WorldWideScience

Sample records for aligned carbon nanofiber

  1. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  2. Transfer of vertically aligned carbon nanofibers to polydimethylsiloxane (PDMS) while maintaining their alignment and impalefection functionality.

    Science.gov (United States)

    Pearce, Ryan C; Railsback, Justin G; Anderson, Bryan D; Sarac, Mehmet F; McKnight, Timothy E; Tracy, Joseph B; Melechko, Anatoli V

    2013-02-01

    Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiN(x)) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth. The fiber arrays were transferred to PDMS by spin coating a layer on the grown substrates, curing the PDMS, and etching away the Al in KOH. The fiber arrays contain many fibers over 15 μm (long enough to protrude from the PDMS film and penetrate cell membranes) and SiN(x) coatings as observed by SEM, EDX, and fluorescence microscopy. The free-standing array in PDMS was loaded with pVENUS-C1 plasmid and human brain microcapillary endothelial (HBMEC) cells and was successfully impalefected. PMID:23281833

  3. Study on glow discharge effects on catalyst films for growing aligned carbon nanofibers in negative bias-enhanced hot filament chemical vapor deposition system

    International Nuclear Information System (INIS)

    Aligned carbon nanofibers (ACNFs) were grown on silicon substrates coated with NiFe catalyst films by negative bias-enhanced hot filament chemical vapor deposition (CVD). The growth and structure of the aligned carbon nanofibers were investigated by scanning electron microscopy (SEM). The results indicate that the aligned carbon nanofibers could be synthesized after the glow discharge appears when the negative bias is higher than a certain value, while they are bent if the glow discharge does not appear. Furthermore, the diameters of the aligned carbon nanofibers are reduced and their lengths are increased with increasing the negative bias. It is shown that the glow discharge resulting from the negative bias plays an important role in the growth of aligned carbon nanofibers. Here, the effects of the glow discharge on the growth and structure of the aligned carbon nanofibers are discussed

  4. Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA

    Directory of Open Access Journals (Sweden)

    Asiri AM

    2014-12-01

    Full Text Available Abdullah M Asiri,1 Hadi M Marwani,1 Sher Bahadar Khan,1 Thomas J Webster1,2 1Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Previous studies have demonstrated greater cardiomyocyte density on carbon nanofibers (CNFs aligned (compared to randomly oriented in poly(lactic-co-glycolic acid (PLGA composites. Although such studies demonstrated a closer mimicking of anisotropic electrical and mechanical properties for such aligned (compared to randomly oriented CNFs in PLGA composites, the objective of the present in vitro study was to elucidate a deeper mechanistic understanding of how cardiomyocyte densities recognize such materials to respond more favorably. Results showed lower wettability (greater hydrophobicity of CNFs embedded in PLGA compared to pure PLGA, thus providing evidence of selectively lower wettability in aligned CNF regions. Furthermore, the results correlated these changes in hydrophobicity with increased adsorption of fibronectin, laminin, and vitronectin (all proteins known to increase cardiomyocyte adhesion and functions on CNFs in PLGA compared to pure PLGA, thus providing evidence of selective initial protein adsorption cues on such CNF regions to promote cardiomyocyte adhesion and growth. Lastly, results of the present in vitro study further confirmed increased cardiomyocyte functions by demonstrating greater expression of important cardiomyocyte biomarkers (such as Troponin-T, Connexin-43, and α-sarcomeric actin when CNFs were aligned compared to randomly oriented in PLGA. In summary, this study provided evidence that cardiomyocyte functions are improved on CNFs aligned in PLGA compared to randomly oriented in PLGA since CNFs are more hydrophobic than PLGA and attract the adsorption of key proteins (fibronectin, laminin, and vironectin that are known to promote cardiomyocyte adhesion

  5. Growth of carbon nanofibers on aligned zinc oxide nanorods and their field emission properties

    International Nuclear Information System (INIS)

    Carbon nanofibers were grown by electrodeposition technique onto aligned zinc oxide (ZnO) nanorods deposited by hybrid wet chemical route on glass substrates. X-ray diffraction traces indicated very strong peak for reflections from (0 0 2) planes of ZnO. The Raman spectra were dominated by the presence of G band at about 1597 cm-1 corresponding to the E2g tangential stretching mode of an ordered graphitic structure with sp2 hybridization and a D band at about 1350 cm-1 originating from disordered carbon. Fourier transformed infrared studies indicated the presence of a distinct characteristic absorption peak at ∼511 cm-1 for Zn-O stretching mode. Photoluminescence spectra indicated band edge luminescence of ZnO at ∼3.146 eV along with a low intensity peak at ∼0.877 eV arising out of carbon nanofibers. Field emission properties of these films and their dependence on the CNF coverage on ZnO nanorods are reported here. The average field enhancement factor as determined from the slope of the FN plot was found to vary between 1 x 103 and 3 x 103. Both the values of turn-on field and threshold field for CNF/ZnO were lower than pure ZnO nanorods.

  6. A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.

    Science.gov (United States)

    Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole

    2016-08-01

    This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process. PMID:27337723

  7. Aligned Layers of Silver Nano-Fibers

    OpenAIRE

    Golovin, Andrii B.; Liubov Kreminska; Jeremy Stromer

    2012-01-01

    We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polariz...

  8. A reagentless enzymatic amperometric biosensor using vertically aligned carbon nanofibers (VACNF)

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Martha L [University of Tennessee, Knoxville (UTK); Rahman, Touhidur [ORNL; Frymier, Paul Dexter [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); McKnight, Timothy E [ORNL

    2008-01-01

    A reagentless amperometric enzymatic biosensor is constructed on a carbon substrate for detection of ethanol. Yeast alcohol dehydrogenase (YADH), an oxidoreductase, and its cofactor nicotinamide adenine dinucleotide (NAD+) are immobilized by adsorption and covalent attachment to the carbon substrate. Carbon nanofibers grown by plasma enhanced chemical vapor deposition (PECVD) are chosen as the electrode material due to their excellent structural and electrical properties. Electrochemical techniques are employed to test the functionality and performance of the biosensor using reduced form of nicotinamide adenine dinucleotide (NADH) which also determines the oxidation peak potential of NADH. Subsequently, amperometric measurements are conducted for detection of ethanol to determine the electrical current response due to the increase in analyte concentration. The detection range, storage stability, reusability, and response time of the biosensor are also examined.

  9. Synthesis and properties of SiNx coatings as stable fluorescent markers on vertically aligned carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Ryan Pearce

    2014-04-01

    Full Text Available The growth of vertically aligned carbon nanofibers (VACNFs in a catalytic dc ammonia/acetylene plasma process on silicon substrates is often accompanied by sidewall deposition of material that contains predominantly Si and N. In fluorescent microscopy experiments, whereby VACNFs are interfaced to cell and tissue cultures for a variety of applications, it was observed that this material is broadly fluorescent. In this paper, we provide insight into nature of these silicon/nitrogen in-situ coatings. We propose a potential mechanism for deposition of SiNx coating on the sidewalls of VACNFs during PECVD synthesis and explore the origin of the coating's fluorescence. It is most likely that the substrate reacts with process gases similar to reactive sputtering and chemical vapor deposition (CVD, forming silane and other silicon bearing compounds prior to isotropic deposition as a SiNx coating onto the VACNFs. The formation of Sinanoclusters (NCs is also implicated due to a combination of strong fluorescence and elemental analysis of the samples. These broadly luminescent fibers can prove useful as registry markers in fluorescent cellular studies and for tagging and tracing applications.

  10. The Differentiation of Human Endometrial Stem Cells into Neuron-Like Cells on Electrospun PAN-Derived Carbon Nanofibers with Random and Aligned Topographies.

