primers were designed for the amplification of these regions, and the PCR success of these primers ranged from 82.80% to 98.17%. Of 420 tree species, 357 species could be distinguished using ycf1b, which was slightly better than the combination of matK and rbcL. For the well-sampled representative plant groups, ycf1b generally performed better than any of the matK, rbcL and trnH-psbA. We concluded that ycf1a or ycf1b is the most variable plastid genome region and can serve as a core barcode of land plants. PMID:25672218

  9. ycf1, the most promising plastid DNA barcode of land plants

    Science.gov (United States)

    Dong, Wenpan; Xu, Chao; Li, Changhao; Sun, Jiahui; Zuo, Yunjuan; Shi, Shuo; Cheng, Tao; Guo, Junjie; Zhou, Shiliang

    2015-01-01

    A DNA barcode is a DNA fragment used to identify species. For land plants, DNA fragments of plastid genome could be the primary consideration. Unfortunately, most of the plastid candidate barcodes lack species-level resolution. The identification of DNA barcodes of high resolution at species level is critical to the success of DNA barcoding in plants. We searched the available plastid genomes for the most variable regions and tested the best candidates using both a large number of tree species and seven well-sampled plant groups. Two regions of the plastid gene ycf1, ycf1a and ycf1b, were the most variable loci that were better than existing plastid candidate barcodes and can serve as a barcode of land plants. Primers were designed for the amplification of these regions, and the PCR success of these primers ranged from 82.80% to 98.17%. Of 420 tree species, 357 species could be distinguished using ycf1b, which was slightly better than the combination of matK and rbcL. For the well-sampled representative plant groups, ycf1b generally performed better than any of the matK, rbcL and trnH-psbA. We concluded that ycf1a or ycf1b is the most variable plastid genome region and can serve as a core barcode of land plants. PMID:25672218

  10. DNA Barcoding of Metazoan Zooplankton Copepods from South Korea

    Science.gov (United States)

    Ryu, Shi Hyun; Kim, Sang Ki; Lee, Jin Hee; Lim, Young Jin; Lee, Jimin; Jun, Jumin; Kwak, Myounghai; Lee, Young-Sup; Hwang, Jae-Sam; Venmathi Maran, Balu Alagar; Chang, Cheon Young; Kim, Il-Hoi; Hwang, Ui Wook

    2016-01-01

    Copepods, small aquatic crustaceans, are the most abundant metazoan zooplankton and outnumber every other group of multicellular animals on earth. In spite of ecological and biological importance in aquatic environment, their morphological plasticity, originated from their various lifestyles and their incomparable capacity to adapt to a variety of environments, has made the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of cryptic or sibling species based on DNA sequence data. We examined sequence variation of a partial mitochondrial cytochrome C oxidase I gene (COI) from 133 copepod individuals collected from the Korean Peninsula, in order to identify and discriminate 94 copepod species covering six copepod orders of Calanoida, Cyclopoida, Harpacticoida, Monstrilloida, Poecilostomatoida and Siphonostomatoida. The results showed that there exists a clear gap with ca. 20 fold difference between the averages of within-specific sequence divergence (2.42%) and that of between-specific sequence divergence (42.79%) in COI, suggesting the plausible utility of this gene in delimitating copepod species. The results showed, with the COI barcoding data among 94 copepod species, that a copepod species could be distinguished from the others very clearly, only with four exceptions as followings: Mesocyclops dissimilis–Mesocyclops pehpeiensis (0.26% K2P distance in percent) and Oithona davisae–Oithona similis (1.1%) in Cyclopoida, Ostrincola japonica–Pseudomyicola spinosus (1.5%) in Poecilostomatoida, and Hatschekia japonica–Caligus quadratus (5.2%) in Siphonostomatoida. Thus, it strongly indicated that COI may be a useful tool in identifying various copepod species and make an initial progress toward the construction of a comprehensive DNA barcode database for copepods inhabiting the Korean Peninsula. PMID:27383475

  11. Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding.

    Science.gov (United States)

    Little, Damon P

    2014-09-01

    Ginkgo biloba L. (known as ginkgo or maidenhair tree) is a phylogenetically isolated, charismatic, gymnosperm tree. Herbal dietary supplements, prepared from G. biloba leaves, are consumed to boost cognitive capacity via improved blood perfusion and mitochondrial function. A novel DNA mini-barcode assay was designed and validated for the authentication of G. biloba in herbal dietary supplements (n = 22; sensitivity = 1.00, 95% CI = 0.59-1.00; specificity = 1.00, 95% CI = 0.64-1.00). This assay was further used to estimate the frequency of mislabeled ginkgo herbal dietary supplements on the market in the United States of America: DNA amenable to PCR could not be extracted from three (7.5%) of the 40 supplements sampled, 31 of 37 (83.8%) assayable supplements contained identifiable G. biloba DNA, and six supplements (16.2%) contained fillers without any detectable G. biloba DNA. It is hoped that this assay will be used by supplement manufacturers to ensure that their supplements contain G. biloba.

  12. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism

    Science.gov (United States)

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-01-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7–14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. PMID:23789612

  13. DNA barcoding of populations of Fallopia multiflora, an indigenous herb in China.

    Science.gov (United States)

    Sun, X Q; Bai, M M; Yao, H; Guo, J L; Li, M M; Hang, Y Y

    2013-01-01

    Fallopia multiflora, locally known as Heshouwu, is one of the most important and widely used Chinese medicinal herbs. However, there is still considerable confusion concerning its different provenances. DNA barcoding is a recent aid to taxonomic identification and uses a short standardized DNA region to discriminate plant species. We assessed the applicability of 4 candidate DNA barcodes (matK, rbcL, psbA-trnH, and ITS2) to identify populations of F. multiflora. To our knowledge, this is the first attempt involving the plant kingdom to apply DNA barcoding at a level lower than species. Four DNA loci (matK, rbcL, psbA-trnH, and ITS2) of 105 samples, including the wild F. multiflora distributed in 17 provinces of China and 4 cultivated F. multiflora lines, were amplified by PCR and sequenced. The 4 loci were evaluated by PCR amplification for sequence quality, extent of genetic divergence, DNA barcoding gap, and the ability to discriminate between populations by BLAST1 and Nearest Distance. We found that psbA-trnH was the best barcode, with significant inter-population variability and best potential for identifying F. multiflora. The combination of loci gave better performance for distinguishing populations than a single locus. We recommend using matK + rbcL + psbA-trnH + ITS2 or psbA-trnH alone for this species. This research demonstrates the utility of DNA barcoding for geoherbalism identifications. PMID:24089097

  14. Potential use of DNA barcodes in regulatory science: applications of the Regulatory Fish Encyclopedia.

    Science.gov (United States)

    Yancy, Haile F; Zemlak, Tyler S; Mason, Jacquline A; Washington, Jewell D; Tenge, Bradley J; Nguyen, Ngoc-Lan T; Barnett, James D; Savary, Warren E; Hill, Walter E; Moore, Michelle M; Fry, Frederick S; Randolph, Spring C; Rogers, Patricia L; Hebert, Paul D N

    2008-01-01

    The use of a DNA-based identification system (DNA barcoding) founded on the mitochondrial gene cytochrome c oxidase subunit I (COI) was investigated for updating the U.S. Food and Drug Administration Regulatory Fish Encyclopedia (RFE; http://www.cfsan.fda.gov/-frf/rfe0.html). The RFE is a compilation of data used to identify fish species. It was compiled to help regulators identify species substitution that could result in potential adverse health consequences or could be a source of economic fraud. For each of many aquatic species commonly sold in the United States, the RFE includes high-resolution photographs of whole fish and their marketed product forms and species-specific biochemical patterns for authenticated fish species. These patterns currently include data from isoelectric focusing studies. In this article, we describe the generation of DNA barcodes for 172 individual authenticated fish representing 72 species from 27 families contained in the RFE. These barcode sequences can be used as an additional identification resource. In a blind study, 60 unknown fish muscle samples were barcoded, and the results were compared with the RFE barcode reference library. All 60 samples were correctly identified to species based on the barcoding data. Our study indicates that DNA barcoding can be a powerful tool for species identification and has broad potential applications.

  15. Prospects and Problems for Identification of Poisonous Plants in China using DNA Barcodes

    Institute of Scientific and Technical Information of China (English)

    XIE Lei; WANG YingWei; GUAN ShanYue; XIE LiJing; LONG Xin; SUN ChengYe

    2014-01-01

    ObjectivePoisonous plants are a deadly threat to public health in China. The traditional clinical diagnosis of the toxic plants isinefficient, fallible, and dependent upon experts. In this study, we tested the performance of DNA barcodes for identification of the most threatening poisonous plants in China. MethodsSeventy-four accessions of 27 toxic plant species in 22 genera and 17 families were sampled andthree DNA barcodes (matK,rbcL, and ITS) were amplified, sequenced and tested.Three methods, Blast,pairwise global alignment (PWG)distance, and Tree-Building were tested for discrimination power. ResultsThe primer universality of all the three markers was high. Except in the case of ITS for Hemerocallisminor, the three barcodes were successfully generated from all the selected species. Among the three methodsapplied, Blast showed the lowest discrimination rate,whereasPWGDistance and Tree-Building methods were equally effective. The ITS barcode showed highest discrimination rates using the PWG Distance and Tree-Building methods. When the barcodes were combined, discrimination rates were increased for the Blast method. ConclusionDNA barcoding technique provides us a fast tool for clinical identification of poisonous plants in China.We suggestmatK,rbcL, ITS used in combination as DNA barcodes for authentication of poisonous plants.

  16. Identification of Fabaceae plants using the DNA barcode matK.

    Science.gov (United States)

    Gao, Ting; Sun, Zhiying; Yao, Hui; Song, Jingyuan; Zhu, Yingjie; Ma, Xinye; Chen, Shilin

    2011-01-01

    In this study, we tested the applicability of the core DNA barcode MATK for identifying species within the Fabaceae family. Based on an evaluation of genetic variation, DNA barcoding gaps, and species discrimination power, MATK is a useful barcode for Fabaceae species. Of 1355 plant samples collected from 1079 species belonging to 409 diverse genera, MATK precisely identified approximately 80 % and 96 % of them at the species and genus levels, respectively. Therefore, our research indicates that the MATK region is a valuable marker for plant species within Fabaceae. PMID:20549596

  17. Assessing DNA Barcoding as a Tool for Species Identification and Data Quality Control

    OpenAIRE

    Yong-Yi Shen; Xiao Chen; Murphy, Robert W.

    2013-01-01

    In recent years, the number of sequences of diverse species submitted to GenBank has grown explosively and not infrequently the data contain errors. This problem is extensively recognized but not for invalid or incorrectly identified species, sample mixed-up, and contamination. DNA barcoding is a powerful tool for identifying and confirming species and one very important application involves forensics. In this study, we use DNA barcoding to detect erroneous sequences in GenBank by evaluating ...

  18. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library

    OpenAIRE

    Kuzmina Maria L; Johnson Karen L; Barron Hannah R; Hebert Paul DN

    2012-01-01

    Abstract Background Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK) and a supplemental ribosomal DNA (ITS2) marker for a well-studied flora near Churchill, ...

  19. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  20. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market.

    Science.gov (United States)

    Mishra, Priyanka; Kumar, Amit; Nagireddy, Akshitha; Mani, Daya N; Shukla, Ashutosh K; Tiwari, Rakesh; Sundaresan, Velusamy

    2016-01-01

    The past couple of decades have witnessed global resurgence of herbal-based health care. As a result, the trade of raw drugs has surged globally. Accurate and fast scientific identification of the plant(s) is the key to success for the herbal drug industry. The conventional approach is to engage an expert taxonomist, who uses a mix of traditional and modern techniques for precise plant identification. However, for bulk identification at industrial scale, the process is protracted and time-consuming. DNA barcoding, on the other hand, offers an alternative and feasible taxonomic tool box for rapid and robust species identification. For the success of DNA barcode, the barcode loci must have sufficient information to differentiate unambiguously between closely related plant species and discover new cryptic species. For herbal plant identification, matK, rbcL, trnH-psbA, ITS, trnL-F, 5S-rRNA and 18S-rRNA have been used as successful DNA barcodes. Emerging advances in DNA barcoding coupled with next-generation sequencing and high-resolution melting curve analysis have paved the way for successful species-level resolution recovered from finished herbal products. Further, development of multilocus strategy and its application has provided new vistas to the DNA barcode-based plant identification for herbal drug industry. For successful and acceptable identification of herbal ingredients and a holistic quality control of the drug, DNA barcoding needs to work harmoniously with other components of the systems biology approach. We suggest that for effectively resolving authentication challenges associated with the herbal market, DNA barcoding must be used in conjunction with metabolomics along with need-based transcriptomics and proteomics. PMID:26079154

  1. 真菌DNA条形码研究进展%Progress of fungal DNA barcode

    Institute of Scientific and Technical Information of China (English)

    张宇; 郭良栋

    2012-01-01

    DNA barcode uses a short gene sequence taken from standardized portions of the genome to identify species. Cytochrome oxidase I (COI), as an animal DNA barcode, has been successfully employed in the species identification. In plants a combination of chloroplast rbcL and matK genes has been accepted as basic DNA barcode. In fungi more genes have being screened and evaluated in all major lineages of fungi by mycologists all over the world. Recently, the internal transcribed spacer (ITS) has been recommended as primary DNA barcode of fungi in the Fourth International Barcode of Life Conference. This review summarized the recent progress of fungal DNA barcode, and pointed out the prospect of DNA barcode in future fungal studies.%DNA条形码(DNA barcode)是通过一段短的标准DNA片段实现物种的快速、准确和标准化鉴定.线粒体细胞色素C氧化酶亚基I (COI)基因作为动物的DNA条形码已广泛应用于物种鉴定中,在植物上已选定叶绿体rbcL和matK基因作为基本的DNA条形码.目前世界各国真菌学家正对不同的真菌类群进行不同基因片段的筛选与评价,并在第四届国际生命条形码大会上正式推荐了ITS作为真菌的首选DNA条形码.对国内外真菌DNA条形码的研究进展进行总结与分析,并展望真菌DNA条形码的应用前景.

  2. Revealing the hyperdiverse mite fauna of subarctic Canada through DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Monica R Young

    Full Text Available Although mites are one of the most abundant and diverse groups of arthropods, they are rarely targeted for detailed biodiversity surveys due to taxonomic constraints. We address this gap through DNA barcoding, evaluating acarine diversity at Churchill, Manitoba, a site on the tundra-taiga transition. Barcode analysis of 6279 specimens revealed nearly 900 presumptive species of mites with high species turnover between substrates and between forested and non-forested sites. Accumulation curves have not reached an asymptote for any of the three mite orders investigated, and estimates suggest that more than 1200 species of Acari occur at this locality. The coupling of DNA barcode results with taxonomic assignments revealed that Trombidiformes compose 49% of the fauna, a larger fraction than expected based on prior studies. This investigation demonstrates the efficacy of DNA barcoding in facilitating biodiversity assessments of hyperdiverse taxa.

  3. Status and prospects of DNA barcoding in medically important parasites and vectors.

    Science.gov (United States)

    Ondrejicka, Danielle A; Locke, Sean A; Morey, Kevin; Borisenko, Alex V; Hanner, Robert H

    2014-12-01

    For over 10 years, DNA barcoding has been used to identify specimens and discern species. Its potential benefits in parasitology were recognized early, but its utility and uptake remain unclear. Here we review studies using DNA barcoding in parasites and vectors affecting humans and find that the technique is accurate (accords with author identifications based on morphology or other markers) in 94-95% of cases, although aspects of DNA barcoding (vouchering, marker implicated) have often been misunderstood. In a newly compiled checklist of parasites, vectors, and hazards, barcodes are available for 43% of all 1403 species and for more than half of 429 species of greater medical importance. This is encouraging coverage that would improve with an active campaign targeting parasites and vectors.

  4. DNA barcoding for identification of 'Candidatus Phytoplasmas' using a fragment of the elongation factor Tu gene.

    Directory of Open Access Journals (Sweden)

    Olga Makarova

    Full Text Available BACKGROUND: Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf gene for phytoplasma identification is reported. METHODOLOGY/PRINCIPAL FINDINGS: We designed a new set of primers and amplified a 420-444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX. Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter-/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification.

  5. Complementing morphological classification of Anguilliform leptocephali with DNA barcoding

    Directory of Open Access Journals (Sweden)

    Alessandra Anibaldi

    2015-10-01

    The highly consistent results obtained revealed a good performance of COI barcoding as a diagnostic method for the identification of these larvae, but the limited number of leptocephali species annotated in the reference databases for barcode (Barcode of Life Data Systems and GenBank allowed to validate only partially the morphological analysis. Moreover two species, Gnathophis mystax and Facciolella sp., showed unexpected outcomes. The data obtained in this work represent the first results of a wider project aimed at the creation of a new barcode database for the assessment of leptocephali diversity in the Mediterranean Sea (Barcoding of the Adriatic Leptocephali [BAL], contributing to the knowledge of these unusual larvae and of their adult forms.

  6. Species delimitation in the green algal genus Codium (Bryopsidales) from Korea using DNA barcoding

    Institute of Scientific and Technical Information of China (English)

    LEE Hyung Woo; KIM Myung Sook

    2015-01-01

    Codium, one of the largest marine green algal genera, is difficult to delimit species boundary accurately based on morphological identification only. DNA barcoding is a powerful tool for discriminating species of seaweeds. The plastid elongation factor TU (tufA) is considered as maker to perform DNA barcoding of green algal species than rbcL gene due to universality and rapid evolution rate. We conducted DNA barcoding application to Codium specimens from the Jeju Island, Korea to overcome the limit of morphological identification and to confirm the species diversity. As a result of applying tufA marker, we newly generated fifty-five tufA barcodes to resolve eight species. TufA marker exhibited 6.1%–21.8% interspecific divergences, wider than the gap of rbcL exon 1, 3.5%–11.5%. Molecular analysis of rbcL exon 1 sequences of Codium revealed eight distinct species like tufA analysis separated in five phylogenetic groups. DNA barcoding of the genus Codium using tufA marker is more helpful to overcome the limit of morphological identification, and this is more potential to reveal cryptic species and to resolve the relationships among subspecies than rbcL analysis alone. The complement of tufA barcoding and rbcL analyses including morphology for the genus Codium in the northwestern Pacific will give much more reliable achievement for discovering species diversity and resolving the phylogenetic relationships.

  7. Applications of Three DNA Barcodes in Assorting Intertidal Red Macroalgal Flora in Qingdao, China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaobo; PANG Shaojun; SHAN Tifeng; LIU Feng

    2013-01-01

    This study is part of the endeavor to construct a comprehensive DNA barcoding database for common seaweeds in China.Identifications of red seaweeds,which have simple morphology and anatomy,are sometimes difficult solely depending on morphological characteristics.In recent years,DNA barcode technique has become a more and more effective tool to help solve some of the taxonomic difficulties.Some DNA markers such as COI (cytochrome oxidase subunit Ⅰ) are proposed as standardized DNA barcodes for all seaweed species.In this study,COI,UPA (universal plastid amplicon,domain V of 23S rRNA),and ITS (nuclear internal transcribed spacer) were employed to analyze common species of intertidal red seaweeds in Qingdao (119.3°-121°E,35.35°-37.09°N).The applicability of using one or a few combined barcodes to identify red seaweed species was tested.The results indicated that COI is a sensitive marker at species level.However,not all the tested species gave PCR amplification products due to lack of the universal primers.The second barcode UPA had effective universal primers but needed to be tested for the effectiveness of resolving closely related species.More than one ITS sequence types were found in some species in this investigation,which might lead to confusion in further analysis.Therefore ITS sequence is not recommended as a universal barcode for seaweeds identification.

  8. Streamlining DNA barcoding protocols: automated DNA extraction and a new cox1 primer in arachnid systematics.

    Directory of Open Access Journals (Sweden)

    Nina Vidergar

    Full Text Available BACKGROUND: DNA barcoding is a popular tool in taxonomic and phylogenetic studies, but for most animal lineages protocols for obtaining the barcoding sequences--mitochondrial cytochrome C oxidase subunit I (cox1 AKA CO1--are not standardized. Our aim was to explore an optimal strategy for arachnids, focusing on the species-richest lineage, spiders by (1 improving an automated DNA extraction protocol, (2 testing the performance of commonly used primer combinations, and (3 developing a new cox1 primer suitable for more efficient alignment and phylogenetic analyses. METHODOLOGY: We used exemplars of 15 species from all major spider clades, processed a range of spider tissues of varying size and quality, optimized genomic DNA extraction using the MagMAX Express magnetic particle processor-an automated high throughput DNA extraction system-and tested cox1 amplification protocols emphasizing the standard barcoding region using ten routinely employed primer pairs. RESULTS: The best results were obtained with the commonly used Folmer primers (LCO1490/HCO2198 that capture the standard barcode region, and with the C1-J-2183/C1-N-2776 primer pair that amplifies its extension. However, C1-J-2183 is designed too close to HCO2198 for well-interpreted, continuous sequence data, and in practice the resulting sequences from the two primer pairs rarely overlap. We therefore designed a new forward primer C1-J-2123 60 base pairs upstream of the C1-J-2183 binding site. The success rate of this new primer (93% matched that of C1-J-2183. CONCLUSIONS: The use of C1-J-2123 allows full, indel-free overlap of sequences obtained with the standard Folmer primers and with C1-J-2123 primer pair. Our preliminary tests suggest that in addition to spiders, C1-J-2123 will also perform in other arachnids and several other invertebrates. We provide optimal PCR protocols for these primer sets, and recommend using them for systematic efforts beyond DNA barcoding.

  9. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish

    Science.gov (United States)

    Sousa, Lara L.; Xavier, Raquel; Costa, Vânia; Humphries, Nicolas E.; Trueman, Clive; Rosa, Rui; Sims, David W.; Queiroz, Nuno

    2016-01-01

    The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions. PMID:27373803

  10. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish.

    Science.gov (United States)

    Sousa, Lara L; Xavier, Raquel; Costa, Vânia; Humphries, Nicolas E; Trueman, Clive; Rosa, Rui; Sims, David W; Queiroz, Nuno

    2016-01-01

    The ocean sunfish (Mola mola) is the world's heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries' bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions. PMID:27373803

  11. With a little help from DNA barcoding: investigating the diversity of Gastropoda from the Portuguese coast.

    Science.gov (United States)

    Borges, Luísa M S; Hollatz, Claudia; Lobo, Jorge; Cunha, Ana M; Vilela, Ana P; Calado, Gonçalo; Coelho, Rita; Costa, Ana C; Ferreira, Maria S G; Costa, Maria H; Costa, Filipe O

    2016-02-15

    The Gastropoda is one of the best studied classes of marine invertebrates. Yet, most species have been delimited based on morphology only. The application of DNA barcodes has shown to be greatly useful to help delimiting species. Therefore, sequences of the cytochrome c oxidase I gene from 108 specimens of 34 morpho-species were used to investigate the molecular diversity within the gastropods from the Portuguese coast. To the above dataset, we added available COI-5P sequences of taxonomically close species, in a total of 58 morpho-species examined. There was a good match between ours and sequences from independent studies, in public repositories. We found 32 concordant (91.4%) out of the 35 Barcode Index Numbers (BINs) generated from our sequences. The application of a ranking system to the barcodes yield over 70% with top taxonomic congruence, while 14.2% of the species barcodes had insufficient data. In the majority of the cases, there was a good concordance between morphological identification and DNA barcodes. Nonetheless, the discordance between morphological and molecular data is a reminder that even the comparatively well-known European marine gastropods can benefit from being probed using the DNA barcode approach. Discordant cases should be reviewed with more integrative studies.

  12. Identification of species within Tetrastigma (Miq.) Planch.(Vitaceae) based on DNA barcoding techniques

    Institute of Scientific and Technical Information of China (English)

    Yuan-Miao FU; Wei-Mei JIANG; Cheng-Xin FU

    2011-01-01

    Many species of Tetrastigma (Miq.) Planch. (Vitaceae) have long been used as medicinal plants in China, and some are endangered due to overexploitation. Although adulterants are often added to traditional Chinese medicines, there is no reliable or practical method for identifying them. In this study, we used four markers (rbcL, matK, trnH-psbA and internal transcribed spacer [ITS]) as DNA barcodes to test their ability to distinguish species of Tetrastigma. The results indicated that the best barcode was ITS, which showed significant inter-specific genetic variability, and thus its potential as a DNA barcode for identifying Tetrastigma. Multiple loci provided a greater ability to distinguish species than single loci. We recommend using the combined rbcL+matK+ITS barcode for the genus. Phylogenetic trees from each barcode were compared. Analyses using the unweighted pair group method with arithmetic mean discriminated an equal or greater percentage of resolvable species than did neighbor joining, maximum likelihood, or maximum parsimony analyses. Additionally, five medicinal species of Tetrastigma, especially T. Hemsleyanum, could be identified precisely using DNA barcoding.

  13. Linking eggs and adults of Argulus spp. using mitochondrial DNA barcodes.

    Science.gov (United States)

    Feroz Khan, K; Sanker, G; Prasanna Kumar, C

    2014-12-10

    Abstract We have created barcode library for common Argulus spp. infecting Carassius auratus, which could also be used to identify premature forms of Argulus spp. even by non-professionals. Infected C. auratus was examined and purchased from ornamental fish-trading centers and the adult life stage of Argulus spp. was identified and DNA barcoded. The eggs of Argulus spp. were collected using bottle implants. The collected eggs are barcoded and precisely identified by matching with the adult sequences. Four species of adult Argulus spp. were identified, namely Argulus japonicus, Argulus indicus, Argulus siamensis, and Argulus foliaceus. Precise identification of egg samples was done by two different analyses, namely (i) BLAST analysis and (ii) phylogenetic clustering of adults and eggs. All egg samples including the control were precisely identified by BLAST analysis and the results are consistent with phylogenetic clustering of adult and egg's DNA barcodes. In order to establish the DNA barcode technology for the identification of all Argulus spp and its premature forms, the development of full-fledged barcode library that includes all species of this genus is very important for the benefit of ornamental fish industries. PMID:25492543

  14. A DNA barcode library for North American Ephemeroptera: progress and prospects.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Webb

    Full Text Available DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3-24.7% (mean: 12.5%, while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species.

  15. DNA barcoding to identify leaf preference of leafcutting bees.

    Science.gov (United States)

    MacIvor, J Scott

    2016-03-01

    Leafcutting bees (Megachile: Megachilidae) cut leaves from various trees, shrubs, wildflowers and grasses to partition and encase brood cells in hollow plant stems, decaying logs or in the ground. The identification of preferred plant species via morphological characters of the leaf fragments is challenging and direct observation of bees cutting leaves from certain plant species are difficult. As such, data are poor on leaf preference of leafcutting bees. In this study, I use DNA barcoding of the rcbL and ITS2 regions to identify and compare leaf preference of three Megachile bee species widespread in Toronto, Canada. Nests were opened and one leaf piece from one cell per nest of the native M. pugnata Say (N=45 leaf pieces), and the introduced M. rotundata Fabricius (N=64) and M. centuncularis (L.) (N=65) were analysed. From 174 individual DNA sequences, 54 plant species were identified. Preference by M. rotundata was most diverse (36 leaf species, H'=3.08, phylogenetic diversity (pd)=2.97), followed by M. centuncularis (23 species, H'=2.38, pd=1.51) then M. pugnata (18 species, H'=1.87, pd=1.22). Cluster analysis revealed significant overlap in leaf choice of M. rotundata and M. centuncularis. There was no significant preference for native leaves, and only M. centuncularis showed preference for leaves of woody plants over perennials. Interestingly, antimicrobial properties were present in all but six plants collected; all these were exotic plants and none were collected by the native bee, M. pugnata. These missing details in interpreting what bees need offers valuable information for conservation by accounting for necessary (and potentially limiting) nesting materials. PMID:27069650

  16. DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China.

    Science.gov (United States)

    Yang, Mingsheng; Zhai, Qing; Yang, Zhaofu; Zhang, Yalin

    2016-07-01

    We investigated the effectiveness of the standard 648 bp mitochondrial COI barcode region in discriminating among Satyrine species from China. A total of 214 COI sequences were obtained from 90 species, including 34 species that have never been barcoded. Analyses of genetic divergence show that the mean interspecific genetic divergence is about 16-fold higher than within species, and little overlap occurs between them. Neighbour-joining (NJ) analyses showed that 48 of the 50 species with two or more individuals, including two cases with deep intraspecific divergence (>3%), are monophyletic. Furthermore, when our sequences are combined with the conspecific sequences sampled from distantly geographic regions, the "barcoding gap" still exists, and all related species are recovered to be monophyletic in NJ analysis. Our study demonstrates that COI barcoding is effective in discriminating among the satyrine species of China, and provides a reference library for their future molecular identification.

  17. DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China.

    Science.gov (United States)

    Yang, Mingsheng; Zhai, Qing; Yang, Zhaofu; Zhang, Yalin

    2016-07-01

    We investigated the effectiveness of the standard 648 bp mitochondrial COI barcode region in discriminating among Satyrine species from China. A total of 214 COI sequences were obtained from 90 species, including 34 species that have never been barcoded. Analyses of genetic divergence show that the mean interspecific genetic divergence is about 16-fold higher than within species, and little overlap occurs between them. Neighbour-joining (NJ) analyses showed that 48 of the 50 species with two or more individuals, including two cases with deep intraspecific divergence (>3%), are monophyletic. Furthermore, when our sequences are combined with the conspecific sequences sampled from distantly geographic regions, the "barcoding gap" still exists, and all related species are recovered to be monophyletic in NJ analysis. Our study demonstrates that COI barcoding is effective in discriminating among the satyrine species of China, and provides a reference library for their future molecular identification. PMID:26017046

  18. Role of DNA barcoding in marine biodiversity assessment and conservation: An update.

    Science.gov (United States)

    Trivedi, Subrata; Aloufi, Abdulhadi A; Ansari, Abid A; Ghosh, Sankar K

    2016-03-01

    More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation. PMID:26980996

  19. A DNA 'barcode blitz': rapid digitization and sequencing of a natural history collection.

    Directory of Open Access Journals (Sweden)

    Paul D N Hebert

    Full Text Available DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity - insects.

  20. A DNABarcode Blitz’: Rapid Digitization and Sequencing of a Natural History Collection

    Science.gov (United States)

    Hebert, Paul D. N.; deWaard, Jeremy R.; Zakharov, Evgeny V.; Prosser, Sean W. J.; Sones, Jayme E.; McKeown, Jaclyn T. A.; Mantle, Beth; La Salle, John

    2013-01-01

    DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera) species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp) were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity – insects. PMID:23874660

  1. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes.

    Directory of Open Access Journals (Sweden)

    Xiaolong Lin

    Full Text Available DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120-242 molecular operational taxonomic units (OTUs depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD, Generalized Mixed Yule Coalescent model (GMYC, Poisson Tree Process (PTP, subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs are used. We suggest that a 4-5% threshold is appropriate to delineate species of Tanytarsus non-biting midges.

  2. A DNA 'barcode blitz': rapid digitization and sequencing of a natural history collection.

    Science.gov (United States)

    Hebert, Paul D N; Dewaard, Jeremy R; Zakharov, Evgeny V; Prosser, Sean W J; Sones, Jayme E; McKeown, Jaclyn T A; Mantle, Beth; La Salle, John

    2013-01-01

    DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera) species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp) were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity - insects.

  3. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae using nuclear rDNA expansion segments and DNA barcodes

    Directory of Open Access Journals (Sweden)

    Raupach Michael J

    2010-09-01

    Full Text Available Abstract Background The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. Results We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97% of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95% of the studied Carabidae. Conclusion Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  4. The role of DNA barcodes in understanding and conservation of mammal diversity in southeast Asia.

    Directory of Open Access Journals (Sweden)

    Charles M Francis

    Full Text Available BACKGROUND: Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning. METHODOLOGY AND PRINCIPAL FINDINGS: DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized. CONCLUSIONS: DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning.

  5. Extent and divergence of heteroplasmy of the DNA barcoding region in Anapodisma miramae (Orthoptera: Acrididae).

    Science.gov (United States)

    Kang, Ah Rang; Kim, Min Jee; Park, In Ah; Kim, Kee Young; Kim, Iksoo

    2016-09-01

    A partial sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene is widely used as a molecular marker for species identification in animals, also termed a DNA barcode. However, the presence of more than one sequence type in a single individual, also known as heteroplasmy, is one of the shortcomings of barcode identification. In this study, we examined the extent and divergence of COI heteroplasmy, including nuclear-encoded mitochondrial pseudogenes (NUMTs), at the genomic-DNA level from 13 insect species including orthopteran Anapodisma miramae, and a long fragment of mitochondrial DNA and cDNA from A. miramae as templates. When multiple numbers of clones originated from genomic DNA were sequenced, heteroplasmy was prevalent in all species and NUMTs were observed in five species. Long fragment DNA (∼13.5 kb) also is a source of heteroplasmic amplification, but the divergent haplotypes and NUMTs obtained from genomic DNA were not detected in A. miramae. On the other hand, cDNA was relatively heteroplasmy-free. Consistently, one dominant haplotype was always obtained from the genomic DNA-origin clones in all species and also from the long fragment- and cDNA-origin clones in the two tested individuals of A. miramae. Furthermore, the dominant haplotype was identical in sequence, regardless of the DNA source in A. miramae. Thus, one possible solution to avoid the barcoding problem in relationship to heteroplasmy could be the acquisition of multiple numbers of barcoding sequences to determine a dominant haplotype that can be assigned as barcoding sequence for a given species. PMID:25835040

  6. DNA barcoding for identification of sand flies (Diptera: Psychodidae) in India.

    Science.gov (United States)

    Kumar, N Pradeep; Srinivasan, R; Jambulingam, P

    2012-05-01

    About 50 species of sand flies have been reported to be prevalent in India. We explored the utility of the DNA barcode approach towards species identification of these medically important insects. A total of 62 specimens belonging to seven morphologically identified species of two genera, Phlebotomus and Sergentomyia, collected from Puducherry Union Territory, Maharashtra and Rajasthan states of India were subjected to the analysis. Neighbor-joining (NJ) analysis of DNA barcode sequences identified the individuals of seven morphological species into eight distinct species, as presented in the designed NJ tree. This methodology delineated morphologically identified species, S. bailyi, into two genetically isolated groups. Also, this study characterizes DNA barcodes of P. argentipes and P. papatasi, the vector species of leishmaniasis in India, for the first time. PMID:22277023

  7. Towards monitoring the sandflies (Diptera: Psychodidae) of Thailand: DNA barcoding the sandflies of Wihan Cave, Uttaradit.

    Science.gov (United States)

    Polseela, Raxsina; Jaturas, Narong; Thanwisai, Aunchalee; Sing, Kong-Wah; Wilson, John-James

    2016-09-01

    Sandflies vary in their distributions and role in pathogen transmission. Attempts to record distributions of sandflies in Thailand have faced difficulties due to their high abundance and diversity. We aim to provide an insight into the diversity of sandflies in Thailand by (i) conducting a literature review, and (ii) DNA barcoding sandflies collected from Wihan Cave where eight morphologically characterized species were recorded. DNA barcodes generated for 193 sandflies fell into 13 distinct species clusters under four genera (Chinius, Idiophlebotomus, Phlebotomus and Sergentomyia). Five of these species could be assigned Linnaean species names unambiguously and two others corresponded to characterized morphospecies. Two species represented a complex under the name Sergentomyia barraudi while the remaining four had not been recognized before in any form. The resulting species checklist and DNA barcode library contribute to a growing set of records for sandflies which is useful for monitoring and vector control. PMID:26370580

  8. DNA barcoding of recently diverged species: relative performance of matching methods.

    Directory of Open Access Journals (Sweden)

    Robin van Velzen

    Full Text Available Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a 'barcode gap' and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based, nearest neighbor and BLAST (similarity-based, and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75% than for older species (∼97% (P<0.00001. Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001. The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2% as well as empirical data (93.1%, indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification.

  9. Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case.

    Directory of Open Access Journals (Sweden)

    Kerstin Hoef-Emden

    Full Text Available A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene. In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC, have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.

  10. DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification?

    Science.gov (United States)

    Raja, Huzefa A; Baker, Timothy R; Little, Jason G; Oberlies, Nicholas H

    2017-01-01

    One challenge in the dietary supplement industry is confirmation of species identity for processed raw materials, i.e. those modified by milling, drying, or extraction, which move through a multilevel supply chain before reaching the finished product. This is particularly difficult for samples containing fungal mycelia, where processing removes morphological characteristics, such that they do not present sufficient variation to differentiate species by traditional techniques. To address this issue, we have demonstrated the utility of DNA barcoding to verify the taxonomic identity of fungi found commonly in the food and dietary supplement industry; such data are critical for protecting consumer health, by assuring both safety and quality. By using DNA barcoding of nuclear ribosomal internal transcribed spacer (ITS) of the rRNA gene with fungal specific ITS primers, ITS barcodes were generated for 33 representative fungal samples, all of which could be used by consumers for food and/or dietary supplement purposes. In the majority of cases, we were able to sequence the ITS region from powdered mycelium samples, grocery store mushrooms, and capsules from commercial dietary supplements. After generating ITS barcodes utilizing standard procedures accepted by the Consortium for the Barcode of Life, we tested their utility by performing a BLAST search against authenticate published ITS sequences in GenBank. In some cases, we also downloaded published, homologous sequences of the ITS region of fungi inspected in this study and examined the phylogenetic relationships of barcoded fungal species in light of modern taxonomic and phylogenetic studies. We anticipate that these data will motivate discussions on DNA barcoding based species identification as applied to the verification/certification of mushroom-containing dietary supplements. PMID:27507489

  11. DNA barcoding of nymphalid butterflies (Nymphalidae: Lepidoptera) from Western Ghats of India.

    Science.gov (United States)

    Gaikwad, S S; Ghate, H V; Ghaskadbi, S S; Patole, M S; Shouche, Y S

    2012-03-01

    We have checked the utility of DNA barcoding for species identification of nymphalid butterflies from Western Ghats of India by using 650 bp sequence of mitochondrial gene cytochrome c oxidase subunit I. Distinct DNA barcoding gap (i.e. difference between intraspecies and interspecies nucleotide divergence), exists between species studied here. When our sequences were compared with the sequences of the conspecifics submitted from different geographic regions, nine cases of deep intraspecies nucleotide divergences were observed. In spite of this, NJ (Neighbour Joining) clustering analysis successfully discriminated all species. Observed cases of deep intraspecies nucleotide divergences certainly warrant further study.

  12. Redescription of arenicolous dipluran Parajapyx pauliani (Diplura, Parajapygidae and DNA barcoding analyses of Parajapyx from China

    Directory of Open Access Journals (Sweden)

    Yun Bu

    2012-09-01

    Full Text Available Littoral dipluran Parajapyx pauliani Pagés, 1959 was redescribed based on the specimens collected in Hainan Island, South China. The littoral habitat was confirmed for the species, as the first report of arenicolous dipluran in China. DNA barcoding fragment was sequenced for five Parajapyx species (18 individuals from China, and this is the first report on DNA barcodes used for dipluran identification. The mean intra- and interspecific divergences are 1.9% and 19.1% respectively. Synonymy of P. paucidentis and P. isabellae was confirmed.

  13. Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China.

    Science.gov (United States)

    Chen, Juan; Zhao, Jietang; Erickson, David L; Xia, Nianhe; Kress, W John

    2015-03-01

    The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear-cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH-psbA and trnL-F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH-psbA (100%), trnL-F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH-psbA and trnL-F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers.

  14. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina.

    Directory of Open Access Journals (Sweden)

    Bryn T M Dentinger

    Full Text Available DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species has not been established. We succeeded in generating 167 partial COI sequences (~450 bp representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30% with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.

  15. DNA barcoding as a complementary tool for conservation and valorisation of forest resources.

    Science.gov (United States)

    Laiou, Angeliki; Mandolini, Luca Aconiti; Piredda, Roberta; Bellarosa, Rosanna; Simeone, Marco Cosimo

    2013-12-30

    Since the pre-historic era, humans have been using forests as a food, drugs and handcraft reservoir. Today, the use of botanical raw material to produce pharmaceuticals, herbal remedies, teas, spirits, cosmetics, sweets, dietary supplements, special industrial compounds and crude materials constitute an important global resource in terms of healthcare and economy. In recent years, DNA barcoding has been suggested as a useful molecular technique to complement traditional taxonomic expertise for fast species identification and biodiversity inventories. In this study, in situ application of DNA barcodes was tested on a selected group of forest tree species with the aim of contributing to the identification, conservation and trade control of these valuable plant resources. The "core barcode" for land plants (rbcL, matK, and trnH-psbA) was tested on 68 tree specimens (24 taxa). Universality of the method, ease of data retrieval and correct species assignment using sequence character states, presence of DNA barcoding gaps and GenBank discrimination assessment were evaluated. The markers showed different prospects of reliable applicability. RbcL and trnH-psbA displayed 100% amplification and sequencing success, while matK did not amplify in some plant groups. The majority of species had a single haplotype. The trnH-psbA region showed the highest genetic variability, but in most cases the high intraspecific sequence divergence revealed the absence of a clear DNA barcoding gap. We also faced an important limitation because the taxonomic coverage of the public reference database is incomplete. Overall, species identification success was 66.7%. This work illustrates current limitations in the applicability of DNA barcoding to taxonomic forest surveys. These difficulties urge for an improvement of technical protocols and an increase of the number of sequences and taxa in public databases. PMID:24453558

  16. Evaluation of four commonly used DNA barcoding Loci for chinese medicinal plants of the family schisandraceae.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA possess higher species-resolving power than the two coding regions (matK and rbcL. The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.