    Science.gov (United States)

    Mirzaei, Esmaeil; Ai, Jafar; Ebrahimi-Barough, Somayeh; Verdi, Javad; Ghanbari, Hossein; Faridi-Majidi, Reza

    2016-09-01

    Electrospun carbon nanofibers (CNFs) have great potential for applications in neural tissue regeneration due to their electrical conductivity, biocompatibility, and morphological similarity to natural extracellular matrix. In this study, we cultured human endometrial stem cells (hEnSCs) on electrospun CNFs with random and aligned topographies and demonstrated that hEnSCs could attach, proliferate, and differentiate into neural cells on both random and aligned CNFs. However, the proliferation, differentiation, and morphology of cells were affected by CNF morphology. Under the proliferative condition, hEnSCs showed lower proliferation on aligned CNFs than on random CNFs and on tissue culture plate (TCP) control. When cultured on aligned CNFs in neural induction media, hEnSCs showed significant upregulation of neuronal markers, NF-H and Tuj-1, and downregulation of neural progenitor marker (nestin) compared to that on random CNFs and on TCP. In contrast, hEnSCs showed higher expression of nestin and slight upregulation of oligodendrocyte marker (OLIG-2) on random CNFs compared to that on aligned CNFs and on TCP. SEM imaging revealed that differentiated cells extended along the CNF main axis on aligned CNFs but stretched multidirectionally on random CNFs. These findings suggest electrospun CNFs as proper substrate for stem cell differentiation into specific neural cells. PMID:26334615

  11. Processing and Structure of Carbon Nanofiber Paper

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhao

    2009-01-01

    Full Text Available A unique concept of making nanocomposites from carbon nanofiber paper was explored in this study. The essential element of this method was to design and manufacture carbon nanofiber paper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under various processing conditions, including different types of carbon nanofibers, solvents, dispersants, and acid treatment. The morphologies of carbon nanofibers within the nanofiber paper were characterized with scanning electron microscopy (SEM. In addition, the bulk densities of carbon nanofiber papers were measured. It was found that the densities and network structures of carbon nanofiber paper correlated to the dispersion quality of carbon nanofibers within the paper, which was significantly affected by papermaking process conditions.

  12. Shear adhesion strength of aligned electrospun nanofibers.

    Science.gov (United States)

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities. PMID:25105533

  13. Silicon Whisker and Carbon Nanofiber Composite Anode

    Science.gov (United States)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  14. Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode

    OpenAIRE

    Susobhan Das; Jun Li; Rongqing Hui

    2015-01-01

    Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension ...

  15. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers

    Science.gov (United States)

    Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit, Lance

    2002-01-01

    Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

  16. Uniaxially aligned ceramic nanofibers obtained by chemical mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Tararam, R. [Univ Estadual Paulista – UNESP – Instituto de Química, Rua Prof. Francisco Degni n° 55, CEP 14800-900 Araraquara, SP (Brazil); Foschini, C.R. [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Bauru, Dept. de Eng. Mecanica, Av. Eng. Luiz Edmundo C. Coube 14-01, CEP 17033-360 Bauru, SP (Brazil); Destro, F.B. [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Guaratinguetá, Guaratinguetá 12516-410, SP (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Guaratinguetá, Guaratinguetá 12516-410, SP (Brazil); Longo, E.; Varela, J.A. [Univ Estadual Paulista – UNESP – Instituto de Química, Rua Prof. Francisco Degni n° 55, CEP 14800-900 Araraquara, SP (Brazil)

    2014-08-01

    For this study, we investigated a simple method to generate well aligned nanofibers over large areas using an organic polymer stretched over the substrate surface With this method, ZnO and CuO 3D parallel nanowire arrays were successfully prepared by calcinations of the polymer fibers. X-ray diffraction (XRD) analysis revealed that the copper oxide has a monoclinic structure while the zinc oxide has a hexagonal structure. Scanning electron microscopy (SEM) analysis showed ceramic nanofibers with an average diameter of 120 nm which were composed of small nanoparticles which are 10 nm in diameter. The ability to obtain uniaxially aligned nanofibers reveals a range of interesting properties with potential applications for sensors, catalysts and energy technologies.

  17. Nanofiber alignment of a small diameter elastic electrospun scaffold

    Science.gov (United States)

    Patel, Jignesh

    Cardiovascular disease is the leading cause of death in western countries with coronary heart disease making up 50% of these deaths. As a treatment option, tissue engineered grafts have great potential. Elastic scaffolds that mimic arterial extracellular matrix (ECM) may hold the key to creating viable vascular grafts. Electrospinning is a widely used scaffold fabrication technique to engineer tubular scaffolds. In this study, we investigated how the collector rotation speed altered the nanofiber alignment which may improve mechanical characteristics making the scaffold more suitable for arterial grafts. The scaffold was fabricated from a blend of PCL/Elastin. 2D Fast Fourier Transform (FFT) image processing tool and MatLab were used to quantitatively analyze nanofiber orientation at different collector speeds (13500 to 15500 rpm). Both Image J and MatLab showed graphical peaks indicating predominant fiber orientation angles. A collector speed of 15000 rpm was found to produce the best nanofiber alignment with narrow peaks at 90 and 270 degrees, and a relative amplitude of 200. This indicates a narrow distribution of circumferentially aligned nanofibers. Collector speeds below and above 15000 rpm caused a decrease in fiber alignment with a broader orientation distribution. Uniformity of fiber diameter was also measured. Of 600 measures from the 15000 rpm scaffolds, the fiber diameter range from 500 nm to 899 nm was most prevalent. This diameter range was slightly larger than native ECM which ranges from 50 nm to 500 nm. The second most prevalent diameter range had an average of 404 nm which is within the diameter range of collagen. This study concluded that with proper electrospinning technique and collector speed, it is possible to fabricate highly aligned small diameter elastic scaffolds. Image J 2D FFT results confirmed MatLab findings for the analyses of circumferentially aligned nanofibers. In addition, MatLab analyses simplified the FFT orientation data

  18. Aligned Nanofibers for Regenerating Arteries, Nerves, and Muscles

    Science.gov (United States)

    McClendon, Mark Trosper

    Cells are the fundamental unit of the human body, and therefore the ability to control cell behavior is the most important challenge in regenerative medicine. Peptides are the language of biology which is why synthetic peptide amphiphile (PA) molecules hold great potential as a biomaterial. The work presented in this dissertation explores a variety of liquid crystalline PA nanofibers as a means for directing cell growth. Shaping the alignment of these nanofiber networks requires a deep understanding of their rheological properties which presents a difficult challenge as they exist in complex solid and liquid environments. Using PA molecules that self-assemble into high aspect ratio nanofibers and liquid crystalline solutions, this work investigates the influence of shear flow on macroscopic and microscopic nanofiber alignment. To this end, a shear force applied to PA solutions was systematically varied while the alignment was probed using small angle x-ray scattering. Nanofibers were found to respond to shear flow by aligning parallel to the flow direction. By changing pH and PA chemical sequence it was observed that increasing the interfiber electrostatic repulsive interactions resulted in a greater dependence on shear rate. Nanofiber solutions having greater repulsion did not drastically increase in alignment when the applied strain was increased by two orders of magnitude (1 s -1 to 100 s-1), while solutions with nanofibers having less repulsion increased there alignment four fold with the same strain increase. say exactly what you mean by resulted in greater dependence: did it result in fibers aligning under lower shear rates or higher rates--give the results Anionic PA solutions typically used to encapsulate living cells at neutral pH were found to require minimal shear rates, nerve conduits, and these scaffolds were implanted in a rat sciatic nerve model. Histological and behavioral observations confirmed that PA implants sustained regeneration rates

  19. Growth of Y-shaped Carbon Nanofibers from Ethanol Flames

    Directory of Open Access Journals (Sweden)

    Cheng Jin

    2008-01-01

    Full Text Available Abstract Y-shaped carbon nanofibers as a multi-branched carbon nanostructure have potential applications in electronic devices. In this article, we report that several types of Y-shaped carbon nanofibers are obtained from ethanol flames. These Y-shaped carbon nanofibers have different morphologies. According to our experimental results, the growth mechanism of Y-shaped carbon nanofibers has been discussed and a possible growth model of Y-shaped carbon nanofibers has been proposed.

  20. Growth of Y-shaped Carbon Nanofibers from Ethanol Flames

    OpenAIRE

    Cheng Jin; Zou Xiaoping; Zhang Hongdan; Li Fei; Ren Pengfei; Zhu Guang; Su Yi; Wang Maofa

    2008-01-01

    Abstract Y-shaped carbon nanofibers as a multi-branched carbon nanostructure have potential applications in electronic devices. In this article, we report that several types of Y-shaped carbon nanofibers are obtained from ethanol flames. These Y-shaped carbon nanofibers have different morphologies. According to our experimental results, the growth mechanism of Y-shaped carbon nanofibers has been discussed and a possible growth model of Y-shaped carbon nanofibers has been proposed.

  1. Nanotextured gold coatings on carbon nanofiber scaffolds as ultrahigh surface-area electrodes

    OpenAIRE

    COLAVITA, PAULA

    2012-01-01

    PUBLISHED High surface area metal electrodes are desirable for applications in energy storage and energy conversion. Here, the formation and electrochemical characterization of a hybrid material made by electroless deposition of gold onto a scaffolding of vertically aligned carbon nanofibers is described. Vertically aligned carbon nanofibers, ~80 nm in diameter, provided mechanical support and electrical contact to the highly textured nanoscale gold coatings. By chemically functionalizing ...

  2. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  3. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.

    Science.gov (United States)

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m(3) (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  4. Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode

    Directory of Open Access Journals (Sweden)

    Susobhan Das

    2015-12-01

    Full Text Available Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension comparable or less than the Li-ion diffusion length inside silicon. The results of simulation indicate that the contraction of the silicon electrode thickness during the battery discharge process commonly found in experiments also plays a major role in the increase of the energy capacity.

  5. Electrospun Carbon Nanotube-Reinforced Nanofiber.

    Science.gov (United States)

    Kim, Sung Mm; Hee Kim, Sung; Choi, Myong Soo; Lee, Jun Young

    2016-03-01

    We fabricated multi-walled carbon nanotube (MWNT) reinforced polyurethane (PU) nanofiber (MWNT-PU) web via electrospinning. In order to optimize the electrospinning conditions, we investigated the effects of various parameters including kind of solvent, viscosity of the spinning solution, and flow rate on the spinnability and properties of nanofiber. N,N-dimethylformamide (DMF), tetrahydrofuran (THF) and their mixture with various volume ratio were used as the spinning solvent. Morphology of the nanofiber was studied using scanning electron microscope (SEM) and transmission electron microscope (TEM), confirming successful fabrication of MWNT-PU nanofiber web with uniform dispersion of MWNT in longitudinal direction of the fiber. The MWNT-PU nanofiber web exhibited two times higher tensile strength than PU nanofiber web. We also fabricated electrically conducting MWNT-PU nanofiber web by coating poly(3,4-ehtylenedioxythiophene) (PEDOT) on the surface of MWNT-PU nanofiber web for electromagnetic interference (EMI) shielding application. The electromagnetic interference shielding effectiveness (EMI SE) was quite high as 25 dB in the frequency range from 50 MHz to 10 GHz. PMID:27455732

  6. Focal adhesion kinase regulation in stem cell alignment and spreading on nanofibers.

    Science.gov (United States)

    Andalib, Mohammad Nahid; Lee, Jeong Soon; Ha, Ligyeom; Dzenis, Yuris; Lim, Jung Yul

    2016-05-13

    While electrospun nanofibers have demonstrated the potential for novel tissue engineering scaffolds, very little is known about the molecular mechanism of how cells sense and adapt to nanofibers. Here, we revealed the role of focal adhesion kinase (FAK), one of the key molecular sensors in the focal adhesion complex, in regulating mesenchymal stem cell (MSC) shaping on nanofibers. We produced uniaxially aligned and randomly distributed nanofibers from poly(l-lactic acid) to have the same diameters (about 130 nm) and evaluated MSC behavior on these nanofibers comparing with that on flat PLLA control. C3H10T1/2 murine MSCs exhibited upregulations in FAK expression and phosphorylation (pY397) on nanofibrous cultures as assessed by immunoblotting, and this trend was even greater on aligned nanofibers. MSCs showed significantly elongated and well-spread morphologies on aligned and random nanofibers, respectively. In the presence of FAK silencing via small hairpin RNA (shRNA), cell elongation length in the aligned nanofiber direction (cell major axis length) was significantly decreased, while cells still showed preferred orientation along the aligned nanofibers. On random nanofibers, MSCs with FAK-shRNA showed impaired cell spreading resulting in smaller cell area and higher circularity. Our study provides new data on how MSCs shape their morphologies on aligned and random nanofibrous cultures potentially via FAK-mediated mechanism. PMID:27040763

  7. Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns

    OpenAIRE

    Khang, Dongwoo; Sato, Michiko; Price, Rachel L.; Ribbe, Alexander E; Webster, Thomas J

    2006-01-01

    In an effort to develop better orthopedic implants, osteoblast (bone-forming cells) adhesion was determined on microscale patterns (30 μm lines) of carbon nanofibers placed on polymer substrates. Patterns of carbon nanofibers (CNFs) on a model polymer (polycarbonate urethane [PCU]) were developed using an imprinting method that placed CNFs in selected regions. Results showed the selective adhesion and alignment of osteoblasts on CNF patterns placed on PCU. Results also showed greater attracti...

  8. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    OpenAIRE

    André Navarro de Miranda; Luiz Claudio Pardini; Carlos Alberto Moreira dos Santos; Ricardo Vieira

    2011-01-01

    Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/e...

  9. Hydrogenation catalyst based on modified carbon nanofibers

    International Nuclear Information System (INIS)

    The aim of this work was to study the palladium-carboxylated carbon nanofibers (CNF) as a catalyst for the hydrogenation of nitrobenzene model reaction. It is shown that the efficiency of the catalyst obtained more than 6 times higher than that of the industrial counterpart (Pd/C).

  10. Ellipsometric investigations of photonic crystals based on carbon nanofibers

    CERN Document Server

    Rehammar, R; Arwin, H; Kinaret, J M; Campbell, E E B

    2010-01-01

    Carbon nanofibers (CNF) are used as components of planar photonic crystals (PC). Square and rectangular lattices as well as random patterns of vertically aligned CNF were fabricated and their properties studied using ellipsometry. Conventional methods of ellipsometric analysis used in thin film ellipsometry are not applicable to these samples due to their nanostructured nature. We show that detailed information such as symmetry directions and the band structure of these novel materials can be extracted from considerations of the polarization state in the specular beam.

  11. Carbon nanofibers: a versatile catalytic support

    Directory of Open Access Journals (Sweden)

    Nelize Maria de Almeida Coelho

    2008-09-01

    Full Text Available The aim of this article is present an overview of the promising results obtained while using carbon nanofibers based composites as catalyst support for different practical applications: hydrazine decomposition, styrene synthesis, direct oxidation of H2S into elementary sulfur and as fuel-cell electrodes. We have also discussed some prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the morphology and the high external surface of the catalyst support.

  12. Aligned Electrospun Polyvinyl Pyrrolidone/Poly ɛ-Caprolactone Blend Nanofiber Mats for Tissue Engineering

    Science.gov (United States)

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2016-02-01

    Electrospun nanofibrous materials are widely used in medical applications such as tissue engineering scaffolds, wound dressing material and drug delivery carriers. For tissue engineering scaffolds, the structure of the nanofiber is similar to extracellular matrix (ECM) which promotes the cell growth and proliferation. In the present study, the aligned nanofiber mats of polyvinyl pyrrolidone (PVP) blended poly ɛ-caprolactone (PCL) was successfully generated using electrospinning technique. The morphology of PVP/PCL nanofiber mats were characterized by scanning electron microspore (SEM). The chemical and crystalline structure of PVP/PCL nanofiber mats were analyzed using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffactometer (PXRD). The water contact angle of mats was investigated. Cell culture studies using normal human fibroblasts (NHF) were performed to assess cell morphology, cell alignment and cell proliferation. The results indicated that the fiber were in nanometer range. The PVP/PCL was well dispersed in nanofiber mats and was in amorphous form. The water contact angle of PVP/PCL nanofiber mats was lower than PCL nanofiber mats. The PVP/PCL nanofiber mats exhibited good biocompatibility with NHF cells. In summary, the PVP/PCL nanofiber mats had potential to be used in tissue engineering and regenerative medicine.