  17. Rapid DNA barcoding analysis of large datasets using the composition vector method

    Science.gov (United States)

    Chu, Ka Hou; Xu, Minli; Li, Chi Pang

    2009-01-01

    Background Sequence alignment is the rate-limiting step in constructing profile trees for DNA barcoding purposes. We recently demonstrated the feasibility of using unaligned rRNA sequences as barcodes based on a composition vector (CV) approach without sequence alignment (Bioinformatics 22:1690). Here, we further explored the grouping effectiveness of the CV method in large DNA barcode datasets (COI, 18S and 16S rRNA) from a variety of organisms, including birds, fishes, nematodes and crustaceans. Results Our results indicate that the grouping of taxa at the genus/species levels based on the CV/NJ approach is invariably consistent with the trees generated by traditional approaches, although in some cases the clustering among higher groups might differ. Furthermore, the CV method is always much faster than the K2P method routinely used in constructing profile trees for DNA barcoding. For instance, the alignment of 754 COI sequences (average length 649 bp) from fishes took more than ten hours to complete, while the whole tree construction process using the CV/NJ method required no more than five minutes on the same computer. Conclusion The CV method performs well in grouping effectiveness of DNA barcode sequences, as compared to K2P analysis of aligned sequences. It was also able to reduce the time required for analysis by over 15-fold, making it a far superior method for analyzing large datasets. We conclude that the CV method is a fast and reliable method for analyzing large datasets for DNA barcoding purposes. PMID:19900304

  18. Establishing a community-wide DNA barcode library as a new tool for arctic research.

    Science.gov (United States)

    Wirta, H; Várkonyi, G; Rasmussen, C; Kaartinen, R; Schmidt, N M; Hebert, P D N; Barták, M; Blagoev, G; Disney, H; Ertl, S; Gjelstrup, P; Gwiazdowicz, D J; Huldén, L; Ilmonen, J; Jakovlev, J; Jaschhof, M; Kahanpää, J; Kankaanpää, T; Krogh, P H; Labbee, R; Lettner, C; Michelsen, V; Nielsen, S A; Nielsen, T R; Paasivirta, L; Pedersen, S; Pohjoismäki, J; Salmela, J; Vilkamaa, P; Väre, H; von Tschirnhaus, M; Roslin, T

    2016-05-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community. PMID:26602739

  19. DNA barcoding of life: a classification of uses according to function and scale after ten years of development

    Directory of Open Access Journals (Sweden)

    Nancai Pei

    2013-09-01

    Full Text Available DNA barcoding technology provides molecular information, standard dataset platforms, and universal technical regulations for modern biological research. We briefly review the history of DNA barcoding between 2003 and 2012, and classify DNA barcoding into three types of biological function: basic function (e.g., storing data, and identifying species, extending function (e.g., building phylogenies, serving specific subjects, and compiling biological atlas and potential function (e.g., revealing cryptic species. We sort DNA barcoding studies at three levels: clade scale (e.g., familial and/or generic taxa, community scale (e.g., biotic communities in nature reserves and permanent forest dynamics plots, and regional scale (e.g., biodiversity hotpots. We further list ten major research programs proposed by the International Barcode of Life, which are related to DNA barcoding approaches from the prospective of systematics and taxonomy, biodiversity conservation, evolutionary ecology and phylogenetics, and the construction of digital platforms. We appreciate the huge capability of barcoding technology in the field of biological sciences, and also realize the challenges of DNA barcoding utilizations in multidisciplinary studies and the essential to add more tests before the large-scale applications.

  20. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    Science.gov (United States)

    Schoch, Conrad L.; Seifert, Keith A.; Huhndorf, Sabine; Robert, Vincent; Spouge, John L.; Levesque, C. André; Chen, Wen; Bolchacova, Elena; Voigt, Kerstin; Crous, Pedro W.; Miller, Andrew N.; Wingfield, Michael J.; Aime, M. Catherine; An, Kwang-Deuk; Bai, Feng-Yan; Barreto, Robert W.; Begerow, Dominik; Bergeron, Marie-Josée; Blackwell, Meredith; Boekhout, Teun; Bogale, Mesfin; Boonyuen, Nattawut; Burgaz, Ana R.; Buyck, Bart; Cai, Lei; Cai, Qing; Cardinali, G.; Chaverri, Priscila; Coppins, Brian J.; Crespo, Ana; Cubas, Paloma; Cummings, Craig; Damm, Ulrike; de Beer, Z. Wilhelm; de Hoog, G. Sybren; Del-Prado, Ruth; Dentinger, Bryn; Diéguez-Uribeondo, Javier; Divakar, Pradeep K.; Douglas, Brian; Dueñas, Margarita; Duong, Tuan A.; Eberhardt, Ursula; Edwards, Joan E.; Elshahed, Mostafa S.; Fliegerova, Katerina; Furtado, Manohar; García, Miguel A.; Ge, Zai-Wei; Griffith, Gareth W.; Griffiths, K.; Groenewald, Johannes Z.; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Guo, Liang-Dong; Hagen, Ferry; Hambleton, Sarah; Hamelin, Richard C.; Hansen, Karen; Harrold, Paul; Heller, Gregory; Herrera, Cesar; Hirayama, Kazuyuki; Hirooka, Yuuri; Ho, Hsiao-Man; Hoffmann, Kerstin; Hofstetter, Valérie; Högnabba, Filip; Hollingsworth, Peter M.; Hong, Seung-Beom; Hosaka, Kentaro; Houbraken, Jos; Hughes, Karen; Huhtinen, Seppo; Hyde, Kevin D.; James, Timothy; Johnson, Eric M.; Johnson, Joan E.; Johnston, Peter R.; Jones, E.B. Gareth; Kelly, Laura J.; Kirk, Paul M.; Knapp, Dániel G.; Kõljalg, Urmas; Kovács, Gábor M.; Kurtzman, Cletus P.; Landvik, Sara; Leavitt, Steven D.; Liggenstoffer, Audra S.; Liimatainen, Kare; Lombard, Lorenzo; Luangsa-ard, J. Jennifer; Lumbsch, H. Thorsten; Maganti, Harinad; Maharachchikumbura, Sajeewa S. N.; Martin, María P.; May, Tom W.; McTaggart, Alistair R.; Methven, Andrew S.; Meyer, Wieland; Moncalvo, Jean-Marc; Mongkolsamrit, Suchada; Nagy, László G.; Nilsson, R. Henrik; Niskanen, Tuula; Nyilasi, Ildikó; Okada, Gen; Okane, Izumi; Olariaga, Ibai; Otte, Jürgen; Papp, Tamás; Park, Duckchul; Petkovits, Tamás; Pino-Bodas, Raquel; Quaedvlieg, William; Raja, Huzefa A.; Redecker, Dirk; Rintoul, Tara L.; Ruibal, Constantino; Sarmiento-Ramírez, Jullie M.; Schmitt, Imke; Schüßler, Arthur; Shearer, Carol; Sotome, Kozue; Stefani, Franck O.P.; Stenroos, Soili; Stielow, Benjamin; Stockinger, Herbert; Suetrong, Satinee; Suh, Sung-Oui; Sung, Gi-Ho; Suzuki, Motofumi; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M. Teresa; Tretter, Eric; Untereiner, Wendy A.; Urbina, Hector; Vágvölgyi, Csaba; Vialle, Agathe; Vu, Thuy Duong; Walther, Grit; Wang, Qi-Ming; Wang, Yan; Weir, Bevan S.; Weiß, Michael; White, Merlin M.; Xu, Jianping; Yahr, Rebecca; Yang, Zhu L.; Yurkov, Andrey; Zamora, Juan-Carlos; Zhang, Ning; Zhuang, Wen-Ying; Schindel, David

    2012-01-01

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups. PMID:22454494

  1. Prospects for discriminating Zingiberaceae species in India using DNA barcodes

    Institute of Scientific and Technical Information of China (English)

    Meenakshi Ramaswamy Vinitha; Unnikrishnan Suresh Kumar; Kizhakkethil Aishwarya; Mamiyil Sabu; George Thomas

    2014-01-01

    We evaluated nine plastid (matK, rbcL, rpoC1, rpoB, rpl36-rps8, ndhJ, trnL-F, trnH-psbA, accD) and two nuclear (ITS and ITS2) barcode loci in family Zingiberaceae by analyzing 60 accessions of 20 species belonging to seven genera from India. Bidirectional sequences were recovered for every plastid locus by direct sequencing of polymerase chain reaction (PCR) amplicons in al the accessions tested. However, only 35 (58%) and 40 accessions (66%) yielded ITS and ITS2 sequences, respectively, by direct sequencing. In different bioinformatics analyses, matK and rbcL consistently resolved 15 species (75%) into monophyletic groups and five species into two para-phyletic groups. The 173 ITS sequences, including 138 cloned sequences from 23 accessions, discriminated only 12 species (60%), and the remaining species were entered into three paraphyletic groups. Phylogenetic and genealogic analyses of plastid and ITS sequences imply the possible occurrence of natural hybridizations in the evolutionary past in giving rise to species paraphyly and intragenomic ITS heterogeneity in the species tested. The results support using matK and rbcL loci for barcoding Zingiberaceae members and highlight the poor utility of ITS and the highly regarded ITS2 in barcoding this family, and also caution against proposing ITS loci for barcoding taxa based on limited sampling.

  2. Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding.

    Science.gov (United States)

    Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong

    2011-09-01

    Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis.

  3. Advance in Researches on DNA Barcoding%植物DNA条形码研究进展

    Institute of Scientific and Technical Information of China (English)

    鲁松

    2012-01-01

    DNA barcoding is a new life identification system which can distinguish species rapidly and accurately by analyzing standard short and easy amplying DNA sequences with enough variation.In order to promote the development of domestic studies in plant DNA barcoding and taxonomy,this paper deals with DNA barcoding screening,application,present studying status in China,challenges and future prospects for plant DNA barcoding development.%DNA条形码技术是利用标准的、具有足够变异的、易扩增且相对较短的DNA片段在物种内的特异性和种间的多样性而创建的一种新的生物身份识别系统,从而实现对物种的快速自动鉴定。本文从植物DNA条形码的开发、应用、国内研究现状、植物DNA条形码面临的挑战以及发展前景等进行了综合分析,以期推动我国植物DNA条形码和分类学研究的发展。

  4. Starting a DNA barcode reference library for shallow water polychaetes from the southern European Atlantic coast.

    Science.gov (United States)

    Lobo, Jorge; Teixeira, Marcos A L; Borges, Luisa M S; Ferreira, Maria S G; Hollatz, Claudia; Gomes, Pedro T; Sousa, Ronaldo; Ravara, Ascensão; Costa, Maria H; Costa, Filipe O

    2016-01-01

    Annelid polychaetes have been seldom the focus of dedicated DNA barcoding studies, despite their ecological relevance and often dominance, particularly in soft-bottom estuarine and coastal marine ecosystems. Here, we report the first assessment of the performance of DNA barcodes in the discrimination of shallow water polychaete species from the southern European Atlantic coast, focusing on specimens collected in estuaries and coastal ecosystems of Portugal. We analysed cytochrome oxidase I DNA barcodes (COI-5P) from 164 specimens, which were assigned to 51 morphospecies. To our data set from Portugal, we added available published sequences selected from the same species, genus or family, to inspect for taxonomic congruence among studies and collection location. The final data set comprised 290 specimens and 79 morphospecies, which generated 99 Barcode Index Numbers (BINs) within Barcode of Life Data Systems (BOLD). Among these, 22 BINs were singletons, 47 other BINs were concordant, confirming the initial identification based on morphological characters, and 30 were discordant, most of which consisted on multiple BINs found for the same morphospecies. Some of the most prominent cases in the latter category include Hediste diversicolor (O.F. Müller, 1776) (7), Eulalia viridis (Linnaeus, 1767) (2) and Owenia fusiformis (delle Chiaje, 1844) (5), all of them reported from Portugal and frequently used in ecological studies as environmental quality indicators. Our results for these species showed discordance between molecular lineages and morphospecies, or added additional relatively divergent lineages. The potential inaccuracies in environmental assessments, where underpinning polychaete species diversity is poorly resolved or clarified, demand additional and extensive investigation of the DNA barcode diversity in this group, in parallel with alpha taxonomy efforts. PMID:26129849

  5. Plant DNA barcodes, taxonomic management, and species discovery in tropical forests.

    Science.gov (United States)

    Dick, Christopher W; Webb, Campbell O

    2012-01-01

    DNA barcodes have great potential for species identification and taxonomic discovery in tropical forests. This use of DNA barcodes requires a reference DNA library of known taxa with which to match DNA from unidentified specimens. At an even more basic level, it presupposes that the species in the regional species pool have Latin binomials. This is not the case in species-rich tropical forests in which many species are new to science or members of poorly circumscribed species complexes. This chapter describes a workflow geared toward taxonomic discovery, which includes the discovery of new species, distribution records, and hybrid forms, and to management of taxonomic entities in forest inventory plots. It outlines the roles of laboratory technicians, field workers and herbarium-based taxonomists, and concludes with a discussion of potential multilocus nuclear DNA approaches for identifying species in recently evolved clades.

  6. DNA Barcoding for the Identification of Botanicals in Herbal Medicine and Dietary Supplements: Strengths and Limitations.

    Science.gov (United States)

    Parveen, Iffat; Gafner, Stefan; Techen, Natascha; Murch, Susan J; Khan, Ikhlas A

    2016-09-01

    In the past decades, the use of traditional medicine has increased globally, leading to a booming herbal medicine and dietary supplement industry. The increased popularity of herbal products has led to a rise in demand for botanical raw materials. Accurate identification of medicinal herbs is a legal requirement in most countries and prerequisite for delivering a quality product that meets consumer expectations. Traditional identification methods include botanical taxonomy, macroscopic and microscopic examination, and chemical methods. Advances in the identification of biological species using DNA-based techniques have led to the development of a DNA marker-based platform for authentication of plant materials. DNA barcoding, in particular, has been proposed as a means to identify herbal ingredients and to detect adulteration. However, general barcoding techniques using universal primers have been shown to provide mixed results with regard to data accuracy. Further technological advances such as mini-barcodes, digital polymerase chain reaction, and next generation sequencing provide additional tools for the authentication of herbs, and may be successful in identifying processed ingredients used in finished herbal products. This review gives an overview on the strengths and limitations of DNA barcoding techniques for botanical ingredient identification. Based on the available information, we do not recommend the use of universal primers for DNA barcoding of processed plant material as a sole means of species identification, but suggest an approach combining DNA-based methods using genus- or species-specific primers, chemical analysis, and microscopic and macroscopic methods for the successful authentication of botanical ingredients used in the herbal dietary supplement industry.

  7. Establishing a community-wide DNA barcode library as a new tool for arctic research

    DEFF Research Database (Denmark)

    Wirta, H.; Várkonyi, G.; Rasmussen, C.;

    2016-01-01

    -based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1...

  8. Assessing DNA barcoding as a tool for species identification and data quality control.

    Directory of Open Access Journals (Sweden)

    Yong-Yi Shen

    Full Text Available In recent years, the number of sequences of diverse species submitted to GenBank has grown explosively and not infrequently the data contain errors. This problem is extensively recognized but not for invalid or incorrectly identified species, sample mixed-up, and contamination. DNA barcoding is a powerful tool for identifying and confirming species and one very important application involves forensics. In this study, we use DNA barcoding to detect erroneous sequences in GenBank by evaluating deep intraspecific and shallow interspecific divergences to discover possible taxonomic problems and other sources of error. We use the mitochondrial DNA gene encoding cytochrome b (Cytb from turtles to test the utility of barcoding for pinpointing potential errors. This gene is widely used in phylogenetic studies of the speciose group. Intraspecific variation is usually less than 2.0% and in most cases it is less than 1.0%. In comparison, most species differ by more than 10.0% in our dataset. Overlapping intra- and interspecific percentages of variation mainly involve problematic identifications of species and outdated taxonomies. Further, we detect identical problems in Cytb from Insectivora and Chiroptera. Upon applying this strategy to 47,524 mammalian CoxI sequences, we resolve a suite of potentially problematic sequences. Our study reveals that erroneous sequences are not rare in GenBank and that the DNA barcoding can serve to confirm sequencing accuracy and discover problems such as misidentified species, inaccurate taxonomies, contamination, and potential errors in sequencing.

  9. Cryptic diversity revealed by DNA barcoding in Colombian illegally traded bird species.

    Science.gov (United States)

    Mendoza, Ángela María; Torres, María Fernanda; Paz, Andrea; Trujillo-Arias, Natalia; López-Alvarez, Diana; Sierra, Socorro; Forero, Fernando; Gonzalez, Mailyn A

    2016-07-01

    Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the CITES appendices for Colombia, thereby constructing a species identification reference that will help in global efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 samples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families, where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of 47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between morphological and genetic identification for 86-92% of the species analysed, depending on the cluster analysis performed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or different elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This survey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia establishing as a reference for management programs of illegal species trade, and providing major insights of phylogeographic structure that can guide future taxonomic research. PMID:26929271

  10. DNA barcodes of Rosy Tetras and allied species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon basin.

    Science.gov (United States)

    Castro Paz, Francis Paola; Batista, Jacqueline da Silva; Porto, Jorge Ivan Rebelo

    2014-01-01

    DNA barcoding can be an effective tool for fast and accurate species-level identification based on sequencing of the mitochondrial cytochrome c oxidase subunit (COI) gene. The diversity of this fragment can be used to estimate the richness of the respective species. In this study, we explored the use of DNA barcoding in a group of ornamental freshwater fish of the genus Hyphessobrycon. We sequenced the COI from 10 species of Hyphessobrycon belonging to the "Rosy Tetra Clade" collected from the Amazon and Negro River basins and combined our results with published data. The average conspecific and congeneric Kimura 2-parameter distances were 2.3% and 19.3%, respectively. Six of the 10 species were easily distinguishable by DNA barcoding (H. bentosi, H. copelandi, H. eques, H. epicharis, H. pulchrippinis, and H. sweglesi), whereas the remaining species (H. erythrostigma, H. pyrrhonotus, H. rosaceus and H. socolofi) lacked reciprocal monophyly. Although the COI gene was not fully diagnostic, the discovery of distinct evolutionary units in certain Hyphessobrycon species under the same specific epithet as well as haplotype sharing between different species suggest that DNA barcoding is useful for species identification in this speciose genus.

  11. Capacity for DNA-barcode based taxonomy in support of Great Lakes biological monitoring

    Science.gov (United States)

    Enumerating organisms collected via nets and sediment grabs is a mainstay of aquatic ecology. Since morphological taxonomy can require considerable resources and expertise, DNA barcode-based identification of mixed-organism samples offers a valuable tool in support of biological...

  12. Assessment of mangroves from Goa, west coast India using DNA barcode.

    Science.gov (United States)

    Saddhe, Ankush Ashok; Jamdade, Rahul Arvind; Kumar, Kundan

    2016-01-01

    Mangroves are salt-tolerant forest ecosystems of tropical and subtropical intertidal regions. They are among most productive, diverse, biologically important ecosystem and inclined toward threatened system. Identification of mangrove species is of critical importance in conserving and utilizing biodiversity, which apparently hindered by a lack of taxonomic expertise. In recent years, DNA barcoding using plastid markers rbcL and matK has been suggested as an effective method to enrich traditional taxonomic expertise for rapid species identification and biodiversity inventories. In the present study, we performed assessment of available 14 mangrove species of Goa, west coast India based on core DNA barcode markers, rbcL and matK. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in rbcL (97.7 %) and matK (95.5 %) region. The two candidate chloroplast barcoding regions (rbcL, matK) yielded barcode gaps. Our results clearly demonstrated that matK locus assigned highest correct identification rates (72.09 %) based on TaxonDNA Best Match criteria. The concatenated rbcL + matK loci were able to adequately discriminate all mangrove genera and species to some extent except those in Rhizophora, Sonneratia and Avicennia. Our study provides the first endorsement of the species resolution among mangroves using plastid genes with few exceptions. Our future work will be focused on evaluation of other barcode markers to delineate complete resolution of mangrove species and identification of putative hybrids. PMID:27652127

  13. Assessment of mangroves from Goa, west coast India using DNA barcode.

    Science.gov (United States)

    Saddhe, Ankush Ashok; Jamdade, Rahul Arvind; Kumar, Kundan

    2016-01-01

    Mangroves are salt-tolerant forest ecosystems of tropical and subtropical intertidal regions. They are among most productive, diverse, biologically important ecosystem and inclined toward threatened system. Identification of mangrove species is of critical importance in conserving and utilizing biodiversity, which apparently hindered by a lack of taxonomic expertise. In recent years, DNA barcoding using plastid markers rbcL and matK has been suggested as an effective method to enrich traditional taxonomic expertise for rapid species identification and biodiversity inventories. In the present study, we performed assessment of available 14 mangrove species of Goa, west coast India based on core DNA barcode markers, rbcL and matK. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in rbcL (97.7 %) and matK (95.5 %) region. The two candidate chloroplast barcoding regions (rbcL, matK) yielded barcode gaps. Our results clearly demonstrated that matK locus assigned highest correct identification rates (72.09 %) based on TaxonDNA Best Match criteria. The concatenated rbcL + matK loci were able to adequately discriminate all mangrove genera and species to some extent except those in Rhizophora, Sonneratia and Avicennia. Our study provides the first endorsement of the species resolution among mangroves using plastid genes with few exceptions. Our future work will be focused on evaluation of other barcode markers to delineate complete resolution of mangrove species and identification of putative hybrids.

  14. Accelerating plant DNA barcode reference library construction using herbarium specimens: improved experimental techniques.

    Science.gov (United States)

    Xu, Chao; Dong, Wenpan; Shi, Shuo; Cheng, Tao; Li, Changhao; Liu, Yanlei; Wu, Ping; Wu, Hongkun; Gao, Peng; Zhou, Shiliang

    2015-11-01

    A well-covered reference library is crucial for successful identification of species by DNA barcoding. The biggest difficulty in building such a reference library is the lack of materials of organisms. Herbarium collections are potentially an enormous resource of materials. In this study, we demonstrate that it is likely to build such reference libraries using the reconstructed (self-primed PCR amplified) DNA from the herbarium specimens. We used 179 rosaceous specimens to test the effects of DNA reconstruction, 420 randomly sampled specimens to estimate the usable percentage and another 223 specimens of true cherries (Cerasus, Rosaceae) to test the coverage of usable specimens to the species. The barcode rbcLb (the central four-sevenths of rbcL gene) and matK was each amplified in two halves and sequenced on Roche GS 454 FLX+. DNA from the herbarium specimens was typically shorter than 300 bp. DNA reconstruction enabled amplification fragments of 400-500 bp without bringing or inducing any sequence errors. About one-third of specimens in the national herbarium of China (PE) were proven usable after DNA reconstruction. The specimens in PE cover all Chinese true cherry species and 91.5% of vascular species listed in Flora of China. It is very possible to build well-covered reference libraries for DNA barcoding of vascular species in China. As exemplified in this study, DNA reconstruction and DNA-labelled next-generation sequencing can accelerate the construction of local reference libraries. By putting the local reference libraries together, a global library for DNA barcoding becomes closer to reality. PMID:25865498

  15. Accelerating plant DNA barcode reference library construction using herbarium specimens: improved experimental techniques.

    Science.gov (United States)

    Xu, Chao; Dong, Wenpan; Shi, Shuo; Cheng, Tao; Li, Changhao; Liu, Yanlei; Wu, Ping; Wu, Hongkun; Gao, Peng; Zhou, Shiliang

    2015-11-01

    A well-covered reference library is crucial for successful identification of species by DNA barcoding. The biggest difficulty in building such a reference library is the lack of materials of organisms. Herbarium collections are potentially an enormous resource of materials. In this study, we demonstrate that it is likely to build such reference libraries using the reconstructed (self-primed PCR amplified) DNA from the herbarium specimens. We used 179 rosaceous specimens to test the effects of DNA reconstruction, 420 randomly sampled specimens to estimate the usable percentage and another 223 specimens of true cherries (Cerasus, Rosaceae) to test the coverage of usable specimens to the species. The barcode rbcLb (the central four-sevenths of rbcL gene) and matK was each amplified in two halves and sequenced on Roche GS 454 FLX+. DNA from the herbarium specimens was typically shorter than 300 bp. DNA reconstruction enabled amplification fragments of 400-500 bp without bringing or inducing any sequence errors. About one-third of specimens in the national herbarium of China (PE) were proven usable after DNA reconstruction. The specimens in PE cover all Chinese true cherry species and 91.5% of vascular species listed in Flora of China. It is very possible to build well-covered reference libraries for DNA barcoding of vascular species in China. As exemplified in this study, DNA reconstruction and DNA-labelled next-generation sequencing can accelerate the construction of local reference libraries. By putting the local reference libraries together, a global library for DNA barcoding becomes closer to reality.

  16. DNA Barcode Identification of Podocarpaceae—The Second Largest Conifer Family

    Science.gov (United States)

    Little, Damon P.; Knopf, Patrick; Schulz, Christian

    2013-01-01

    We have generated matK, rbcL, and nrITS2 DNA barcodes for 320 specimens representing all 18 extant genera of the conifer family Podocarpaceae. The sample includes 145 of the 198 recognized species. Comparative analyses of sequence quality and species discrimination were conducted on the 159 individuals from which all three markers were recovered (representing 15 genera and 97 species). The vast majority of sequences were of high quality (B30 = 0.596–0.989). Even the lowest quality sequences exceeded the minimum requirements of the BARCODE data standard. In the few instances that low quality sequences were generated, the responsible mechanism could not be discerned. There were no statistically significant differences in the discriminatory power of markers or marker combinations (p = 0.05). The discriminatory power of the barcode markers individually and in combination is low (56.7% of species at maximum). In some instances, species discrimination failed in spite of ostensibly useful variation being present (genotypes were shared among species), but in many cases there was simply an absence of sequence variation. Barcode gaps (maximum intraspecific p–distance > minimum interspecific p–distance) were observed in 50.5% of species when all three markers were considered simultaneously. The presence of a barcode gap was not predictive of discrimination success (p = 0.02) and there was no statistically significant difference in the frequency of barcode gaps among markers (p = 0.05). In addition, there was no correlation between number of individuals sampled per species and the presence of a barcode gap (p = 0.27). PMID:24312258

  17. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae).

    Science.gov (United States)

    Park, D-S; Suh, S-J; Hebert, P D N; Oh, H-W; Hong, K-J

    2011-08-01

    Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

  18. DNA Barcode Analysis of Thrips (Thysanoptera Diversity in Pakistan Reveals Cryptic Species Complexes.

    Directory of Open Access Journals (Sweden)

    Romana Iftikhar

    Full Text Available Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27% at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%. BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci, and one predatory thrips (Aeolothrips intermedius showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  19. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    Science.gov (United States)

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips. PMID:26741134

  20. DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs

    Science.gov (United States)

    Sun, Shao’e; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong; Yu, Ruihai; Dai, Lina; Sun, Yan; Chen, Jun; Liu, Jun; Ni, Lehai; Feng, Yanwei; Yu, Zhenzhen; Zou, Shanmei; Lin, Jiping

    2016-01-01

    This study represents the first comprehensive molecular assessment of northwestern Pacific molluscs. In total, 2801 DNA barcodes belonging to 569 species from China, Japan and Korea were analyzed. An overlap between intra- and interspecific genetic distances was present in 71 species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match (BM), Best Close Match (BCM) and All Species Barcode (ASB) criteria with three threshold values. BM approach returned 89.15% true identifications (95.27% when excluding singletons). The highest success rate of congruent identifications was obtained with BCM at 0.053 threshold. The analysis of our barcode library together with public data resulted in 582 Barcode Index Numbers (BINs), 72.2% of which was found to be concordantly with morphology-based identifications. The discrepancies were divided in two groups: sequences from different species clustered in a single BIN and conspecific sequences divided in one more BINs. In Neighbour-Joining phenogram, 2,320 (83.0%) queries fromed 355 (62.4%) species-specific barcode clusters allowing their successful identification. 33 species showed paraphyletic and haplotype sharing. 62 cases are represented by deeply diverged lineages. This study suggest an increased species diversity in this region, highlighting taxonomic revision and conservation strategy for the cryptic complexes. PMID:27640675

  1. On the "barcode" functionality of the DNA, or The phenomenon of Life in the physical Universe

    CERN Document Server

    Berkovich, S Y

    2001-01-01

    The information contained in the genome is insufficient for the control of organism development. Thus, the whereabouts of actual operational directives and workings of the genome remain obscure. In this work, it is suggested that the genome information plays a role of a "barcode". The DNA structure presents a pseudo-random number(PRN)with classification tags, so organisms are characterized by DNA as library books are characterized by catalogue numbers. Elaboration of the "barcode" interpretation of DNA implicates the infrastructure of the physical Universe as a seat of biological information processing. Thanks to the PRNs provided by DNA, biological objects can share these facilities in the Code Division Multiple Access (CDMA) mode, similarly to cellular phone communications. Figuratively speaking, populations of biological objects in the physical Universe can be seen as a community of users on the Internet with a wireless CDMA connection. The phenomenon of Life as a collective information processing activity...

  2. [DNA barcoding and its utility in commonly-used medicinal snakes].

    Science.gov (United States)

    Huang, Yong; Zhang, Yue-yun; Zhao, Cheng-jian; Xu, Yong-li; Gu, Ying-le; Huang, Wen-qi; Lin, Kui; Li, Li

    2015-03-01

    Identification accuracy of traditional Chinese medicine is crucial for the traditional Chinese medicine research, production and application. DNA barcoding based on the mitochondrial gene coding for cytochrome c oxidase subunit I (COI), are more and more used for identification of traditional Chinese medicine. Using universal barcoding primers to sequence, we discussed the feasibility of DNA barcoding method for identification commonly-used medicinal snakes (a total of 109 samples belonging to 19 species 15 genera 6 families). The phylogenetic trees using Neighbor-joining were constructed. The results indicated that the mean content of G + C(46.5%) was lower than that of A + T (53.5%). As calculated by Kimera-2-parameter model, the mean intraspecies genetic distance of Trimeresurus albolabris, Ptyas dhumnades and Lycodon rufozonatus was greater than 2%. Further phylogenetic relationship results suggested that identification of one sample of T. albolabris was erroneous. The identification of some samples of P. dhumnades was also not correct, namely originally P. korros was identified as P. dhumnades. Factors influence on intraspecific genetic distance difference of L. rufozonatus need to be studied further. Therefore, DNA barcoding for identification of medicinal snakes is feasible, and greatly complements the morphological classification method. It is necessary to further study in identification of traditional Chinese medicine.

  3. Evaluating the efficacy of restoration plantings through DNA barcoding of frugivorous bird diets.

    Science.gov (United States)

    Galimberti, A; Spinelli, S; Bruno, A; Mezzasalma, V; De Mattia, F; Cortis, P; Labra, M

    2016-08-01

    Frugivores are critical components of restoration programs because they are seed dispersers. Thus, knowledge about bird-plant trophic relationships is essential in the evaluation of the efficacy of restoration processes. Traditionally, the diet of frugivores is characterized by microscopically identifying plant residues in droppings, which is time-consuming, requires botanical knowledge, and cannot be used for fragments lacking detectable morphological characteristics (e.g., fragmented seeds and skins). We examined whether DNA barcoding can be used as a universal tool to rapidly characterize the diet of a frugivorous bird, Eurasian blackcap (Sylvia atricapilla). We used the DNA barcoding results to assess restoration efforts and monitor the diversity of potentially dispersed plants in a protected area in northern Italy. We collected 642 Eurasian Blackcap droppings at the restored site during the autumn migration over 3 years. Intact seeds and fragmented plant material were analyzed at 2 plastidial barcode loci (rbcL and trnH-psbA), and the resulting plant identifications were validated by comparison with a reference molecular data set of local flora. At least 17 plant species, including 7 of the 11 newly transplanted taxa, were found. Our results demonstrate the potential for DNA barcoding to be used to monitor the effectiveness of restoration plantings and to obtain information about fruit consumption and dispersal of invasive or unexpected plant species. Such an approach provides valuable information that could be used to study local plant biodiversity and to survey its evolution over time. PMID:26864475

  4. An authenticity survey of herbal medicines from markets in China using DNA barcoding.

    Science.gov (United States)

    Han, Jianping; Pang, Xiaohui; Liao, Baosheng; Yao, Hui; Song, Jingyuan; Chen, Shilin

    2016-01-07

    Adulterant herbal materials are a threat to consumer safety. In this study, we used DNA barcoding to investigate the proportions and varieties of adulterant species in traditional Chinese medicine (TCM) markets. We used a DNA barcode database of TCM (TCMD) that was established by our group to investigate 1436 samples representing 295 medicinal species from 7 primary TCM markets in China. The results indicate that ITS2 barcodes could be generated for most of the samples (87.7%) using a standard protocol. Of the 1260 samples, approximately 4.2% were identified as adulterants. The adulterant focused on medicinal species such as Ginseng Radix et Rhizoma (Renshen), Radix Rubi Parvifolii (Maomeigen), Dalbergiae odoriferae Lignum (Jiangxiang), Acori Tatarinowii Rhizoma (Shichangpu), Inulae Flos (Xuanfuhua), Lonicerae Japonicae Flos (Jinyinhua), Acanthopanacis Cortex (Wujiapi) and Bupleuri Radix (Chaihu). The survey revealed that adulterant species are present in the Chinese market, and these adulterants pose a risk to consumer health. Thus, regulatory measures should be adopted immediately. We suggest that a traceable platform based on DNA barcode sequences be established for TCM market supervision.

  5. Intraspecific inversions pose a challenge for the trnH-psbA plant DNA barcode.

    Directory of Open Access Journals (Sweden)

    Barbara A Whitlock

    Full Text Available BACKGROUND: The chloroplast trnH-psbA spacer region has been proposed as a prime candidate for use in DNA barcoding of plants because of its high substitution rate. However, frequent inversions associated with palindromic sequences within this region have been found in multiple lineages of Angiosperms and may complicate its use as a barcode, especially if they occur within species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluate the implications of intraspecific inversions in the trnH-psbA region for DNA barcoding efforts. We report polymorphic inversions within six species of Gentianaceae, all narrowly circumscribed morphologically: Gentiana algida, Gentiana fremontii, Gentianopsis crinita, Gentianopsis thermalis, Gentianopsis macrantha and Frasera speciosa. We analyze these sequences together with those from 15 other species of Gentianaceae and show that typical simple methods of sequence alignment can lead to misassignment of conspecifics and incorrect assessment of relationships. CONCLUSIONS/SIGNIFICANCE: Frequent inversions in the trnH-psbA region, if not recognized and aligned appropriately, may lead to large overestimates of the number of substitution events separating closely related lineages and to uniting more distantly related taxa that share the same form of the inversion. Thus, alignment of the trnH-psbA spacer region will need careful attention if it is used as a marker for DNA barcoding.

  6. DNA Barcoding of Malagasy Rosewoods: Towards a Molecular Identification of CITES-Listed Dalbergia Species.

    Science.gov (United States)

    Hassold, Sonja; Lowry, Porter P; Bauert, Martin R; Razafintsalama, Annick; Ramamonjisoa, Lolona; Widmer, Alex

    2016-01-01

    Illegal selective logging of tropical timber is of increasing concern worldwide. Madagascar is a biodiversity hotspot and home to some of the world's most sought after tropical timber species. Malagasy rosewoods belong to the genus Dalbergia (Fabaceae), which is highly diverse and has a pantropical distribution, but these timber species are among the most threatened as a consequence of intensive illegal selective logging and deforestation. Reliable identification of Dalbergia species from Madagascar is important for law enforcement but is almost impossible without fertile plant material, which is often unavailable during forest inventories or when attempting to identify logged trees of cut wood. DNA barcoding has been promoted as a promising tool for species identification in such cases. In this study we tested whether DNA barcoding with partial sequences of three plastid markers (matK, rbcL and trnL (UAA)) can distinguish between Dalbergia from Madagascar and from other areas of its distributional range, and whether Malagasy species can be distinguished from one another. Phylogenetic analyses revealed that the Malagasy Dalbergia species studied form two monophyletic groups, each containing two subgroups, only one of which corresponds to a single species. We characterized diagnostic polymorphisms in the three DNA barcoding markers that allow rapid discrimination between Dalbergia from Madagascar and from other areas of its distribution range. Species identification success based on individual barcoding markers or combinations was poor, whereas subgroup identification success was much higher (up to 98%), revealing both the value and limitations of a DNA barcoding approach for the identification of closely related Malagasy rosewoods. PMID:27362258

  7. DNA Barcoding of Malagasy Rosewoods: Towards a Molecular Identification of CITES-Listed Dalbergia Species

    Science.gov (United States)

    Lowry, Porter P.; Bauert, Martin R.; Razafintsalama, Annick; Ramamonjisoa, Lolona; Widmer, Alex

    2016-01-01

    Illegal selective logging of tropical timber is of increasing concern worldwide. Madagascar is a biodiversity hotspot and home to some of the world’s most sought after tropical timber species. Malagasy rosewoods belong to the genus Dalbergia (Fabaceae), which is highly diverse and has a pantropical distribution, but these timber species are among the most threatened as a consequence of intensive illegal selective logging and deforestation. Reliable identification of Dalbergia species from Madagascar is important for law enforcement but is almost impossible without fertile plant material, which is often unavailable during forest inventories or when attempting to identify logged trees of cut wood. DNA barcoding has been promoted as a promising tool for species identification in such cases. In this study we tested whether DNA barcoding with partial sequences of three plastid markers (matK, rbcL and trnL (UAA)) can distinguish between Dalbergia from Madagascar and from other areas of its distributional range, and whether Malagasy species can be distinguished from one another. Phylogenetic analyses revealed that the Malagasy Dalbergia species studied form two monophyletic groups, each containing two subgroups, only one of which corresponds to a single species. We characterized diagnostic polymorphisms in the three DNA barcoding markers that allow rapid discrimination between Dalbergia from Madagascar and from other areas of its distribution range. Species identification success based on individual barcoding markers or combinations was poor, whereas subgroup identification success was much higher (up to 98%), revealing both the value and limitations of a DNA barcoding approach for the identification of closely related Malagasy rosewoods. PMID:27362258

  8. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  9. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    Science.gov (United States)

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  10. 胡椒属植物DNA条形码初步研究%DNA Barcoding in Genus Piper

    Institute of Scientific and Technical Information of China (English)

    郝朝运; 邬华松; 范睿; 杨建峰; 吴刚; 马腾飞; 秦晓威

    2013-01-01

    为筛选胡椒属DNA条形码最佳片段,研究了ITS、rbcL、psbJ-petA和matK基因片段的有效使用性、种内种间变异和barcoding gap,并评估了序列鉴定效率.结果显示:ITS和matK的barcoding gap图相对较好,matK物种水平鉴定成功率高,ITS种间变异较大,而其他2个候选序列不能进行有效鉴定.为此,推荐matK和ITS作为胡椒属植物潜在的DNA条形码序列,并依此探索建立该属的DNA条形码鉴定方法.%In order to screen right DNA regions in Piper,four candidate DNA barcodes with three (rbcL,psbJpetA,matk) from chloroplast genome and one (ITS) from the nuclear genome,were evaluated in view of 35 selftesting accessions and 282 ones from NCBI.Capability of the four candidate DNA barcodes was evaluated by effectiveness,intra-and inter-specific divergence and barcoding gap analysis,and the identification efficiency was also assessed using Neighbour-Joining method.The results showed that ITS and rnatK candidate barcodes had clear barcoding gap.At the same time,matK had high species identification reliability,and ITS had high significant divergence at species level.The other two candidate barcodes had no clear barcoding gap.matK and ITS might be the potential DNA barcoding for the identification of Piper plants,thus making the establishment of new identification methods for this genus possible.