  13. Zinc oxide nanorod assisted rapid single-step process for the conversion of electrospun poly(acrylonitrile) nanofibers to carbon nanofibers with a high graphitic content

    Science.gov (United States)

    Nain, Ratyakshi; Singh, Dhirendra; Jassal, Manjeet; Agrawal, Ashwini K.

    2016-02-01

    The effect of incorporation of rigid zinc oxide (ZnO) nanostructures on carbonization behavior of electrospun special acrylic fiber grade poly(acrylonitrile) (PAN-SAF) nanofibers was investigated. ZnO nanorods with high aspect ratios were incorporated into a PAN-N,N-dimethylformamide system and the composite nanofibers reinforced with aligned ZnO rods up to 50 wt% were successfully electrospun, and subsequently, carbonized. The morphology and the structural analysis of the resultant carbon nanofibers revealed that the rigid ZnO nanorods, present inside the nanofibers, possibly acted as scaffolds (temporary support structures) for immobilization of polymer chains and assisted in uniform heat distribution. This facilitated rapid and efficient conversion of the polymer structure to the ladder, and subsequently, the graphitized structure. At the end of the process, the ZnO nanorods were found to completely separate from the carbonized fibers yielding pure carbon nanofibers with a high graphitic content and surface area. The approach could be used to eliminate the slow, energy intensive stabilization step and achieve fast conversion of randomly laid carbon nanofiber webs in a single step to carbon nanofibers without the application of external tension or internal templates usually employed to achieve a high graphitic content in such systems.The effect of incorporation of rigid zinc oxide (ZnO) nanostructures on carbonization behavior of electrospun special acrylic fiber grade poly(acrylonitrile) (PAN-SAF) nanofibers was investigated. ZnO nanorods with high aspect ratios were incorporated into a PAN-N,N-dimethylformamide system and the composite nanofibers reinforced with aligned ZnO rods up to 50 wt% were successfully electrospun, and subsequently, carbonized. The morphology and the structural analysis of the resultant carbon nanofibers revealed that the rigid ZnO nanorods, present inside the nanofibers, possibly acted as scaffolds (temporary support structures) for

  14. The synthesis of titanium carbide-reinforced carbon nanofibers

    Science.gov (United States)

    Zhu, Pinwen; Hong, Youliang; Liu, Bingbing; Zou, Guangtian

    2009-06-01

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  15. The synthesis of titanium carbide-reinforced carbon nanofibers

    International Nuclear Information System (INIS)

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  16. Synthesis of carbon nanofibers on copper particles

    Science.gov (United States)

    Kol'tsova, T. S.; Larionova, T. V.; Shusharina, N. N.; Tolochko, O. V.

    2015-08-01

    We analyze the synthesis of carbon nanostructures from the gas phase (mixture of acetylene or ethylene with hydrogen) on the surface of copper particles without using other catalysts. The synthesized structures (multilayer graphene and carbon nanofibers) are analyzed by transmission electron microscopy and Raman scattering. It is shown that the fiber structure is determined by the C: H ratio in the gas phase. The kinetics of synthesis is analyzed in terms of the formal kinetics of conversion in accordance with the Johnson—Mehl—Avrami equation.

  17. Template synthesis and magnetic properties of highly aligned barium hexaferrite (BaFe12O19) nanofibers

    International Nuclear Information System (INIS)

    Using electrospun poly(ethylene terephthalate)/citric acid (PET/CA) microfibers as the template, highly aligned barium hexaferrite (BaFe12O19) nanofibers with diameters of ca. 800 nm and lengths up to 2 cm were synthesized by sol–gel precursor coating technique and subsequent high temperature calcination. Structural and morphological investigations revealed that individual BaFe12O19 nanofibers were composed of numerous nanocrystallites stacking alternatively along the nanofiber axis, the average grain size was ca. 225 nm and the single crystallites on each BaFe12O19 nanofibers were of random orientations. The formation mechanism of aligned BaFe12O19 nanofibers was proposed based on experiment. The magnetic measurement revealed that the aligned BaFe12O19 nanofibers exhibited orientation-dependent magnetic behavior with respect to the applied magnetic field. The magnetic anisotropy with the easy magnetizing axis along the length of the nanofibers was due to the shape anisotropy. Such aligned magnetic nanofibers can find relevance in application requiring an orientation-dependent physical response. - Highlights: ► A simple method was used to synthesize the aligned BaFe12O19 nanofibers. ► The aligned BaFe12O19 nanofibers display an obvious orientation-dependent magnetic behavior. ► The method can be readily applied to other aligned one-dimensional inorganic nanomaterials

  18. Functionalization of carbon nanotube and nanofiber electrodes with biological macromolecules: Progress toward a nanoscale biosensor

    Science.gov (United States)

    Baker, Sarah E.

    The integration of nanoscale carbon-based electrodes with biological recognition and electrical detection promises unparalleled biological detection systems. First, biologically modified carbon-based materials have been shown to have superior long-term chemical stability when compared to other commonly used materials for biological detection such as silicon, gold, and glass surfaces. Functionalizing carbon electrodes for biological recognition and using electrochemical methods to transduce biological binding information will enable real-time, hand-held, lower cost and stable biosensing devices. Nanoscale carbon-based electrodes allow the additional capability of fabricating devices with high densities of sensing elements, enabling multi-analyte detection on a single chip. We have worked toward the integration of these sensor components by first focusing on developing and characterizing the chemistry required to functionalize single-walled carbon nanotubes and vertically aligned carbon nanofibers with oligonucleotides and proteins for specific biological recognition. Chemical, photochemical and electrochemical methods for functionalizing these materials with biological molecules were developed. We determined, using fluorescence and colorimetric techniques, that these biologically modified nanoscale carbon electrodes are biologically active, selective, and stable. A photochemical functionalization method enabled facile functionalization of dense arrays vertically aligned carbon nanofiber forests. We found that much of the vertically aligned carbon nanofiber sidewalls were functionalized and biologically accessible by this method---the absolute number of DNA molecules hybridized to DNA-functionalized nanofiber electrodes was ˜8 times higher than the number of DNA molecules hybridized to flat glassy carbon electrodes and implies that nanofiber forest sensors may facilitate higher sensitivity to target DNA sequences per unit area. We also used the photochemical method

  19. Electrospinning preparation and properties of magnetic-photoluminescent bifunctional bistrand-aligned composite nanofibers bundles

    International Nuclear Information System (INIS)