  11. Progress of DNA Barcoding in Algae%藻类DNA条形码研究进展

    Institute of Scientific and Technical Information of China (English)

    崔翠菊; 张立楠; 王娜; 李晓捷; 刘延岭; 江鑫

    2012-01-01

    DNA barcode,又称为DNA条形码,是指利用短的标准DNA序列的核苷酸多样性进行物种的鉴定和快速识别.目前该方法在动物分类研究中应用广泛,其中线粒体的细胞色素c氧化酶亚基1(cytochrome c oxidase subunit 1,COI或cox 1)基因中的约700bp长度的一段被用来作为标准DNA片段.在陆地植物条形码研究中,生命-植物条形码联盟会(Consortium for the Barcode of Life-Plant Working Group,CBOL-Plant Working Group)近期推荐将植物叶绿体中的两个基因片段rbcL+ matK作为初步的陆生植物条形码,此组合能在70%的程度上进行植物物种的鉴别.在海藻的分类研究中,DNA条形码的应用较少,已有的研究主要集中在硅藻、红藻和褐藻,尚没有学者明确提出适合藻类的DNA条形码.总结了能够作为藻类DNA条形码的序列特点、应用流程及分析方法,综述了DNA条形码在藻类中的研究现状和存在的问题,展望了藻类DNA条形码的应用前景.%DNA barcode technology is a method of rapid and accurate species identification and recognition on the utility of the nucleotides diversity of some short and standardized DNA sequences. At present, this method is widely used in the classification of animals, the mitochondria cytochrome oxidase c subunit 1 ( COI or cox 1) gene in 700 bp length is being used as a standard DNA fragment. In Plant barcoding study, Consortium for the Barcode of Life-Plant Working Group (CBOL-Plant Working Group) recently recommended rbcL + matK, two gene fragments in chloroplast genome as preliminary potential candidate for plant barcode, with 70% species discriminatory power. Few application of the DNA barcode is reported in the classification of algae, mainly in the red algae and brown algae. A well-characterized algal locus that meets the barcoding criteria is lacking. The DNA sequence of standard and barcoding application process were reviewed, methods and the advantages were analysied, then

  12. Current Progress of DNA Barcoding%DNA条形码研究进展

    Institute of Scientific and Technical Information of China (English)

    程希婷; 王爱民; 顾志峰; 王嫣; 战欣; 石耀华

    2011-01-01

    DNA barcoding is a new life identification system which can distinguish species rapidly and accurately by analyzing standard short DNA sequences with enough variation. In 2003, the concept of DNA barcoding was formally proposed by Hebert and his colleagues, Canada biologists from University of Guelph. In 2004, Consortium for the Barcode of Life (CBOL) was subsequently constructed. There are more than 200 group members from 50 different countries in CBOL. The first DNA barcode identifying center came into existence in the University of Guelph in May, 2007. In January, 2009, International Barcode of Life (iBOL) was started up. Chinese Academy of Sciences, deputy of China, was one of four subcenter of iBOL, the same as others in Canda, USA and European Union. Mitochondrion cytochrome c oxidase subunit I (CO I ) was ideal DNA barcoding sequence for animal because of its various advantages, such as high primer universality and evolutionary rate. However, CO I was not so good DNA barcoding in plant as in animal. Thus, ribosome Internal Transcribed Spacer (ITS) and plastid rb-cL, matK, trnH-psbA sequences were used as DNA barcoding in plant studying. Although it is on the initial phase for DNA barcoding, facing great challenge, more and more studies showed that DNA barcoding can be widely used in life taxonomy and identification. DNA barcoding, a simple effective accurate species identification method, is now one of the fastest development discipline hot in biological study. Here, in order to promote development of Chinese study in DNA barcoding and taxonomy, we introduced DNA barcoding screening, application,present studying status in China, challenges and future prospects for DNA barcoding development.%DNA条形码是应用有足够变异的标准化短基因片段对物种进行快速、准确鉴定的新的生物身份识别系统.2003年,加拿大Guelph大学Hebert等首次正式提出了DNA条形码概念,2004年成立了生物条形码联盟,目前有来自50个

  13. Current Progress of DNA Barcoding%DNA条形码研究进展

    Institute of Scientific and Technical Information of China (English)

    程希婷; 王爱民; 顾志峰; 王嫣; 战欣; 石耀华

    2011-01-01

    DNA barcoding is a new life identification system which can distinguish species rapidly and accurately by analyzing standard short DNA sequences with enough variation. In 2003, the concept of DNA barcoding was formally proposed by Hebert and his colleagues, Canada biologists from University of Guelph. In 2004, Consortium for the Barcode of Life (CBOL) was subsequently constructed. There are more than 200 group members from 50 different countries in CBOL. The first DNA barcode identifying center came into existence in the University of Guelph in May, 2007. In January, 2009, International Barcode of Life (iBOL) was started up. Chinese Academy of Sciences, deputy of China, was one of four subcenter of iBOL, the same as others in Canda, USA and European Union. Mitochondrion cytochrome c oxidase subunit I (CO I ) was ideal DNA barcoding sequence for animal because of its various advantages, such as high primer universality and evolutionary rate. However, CO I was not so good DNA barcoding in plant as in animal. Thus, ribosome Internal Transcribed Spacer (ITS) and plastid rbcL, matK, trnH-psbA sequences were used as DNA barcoding in plant studying. Although it is on the initial phase for DNA barcoding, facing great challenge, more and more studies showed that DNA barcoding can be widely used in life taxonomy and identification. DNA barcoding, a simple effective accurate species identification method, is now one of the fastest development discipline hot in biological study. Here, in order to promote develonment of Chinese study in DNA barcoding and taxonomy, we introduced DNA barcoding screening, application,present studying status in China, challenges and future prospects for DNA barcoding development.%DNA条形码是应用有足够变异的标准化短基因片段对物种进行快速、准确鉴定的新的生物身份识别系统。2003年,加拿大Guelph大学Hebert等首次正式提出了DNA条形码概念,2004年成立了生物条形

  14. Building a Plant DNA Barcode Reference Library for a Diverse Tropical Flora: An Example from Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Craig M. Costion

    2016-02-01

    Full Text Available A foundation for a DNA barcode reference library for the tropical plants of Australia is presented here. A total of 1572 DNA barcode sequences are compiled from 848 tropical Queensland species. The dataset represents 35% of the total flora of Queensland’s Wet Tropics Bioregion, 57% of its tree species and 28% of the shrub species. For approximately half of the sampled species, we investigated the occurrence of infraspecific molecular variation in DNA barcode loci rbcLa, matK, and the trnH-psbA intergenic spacer region across previously recognized biogeographic barriers. We found preliminary support for the notion that DNA barcode reference libraries can be used as a tool for inferring biogeographic patterns at regional scales. It is expected that this dataset will find applications in taxonomic, ecological, and applied conservation research.

  15. Determining plant-leaf miner-parasitoid interactions: a DNA barcoding approach.

    Directory of Open Access Journals (Sweden)

    Stéphane A P Derocles

    Full Text Available A major challenge in network ecology is to describe the full-range of species interactions in a community to create highly-resolved food-webs. We developed a molecular approach based on DNA full barcoding and mini-barcoding to describe difficult to observe plant-leaf miner-parasitoid interactions, consisting of animals commonly regarded as agricultural pests and their natural enemies. We tested the ability of universal primers to amplify the remaining DNA inside leaf miner mines after the emergence of the insect. We compared the results of a morphological identification of adult specimens; b identification based on the shape of the mines; c the COI Mini-barcode (130 bp and d the COI full barcode (658 bp fragments to accurately identify the leaf-miner species. We used the molecular approach to build and analyse a tri-partite ecological network of plant-leaf miner-parasitoid interactions. We were able to detect the DNA of leaf-mining insects within their feeding mines on a range of host plants using mini-barcoding primers: 6% for the leaves collected empty and 33% success after we observed the emergence of the leaf miner. We suggest that the low amplification success of leaf mines collected empty was mainly due to the time since the adult emerged and discuss methodological improvements. Nevertheless our approach provided new species-interaction data for the ecological network. We found that the 130 bp fragment is variable enough to identify all the species included in this study. Both COI fragments reveal that some leaf miner species could be composed of cryptic species. The network built using the molecular approach was more accurate in describing tri-partite interactions compared with traditional approaches based on morphological criteria.

  16. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians

    Directory of Open Access Journals (Sweden)

    Chiari Ylenia

    2005-03-01

    Full Text Available Abstract Background Identifying species of organisms by short sequences of DNA has been in the center of ongoing discussions under the terms DNA barcoding or DNA taxonomy. A C-terminal fragment of the mitochondrial gene for cytochrome oxidase subunit I (COI has been proposed as universal marker for this purpose among animals. Results Herein we present experimental evidence that the mitochondrial 16S rRNA gene fulfills the requirements for a universal DNA barcoding marker in amphibians. In terms of universality of priming sites and identification of major vertebrate clades the studied 16S fragment is superior to COI. Amplification success was 100% for 16S in a subset of fresh and well-preserved samples of Madagascan frogs, while various combination of COI primers had lower success rates.COI priming sites showed high variability among amphibians both at the level of groups and closely related species, whereas 16S priming sites were highly conserved among vertebrates. Interspecific pairwise 16S divergences in a test group of Madagascan frogs were at a level suitable for assignment of larval stages to species (1–17%, with low degrees of pairwise haplotype divergence within populations (0–1%. Conclusion We strongly advocate the use of 16S rRNA as standard DNA barcoding marker for vertebrates to complement COI, especially if samples a priori could belong to various phylogenetically distant taxa and false negatives would constitute a major problem.

  17. Refining DNA Barcoding Coupled High Resolution Melting for Discrimination of 12 Closely Related Croton Species.

    Science.gov (United States)

    Osathanunkul, Maslin; Suwannapoom, Chatmongkon; Ounjai, Sarawut; Rora, Jantarika A; Madesis, Panagiotis; de Boer, Hugo

    2015-01-01

    DNA barcoding coupled high resolution melting (Bar-HRM) is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Croton (Euphorbiaceae), one of the largest genera of plants with over 1,200 species. Seven primer pairs were evaluated (matK, rbcL1, rbcL2, rbcL3, rpoC, trnL and ITS1) from four plastid regions, matK, rbcL, rpoC, and trnL, and the nuclear ribosomal marker ITS1. The primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL1 primer pair gave the lowest resolution. It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Our Bar-HRM results here also provide further support for the hypothesis that both sequence and base composition affect DNA duplex stability.

  18. Refining DNA Barcoding Coupled High Resolution Melting for Discrimination of 12 Closely Related Croton Species.

    Directory of Open Access Journals (Sweden)

    Maslin Osathanunkul

    Full Text Available DNA barcoding coupled high resolution melting (Bar-HRM is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Croton (Euphorbiaceae, one of the largest genera of plants with over 1,200 species. Seven primer pairs were evaluated (matK, rbcL1, rbcL2, rbcL3, rpoC, trnL and ITS1 from four plastid regions, matK, rbcL, rpoC, and trnL, and the nuclear ribosomal marker ITS1. The primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL1 primer pair gave the lowest resolution. It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Our Bar-HRM results here also provide further support for the hypothesis that both sequence and base composition affect DNA duplex stability.

  19. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2010-10-01

    Full Text Available Abstract Background Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. Results The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. Conclusions ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.

  20. Beyond the Colours: Discovering Hidden Diversity in the Nymphalidae of the Yucatan Peninsula in Mexico through DNA Barcoding

    OpenAIRE

    Prado, Blanca R.; Carmen Pozo; Martha Valdez-Moreno; Hebert, Paul D N

    2011-01-01

    BACKGROUND: Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid cater...

  1. DNA barcoding using skin exuviates can improve identification and biodiversity studies of snakes.

    Science.gov (United States)

    Khedkar, Trupti; Sharma, Rashmi; Tiknaik, Anita; Khedkar, Gulab; Naikwade, Bhagwat S; Ron, Tetsuzan Benny; Haymer, David

    2016-01-01

    Snakes represent a taxonomically underdeveloped group of animals in India with a lack of experts and incomplete taxonomic descriptions being the main deterrents to advances in this area. Molecular taxonomic approaches using DNA barcoding could aid in snake identification as well as studies of biodiversity. Here a non-invasive sampling method using DNA barcoding is tested using skin exuviates. Taxonomically authenticated samples were collected and tested for validation and comparisons to unknown snake exuviate samples. This approach was also used to construct the first comprehensive study targeting the snake species from Maharashtra state in India. A total of 92 skin exuviate samples were collected and tested for this study. Of these, 81 samples were successfully DNA barcoded and compared with unknown samples for assignment of taxonomic identity. Good quality DNA was obtained irrespective of age and quality of the exuviate material, and all unknown samples were successfully identified. A total of 23 species of snakes were identified, six of which were in the list of Endangered species (Red Data Book). Intra- and inter-specific distance values were also calculated, and these were sufficient to allow discrimination among species and between species without ambiguity in most cases. Two samples were suspected to represent cryptic species based on deep K2P divergence values (>3%), and one sample could be identified to the genus level only. Eleven samples failed to amplify COI sequences, suggesting the need for alternative PCR primer pairs. This study clearly documents how snake skin exuviates can be used for DNA barcoding, estimates of diversity and population genetic structuring in a noninvasive manner.

  2. Using DNA barcodes for assessing diversity in the family Hybotidae (Diptera, Empidoidea

    Directory of Open Access Journals (Sweden)

    Zoltan T Nagy

    2013-12-01

    Full Text Available Empidoidea is one of the largest extant lineages of flies, but phylogenetic relationships among species of this group are poorly investigated and global diversity remains scarcely assessed. In this context, one of the most enigmatic empidoid families is Hybotidae. Within the framework of a pilot study, we barcoded 339 specimens of Old World hybotids belonging to 164 species and 22 genera (plus two Empis as outgroups and attempted to evaluate whether patterns of intra- and interspecific divergences match the current taxonomy. We used a large sampling of diverse Hybotidae. The material came from the Palaearctic (Belgium, France, Portugal and Russian Caucasus, the Afrotropic (Democratic Republic of the Congo and the Oriental realms (Singapore and Thailand. Thereby, we optimized lab protocols for barcoding hybotids. Although DNA barcodes generally well distinguished recognized taxa, the study also revealed a number of unexpected phenomena: e.g., undescribed taxa found within morphologically very similar or identical specimens, especially when geographic distance was large; some morphologically distinct species showed no genetic divergence; or different pattern of intraspecific divergence between populations or closely related species. Using COI sequences and simple neighbour-joining tree reconstructions, the monophyly of many species- and genus-level taxa was well supported, but more inclusive taxonomical levels did not receive significant bootstrap support. We conclude that in hybotids DNA barcoding might be well used to identify species, when two main constraints are considered. First, incomplete barcoding libraries hinder efficient (correct identification. Therefore, extra efforts are needed to increase the representation of hybotids in these databases. Second, the spatial scale of sampling has to be taken into account, and especially for widespread species or species complexes with unclear taxonomy, an integrative approach has to be used to

  3. Using DNA barcodes for assessing diversity in the family Hybotidae (Diptera, Empidoidea).

    Science.gov (United States)

    Nagy, Zoltán T; Sonet, Gontran; Mortelmans, Jonas; Vandewynkel, Camille; Grootaert, Patrick

    2013-12-30

    Empidoidea is one of the largest extant lineages of flies, but phylogenetic relationships among species of this group are poorly investigated and global diversity remains scarcely assessed. In this context, one of the most enigmatic empidoid families is Hybotidae. Within the framework of a pilot study, we barcoded 339 specimens of Old World hybotids belonging to 164 species and 22 genera (plus two Empis as outgroups) and attempted to evaluate whether patterns of intra- and interspecific divergences match the current taxonomy. We used a large sampling of diverse Hybotidae. The material came from the Palaearctic (Belgium, France, Portugal and Russian Caucasus), the Afrotropic (Democratic Republic of the Congo) and the Oriental realms (Singapore and Thailand). Thereby, we optimized lab protocols for barcoding hybotids. Although DNA barcodes generally well distinguished recognized taxa, the study also revealed a number of unexpected phenomena: e.g., undescribed taxa found within morphologically very similar or identical specimens, especially when geographic distance was large; some morphologically distinct species showed no genetic divergence; or different pattern of intraspecific divergence between populations or closely related species. Using COI sequences and simple Neighbour-Joining tree reconstructions, the monophyly of many species- and genus-level taxa was well supported, but more inclusive taxonomical levels did not receive significant bootstrap support. We conclude that in hybotids DNA barcoding might be well used to identify species, when two main constraints are considered. First, incomplete barcoding libraries hinder efficient (correct) identification. Therefore, extra efforts are needed to increase the representation of hybotids in these databases. Second, the spatial scale of sampling has to be taken into account, and especially for widespread species or species complexes with unclear taxonomy, an integrative approach has to be used to clarify species

  4. DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae in Colombia.

    Directory of Open Access Journals (Sweden)

    María Angélica Contreras Gutiérrez

    Full Text Available Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia.

  5. DNA barcoding of common soft scales (Hemiptera: Coccoidea: Coccidae) in China.

    Science.gov (United States)

    Wang, X-B; Deng, J; Zhang, J-T; Zhou, Q-S; Zhang, Y-Z; Wu, S-A

    2015-10-01

    The soft scales (Hemiptera: Coccoidea: Coccidae) are a group of sap-sucking plant parasites, many of which are notorious agricultural pests. The quarantine and economic importance of soft scales necessitates rapid and reliable identification of these taxa. Nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene (barcoding region) and 28S rDNA were generated from 340 individuals of 36 common soft scales in China. Distance-based [(best match, Automated Barcode Gap Discovery (ABGD)], tree-based (neighbor-joining, Bayesian inference), Klee diagrams, and general mixed Yule coalescent (GMYC) models were used to evaluate barcoding success rates in the data set. Best match showed that COI and 28S sequences could provide 100 and 95.52% correct identification, respectively. The average interspecific divergences were 19.81% for COI data and 20.38% for 28S data, and mean intraspecific divergences were 0.56 and 0.07%, respectively. For COI data, multiple methods (ABGD, Klee, and tree-based methods) resulted in general congruence with morphological identifications. However, GMYC analysis tended to provide more molecular operational taxonomic units (MOTUs). Twelve MOTUs derived from five morphospecies (Rhodococcus sariuoni, Pulvinaria vitis, Pulvinaria aurantii, Parasaissetia nigra, and Ceroplastes rubens) were observed using the GMYC approach. In addition, tree-based methods showed that 28S sequences could be used for species-level identification (except for Ceroplastes ceriferus - Ceroplastes pseudoceriferus), even with low genetic variation (<1%). This report demonstrates the robustness of DNA barcoding for species discrimination of soft scales with two molecular markers (COI and 28S) and provides a reliable barcode library and rapid diagnostic tool for common soft scales in China.

  6. DNA barcoding of common soft scales (Hemiptera: Coccoidea: Coccidae) in China.

    Science.gov (United States)

    Wang, X-B; Deng, J; Zhang, J-T; Zhou, Q-S; Zhang, Y-Z; Wu, S-A

    2015-10-01

    The soft scales (Hemiptera: Coccoidea: Coccidae) are a group of sap-sucking plant parasites, many of which are notorious agricultural pests. The quarantine and economic importance of soft scales necessitates rapid and reliable identification of these taxa. Nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene (barcoding region) and 28S rDNA were generated from 340 individuals of 36 common soft scales in China. Distance-based [(best match, Automated Barcode Gap Discovery (ABGD)], tree-based (neighbor-joining, Bayesian inference), Klee diagrams, and general mixed Yule coalescent (GMYC) models were used to evaluate barcoding success rates in the data set. Best match showed that COI and 28S sequences could provide 100 and 95.52% correct identification, respectively. The average interspecific divergences were 19.81% for COI data and 20.38% for 28S data, and mean intraspecific divergences were 0.56 and 0.07%, respectively. For COI data, multiple methods (ABGD, Klee, and tree-based methods) resulted in general congruence with morphological identifications. However, GMYC analysis tended to provide more molecular operational taxonomic units (MOTUs). Twelve MOTUs derived from five morphospecies (Rhodococcus sariuoni, Pulvinaria vitis, Pulvinaria aurantii, Parasaissetia nigra, and Ceroplastes rubens) were observed using the GMYC approach. In addition, tree-based methods showed that 28S sequences could be used for species-level identification (except for Ceroplastes ceriferus - Ceroplastes pseudoceriferus), even with low genetic variation (<1%). This report demonstrates the robustness of DNA barcoding for species discrimination of soft scales with two molecular markers (COI and 28S) and provides a reliable barcode library and rapid diagnostic tool for common soft scales in China. PMID:25989705

  7. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market.

    Science.gov (United States)

    Lee, Shiou Yih; Ng, Wei Lun; Mahat, Mohd Noor; Nazre, Mohd; Mohamed, Rozi

    2016-01-01

    The identification of Aquilaria species from their resinous non-wood product, the agarwood, is challenging as conventional techniques alone are unable to ascertain the species origin. Aquilaria is a highly protected species due to the excessive exploitation of its precious agarwood. Here, we applied the DNA barcoding technique to generate barcode sequences for Aquilaria species and later applied the barcodes to identify the source species of agarwood found in the market. We developed a reference DNA barcode library using eight candidate barcode loci (matK, rbcL, rpoB, rpoC1, psbA-trnH, trnL-trnF, ITS, and ITS2) amplified from 24 leaf accessions of seven Aquilaria species obtained from living trees. Our results indicated that all single barcodes can be easily amplified and sequenced with the selected primers. The combination of trnL-trnF+ITS and trnL-trnF+ITS2 yielded the greatest species resolution using the least number of loci combination, while matK+trnL-trnF+ITS showed potential in detecting the geographical origins of Aquilaria species. We propose trnL-trnF+ITS2 as the best candidate barcode for Aquilaria as ITS2 has a shorter sequence length compared to ITS, which eases PCR amplification especially when using degraded DNA samples such as those extracted from processed agarwood products. A blind test conducted on eight agarwood samples in different forms using the proposed barcode combination proved successful in their identification up to the species level. Such potential of DNA barcoding in identifying the source species of agarwood will contribute to the international timber trade control, by providing an effective method for species identification and product authentication.

  8. What do they eat? Using DNA barcoding to assess diet preferences of deer

    DEFF Research Database (Denmark)

    Fløjgaard, Camilla; Ejrnæs, Rasmus

    Humans have modified most ecosystems on Earth to a degree where even the largest “wild” nature reserves need management to avoid the loss of biodiversity. Native large herbivore grazing has potential as an efficient and natural tool in this management because they create dynamics and keep...... landscapes open. However, in order to use this tool properly, we need to know more about what the animals eat compared to what is available in different habitats and how access to supplementary fodder influences the grazing effect on the vegetation. Using DNA barcoding of feces, we are investigating the diet...... preferences of deer (red deer and roe deer) in Klelund Deer Park in Denmark. Over one year, we collect feces samples every month from different habitat types (e.g., heath, marsh, meadow, open forests and coniferous plantation) within the park. DNA barcoding can not only tell us which plants are consumed...

  9. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae

    Directory of Open Access Journals (Sweden)

    Nerea eLarranaga

    2015-07-01

    Full Text Available The DNA barcode initiative aims to establish a universal protocol using short genetic sequences to discriminate among animal and plant species. Although many markers have been proposed to become the barcode of plants, the Consortium for the Barcode of Life (CBOL Plant Working Group recommended using as a core the combination of two portions of plastid coding region, rbcL and matK. In this paper, specific markers based on matK sequences were developed for 7 closely related Annona species of agronomic interest (Annona cherimola, A. reticulata, A. squamosa, A. muricata, A. macroprophyllata, A. glabra and A. purpurea and the discrimination power of both rbcL and matK was tested using also sequences of the genus Annona available in the Barcode of Life Database (BOLD data systems. The specific sequences developed allowed the discrimination among all those species tested. Moreover, the primers generated were validated in six additional species of the genus (A. liebmanniana, A. longiflora, A. montana, A. senegalensis, A. emarginata and A. neosalicifolia and in an interspecific hybrid (A. cherimola x A. squamosa. The development of a fast, reliable and economic approach for species identification in these underutilized subtropical fruit crops in a very initial state of domestication is of great importance in order to optimize genetic resource management.

  10. Barcoding nemo: DNA-based identifications for the ornamental fish trade.

    Directory of Open Access Journals (Sweden)

    Dirk Steinke

    Full Text Available BACKGROUND: Trade in ornamental fishes represents, by far, the largest route for the importation of exotic vertebrates. There is growing pressure to regulate this trade with the goal of ensuring that species are sustainably harvested and that their point of origin is accurately reported. One important element of such regulation involves easy access to specimen identifications, a task that is currently difficult for all but specialists because of the large number of species involved. The present study represents an important first step in making identifications more accessible by assembling a DNA barcode reference sequence library for nearly half of the ornamental fish species imported into North America. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the cytochrome c oxidase subunit I (COI gene from 391 species from 8 coral reef locations revealed that 98% of these species exhibit distinct barcode clusters, allowing their unambiguous identification. Most species showed little intra-specific variation (adjusted mean = 0.21%, but nine species included two or three lineages showing much more divergence (2.19-6.52% and likely represent overlooked species complexes. By contrast, three genera contained a species pair or triad that lacked barcode divergence, cases that may reflect hybridization, young taxa or taxonomic over-splitting. CONCLUSIONS/SIGNIFICANCE: Although incomplete, this barcode library already provides a new species identification tool for the ornamental fish industry, opening a realm of applications linked to collection practices, regulatory control and conservation.

  11. Testing the potential of proposed DNA barcodes for species identification of Zingiberaceae

    Institute of Scientific and Technical Information of China (English)

    Lin- Chun SHI; Yu-Lin LIN; Cai-Xiang XIE; Zhong-Zhi QIAN; Shi-Lin CHEN; Jin ZHANG; Jian-Ping HAN; Jing-Yuan SONG; Hui YAO; Ying-Jie ZHU; Jia-Chun LI; Zhen-Zhong WANG; Wei XIAO

    2011-01-01

    In 2009, the Consortium for the Barcode of Life (CBOL) recommended the combination of rbcL and matK as the plant barcode based on assessments of recoverability, sequencing quality, and levels of species discrimination. Subsequently, based on a study of more than 6600 samples belonging to 193 families from seven phyla, the internal transcribed spacer (ITS) 2 locus was proposed as a universal barcode sequence for all major plant taxa used in traditional herbal medicine. Neither of these two studies was based on a detailed analysis of a particular family. Here, Zingiberaceae plants, including many closely related species, were used to compare the genetic divergence and species identification efficiency of ITS2, rbcL, matK, psbK-psbI, trnH-psbA, and rpoB.The results indicate that ITS2 has the highest interspecific divergence and significant differences between inter- and intraspecific divergence, whereas matK and rbcL have much lower divergence values. Among 260 species belongingto 30 genera in Zingiberaceae, the discrimination ability of the ITS2 locus was 99.5% at the genus level and 73.1% at the species level. Thus, we propose that ITS2 is the preferred DNA barcode sequence for identifying Zingiberaceae plants.

  12. Forensic botany II, DNA barcode for land plants: Which markers after the international agreement?

    Science.gov (United States)

    Ferri, G; Corradini, B; Ferrari, F; Santunione, A L; Palazzoli, F; Alu', M

    2015-03-01

    The ambitious idea of using a short piece of DNA for large-scale species identification (DNA barcoding) is already a powerful tool for scientists and the application of this standard technique seems promising in a range of fields including forensic genetics. While DNA barcoding enjoyed a remarkable success for animal identification through cytochrome c oxidase I (COI) analysis, the attempts to identify a single barcode for plants remained a vain hope for a longtime. From the beginning, the Consortium for the Barcode of Life (CBOL) showed a lack of agreement on a core plant barcode, reflecting the diversity of viewpoints. Different research groups advocated various markers with divergent set of criteria until the recent publication by the CBOL-Plant Working Group. After a four-year effort, in 2009 the International Team concluded to agree on standard markers promoting a multilocus solution (rbcL and matK), with 70-75% of discrimination to the species level. In 2009 our group firstly proposed the broad application of DNA barcoding principles as a tool for identification of trace botanical evidence through the analysis of two chloroplast loci (trnH-psbA and trnL-trnF) in plant species belonging to local flora. Difficulties and drawbacks that were encountered included a poor coverage of species in specific databases and the lack of authenticated reference sequences for the selected markers. Successful preliminary results were obtained providing an approach to progressively identify unknown plant specimens to a given taxonomic rank, usable by any non-specialist botanist or in case of a shortage of taxonomic expertise. Now we considered mandatory to update and to compare our previous findings with the new selected plastid markers (matK+rbcL), taking into account forensic requirements. Features of all the four loci (the two previously analyzed trnH-psbA+trnL-trnF and matK+rbcL) were compared singly and in multilocus solutions to assess the most suitable combination for

  13. A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genus Bembidion Latreille, 1802 and allied taxa.

    Science.gov (United States)

    Raupach, Michael J; Hannig, Karsten; Morinière, Jérome; Hendrich, Lars

    2016-01-01

    As molecular identification method, DNA barcoding based on partial cytochrome c oxidase subunit 1 (COI) sequences has been proven to be a useful tool for species determination in many insect taxa including ground beetles. In this study we tested the effectiveness of DNA barcodes to discriminate species of the ground beetle genus Bembidion and some closely related taxa of Germany. DNA barcodes were obtained from 819 individuals and 78 species, including sequences from previous studies as well as more than 300 new generated DNA barcodes. We found a 1:1 correspondence between BIN and traditionally recognized species for 69 species (89%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for three species pairs, including two species pairs with haplotype sharing (Bembidion atrocaeruleum/Bembidion varicolor and Bembidion guttula/Bembidion mannerheimii). In contrast to this, deep intraspecific sequence divergences with distinct lineages were revealed for two species (Bembidion geniculatum/Ocys harpaloides). Our study emphasizes the use of DNA barcodes for the identification of the analyzed ground beetles species and represents an important step in building-up a comprehensive barcode library for the Carabidae in Germany and Central Europe as well. PMID:27408547

  14. DNA barcoding the Lepidoptera inventory of a large complex tropical conserved wildland, Area de Conservacion Guanacaste, northwestern Costa Rica.

    Science.gov (United States)

    Janzen, Daniel H; Hallwachs, Winnie

    2016-09-01

    The 37-year ongoing inventory of the estimated 15 000 species of Lepidoptera living in the 125 000 terrestrial hectares of Area de Conservacion Guanacaste, northwestern Costa Rica, has DNA barcode documented 11 000+ species, and the simultaneous inventory of at least 6000+ species of wild-caught caterpillars, plus 2700+ species of parasitoids. The inventory began with Victorian methodologies and species-level perceptions, but it was transformed in 2004 by the full application of DNA barcoding for specimen identification and species discovery. This tropical inventory of an extraordinarily species-rich and complex multidimensional trophic web has relied upon the sequencing services provided by the Canadian Centre for DNA Barcoding, and the informatics support from BOLD, the Barcode of Life Data Systems, major tools developed by the Centre for Biodiversity Genomics at the Biodiversity Institute of Ontario, and available to all through couriers and the internet. As biodiversity information flows from these many thousands of undescribed and often look-alike species through their transformations to usable product, we see that DNA barcoding, firmly married to our centuries-old morphology-, ecology-, microgeography-, and behavior-based ways of taxonomizing the wild world, has made possible what was impossible before 2004. We can now work with all the species that we find, as recognizable species-level units of biology. In this essay, we touch on some of the details of the mechanics of actually using DNA barcoding in an inventory.

  15. DNA barcoding the Lepidoptera inventory of a large complex tropical conserved wildland, Area de Conservacion Guanacaste, northwestern Costa Rica.

    Science.gov (United States)

    Janzen, Daniel H; Hallwachs, Winnie

    2016-09-01

    The 37-year ongoing inventory of the estimated 15 000 species of Lepidoptera living in the 125 000 terrestrial hectares of Area de Conservacion Guanacaste, northwestern Costa Rica, has DNA barcode documented 11 000+ species, and the simultaneous inventory of at least 6000+ species of wild-caught caterpillars, plus 2700+ species of parasitoids. The inventory began with Victorian methodologies and species-level perceptions, but it was transformed in 2004 by the full application of DNA barcoding for specimen identification and species discovery. This tropical inventory of an extraordinarily species-rich and complex multidimensional trophic web has relied upon the sequencing services provided by the Canadian Centre for DNA Barcoding, and the informatics support from BOLD, the Barcode of Life Data Systems, major tools developed by the Centre for Biodiversity Genomics at the Biodiversity Institute of Ontario, and available to all through couriers and the internet. As biodiversity information flows from these many thousands of undescribed and often look-alike species through their transformations to usable product, we see that DNA barcoding, firmly married to our centuries-old morphology-, ecology-, microgeography-, and behavior-based ways of taxonomizing the wild world, has made possible what was impossible before 2004. We can now work with all the species that we find, as recognizable species-level units of biology. In this essay, we touch on some of the details of the mechanics of actually using DNA barcoding in an inventory. PMID:27584861

  16. A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genus Bembidion Latreille, 1802 and allied taxa.

    Science.gov (United States)

    Raupach, Michael J; Hannig, Karsten; Morinière, Jérome; Hendrich, Lars

    2016-01-01

    As molecular identification method, DNA barcoding based on partial cytochrome c oxidase subunit 1 (COI) sequences has been proven to be a useful tool for species determination in many insect taxa including ground beetles. In this study we tested the effectiveness of DNA barcodes to discriminate species of the ground beetle genus Bembidion and some closely related taxa of Germany. DNA barcodes were obtained from 819 individuals and 78 species, including sequences from previous studies as well as more than 300 new generated DNA barcodes. We found a 1:1 correspondence between BIN and traditionally recognized species for 69 species (89%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for three species pairs, including two species pairs with haplotype sharing (Bembidion atrocaeruleum/Bembidion varicolor and Bembidion guttula/Bembidion mannerheimii). In contrast to this, deep intraspecific sequence divergences with distinct lineages were revealed for two species (Bembidion geniculatum/Ocys harpaloides). Our study emphasizes the use of DNA barcodes for the identification of the analyzed ground beetles species and represents an important step in building-up a comprehensive barcode library for the Carabidae in Germany and Central Europe as well.

  17. DNA Barcode Libraries Provide Insight into Continental Patterns of Avian Diversification

    OpenAIRE

    Lijtmaer, Darío A; Kevin C R Kerr; Barreira, Ana S.; Hebert, Paul D N; Pablo L Tubaro

    2011-01-01

    BACKGROUND: The causes for the higher biodiversity in the Neotropics as compared to the Nearctic and the factors promoting species diversification in each region have been much debated. The refuge hypothesis posits that high tropical diversity reflects high speciation rates during the Pleistocene, but this conclusion has been challenged. The present study investigates this matter by examining continental patterns of avian diversification through the analysis of large-scale DNA barcode librari...

  18. Taxonomic Identity of the Invasive Fruit Fly Pest, Bactrocera invadens: Concordance in Morphometry and DNA Barcoding

    OpenAIRE

    Khamis, Fathiya M.; Masiga, Daniel K.; Samira A Mohamed; Daisy Salifu; Marc de Meyer; Sunday Ekesi

    2012-01-01

    In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry usi...

  19. High mitochondrial diversity in geographically widespread butterflies of Madagascar: a test of the DNA barcoding approach.

    Science.gov (United States)

    Linares, Marjorie C; Soto-Calderón, Iván D; Lees, David C; Anthony, Nicola M

    2009-03-01

    The standardized use of mitochondrial cytochrome c oxidase subunit I (COI) gene sequences as DNA barcodes has been widely promoted as a high-throughput method for species identification and discovery. Species delimitation has been based on the following criteria: (1) monophyletic association and less frequently (2) a minimum 10x greater divergence between than within species. Divergence estimates, however, can be inflated if sister species pairs are not included and the geographic extent of variation within any given taxon is not sampled comprehensively. This paper addresses both potential biases in DNA divergence estimation by sampling range-wide variation in several morphologically distinct, endemic butterfly species in the genus Heteropsis, some of which are sister taxa. We also explored the extent to which mitochondrial DNA from the barcode region can be used to assess the effects of historical rainforest fragmentation by comparing genetic variation across Heteropsis populations with an unrelated forest-associated taxon Saribia tepahi. Unexpectedly, generalized primers led to the inadvertent amplification of the endosymbiont Wolbachia, undermining the use of universal primers and necessitating the design of genus-specific COI primers alongside a Wolbachia-specific PCR assay. Regardless of the high intra-specific genetic variation observed, most species satisfy DNA barcoding criteria and can be differentiated in the nuclear phylogeny. Nevertheless, two morphologically distinguishable candidate species fail to satisfy the barcoding 10x genetic distance criterion, underlining the difficulties of applying a standard distance threshold to species delimitation. Phylogeographic analysis of COI data suggests that forest fragmentation may have played an important role in the recent evolutionary diversification of these butterflies. Further work on other Malagasy taxa using both mitochondrial and nuclear data will provide better insight into the role of historical

  20. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library

    Directory of Open Access Journals (Sweden)

    Kuzmina Maria L

    2012-11-01

    Full Text Available Abstract Background Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK and a supplemental ribosomal DNA (ITS2 marker for a well-studied flora near Churchill, Manitoba. Results This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years. ITS2 worked equally well for the fresh and herbarium material (89% and 88%. However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples. A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69% was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. Conclusions Our results

  1. DNA Barcoding and Genetic Structure Analysis of Deep-Sea Notacanthiform Fishes

    Directory of Open Access Journals (Sweden)

    David Barros-García

    2015-11-01

    Full Text Available Notacanthiformes Goodrich, 1909 is an order of deep-sea, benthopelagic or benthic fishes distributed from the continental slope to the abyssal plain, at a depth of between 125 and 4,900 m, but mostly occurring at depths of 450-2,500 m. They are characterized by an eel-like body, a snout projecting conspicuously beyond the mouth, large connective tissue nodules inserted between the pterygoid arch and maxilla and pelvic fin webs joined in the ventral midline. Fishes from this order were classified applying DNA barcoding. Cytochrome c oxidase subunit I (COI sequences belonging to new North Atlantic specimens and already deposited BOLD public records were used. The specimens from the two families of the order, Halosauridae (halosaurs and Notacanthidae (spiny eels, formed separated monophyletic clades in neighbor-joining trees and the sequences clustered as coherent species. Nine out of 16 species of Halosauridae and 9 out of 10 species of Notacanthidae were represented including 166 sequences of which 96% were successfully identified. The DNA barcode of the rare species Lipogenys gillii was obtained for the first time ever. The DNA barcode was further tested by exploring the genetic structure and historical demography of four species of notacanthiforms from five sample locations of the North Atlantic and South West Pacific. Neutrality tests, mismatch distribution and haplotype networks analyses pointed to a past bottleneck episode followed by a fast demographic expansion for all the samples. The genetic structure of the abyssal halosaur Halosauropsis macrochir showed no significant differences between the North Atlantic and South West Pacific samples. DNA barcoding was successful in validating field identifications and assigning species names to sequences of notacanthiforms worldwide. These results constitute a first example of high connectivity and gene flow in this group of deep-sea fish species. The historical demography suggests population

  2. Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions

    OpenAIRE

    Rougerie, Rodolphe; Ian J Kitching; Haxaire, Jean; Miller, Scott E.; Hausmann, Axel; Paul D. N. Hebert

    2014-01-01

    Main Objective: We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae). Methods: We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including cons...

  3. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library

    Science.gov (United States)

    2012-01-01

    Background Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK) and a supplemental ribosomal DNA (ITS2) marker for a well-studied flora near Churchill, Manitoba. Results This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years). ITS2 worked equally well for the fresh and herbarium material (89% and 88%). However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples). A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69%) was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. Conclusions Our results provided fast and cost

  4. How Many Loci Does it Take to DNA Barcode a Crocus?

    OpenAIRE

    Ole Seberg; Gitte Petersen

    2009-01-01

    BACKGROUND: DNA barcoding promises to revolutionize the way taxonomists work, facilitating species identification by using small, standardized portions of the genome as substitutes for morphology. The concept has gained considerable momentum in many animal groups, but the higher plant world has been largely recalcitrant to the effort. In plants, efforts are concentrated on various regions of the plastid genome, but no agreement exists as to what kinds of regions are ideal, though most researc...

  5. Taxonomic notes on Phyllocnistis citrella (Lepidoptera: Gracillariidae with genital structures and DNA barcode from Korea

    Directory of Open Access Journals (Sweden)

    Da-Som Kim

    2015-12-01

    Full Text Available Until now, only one species, Phyllocnistis citrella Stainton, of the genus Phyllocnistis belonging to the family Gracillariidae is listed in Korea, without available information on its identification and morphology, which is now a very serious and important insect pest species in southern area. This study was carried out to provide the illustration with genital structure and DNA barcode data for rapid monitoring, which has not been presented in this country to date.

  6. DNA barcode analysis: a comparison of phylogenetic and statistical classification methods.

    OpenAIRE

    Leblois Raphael; Olteanu Madalina; Bleakley Kevin; Schaeffer Brigitte; David Olivier; Austerlitz Frederic; Veuille Michel; Laredo Catherine

    2009-01-01

    Abstract Background DNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphism. In this context, we examine several assignation methods belonging to two main categories: (i) phylogenetic methods (neighbour-joining and PhyML) that attempt to account for the genealo...

  7. Evaluating ethanol-based sample preservation to facilitate use of DNA barcoding in routine freshwater biomonitoring programs using benthic macroinvertebrates.

    Directory of Open Access Journals (Sweden)

    Eric D Stein

    Full Text Available Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI. On average, we obtained successful COI sequences (i.e. either full or partial barcodes for between 93-99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity.

  8. Alignment free characterization of 2D gratings

    CERN Document Server

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  9. DNA barcoding in closely related species: A case study of Primula L.sect.Proliferae Pax (Primulaceae) in China

    Institute of Scientific and Technical Information of China (English)

    Hai-Fei YAN; Gang HAO; Chi-Ming HU; Xue-Jun GE

    2011-01-01

    DNA barcoding is a method of identifying species by analyzing one or a few short standardized DNA sequences. There are particular challenges in barcoding plants, especially for distinguishing closely related species. Hence, there is an urgent need to evaluate the performance of candidate loci for distinguishing between species, especially closely related species, to complement the rbcL + matK combination suggested as the core barcode for land plants. We sampled 48 individuals representing 12 species in Primula sect. Proliferae Pax in China to evaluate the performance of eight leading candidate barcode loci (matK, rbcL, rpoB, rpoCl, trnH-psbA, psbK-psbI, atpFatpH, and internal transcribed spacer (ITS)). The core combination rbcL + matK gave only 50% species resolution in sect. Proliferae. In terms of intraspecies and interspecies divergence, degree of monophyly, and sequence similarity, ITS, trnH-psbA, and psbK-psbI showed good performance as single-locus barcodes. Internal transcribed spacer displayed the highest genetic divergence and best discriminatory power, both alone and in combination with rbcL +matK (83.3% species resolution). We recommend evaluating the use of ITS for barcoding in other species. Low or single copy nuclear regions would provide more sophisticated barcoding tools in the long term, even though further research is required to find suitable loci.

  10. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    Science.gov (United States)

    Tanabe, Akifumi S; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate

  11. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    Directory of Open Access Journals (Sweden)

    Akifumi S Tanabe

    Full Text Available Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need

  12. Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants

    Science.gov (United States)

    Tanabe, Akifumi S.; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used “1-nearest-neighbor” (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to

  13. How many loci does it take to DNA barcode a crocus?

    Directory of Open Access Journals (Sweden)

    Ole Seberg

    Full Text Available BACKGROUND: DNA barcoding promises to revolutionize the way taxonomists work, facilitating species identification by using small, standardized portions of the genome as substitutes for morphology. The concept has gained considerable momentum in many animal groups, but the higher plant world has been largely recalcitrant to the effort. In plants, efforts are concentrated on various regions of the plastid genome, but no agreement exists as to what kinds of regions are ideal, though most researchers agree that more than one region is necessary. One reason for this discrepancy is differences in the tests that are used to evaluate the performance of the proposed regions. Most tests have been made in a floristic setting, where the genetic distance and therefore the level of variation of the regions between taxa is large, or in a limited set of congeneric species. METHODOLOGY AND PRINCIPAL FINDINGS: Here we present the first in-depth coverage of a large taxonomic group, all 86 known species (except two doubtful ones of crocus. Even six average-sized barcode regions do not identify all crocus species. This is currently an unrealistic burden in a barcode context. Whereas most proposed regions work well in a floristic context, the majority will--as is the case in crocus--undoubtedly be less efficient in a taxonomic setting. However, a reasonable but less than perfect level of identification may be reached--even in a taxonomic context. CONCLUSIONS/SIGNIFICANCE: The time is ripe for selecting barcode regions in plants, and for prudent examination of their utility. Thus, there is no reason for the plant community to hold back the barcoding effort by continued search for the Holy Grail. We must acknowledge that an emerging system will be far from perfect, fraught with problems and work best in a floristic setting.

  14. The Use of DNA Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.)

    DEFF Research Database (Denmark)

    Hartvig, Ida; Czako, Mihaly; Kjaer, Erik Dahl;

    2015-01-01

    The genus Dalbergia contains many valuable timber species threatened by illegal logging and deforestation, but knowledge on distributions and threats is often limited and accurate species identification difficult. The aim of this study was to apply DNA barcoding methods to support conservation...... tested whether the markers could be used to solve taxonomic confusion concerning the timber species Dalbergia oliveri, and to identify the CITES-listed Dalbergia cochinchinensis. We also applied the barcoding markers to 14 samples of unknown identity. In general, we found that the barcoding markers...

  15. Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence lengths.

    Science.gov (United States)

    Hernández-Triana, L M; Prosser, S W; Rodríguez-Perez, M A; Chaverri, L G; Hebert, P D N; Gregory, T Ryan

    2014-05-01

    In this study, we evaluated the efficacy of various primers for the purpose of DNA barcoding old, pinned museum specimens of blackflies (Diptera: Simuliidae). We analysed 271 pinned specimens representing two genera and at least 36 species. Due to the age of our material, we targeted overlapping DNA fragments ranging in size from 94 to 407 bp. We were able to recover valid sequences from 215 specimens, of which 18% had 500- to 658-bp barcodes, 36% had 201- to 499-bp barcodes and 46% had 65- to 200-bp barcodes. Our study demonstrates the importance of choosing suitable primers when dealing with older specimens and shows that even very short sequences can be diagnostically informative provided that an appropriate gene region is used. Our study also highlights the lack of knowledge surrounding blackfly taxonomy, and we briefly discuss the need for further phylogenetic studies in this socioeconomically important family of insects.

  16. ADVANCES OF DNA BARCODING%DNA条形码研究进展

    Institute of Scientific and Technical Information of China (English)

    王刚; 董言德; 赵彤言

    2014-01-01

    DNA barcodes technology is a new species identification methods , it is the combination of molecular biology and bioinformatics.In recent years, the technology has become a compelling focus of taxonomy research .In theory, DNA barcodes have been shown to have a very important role in the taxonomic identification, and to promote the development of a series of related disciplines, but different taxonomists hold different views. This paper reviews the origins , the development, operating principles and application of DNA barcode in classification, and outlines the possible problem of DNA barcodes in species classification.%DNA条形码( DNA Barcoding )技术是一种新的物种识别方法,它是分子生物学和生物信息学相结合的产物。在最近几年里,该技术已成为生物分类学中引人注目的研究热点。这一概念认为,类似于商店里使用扫描仪读取条形码,对地球上每一种生物通过快速分析其DNA中的一段基因(线粒体细胞色素c氧化酶Ⅰ亚基, mt COⅠ)加以识别。理论上, DNA条形码已被证明在生物分类鉴定中具有非常重要的作用,并推动了一系列相关学科的发展,但目前不同分类学家对其持的意见也不尽相同。本文综述了DNA条形码技术的产生、发展概况、原理与操作及其在分类中的应用,并概括了DNA条形码在应用于物种分类中可能存在的问题。

  17. Meta-barcoding of 'dirt' DNA from soil reflects vertebrate biodiversity

    DEFF Research Database (Denmark)

    Andersen, Kenneth; Bird, Karen Lise; Rasmussen, Morten;

    2011-01-01

    amplification was successful in the full pH range of the investigated soils (6.2 ± 0.2 to 8.3 ± 0.2), but inhibition was detected in extracts from soil of high organic content. DNA movement (leaching) through strata was evident in some sporadic cases and is influenced by soil texture and structure. We find......DNA molecules originating from animals and plants can be retrieved directly from sediments and have been used for reconstructing both contemporary and past ecosystems. However, the extent to which such 'dirt' DNA reflects taxonomic richness and structural diversity remains contentious. Here, we...... couple second generation high-throughput sequencing with 16S mitochondrial DNA (mtDNA) meta-barcoding, to explore the accuracy and sensitivity of 'dirt' DNA as an indicator of vertebrate diversity, from soil sampled at safari parks, zoological gardens and farms with known species compositions. PCR...

  18. Integrated taxonomy: traditional approach and DNA barcoding for the identification of filarioid worms and related parasites (Nematoda

    Directory of Open Access Journals (Sweden)

    Bandi Claudio

    2009-01-01

    Full Text Available Abstract Background We compared here the suitability and efficacy of traditional morphological approach and DNA barcoding to distinguish filarioid nematodes species (Nematoda, Spirurida. A reliable and rapid taxonomic identification of these parasites is the basis for a correct diagnosis of important and widespread parasitic diseases. The performance of DNA barcoding with different parameters was compared measuring the strength of correlation between morphological and molecular identification approaches. Molecular distance estimation was performed with two different mitochondrial markers (coxI and 12S rDNA and different combinations of data handling were compared in order to provide a stronger tool for easy identification of filarioid worms. Results DNA barcoding and morphology based identification of filarioid nematodes revealed high coherence. Despite both coxI and 12S rDNA allow to reach high-quality performances, only coxI revealed to be manageable. Both alignment algorithm, gaps treatment, and the criteria used to define the threshold value were found to affect the performance of DNA barcoding with 12S rDNA marker. Using coxI and a defined level of nucleotide divergence to delimit species boundaries, DNA barcoding can also be used to infer potential new species. Conclusion An integrated approach allows to reach a higher discrimination power. The results clearly show where DNA-based and morphological identifications are consistent, and where they are not. The coherence between DNA-based and morphological identification for almost all the species examined in our work is very strong. We propose DNA barcoding as a reliable, consistent, and democratic tool for species discrimination in routine identification of parasitic nematodes.

  19. Exploring the Utility of Partial Cytochrome c Oxidase Subunit 1 for DNA Barcoding of Gobies

    Directory of Open Access Journals (Sweden)

    Hyung-Bae Jeon

    2012-10-01

    Full Text Available Gobiids are hyperdiverse compared with other teleost groups, with about 2,000 species occurring in marine, freshwater, and blackish habitats, and they show a remarkable variety of morphologies and ecology. Testing the effectiveness of DNA barcodes on species that have emerged as a result of radiation remains a major challenge in evolutionary biology. Here, we used the cytochrome c oxidase subunit 1 (COI sequences from 144 species of gobies and related species to evaluate the performance of distance-based DNA barcoding and to conduct a phylogenetic analysis. The average intra-genus genetic distance was considerably higher than that obtained in previous studies. Additionally, the interspecific divergence at higher taxonomic levels was not significantly different from that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI gene. However, levels of intragenus divergence varied greatly among genera, and we do not provide sufficient evidence for using COI for cryptic species delimitation. Significantly more nucleotide changes were observed at the third codon position than that at the first and the second codons, revealing that extensive variation in COI reflects synonymous changes and little protein level variation. Despite clear signatures in several genera, the COI sequences did resolve genealogical relationships in the phylogenetic analysis well. Our results support the validity of COI barcoding for gobiid species identification, but the utilization of more gene regions will assist to offer a more robust gobiid species phylogeny.

  20. DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia.

    Science.gov (United States)

    Contreras Gutiérrez, María Angélica; Vivero, Rafael J; Vélez, Iván D; Porter, Charles H; Uribe, Sandra

    2014-01-01

    Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was sand flies from Colombia.

  1. Introduction au DNA-Barcoding : rapport d'étude bibliographique

    OpenAIRE

    Bouteleux, Olivier

    2012-01-01

    Le DNA Barcoding est un outil de la biologie moléculaire destiné à l'identification des espèces. Il a été proposé comme très prometteur pour caractériser la biodiversité présente au sein de faunes encore très peu connues telles que les faunes tropicales. Les bibliothèques de barcodes ADN peuvent aider à caractériser les espèces pour établir ainsi la richesse spécifique des milieux et mettre en évidence un turnover spatial et phénologique de cette biodiversité. Cette étude s'inscrit dans un pr...

  2. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes.

    Science.gov (United States)

    Stielow, J B; Lévesque, C A; Seifert, K A; Meyer, W; Iriny, L; Smits, D; Renfurm, R; Verkley, G J M; Groenewald, M; Chaduli, D; Lomascolo, A; Welti, S; Lesage-Meessen, L; Favel, A; Al-Hatmi, A M S; Damm, U; Yilmaz, N; Houbraken, J; Lombard, L; Quaedvlieg, W; Binder, M; Vaas, L A I; Vu, D; Yurkov, A; Begerow, D; Roehl, O; Guerreiro, M; Fonseca, A; Samerpitak, K; van Diepeningen, A D; Dolatabadi, S; Moreno, L F; Casaregola, S; Mallet, S; Jacques, N; Roscini, L; Egidi, E; Bizet, C; Garcia-Hermoso, D; Martín, M P; Deng, S; Groenewald, J Z; Boekhout, T; de Beer, Z W; Barnes, I; Duong, T A; Wingfield, M J; de Hoog, G S; Crous, P W; Lewis, C T; Hambleton, S; Moussa, T A A; Al-Zahrani, H S; Almaghrabi, O A; Louis-Seize, G; Assabgui, R; McCormick, W; Omer, G; Dukik, K; Cardinali, G; Eberhardt, U; de Vries, M; Robert, V

    2015-12-01

    The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial β -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail

  3. DNA Barcoding of Birds at a Migratory Hotspot in Eastern Turkey Highlights Continental Phylogeographic Relationships.

    Directory of Open Access Journals (Sweden)

    Raşit Bilgin

    Full Text Available The combination of habitat loss, climate change, direct persecution, introduced species and other components of the global environmental crisis has resulted in a rapid loss of biodiversity, including species, population and genetic diversity. Birds, which inhabit a wide spectrum of different habitat types, are particularly sensitive to and indicative of environmental changes. The Caucasus endemic bird area, part of which covers northeastern Turkey, is one of the world's key regions harboring a unique bird community threatened with habitat loss. More than 75% of all bird species native to Turkey have been recorded in this region, in particular along the Kars-Iğdır migratory corridor, stopover, wintering and breeding sites along the Aras River, whose wetlands harbor at least 264 bird species. In this study, DNA barcoding technique was used for evaluating the genetic diversity of land bird species of Aras River Bird Paradise at the confluence of Aras River and Iğdır Plains key biodiversity areas. Seventy three COI sequences from 33 common species and 26 different genera were newly generated and used along with 301 sequences that were retrieved from the Barcoding of Life Database (BOLD. Using the sequences obtained in this study, we made global phylogeographic comparisons to define four categories of species, based on barcoding suitability, intraspecific divergence and taxonomy. Our findings indicate that the landbird community of northeastern Turkey has a genetical signature mostly typical of northern Palearctic bird communities while harboring some unique variations. The study also provides a good example of how DNA barcoding can build upon its primary mission of species identification and use available data to integrate genetic variation investigated at the local scale into a global framework. However, the rich bird community of the Aras River wetlands is highly threatened with the imminent construction of the Tuzluca Dam by the government.

  4. Levenshtein error-correcting barcodes for multiplexed DNA sequencing

    NARCIS (Netherlands)

    Buschmann, Tilo; Bystrykh, Leonid V.

    2013-01-01

    Background: High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called multi

  5. DNA Barcoding Assessment of Green Macroalgae in Coastal Zone Around Qingdao,China

    Institute of Scientific and Technical Information of China (English)

    DU Guoying; WU Feifei; MAO Yunxiang; GUO Shenghua; XUE Hongfan; BI Guiqi

    2014-01-01

    An assessment with assistance of DNA barcoding was conducted on green macroalgae in coastal zone around Qingdao, China, during the period of April-December, 2011. Three markers were applied in molecular discrimination, including the plastid elongation factor tufA gene, the internal transcribed spacer (ITS) region of the ribosomal cistron and rubisco large subunit gene 3’ regions (rbcL-3P). DNA barcoding discriminated 8 species, excluding species of genus Cladophora and Bryopsis due to failures in amplification. We ascertained and corrected 4 species identified by morphological methods for effectively assisting the classification. The gene tufA presented more advantages as an appropriate DNA marker with the strongest amplification success rate and species discrimination power than the other two genes. The poorest sequencing success largely handicapped the application of ITS. Samples identified by tufA and rbcL as Ulva flexuosa were clustered into the clade of U. prolifera by ITS in the neighbor-joining tree. Confu-sion with discrimination of the complex of U. linza, U. procera and U. prolifera (as the LPP complex) still existed for the three DNA markers. Based on our results, rbcL is recommended as a preferred marker for assisting tufA to discriminate green macroalgae. In distinguishing green-tide-forming Ulva species, the free-floating sample collected from the green tide in 2011 was proved to be iden-tical with U. prolifera in Yellow Sea for ITS and rbcL genes. This study presents a preliminary survey of green macroalgae distrib-uted in the coastal area around Qingdao, and proves that DNA barcoding is a powerful tool for taxonomy of green macroalgae.

  6. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding.

    Science.gov (United States)

    Gismondi, Angelo; Rolfo, Mario Federico; Leonardi, Donatella; Rickards, Olga; Canini, Antonella

    2012-07-01

    The analysis of ancient DNA (aDNA) provides archaeologists and anthropologists with innovative, scientific and accurate data to study and understand the past. In this work, ancient seeds, found in the "Mora Cavorso" archaeological site (Latium, Central Italy), were analyzed to increase information about Italian Neolithic populations (plant use, agriculture, diet, trades, customs and ecology). We performed morphological and genetic techniques to identify fossil botanical species. In particular, this study also suggests and emphasizes the use of DNA barcode method for ancient plant sample analysis. Scanning electron microscope (SEM) observations showed seed compact structure and irregular surface but they did not permit a precise nor empirical classification: so, a molecular approach was necessary. DNA was extracted from ancient seeds and then it was used, as template, for PCR amplifications of standardized barcode genes. Although aDNA could be highly degraded by the time, successful PCR products were obtained, sequenced and compared to nucleotide sequence databases. Positive outcomes (supported by morphological comparison with modern seeds, geographical distribution and historical data) indicated that seeds could be identified as belonging to two plant species: Olea europaea L. and Cornus mas L. PMID:22847014

  7. Aspergillus and Penicillium identification using DNA sequences: Barcode or MLST?

    Science.gov (United States)

    Current methods in DNA technology can detect single nucleotide polymorphisms with measurable accuracy using several different approaches appropriate for different uses. If there are even single nucleotide differences that are invariant markers of the species, we can accomplish identification through...

  8. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Oliver Hawlitschek

    Full Text Available BACKGROUND: DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. METHODOLOGY/PRINCIPAL FINDINGS: The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. CONCLUSION/SIGNIFICANCE: In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  9. Use of DNA barcoding to identify Chinese medicinal materials%基于DNA barcoding(条形码)技术的中药材鉴定

    Institute of Scientific and Technical Information of China (English)

    陈士林; 姚辉; 宋经元; 李西文; 刘昶; 陆建伟

    2007-01-01

    DNA条形码(DNA barcoding)是根据对一段标准的DNA序列的分析来鉴定物种,已成为生物物种鉴定的新方向,受到世界40多个国家130多个组织中传统生物分类学家、分子生物学家和生物信息学家等多学科专家的关注.本文通过介绍DNA条形码的产生、发展和研究现状,探讨其在中药材鉴定中应用的技术方法、技术路线、关键问题以及应用范围,并展望了DNA条形码在中药材鉴定中的应用前景.

  10. DNA Barcoding for Identification of "Candidatus Phytoplasmas" Using a Fragment of the Elongation Factor Tu Gene

    DEFF Research Database (Denmark)

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta;

    2012-01-01

    /Principal Findings We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed...... for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used...... that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA...

  11. DNA barcoding of six Ceroplastes species (Hemiptera: Coccoidea: Coccidae) from China.

    Science.gov (United States)

    Deng, Jun; Yu, Fang; Zhang, Tong-Xin; Hu, Hao-Yuan; Zhu, Chao-Dong; Wu, San-An; Zhang, Yan-Zhou

    2012-09-01

    Ceroplastes Gray (wax scales) is one of the genera of Coccidae, most species of which are considered to be serious economic pests. However, identification of Ceroplastes species is always difficult owing to the shortage of easily distinguishable morphological characters. Mitochondrial cytochrome c oxidase I (COI) sequences (or DNA barcodes) and the D2 expansion segments of the large subunit ribosomal RNA gene 28S were used for accurate identification of six Ceroplastes species (C. floridensis Comstock, C. japonicus Green, C. ceriferus (Fabricius), C. pseudoceriferus Green, C. rubens Maskell and C. kunmingensis Tang et Xie) from 20 different locations in China. For COI data, low G·C content was found in all species, averaging about 20.4%. Sequence divergences (K2P) between congeneric species averaged 12.19%, while intra-specific divergences averaged 0.42%. All 112 samples fell into six reciprocally monophyletic clades in the COI neighbour-joining (NJ) tree. The NJ tree inferred from 28S showed almost same results, but samples of two closely related species, C. ceriferus and C. pseudoceriferus, were clustered together. This research indicates that the standard barcode region of COI can efficiently identify similar Ceroplastes species. This study provides an example of the usefulness of barcoding for Ceroplastes identification.

  12. Using DNA-barcoding to make the necrobiont beetle family Cholevidae accessible for forensic entomology.

    Science.gov (United States)

    Schilthuizen, Menno; Scholte, Cindy; van Wijk, Renske E J; Dommershuijzen, Jessy; van der Horst, Devi; Zu Schlochtern, Melanie Meijer; Lievers, Rik; Groenenberg, Dick S J

    2011-07-15

    The beetle family Cholevidae (Coleoptera: Staphylinoidea), sometimes viewed as the subfamily Cholevinae of the Leiodidae, consists of some 1700 species worldwide. With the exception of specialized cave-dwelling species and species living in bird and mammal nests and burrows, the species are generalized soil-dwellers that, at least in temperate regions, are mostly found on vertebrate cadavers. Although they have been regularly reported from human corpses, and offer potential because of many species' peak activity in the cold season, they have not been a focus of forensic entomologists so far. This is probably due to their small size and the difficulty in identifying the adults and their larvae. In this paper, we show that DNA-barcoding can help make this group of necrobiont beetles available as a tool for forensic research. We collected 86 specimens of 20 species of the genera Catops, Fissocatops, Apocatops, Choleva, Nargus, Ptomaphagus, and Sciodrepoides from the Netherlands and France and show that a broad "barcoding gap" allows almost all species to be easily and unambiguously identified by the sequence of the "barcoding gene" cytochrome c oxidase I (COI). This opens up the possibility of adding Cholevidae to the set of insect taxa routinely used in forensic entomology.

  13. Genetic diversity and relationship of Mauremys mutica and M. annamensis assessed by DNA barcoding sequences.

    Science.gov (United States)

    Zhao, Jian; Li, Wei; Wen, Ping; Zhang, Dandan; Zhu, Xinping

    2016-09-01

    The mitochondrial DNA cytochrome c oxidase subunit I gene (COI) has been used as an efficient barcoding tool for species identification of animals. In this study, the barcoding sequences were used to assess the genetic diversity and relationship of Mauremy mutica and M. annamensis. Four currently recognized groups of M. mutica were classified into two groups in this study, with 6% intergroup distances, the S group and the N group, consistent to the calling of "southern turtle" and "northern turtle" in folk of China. The north population and Taiwan population formed the N group, and further, the Taiwan population was differentiated as a monophyly originated from the north population, consistent to the calling of "big green head" for the Taiwan population and "small green head" for the north population. The Vietnam, Hainan population, and M. annamensis formed the S group, and the barcoding sequences could not distinguish them from each other. Based on the molecular data and phenotypes of existing hybrids, hybrid origin of M. annamensis may be another possibility. PMID:26260182

  14. Calibrating the taxonomy of a megadiverse insect family: 3000 DNA barcodes from geometrid type specimens (Lepidoptera, Geometridae).

    Science.gov (United States)

    Hausmann, Axel; Miller, Scott E; Holloway, Jeremy D; deWaard, Jeremy R; Pollock, David; Prosser, Sean W J; Hebert, Paul D N

    2016-09-01

    It is essential that any DNA barcode reference library be based upon correctly identified specimens. The Barcode of Life Data Systems (BOLD) requires information such as images, geo-referencing, and details on the museum holding the voucher specimen for each barcode record to aid recognition of potential misidentifications. Nevertheless, there are misidentifications and incomplete identifications (e.g., to a genus or family) on BOLD, mainly for species from tropical regions. Unfortunately, experts are often unavailable to correct taxonomic assignments due to time constraints and the lack of specialists for many groups and regions. However, considerable progress could be made if barcode records were available for all type specimens. As a result of recent improvements in analytical protocols, it is now possible to recover barcode sequences from museum specimens that date to the start of taxonomic work in the 18th century. The present study discusses success in the recovery of DNA barcode sequences from 2805 type specimens of geometrid moths which represent 1965 species, corresponding to about 9% of the 23 000 described species in this family worldwide and including 1875 taxa represented by name-bearing types. Sequencing success was high (73% of specimens), even for specimens that were more than a century old. Several case studies are discussed to show the efficiency, reliability, and sustainability of this approach. PMID:27549513

  15. Measurements of DNA barcode label separations in nanochannels from time-series data.

    Science.gov (United States)

    Sheats, Julian; Reifenberger, Jeffrey G; Cao, Han; Dorfman, Kevin D

    2015-11-01

    We analyzed time-series data for fluctuations of intramolecular segments of barcoded E. coli genomic DNA molecules confined in nanochannels with sizes near the persistence length of DNA. These dynamic data allowed us to measure the probability distribution governing the distance between labels on the DNA backbone, which is a key input into the alignment methods used for genome mapping in nanochannels. Importantly, this dynamic method does not require alignment of the barcode to the reference genome, thereby removing a source of potential systematic error in a previous study of this type. The results thus obtained support previous evidence for a left-skewed probability density for the distance between labels, albeit at a lower magnitude of skewness. We further show that the majority of large fluctuations between labels are short-lived events, which sheds further light upon the success of the linearized DNA genome mapping technique. This time-resolved data analysis will improve existing genome map alignment algorithms, and the overall idea of using dynamic data could potentially improve the accuracy of genome mapping, especially for complex heterogeneous samples such as cancer cells. PMID:26759636

  16. Identity of the ailanthus webworm moth (Lepidoptera, Yponomeutidae, a complex of two species: evidence from DNA barcoding, morphology and ecology

    Directory of Open Access Journals (Sweden)

    John Wilson

    2010-05-01

    Full Text Available During extensive ongoing campaigns to inventory moths of North America and Area de Conservacion Guanacaste (ACG, northwestern Costa Rica, we discovered that morphologically similar yponomeutid moths were assigned two different names, Atteva ergatica Walsingham in Costa Rica and A. punctella (Stoll in North America, but had identical DNA barcodes. Combining DNA barcoding, morphology and food plant records also revealed a complex of two sympatric species that are diagnosable by their DNA barcodes and their facies in Costa Rica. However, neither of the names could be correctly applied to either species, as A. ergatica is a junior synonym and A. punctella a junior homonym. By linking our specimens to type material through morphology and DNA barcoding, we determined that the ACG dry forest species, distributed from Costa Rica to southern Quebec and Ontario, should be called A. aurea, whereas the similar and marginally sympatric ACG rain forest species found in Central America should be called A. pustulella. Neotypes are designated for Phalaena Tinea punctella Stoll, 1781 and Deiopeia aurea Fitch, 1857. Atteva floridana has identical barcodes to A. aurea and provisionally maintained as a synonym.

  17. Discovering hidden biodiversity: The use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems

    DEFF Research Database (Denmark)

    Jo, Hyunbin; Ventura, Marc; Vidal, Nicolas;

    2015-01-01

    trutta), in 10 Tasmanian lakes and compared the results with those obtained from visual inspection of stomach contents. We obtained 44 unique taxa (OTUs) belonging to 5 phyla, including 7 classes, using the barcode of life approach from cytochrome oxidase I (COI). Compared with visual inspection, DNA...... analysis showed greater accuracy, yielding a 1.4-fold higher number of OTUs. Rarefaction curve analysis showed saturation of visually inspected taxa, while the curves from the DNA barcode did not saturate. The OTUs with the highest proportions of haplotypes were the families of terrestrial insects...... Formicidae, Chrysomelidae and Torbidae and the freshwater Chironomidae. The haplotype occurrence per lake was negatively correlated with lake depth and transparency. Nearly all haplotypes were only found in one fish gut from a single lake. Our results indicate that DNA barcoding of fish diets is a useful and...

  18. The use of DNA barcoding to monitor the marine mammal biodiversity along the French Atlantic coast

    Directory of Open Access Journals (Sweden)

    Eric Alfonsi

    2013-12-01

    Full Text Available In the last ten years, 14 species of cetaceans and five species of pinnipeds stranded along the Atlantic coast of Brittany in the North West of France. All species included, an average of 150 animals strand each year in this area. Based on reports from the stranding network operating along this coast, the most common stranding events comprise six cetacean species (Delphinus delphis, Tursiops truncatus, Stenella coeruleoalba, Globicephala melas, Grampus griseus, Phocoena phocoena and one pinniped species (Halichoerus grypus. Rare stranding events include deep-diving or exotic species, such as arctic seals. In this study, our aim was to determine the potential contribution of DNA barcoding to the monitoring of marine mammal biodiversity as performed by the stranding network.We sequenced more than 500 bp of the 5’ end of the mitochondrial cox1 gene of 89 animals of 15 different species (12 cetaceans, and three pinnipeds. Except for members of the Delphininae, all species were unambiguously discriminated on the basis of their cox1 sequences. We then applied DNA barcoding to identify some “undetermined” samples. With again the exception of the Delphininae, this was successful using the BOLD identification engine. For samples of the Delphininae, we sequenced a portion of the mitochondrial control region (MCR, and using a non-metric multidimentional scaling plot and posterior probability calculations we were able to determine putatively each species. We then showed, in the case of the harbour porpoise, that cox1 polymorphisms, although being lower than MCR ones, could also be used to assess intraspecific variability. All these results show that the use of DNA barcoding in conjunction with a stranding network could clearly increase the accuracy of the monitoring of marine mammal biodiversity.

  19. Identification, Discrimination, and Discovery of Species of Marine Planktonic Ostracods Using DNA Barcodes.

    Science.gov (United States)

    Nigro, Lisa M; Angel, Martin V; Blachowiak-Samolyk, Katarzyna; Hopcroft, Russell R; Bucklin, Ann

    2016-01-01

    The Ostracoda (Crustacea; Class Ostracoda) is a diverse, frequently abundant, and ecologically important component of the marine zooplankton assemblage. There are more than 200 described species of marine planktonic ostracods, many of which (especially conspecific species) can be identified only by microscopic examination and dissection of fragile morphological characters. Given the complexity of species identification and increasing lack of expert taxonomists, DNA barcodes (short DNA sequences for species discrimination and identification) are particularly useful and necessary. Results are reported from analysis of 210 specimens of 78 species of marine planktonic ostracods, including two novel species, and 51 species for which barcodes have not been previously published. Specimens were collected during 2006 to 2008 from the Atlantic, Indian, and Southern Oceans, Greenland Sea and Gulf of Alaska. Samples were collected from surface to 5,000 m using various collection devices. DNA sequence variation was analyzed for a 598 base-pair region of the mitochondrial cytochrome oxidase subunit I (COI) gene. Kimura-2-Parameter (K2P) genetic distances within described species (mean = 0.010 ± 0.017 SD) were significantly smaller than between species (0.260 + 0.080), excluding eight taxa hypothesized to comprise cryptic species due to morphological variation (especially different size forms) and/or collection from different geographic regions. These taxa showed similar K2P distance values within (0.014 + 0.026) and between (0.221 ± 0.068) species. All K2P distances > 0.1 resulted from comparisons between identified or cryptic species, with no overlap between intra- and interspecific genetic distances. A Neighbor Joining tree resolved nearly all described species analyzed, with multiple sequences forming monophyletic clusters with high bootstrap values (typically 99%). Based on taxonomically and geographically extensive sampling and analysis (albeit with small sample sizes

  20. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing.

    Science.gov (United States)

    Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E

    2016-06-20

    Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. PMID:27060140

  1. Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing

    OpenAIRE

    Hafner, Markus; Renwick, Neil; Farazi, Thalia A.; Mihailovi, Aleksandra; Pena, John T.G.; Tuschl, Thomas

    2012-01-01

    The characterization of post-transcriptional gene regulation by small regulatory (20–30 nt) RNAs, particularly miRNAs and piRNAs, has become a major focus of research in recent years. A prerequisite for characterizing small RNAs is their identification and quantification across different developmental stages, and in normal and disease tissues, as well as model cell lines. Here we present a step-by-step protocol for generating barcoded small RNA cDNA libraries compatible with Illumina HiSeq se...

  2. Intraspecific diversity of Monochamus saltuarius (Gebler based on DNA barcode analysis

    Directory of Open Access Journals (Sweden)

    Jun Hyoung Jeon

    2015-12-01

    Full Text Available Monochamus saltuarius has a morphological polymorphism, but there is no standard phenotype to distinguish the differences in M. saltuarius species. To investigate molecular diversity of M. saltuarius, mitochondrial cytochrome c oxidase I 5’ sequence were analyzed against specimens collected from Chungbuk, Gyeonggi, and Gangwon province. The DNA barcode results showed that the specimens make two groups with a 1.68%–3.1% K2P distance, but cannot find a specific phenotype difference among the specimens.

  3. jMOTU and Taxonerator: turning DNA Barcode sequences into annotated operational taxonomic units.

    Directory of Open Access Journals (Sweden)

    Martin Jones

    Full Text Available BACKGROUND: DNA barcoding and other DNA sequence-based techniques for investigating and estimating biodiversity require explicit methods for associating individual sequences with taxa, as it is at the taxon level that biodiversity is assessed. For many projects, the bioinformatic analyses required pose problems for laboratories whose prime expertise is not in bioinformatics. User-friendly tools are required for both clustering sequences into molecular operational taxonomic units (MOTU and for associating these MOTU with known organismal taxonomies. RESULTS: Here we present jMOTU, a Java program for the analysis of DNA barcode datasets that uses an explicit, determinate algorithm to define MOTU. We demonstrate its usefulness for both individual specimen-based Sanger sequencing surveys and bulk-environment metagenetic surveys using long-read next-generation sequencing data. jMOTU is driven through a graphical user interface, and can analyse tens of thousands of sequences in a short time on a desktop computer. A companion program, Taxonerator, that adds traditional taxonomic annotation to MOTU, is also presented. Clustering and taxonomic annotation data are stored in a relational database, and are thus amenable to subsequent data mining and web presentation. CONCLUSIONS: jMOTU efficiently and robustly identifies the molecular taxa present in survey datasets, and Taxonerator decorates the MOTU with putative identifications. jMOTU and Taxonerator are freely available from http://www.nematodes.org/.

  4. Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores.

    Science.gov (United States)

    Assad, Ossama N; Di Fiori, Nicolas; Squires, Allison H; Meller, Amit

    2015-01-14

    Optical sensing of solid-state nanopores is a relatively new approach that can enable high-throughput, multicolor readout from a collection of nanopores. It is therefore highly attractive for applications such as nanopore-based DNA sequencing and genotyping using DNA barcodes. However, to date optical readout has been plagued by the need to achieve sufficiently high signal-to-noise ratio (SNR) for single fluorophore sensing, while still maintaining millisecond resolution. One of the main factors degrading the optical SNR in solid-state nanopores is the high photoluminescence (PL) background emanating from the silicon nitride (SiNx) membrane in which pores are commonly fabricated. Focusing on the optical properties of SiNx nanopores we show that the local membrane PL intensity is substantially reduced, and its spectrum is shifted toward shorter wavelengths with increasing e-beam dose. This phenomenon, which is correlated with a marked photocurrent enhancement in these nanopores, is utilized to perform for the first time single molecule fluorescence detection using both green and red laser excitations. Specifically, the reduction in PL and the concurrent measurement of the nanopore photocurrent enhancement allow us to maximize the background suppression and to detect a dual color, five-unit DNA barcode with high SNR levels. PMID:25522780

  5. Beyond the colours: discovering hidden diversity in the Nymphalidae of the Yucatan Peninsula in Mexico through DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Blanca R Prado

    Full Text Available BACKGROUND: Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use. METHODOLOGY/PRINCIPAL FINDINGS: We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula were previously unknown. CONCLUSIONS/SIGNIFICANCE: This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect

  6. Establishment of a standard reference material (SRM) herbal DNA barcode library of Vitex negundo L. (lagundi) for quality control measures.

    Science.gov (United States)

    Olivar, Jay Edneil C; Alaba, Joanner Paulus Erik P; Atienza, Jose Francisco M; Tan, Jerick Jeffrey S; Umali, Maximo T; Alejandro, Grecebio Jonathan D

    2016-05-01

    The majority of the population in the Philippines relies on herbal products as their primary source for their healthcare needs. After the recognition of Vitex negundo L. (lagundi) as an important and effective alternative medicine for cough, sore throat, asthma and fever by the Philippine Department of Health (DOH), there was an increase in the production of lagundi-based herbal products in the form of teas, capsules and syrups. The efficiency of these products is greatly reliant on the use of authentic plant material, and to this day no standard protocol has been established to authenticate plant materials. DNA barcoding offers a quick and reliable species authentication tool, but its application to plant material has been less successful due to (1) lack of a standard DNA barcoding loci in plants and (2) poor DNA yield from powderised plant products. This study reports the successful application of DNA barcoding in the authentication of five V. negundo herbal products sold in the Philippines. Also, the first standard reference material (SRM) herbal library for the recognition of authentic V. negundo samples was established using 42 gene accessions of ITS, psbA-trnH and matK barcoding loci. Authentication of the herbal products utilised the SRM following the BLASTn and maximum-likelihood (ML) tree construction criterion. Barcode sequences were retrieved for ITS and psbA-trnH of all products tested and the results of the study revealed that only one out of five herbal products satisfied both BLASTn and ML criterion and was considered to contain authentic V. negundo. The results prompt the urgent need to utilise DNA barcoding in authenticating herbal products available in the Philippine market. Authentication of these products will secure consumer health by preventing the negative effects of adulteration, substitution and contamination. PMID:26982211

  7. Application of DNA Barcoding for Controlling of the Species from Octopus Genus

    Science.gov (United States)

    Debenedetti, Francesco; Dalmasso, Alessandra; Bottero, Maria Teresa; Gilli, Maurizio; Gili, Stefano; Tepedino, Valentina

    2014-01-01

    The DNA barcoding proposes the use of a particular sequence from a single genomic region as the base for an identifying system capable to determine all animal species. This methodology comprises the analysis of a 655 base-pair region from the mithocondrial cytochrome C oxidase gene (COI). Its application in the species identification of fishery products has been very promising. However, in the last years some doubts about its usage have emerged. In this work, we make use of the DNA barcoding for the identification of some of the octopus species with higher commercial interest (Octopus membranaceus, Octopus vulgaris, Octopus aegina, Octopus cyanea) focusing the attention on the reliability and completeness of the available information on the databases. The study looked over 51 individuals apparently belonging to the Octopus genus. For the identification of O.aegina, O.cyanea, O.vulgaris species no particular problems were found. On the other hand, most of the samples of O.membranaceus, though they clearly presented the morphological characteristics of the species, were not identified with the biomolecular analyses. PMID:27800370

  8. Application of DNA barcoding for controlling of the species from Octopus genus

    Directory of Open Access Journals (Sweden)

    Francesco Debenedetti

    2014-12-01

    Full Text Available The DNA barcoding proposes the use of a particular sequence from a single genomic region as the base for an identifying system capable to determine all animal species. This methodology comprises the analysis of a 655 base-pair region from the mithocondrial cytochrome C oxidase gene (COI. Its application in the species identification of fishery products has been very promising. However, in the last years some doubts about its usage have emerged. In this work, we make use of the DNA barcoding for the identification of some of the octopus species with higher commercial interest (Octopus membranaceus, Octopus vulgaris, Octopus aegina, Octopus cyanea focusing the attention on the reliability and completeness of the available information on the databases. The study looked over 51 individuals apparently belonging to the Octopus genus. For the identification of O.aegina, O.cyanea, O.vulgaris species no particular problems were found. On the other hand, most of the samples of O.membranaceus, though they clearly presented the morphological characteristics of the species, were not identified with the biomolecular analyses.

  9. Identification of echinoderms (Echinodermata) from an anchialine cave in Cozumel Island, Mexico, using DNA barcodes.

    Science.gov (United States)

    Bribiesca-Contreras, Guadalupe; Solís-Marín, Francisco A; Laguarda-Figueras, Alfredo; Zaldívar-Riverón, Alejandro

    2013-11-01

    The echinoderm species richness of the Aerolito de Paraiso anchialine cave, on Cozumel Island, in the Mexican Caribbean, is assessed on the basis of morphological and DNA barcoding data. We included specimens from this cave system and from different open sea areas, and employed two different approaches for species delineation based on DNA barcoding data: a 2% cox1 divergence and the general mixed Yule-coalescent (GMYC) approaches. We subsequently compared the results derived from these approaches with our morphospecies discrimination. A total of 188 cox1 sequences belonging to specimens of four echinoderm classes were examined. The 2% cox1 divergence and GMYC approaches recovered 78 and 70 putative species, respectively, 24 and 22 of which corresponded to specimens from the anchialine system. Of 26 echinoderm species identified in the cave system, seven appear to be endemic to it. Among these are Copidaster carvenicola Solís-Marín & Laguarda-Figueras, 2010, two morphologically distinctive, undescribed species belonging to Asterinides and Ophionereis and four probably cryptic undescribed species originally assigned to Amphipholis squamata (Delle Chiaje, 1839), Astropecten duplicatus Gray, 1840, Copidaster lymani (AH Clark, 1948) and Ophiothrix angulata (Say, 1825). Further research and protection of this particularly fragile ecosystem becomes urgent because construction of tourism developments is planned nearby. PMID:23551841

  10. Using DNA Barcodes to Identify Road-Killed Animals in Two Atlantic Forest Nature Reserves, Brazil.

    Science.gov (United States)

    Klippel, Angélica H; Oliveira, Pablo V; Britto, Karollini B; Freire, Bárbara F; Moreno, Marcel R; Dos Santos, Alexandre R; Banhos, Aureo; Paneto, Greiciane G

    2015-01-01

    Road mortality is the leading source of biodiversity loss in the world, especially due to fragmentation of natural habitats and loss of wildlife. The survey of the main species victims of roadkill is of fundamental importance for the better understanding of the problem, being necessary, for this, the correct species identification. The aim of this study was to verify if DNA barcodes can be applied to identify road-killed samples that often cannot be determined morphologically. For this purpose, 222 vertebrate samples were collected in a stretch of the BR-101 highway that crosses two Discovery Coast Atlantic Forest Natural Reserves, the Sooretama Biological Reserve and the Vale Natural Reserve, in Espírito Santo, Brazil. The mitochondrial COI gene was amplified, sequenced and confronted with the BOLD database. It was possible to identify 62.16% of samples, totaling 62 different species, including Pyrrhura cruentata, Chaetomys subspinosus, Puma yagouaroundi and Leopardus wiedii considered Vulnerable in the National Official List of Species of Endangered Wildlife. The most commonly identified animals were a bat (Molossus molossus), an opossum (Didelphis aurita) and a frog (Trachycephalus mesophaeus) species. Only one reptile was identified using the technique, probably due to lack of reference sequences in BOLD. These data may contribute to a better understanding of the impact of roads on species biodiversity loss and to introduce the DNA barcode technique to road ecology scenarios. PMID:26244644

  11. Identification of exotic North American crayfish in Europe by DNA barcoding

    Directory of Open Access Journals (Sweden)

    Filipová L.