    Fe3O4/PVP//Eu(BA)3phen/PVP magnetic-photoluminescent bifunctional bistrand-aligned composite nanofibers bundles based on ferroferric oxide(Fe3O4) nanoparticles and europium complex Eu(BA)3phen (BA = benzoic acid) were fabricated via electrospinning by employing a homemade parallel axial electrospinning setup with the side by side dual spinnerets for the first time. The structures, morphology, and properties of the as-prepared products were investigated in detail by X-ray diffraction, field-emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy (TEM), a fluorescence spectrometer, and a vibrating sample magnetometer. SEM analysis showed the average diameter of the individual-strand fiber of the bistrand-aligned composite nanofibers bundles was 200 ± 25 nm. TEM image demonstrated that Fe3O4 nanoparticles were only dispersed into one strand of the bistrand-aligned composite nanofibers bundles, and the average diameter of Fe3O4 nanoparticles was about 15 nm. Under the excitation of 274 nm ultraviolet light, Fe3O4/PVP//Eu(BA)3phen/PVP bistrand-aligned composite nanofibers bundles exhibited red emissions of predominant peaks at 592 and 616 nm, which were respectively attributed to the 5D0 → 7F1 and 5D0 → 7F2 transitions of Eu3+ ions. The fluorescence intensity of the bistrand-aligned composite nanofibers bundles was higher than that of Fe3O4/Eu(BA)3phen/PVP composite nanofibers, and was decreased with the increase of the amounts of Fe3O4 nanoparticles. The saturation magnetizations of the bistrand-aligned composite nanofibers bundles and the Fe3O4/Eu(BA)3phen/PVP composite nanofibers were about equal when the two nanostructures contained the same mass ratios of Fe3O4 nanoparticles, but the saturation magnetizations of the bistrand-aligned composite nanofibers bundles were increased with the increase of the amounts of Fe3O4 nanoparticles. The new type Fe3O4/PVP//Eu(BA)3phen/PVP bistrand-aligned composite nanofibers

  20. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The interconnected carbon nanofibers were prepared by an electrospinning technique. • The interconnected fibers developed conductive pathways. • The interconnected fibers showed 24% enhancement on the specific capacitance. • The interconnected fibers are promising to be used as electrodes for supercapacitors. - Abstract: The interconnected carbon nanofibers were prepared by an electrospinning technique using a polymer solution composed of polyacrylonitrile (PAN), poly(acrylonitrile-co-butadiene (PAN-co-PB) copolymer, and N,N-dimethylformamide. Post-treatment including stabilization at 250 °C and carbonization at 800 °C converted electrospun fibers to bonded carbon nanofibers. The formation of interconnected carbon nanofibers was attributed to the decomposition of PB, which reduced the viscosity of nanofibers and caused the fusion of connecting points. As a result, the conductive pathways developed, leading to an increase in both the electrical conductivity and microcrystallite size. Electrochemical measurements revealed that the specific capacitance of the 90:10 PAN/PAN-co-PB derived carbon nanofibers was 170.2 F/g, which was about 24% higher than that of the neat PAN-derived carbon nanofibers. Furthermore, the fibers showed good cycling stability of energy storage with the retention ratio of 100% after 2000 cycles. Our results corroborated the advantage of these interconnected nanofibers

  1. High performance carbon nanotube - polymer nanofiber hybrid fabrics

    Science.gov (United States)

    Yildiz, Ozkan; Stano, Kelly; Faraji, Shaghayegh; Stone, Corinne; Willis, Colin; Zhang, Xiangwu; Jur, Jesse S.; Bradford, Philip D.

    2015-10-01

    Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical conductivity. In order to further examine the hybrid fabric properties, they were consolidated under pressure, and also calendered at 70 °C. After calendering, the fabric's strength increased by an order of magnitude due to increased interactions and intermingling with the CNTs. The hybrids are highly efficient as aerosol filters; consolidated hybrid fabrics with a thickness of 20 microns and areal density of only 8 g m-2 exhibited ultra low particulate (ULPA) filter performance. The flexibility of this nanofabrication method allows for the use of many different polymer systems which provides the opportunity for engineering a wide range of nanoscale hybrid materials with desired functionalities.Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical

  2. Effect of Carbon Nanofiber on Mechanical Behavior of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Saeed Ghaffarpour Jahromi

    2015-09-01

    Full Text Available Uses of fibers to improve material properties have a scientific background in recent years in civil engineering. Use of Nanofiber reinforcement of materials refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers for improvement is not a new phenomenon as the technique of fiber-reinforced bitumen began as early as 1950, but using nanofiber is a new idea. In this research the mechanical properties of asphalt mixture that have been modified with carbon nanofiber were investigated using mechanical tests, which can improve the performance of flexible pavements. To evaluate the effect of nanofiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without nanofibers. During the course of this study, various tests were undertaken applying the Marshall test, indirect tensile test, resistance to fatigue cracking by using repeated load indirect tensile test and creep test. Carbon nanofiber exhibited consistency in results and it was observed that the addition of nanofiber can change the properties of bituminous mixtures, increase its stability and decrease the flow value. Results indicate that nanofiber have the potential to resist structural distress in the pavement and thus improve fatigue by increasing resistance to cracks or permanent deformation, when growing traffic loads. On the whole, the results show that the addition of carbon nanofiber will improve some of the mechanical properties such as fatigue and deformation in the flexible pavement.

  3. Microstructure transformation of carbon nanofibers during graphitization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; TANG Yuan-hong; LIN Liang-wu; ZHANG En-lei

    2008-01-01

    The mierostructures of vapor-grown carbon nanofibers(CNFs) before and after graphitization process were analyzed by high resolution transmission electron microscopy(HRTEM), Raman spectroscopy, X-ray diffractometry(XRD), near-edge-X-ray absorption fine structure spectroscopy(NEXAFS) and thermogravimetric analysis(TGA). The results indicate that although non-graphitized CNFs have the characteristics of higher disorder, a transformation is found in the inner layer of tube wall where graphite sheets become stiff, which demonstrates the characteristics of higher graphitization of graphitized CNFs. The defects in outer tube wall disappear because the amorphous carbon changes to perfect crystalline carbon after annealing treatment at about 2 800 ℃. TGA analysis in air indicates that graphitized CNFs have excellent oxidation resistance up to 857 ℃. And the graphitization mechanism including four stages was also proposed.

  4. Potential applications of nanofiber textile covered by carbon coatings

    Directory of Open Access Journals (Sweden)

    Z. Rożek

    2008-03-01

    Full Text Available Purpose: Nanospider technology is modified electrospinning method for production nanofiber textile from polymer solutions. This material can be used as wound dressing and filter materials for example. Carbon coatings deposited onto surface of polymer nanofiber textiles are predicted to improve filtration effectivity of filters and bioactivity of wound dressings. Carbon coatings have been produced by Microwave Radio Frequency Plasma Assisted Chemical Vapor Deposition (MW/RF PACVD method.Design/methodology/approach: Carbon coatings were deposited on polymer nanofiber textile by MW/RF PACVD method. Nanocomposite obtained in this way was characterized by the contact angle studies and by scanning electron microscope (SEM.Findings: Carbon coatings can be deposited on the polymer nanofibers by MW/RF PACVD method. Content of diamond phase in produced carbon coatings has been confirmed by wetability test. A SEM microscopic images have shown that the spaces between the nanofibers have not been closed by the material of the film.Research limitations/implications: MW/RF PACVD makes carbon coating synthesis possible in lower temperature, what is essential in case of applying the polymer substrate. Use of any other method than MW/RF PACVD for deposition of carbon coatings onto polymer nanofiber textile is not covered in this paper.Practical implications: Nanofiber textile produced by Nanospider is very good mechanical filter. Carbon onto surface of nanofibers can cause from this material active filter. Since this nanocomposite enables the transport of oxygen and exudate, simultaneously is impenetrable for bacteria or even viruses, it can be used for wound dressing.Originality/value: It is our belief that we are first to have deposited carbon coatings on nanofiber textile. We hope that in this way we have prepared very good material for filtration of air and for wound dressing.

  5. Ultrasensitive, Label Free, Chemiresistive Nanobiosensor Using Multiwalled Carbon Nanotubes Embedded Electrospun SU-8 Nanofibers.