    2011-05-01

    Full Text Available Several alien crayfish of North American origin have become established in Europe in recent decades, but their identification is often confusing. Our aim was to verify the taxonomic status of their European populations by DNA barcoding. We sequenced the cytochrome c oxidase subunit I (COI gene fragment of individuals representing all American crayfish known from European waters, and compared the results with reference sequences from North America. Our results confirm the morphological identification of Orconectes juvenilis from a population in eastern France, and of the marbled crayfish (Marmorkrebs, i.e., a parthenogenetic form of Procambarus fallax, from south-western Germany. Sequences of most individuals of presumed Procambarus acutus from the Netherlands were similar to American P. cf. acutus, but one was divergent, closer to a sequence of a reference individual of P. cf. zonangulus. However, divergences among three American P. cf. zonangulus samples were also high, comparable to interspecific variation within cambarid species complexes. The divergence between O. immunis from Europe and America also reached values corresponding to those observed among distinct Orconectes species. Genetic variation in the American range of these crayfish should therefore be further studied. Our study shows that DNA barcoding is useful for the rapid and accurate identification of exotic crayfish in Europe, and also provides insights into overall variation within these taxa.

  12. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Science.gov (United States)

    Fields, Andrew T; Abercrombie, Debra L; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins"). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples). PMID:25646789

  13. Nuclear mitochondrial pseudogenes in Austinograea alayseae hydrothermal vent crabs (Crustacea: Bythograeidae): effects on DNA barcoding.

    Science.gov (United States)

    Kim, Se-Joo; Lee, Kyeong Yong; Ju, Se-Jong

    2013-09-01

    Members of the brachyuran crab family, Bythograeidae, are among the most abundant and common crabs in vent fields. However, their identification based on morphological characteristics often leads to incorrect species recognition due to a lack of taxonomic factors and the existence of sibling (or cryptic) species. For these reasons, we used DNA barcoding for vent crabs using mitochondrial cytochrome c oxidase subunit 1 (CO1). However, several nuclear mitochondrial pseudogenes (Numts) were amplified from Austinograea alayseae Guinot, 1990, using universal primers (Folmer primers). The Numts were characterized in six haplotypes, with 13.58-14.11% sequence divergence from A. alayseae, a higher nonsynonymous substitution ratio than true CO1, and the formation of an independent clade in bythograeids. In a neighbour-joining tree, the origin of the Numts would be expected to incorporate into the nucleus at an ancestral node of Austinograea, and they mutated more slowly in the nucleus than CO1 in the mitochondria. This evolutionary process may have resulted in the higher binding affinity of Numts for the Folmer primers than CO1. In the present study, we performed long PCR for the amplification of CO1 in A. alayseae. We also present evidence that Numts can introduce serious ambiguity into DNA barcoding, including overestimating the number of species in bythograeids. These results may help in conducting taxonomic studies using mitochondrial genes from organisms living in hydrothermal vent fields.

  14. A Novel Mini-DNA Barcoding Assay to Identify Processed Fins from Internationally Protected Shark Species

    Science.gov (United States)

    Fields, Andrew T.; Abercrombie, Debra L.; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D.

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA (“processed fins”). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples). PMID:25646789

  15. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Directory of Open Access Journals (Sweden)

    Andrew T Fields

    Full Text Available There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias. Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins". Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples.

  16. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Science.gov (United States)

    Fields, Andrew T; Abercrombie, Debra L; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins"). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples).

  17. Using DNA Barcodes to Identify Road-Killed Animals in Two Atlantic Forest Nature Reserves, Brazil.

    Directory of Open Access Journals (Sweden)

    Angélica H Klippel

    Full Text Available Road mortality is the leading source of biodiversity loss in the world, especially due to fragmentation of natural habitats and loss of wildlife. The survey of the main species victims of roadkill is of fundamental importance for the better understanding of the problem, being necessary, for this, the correct species identification. The aim of this study was to verify if DNA barcodes can be applied to identify road-killed samples that often cannot be determined morphologically. For this purpose, 222 vertebrate samples were collected in a stretch of the BR-101 highway that crosses two Discovery Coast Atlantic Forest Natural Reserves, the Sooretama Biological Reserve and the Vale Natural Reserve, in Espírito Santo, Brazil. The mitochondrial COI gene was amplified, sequenced and confronted with the BOLD database. It was possible to identify 62.16% of samples, totaling 62 different species, including Pyrrhura cruentata, Chaetomys subspinosus, Puma yagouaroundi and Leopardus wiedii considered Vulnerable in the National Official List of Species of Endangered Wildlife. The most commonly identified animals were a bat (Molossus molossus, an opossum (Didelphis aurita and a frog (Trachycephalus mesophaeus species. Only one reptile was identified using the technique, probably due to lack of reference sequences in BOLD. These data may contribute to a better understanding of the impact of roads on species biodiversity loss and to introduce the DNA barcode technique to road ecology scenarios.

  18. Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex.

    Directory of Open Access Journals (Sweden)

    James C Carolan

    Full Text Available Cryptic diversity within bumblebees (Bombus has the potential to undermine crucial conservation efforts designed to reverse the observed decline in many bumblebee species worldwide. Central to such efforts is the ability to correctly recognise and diagnose species. The B. lucorum complex (Bombus lucorum, B. cryptarum and B. magnus comprises one of the most abundant and important group of wild plant and crop pollinators in northern Europe. Although the workers of these species are notoriously difficult to diagnose morphologically, it has been claimed that queens are readily diagnosable from morphological characters. Here we assess the value of colour-pattern characters in species identification of DNA-barcoded queens from the B. lucorum complex. Three distinct molecular operational taxonomic units were identified each representing one species. However, no uniquely diagnostic colour-pattern character state was found for any of these three molecular units and most colour-pattern characters showed continuous variation among the units. All characters previously deemed to be unique and diagnostic for one species were displayed by specimens molecularly identified as a different species. These results presented here raise questions on the reliability of species determinations in previous studies and highlights the benefits of implementing DNA barcoding prior to ecological, taxonomic and conservation studies of these important key pollinators.

  19. DNA Barcode Identification of Freshwater Snails in the Family Bithyniidae from Thailand

    Science.gov (United States)

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Ruangsittichai, Jiraporn; Ruangjirachuporn, Wipaporn; Boonmars, Thidarut; Viyanant, Vithoon; Pierossi, Paola; Hebert, Paul D. N.; Tesana, Smarn

    2013-01-01

    Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5’ region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy. PMID:24223896

  20. DNA barcode identification of freshwater snails in the family Bithyniidae from Thailand.

    Directory of Open Access Journals (Sweden)

    Jutharat Kulsantiwong

    Full Text Available Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini, the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5' region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %, whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %. Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy.

  1. DNA barcode and evolutionary relationship within Laemolyta Cope 1872 (Characiformes: Anostomidae) through molecular analyses.

    Science.gov (United States)

    Ramirez, Jorge L; Galetti, Pedro M

    2015-12-01

    The Laemolyta genus is a monophyletic group with five valid species. Phylogenetic relationships among the species of this genus are unknown. We analyzed four nominal Laemolyta species. The COI gene for all individuals was amplified and the genetic distances were estimated. We performed genetic distance analyses to determine the different MOTUs. Two mitochondrial (COI and CytB) and three nuclear (Myh6, RAG1 and RAG2) markers were amplified for one individual of each identified MOTU. Maximum Parsimony and Maximum Likelihood were conducted using concatenate alignment. In addition, multilocus Bayesian species tree was carried out. By using DNA barcode, we identified six different MOTUs. The COI inter-MOTU distances ranged from 0.92% to 5.76%. The normalized mean intra-MOTU distance was 0.13%. The DNA barcode was useful to diagnose all species. Two clades showing distinct color patterns were recovered in all molecular phylogenetic trees. Clade A joined fishes with no vertical bars (L. garmani, L. taeniata 1 and L. taeniata 2) and clade B, fishes with vertical dark bars (L. fernandezi Araguaia, L. fernandezi Xingu, and L. proxima). The results were able to identify the cryptic biodiversity within the group and obtained the most complete Laemolyta phylogeny. PMID:26238459

  2. An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology.

    Science.gov (United States)

    Damm, Sandra; Schierwater, Bernd; Hadrys, Heike

    2010-09-01

    Modern taxonomy requires an analytical approach incorporating all lines of evidence into decision-making. Such an approach can enhance both species identification and species discovery. The character-based DNA barcode method provides a molecular data set that can be incorporated into classical taxonomic data such that the discovery of new species can be made in an analytical framework that includes multiple sources of data. We here illustrate such a corroborative framework in a dragonfly model system that permits the discovery of two new, but visually cryptic species. In the African dragonfly genus Trithemis three distinct genetic clusters can be detected which could not be identified by using classical taxonomic characters. In order to test the hypothesis of two new species, DNA-barcodes from different sequence markers (ND1 and COI) were combined with morphological, ecological and biogeographic data sets. Phylogenetic analyses and incorporation of all data sets into a scheme called taxonomic circle highly supports the hypothesis of two new species. Our case study suggests an analytical approach to modern taxonomy that integrates data sets from different disciplines, thereby increasing the ease and reliability of both species discovery and species assignment.

  3. Universal plant DNA barcode loci may not work in complex groups: a case study with Indian berberis species.

    Directory of Open Access Journals (Sweden)

    Sribash Roy

    Full Text Available BACKGROUND: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI. In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome--ITS, and three from plastid genome--trnH-psbA, rbcL and matK in species of Indian Berberis L. (Berberidaceae and two other genera, Ficus L. (Moraceae and Gossypium L. (Malvaceae. Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. CONCLUSIONS/SIGNIFICANCE: We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus

  4. DNA Barcoding of Sangihe Nutmeg (Myristica fragrans using matK Gene

    Directory of Open Access Journals (Sweden)

    TRINA EKAWATI TALLEI

    2015-01-01

    Full Text Available Nutmeg (family: Myristicaceae is a plant that originated from Banda islands and is widely cultivated in several places in the world. Secondary metabolites of this plant have a high value because of their benefits for the health, food, and beauty industries. This study aims at developing DNA barcode for nutmeg (Myristica fragrans using standard recommended fragment of matK (maturase K gene. Universal matK primer pairs were used to amplify 889 bp DNA fragment. BLAST search from NCBI site showed that Sangihe nutmeg has 100% identity with Myristica fatua, M. maingayi, and M. globosa. It also has 3 nucleotides difference with Rivola sebifera (identity 99.58% and 4 nucleotides difference with Knema laurina (identity 99.43%. It can be inferred from this study that single locus of matK gene cannot be used to differentiate species in Myristica; it can only be used to differentiate the genus level within family Myristicaceae.

  5. DNA barcodes reveal that the widespread European tortricid moth Phalonidia manniana (Lepidoptera: Tortricidae) is a mixture of two species

    DEFF Research Database (Denmark)

    Mutanen, Marko; Aarvik, Leif; Huemer, Peter;

    2012-01-01

    , 1845, sp. rev. Their biologies also differ, P. manniana feeding in stems of Mentha and Lycopus (Lamiaceae) and P. udana feeding in stems of Lysimachia thyrsiflora and L. vulgaris (Primulaceae). We provide re-descriptions of both taxa and DNA barcodes for North European Phalonidia and Gynnidomorpha...

  6. Taxonomic note of Oberea fuscipennis (Chevrolat, 1852) based on morphological and DNA barcode data (Coleoptera, Cerambycidae, Lamiinae).

    Science.gov (United States)

    Li, Zhu; Tian, Lichao; Cuccodoro, Giulio; Chen, Li; Lu, Cheng

    2016-01-01

    Oberea fuscipennis (Chevrolat, 1852) species group is revised based on morphology and DNA barcode data. Oberea diversipes Pic, 1919 and O. infratestacea Pic, 1936 are restored from synonymy. The following two new synonymies are proposed: Oberea fuscipennis ssp. fairmairei Breuning, 1962 = Oberea diversipes Pic, 1919; and Oberea hanoiensis Pic, 1923 = O. fuscipennis (Chevrolat, 1852). PMID:27395720

  7. Applying DNA Barcodes to Identify Closely Related Species of Ferns: A Case Study of the Chinese Adiantum (Pteridaceae).

    Science.gov (United States)

    Wang, Fan-Hong; Lu, Jin-Mei; Wen, Jun; Ebihara, Atsushi; Li, De-Zhu

    2016-01-01

    DNA barcoding is a fast-developing technique to identify species by using short and standard DNA sequences. Universal selection of DNA barcodes in ferns remains unresolved. In this study, five plastid regions (rbcL, matK, trnH-psbA, trnL-F and rps4-trnS) and eight nuclear regions (ITS, pgiC, gapC, LEAFY, ITS2, IBR3_2, DET1, and SQD1_1) were screened and evaluated in the fern genus Adiantum from China and neighboring areas. Due to low primer universality (matK) and/or the existence of multiple copies (ITS), the commonly used barcodes matK and ITS were not appropriate for Adiantum. The PCR amplification rate was extremely low in all nuclear genes except for IBR3_2. rbcL had the highest PCR amplification rate (94.33%) and sequencing success rate (90.78%), while trnH-psbA had the highest species identification rate (75%). With the consideration of discriminatory power, cost-efficiency and effort, the two-barcode combination of rbcL+ trnH-psbA seems to be the best choice for barcoding Adiantum, and perhaps basal polypod ferns in general. The nuclear IBR3_2 showed 100% PCR amplification success rate in Adiantum, however, it seemed that only diploid species could acquire clean sequences without cloning. With cloning, IBR3_2 can successfully distinguish cryptic species and hybrid species from their related species. Because hybridization and allopolyploidy are common in ferns, we argue for including a selected group of nuclear loci as barcodes, especially via the next-generation sequencing, as it is much more efficient to obtain single-copy nuclear loci without the cloning procedure.

  8. A transcontinental challenge--a test of DNA barcode performance for 1,541 species of Canadian Noctuoidea (Lepidoptera.

    Directory of Open Access Journals (Sweden)

    Reza Zahiri

    Full Text Available This study provides a first, comprehensive, diagnostic use of DNA barcodes for the Canadian fauna of noctuoids or "owlet" moths (Lepidoptera: Noctuoidea based on vouchered records for 1,541 species (99.1% species coverage, and more than 30,000 sequences. When viewed from a Canada-wide perspective, DNA barcodes unambiguously discriminate 90% of the noctuoid species recognized through prior taxonomic study, and resolution reaches 95.6% when considered at a provincial scale. Barcode sharing is concentrated in certain lineages with 54% of the cases involving 1.8% of the genera. Deep intraspecific divergence exists in 7.7% of the species, but further studies are required to clarify whether these cases reflect an overlooked species complex or phylogeographic variation in a single species. Non-native species possess higher Nearest-Neighbour (NN distances than native taxa, whereas generalist feeders have lower NN distances than those with more specialized feeding habits. We found high concordance between taxonomic names and sequence clusters delineated by the Barcode Index Number (BIN system with 1,082 species (70% assigned to a unique BIN. The cases of discordance involve both BIN mergers and BIN splits with 38 species falling into both categories, most likely reflecting bidirectional introgression. One fifth of the species are involved in a BIN merger reflecting the presence of 158 species sharing their barcode sequence with at least one other taxon, and 189 species with low, but diagnostic COI divergence. A very few cases (13 involved species whose members fell into both categories. Most of the remaining 140 species show a split into two or three BINs per species, while Virbia ferruginosa was divided into 16. The overall results confirm that DNA barcodes are effective for the identification of Canadian noctuoids. This study also affirms that BINs are a strong proxy for species, providing a pathway for a rapid, accurate estimation of animal diversity.

  9. Detection of Avian Influenza Virus by Fluorescent DNA Barcode-based Immunoassay with Sensitivity Comparable to PCR

    DEFF Research Database (Denmark)

    Cao, Cuong; Dhumpa, Raghuram; Bang, Dang Duong;

    2010-01-01

    in amplification of the signal. Using an inactivated H16N3 AIV as a model, a linear response over five orders of magnitude was obtained, and the sensitivity of the detection was comparable to conventional RT-PCR. Moreover, the entire detection required less than 2 hr. The results indicate that the method has great......In this paper, a coupling of fluorophore-DNA barcode and bead-based immunoassay for detecting avian influenza virus (AIV) with PCR-like sensitivity is reported. The assay is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representative barcodes. The detection...

  10. The real maccoyii: identifying tuna sushi with DNA barcodes--contrasting characteristic attributes and genetic distances.

    Directory of Open Access Journals (Sweden)

    Jacob H Lowenstein

    Full Text Available BACKGROUND: The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. METHODOLOGY/PRINCIPAL FINDINGS: Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of "white tuna" were not albacore (T. alalunga, but escolar (Lepidocybium flavorunneum, a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus or the critically endangered southern bluefin tuna (T. maccoyii, though nine restaurants that sold these species did not state these species on their menus. CONCLUSIONS/SIGNIFICANCE: The Convention on

  11. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve

    Science.gov (United States)

    Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R. Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N

    2015-01-01

    Abstract Background Comprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. New information The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies – a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic

  12. DNA Barcoding Reveals High Cryptic Diversity of the Freshwater Halfbeak Genus Hemirhamphodon from Sundaland

    Science.gov (United States)

    Zainal Abidin, Muchlisin; Pulungan, Chaidir Parlindungan

    2016-01-01

    DNA barcoding of the cytochrome oxidase subunit I (COI) gene was utilized to assess the species diversity of the freshwater halfbeak genus Hemirhamphodon. A total of 201 individuals from 46 locations in Peninsular Malaysia, north Borneo (Sarawak) and Sumatra were successfully amplified for 616 base pairs of the COI gene revealing 231 variable and 213 parsimony informative sites. COI gene trees showed that most recognized species form monophyletic clades with high bootstrap support. Pairwise within species comparisons exhibited a wide range of intraspecific diversity from 0.0% to 14.8%, suggesting presence of cryptic diversity. This finding was further supported by barcode gap analysis, ABGD and the constructed COI gene trees. In particular, H. pogonognathus from Kelantan (northeast Peninsular Malaysia) diverged from the other H. pogonognathus groups with distances ranging from 7.8 to 11.8%, exceeding the nearest neighbor taxon. High intraspecific diversity was also observed in H. byssus and H. kuekanthali, but of a lower magnitude. This study also provides insights into endemism and phylogeographic structuring, and limited support for the Paleo-drainage divergence hypothesis as a driver of speciation in the genus Hemirhamphodon. PMID:27657915

  13. DNA barcoding in Atlantic Forest plants: what is the best marker for Sapotaceae species identification?

    Directory of Open Access Journals (Sweden)

    Caio Vinicius Vivas

    2014-12-01

    Full Text Available The Atlantic Forest is a phytogeographic domain with a high rate of endemism and large species diversity. The Sapotaceae is a botanical family for which species identification in the Atlantic Forest is difficult. An approach that facilitates species identification in the Sapotaceae is urgently needed because this family includes threatened species and valuable timber species. In this context, DNA barcoding could provide an important tool for identifying species in the Atlantic Forest. In this work, we evaluated four plant barcode markers (matK, rbcL, trnH-psbA and the nuclear ribosomal internal transcribed spacer region -ITS in 80 samples from 26 species of Sapotaceae that occur in the Atlantic Forest. ITS yielded the highest average interspecific distance (0.122, followed by trnH-psbA (0.019, matK (0.008 and rbcL (0.002. For species discrimination, ITS provided the best results, followed by matK, trnH-psbA and rbcL. Furthermore, the combined analysis of two, three or four markers did not result in higher rates of discrimination than obtained with ITS alone. These results indicate that the ITS region is the best option for molecular identification of Sapotaceae species from the Atlantic Forest.

  14. Phylogenetic Analysis of Brine Shrimp (Artemia) in China Using DNA Barcoding

    Institute of Scientific and Technical Information of China (English)

    Weiwei Wang; Jun Yu; Qibin Luo; Haiyan Guo; Peter Bossier; Gilbert Van Stappen; Patrick Sorgeloos; Naihong Xin; Qishi Sun; Songnian Hu

    2008-01-01

    DNA barcoding is a powerful approach for characterizing species of organisms,especially those with almost identical morphological features, thereby helping to to establish phylogenetic relationships and reveal evolutionary histories. In this study, we chose a 648-bp segment of the mitochondrial gene, cytochrome c oxidase subunit 1 (COI), as a standard barcode region to establish phylogenetic relationships among brine shrimp (Artemia) species from major habitats around the world and further focused on the biodiversity of Artemia species in China, especially in the Tibetan Plateau. Samples from five major salt lakes of the Tibetan Plateau located at altitudes over 4,000 m showed clear differences from other Artemia populations in China. We also observed two consistent amino acid changes, 153A/V and 183L/F, in the COI gene between the high and low altitude species in China.Moreover, indels in the COI sequence were identified in cyst and adult samples unique to the Co Qen population from the Tibetan Plateau, demonstrating the need for additional investigations of the mitochondrial genome among Tibetan Artemia populations.

  15. The use of DNA barcode for identifying species of Oxysarcodexia Townsend (Diptera: Sarcophagidae): A preliminary survey.

    Science.gov (United States)

    Madeira, Tais; Souza, Carina M; Cordeiro, Juliana; Thyssen, Patricia J

    2016-09-01

    Oxysarcodexia is one of the Neotropical richest genera within the Sarcophagidae family. Medical, veterinary and forensic importance of these flies are due to their association with corpses, cases of myiasis in humans and domestic animals, and being pathogen carriers. Regarding morphological identification, molecular techniques, especially the DNA-based ones, arise as useful alternatives or complementary methodologies for species identification. Thus, in this study we aimed to investigate the potential of the COI marker (barcode region) to delimit Oxysarcodexia species in comparison with the morphological identification criteria. A COI fragment was amplified and the length of the sequences after alignment were of 648bp (149 parsimoniously informative variable sites). According to the Neighbor-Joining phylogenetic tree, specimens of the same morphological species were clustered in monophyletic clades (82-100% bootstrap branch support). Species-level resolution thus achieved was successful, despite low interspecific divergence (1.8-2.3%) and since interspecific variation was higher than intraspecific divergence (0.1-1.2%). Therefore, the use of COI barcode sequences supports differentiation and identification of the Oxysarcodexia species studied. PMID:27260665

  16. Use of ITS2 region as the universal DNA barcode for plants and animals.

    Directory of Open Access Journals (Sweden)

    Hui Yao

    Full Text Available BACKGROUND: The internal transcribed spacer 2 (ITS2 region of nuclear ribosomal DNA is regarded as one of the candidate DNA barcodes because it possesses a number of valuable characteristics, such as the availability of conserved regions for designing universal primers, the ease of its amplification, and sufficient variability to distinguish even closely related species. However, a general analysis of its ability to discriminate species in a comprehensive sample set is lacking. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, 50,790 plant and 12,221 animal ITS2 sequences downloaded from GenBank were evaluated according to sequence length, GC content, intra- and inter-specific divergence, and efficiency of identification. The results show that the inter-specific divergence of congeneric species in plants and animals was greater than its corresponding intra-specific variations. The success rates for using the ITS2 region to identify dicotyledons, monocotyledons, gymnosperms, ferns, mosses, and animals were 76.1%, 74.2%, 67.1%, 88.1%, 77.4%, and 91.7% at the species level, respectively. The ITS2 region unveiled a different ability to identify closely related species within different families and genera. The secondary structure of the ITS2 region could provide useful information for species identification and could be considered as a molecular morphological characteristic. CONCLUSIONS/SIGNIFICANCE: As one of the most popular phylogenetic markers for eukaryota, we propose that the ITS2 locus should be used as a universal DNA barcode for identifying plant species and as a complementary locus for CO1 to identify animal species. We have also developed a web application to facilitate ITS2-based cross-kingdom species identification (http://its2-plantidit.dnsalias.org.

  17. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals

    Science.gov (United States)

    Luo, Kun; Han, Jianping; Li, Ying; Pang, Xiaohui; Xu, Hongxi; Zhu, Yingjie; Xiao, Peigen; Chen, Shilin

    2010-01-01

    Background The internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA is regarded as one of the candidate DNA barcodes because it possesses a number of valuable characteristics, such as the availability of conserved regions for designing universal primers, the ease of its amplification, and sufficient variability to distinguish even closely related species. However, a general analysis of its ability to discriminate species in a comprehensive sample set is lacking. Methodology/Principal Findings In the current study, 50,790 plant and 12,221 animal ITS2 sequences downloaded from GenBank were evaluated according to sequence length, GC content, intra- and inter-specific divergence, and efficiency of identification. The results show that the inter-specific divergence of congeneric species in plants and animals was greater than its corresponding intra-specific variations. The success rates for using the ITS2 region to identify dicotyledons, monocotyledons, gymnosperms, ferns, mosses, and animals were 76.1%, 74.2%, 67.1%, 88.1%, 77.4%, and 91.7% at the species level, respectively. The ITS2 region unveiled a different ability to identify closely related species within different families and genera. The secondary structure of the ITS2 region could provide useful information for species identification and could be considered as a molecular morphological characteristic. Conclusions/Significance As one of the most popular phylogenetic markers for eukaryota, we propose that the ITS2 locus should be used as a universal DNA barcode for identifying plant species and as a complementary locus for CO1 to identify animal species. We have also developed a web application to facilitate ITS2-based cross-kingdom species identification (http://its2-plantidit.dnsalias.org). PMID:20957043

  18. Phylogeny and DNA barcoding of inquiline oak gallwasps (Hymenoptera: Cynipidae) of the Western Palaearctic.

    Science.gov (United States)

    Acs, Zoltán; Challis, Richard J; Bihari, Péter; Blaxter, Mark; Hayward, Alexander; Melika, George; Csóka, György; Pénzes, Zsolt; Pujade-Villar, Juli; Nieves-Aldrey, José-Luis; Schönrogge, Karsten; Stone, Graham N

    2010-04-01

    We examine phylogenetic relationships within the Synergus complex of herbivorous inquiline gallwasps (Hymenoptera; Cynipidae; Synergini) associated with cynipid host galls on oak, a biologically diverse group whose genus-level morphological taxonomy has long been considered stable but whose species level taxonomy is problematic. We incorporate data for over 70% of recognised Western Palaearctic species in five morphology-based genera (Ceroptres, Saphonecrus, Synergus, Synophrus, Ufo), comprising sequence for two mitochondrial loci (coxI, cytb) and one nuclear locus (28S D2). In particular, we assess the evidence for monophyly of two long-established, morphology-defined sections within the genus Synergus that differ in a range of biological traits. To aid analyses of ecological interactions within oak cynipid communities, we also consider the utility of cytochrome oxidase I (coxI) DNA barcodes in the oak inquilines. In this assessment, we do not assume that species are delineated at a single threshold value of sequence divergence for a single gene, but examine concordance in the composition of molecular operational Taxonomic units (MOTUs) across a range of sequence divergences in each gene and across genes. We also assess the impact of sampling effort on MOTU stability. Phylogenetic reconstructions for all three loci support monophyly for Synergus and Synophrus, but reject monophyly for Saphonecrus and for the two sections within Synergus. The suites of traits associated with the two sections of the genus Synergus are thus homoplasious. All three loci also reject monophyly for three Synergus species (S. hayneanus, S. pallipes, S. umbraculus). Sequences for each locus identify robust MOTUs that are largely concordant across loci for a range of cut-off values. Though many MOTU's correspond to recognised Linnean species, there is significant, multigene disagreement between groupings supported by morphology and sequence data, with both allocation of different

  19. Dietary Niche Partitioning of Euphaea formosa and Matrona cyanoptera (Odonata: Zygoptera) on the Basis of DNA Barcoding of Larval Feces.

    Science.gov (United States)

    Cheng, Yun-Chieh; Lin, Chung-Ping

    2016-01-01

    Odonate larvae are commonly considered opportunistic general predators in freshwater ecosystems. However, the dietary breadth of most odonate larvae in forest streams is still poorly documented. We characterized the prey species and estimated the level of dietary niche overlap of two damselflies, Euphaea formosa Hagen 1869 and Matrona cyanoptera Hämäläinen and Yeh, 2000 in a forest stream of central Taiwan on the basis of DNA barcoding of larval feces. A collection of 23 successfully identified cytochrome c oxidase 1 (CO1) barcoding sequences suggested that the mayflies (Ephemeroptera), caddisflies (Trichoptera), and midges (Diptera) comprise the majority (43%, 6/14) of prey species consumed by E. formosa larvae, whereas the identified prey for M. cyanoptera were mainly zooplankton (56%, 5/9). Statistical analysis of dietary overlap indicated that these two species occupy different dietary niches (Pianka's index = 0.219). DNA barcoding analysis of damselfly larval feces was effective in detecting less sclerotized prey such as vertebrates (fish and frog) and small zooplankton. However, a moderately successful rate (<70%) of PCR amplification by universal CO1 primers and a low percentage (<60%) of identifiable sequences in public databases indicate the limitations of naive DNA barcoding in fecal analysis. PMID:27432350

  20. DNA Barcode Authentication of Wood Samples of Threatened and Commercial Timber Trees within the Tropical Dry Evergreen Forest of India

    Science.gov (United States)

    Nithaniyal, Stalin; Newmaster, Steven G.; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy

    2014-01-01

    Background India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. Methodology/Principal Findings We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. Conclusions We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value. PMID:25259794

  1. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India.

    Directory of Open Access Journals (Sweden)

    Stalin Nithaniyal

    Full Text Available BACKGROUND: India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. METHODOLOGY/PRINCIPAL FINDINGS: We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK correctly identified 136 out of 143 species (95%. This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. CONCLUSIONS: We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value.

  2. Calibrating snakehead diversity with DNA barcodes: expanding taxonomic coverage to enable identification of potential and established invasive species.

    Science.gov (United States)

    Serrao, Natasha R; Steinke, Dirk; Hanner, Robert H

    2014-01-01

    Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species) and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius) are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway analysis.

  3. Calibrating snakehead diversity with DNA barcodes: expanding taxonomic coverage to enable identification of potential and established invasive species.

    Directory of Open Access Journals (Sweden)

    Natasha R Serrao

    Full Text Available Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway

  4. Calibrating snakehead diversity with DNA barcodes: expanding taxonomic coverage to enable identification of potential and established invasive species.

    Science.gov (United States)

    Serrao, Natasha R; Steinke, Dirk; Hanner, Robert H

    2014-01-01

    Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species) and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius) are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway analysis. PMID

  5. Molecular-based rapid inventories of sympatric diversity: a comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians.

    Science.gov (United States)

    Paz, Andrea; Crawford, Andrew J

    2012-11-01

    Molecular markers offer a universal source of data for quantifying biodiversity. DNA barcoding uses a standardized genetic marker and a curated reference database to identify known species and to reveal cryptic diversity within wellsampled clades. Rapid biological inventories, e.g. rapid assessment programs (RAPs), unlike most barcoding campaigns, are focused on particular geographic localities rather than on clades. Because of the potentially sparse phylogenetic sampling, the addition of DNA barcoding to RAPs may present a greater challenge for the identification of named species or for revealing cryptic diversity. In this article we evaluate the use of DNA barcoding for quantifying lineage diversity within a single sampling site as compared to clade-based sampling, and present examples from amphibians. We compared algorithms for identifying DNA barcode clusters (e.g. species, cryptic species or Evolutionary Significant Units) using previously published DNA barcode data obtained from geography-based sampling at a site in Central Panama, and from clade-based sampling in Madagascar. We found that clustering algorithms based on genetic distance performed similarly on sympatric as well as clade-based barcode data, while a promising coalescent-based method performed poorly on sympatric data. The various clustering algorithms were also compared in terms of speed and software implementation. Although each method has its shortcomings in certain contexts, we recommend the use of the ABGD method, which not only performs fairly well under either sampling method, but does so in a few seconds and with a user-friendly Web interface.

  6. Molecular-based rapid inventories of sympatric diversity: A comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians

    Indian Academy of Sciences (India)

    Andrea Paz; Andrew J Crawford

    2012-11-01

    Molecular markers offer a universal source of data for quantifying biodiversity. DNA barcoding uses a standardized genetic marker and a curated reference database to identify known species and to reveal cryptic diversity within well-sampled clades. Rapid biological inventories, e.g. rapid assessment programs (RAPs), unlike most barcoding campaigns, are focused on particular geographic localities rather than on clades. Because of the potentially sparse phylogenetic sampling, the addition of DNA barcoding to RAPs may present a greater challenge for the identification of named species or for revealing cryptic diversity. In this article we evaluate the use of DNA barcoding for quantifying lineage diversity within a single sampling site as compared to clade-based sampling, and present examples from amphibians. We compared algorithms for identifying DNA barcode clusters (e.g. species, cryptic species or Evolutionary Significant Units) using previously published DNA barcode data obtained from geography-based sampling at a site in Central Panama, and from clade-based sampling in Madagascar. We found that clustering algorithms based on genetic distance performed similarly on sympatric as well as clade-based barcode data, while a promising coalescent-based method performed poorly on sympatric data. The various clustering algorithms were also compared in terms of speed and software implementation. Although each method has its shortcomings in certain contexts, we recommend the use of the ABGD method, which not only performs fairly well under either sampling method, but does so in a few seconds and with a user-friendly Web interface.

  7. DNA Barcode, una alternativa para identificar especies del Complejo Midas Chichlidae en Nicaragua

    Directory of Open Access Journals (Sweden)

    Lucia Páiz Medina

    2008-04-01

    Full Text Available EL COMPLEJO MIDAS CICHLIDAE (especies del género Amphilophus ha sido objeto de discusión entre diferentes grupos de científicos debido a que desde los primeros intentos de su clasificación taxonómica presentó problemas dada la similitud morfológica entre especies del Complejo. Inicialmente se pensó que era solamente una especie polimórfica pero, luego de realizar diferentes estudios, se sabe queson diferentes especies. DNA Barcode (Código de Barras genético es una técnica moderna que se está implementando en el Centro de Biología Molecular, y que pretende identificar las diferentes especies del Complejo Midas Ciclhidae utilizando una secuencia relativamente corta del gen mitocondrial COI.

  8. Forensic DNA barcoding and bio-response studies of animal horn products used in traditional medicine.

    Directory of Open Access Journals (Sweden)

    Dan Yan

    Full Text Available BACKGROUND: Animal horns (AHs have been applied to traditional medicine for more than thousands of years, of which clinical effects have been confirmed by the history. But now parts of AHs have been listed in the items of wildlife conservation, which limits the use for traditional medicine. The contradiction between the development of traditional medicine and the protection of wild resources has already become the common concern of zoophilists, traditional medical professionals, economists, sociologists. We believe that to strengthen the identification for threatened animals, to prevent the circulation of them, and to seek fertile animals of corresponding bioactivities as substitutes are effective strategies to solve this problem. METHODOLOGY/PRINCIPAL FINDINGS: A powerful technique of DNA barcoding based on the mitochondrial gene cytochrome c oxidase I (COI was used to identify threatened animals of Bovidae and Cervidae, as well as their illegal adulterants (including 10 species and 47 specimens. Meanwhile, the microcalorimetric technique was used to characterize the differences of bio-responses when those animal specimens acted on model organism (Escherichia coli. We found that the COI gene could be used as a universal primer to identify threatened animals and illegal adulterants mentioned above. By analyzing 223 mitochondrial COI sequences, a 100% identification success rate was achieved. We further found that the horns of Mongolian Gazelle and Red Deer could be exploited as a substitute for some functions of endangered Saiga Antelope and Sika Deer in traditional medicine, respectively. CONCLUSION/SIGNIFICANCE: Although it needs a more comprehensive evaluation of bioequivalence in order to completely solve the problem of substitutes for threatened animals, we believe that the identification (DNA barcoding of threatened animals combined with seeking substitutions (bio-response can yet be regarded as a valid strategy for establishing a balance

  9. DNA barcode libraries provide insight into continental patterns of avian diversification.

    Directory of Open Access Journals (Sweden)

    Darío A Lijtmaer

    Full Text Available BACKGROUND: The causes for the higher biodiversity in the Neotropics as compared to the Nearctic and the factors promoting species diversification in each region have been much debated. The refuge hypothesis posits that high tropical diversity reflects high speciation rates during the Pleistocene, but this conclusion has been challenged. The present study investigates this matter by examining continental patterns of avian diversification through the analysis of large-scale DNA barcode libraries. METHODOLOGY AND PRINCIPAL FINDINGS: Standardized COI datasets from the avifaunas of Argentina, the Nearctic, and the Palearctic were analyzed. Average genetic distances between closest congeners and sister species were higher in Argentina than in North America reflecting a much higher percentage of recently diverged species in the latter region. In the Palearctic genetic distances between closely related species appeared to be more similar to those of the southern Neotropics. Average intraspecific variation was similar in Argentina and North America, while the Palearctic fauna had a higher value due to a higher percentage of variable species. Geographic patterning of intraspecific structure was more complex in the southern Neotropics than in the Nearctic, while the Palearctic showed an intermediate level of complexity. CONCLUSIONS AND SIGNIFICANCE: DNA barcodes can reveal continental patterns of diversification. Our analysis suggests that avian species are older in Argentina than in the Nearctic, supporting the idea that the greater diversity of the Neotropical avifauna is not caused by higher recent speciation rates. Species in the Palearctic also appear to be older than those in the Nearctic. These results, combined with the patterns of geographic structuring found in each region, suggest a major impact of Pleistocene glaciations in the Nearctic, a lesser effect in the Palearctic and a mild effect in the southern Neotropics.

  10. Illegal trade of regulated and protected aquatic species in the Philippines detected by DNA barcoding.

    Science.gov (United States)

    Asis, Angelli Marie Jacynth M; Lacsamana, Joanne Krisha M; Santos, Mudjekeewis D

    2016-01-01

    Illegal trade has greatly affected marine fish stocks, decreasing fish populations worldwide. Despite having a number of aquatic species being regulated, illegal trade still persists through the transport of dried or processed products and juvenile species trafficking. In this regard, accurate species identification of illegally traded marine fish stocks by DNA barcoding is deemed to be a more efficient method in regulating and monitoring trade than by morphological means which is very difficult due to the absence of key morphological characters in juveniles and processed products. Here, live juvenile eels (elvers) and dried products of sharks and rays confiscated for illegal trade were identified. Twenty out of 23 (87%) randomly selected "elvers" were identified as Anguilla bicolor pacifica and 3 (13%) samples as Anguilla marmorata. On the other hand, 4 out of 11 (36%) of the randomly selected dried samples of sharks and rays were Manta birostris. The rest of the samples were identified as Alopias pelagicus, Taeniura meyeni, Carcharhinus falciformis, Himantura fai and Mobula japonica. These results confirm that wild juvenile eels and species of manta rays are still being caught in the country regardless of its protected status under Philippine and international laws. It is evident that the illegal trade of protected aquatic species is happening in the guise of dried or processed products thus the need to put emphasis on strengthening conservation measures. This study aims to underscore the importance of accurate species identification in such cases of illegal trade and the effectivity of DNA barcoding as a tool to do this. PMID:24841434

  11. Development of a DNA barcoding system for seagrasses: successful but not simple.

    Directory of Open Access Journals (Sweden)

    Christina Lucas

    Full Text Available Seagrasses, a unique group of submerged flowering plants, profoundly influence the physical, chemical and biological environments of coastal waters through their high primary productivity and nutrient recycling ability. They provide habitat for aquatic life, alter water flow, stabilize the ground and mitigate the impact of nutrient pollution. at the coast region. Although on a global scale seagrasses represent less than 0.1% of the angiosperm taxa, the taxonomical ambiguity in delineating seagrass species is high. Thus, the taxonomy of several genera is unsolved. While seagrasses are capable of performing both, sexual and asexual reproduction, vegetative reproduction is common and sexual progenies are always short lived and epimeral in nature. This makes species differentiation often difficult, especially for non-taxonomists since the flower as a distinct morphological trait is missing. Our goal is to develop a DNA barcoding system assisting also non-taxonomists to identify regional seagrass species. The results will be corroborated by publicly available sequence data. The main focus is on the 14 described seagrass species of India, supplemented with seagrasses from temperate regions. According to the recommendations of the Consortium for the Barcoding of Life (CBOL rbcL and matK were used in this study. After optimization of the DNA extraction method from preserved seagrass material, the respective sequences were amplified from all species analyzed. Tree- and character-based approaches demonstrate that the rbcL sequence fragment is capable of resolving up to family and genus level. Only matK sequences were reliable in resolving species and partially the ecotype level. Additionally, a plastidic gene spacer was included in the analysis to confirm the identification level. Although the analysis of these three loci solved several nodes, a few complexes remained unsolved, even when constructing a combined tree for all three loci. Our approaches

  12. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap.