    Science.gov (United States)

    Durga Prakash, Matta; Vanjari, Siva Rama Krishna; Sharma, Chandra Shekhar; Singh, Shiv Govind

    2016-01-01

    This paper reports the synthesis and fabrication of aligned electrospun nanofibers derived out of multiwalled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, which are targeted towards ultrasensitive biosensor applications. The ultrasensitivity (detection in the range of fg/mL) and the specificity of these biosensors were achieved by complementing the inherent advantages of MWCNTs such as high surface to volume ratio and excellent electrical and transduction properties with the ease of surface functionalization of SU-8. The electrospinning process was optimized to precisely align nanofibers in between two electrodes of a copper microelectrode array. MWCNTs not only enhance the conductivity of SU-8 nanofibers but also act as transduction elements. In this paper, MWCNTs were embedded way beyond the percolation threshold and the optimum percentage loading of MWCNTs for maximizing the conductivity of nanofibers was figured out experimentally. As a proof of concept, the detection of myoglobin, an important biomarker for on-set of Acute Myocardial Infection (AMI) has been demonstrated by functionalizing the nanofibers with anti-myoglobin antibodies and carrying out detection using a chemiresistive method. This simple and robust device yielded a detection limit of 6 fg/mL. PMID:27563905

  6. Ultrasensitive, Label Free, Chemiresistive Nanobiosensor Using Multiwalled Carbon Nanotubes Embedded Electrospun SU-8 Nanofibers

    Directory of Open Access Journals (Sweden)

    Matta Durga Prakash

    2016-08-01

    Full Text Available This paper reports the synthesis and fabrication of aligned electrospun nanofibers derived out of multiwalled carbon nanotubes (MWCNTs embedded SU-8 photoresist, which are targeted towards ultrasensitive biosensor applications. The ultrasensitivity (detection in the range of fg/mL and the specificity of these biosensors were achieved by complementing the inherent advantages of MWCNTs such as high surface to volume ratio and excellent electrical and transduction properties with the ease of surface functionalization of SU-8. The electrospinning process was optimized to precisely align nanofibers in between two electrodes of a copper microelectrode array. MWCNTs not only enhance the conductivity of SU-8 nanofibers but also act as transduction elements. In this paper, MWCNTs were embedded way beyond the percolation threshold and the optimum percentage loading of MWCNTs for maximizing the conductivity of nanofibers was figured out experimentally. As a proof of concept, the detection of myoglobin, an important biomarker for on-set of Acute Myocardial Infection (AMI has been demonstrated by functionalizing the nanofibers with anti-myoglobin antibodies and carrying out detection using a chemiresistive method. This simple and robust device yielded a detection limit of 6 fg/mL.

  7. Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles

    International Nuclear Information System (INIS)

    This paper studies the mechanism of the formation of carbon nanostructures on carbon nanofibers with Pd nanoparticles by using different carbon sources. The carbon nanofibers with Pd nanoparticles were produced by carbonizing electrospun polyacrylonitrile (PAN) nanofibers including Pd(Ac)2. Such PAN-based carbon nanofibers were then used as substrates to grow hierarchical carbon nanostructures. Toluene, pyridine and chlorobenzine were employed as carbon sources for the carbon nanostructures. With the Pd nanoparticles embedded in the carbonized PAN nanofibers acting as catalysts, molecules of toluene, pyridine or chlorobenzine were decomposed into carbon species which were dissolved into the Pd nanoparticles and consequently grew into straight carbon nanotubes, Y-shaped carbon nanotubes or carbon nano-ribbons on the carbon nanofiber substrates. X-ray diffraction analysis and transmission electron microscopy (TEM) were utilized to capture the mechanism of formation of Pd nanoparticles, regular carbon nanotubes, Y-shaped carbon nanotubes and carbon nano-ribbons. It was observed that the Y-shaped carbon nanotubes and carbon nano-ribbons were formed on carbonized PAN nanofibers containing Pd-nanoparticle catalyst, and the carbon sources played a crucial role in the formation of different hierarchical carbon nanostructures

  8. Silicon Whisker and Carbon Nanofiber Composite Anode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has successfully developed a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. PSI...

  9. Silicon Whisker and Carbon Nanofiber Composite Anode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. This anode...

  10. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.

    Directory of Open Access Journals (Sweden)

    Timothy Fee

    Full Text Available To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL and a blend of PCL and gelatin (PCL+Gel to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes.

  11. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers

    Science.gov (United States)

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  12. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.

    Science.gov (United States)

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  13. Carbon nanofiber supercapacitors with large areal capacitances

    KAUST Repository

    McDonough, James R.

    2009-01-01

    We develop supercapacitor (SC) devices with large per-area capacitances by utilizing three-dimensional (3D) porous substrates. Carbon nanofibers (CNFs) functioning as active SC electrodes are grown on 3D nickel foam. The 3D porous substrates facilitate a mass loading of active electrodes and per-area capacitance as large as 60 mg/ cm2 and 1.2 F/ cm2, respectively. We optimize SC performance by developing an annealing-free CNF growth process that minimizes undesirable nickel carbide formation. Superior per-area capacitances described here suggest that 3D porous substrates are useful in various energy storage devices in which per-area performance is critical. © 2009 American Institute of Physics.

  14. A continuous process to align electrospun nanofibers into parallel and crossed arrays

    Energy Technology Data Exchange (ETDEWEB)

    Laudenslager, Michael J.; Sigmund, Wolfgang M., E-mail: wsigm@mse.ufl.edu [University of Florida, Department of Materials Science and Engineering (United States)

    2013-04-15

    Electrical, optical, and mechanical properties of nanofibers are strongly affected by their orientation. Electrospinning is a nanofiber processing technique that typically produces nonwoven meshes of randomly oriented fibers. While several alignment techniques exist, they are only able to produce either a very thin layer of aligned fibers or larger quantities of fibers with less control over their alignment and orientation. The technique presented herein fills the gap between these two methods allowing one to produce thick meshes of highly oriented nanofibers. In addition, this technique is not limited to collection of fibers along a single axis. Modifications to the basic setup allow collection of crossed fibers without stopping and repositioning the apparatus. The technique works for a range of fiber sizes. In this study, fiber diameters ranged from 100 nm to 1 micron. This allows a few fibers at a time to rapidly deposit in alternating directions creating an almost woven structure. These aligned nanofibers have the potential to improve the performance of energy storage and thermoelectric devices and hold great promise for directed cell growth applications.

  15. Interfacial engineering of carbon nanofiber-graphene-carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks.

    Science.gov (United States)

    Song, Wei-Li; Wang, Jia; Fan, Li-Zhen; Li, Yong; Wang, Chan-Yuan; Cao, Mao-Sheng

    2014-07-01

    Lightweight carbon materials of effective electromagnetic interference (EMI) shielding have attracted increasing interest because of rapid development of smart communication devices. To meet the requirement in portable electronic devices, flexible shielding materials with ultrathin characteristic have been pursued for this purpose. In this work, we demonstrated a facile strategy for scalable fabrication of flexible all-carbon networks, where the insulting polymeric frames and interfaces have been well eliminated. Microscopically, a novel carbon nanofiber-graphene nanosheet-carbon nanofiber (CNF-GN-CNF) heterojunction, which plays the dominant role as the interfacial modifier, has been observed in the as-fabricated networks. With the presence of CNF-GN-CNF heterojunctions, the all-carbon networks exhibit much increased electrical properties, resulting in the great enhancement of EMI shielding performance. The related mechanism for engineering the CNF interfaces based on the CNF-GN-CNF heterojunctions has been discussed. Implication of the results suggests that the lightweight all-carbon networks, whose thickness and density are much smaller than other graphene/polymer composites, present more promising potential as thin shielding materials in flexible portable electronics. PMID:24914611

  16. Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane

    OpenAIRE

    Bajaj, Piyush; Khang, Dongwoo; Webster, Thomas J

    2006-01-01

    A highly aligned pattern of carbon nanofibers (CNF) on polycarbonate urethane (PCU) for tissue engineering applications was created by placing a CNF–ethanol solution in 30μm width copper grid grooves on top of PCU. In vitro results provided the first evidence that fibroblasts and vascular smooth muscle cells selectively adhered to the PCU regions. However, endothelial cells did not display a preference for adhesion to the CNF compared with PCU regions. Previous studies have shown selective ad...

  17. Template synthesis and magnetic properties of highly aligned barium hexaferrite (BaFe{sub 12}O{sub 19}) nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Boneng [College of Material Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029 (China); Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China); Li, Congju, E-mail: congjuli@gmail.com [College of Material Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029 (China); Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China); Wang, Jiaona [College of Material Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029 (China); Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China)

    2013-06-15

    Using electrospun poly(ethylene terephthalate)/citric acid (PET/CA) microfibers as the template, highly aligned barium hexaferrite (BaFe{sub 12}O{sub 19}) nanofibers with diameters of ca. 800 nm and lengths up to 2 cm were synthesized by sol–gel precursor coating technique and subsequent high temperature calcination. Structural and morphological investigations revealed that individual BaFe{sub 12}O{sub 19} nanofibers were composed of numerous nanocrystallites stacking alternatively along the nanofiber axis, the average grain size was ca. 225 nm and the single crystallites on each BaFe{sub 12}O{sub 19} nanofibers were of random orientations. The formation mechanism of aligned BaFe{sub 12}O{sub 19} nanofibers was proposed based on experiment. The magnetic measurement revealed that the aligned BaFe{sub 12}O{sub 19} nanofibers exhibited orientation-dependent magnetic behavior with respect to the applied magnetic field. The magnetic anisotropy with the easy magnetizing axis along the length of the nanofibers was due to the shape anisotropy. Such aligned magnetic nanofibers can find relevance in application requiring an orientation-dependent physical response. - Highlights: ► A simple method was used to synthesize the aligned BaFe{sub 12}O{sub 19} nanofibers. ► The aligned BaFe{sub 12}O{sub 19} nanofibers display an obvious orientation-dependent magnetic behavior. ► The method can be readily applied to other aligned one-dimensional inorganic nanomaterials.

  18. Spherical and rodlike inorganic nanoparticle regulated the orientation of carbon nanotubes in polymer nanofibers

    Science.gov (United States)

    Jiang, Linbin; Tu, Hu; Lu, Yuan; Wu, Yang; Tian, Jing; Shi, Xiaowen; Wang, Qun; Zhan, Yingfei; Huang, Zuqiang; Deng, Hongbing

    2016-04-01

    PVA nanofibers containing carboxylic-modified MWCNTs were fabricated via electrospinning of PVA/MWCNTs mixed solution. The alignment of MWCNTs in PVA nanofibers was studied using transmission electron microscope and scanning electron microscope. In addition, the orientation of MWCNTs in PVA nanofibers was further investigated in the presence of rod-like nanoparticle rectorite (REC) and of spherical nanoparticle titanium dioxide (TiO2). The images demonstrated the embedment of MWCNTs in the nanofibers and the alignment of MWCNTs along the fiber axis. Moreover, the addition of REC and TiO2 improved the alignment of MWCNTs in PVA nanofibers.

  19. Structural transformation of vapor grown carbon nanofibers studied by HRTEM

    International Nuclear Information System (INIS)

    Vapor grown carbon nanofibers have been extensively manufactured and investigated in recent years. In this study commercially available vapor grown carbon nanofibers subjected to different processing and post processing conditions were studied employing high resolution TEM images. The analysis showed that the fibers consist primarily of conical nanofibers, but can contain a significant amount of bamboo nanofibers. Most conical nanofibers were found to consist of an ordered inner layer and a disordered outer layer, with the cone angle distribution of the inner layers indicating that these cannot have a stacked cone structure but are compatible with a cone-helix structure. Fibers that have been heat treated to temperatures above 1,500 oC undergo a structural transformation with the ordered inner layers changing from a cone-helix structure to a highly ordered multiwall stacked cone structure. The bamboo nanofibers were found to have a tapered multiwall nanotube structure for the wall and a multishell fullerene structure for the cap of each segment, surrounded by a disordered outer layer. When these fibers are heat treated the disordered outer layers transform to an ordered multiwall nanotube structure and merge with the wall of each segment. The end caps of each segment transform from a smooth multiwall fullerene structure to one consisting of disjointed graphene planes. A reaction-diffusion mechanism is proposed to explain the growth and structure of the bamboo nanofibers.

  20. Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanyan; Lue Lanxin; Feng Zhangqi; Xiao Zhongdang; Huang Ningping, E-mail: nphuang@seu.edu.c, E-mail: zdxiao@seu.edu.c [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-10-01

    Aligned and randomly oriented chitosan nanofibers were prepared by electrospinning. The fibers were modified with the RGD cell-adhesive peptide through a heterobifunctional crosslinker containing a segment of poly(ethylene glycol) (PEG). PEG rendered the surface hydrophilic and provided flexible spacers, allowing the preservation of the bioactivity of further captured RGD peptides. NIH 3T3 cells were used to test the cellular compatibility of these chitosan nanofibrous scaffolds. Cell morphology and viability were investigated by SEM, fluorescent staining and cell counting. The results indicate that RGD-modified surfaces significantly improve the cellular compatibility of chitosan nanofibers and suggest a good candidate as a scaffold employed in tissue engineering.

  1. PREPARATION OF CARBON NANOFIBERS BY POLYMER BLEND TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results by means of SEM, TGA, Element Analysis, etc.

  2. Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.

    2005-01-01

    Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.

  3. Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation.

    Science.gov (United States)

    Yan, Lu; Zhao, Bingxin; Liu, Xiaohong; Li, Xuan; Zeng, Chao; Shi, Haiyan; Xu, Xiaoxue; Lin, Tong; Dai, Liming; Liu, Yong

    2016-03-23

    The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes. PMID:26926578

  4. Treated Carbon Nanofibers for Storing Energy in Aqueous KOH

    Science.gov (United States)

    Firsich, David W.

    2004-01-01

    A surface treatment has been found to enhance the performances of carbon nanofibers as electrode materials for electrochemical capacitors in which aqueous solutions of potassium hydroxide are used as the electrolytes. In the treatment, sulfonic acid groups are attached to edge plane sites on carbon atoms. The treatment is applicable to a variety of carbon nanofibers, including fibrils and both single- and multiple-wall nanotubes. The reason for choosing nanofibers over powders and other forms of carbon is that nanofibers offer greater power features. In previous research, it was found that the surface treatment of carbon nanofibers increased energy-storage densities in the presence of acid electrolytes. Now, it has been found that the same treatment increases energy-storage densities of carbon nanofibers in the presence of alkaline electrolytes when the carbon is paired with a NiOOH electrode. This beneficial effect varies depending on the variety of carbon substrate to which it is applied. It has been conjectured that the sulfonic acid groups, which exist in a deprotonated state in aqueous KOH solutions, undergo reversible electro-chemical reactions that are responsible for the observed increases in energystorage capacities. The increases can be considerable: For example, in one case, nanofibers exhibited a specific capacitance of 34 Farads per gram before treatment and 172 Farads per gram (an increase of about 400 percent) after treatment. The most promising application of this development appears to lie in hybrid capacitors, which are devices designed primarily for storing energy. These devices are designed to be capable of (1) discharge at rates greater than those of batteries and (2) storing energy at densities approaching those of batteries. A hybrid capacitor includes one electrode like that of a battery and one electrode like that of an electrochemical capacitor. For example, a hybrid capacitor could contain a potassium hydroxide solution as the electrolyte

  5. Label-Free Detection of Cardiac Troponin-I Using Carbon Nanofiber Based Nanoelectrode Arrays

    Science.gov (United States)

    Periyakaruppan, Adaikkappan; Koehne, Jessica Erin; Gandhiraman, Ram P.; Meyyappan, M.

    2013-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. A carbon nanofiber (CNF) multiplexed array has been fabricated with 9 sensing pads, each containing 40,000 carbon nanofibers as nanoelectrodes. Here, we report the use of vertically aligned CNF nanoelectrodes for the detection of cardiac Troponin-I for the early diagnosis of myocardial infarction. Antibody, antitroponin, probe immobilization and subsequent binding to human cardiac troponin-I were characterized using electrochemical impedance spectroscopy and cyclic voltammetry techniques. Each step of the modification process resulted in changes in electrical capacitance or resistance to charge transfer due to the changes at the electrode surface upon antibody immobilization and binding to the specific antigen. This sensor demonstrates high sensitivity, down to 0.2 ng/mL, and good selectivity making this platform a good candidate for early stage diagnosis of myocardial infarction.