    Science.gov (United States)

    Hill, Geoffrey E

    2016-08-01

    Mitochondrial genes are widely used in taxonomy and systematics because high mutation rates lead to rapid sequence divergence and because such changes have long been assumed to be neutral with respect to function. In particular, the nucleotide sequence of the mitochondrial gene cytochrome c oxidase subunit 1 has been established as a highly effective DNA barcode for diagnosing the species boundaries of animals. Rarely considered in discussions of mitochondrial evolution in the context of systematics, speciation, or DNA barcodes, however, is the genomic architecture of the eukaryotes: Mitochondrial and nuclear genes must function in tight coordination to produce the complexes of the electron transport chain and enable cellular respiration. Coadaptation of these interacting gene products is essential for organism function. I extend the hypothesis that mitonuclear interactions are integral to the process of speciation. To maintain mitonuclear coadaptation, nuclear genes, which code for proteins in mitochondria that cofunction with the products of mitochondrial genes, must coevolve with rapidly changing mitochondrial genes. Mitonuclear coevolution in isolated populations leads to speciation because population-specific mitonuclear coadaptations create between-population mitonuclear incompatibilities and hence barriers to gene flow between populations. In addition, selection for adaptive divergence of products of mitochondrial genes, particularly in response to climate or altitude, can lead to rapid fixation of novel mitochondrial genotypes between populations and consequently to disruption in gene flow between populations as the initiating step in animal speciation. By this model, the defining characteristic of a metazoan species is a coadapted mitonuclear genotype that is incompatible with the coadapted mitochondrial and nuclear genotype of any other population. PMID:27547358

  13. Australian Sphingidae--DNA barcodes challenge current species boundaries and distributions.

    Directory of Open Access Journals (Sweden)

    Rodolphe Rougerie

    Full Text Available MAIN OBJECTIVE: We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae. METHODS: We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. RESULTS: Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758, a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90% Australian sphingids are endemic to the continent (45% or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%. Only seven species (10% have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. MAIN CONCLUSIONS: This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies.

  14. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases

    Directory of Open Access Journals (Sweden)

    Taberlet Pierre

    2010-07-01

    Full Text Available Abstract Background During the last 15 years the internal transcribed spacer (ITS of nuclear DNA has been used as a target for analyzing fungal diversity in environmental samples, and has recently been selected as the standard marker for fungal DNA barcoding. In this study we explored the potential amplification biases that various commonly utilized ITS primers might introduce during amplification of different parts of the ITS region in samples containing mixed templates ('environmental barcoding'. We performed in silico PCR analyses with commonly used primer combinations using various ITS datasets obtained from public databases as templates. Results Some of the ITS primers, such as ITS1-F, were hampered with a high proportion of mismatches relative to the target sequences, and most of them appeared to introduce taxonomic biases during PCR. Some primers, e.g. ITS1-F, ITS1 and ITS5, were biased towards amplification of basidiomycetes, whereas others, e.g. ITS2, ITS3 and ITS4, were biased towards ascomycetes. The assumed basidiomycete-specific primer ITS4-B only amplified a minor proportion of basidiomycete ITS sequences, even under relaxed PCR conditions. Due to systematic length differences in the ITS2 region as well as the entire ITS, we found that ascomycetes will more easily amplify than basidiomycetes using these regions as targets. This bias can be avoided by using primers amplifying ITS1 only, but this would imply preferential amplification of 'non-dikarya' fungi. Conclusions We conclude that ITS primers have to be selected carefully, especially when used for high-throughput sequencing of environmental samples. We suggest that different primer combinations or different parts of the ITS region should be analyzed in parallel, or that alternative ITS primers should be searched for.

  15. Insect Barcode Information System

    Science.gov (United States)

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client– server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. Availability http://www.nabg-nbaii.res.in/barcode PMID:24616562

  16. Mosquito species (Diptera, Culicidae) in three ecosystems from the Colombian Andes: identification through DNA barcoding and adult morphology.

    Science.gov (United States)

    Rozo-Lopez, Paula; Mengual, Ximo

    2015-01-01

    Colombia, one of the world's megadiverse countries, has a highly diverse mosquito fauna and a high prevalence of mosquito-borne diseases. In order to provide relevant information about the diversity and taxonomy of mosquito species in Colombia and to test the usefulness of DNA barcodes, mosquito species collected at different elevations in the departments of Antioquia and Caldas were identified combining adult morphology and barcode sequences. A total of 22 mosquito species from eight genera were identified using these combined techniques. We generated 77 barcode sequences with 16 species submitted as new country records for public databases. We examined the usefulness of DNA barcodes to discriminate mosquito species from the Neotropics by compiling 1,292 sequences from a total of 133 species and using the tree-based methods of neighbor-joining and maximum likelihood. Both methodologies provided similar results by resolving 105 species of mosquitoes separated into distinct clusters. This study shows the importance of combining classic morphological methodologies with molecular tools to accurately identify mosquitoes from Colombia. PMID:26257568

  17. Mosquito species (Diptera, Culicidae in three ecosystems from the Colombian Andes: identification through DNA barcoding and adult morphology

    Directory of Open Access Journals (Sweden)

    Paula Rozo-Lopez

    2015-07-01

    Full Text Available Colombia, one of the world’s megadiverse countries, has a highly diverse mosquito fauna and a high prevalence of mosquito-borne diseases. In order to provide relevant information about the diversity and taxonomy of mosquito species in Colombia and to test the usefulness of DNA barcodes, mosquito species collected at different elevations in the departments of Antioquia and Caldas were identified combining adult morphology and barcode sequences. A total of 22 mosquito species from eight genera were identified using these combined techniques. We generated 77 barcode sequences with 16 species submitted as new country records for public databases. We examined the usefulness of DNA barcodes to discriminate mosquito species from the Neotropics by compiling 1,292 sequences from a total of 133 species and using the tree-based methods of neighbor-joining and maximum likelihood. Both methodologies provided similar results by resolving 105 species of mosquitoes separated into distinct clusters. This study shows the importance of combining classic morphological methodologies with molecular tools to accurately identify mosquitoes from Colombia.

  18. Testing DNA Barcode Performance in 1000 Species of European Lepidoptera: Large Geographic Distances Have Small Genetic Impacts

    Science.gov (United States)

    Huemer, Peter; Mutanen, Marko; Sefc, Kristina M.; Hebert, Paul D. N.

    2014-01-01

    This study examines the performance of DNA barcodes (mt cytochrome c oxidase 1 gene) in the identification of 1004 species of Lepidoptera shared by two localities (Finland, Austria) that are 1600 km apart. Maximum intraspecific distances for the pooled data were less than 2% for 880 species (87.6%), while deeper divergence was detected in 124 species. Despite such variation, the overall DNA barcode library possessed diagnostic COI sequences for 98.8% of the taxa. Because a reference library based on Finnish specimens was highly effective in identifying specimens from Austria, we conclude that barcode libraries based on regional sampling can often be effective for a much larger area. Moreover, dispersal ability (poor, good) and distribution patterns (disjunct, fragmented, continuous, migratory) had little impact on levels of intraspecific geographic divergence. Furthermore, the present study revealed that, despite the intensity of past taxonomic work on European Lepidoptera, nearly 20% of the species shared by Austria and Finland require further work to clarify their status. Particularly discordant BIN (Barcode Index Number) cases should be checked to ascertain possible explanatory factors such as incorrect taxonomy, hybridization, introgression, and Wolbachia infections. PMID:25541991

  19. Testing DNA barcode performance in 1000 species of European lepidoptera: large geographic distances have small genetic impacts.

    Directory of Open Access Journals (Sweden)

    Peter Huemer

    Full Text Available This study examines the performance of DNA barcodes (mt cytochrome c oxidase 1 gene in the identification of 1004 species of Lepidoptera shared by two localities (Finland, Austria that are 1600 km apart. Maximum intraspecific distances for the pooled data were less than 2% for 880 species (87.6%, while deeper divergence was detected in 124 species. Despite such variation, the overall DNA barcode library possessed diagnostic COI sequences for 98.8% of the taxa. Because a reference library based on Finnish specimens was highly effective in identifying specimens from Austria, we conclude that barcode libraries based on regional sampling can often be effective for a much larger area. Moreover, dispersal ability (poor, good and distribution patterns (disjunct, fragmented, continuous, migratory had little impact on levels of intraspecific geographic divergence. Furthermore, the present study revealed that, despite the intensity of past taxonomic work on European Lepidoptera, nearly 20% of the species shared by Austria and Finland require further work to clarify their status. Particularly discordant BIN (Barcode Index Number cases should be checked to ascertain possible explanatory factors such as incorrect taxonomy, hybridization, introgression, and Wolbachia infections.

  20. Disentangling Vector-Borne Transmission Networks: A Universal DNA Barcoding Method to Identify Vertebrate Hosts from Arthropod Bloodmeals

    DEFF Research Database (Denmark)

    Alcaide, Miguel; Rico, Ciro; Ruiz, Santiago;

    2009-01-01

    Emerging infectious diseases represent a challenge for global economies and public health. About one fourth of the last pandemics have been originated by the spread of vector-borne pathogens. In this sense, the advent of modern molecular techniques has enhanced our capabilities to understand vector......-host interactions and disease ecology. However, host identification protocols have poorly profited of international DNA barcoding initiatives and/or have focused exclusively on a limited array of vector species. Therefore, ascertaining the potential afforded by DNA barcoding tools in other vector-host systems...... of human and veterinary importance would represent a major advance in tracking pathogen life cycles and hosts. Here, we show the applicability of a novel and efficient molecular method for the identification of the vertebrate host’s DNA contained in the midgut of blood-feeding arthropods. To this end, we...

  1. Insect Barcode Information System

    OpenAIRE

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally ...

  2. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region

    OpenAIRE

    W. John Kress; Erickson, David L.

    2007-01-01

    BACKGROUND: A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. METHODOLOG...

  3. Joining inventory by parataxonomists with DNA barcoding of a large complex tropical conserved wildland in northwestern Costa Rica.

    Directory of Open Access Journals (Sweden)

    Daniel H Janzen

    Full Text Available BACKGROUND: The many components of conservation through biodiversity development of a large complex tropical wildland, Area de Conservacion Guanacaste (ACG, thrive on knowing what is its biodiversity and natural history. For 32 years a growing team of Costa Rican parataxonomists has conducted biodiversity inventory of ACG caterpillars, their food plants, and their parasitoids. In 2003, DNA barcoding was added to the inventory process. METHODOLOGY/PRINCIPAL FINDINGS: We describe some of the salient consequences for the parataxonomists of barcoding becoming part of a field biodiversity inventory process that has centuries of tradition. From the barcoding results, the parataxonomists, as well as other downstream users, gain a more fine-scale and greater understanding of the specimens they find, rear, photograph, database and deliver. The parataxonomists also need to adjust to collecting more specimens of what appear to be the "same species"--cryptic species that cannot be distinguished by eye or even food plant alone--while having to work with the name changes and taxonomic uncertainty that comes with discovering that what looked like one species may be many. CONCLUSIONS/SIGNIFICANCE: These career parataxonomists, despite their lack of formal higher education, have proven very capable of absorbing and working around the additional complexity and requirements for accuracy and detail that are generated by adding barcoding to the field base of the ACG inventory. In the process, they have also gained a greater understanding of the fine details of phylogeny, relatedness, evolution, and species-packing in their own tropical complex ecosytems. There is no reason to view DNA barcoding as incompatible in any way with tropical biodiversity inventory as conducted by parataxonomists. Their year-round on-site inventory effort lends itself well to the sampling patterns and sample sizes needed to build a thorough barcode library. Furthermore, the biological

  4. e-DNA meta-barcoding: from NGS raw data to taxonomic profiling.

    Science.gov (United States)

    Bruno, Fosso; Marinella, Marzano; Santamaria, Monica

    2015-01-01

    In recent years, thanks to the essential support provided by the Next-Generation Sequencing (NGS) technologies, Metagenomics is enabling the direct access to the taxonomic and functional composition of mixed microbial communities living in any environmental niche, without the prerequisite to isolate or culture the single organisms. This approach has already been successfully applied for the analysis of many habitats, such as water or soil natural environments, also characterized by extreme physical and chemical conditions, food supply chains, and animal organisms, including humans. A shotgun sequencing approach can lead to investigate both organisms and genes diversity. Anyway, if the purpose is limited to explore the taxonomic complexity, an amplicon-based approach, based on PCR-targeted sequencing of selected genetic species markers, commonly named "meta-barcodes", is desirable. Among the genomic regions most widely used for the discrimination of bacterial organisms, in some cases up to the species level, some hypervariable domains of the gene coding for the 16S rRNA occupy a prominent place. The amplification of a certain meta-barcode from a microbial community through the use of PCR primers able to work in the entire considered taxonomic group is the first task after the extraction of the total DNA. Generally, this step is followed by the high-throughput sequencing of the resulting amplicons libraries by means of a selected NGS platform. Finally, the interpretation of the huge amount of produced data requires appropriate bioinformatics tools and know-how in addition to efficient computational resources. Here a computational methodology suitable for the taxonomic characterization of 454 meta-barcode sequences is described in detail. In particular, a dataset covering the V1-V3 region belonging to the bacterial 16S rRNA coding gene and produced in the Human Microbiome Project (HMP) from a palatine tonsils sample is analyzed. The proposed exercise includes the

  5. e-DNA meta-barcoding: from NGS raw data to taxonomic profiling.

    Science.gov (United States)

    Bruno, Fosso; Marinella, Marzano; Santamaria, Monica

    2015-01-01

    In recent years, thanks to the essential support provided by the Next-Generation Sequencing (NGS) technologies, Metagenomics is enabling the direct access to the taxonomic and functional composition of mixed microbial communities living in any environmental niche, without the prerequisite to isolate or culture the single organisms. This approach has already been successfully applied for the analysis of many habitats, such as water or soil natural environments, also characterized by extreme physical and chemical conditions, food supply chains, and animal organisms, including humans. A shotgun sequencing approach can lead to investigate both organisms and genes diversity. Anyway, if the purpose is limited to explore the taxonomic complexity, an amplicon-based approach, based on PCR-targeted sequencing of selected genetic species markers, commonly named "meta-barcodes", is desirable. Among the genomic regions most widely used for the discrimination of bacterial organisms, in some cases up to the species level, some hypervariable domains of the gene coding for the 16S rRNA occupy a prominent place. The amplification of a certain meta-barcode from a microbial community through the use of PCR primers able to work in the entire considered taxonomic group is the first task after the extraction of the total DNA. Generally, this step is followed by the high-throughput sequencing of the resulting amplicons libraries by means of a selected NGS platform. Finally, the interpretation of the huge amount of produced data requires appropriate bioinformatics tools and know-how in addition to efficient computational resources. Here a computational methodology suitable for the taxonomic characterization of 454 meta-barcode sequences is described in detail. In particular, a dataset covering the V1-V3 region belonging to the bacterial 16S rRNA coding gene and produced in the Human Microbiome Project (HMP) from a palatine tonsils sample is analyzed. The proposed exercise includes the

  6. Oligonucleotide indexing of DNA barcodes: identification of tuna and other scombrid species in food products

    Directory of Open Access Journals (Sweden)

    Botti Sara

    2010-08-01

    Full Text Available Abstract Background DNA barcodes are a global standard for species identification and have countless applications in the medical, forensic and alimentary fields, but few barcoding methods work efficiently in samples in which DNA is degraded, e.g. foods and archival specimens. This limits the choice of target regions harbouring a sufficient number of diagnostic polymorphisms. The method described here uses existing PCR and sequencing methodologies to detect mitochondrial DNA polymorphisms in complex matrices such as foods. The reported application allowed the discrimination among 17 fish species of the Scombridae family with high commercial interest such as mackerels, bonitos and tunas which are often present in processed seafood. The approach can be easily upgraded with the release of new genetic diversity information to increase the range of detected species. Results Cocktail of primers are designed for PCR using publicly available sequences of the target sequence. They are composed of a fixed 5' region and of variable 3' cocktail portions that allow amplification of any member of a group of species of interest. The population of short amplicons is directly sequenced and indexed using primers containing a longer 5' region and the non polymorphic portion of the cocktail portion. A 226 bp region of CytB was selected as target after collection and screening of 148 online sequences; 85 SNPs were found, of which 75 were present in at least two sequences. Primers were also designed for two shorter sub-fragments that could be amplified from highly degraded samples. The test was used on 103 samples of seafood (canned tuna and scomber, tuna salad, tuna sauce and could successfully detect the presence of different or additional species that were not identified on the labelling of canned tuna, tuna salad and sauce samples. Conclusions The described method is largely independent of the degree of degradation of DNA source and can thus be applied to

  7. A DNA-based registry for all animal species: the barcode index number (BIN system.

    Directory of Open Access Journals (Sweden)

    Sujeevan Ratnasingham

    Full Text Available Because many animal species are undescribed, and because the identification of known species is often difficult, interim taxonomic nomenclature has often been used in biodiversity analysis. By assigning individuals to presumptive species, called operational taxonomic units (OTUs, these systems speed investigations into the patterning of biodiversity and enable studies that would otherwise be impossible. Although OTUs have conventionally been separated through their morphological divergence, DNA-based delineations are not only feasible, but have important advantages. OTU designation can be automated, data can be readily archived, and results can be easily compared among investigations. This study exploits these attributes to develop a persistent, species-level taxonomic registry for the animal kingdom based on the analysis of patterns of nucleotide variation in the barcode region of the cytochrome c oxidase I (COI gene. It begins by examining the correspondence between groups of specimens identified to a species through prior taxonomic work and those inferred from the analysis of COI sequence variation using one new (RESL and four established (ABGD, CROP, GMYC, jMOTU algorithms. It subsequently describes the implementation, and structural attributes of the Barcode Index Number (BIN system. Aside from a pragmatic role in biodiversity assessments, BINs will aid revisionary taxonomy by flagging possible cases of synonymy, and by collating geographical information, descriptive metadata, and images for specimens that are likely to belong to the same species, even if it is undescribed. More than 274,000 BIN web pages are now available, creating a biodiversity resource that is positioned for rapid growth.

  8. DNA barcode information for the sugar cane moth borer Diatraea saccharalis.

    Science.gov (United States)

    Bravo, J P; Silva, J L C; Munhoz, R E F; Fernandez, M A

    2008-01-01

    We reviewed the use and relevance of barcodes for insect studies and investigated the barcode sequence of Diatraea saccharalis. This sequence has a high level of homology (99%) with the barcode sequence of the Crambidae (Lepidoptera). The sequence data can be used to construct relationships between species, allowing a multidisciplinary approach for taxonomy, which includes morphological, molecular and distribution data, all of which are essential for the understanding of biodiversity. The D. saccharalis barcode is a previously undescribed sequence that could be used to analyze Lepidoptera biology. PMID:18767242

  9. Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae of an Ecuadorian Mountain Forest Using DNA Barcoding.

    Directory of Open Access Journals (Sweden)

    Birthe Thormann

    Full Text Available Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates.Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs (n = 284-289. Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2 and 469-481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation.Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons, the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a

  10. Cytogenetic and DNA barcoding reveals high divergence within the trahira, Hoplias malabaricus (Characiformes: Erythrinidae from the lower Amazon River

    Directory of Open Access Journals (Sweden)

    Diego Ferreira Marques

    2013-06-01

    Full Text Available Molecular and cytogenetic data have provided evidence of cryptic speciation in the widespread South American trahira, Hoplias malabaricus. In the present study, karyotypes and DNA barcode sequences of specimens from seven populations inhabiting the lower Amazon River were analyzed in order to characterize the levels of genetic divergence within a single karyomorph. All the specimens presented karyotypes with 2n = 40 chromosomes (20m+20sm that were consistent with the species' C karyomorph. The DNA barcodes revealed six haplogroups, with clear divergence between populations from Brazil and Argentina. The results support the species complex hypothesis and indicate that a single karyomorph of H. malabaricus may harbor more than one species

  11. DNA barcoding reveals mislabeling of imported fish products in Nansha new port of Guangzhou, Guangdong province, China.

    Science.gov (United States)

    Yan, Shuai; Lai, Guiyan; Li, Li; Xiao, Hao; Zhao, Ming; Wang, Ming

    2016-07-01

    In the present study, we employed a DNA barcoding approach to authenticate the species of fish imported via one port in China. The fish were identified as smallmouth scad based on morphological characteristics, Alepes apercna (Perciformes, Carangidae), but were labeled as Rastrelliger brachysoma (Perciformes, Scombridae). Fragments of the partial mitochondrial cytochrome c oxidase 1 (COI) gene were sequenced from 12 specimens, and their phylogenetic relationship was subsequently examined. The phylogenetic analysis demonstrated that all of the individuals formed a monophyletic cluster with high bootstrap values and were placed in a sister group with the ancestor of Alepes vari and Alepes melanoptera. The K2P genetic distances at an intraspecific level were significantly smaller than those at an interspecific level. Our results indicated that the fish were A. apercna, rather than R. brachysoma, which confirms the morphological analysis. This study presents a practical demonstration of the use of DNA barcoding to prevent fraud in international trade. PMID:26920274

  12. DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica.

    Science.gov (United States)

    Burns, John M; Janzen, Daniel H; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hebert, Paul D N

    2008-04-29

    DNA barcodes can be used to identify cryptic species of skipper butterflies previously detected by classic taxonomic methods and to provide first clues to the existence of yet other cryptic species. A striking case is the common geographically and ecologically widespread neotropical skipper butterfly Perichares philetes (Lepidoptera, Hesperiidae), described in 1775, which barcoding splits into a complex of four species in Area de Conservación Guanacaste (ACG) in northwestern Costa Rica. Three of the species are new, and all four are described. Caterpillars, pupae, and foodplants offer better distinguishing characters than do adults, whose differences are mostly average, subtle, and blurred by intraspecific variation. The caterpillars of two species are generalist grass-eaters; of the other two, specialist palm-eaters, each of which feeds on different genera. But all of these cryptic species are more specialized in their diet than was the morphospecies that held them. The four ACG taxa discovered to date belong to a panneotropical complex of at least eight species. This complex likely includes still more species, whose exposure may require barcoding. Barcoding ACG hesperiid morphospecies has increased their number by nearly 10%, an unexpectedly high figure for such relatively well known insects.

  13. Evaluating the Utility of Single-Locus DNA Barcoding for the Identification of Ribbon Worms (Phylum Nemertea.

    Directory of Open Access Journals (Sweden)

    Per Sundberg

    Full Text Available Whereas many nemerteans (ribbon worms; phylum Nemertea can be identified from external characters if observed alive, many are still problematic. When it comes to preserved specimens (as in e.g. marine inventories, there is a particular need for specimen identifier alternatives. Here, we evaluate the utility of COI (cytochrome c oxidase subunit I as a single-locus barcoding gene. We sequenced, data mined, and compared gene fragments of COI for 915 individuals representing 161 unique taxonomic labels for 71 genera, and subjected different constellations of these to both distance-based and character-based DNA barcoding approaches, as well as species delimitation analyses. We searched for the presence or absence of a barcoding gap at different taxonomic levels (phylum, subclass, family and genus in an attempt to understand at what level a putative barcoding gap presents itself. This was performed both using the taxonomic labels as species predictors and using objectively inferred species boundaries recovered from our species delimitation analyses. Our data suggest that COI works as a species identifier for most groups within the phylum, but also that COI data are obscured by misidentifications in sequence databases. Further, our results suggest that the number of predicted species within the dataset is (in some cases substantially higher than the number of unique taxonomic labels-this highlights the presence of several cryptic lineages within well-established taxa and underscores the urgency of an updated taxonomic backbone for the phylum.

  14. Barcoding Fauna Bavarica: Myriapoda – a contribution to DNA sequence-based identifications of centipedes and millipedes (Chilopoda, Diplopoda

    Directory of Open Access Journals (Sweden)

    Joerg Spelda

    2011-12-01

    Full Text Available We give a first account of our ongoing barcoding activities on Bavarian myriapods in the framework of the Barcoding Fauna Bavarica project and IBOL, the International Barcode of Life.analyzed 126 taxa (including 122 species belonging to all major German chilopod and diplopod lineages, often using four or more specimens each, at the moment our species stock includes 82% of the diplopods and 65% of the chilopods found in Bavaria, southern Germany. The partial COI sequences allow correct identification of more than 95% of the current set of Bavarian species. Moreover, most of the myriapod orders and families appear as distinct clades in neighbour-joining trees, although the phylogenetic relationships between them are not always depicted correctly. We give examples of (1 high interspecific sequence variability among closely related species; (2 low interspecific variability in some chordeumatidan genera, indicating that recent speciations cannot be resolved with certainty using COI DNA barcodes; (3 high intraspecific variation in some genera, suggesting the existence of cryptic lineages; and (4 the possible polyphyly of some taxa, i.e. the chordeumatidan genus Ochogona. This shows that, in addition to species identification, our data may be useful in various ways in the context of species delimitations, taxonomic revisions and analyses of ongoing speciation processes.

  15. Molecular Identification of Dendrobium Species (Orchidaceae Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study

    Directory of Open Access Journals (Sweden)

    Shangguo Feng

    2015-09-01

    Full Text Available The over-collection and habitat destruction of natural Dendrobium populations for their commercial medicinal value has led to these plants being under severe threat of extinction. In addition, many Dendrobium plants are similarly shaped and easily confused during the absence of flowering stages. In the present study, we examined the application of the ITS2 region in barcoding and phylogenetic analyses of Dendrobium species (Orchidaceae. For barcoding, ITS2 regions of 43 samples in Dendrobium were amplified. In combination with sequences from GenBank, the sequences were aligned using Clustal W and genetic distances were computed using MEGA V5.1. The success rate of PCR amplification and sequencing was 100%. There was a significant divergence between the inter- and intra-specific genetic distances of ITS2 regions, while the presence of a barcoding gap was obvious. Based on the BLAST1, nearest distance and TaxonGAP methods, our results showed that the ITS2 regions could successfully identify the species of most Dendrobium samples examined; Second, we used ITS2 as a DNA marker to infer phylogenetic relationships of 64 Dendrobium species. The results showed that cluster analysis using the ITS2 region mainly supported the relationship between the species of Dendrobium established by traditional morphological methods and many previous molecular analyses. To sum up, the ITS2 region can not only be used as an efficient barcode to identify Dendrobium species, but also has the potential to contribute to the phylogenetic analysis of the genus Dendrobium.

  16. DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus of Neotropical malaria vectors

    Directory of Open Access Journals (Sweden)

    Ruiz-Lopez Freddy

    2012-02-01

    Full Text Available Abstract Background Mosquitoes belonging to the Albitarsis Group (Anopheles: Nyssorhynchus are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution. Methods DNA barcodes (658 bp of the mtDNA Cytochrome c Oxidase - COI were generated for 565 An. albitarsis s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P and Neighbor-joining analysis (NJ, for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (Anopheles: Nyssorhynchus, and compare results with Bayesian analysis. Results Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P was 0.009 (range 0.002 - 0.014, whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020 - 0.056, supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (An. albitarsis s.s., An. albitarsis F, An. deaneorum, An. janconnae, An. marajoara and An. oryzalimnetes, and also support species level status for two previously detected lineages - An. albitarsis G &An. albitarsis I (designated herein. In addition, we highlight the presence of a unique mitochondrial lineage close to An. deaneorum and An

  17. Advances on DNA barcoding in fungi%真菌DNA条形码技术研究进展

    Institute of Scientific and Technical Information of China (English)

    周均亮; 赵瑞琳

    2013-01-01

    DNA条形码(DNA barcoding)技术作为一门新兴的物种鉴定方法以其灵敏、精确、方便和客观的优势,在动植物和微生物的分类鉴定中已经得到广泛应用.真菌鉴定中常用作标准条形码的是核核糖体DNA内转录间隔区(Internal transcribed spacer,ITS),如今也有一些新型条形码被发现和应用到实际操作中,如微条形码、ND6、EF3.本文对DNA条形码技术的产生和发展做出了总结,通过研究其在真菌中应用的实际案例分析了DNA条形码技术的优缺点及发展趋势,并指出DNA条形码技术将以全新的视角来弥补传统分类学的不足,最终实现生物自身的序列变异信息与现有形态分类学的结合.%As an emerging organism identification method,DNA barcoding has been widely used in plants,animals and microorganisms for its advantage of higher sensitivity,accuracy,and objectivity.Even the nuclear ribosomal internal transcribed spacer (ITS) is used as a standard barcode in fungal identification frequently,nowadays,there are more and more newbarcodes,such as the microcoding,ND6 and EF3.In this article we summarized the generation and developing history of DNA barcoding,also we present the advantage,shortcomings and the development trend based on fungal barcoding case studies.We indicated that DNA barcoding technique will be a good supplementary to the traditional morphology-based taxonomy,and towards a combination of natural evolutional relationships and morphological taxonomy in fungi.

  18. Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises

    Science.gov (United States)

    Raupach, Michael J.; Hendrich, Lars; Küchler, Stefan M.; Deister, Fabian; Morinière, Jérome; Gossner, Martin M.

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance 2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)). PMID:25203616

  19. Identification and reassessment of the specific status of some tropical freshwater midges (Diptera: Chironomidae) using DNA barcode data.

    Science.gov (United States)

    Pramual, Pairot; Simwisat, Kusumart; Martin, Jon

    2016-01-01

    Chironomidae are a highly diverse group of insects. Members of this family are often included in programs monitoring the health of freshwater ecosystems. However, a difficulty in morphological identification, particularly of larval stages is the major obstacle to this application. In this study, we tested the efficiency of mitochondrial cytochrome c oxidase I (COI) sequences as the DNA barcoding region for species identification of Chironomidae in Thailand. The results revealed 14 species with a high success rate (>90%) for the correct species identification, which suggests the potential usefulness of the technique. However, some morphological species possess high (>3%) intraspecific genetic divergence that suggests these species could be species complexes and need further morphological or cytological examination. Sequence-based species delimitation analyses indicated that most specimens identified as Chironomus kiiensis, Tokunaga 1936, in Japan are conspecific with C. striatipennis, Kieffer 1912, although a small number form a separate cluster. A review of the descriptions of Kiefferulus tainanus (Kieffer 1912) and its junior synonym, K. biroi (Kieffer 1918), following our results, suggests that this synonymy is probably not correct and that K. tainanus occurs in Japan, China and Singapore, while K. biroi occurs in India and Thailand. Our results therefore revealed the usefulness of DNA barcoding for correct species identification of Chironomidae, particularly the immature stages. In addition, DNA barcodes could also uncover hidden diversity that can guide further taxonomic study, and offer a more efficient way to identify species than morphological analysis where large numbers of specimens are involved, provided the identifications of DNA barcodes in the databases are correct. Our studies indicate that this is not the case, and we identify cases of misidentifications for C. flaviplumus, Tokunaga 1940 and K. tainanus. PMID:27395909

  20. Molecular identification of the traditional herbal medicines, Arisaematis Rhizoma and Pinelliae Tuber, and common adulterants via universal DNA barcode sequences.

    Science.gov (United States)

    Moon, B C; Kim, W J; Ji, Y; Lee, Y M; Kang, Y M; Choi, G

    2016-02-19

    Methods to identify Pinelliae Tuber and Arisaematis Rhizoma are required because of frequent reciprocal substitution between these two herbal medicines and the existence of several closely related plant materials. As a result of the morphological similarity of dried tubers, correct discrimination of authentic herbal medicines is difficult by conventional methods. Therefore, we analyzed DNA barcode sequences to identify each herbal medicine and the common adulterants at a species level. To verify the identity of these herbal medicines, we collected five authentic species (Pinellia ternata for Pinelliae Tuber, and Arisaema amurense, A. amurense var. serratum, A. erubescens, and A. heterophyllum for Arisaematis Rhizoma) and six common adulterant plant species. Maturase K (matK) and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) genes were then amplified using universal primers. In comparative analyses of two DNA barcode sequences, we obtained 45 species-specific nucleotides sufficient to identify each species (except A. erubescens with matK) and 28 marker nucleotides for each species (except P. pedatisecta with rbcL). Sequence differences at corresponding positions of the two combined DNA barcodes provided genetic marker nucleotides that could be used to identify specimens of the correct species among the analyzed medicinal plants. Furthermore, we generated a phylogenetic tree showing nine distinct groups depending on the species. These results can be used to authenticate Pinelliae Tuber and Arisaematis Rhizoma from their adulterants and to identify each species. Thus, comparative analyses of plant DNA barcode sequences identified useful genetic markers for the authentication of Pinelliae Tuber and Arisaematis Rhizoma from several adulterant herbal materials.

  1. The Foraging Ecology of the Mountain Long-Eared Bat Plecotus macrobullaris Revealed with DNA Mini-Barcodes

    OpenAIRE

    Alberdi Estibaritz, Antton; Garín Atorrasagasti, Ignacio; Aizpurua Arrieta, Ostaizka; Aiartza Azurtza, José Ramón

    2012-01-01

    Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fe...

  2. Molecular identification of the traditional herbal medicines, Arisaematis Rhizoma and Pinelliae Tuber, and common adulterants via universal DNA barcode sequences.

    Science.gov (United States)

    Moon, B C; Kim, W J; Ji, Y; Lee, Y M; Kang, Y M; Choi, G

    2016-01-01

    Methods to identify Pinelliae Tuber and Arisaematis Rhizoma are required because of frequent reciprocal substitution between these two herbal medicines and the existence of several closely related plant materials. As a result of the morphological similarity of dried tubers, correct discrimination of authentic herbal medicines is difficult by conventional methods. Therefore, we analyzed DNA barcode sequences to identify each herbal medicine and the common adulterants at a species level. To verify the identity of these herbal medicines, we collected five authentic species (Pinellia ternata for Pinelliae Tuber, and Arisaema amurense, A. amurense var. serratum, A. erubescens, and A. heterophyllum for Arisaematis Rhizoma) and six common adulterant plant species. Maturase K (matK) and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) genes were then amplified using universal primers. In comparative analyses of two DNA barcode sequences, we obtained 45 species-specific nucleotides sufficient to identify each species (except A. erubescens with matK) and 28 marker nucleotides for each species (except P. pedatisecta with rbcL). Sequence differences at corresponding positions of the two combined DNA barcodes provided genetic marker nucleotides that could be used to identify specimens of the correct species among the analyzed medicinal plants. Furthermore, we generated a phylogenetic tree showing nine distinct groups depending on the species. These results can be used to authenticate Pinelliae Tuber and Arisaematis Rhizoma from their adulterants and to identify each species. Thus, comparative analyses of plant DNA barcode sequences identified useful genetic markers for the authentication of Pinelliae Tuber and Arisaematis Rhizoma from several adulterant herbal materials. PMID:26909979

  3. DNA barcode of Parodontidae species from the La Plata river basin - applying new data to clarify taxonomic problems

    Directory of Open Access Journals (Sweden)

    Elisangela Bellafronte

    2013-09-01

    Full Text Available In the past years, DNA barcoding has emerged as a quick, accurate and efficient tool to identify species. Considering the difficulty in identifying some Parodontidae species from the La Plata basin and the absence of molecular data for the group, we aimed to test the effectiveness of DNA barcoding and discuss the importance of using different approaches to solve taxonomic problems. Eight species were analyzed with partial sequences of Cytochrome c oxidase I. The mean intraspecific K2P genetic distance was 0.04% compared to 4.2% for mean interspecific K2P genetic distance. The analyses of distance showed two pairs of species with K2P genetic divergence lower than 2%, but enough to separate these species. Apareiodon sp. and A. ibitiensis, considered as the same species by some authors, showed 4.2% genetic divergence, reinforcing their are different species. Samples of A. affinis from the Uruguay and Paraguay rivers presented 0.3% genetic divergence, indicating a close relationship between them. However, these samples diverged 6.1% from the samples of the upper Paraná River, indicating that the latter represents a potentially new species. The results showed the effectiveness of the DNA barcoding method in identifying the analyzed species, which, together with the morphological and cytogenetic available data, help species identification.

  4. Discriminating plants using the DNA barcode rbcLb: an appraisal based on a large data set.

    Science.gov (United States)

    Dong, Wenpan; Cheng, Tao; Li, Changhao; Xu, Chao; Long, Ping; Chen, Chumming; Zhou, Shiliang

    2014-03-01

    The ideal DNA barcode for plants remains to be discovered, and the candidate barcode rbcL has been met with considerable skepticism since its proposal. In fact, the variability within this gene has never been fully explored across all plant groups from algae to flowering plants, and its performance as a barcode has not been adequately tested. By analysing all of the rbcL sequences currently available in GenBank, we attempted to determine how well a region of rbcL performs as a barcode in species discrimination. We found that the rbcLb region was more variable than the frequently used rbcLa region. Both universal and plant group-specific primers were designed to amplify rbcLb, and the performance of rbcLa and rbcLb was tested in several ways. Using blast, both regions successfully identified all families and nearly all genera; however, the successful species identification rates varied significantly among plant groups, ranging from 24.58% to 85.50% for rbcLa and from 36.67% to 90.89% for rbcLb. Successful species discrimination ranged from 5.19% to 96.33% for rbcLa and from 22.09% to 98.43% for rbcLb in species-rich families, and from 0 to 88.73% for rbcLa and from 2.04% to 100% for rbcLb in species-rich genera. Both regions performed better for lower plants than for higher plants, although rbcLb performed significantly better than rbcLa overall, particularly for angiosperms. Considering the applicability across plants, easy and unambiguous alignment, high primer universality, high sequence quality and high species discrimination power for lower plants, we suggest rbcLb as a universal plant barcode. PMID:24119263

  5. Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2008-12-01

    Full Text Available Abstract Background Recent studies of 16S rRNA genes in the mammalian gut microbiota distinguished a higher Firmicutes/Bacteroidetes ratio in obese individuals compared to lean individuals. This ratio was estimated using a clonal Sanger sequencing approach which is time-consuming and requires laborious data analysis. In contrast, new high-throughput pyrosequencing technology offers an inexpensive alternative to clonal Sanger sequencing and would significantly advance our understanding of obesity via the development of a clinical diagnostic method. Here we present a cost-effective method that combines 16S rRNA pyrosequencing and DNA barcodes of the Firmicutes and Bacteroidetes 16S rRNA genes to determine the Firmicutes/Bacteroidetes ratio in the gut microbiota of obese humans. Results The main result was the identification of DNA barcodes targeting the Firmicutes and Bacteroidetes phyla. These barcodes were validated using previously published 16S rRNA gut microbiota clone libraries. In addition, an accurate F/B ratio was found when the DNA barcodes were applied to short pyrosequencing reads of published gut metagenomes. Finally, the barcodes were utilized to define the F/B ratio of 16S rRNA pyrosequencing data generated from brain abscess pus and cystic fibrosis sputum. Conclusion Using DNA barcodes of Bacteroidetes and Firmicutes 16S rRNA genes combined with pyrosequencing is a cost-effective method for monitoring relevant changes in the relative abundance of Firmicutes and Bacteroidetes bacterial communities in microbial ecosystems.

  6. Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach.

    Science.gov (United States)

    Kinyanjui, G; Khamis, F M; Mohamed, S; Ombura, L O; Warigia, M; Ekesi, S

    2016-02-01

    Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems. PMID:26490301

  7. DNA barcode analysis: a comparison of phylogenetic and statistical classification methods

    Directory of Open Access Journals (Sweden)

    Leblois Raphael

    2009-11-01

    Full Text Available Abstract Background DNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphism. In this context, we examine several assignation methods belonging to two main categories: (i phylogenetic methods (neighbour-joining and PhyML that attempt to account for the genealogical framework of DNA evolution and (ii supervised classification methods (k-nearest neighbour, CART, random forest and kernel methods. These methods range from basic to elaborate. We investigated the ability of each method to correctly classify query sequences drawn from samples of related species using both simulated and real data. Simulated data sets were generated using coalescent simulations in which we varied the genealogical history, mutation parameter, sample size and number of species. Results No method was found to be the best in all cases. The simplest method of all, "one nearest neighbour", was found to be the most reliable with respect to changes in the parameters of the data sets. The parameter most influencing the performance of the various methods was molecular diversity of the data. Addition of genetically independent loci - nuclear genes - improved the predictive performance of most methods. Conclusion The study implies that taxonomists can influence the quality of their analyses either by choosing a method best-adapted to the configuration of their sample, or, given a certain method, increasing the sample size or altering the amount of molecular diversity. This can be achieved either by sequencing more mtDNA or by sequencing additional nuclear genes. In the latter case, they may also have to modify their data analysis method.

  8. DNA Barcodes indicate members of the Anopheles fluviatilis (Diptera: Culicidae) species complex to be conspecific in India.

    Science.gov (United States)

    Pradeep Kumar, N; Krishnamoorthy, N; Sahu, S S; Rajavel, A R; Sabesan, S; Jambulingam, P

    2013-05-01

    Anopheles fluviatilis, a major vector of malaria in India has been described as a complex of three sibling species members, named as S, T and U, based on variations in chromosomal inversions. Also, ribosomal DNA markers (repetitive Internal Transcribed Spacer 2 (ITS2) and 28S D3 region) were described to differentiate these three sibling species members. However, controversies prevail on the genetic isolation status of these cryptic species. Hence, we evaluated this taxonomic incongruence employing DNA barcoding, the well established methodology for species identification, using 60 An. fluviatilis sensu lato specimens, collected from two malaria endemic eastern states of India. These specimens were also subjected to sibling species characterization by ITS2 and D3 DNA markers. The former marker identified 31 specimens among these as An. fluviatilis S and 21 as An. fluviatilis T. Eight specimens amplified DNA fragments specific for both S and T. The D3 marker characterized 39 specimens belonging to species S and 21 to species T. Neither marker identified species U. Neighbor Joining analysis of mitochondrial cytochrome c oxidase gene 1 sequences (the DNA barcode) categorized all the 60 specimens into a single operational taxonomic unit, their Kimura 2 parameter (K2P) genetic variability being only 0.8%. The genetic differentiation (FST ) and gene flow (Nm ) estimates were 0.00799 and 62.07, respectively, indicating these two 'species' (S & T) as genetically con-specific intermixing populations with negligible genetic differentiation. Earlier investigations have refuted the existence of species U. Also, this study demonstrated that An. fluviatilis and the closely related An. minimus could be taxonomically differentiated by the DNA Barcode approach (K2P = 5.0%). PMID:23398631

  9. Collecting in collections: a PCR strategy and primer set for DNA barcoding of decades-old dried museum specimens.

    Science.gov (United States)

    Mitchell, Andrew

    2015-09-01

    Natural history museums are vastly underutilized as a source of material for DNA analysis because of perceptions about the limitations of DNA degradation in older specimens. Despite very few exceptions, most DNA barcoding projects, which aim to obtain sequence data from all species, generally use specimens collected specifically for that purpose, instead of the wealth of identified material in museums, constrained by the lack of suitable PCR methods. Any techniques that extend the utility of museum specimens for DNA analysis therefore are highly valuable. This study first tested the effects of specimen age and PCR amplicon size on PCR success rates in pinned insect specimens, then developed a PCR primer set and amplification strategy allowing greatly increased utilization of older museum specimens for DNA barcoding. PCR success rates compare favourably with the few published studies utilizing similar aged specimens, and this new strategy has the advantage of being easily automated for high-throughput laboratory workflows. The strategy uses hemi-nested, degenerate, M13-tailed PCR primers to amplify two overlapping amplicons, using two PCRs per amplicon (i.e. four PCRs per DNA sample). Initial PCR products are reamplified using an internal primer and a M13 primer. Together the two PCR amplicons yield 559 bp of the COI gene from Coleoptera, Lepidoptera, Diptera, Hemiptera, Odonata and presumably also other insects. BARCODE standard-compliant data were recovered from 67% (56 of 84) of specimens up to 25 years old, and 51% (102 of 197) of specimens up to 55 years old. Given the time, cost and specialist expertise required for fieldwork and identification, 'collecting in collections' is a viable alternative allowing researchers to capitalize on the knowledge captured by curation work in decades past.

  10. DNA barcoding of genus Toxoptera Koch (Hemiptera: Aphididae): Identification and molecular phylogeny inferred from mitochondrial COI sequences

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng Wang; Ge-Xia Qiao

    2009-01-01

    Identification of aphid species is always difficult due to the shortage of easily distinguishable morphological characters. Aphid genus Toxoptera consists of species with similar morphology and similar to Aphis in most morphological characters except the stridulatory apparatus. DNA barcodes with 1 145 bp sequences of partial mitochondrial cytochrome-coxidase I (COI) genes were used for accurate identification of Toxoptera. Results indicated mean intraspecific sequence divergences were 1.33%, whereas mean interspecific divergences were greater at 8.29% (0.13% and 7.79% if T. aurantii 3 and T. aurantii 4 are cryptic species). Sixteen samples were distinguished to four species correctly by COI barcodes, which implied that DNA barcoding was successful in discrimination of aphid species with similar morphology. Phylogenetic relationships among species of this genus were tested based on this portion of COI sequences. Four species of Toxoptera assembled a clade with low support in maximum-parsimony (MP) analysis, maximum-likelihood (ML) analysis and Bayesian phylogenetic trees, the genus Toxoptera was not monophyletic, and there were two sister groups, such as T. citricidus and T. victoriae, and two clades of T. aurantii which probably presented cryptic species in the genus.

  11. Diversity in a Cold Hot-Spot: DNA-Barcoding Reveals Patterns of Evolution among Antarctic Demosponges (Class Demospongiae, Phylum Porifera.

    Directory of Open Access Journals (Sweden)

    Sergio Vargas

    Full Text Available The approximately 350 demosponge species that have been described from Antarctica represent a faunistic component distinct from that of neighboring regions. Sponges provide structure to the Antarctic benthos and refuge to other invertebrates, and can be dominant in some communities. Despite the importance of sponges in the Antarctic subtidal environment, sponge DNA barcodes are scarce but can provide insight into the evolutionary relationships of this unique biogeographic province.We sequenced the standard barcoding COI region for a comprehensive selection of sponges collected during expeditions to the Ross Sea region in 2004 and 2008, and produced DNA-barcodes for 53 demosponge species covering about 60% of the species collected. The Antarctic sponge communities are phylogenetically diverse, matching the diversity of well-sampled sponge communities in the Lusitanic and Mediterranean marine provinces in the Temperate Northern Atlantic for which molecular data are readily available. Additionally, DNA-barcoding revealed levels of in situ molecular evolution comparable to those present among Caribbean sponges. DNA-barcoding using the Segregating Sites Algorithm correctly assigned approximately 54% of the barcoded species to the morphologically determined species.A barcode library for Antarctic sponges was assembled and used to advance the systematic and evolutionary research of Antarctic sponges. We provide insights on the evolutionary forces shaping Antarctica's diverse sponge communities, and a barcode library against which future sequence data from other regions or depth strata of Antarctica can be compared. The opportunity for rapid taxonomic identification of sponge collections for ecological research is now at the horizon.

  12. Performance of Two Southern California Benthic Community Condition Indices Using Species Abundance and Presence-Only Data: Relevance to DNA Barcoding

    OpenAIRE

    J Ananda Ranasinghe; Eric D Stein; Peter E Miller; Weisberg, Stephen B.

    2012-01-01

    DNA barcoding, as it is currently employed, enhances use of marine benthic macrofauna as environmental condition indicators by improving the speed and accuracy of the underlying taxonomic identifications. The next generation of barcoding applications, processing bulk environmental samples, will likely only provide presence information. However, macrofauna indices presently used to interpret these data are based on species abundances. To assess the importance of this difference, we evaluated t...

  13. Monitoring an Alien Invasion: DNA Barcoding and the Identification of Lionfish and Their Prey on Coral Reefs of the Mexican Caribbean

    OpenAIRE

    Martha Valdez-Moreno; Carolina Quintal-Lizama; Ricardo Gómez-Lozano; María Del Carmen García-Rivas

    2012-01-01

    BACKGROUND: In the Mexican Caribbean, the exotic lionfish Pterois volitans has become a species of great concern because of their predatory habits and rapid expansion onto the Mesoamerican coral reef, the second largest continuous reef system in the world. This is the first report of DNA identification of stomach contents of lionfish using the barcode of life reference database (BOLD). METHODOLOGY/PRINCIPAL FINDINGS: We confirm with barcoding that only Pterois volitans is apparently present i...

  14. DNA Barcoding Reveals High Cryptic Diversity in the North Eurasian Moina Species (Crustacea: Cladocera).

    Science.gov (United States)

    Bekker, Eugeniya I; Karabanov, Dmitry P; Galimov, Yan R; Kotov, Alexey A

    2016-01-01

    Species of the genus Moina Baird (Cladocera: Moinidae) often dominate freshwater crustacean communities in temporary water bodies. Several species of Moina are used as food for fish larvae in aquaculture, as bioindicators in toxicological studies, and as common subjects for physiological studies. The aim of this paper is to estimate biodiversity of Moina in northern Eurasia using the standard DNA barcoding approach based on the cytochrome c oxidase subunit I (COI) gene. We analysed 160 newly obtained and 157 existing COI sequences, and found evidence for 21 phylogroups of Moina, some of which were detected here for the first time. Our study confirmed the opinion that the actual species diversity of cladocerans is several times higher than is presently accepted. Our results also indicated that Moina has the second richest species diversity among the cladoceran genera (with only Daphnia O. F. Mueller having a greater diversity of species). Our study strongly supports division of Moina into two faunistic groups: European-Western Siberian and Eastern Siberian-Far Eastern, with a transitional zone at the Yenisey River basin (Eastern Siberia). Here, we refrain from taxonomic descriptions of new species, as this requires a thorough morphological and taxonomic study for each putative taxon. PMID:27556403

  15. Species delimitation in the Grayling genus Pseudochazara (Lepidoptera, Nymphalidae, Satyrinae) supported by DNA barcodes

    Science.gov (United States)

    Verovnik, Rudi; Wiemers, Martin

    2016-01-01

    Abstract The Palaearctic Grayling genus Pseudochazara encompasses a number of petrophilous butterfly species, most of which are local endemics especially in their centre of radiation in SW Asia and the Balkans. Due to a lack of consistent morphological characters, coupled with habitat induced variability, their taxonomy is poorly understood and species delimitation is hampered. We employed a DNA barcoding approach to address the question of separate species status for several European taxa and provide first insight into the phylogeny of the genus. Unexpectedly we found conflicting patterns with deep divergences between presumably conspecific taxa and lack of divergence among well-defined species. We propose separate species status for Pseudochazara tisiphone, Pseudochazara amalthea, Pseudochazara amymone, and Pseudochazara kermana all of which have separate well supported clades, with the majority of them becoming local endemics. Lack of resolution in the ‘Mamurra’ species group with well-defined species (in terms of wing pattern and coloration) such as Pseudochazara geyeri, Pseudochazara daghestana and Pseudochazara alpina should be further explored using nuclear molecular markers with higher genetic resolution. PMID:27408604

  16. DNA barcoding and morphological studies reveal two new species of waxcap mushrooms (Hygrophoraceae in Britain

    Directory of Open Access Journals (Sweden)

    Antony Ainsworth

    2013-09-01

    Full Text Available Rigorous diagnostics and documentation of fungal species are fundamental to their conservation. During the course of a species-level study of UK waxcap (Hygrophoraceae diversity, two previously unrecognized species were discovered. We describe Gliophorus europerplexus sp. nov. and G. reginae sp. nov., respectively orange–brown and purple–pink waxcap mushrooms, from nutrient-poor grasslands in Britain. Both share some morphological features with specimens assigned to Gliophorus (=Hygrocybe psittacinus. However, analysis of sequences of the nuclear ITS DNA barcode region from these and related taxa confirms the phylogenetic distinctness of these lineages. Furthermore, we demonstrated that the holotype of Hygrophorus perplexus, a North American species morphologically resembling G. europerplexus, is phylogenetically divergent from all our collections. It is likely that further collections of G. europerplexus will be revealed by sequencing European material currently filed under G. perplexus and its synonyms. However, two such collections in the Kew fungarium yielded sequences that clustered together but were divergent from those of G. europerplexus, G. perplexus and G. psittacinus and may represent a further novel taxon. By contrast, G. reginae is morphologically distinct and can usually be recognized in the field by its purplish viscid pileus and relatively stout, flexuose, pale stipe. It is named to commemorate the diamond jubilee of Her Majesty Queen Elizabeth II in 2012 and the 60th anniversary of her coronation in 2013.

  17. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows

    Science.gov (United States)

    Kekkonen, Mari; Hebert, Paul D N

    2014-01-01

    The analysis of DNA barcode sequences with varying techniques for cluster recognition provides an efficient approach for recognizing putative species (operational taxonomic units, OTUs). This approach accelerates and improves taxonomic workflows by exposing cryptic species and decreasing the risk of synonymy. This study tested the congruence of OTUs resulting from the application of three analytical methods (ABGD, BIN, GMYC) to sequence data for Australian hypertrophine moths. OTUs supported by all three approaches were viewed as robust, but 20% of the OTUs were only recognized by one or two of the methods. These OTUs were examined for three criteria to clarify their status. Monophyly and diagnostic nucleotides were both uninformative, but information on ranges was useful as sympatric sister OTUs were viewed as distinct, while allopatric OTUs were merged. This approach revealed 124 OTUs of Hypertrophinae, a more than twofold increase from the currently recognized 51 species. Because this analytical protocol is both fast and repeatable, it provides a valuable tool for establishing a basic understanding of species boundaries that can be validated with subsequent studies. PMID:24479435

  18. [Identification of original plants of uyghur medicinal materials fructus elaeagni using morphological characteristics and DNA barcode].

    Science.gov (United States)

    Wang, Guo-Ping; Fan, Cong-Zhao; Zhu, Jun; Li, Xiao-Jin

    2014-06-01

    Morphology and molecular identification technology were used to identify 3 original plants of Fructus Elaeagni which was commonly used in Uygur medicine. Leaves, flowers and fruits from different areas were selected randomly for morphology research. ITS2 sequence as DNA barcode was used to identify 17 samples of Fructus Elaeagni. The genetic distances were computed by kimura 2-parameter (K2P) model, and the Neighbor-Joining (NJ) and Maximum Likelihood phylogenetic trees were constructed using MEGA5.0. The results showed that Elaeagnus angustifolia, E. oxycarpa and E. angustifolia var. orientalis cannot be distinguished by morphological characteristics of leaves, flowers and fruits. The sequence length of ITS2 ranged from 220 to 223 bp, the average GC content was 61.9%. The haplotype numbers of E. angustifolia, E. oxycarpa and E. angustifolia var. orientals were 4, 3, 3, respectively. The results from the NJ tree and ML tree showed that the 3 original species of Fructus Elaeagni cannot be distinguished obviously. Therefore, 3 species maybe have the same origin, and can be used as the original plant of Uygur medicineal material Fructus Elaeagni. However, further evidence of chemical components and pharmacological effect were needed. PMID:25244748

  19. Identifying the main mosquito species in China based on DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    Full Text Available Mosquitoes are insects of the Diptera, Nematocera, and Culicidae families, some species of which are important disease vectors. Identifying mosquito species based on morphological characteristics is difficult, particularly the identification of specimens collected in the field as part of disease surveillance programs. Because of this difficulty, we constructed DNA barcodes of the cytochrome c oxidase subunit 1, the COI gene, for the more common mosquito species in China, including the major disease vectors. A total of 404 mosquito specimens were collected and assigned to 15 genera and 122 species and subspecies on the basis of morphological characteristics. Individuals of the same species grouped closely together in a Neighborhood-Joining tree based on COI sequence similarity, regardless of collection site. COI gene sequence divergence was approximately 30 times higher for species in the same genus than for members of the same species. Divergence in over 98% of congeneric species ranged from 2.3% to 21.8%, whereas divergence in conspecific individuals ranged from 0% to 1.67%. Cryptic species may be common and a few pseudogenes were detected.

  20. DNA barcoding and wing morphometrics to distinguish three Aedes vectors in Thailand.

    Science.gov (United States)

    Sumruayphol, Suchada; Apiwathnasorn, Chamnarn; Ruangsittichai, Jiraporn; Sriwichai, Patchara; Attrapadung, Siriluck; Samung, Yudthana; Dujardin, Jean-Pierre

    2016-07-01

    Aedes aegypti (Diptera: Culicidae) (L.), Ae. albopictus (Skuse), and Ae. scutellaris (Walker) are important mosquito vectors of dengue and chikungunya viruses. They are morphologically similar and sympatric in some parts of their distribution; therefore, there is a risk of incorrect morphological identification. Any confusion could have a negative impact on epidemiological studies or control strategies. Therefore, we explored two modern tools to supplement current morphological identification: DNA barcoding and geometric morphometric analyses. Field larvae were reared to adults and carefully classified based on morphological traits. The genetic analysis was based on the 658bp each of 30COI sequences. Some Culex spp., Mansonia bonneae, were included as outgroups, and inclusion of a few other Aedes spp. facilitated phylogenetic inference of the relationship between Ae. albopictus and Ae. scutellaris. The two species were separated by an average interspecific divergence of 0.123 (0.119-0.127). Morphometric examination included landmark- (392 specimens) and outline-based (317 specimens) techniques. The shape of the wing showed different discriminating power based on sex and digitizing technique. This is the first time that Ae. scutellaris and Ae. albopictus have been compared using these two techniques. We confirm that these morphologically close species are valid, and that geometric morphometrics can considerably increase the reliability of morphological identification. PMID:26987285

  1. Morphology of the megalopa of the mud crab, Rhithropanopeus harrisii (Gould, 1841) (Decapoda, Brachyura, Panopeidae), identified by DNA barcode

    Science.gov (United States)

    Marco-Herrero, Elena; González-Gordillo, J. Ignacio; Cuesta, José A.

    2014-06-01

    The morphology of the megalopa stage of the panopeid Rhithropanopeus harrisii is redescribed and illustrated in detail from plankton specimens identified by DNA barcode (16S mtDNA) as previous descriptions do not meet the current standard of brachyuran larval description. Several morphological characters vary widely from those of other panopeid species which could cast some doubt on the species' placement in the same family. Besides, some anomalous megalopae of R. harrisii were found among specimens reared at the laboratory from zoeae collected in the plankton. These anomalous morphological features are discussed in terms of problems associated with laboratory rearing conditions.

  2. Identification of seagrasses in the gut of a marine herbivorous fish using DNA barcoding and visual inspection techniques.

    Science.gov (United States)

    Chelsky Budarf, A; Burfeind, D D; Loh, W K W; Tibbetts, I R

    2011-07-01

    Traditional visual diet analysis techniques were compared with DNA barcoding in juvenile herbivorous rabbitfish Siganus fuscescens collected in Moreton Bay, Australia, where at least six species of seagrass occur. The intergenic spacer trnH-psbA, suggested as the optimal gene for barcoding angiosperms, was used for the first time to identify the seagrass in fish guts. Four seagrass species and one alga were identified visually from gut contents; however, there was considerable uncertainty in visual identification with 38 of 40 fish having unidentifiable plant fragments in their gut. PCR and single-strand conformational polymorphism (SSCP) were able to discriminate three seagrass families from visually cryptic gut contents. While effective in identifying cryptic gut content to family level, this novel method is likely to be most efficient when paired with visual identification techniques.

  3. Prey identification in nests of the potter wasp Hypodynerus andeus (Packard (Hymenoptera, Vespidae, Eumeninae using DNA barcodes

    Directory of Open Access Journals (Sweden)

    Héctor A. Vargas

    2014-06-01

    Full Text Available Prey identification in nests of the potter wasp Hypodynerus andeus (Packard (Hymenoptera, Vespidae, Eumeninae using DNA barcodes. Geometrid larvae are the only prey known for larvae of the Neotropical potter wasp Hypodynerus andeus (Packard, 1869 (Hymenoptera, Vespidae, Eumeninae in the coastal valleys of the northern Chilean Atacama Desert. A fragment of the mitochondrial gene cytochrome oxidase c subunit 1 was amplified from geometrid larvae collected from cells of H. andeus in the Azapa Valley, Arica Province, and used to provide taxonomic identifications. Two species, Iridopsis hausmanni Vargas, 2007 and Macaria mirthae Vargas, Parra & Hausmann, 2005 were identified, while three others could be identified only at higher taxonomic levels, because the barcode reference library of geometrid moths is still incomplete for northern Chile.

  4. Sliding window analyses for optimal selection of mini-barcodes, and application to 454-pyrosequencing for specimen identification from degraded DNA.

    Directory of Open Access Journals (Sweden)

    Stephane Boyer

    Full Text Available DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI is over 600 base pairs (bp, amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R. This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey DNA from 46 landsnail (predator faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1 when dealing with degraded DNA for which only small fragments can be amplified, (2 for cases where no consensus has yet been reached on the appropriate barcode gene, or (3 to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation.

  5. Complete experimental toolbox for alignment-free quantum communication

    CERN Document Server

    D'Ambrosio, Vincenzo; Walborn, Stephen P; Aolita, Leandro; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio

    2012-01-01

    Quantum communication employs the counter-intuitive features of quantum physics to perform tasks that are im- possible in the classical world. It is crucial for testing the foundations of quantum theory and promises to rev- olutionize our information and communication technolo- gies. However, for two or more parties to execute even the simplest quantum transmission, they must establish, and maintain, a shared reference frame. This introduces a considerable overhead in communication resources, par- ticularly if the parties are in motion or rotating relative to each other. We experimentally demonstrate how to circumvent this problem with the efficient transmission of quantum information encoded in rotationally invariant states of single photons. By developing a complete toolbox for the efficient encoding and decoding of quantum infor- mation in such photonic qubits, we demonstrate the fea- sibility of alignment-free quantum key-distribution, and perform a proof-of-principle alignment-free entanglement distribut...

  6. When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths

    Directory of Open Access Journals (Sweden)

    Hajibabaei Mehrdad

    2011-08-01

    Full Text Available Abstract Background When a specimen belongs to a species not yet represented in DNA barcode reference libraries there is disagreement over the effectiveness of using sequence comparisons to assign the query accurately to a higher taxon. Library completeness and the assignment criteria used have been proposed as critical factors affecting the accuracy of such assignments but have not been thoroughly investigated. We explored the accuracy of assignments to genus, tribe and subfamily in the Sphingidae, using the almost complete global DNA barcode reference library (1095 species available for this family. Costa Rican sphingids (118 species, a well-documented, diverse subset of the family, with each of the tribes and subfamilies represented were used as queries. We simulated libraries with different levels of completeness (10-100% of the available species, and recorded assignments (positive or ambiguous and their accuracy (true or false under six criteria. Results A liberal tree-based criterion assigned 83% of queries accurately to genus, 74% to tribe and 90% to subfamily, compared to a strict tree-based criterion, which assigned 75% of queries accurately to genus, 66% to tribe and 84% to subfamily, with a library containing 100% of available species (but excluding the species of the query. The greater number of true positives delivered by more relaxed criteria was negatively balanced by the occurrence of more false positives. This effect was most sharply observed with libraries of the lowest completeness where, for example at the genus level, 32% of assignments were false positives with the liberal criterion versus Conclusions Our results suggest that when using a strict tree-based criterion for higher taxon assignment with DNA barcodes, the likelihood of assigning a query a genus name incorrectly is very low, if a genus name is provided it has a high likelihood of being accurate, and if no genus match is available the query can nevertheless be

  7. ALFRED: A Practical Method for Alignment-Free Distance Computation.

    Science.gov (United States)

    Thankachan, Sharma V; Chockalingam, Sriram P; Liu, Yongchao; Apostolico, Alberto; Aluru, Srinivas

    2016-06-01

    Alignment-free approaches are gaining persistent interest in many sequence analysis applications such as phylogenetic inference and metagenomic classification/clustering, especially for large-scale sequence datasets. Besides the widely used k-mer methods, the average common substring (ACS) approach has emerged to be one of the well-known alignment-free approaches. Two recent works further generalize this ACS approach by allowing a bounded number k of mismatches in the common substrings, relying on approximation (linear time) and exact computation, respectively. Albeit having a good worst-case time complexity [Formula: see text], the exact approach is complex and unlikely to be efficient in practice. Herein, we present ALFRED, an alignment-free distance computation method, which solves the generalized common substring search problem via exact computation. Compared to the theoretical approach, our algorithm is easier to implement and more practical to use, while still providing highly competitive theoretical performances with an expected run-time of [Formula: see text]. By applying our program to phylogenetic inference as a case study, we find that our program facilitates to exactly reconstruct the topology of the reference phylogenetic tree for a set of 27 primate mitochondrial genomes, at reasonably acceptable speed. ALFRED is implemented in C++ programming language and the source code is freely available online. PMID:27138275

  8. A new way to contemplate Darwin's tangled bank: how DNA barcodes are reconnecting biodiversity science and biomonitoring.

    Science.gov (United States)

    Hajibabaei, Mehrdad; Baird, Donald J; Fahner, Nicole A; Beiko, Robert; Golding, G Brian

    2016-09-01

    Encompassing the breadth of biodiversity in biomonitoring programmes has been frustrated by an inability to simultaneously identify large numbers of species accurately and in a timely fashion. Biomonitoring infers the state of an ecosystem from samples collected and identified using the best available taxonomic knowledge. The advent of DNA barcoding has now given way to the extraction of bulk DNA from mixed samples of organisms in environmental samples through the development of high-throughput sequencing (HTS). This DNA metabarcoding approach allows an unprecedented view of the true breadth and depth of biodiversity, but its adoption poses two important challenges. First, bioinformatics techniques must simultaneously perform complex analyses of large datasets and translate the results of these analyses to a range of users. Second, the insights gained from HTS need to be amalgamated with concepts such as Linnaean taxonomy and indicator species, which are less comprehensive but more intuitive. It is clear that we are moving beyond proof-of-concept studies to address the challenge of implementation of this new approach for environmental monitoring and regulation. Interpreting Darwin's 'tangled bank' through a DNA lens is now a reality, but the question remains: how can this information be generated and used reliably, and how does it relate to accepted norms in ecosystem study?This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481782

  9. DNA barcode for the identification of the sand fly Lutzomyia longipalpis plant feeding preferences in a tropical urban environment.

    Science.gov (United States)

    Lima, Leonardo H G de M; Mesquita, Marcelo R; Skrip, Laura; de Souza Freitas, Moisés T; Silva, Vladimir C; Kirstein, Oscar D; Abassi, Ibrahim; Warburg, Alon; Balbino, Valdir de Q; Costa, Carlos H N

    2016-01-01

    Little is known about the feeding behavior of hematophagous insects that require plant sugar to complete their life cycles. We studied plant feeding of Lutzomyia longipalpis sand flies, known vectors of Leishmania infantum/chagasi parasites, in a Brazilian city endemic with visceral leishmaniasis. The DNA barcode technique was applied to identify plant food source of wild-caught L. longipalpis using specific primers for a locus from the chloroplast genome, ribulose diphosphate carboxylase. DNA from all trees or shrubs within a 100-meter radius from the trap were collected to build a barcode reference library. While plants from the Anacardiaceae and Meliaceae families were the most abundant at the sampling site (25.4% and 12.7% of the local plant population, respectively), DNA from these plant families was found in few flies; in contrast, despite its low abundance (2.9%), DNA from the Fabaceae family was detected in 94.7% of the sand flies. The proportion of sand flies testing positive for DNA from a given plant family was not significantly associated with abundance, distance from the trap, or average crown expansion of plants from that family. The data suggest that there may indeed be a feeding preference of L. longipalpis for plants in the Fabaceae family. PMID:27435430

  10. DNA barcode for the identification of the sand fly Lutzomyia longipalpis plant feeding preferences in a tropical urban environment

    Science.gov (United States)

    Lima, Leonardo H. G. de M.; Mesquita, Marcelo R.; Skrip, Laura; de Souza Freitas, Moisés T.; Silva, Vladimir C.; Kirstein, Oscar D.; Abassi, Ibrahim; Warburg, Alon; Balbino, Valdir de Q.; Costa, Carlos H. N.

    2016-01-01

    Little is known about the feeding behavior of hematophagous insects that require plant sugar to complete their life cycles. We studied plant feeding of Lutzomyia longipalpis sand flies, known vectors of Leishmania infantum/chagasi parasites, in a Brazilian city endemic with visceral leishmaniasis. The DNA barcode technique was applied to identify plant food source of wild-caught L. longipalpis using specific primers for a locus from the chloroplast genome, ribulose diphosphate carboxylase. DNA from all trees or shrubs within a 100-meter radius from the trap were collected to build a barcode reference library. While plants from the Anacardiaceae and Meliaceae families were the most abundant at the sampling site (25.4% and 12.7% of the local plant population, respectively), DNA from these plant families was found in few flies; in contrast, despite its low abundance (2.9%), DNA from the Fabaceae family was detected in 94.7% of the sand flies. The proportion of sand flies testing positive for DNA from a given plant family was not significantly associated with abundance, distance from the trap, or average crown expansion of plants from that family. The data suggest that there may indeed be a feeding preference of L. longipalpis for plants in the Fabaceae family. PMID:27435430

  11. A new way to contemplate Darwin's tangled bank: how DNA barcodes are reconnecting biodiversity science and biomonitoring

    Science.gov (United States)

    Baird, Donald J.; Fahner, Nicole A.; Beiko, Robert; Golding, G. Brian

    2016-01-01

    Encompassing the breadth of biodiversity in biomonitoring programmes has been frustrated by an inability to simultaneously identify large numbers of species accurately and in a timely fashion. Biomonitoring infers the state of an ecosystem from samples collected and identified using the best available taxonomic knowledge. The advent of DNA barcoding has now given way to the extraction of bulk DNA from mixed samples of organisms in environmental samples through the development of high-throughput sequencing (HTS). This DNA metabarcoding approach allows an unprecedented view of the true breadth and depth of biodiversity, but its adoption poses two important challenges. First, bioinformatics techniques must simultaneously perform complex analyses of large datasets and translate the results of these analyses to a range of users. Second, the insights gained from HTS need to be amalgamated with concepts such as Linnaean taxonomy and indicator species, which are less comprehensive but more intuitive. It is clear that we are moving beyond proof-of-concept studies to address the challenge of implementation of this new approach for environmental monitoring and regulation. Interpreting Darwin's ‘tangled bank’ through a DNA lens is now a reality, but the question remains: how can this information be generated and used reliably, and how does it relate to accepted norms in ecosystem study? This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481782

  12. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus in China with multiple gene markers.

    Directory of Open Access Journals (Sweden)

    Qing-Yan Dai

    Full Text Available Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI gene and two alternative internal transcribed spacer (ITS genes (ITS1 and ITS2. Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML/Neighbor-joining (NJ, "best close match" (BCM, Minimum distance (MD, and BP-based method (BP, representing commonly used methodology (tree-based and non-tree based in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In

  13. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers.

    Science.gov (United States)

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), "best close match" (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our

  14. A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods.

    Directory of Open Access Journals (Sweden)

    Ai-bing Zhang

    Full Text Available Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish and two representing non-coding ITS barcodes (rust fungi and brown algae. Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ and Maximum likelihood (ML methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40% for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37% for 1094 brown algae queries, both using ITS barcodes.

  15. DNA barcoding of a new record of epi-endophytic green algae Ulvella leptochaete (Ulvellaceae, Chlorophyta) in India

    Indian Academy of Sciences (India)

    Felix Bast; Satej Bhushan; Aijaz Ahmad John

    2014-09-01

    Epi-endophytic green algae comprise one of the most diverse and phylogenetically primitive groups of green algae and are considered to be ubiquitous in the world’s oceans; however, no reports of these algae exist from India. Here we report the serendipitous discovery of Ulvella growing on intertidal green algae Cladophora glomerata and benthic red algae Laurencia obtusa collected from India. DNA barcodes at nuclear ribosomal DNA Internal Transcriber Spacer (nrDNA ITS) 1 and 2 regions for Indian isolates from the west and east coasts have been generated for the first time. Based on morphology and DNA barcoding, isolates were identified as Ulvella leptochaete. Phylogenetic reconstruction of concatenated dataset using Maximum Likelihood method differentiated Indian isolates from other accessions of this alga available in Genbank, albeit with low bootstrap support. Monophyly of Ulvella leptochaete was obvious in both of our phylogenetic analyses. With this first report of epi-endophytic algae from Indian territorial waters, the dire need to catalogue its cryptic diversity is highlighted and avenues of future research are discussed.

  16. DNA barcodes successfully identified Macaronesian Lotus (Leguminosae) species within early diverged lineages of Cape Verde and mainland Africa.

    Science.gov (United States)

    Ojeda, Dario I; Santos-Guerra, Arnoldo; Oliva-Tejera, Felicia; Jaen-Molina, Ruth; Caujapé-Castells, Juli; Marrero-Rodríguez, Aguedo; Cronk, Quentin

    2014-01-01

    Plant DNA barcoding currently relies on the application of a two-locus combination, matK + rbcL. Despite the universality of these two gene regions across plants, it is suspected that this combination might not have sufficient variation to discriminate closely related species. In this study, we tested the performance of this two-locus plant barcode along with the additional plastid regions trnH-psbA, rpoC1 and rpoB and the nuclear region internal transcribed spacer (nrITS) in a group of 38 species of Lotus from the Macaronesian region. The group has radiated into the five archipelagos within this region from mid-Miocene to early Pleistocene, and thus provides both early divergent and recent radiations that pose a particularly difficult challenge for barcoding. The group also has 10 species considered under different levels of conservation concern. We found different levels of species discrimination depending on the age of the lineages. We obtained 100 % of the species identification from mainland Africa and Cape Verde when all six regions were combined. These lineages radiated >4.5 Mya; however, in the most recent radiations from the end of the Pliocene to the mid-Pleistocene (3.5-1.5 Mya), only 30 % of the species were identified. Of the regions examined, the intergenic region trnH-psbA was the most variable and had the greatest discriminatory power (18 %) of the plastid regions when analysed alone. The nrITS region was the best region when analysed alone with a discriminatory power of 26 % of the species. Overall, we identified 52 % of the species and 30 % of the endangered or threatened species within this group when all six regions were combined. Our results are consistent with those of other studies that indicate that additional approaches to barcoding will be needed in recently evolved groups, such as the inclusion of faster evolving regions from the nuclear genome. PMID:25147310

  17. DNA Barcoding Used in the Identification of Ginseng%DNA条形码技术应用于人参鉴定

    Institute of Scientific and Technical Information of China (English)

    孙涛; 滕少娜; 孔德英; 宋云; 许谨; 李应国; 王昱; 李明福

    2013-01-01

    Ginseng (Panax ginseng C. A. Meyer) , known as "the King of Herbs" , which is endangered famous, precious chinese herbal and senior tonic, and in urgent need of resources protection. With the internationalization of Chinese herbal ,more and more pseudo mix products appeared. So,the right identification become the chief condition of resources protection. Identification and sustainable use of the medicinal plant resources in ginseng have been extensively studied by scholars from domestic and abroad. DNA barcoding is the latest development in molecular identification, it is a method of rapid and accurate species identification and recognition using a short, standardized DNA region. DNA barcoding has become one of hotspots of biodiversity research, shows the broad application prospects in terms of species identification. The scope and limitations of the traditional identification methods were analyzed, and the features and application of new DNA barcoding technology and its analysis mothod used in the identification of ginseng were emphatically induced.%人参(Panax ginsengC.A.Meyer),被人们称为“百草之王”,是国内外常用的珍稀名贵中草药和高级滋补品,濒临灭绝,是急需进行资源保护的珍贵物种.随着中草药市场的国际化,由于利益的驱动,市场上伪混品屡见不鲜,对其正确鉴定就成为进行资源保护的首要条件.国内外学者对人参等药用植物资源的鉴定和可持续利用进行了广泛研究.DNA条形码(DNA barcoding)技术是分子鉴定的最新发展,即通过比较一段或几段通用DNA片段,对物种进行快速、准确的识别和鉴定,是近年来生物分类和鉴定的研究热点,在物种鉴定方面显示了广阔的应用前景.在分析传统的鉴定方法在适用范围和局限性的基础上,着重介绍了新兴的DNA条形码技术及其分析方法在人参鉴定上的特点及应用.

  18. Comparative Analysis of DNA Barcoding and HPLC Fingerprint to Trace Species of Phellodendri Cortex, an Important Traditional Chinese Medicine from Multiple Sources.

    Science.gov (United States)

    Zhang, Zhipeng; Zhang, Yang; Zhang, Zhao; Yao, Hui; Liu, Haitao; Zhang, Ben'gang; Liao, Yonghong

    2016-08-01

    Phellodendri Cortex is derived from the dried barks of Phellodendron genus species, has been extensively used in traditional Chinese medicine. The cortex is divided into two odorless crude drugs Guanhuangbo and Huangbo. Historically, it has been difficult to distinguish their identities due to a lack of identification methods. This study was executed to confirm the identity and to ensure the species traceability of Phellodendri Cortex. In the current study, analysis is based on the internal transcribed spacer (ITS) and psbA-trnH intergenic spacer (psbA-trnH) barcodes and HPLC fingerprint was carried out to guarantee the species traceability of Guanhuangbo and Huangbo. DNA barcoding data successfully identified the three plants of the Phellodendron genus species by ITS+psbA-trnH, with the ability to distinguish the species origin of Huangbo. Moreover, the psbA-trnH data distinguished Guanhuangbo and Huangbo except to trace species. The HPLC fingerprint data showed that Guanhuangbo was clearly different from Huangbo, but there was no difference between the two origins of Huangbo. Additionally, the result of hierarchical clustering analysis, based on chlorogenic acid, phellodendrine, magnoflorine, jatrorrhizine, palmatine and berberine, was consistent with the HPLC fingerprint analysis. These results show that DNA barcoding and HPLC fingerprint can discriminate Guanhuangbo and Huangbo. However, DNA barcoding is more powerful than HPLC fingerprint for species traceability in the identification of related species that are genetically similar. DNA barcoding is a useful scientific tool to accurately confirm the identities of medicinal materials from multiple sources. PMID:27298183

  19. Genetic diversity within Schistosoma haematobium: DNA barcoding reveals two distinct groups.

    Directory of Open Access Journals (Sweden)

    Bonnie L Webster

    Full Text Available BACKGROUND: Schistosomiasis in one of the most prevalent parasitic diseases, affecting millions of people and animals in developing countries. Amongst the human-infective species S. haematobium is one of the most widespread causing urogenital schistosomiasis, a major human health problem across Africa, however in terms of research this human pathogen has been severely neglected. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the genetic diversity of Schistosoma haematobium, a DNA 'barcoding' study was performed on parasite material collected from 41 localities representing 18 countries across Africa and the Indian Ocean Islands. Surprisingly low sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1 and the NADH-dehydrogenase subunit 1 snad1. The 61 haplotypes found within 1978 individual samples split into two distinct groups; one (Group 1 that is predominately made up of parasites from the African mainland and the other (Group 2 that is made up of samples exclusively from the Indian Ocean Islands and the neighbouring African coastal regions. Within Group 1 there was a dominance of one particular haplotype (H1 representing 1574 (80% of the samples analyzed. Population genetic diversity increased in samples collected from the East African coastal regions and the data suggest that there has been movement of parasites between these areas and the Indian Ocean Islands. CONCLUSIONS/SIGNIFICANCE: The high occurrence of the haplotype (H1 suggests that at some point in the recent evolutionary history of S. haematobium in Africa the population may have passed through a genetic 'bottleneck' followed by a population expansion. This study provides novel and extremely interesting insights into the population genetics of S. haematobium on a large geographic scale, which may have consequence for control and monitoring of urogenital schistosomiasis.

  20. Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Fathiya M Khamis

    Full Text Available In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D(2 = 122.9 was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1 and against B. dorsalis s.s (11.4. Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s., branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree.

  1. Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding.

    Science.gov (United States)

    Khamis, Fathiya M; Masiga, Daniel K; Mohamed, Samira A; Salifu, Daisy; de Meyer, Marc; Ekesi, Sunday

    2012-01-01

    In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D(2) = 122.9) was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1) and against B. dorsalis s.s (11.4). Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s.), branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree. PMID:23028649

  2. Medicinal plants recommended by the world health organization: DNA barcode identification associated with chemical analyses guarantees their quality.

    Directory of Open Access Journals (Sweden)

    Rafael Melo Palhares

    Full Text Available Medicinal plants are used throughout the world, and the regulations defining their proper use, such as identification of the correct species and verification of the presence, purity and concentration of the required chemical compounds, are widely recognized. Herbal medicines are made from vegetal drugs, the processed products of medicinal species. These processed materials present a number of challenges in terms of botanical identification, and according to the World Health Organization (WHO, the use of incorrect species is a threat to consumer safety. The samples used in this study consisted of the dried leaves, flowers and roots of 257 samples from 8 distinct species approved by the WHO for the production of medicinal herbs and sold in Brazilian markets. Identification of the samples in this study using DNA barcoding (matK, rbcL and ITS2 regions revealed that the level of substitutions may be as high as 71%. Using qualitative and quantitative chemical analyses, this study identified situations in which the correct species was being sold, but the chemical compounds were not present. Even more troubling, some samples identified as substitutions using DNA barcoding contained the chemical compounds from the correct species at the minimum required concentration. This last situation may lead to the use of unknown species or species whose safety for human consumption remains unknown. This study concludes that DNA barcoding should be used in a complementary manner for species identification with chemical analyses to detect and quantify the required chemical compounds, thus improving the quality of this class of medicines.

  3. Medicinal plants recommended by the world health organization: DNA barcode identification associated with chemical analyses guarantees their quality.

    Science.gov (United States)

    Palhares, Rafael Melo; Gonçalves Drummond, Marcela; Dos Santos Alves Figueiredo Brasil, Bruno; Pereira Cosenza, Gustavo; das Graças Lins Brandão, Maria; Oliveira, Guilherme

    2015-01-01

    Medicinal plants are used throughout the world, and the regulations defining their proper use, such as identification of the correct species and verification of the presence, purity and concentration of the required chemical compounds, are widely recognized. Herbal medicines are made from vegetal drugs, the processed products of medicinal species. These processed materials present a number of challenges in terms of botanical identification, and according to the World Health Organization (WHO), the use of incorrect species is a threat to consumer safety. The samples used in this study consisted of the dried leaves, flowers and roots of 257 samples from 8 distinct species approved by the WHO for the production of medicinal herbs and sold in Brazilian markets. Identification of the samples in this study using DNA barcoding (matK, rbcL and ITS2 regions) revealed that the level of substitutions may be as high as 71%. Using qualitative and quantitative chemical analyses, this study identified situations in which the correct species was being sold, but the chemical compounds were not present. Even more troubling, some samples identified as substitutions using DNA barcoding contained the chemical compounds from the correct species at the minimum required concentration. This last situation may lead to the use of unknown species or species whose safety for human consumption remains unknown. This study concludes that DNA barcoding should be used in a complementary manner for species identification with chemical analyses to detect and quantify the required chemical compounds, thus improving the quality of this class of medicines. PMID:25978064

  4. Medicinal Plants Recommended by the World Health Organization: DNA Barcode Identification Associated with Chemical Analyses Guarantees Their Quality

    Science.gov (United States)

    Palhares, Rafael Melo; Gonçalves Drummond, Marcela; dos Santos Alves Figueiredo Brasil, Bruno; Pereira Cosenza, Gustavo; das Graças Lins Brandão, Maria; Oliveira, Guilherme

    2015-01-01

    Medicinal plants are used throughout the world, and the regulations defining their proper use, such as identification of the correct species and verification of the presence, purity and concentration of the required chemical compounds, are widely recognized. Herbal medicines are made from vegetal drugs, the processed products of medicinal species. These processed materials present a number of challenges in terms of botanical identification, and according to the World Health Organization (WHO), the use of incorrect species is a threat to consumer safety. The samples used in this study consisted of the dried leaves, flowers and roots of 257 samples from 8 distinct species approved by the WHO for the production of medicinal herbs and sold in Brazilian markets. Identification of the samples in this study using DNA barcoding (matK, rbcL and ITS2 regions) revealed that the level of substitutions may be as high as 71%. Using qualitative and quantitative chemical analyses, this study identified situations in which the correct species was being sold, but the chemical compounds were not present. Even more troubling, some samples identified as substitutions using DNA barcoding contained the chemical compounds from the correct species at the minimum required concentration. This last situation may lead to the use of unknown species or species whose safety for human consumption remains unknown. This study concludes that DNA barcoding should be used in a complementary manner for species identification with chemical analyses to detect and quantify the required chemical compounds, thus improving the quality of this class of medicines. PMID:25978064

  5. A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean)

    Science.gov (United States)

    Bucklin, Ann; Ortman, Brian D.; Jennings, Robert M.; Nigro, Lisa M.; Sweetman, Christopher J.; Copley, Nancy J.; Sutton, Tracey; Wiebe, Peter H.

    2010-12-01

    Species diversity of the metazoan holozooplankton assemblage of the Sargasso Sea, Northwest Atlantic Ocean, was examined through coordinated morphological taxonomic identification of species and DNA sequencing of a ˜650 base-pair region of mitochondrial cytochrome oxidase I (mtCOI) as a DNA barcode (i.e., short sequence for species recognition and discrimination). Zooplankton collections were made from the surface to 5,000 meters during April, 2006 on the R/V R.H. Brown. Samples were examined by a ship-board team of morphological taxonomists; DNA barcoding was carried out in both ship-board and land-based DNA sequencing laboratories. DNA barcodes were determined for a total of 297 individuals of 175 holozooplankton species in four phyla, including: Cnidaria (Hydromedusae, 4 species; Siphonophora, 47); Arthropoda (Amphipoda, 10; Copepoda, 34; Decapoda, 9; Euphausiacea, 10; Mysidacea, 1; Ostracoda, 27); and Mollusca (Cephalopoda, 8; Heteropoda, 6; Pteropoda, 15); and Chaetognatha (4). Thirty species of fish (Teleostei) were also barcoded. For all seven zooplankton groups for which sufficient data were available, Kimura-2-Parameter genetic distances were significantly lower between individuals of the same species (mean=0.0114; S.D. 0.0117) than between individuals of different species within the same group (mean=0.3166; S.D. 0.0378). This difference, known as the barcode gap, ensures that mtCOI sequences are reliable characters for species identification for the oceanic holozooplankton assemblage. In addition, DNA barcodes allow recognition of new or undescribed species, reveal cryptic species within known taxa, and inform phylogeographic and population genetic studies of geographic variation. The growing database of "gold standard" DNA barcodes serves as a Rosetta Stone for marine zooplankton, providing the key for decoding species diversity by linking species names, morphology, and DNA sequence variation. In light of the pivotal position of zooplankton in ocean

  6. New insight into the phylogeny of Sinonovacula (Bivalvia: Solecurtidae) revealed by comprehensive DNA barcoding analyses of two mitochondrial genes.

    Science.gov (United States)

    Yu, Zhenzhen; Li, Qi; Kong, Lingfeng

    2016-01-01

    The present study was undertaken to clarify the genetic relationships of Sinonovacula through comprehensive DNA barcoding analyses of COI and 16S rRNA genes. For both genes, the K2P distances between individuals of Sinonovacula and individuals of other genera belonging to Tellinoidea were much bigger than those between Sinonovacula and genera of Solenoidea. On the Bayesian tree of combined data, Sinonovacula and Cultellus formed a well supports monophylic clade. An extremely high matching rate of CAs between Sinonovacula and the reference family Cultellidae was found. Thus, we suggest transferring Sinonovacula from Solecurtidae to Cultellidae, as a sister group of Cultellus.

  7. Complete mitochondrial genome of Dendronephthya putteri (Octocorallia, Alcyonacea) and useful candidate for developing DNA barcode markers of Dendronephthya species.

    Science.gov (United States)

    Kwak, Hyeon Sook; Choi, Eun Hwa; Jang, Kuem Hee; Ryu, Shi Hyun; Kim, Young Shin; Hwang, Ui Wook

    2015-08-01

    The mitochondrial genome of Dendronephthya putteri (Octocorallia, Alcyonacea) which is an endangered species was completely sequenced. It is 18,853 bp in length and identical to those of Dendronephthya species in its gene arrangement and genome organization. Nucleotide sequence comparison of the mitochondrial genomes of the two D. putteri individuals obtained from this study and the previously reported one (GenBank accession number JQ290079) showed that they are identical perfectly. We found useful candidate for DNA barcode markers for D. putteri species identification. PMID:24083972

  8. An economic analysis of private incentives to adopt DNA barcoding technology for fish species authentication in Canada.

    Science.gov (United States)

    Ugochukwu, Albert I; Hobbs, Jill E; Phillips, Peter W B; Gray, Richard

    2015-12-01

    The increasing spate of species substitution and mislabelling in fish markets has become a concern to the public and a challenge to both the food industry and regulators. Species substitution and mislabelling within fish supply chains occurs because of price incentives to misrepresent products for economic gain. Emerging authenticity technologies, such as the DNA barcoding technology that has been used to identify plants and animal (particularly fish) species through DNA sequencing, offer a potential technological solution to this information problem. However, the adoption of these authenticity technologies depends also on economic factors. The present study uses economic welfare analysis to examine the effects of species substitution and mislabelling in fish markets, and examines the feasibility of the technology for a typical retail store in Canada. It is assumed that increased accuracy of the technology in detecting fraud and enforcement of legal penalties and other associated costs would be likely to discourage cheating. Empirical results suggest that DNA barcoding technology would be feasible presently for a typical retail store only if authentication is done in a third party laboratory, as it may not be feasible on an individual retail store level once fixed and other associated costs of the technology are considered.

  9. An economic analysis of private incentives to adopt DNA barcoding technology for fish species authentication in Canada.

    Science.gov (United States)

    Ugochukwu, Albert I; Hobbs, Jill E; Phillips, Peter W B; Gray, Richard

    2015-12-01

    The increasing spate of species substitution and mislabelling in fish markets has become a concern to the public and a challenge to both the food industry and regulators. Species substitution and mislabelling within fish supply chains occurs because of price incentives to misrepresent products for economic gain. Emerging authenticity technologies, such as the DNA barcoding technology that has been used to identify plants and animal (particularly fish) species through DNA sequencing, offer a potential technological solution to this information problem. However, the adoption of these authenticity technologies depends also on economic factors. The present study uses economic welfare analysis to examine the effects of species substitution and mislabelling in fish markets, and examines the feasibility of the technology for a typical retail store in Canada. It is assumed that increased accuracy of the technology in detecting fraud and enforcement of legal penalties and other associated costs would be likely to discourage cheating. Empirical results suggest that DNA barcoding technology would be feasible presently for a typical retail store only if authentication is done in a third party laboratory, as it may not be feasible on an individual retail store level once fixed and other associated costs of the technology are considered. PMID:26577715

  10. A DNA barcode library of the beetle reference collection (Insecta: Coleoptera in the National Science Museum, Korea

    Directory of Open Access Journals (Sweden)

    Sang Woo Jung

    2016-06-01

    Full Text Available Coleoptera is a group of insects that are most diverse among insect resources. Although used as indicator species and applied in developing new drugs, it is difficult to identify them quickly. Since the development of a method using mitochondrial DNA information for identification, studies have been conducted in Korea to swiftly and accurately identify species. The National Science Museum of Korea (NSMK has been collecting and morphologically identifying domestic reference insects since 2013, and building a database of DNA barcodes with digital images. The NSMK completed construction of a database of digital images and DNA barcodes of 60 beetle species in the Korean National Research Information System. A total of 179 specimens and 60 species were used for the analysis, and the averages of intraspecific and interspecific variations were 0.70±0.45% and 26.34±6.01%, respectively, with variation rates ranging from 0% to 1.45% and 9.83% to 56.23%, respectively.

  11. Diversity of planktonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes

    Science.gov (United States)

    Morote, Elvira; Kochzius, Marc; Garcia-Vazquez, Eva

    2016-01-01

    Mid-trophic pelagic fish are essential components of marine ecosystems because they represent the link between plankton and higher predators. Moreover, they are the basis of the most important fisheries resources; for example, in African waters. In this study, we have sampled pelagic fish larvae in the Eastern Atlantic Ocean along a latitudinal gradient between 37°N and 2°S. We have employed Bongo nets for plankton sampling and sorted visually fish and fish larvae. Using the cytochrome oxidase I gene (COI) as a DNA barcode, we have identified 44 OTUs down to species level that correspond to 14 families, with Myctophidae being the most abundant. A few species were cosmopolitan and others latitude-specific, as was expected. The latitudinal pattern of diversity did not exhibit a temperate-tropical cline; instead, it was likely correlated with environmental conditions with a decline in low-oxygen zones. Importantly, gaps and inconsistencies in reference DNA databases impeded accurate identification to the species level of 49% of the individuals. Fish sampled from tropical latitudes and some orders, such as Perciformes, Myctophiformes and Stomiiformes, were largely unidentified due to incomplete references. Some larvae were identified based on morphology and COI analysis for comparing time and costs employed from each methodology. These results suggest the need of reinforcing DNA barcoding reference datasets of Atlantic bathypelagic tropical fish that, as main prey of top predators, are crucial for ecosystem-based management of fisheries resources. PMID:27761307

  12. A Synopsis of Technical Notes on the Standards for Plant DNA Barcoding%关于植物DNA条形码研究技术规范

    Institute of Scientific and Technical Information of China (English)

    高连明; 刘杰; 蔡杰; 杨俊波; 张挺; 李德铢

    2012-01-01

    DNA barcoding is a technique using one or a few standardized DNA regions from different genomes for rapid species identification, which is used in the field of taxonomy, ecological surveys and assessment of biodiversity. Because of the plant natural particularity and the DNA barcodes used for plants differing from animals, the standards provided by BOLD which was initially dssigned for animals are not totally compatible in plants DNA barcoding research. Thus, we synthesize and customize a synopsis of technical notes and standards with reference of the BOLD criteria and experience of plant DNA barcoding projects, especial for the researchers with particular interest in plants DNA barcoding in China. Ten aspects related to plants DNA barcoding are covered: 1) sampling strategy for a plant DNA barcoding study, 2) collecting standards for vouches and associate information, 3) collection standards for specimen-referenced images, 4) collecting standards for DNA material, 5) standards for drying and preserving DNA material , 6) quality control and preservation procedures for extracted total genomic DNA, 7 ) recommended plant barcodes and universal primers, 8) procedures for PCR amplification and sequencing of the DNA barcodes, 9) naming, editing and submission for DNA barcoding files, and 10) procedures and methods for the analysis of DNA barcoding data.%DNA条形码是利用标准的基因片段对物种进行快速鉴定的技术,已经成功用于生物物种分类和鉴定、生态学调查和生物多样性评估等研究领域.尽管生命条形码数据(BOLD)系统提供了主要针对动物类群DNA条形码研究的技术规范,但由于植物本身的生物学特性与所使用的条形码不同,因此已有技术规范并不完全适用于植物DNA条形码的研究.本文根据植物DNA条形码研究的特点与我国的实际情况,编写了植物DNA条形码研究技术标准和规范指南,具体包括十个方面的内容,即植物DNA条形码研究的

  13. 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lianming; HE Jinru; LIN Yuanshao; CAO Wenqing; ZHANG Wenjing

    2014-01-01

    Identification of hydrozoan species is challenging, even for taxonomic experts, due to the scarcity of distinct morphological characters and phenotypic plasticity. DNA barcoding provides an efficient method for spe-cies identification, however, the choice between mitochondrial cytochrome c oxidase subunit I (COI) and large subunit ribosomal RNA gene (16S) as a standard barcode for hydrozoans is subject to debate. Herein, we directly compared the barcode potential of COI and 16S in hydrozoans using 339 sequences from 47 pelagic hydrozoan species. Analysis of Kimura 2-parameter genetic distances (K2P) documented the mean intraspecific/interspecific variation for COI and 16S to be 0.004/0.204 and 0.003/0.223, respectively. An obvi-ous“barcoding gap”was detected for all species in both markers and all individuals of a species clustered together in both the COI and 16S trees. These results suggested that the species within the studied taxa can be efficiently and accurately identified by COI and 16S. Furthermore, our results confirmed that 16S was a better phylogenetic marker for hydrozoans at the genus level, and in some cases at the family level. Con-sidering the resolution and effectiveness for barcoding and phylogenetic analyses of Hydrozoa, we strongly recommend 16S as the standard barcode for hydrozoans.

  14. Identification of Lygus hesperus by DNA barcoding reveals insignificant levels of genetic structure among distant and habitat diverse populations.

    Directory of Open Access Journals (Sweden)

    Changqing Zhou

    Full Text Available BACKGROUND: The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification. METHODOLOGY/PRINCIPAL FINDINGS: This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of F(st and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years migration of the western tarnished plant bug into agricultural habitats across the western United States. CONCLUSIONS/SIGNIFICANCE: This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study.

  15. Molecular Identification and Traceability of Illegal Trading in Lignobrycon myersi (Teleostei: Characiformes), a Threatened Brazilian Fish Species, Using DNA Barcode

    Science.gov (United States)

    Rodrigues, Alexandre dos Santos; Brandão, José Henrique Souza Galdino; Bitencourt, Jamille de Araújo; Jucá-Chagas, Ricardo; Sampaio, Iracilda; Schneider, Horácio

    2016-01-01

    Lignobrycon myersi is a threatened freshwater fish species and endemic of a few coastal rivers in northeastern Brazil. Even though the Brazilian laws prohibit the fisheries of threatened species, L. myersi is occasionally found in street markets, being highly appreciated by local population. In order to provide a reliable DNA barcode dataset for L. myersi, we compared mitochondrial sequences of cytochrome c oxidase subunit I (COI) from fresh, frozen, and salt-preserved specimens. Phylogenetically related species (Triportheus spp.) and other fish species (Astyanax fasciatus) commonly mixed with L. myersi in street markets were also included to test the efficiency of molecular identification. In spite of the differences in conservation processes and advanced deterioration of some commercial samples, high-quality COI sequences were obtained and effective in discriminating L. myersi specimens. In addition, while populations from Contas and Almada River basins seem to comprise a single evolutionary lineage, the specimens from Cachoeira River were genetically differentiated, indicating population structuring. Therefore, DNA barcoding has proved to be useful to trace the illegal trading of L. myersi and to manage threatened populations, which should focus on conservation of distinct genetic stocks and mitigation on human impacts along their range. PMID:27668281

  16. DNA barcoding and development of species-specific markers for the identification of tea mosquito bugs (Miridae: Heteroptera) in India.

    Science.gov (United States)

    Rebijith, K B; Asokan, R; Kumar, N K Krishna; Srikumar, K K; Ramamurthy, V V; Bhat, P Shivarama

    2012-10-01

    Rapid, accurate, and timely identification of insects as a group is important and challenging worldwide, as they outnumber all other animals in number and diversity. DNA barcoding is a method for the identification of species in a wide range of animal taxa, which uses the 5' region of the mitochondrial cytochrome c oxidase-I (CO-I). Yet another easy, accurate, and economical method of species discrimination is by developing species-specific markers, which produce specific amplicon for the species in question. The method is handy because it is not limited by life stages, sex, polymorphism, and other factors. Herein, we measured the usefulness of CO-I for the species discrimination of mirids in India viz. Helopeltis antonii Signoret, H. thievora Waterhouse, H. bradyi Waterhouse, and Pachypeltis maesarum Kirkaldy in their various life stages. Furthermore, our study showed the utility of species-specific markers in differentiating H. antonii (295) and H. bradyi (514) regardless of their life stages. Analysis of CO-I gene revealed <1% intraspecific divergence for all four species examined, whereas the interspecific distances ranged from 7 to 13%. This study showed that the DNA barcode and species-specific markers will aid the identification of mirids in India and will stand as a decisive tool in formulating integrated pest management (IPM) strategy, quick identification of invasive and cryptic species, haplotypes, biotypes, and other factors, if any. PMID:23068182

  17. Comparison of four DNA barcodes in identifying certain medicinal plants of Lamiaceae

    Institute of Scientific and Technical Information of China (English)

    Jian-Ping HAN; Lin-Chun SHI; Xiao-Chen CHEN; Yu-Lin LIN

    2012-01-01

    Many species in the family Lamiaceae have been widely used for the treatment of coronary heart disease,stroke,and other conditions,and authenticating each of these species has become an important topic of research.Due to the lack of distinct phenotypic differences between the species,morphological identification is often inaccurate.In the third Consortium for the Barcode of Life,the combination of matK and rbcL was recommended as the universal barcode for plants,but this combination resolved only 70% of the species; the psbA-trnH intergenic region and internal transcribed spacer (ITS)/ITS2 were required for further study.In this study,we compared the sequences of the four candidate barcodes (matK,rbcL,ITS2,and psbA-trnH),among different species of Lamiaceae medicinal plants based on three selection criteria:intraspecific and interspecific genetic divergences; Wilcoxon signed-rank tests; and species identification ability.The results showed that ITS2 was the most variable region of the four tested barcodes.Of 672 samples collected from 314 species,ITS2 successfully identified 78.3% at the species level and 100% at the genus level.This strategy could widen the optimal range of divergence levels for the identification of Lamiaceae medicinal plants.

  18. Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA Barcode Sequencing Project

    Science.gov (United States)

    Osmundson, Todd W.; Robert, Vincent A.; Schoch, Conrad L.; Baker, Lydia J.; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M.

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1–2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa. PMID:23638077

  19. Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project.

    Directory of Open Access Journals (Sweden)

    Todd W Osmundson

    Full Text Available Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1-2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa. All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa.

  20. The chloroplast DNA locus psbZ-trnfM as a potential barcode marker in Phoenix L. (Arecaceae

    Directory of Open Access Journals (Sweden)

    Marco Ballardini

    2013-12-01

    Full Text Available The genus Phoenix (Arecaceae comprises 14 species distributed from Cape Verde Islands to SE Asia. It includes the economically important species Phoenix dactylifera. The paucity of differential morphological and anatomical useful characters, and interspecific hybridization, make identification of Phoenix species difficult. In this context, the development of reliable DNA markers for species and hybrid identification would be of great utility. Previous studies identified a 12 bp polymorphic chloroplast minisatellite in the trnG(GCC-trnfM(CAU spacer, and showed its potential for species identification in Phoenix. In this work, in order to develop an efficient DNA barcode marker for Phoenix, a longer cpDNA region (700 bp comprising the mentioned minisatellite, and located between the psbZ and trnfM(CAU genes, was sequenced. One hundred and thirty-six individuals, representing all Phoenix species except P. andamanensis, were analysed. The minisatellite showed 2-7 repetitions of the 12 bp motif, with 1-3 out of seven haplotypes per species. Phoenix reclinata and P. canariensis had species-specific haplotypes. Additional polymorphisms were found in the flanking regions of the minisatellite, including substitutions, indels and homopolymers. All this information allowed us to identify unambiguously eight out of the 13 species, and overall 80% of the individuals sampled. Phoenix rupicola and P. theophrasti had the same haplotype, and so had P. atlantica, P. dactylifera, and P. sylvestris (the “date palm complex” sensu Pintaud et al. 2013. For these species, additional molecular markers will be required for their unambiguous identification. The psbZ-trnfM(CAU region therefore could be considered as a good basis for the establishment of a DNA barcoding system in Phoenix, and is potentially useful for the identification of the female parent in Phoenix hybrids.

  1. CÓDIGOS DE BARRAS DE LA VIDA: INTRODUCCIÓN Y PERSPECTIVA DNA Barcode of Life: An Introduction and Perspective

    Directory of Open Access Journals (Sweden)

    ANDREA PAZ

    Full Text Available El término -Código de Barras de ADN- se basa en el uso de una región de ADN estandarizada, la cual sirve como una etiqueta para la identificación rápida y de especies. El propósito de un sistema de identificación más eficaz es facilitar la conservación, conocimiento y uso sustentable de la biodiversidad. Después de ocho años de discusión y producción en la literatura científica, el tema sigue generando controversia, debido en parte a la falta de homogeneidad en la definición y el alcance del método entre los autores. En este artículo enfatizamos la definición y metodología de los códigos de barra de ADN, así como su uso para contestar preguntas nuevas en los campos de la ecología, la evolución y la conservaciónDNA barcode of life is a global initiative to populate a database of short, standardized DNA fragments from most eukaryotic species to facilitate the identification of whole or fragmented biological samples. Increasing the ability of non-experts to indentify unknown samples should improve our collective understanding and management of the world s biodiversity. In the eight years following its proposal, DNA barcoding remains controversial in the scientific literature due, in part, to a lack of consensus on how DNA barcoding is defined and what activities are included under this rubric. In the present paper we review the definition, methods and goals of DNA barcoding, highlighting how the massive data sets generated by various DNA barcode of life campaigns may be applied to fundamental and novel questions in ecology, evolution and conservation

  2. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species

    NARCIS (Netherlands)

    Lopez-Quintero, C.A.; Atanasova, L.; Franco-Molano, A.E.; Gams, W.; Komon-Zelazowska, M.; Theelen, B.; Muller, W.H.; Boekhout, T.; Druzhinina, I.

    2013-01-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (

  3. Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures

    Directory of Open Access Journals (Sweden)

    Sønstebø Jørn H

    2009-08-01

    Full Text Available Abstract Background In order to understand the role of herbivores in trophic webs, it is essential to know what they feed on. Diet analysis is, however, a challenge in many small herbivores with a secretive life style. In this paper, we compare novel (high-throughput pyrosequencing DNA barcoding technology for plant mixture with traditional microhistological method. We analysed stomach contents of two ecologically important subarctic vole species, Microtus oeconomus and Myodes rufocanus, with the two methods. DNA barcoding was conducted using the P6-loop of the chloroplast trnL (UAA intron. Results Although the identified plant taxa in the diets matched relatively well between the two methods, DNA barcoding gave by far taxonomically more detailed results. Quantitative comparison of results was difficult, mainly due to low taxonomic resolution of the microhistological method, which also in part explained discrepancies between the methods. Other discrepancies were likely due to biases mostly in the microhistological analysis. Conclusion We conclude that DNA barcoding opens up for new possibilities in the study of plant-herbivore interactions, giving a detailed and relatively unbiased picture of food utilization of herbivores.

  4. Epinotia cinereana (Haworth, 1811) bona sp., a Holarctic tortricid distinct from E. nisella (Clerck, 1759) (Lepidoptera: Tortricidae: Eucosmini) as evidenced by DNA barcodes, morphology and life history

    DEFF Research Database (Denmark)

    Mutanen, Marko; Aarvik, Leif; Landry, Jean-Francois;

    2012-01-01

    DNA barcodes of European tortricid moths identified as Epinotia nisella (Clerck, 1759) were found to comprise two genetically distinct clusters. These coincided with E. nisella and E. cinereana (Haworth, 1811) (sp. rev.), the latter having been considered a synonym of the former for several decad...

  5. Review of the Eulamprotes wilkella species-group based on morphology and DNA barcodes, with descriptions of new taxa (Lepidoptera, Gelechiidae)

    DEFF Research Database (Denmark)

    Huemer, Peter; Elsner, Gustav; Karsholt, Ole

    2013-01-01

    The Eulamprotes wilkella species-group is revised based on morphological characters and on DNA barcodes of the mtCOI (Cytochrome c Oxidase 1) gene. Adult morphology combined with sequence information for 9 species supports the existence of 12 species, 7 of which are described as new to science: E...

  6. Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae: Theraphosidae).

    Science.gov (United States)

    Ortiz, David; Francke, Oscar F

    2016-08-01

    Determining species boundaries is a central debate in biology. Several recently developed molecular delimitation methods have highlighted extensive inconsistency in classical morphological taxonomy. However, choosing between them is contentious. Molecular studies on theraphosid spiders have found considerable cryptic diversity and many species redundantly described. Most of these studies have relied only on COI, a mitochondrial marker that has proven its efficacy in animal studies, but which also might lead to an over-estimation of diversity. Here we present an integrative approach to species delimitation in Bonnetina, a poorly known group of tarantulas endemic to Mexico. We employed morphological evidence, as well as different setups with distance-based (Hard-Gap barcoding and ABGD) and tree-based (GMYC, PTP and BPP) molecular barcoding approaches, using one mitochondrial (COI) and one nuclear (ITS1) rapidly evolving loci. BPP is also used as a multi-locus method. We also explored the influence of ambiguous alignment choice and of coding gaps as characters in phylogenetic inference and in species delimitation with that marker. Different delimitation methods with COI gave moderately variable results and this gene exhibited a universal barcode gap. The ITS1 gene tree was well supported and robust to alignment choice; with this locus, coding gaps improved branch support and species delimitation with PTP. No universal barcode gap was found with ITS1, and single locus delimitations returned disparate results. However, this locus helped to highlight cases of under- and overestimations by COI. BPP gave solutions with many lineages, in single locus and combined analyses, especially with the recently implemented unguided methodology. We recognize 12 robustly supported species in our data set, of which seven remain undescribed, and three are morphologically cryptic. For COI Bonnetina species identification, we propose intra- and inter-specific thresholds of 2% and 6

  7. DNA barcode sequencing from old type specimens as a tool in taxonomy: a case study in the diverse genus Eois (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Patrick Strutzenberger

    Full Text Available In this study we report on the sequencing of the COI barcode region from 96 historical specimens (92 type specimens +4 non-types of Eois. Eois is a diverse clade of tropical geometrid moths and is the target of a number of ongoing studies on life-histories, phylogeny, co-evolution with host plants or parasitoids, and diversity patterns across temporal and spatial dimensions. The unequivocal application of valid names is crucial for all aspects of biodiversity research as well as monitoring and conservation efforts. The availability of barcodes from historical type specimens has the potential to facilitate the much-needed acceleration of species description. We performed non-destructive DNA extraction on the abdomens of Eois specimens between 79 and 157 years of age. We used six primer combinations (recovering between 109 and 130 bp each to target the full-length barcode sequence of each specimen. We were able to obtain sequences for 91 of 96 specimens (success rate 94.8%. Sequence length ranged from 121 bp to full barcode sequences (658 bp, the average sequence length was ~500 bp. We detected a moderately strong and statistically significant negative correlation between specimen age and total sequence length, which is in agreement with expectations. The abdomen proved to be an exceedingly valuable source of DNA in old specimens of Lepidoptera. Barcode sequences obtained in this study are currently being used in an effort towards a step-wise taxonomic revision of Eois. We encourage that DNA barcodes obtained from types specimens should be included in all species descriptions and revisions whenever feasible.

  8. DNA Barcode Sequencing from Old Type Specimens as a Tool in Taxonomy: A Case Study in the Diverse Genus Eois (Lepidoptera: Geometridae)

    Science.gov (United States)

    Strutzenberger, Patrick; Brehm, Gunnar; Fiedler, Konrad

    2012-01-01

    In this study we report on the sequencing of the COI barcode region from 96 historical specimens (92 type specimens +4 non-types) of Eois. Eois is a diverse clade of tropical geometrid moths and is the target of a number of ongoing studies on life-histories, phylogeny, co-evolution with host plants or parasitoids, and diversity patterns across temporal and spatial dimensions. The unequivocal application of valid names is crucial for all aspects of biodiversity research as well as monitoring and conservation efforts. The availability of barcodes from historical type specimens has the potential to facilitate the much-needed acceleration of species description. We performed non-destructive DNA extraction on the abdomens of Eois specimens between 79 and 157 years of age. We used six primer combinations (recovering between 109 and 130 bp each) to target the full-length barcode sequence of each specimen. We were able to obtain sequences for 91 of 96 specimens (success rate 94.8%). Sequence length ranged from 121 bp to full barcode sequences (658 bp), the average sequence length was ∼500 bp. We detected a moderately strong and statistically significant negative correlation between specimen age and total sequence length, which is in agreement with expectations. The abdomen proved to be an exceedingly valuable source of DNA in old specimens of Lepidoptera. Barcode sequences obtained in this study are currently being used in an effort towards a step-wise taxonomic revision of Eois. We encourage that DNA barcodes obtained from types specimens should be included in all species descriptions and revisions whenever feasible. PMID:23185414

  9. Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera

    Science.gov (United States)

    Mutanen, Marko; Kivelä, Sami M.; Vos, Rutger A.; Doorenweerd, Camiel; Ratnasingham, Sujeevan; Hausmann, Axel; Huemer, Peter; Dincă, Vlad; van Nieukerken, Erik J.; Lopez-Vaamonde, Carlos; Vila, Roger; Aarvik, Leif; Decaëns, Thibaud; Efetov, Konstantin A.; Hebert, Paul D. N.; Johnsen, Arild; Karsholt, Ole; Pentinsaari, Mikko; Rougerie, Rodolphe; Segerer, Andreas; Tarmann, Gerhard; Zahiri, Reza; Godfray, H. Charles J.

    2016-01-01

    The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service “Monophylizer” to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the

  10. DNA barcoding and phylogenetic relationships of genera Picoides and Dendrocopos (Aves: Picidae).

    Science.gov (United States)

    Huang, Z H; Tu, F Y; Liao, X J

    2015-01-01

    Picoides and Dendrocopos are two closely related genera of woodpeckers (family Picidae), and members of these genera have long been the subjects of phylogenetic debate. Mitochondrial cytochrome c oxidase subunit I (COI) is a powerful marker for the identification and phylogenetic study of animal species. In the present study, we analyzed the COI barcodes of 21 species from the two genera, and 222 variable sites were identified. Kimura two-parameter distances were calculated between barcodes. The average interspecific genetic distance was more than 20 times higher than the average intraspecific genetic distance. The neighbor-joining method was used to construct a phylogenetic tree, and all of the species could be discriminated by their distinct clades. Picoides arcticus was the first to split from the lineage, and the other species were grouped into two divergent clades. The results of this study indicated that the COI genetic data did not support the monophyly of Picoides and Dendrocopos. PMID:26782484

  11. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata.

    Science.gov (United States)

    Hoareau, T B; Boissin, E

    2010-11-01

    Recent research has shown the usefulness of the Folmer region of the cytochrome oxidase I (COI) as a genetic barcode to assist in species delimitation of echinoderms. However, amplification of COI is often challenging in echinoderms (low success or pseudogenes). We present a method that allows the design of phylum-specific hybrid primers, and use this to develop COI primers for the Echinodermata. We aligned COI sequences from 310 echinoderm species and designed all possible primers along the consensus sequence with two methods (standard degenerate and hybrid). We found much lower degeneracy for hybrid primers (4-fold degeneracy) than for standard degenerate primers (≥48-fold degeneracy). We then designed the most conserved hybrid primers to amplify a >500-bp region within COI. These primers successfully amplified this gene region in all tested taxa (123 species across all echinoderm classes). Sequencing of 30 species among these confirmed both the quality of the sequences (>500 bp, no pseudogenes) and their utility as a DNA barcode. This method should be useful for developing primers for other mitochondrial genes and other phyla. The method will also be of interest for the development of future projects involving both community-based genetic assessments on macroorganisms and biodiversity assessment of environmental samples using high-throughput sequencing.

  12. DNA barcode based wildlife forensics for resolving the origin of claw samples using a novel primer cocktail.

    Science.gov (United States)

    Khedkar, Gulab D; Abhayankar, Shil Bapurao; Nalage, Dinesh; Ahmed, Shaikh Nadeem; Khedkar, Chandraprakash D

    2014-12-10

    Abstract Excessive wildlife hunting for commercial purposes can have negative impacts on biodiversity and may result in species extinction. To ensure compliance with legal statutes, forensic identification approaches relying on molecular markers may be used to identify the species of origin of animal material from hairs, claw, blood, bone, or meat. Using this approach, DNA sequences from the COI "barcoding" gene have been used to identify material from a number of domesticated animal species. However, many wild species of carnivores still present great challenges in generating COI barcodes using standard "universal" primer pairs. In the work presented here, the mitochondrial COI gene was successfully amplified using a novel primer cocktail, and the products were sequenced to determine the species of twenty one unknown samples of claw material collected as part of forensic wildlife case investigations. Sixteen of the unknown samples were recognized to have originated from either Panthera leo or P. pardus individuals. The remaining five samples could be identified only to the family level due to the absence of reference animal sequences. This is the first report on the use of COI sequences for the identification of P. pardus and P. leo from claw samples as part of forensic investigations in India. The study also highlights the need for adequate reference material to aid in the resolution of suspected cases of illegal wildlife harvesting. PMID:25492536

  13. DNA Barcode-Based PCR-RFLP and Diagnostic PCR for Authentication of Jinqian Baihua She (Bungarus Parvus

    Directory of Open Access Journals (Sweden)

    Xiaolei Li

    2015-01-01

    Full Text Available We established polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP and diagnostic PCR based on cytochrome C oxidase subunit I (COI barcodes of Bungarus multicinctus, genuine Jinqian Baihua She (JBS, and adulterant snake species. The PCR-RFLP system utilizes the specific restriction sites of SpeI and BstEII in the COI sequence of B. multicinctus to allow its cleavage into 3 fragments (120 bp, 230 bp, and 340 bp; the COI sequences of the adulterants do not contain these restriction sites and therefore remained intact after digestion with SpeI and BstEII (except for that of Zaocys dhumnades, which could be cleaved into a 120 bp and a 570 bp fragment. For diagnostic PCR, a pair of species-specific primers (COI37 and COI337 was designed to amplify a specific 300 bp amplicon from the genomic DNA of B. multicinctus; no such amplicons were found in other allied species. We tested the two methods using 11 commercial JBS samples, and the results demonstrated that barcode-based PCR-RFLP and diagnostic PCR both allowed effective and accurate authentication of JBS.

  14. Species diversity of planktonic gastropods (Pteropoda and Heteropoda) from six ocean regions based on DNA barcode analysis

    Science.gov (United States)

    Jennings, Robert M.; Bucklin, Ann; Ossenbrügger, Holger; Hopcroft, Russell R.

    2010-12-01

    Pteropods and heteropods are two distinct groups of holoplanktonic gastropods whose species and genetic diversity remain poorly understood, despite their ubiquity in the world's oceans. Some species apparently attain near cosmopolitan distributions, implying long-distance dispersal or cryptic species assemblages. We present the first multi-regional and species-rich molecular dataset of holoplanktonic gastropods, comprising DNA barcodes from the mitochondrial cytochrome c oxidase I subunit gene (COI) from 115 individuals of 41 species sampled from six ocean regions across the globe. Molecular analysis and assessment of barcoding utility supported the validity of several morphological subspecies and forms (e.g. of Creseis virgula and Limacina helicina), while others were not supported (e.g. Cavolinia uncinata). Significant genetic variation was observed among conspecific specimens collected in different geographic regions for some species, particularly in euthecosomatous pteropods. Several species of euthecosomes showed no evidence of genetic separation among distant ocean regions. Overall, we suggest some taxonomic revision of the holoplanktonic gastropods will be required, pending a more complete molecular inventory of these groups.

  15. 海洋生物 DNA 条形码研究现状与展望%Current status and future prospect of DNA barcoding in marine biology

    Institute of Scientific and Technical Information of China (English)

    林森杰; 王路; 郑连明; 董云伟; 柳淑芳; 丁少雄; 叶乃好; 曹文清; 庄志猛

    2014-01-01

    海洋生物种类多样,分布广泛,具有复杂性、多样性和趋同性等特点,为了对物种进行更快速、准确地鉴定,急需在传统形态分类学基础上,建立并结合便捷准确的分子鉴定手段。DNA 条形码提供了可信息化的分类标准和有效的分类学手段,已成为近年来分类学与生物多样性研究中重要的技术依托。本文概述了 DNA 条形码当前的发展现状与趋势,并介绍了 DNA 条形码技术在主要海洋浮游植物(红藻、褐藻、绿藻、硅藻、甲藻)、无脊椎动物(海绵动物、刺胞动物、甲壳动物和软体动物等)和鱼类中的研究进展,以及不同条形码基因针对于不同生物类群的有效性和适用性,指出了目前条形码技术在各海洋类群中存在的主要问题,并对未来的相关工作做了展望,希望为今后我国的海洋生物DNA 条形码研究提供理论基础。%Marine organisms are highly diverse,widely distributed,with high complexity and homoplasy.To enable fast and accurate identification of species,it is imperative to establish molecular techniques,to complement the tradi-tional morphological metbodology.DNA barcoding provides digitalized criteria and effective means for species iden-tification,and is becoming an important technical tool in the research on taxonomy and biodiversity.In this review, we summarize the major recent progress and current trend in DNA barcoding,particularly as it applies to the fields of marine phytoplankton (Rhodophyte,Phaeophyta,Chlorophyta,Bacillariophyta and Dinophyta ),invertebrates (Spongia,Cnidaria,Custacea,Mollusca,etc.)and fish.We provide an overview of the deffectiveness and suitability of different barcoding markers in different groups of marine organisms.We also discuss current challenges and fu-ture prospects of marine DNA barcoding in hope to provide a framework for future marine DNA barcoding research in China.

  16. Exploring the use of cytochrome oxidase c subunit 1 (COI for DNA barcoding of free-living marine nematodes.

    Directory of Open Access Journals (Sweden)

    Sofie Derycke

    Full Text Available BACKGROUND: The identification of free-living marine nematodes is difficult because of the paucity of easily scorable diagnostic morphological characters. Consequently, molecular identification tools could solve this problem. Unfortunately, hitherto most of these tools relied on 18S rDNA and 28S rDNA sequences, which often lack sufficient resolution at the species level. In contrast, only a few mitochondrial COI data are available for free-living marine nematodes. Therefore, we investigate the amplification and sequencing success of two partitions of the COI gene, the M1-M6 barcoding region and the I3-M11 partition. METHODOLOGY: Both partitions were analysed in 41 nematode species from a wide phylogenetic range. The taxon specific primers for the I3-M11 partition outperformed the universal M1-M6 primers in terms of amplification success (87.8% vs. 65.8%, respectively and produced a higher number of bidirectional COI sequences (65.8% vs 39.0%, respectively. A threshold value of 5% K2P genetic divergence marked a clear DNA barcoding gap separating intra- and interspecific distances: 99.3% of all interspecific comparisons were >0.05, while 99.5% of all intraspecific comparisons were <0.05 K2P distance. CONCLUSION: The I3-M11 partition reliably identifies a wide range of marine nematodes, and our data show the need for a strict scrutiny of the obtained sequences, since contamination, nuclear pseudogenes and endosymbionts may confuse nematode species identification by COI sequences.

  17. A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data.

    Directory of Open Access Journals (Sweden)

    Robert Muscarella

    Full Text Available The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i low terminal phylogenetic resolution and (ii arbitrarily defined species pools.We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%. We used a maximum likelihood (ML approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%. We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types changed some of our results depending on which phylogeny (ML vs. Phylomatic was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny.With the DNA barcode phylogeny presented here (based on an island-wide species pool, we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii provide insight into

  18. A Well-Resolved Phylogeny of the Trees of Puerto Rico Based on DNA Barcode Sequence Data

    Science.gov (United States)

    Muscarella, Robert; Uriarte, María; Erickson, David L.; Swenson, Nathan G.; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Background The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. Methodology/principal findings We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and

  19. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives

    NARCIS (Netherlands)

    Kiewnick, S.; Holterman, M.H.M.; Elsen, van den S.J.J.; Megen, van H.H.B.; Frey, J.E.; Helder, J.

    2014-01-01

    Root-knot nematodes (Meloidogyne spp.) are important pests of numerous crops worldwide. Some members of this genus have a quarantine status, and accurate species identification is required to prevent further spreading. DNA barcoding is a method for organism identification in non-complex DNA backgrou

  20. DNA条形码识别Ⅰ.DNA条形码研究进展及应用前景%DNA Barcoding IdentificationⅠ. Research Progress and Applied Perspective of DNA Barcoding

    Institute of Scientific and Technical Information of China (English)

    莫帮辉; 屈莉; 韩松; 何建伟; 赵明; 曾晓茂

    2008-01-01

    DNA条形码(DNA Barcoding)是近年来生物分类学中引人注目的发展热点.本文综述了DNA条形码的发展历史、识别原理以及公共数据库,并讨论了DNA条形码在检疫检验领域的应用前景.DNA条形码与DNA芯片技术的结合,将推动传统物种鉴定方法的更新,可在检疫检验领域中实现非专家检定,这对进出口口岸生物监测具有重要的理论意义和应用价值.

  1. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenbao [Central South University, School of Pharmaceutical Sciences (China); Zhou, Bo, E-mail: zhoubo1771@163.com [The Affiliated Zhongda Hospital of Southeast University, Department of Gerontology (China); Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang, E-mail: lengxigyky@163.com [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College (China)

    2013-09-15

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 {mu}m in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL{sup -1} to 10 ng mL{sup -1}. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  2. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    International Nuclear Information System (INIS)

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The