  6. Carbon Nanofibers as Catalyst Support for Noble Metals

    NARCIS (Netherlands)

    Toebes, M.L.

    2004-01-01

    In the quest for new and well-defined support materials for heterogeneous catalysts we explored the potential of carbon nanofibers (CNF). CNF belongs to the by now extensive family of synthetic graphite-like carbon materials with advantageous and tunable physico-chemical properties. Aim of the work

  7. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    NARCIS (Netherlands)

    Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J.

    2012-01-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon nan

  8. Conductive Behaviors of Carbon Nanofibers Reinforced Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    MEI Qilin; WANG Jihui; WANG Fuling; HUANG Zhixiong; YANG Xiaolin; WEI Tao

    2008-01-01

    By means of ultrasonic dispersion,carbon nanofibers reinforced epoxy resin composite was prepared in the lab,the electrical conductivity of composite with different carbon nanofibers loadings were studied,also the voltage-current relationship,resistance-temperature properties and mechano-electric effect were investigated.Results show that the resistivity of composite decreases in geometric progression with the increasing of carbon nanofibers,and the threshold ranges between 0.1 wt%-0.2 wt%.The voltage-current relationship is in good conformity with the Ohm's law,both positive temperature coefficient and negative temperature coefficient can be found at elevated temperature.In the course of stretching,the electrical resistance of the composites increases with the stress steadily and changes sharply near the breaking point,which is of importance for the safety monitor and structure health diagnosis.

  9. Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites.

    Science.gov (United States)

    Yang, Yonglai; Guptal, Mool C; Dudley, Kenneth L; Lawrence, Roland W

    2007-02-01

    Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4-18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band. PMID:17450793

  10. Non-continuum, anisotropic nanomechanics of random and aligned electrospun nanofiber matrices

    Science.gov (United States)

    Chery, Daphney; Han, Biao; Mauck, Robert; Shenoy, Vivek; Han, Lin

    Polymer nanofiber assemblies are widely used in cell culture and tissue engineering, while their nanomechanical characteristics have received little attention. In this study, to understand their nanoscale structure-mechanics relations, nanofibers of polycaprolactone (PCL) and poly(vinyl alcohol) (PVA) were fabricated via electrospinning, and tested via AFM-nanoindentation with a microspherical tip (R ~10 μm) in PBS. For the hydrophobic, less-swollen PCL, a novel, non-continuum linear F-D dependence was observed, instead of the typical Hertzian F-D3/2 behavior, which is usually expected for continuum materials. This linear trend is likely resulted from the tensile stretch of a few individual nanofibers as they were indented in the normal plane. In contrast, for the hydrophilic, highly swollen PVA, the observed typical Hertzian response indicates the dominance of localized deformation within each nanofiber, which had swollen to become hydrogels. Furthermore, for both matrices, aligned fibers showed significantly higher stiffness than random fibers. These results provide a fundamental basis on the nanomechanics of biomaterials for specialized applications in cell phenotype and tissue repair.

  11. Enhancement of Ultrahigh Performance Concrete Material Properties with Carbon Nanofiber

    Directory of Open Access Journals (Sweden)

    Libya Ahmed Sbia

    2014-01-01

    Full Text Available Ultrahigh performance concrete (UHPC realized distinctly high mechanical, impermeability, and durability characteristics by reducing the size and content of capillary pore, refining the microstructure of cement hydrates, and effectively using fiber reinforcement. The dense and fine microstructure of UHPC favor its potential to effectively disperse and interact with nanomaterials, which could complement the reinforcing action of fibers in UHPC. An optimization experimental program was implemented in order to identify the optimum combination of steel fiber and relatively low-cost carbon nanofiber in UHPC. The optimum volume fractions of steel fiber and carbon nanofiber identified for balanced improvement of flexural strength, ductility, energy sorption capacity, impact, and abrasion resistance of UHPC were 1.1% and 0.04%, respectively. Desired complementary/synergistic actions of nanofibers and steel fibers in UHPC were detected, which were attributed to their reinforcing effects at different scales, and the potential benefits of nanofibers to interfacial bonding and pull-out behavior of fibers in UHPC. Modification techniques which enhanced the hydrophilicity and bonding potential of nanofibers to cement hydrates benefited their reinforcement efficiency in UHPC.

  12. Structure and properties of carbon nanofibers. application as electrocatalyst support

    Directory of Open Access Journals (Sweden)

    S. del Rio

    2012-03-01

    Full Text Available The present work aimed to gain an insight into the physical-chemical properties of carbon nanofibers and the relationship between those properties and the electrocatalytic behavior when used as catalyst support for their application in fuel cells.

  13. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide

    International Nuclear Information System (INIS)

    In this paper the functional carbon nanofibers were prepared by the carbonization of ZnO coated PAN nanofibers to expand the potential applications of carbon nanofibers. Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning. The electrospun PAN nanofibers were then used as substrates for depositing the functional layer of zinc oxide (ZnO) on the PAN nanofiber surfaces by sol-gel technique. The effects of coating, pre-oxidation and carbonization on the surface morphology and structures of the nanofibers were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM), respectively. The results of SEM showed a significant increase of the size of ZnO nanograins on the surface of nanofibers after the treatments of coating, pre-oxidation and carbonization. The observations by SEM also revealed that ZnO nanoclusters were firmly and clearly distributed on the surface of the carbon nanofibers. FTIR examination also confirmed the deposition of ZnO on the surface of carbon nanofibers. The XRD analysis indicated that the crystal structure of ZnO nanograins on the surface of carbon nanofibers

  14. Surface functionalization of carbon nanofibers by sol gel coating of zinc oxide

    Science.gov (United States)

    Shao, Dongfeng; Wei, Qufu; Zhang, Liwei; Cai, Yibing; Jiang, Shudong

    2008-08-01

    In this paper the functional carbon nanofibers were prepared by the carbonization of ZnO coated PAN nanofibers to expand the potential applications of carbon nanofibers. Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning. The electrospun PAN nanofibers were then used as substrates for depositing the functional layer of zinc oxide (ZnO) on the PAN nanofiber surfaces by sol-gel technique. The effects of coating, pre-oxidation and carbonization on the surface morphology and structures of the nanofibers were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM), respectively. The results of SEM showed a significant increase of the size of ZnO nanograins on the surface of nanofibers after the treatments of coating, pre-oxidation and carbonization. The observations by SEM also revealed that ZnO nanoclusters were firmly and clearly distributed on the surface of the carbon nanofibers. FTIR examination also confirmed the deposition of ZnO on the surface of carbon nanofibers. The XRD analysis indicated that the crystal structure of ZnO nanograins on the surface of carbon nanofibers.

  15. Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min-Kang [Dept. of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin [Dept. of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)], E-mail: sjpark@inha.ac.kr

    2009-08-25

    In this work, poly(amide imide) solutions in dimethylformamide were electrospun into webs consisting of 350 nm ultrafine nanofibers. These nanofiber webs were used to produce activated carbon nanofibers (ACNFs), through stabilization and carbonisation-activation processes. Experimental results indicated that ACNFs activated at 800 deg. C afforded the highest specific surface area but low mesopore volume. The high specific surface area, mainly due to the micropores, introduced maximum specific capacitance at low current density (150 F g{sup -1} at 10 mA g{sup -1}). Elevating the volume fraction of mesopores gave maximum specific capacitance at high current density (100 F g{sup -1} at 1000 mA g{sup -1}), which could be explained on the basis of ion mobility in the pores. Thus, the capacitance of the supercapacitors was strongly dependent on the specific surface area and micro- or mesopore volume of the ACNFs.

  16. High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, Amparo; Torrecillas, Ramon [Nanomaterials and Nanotechnology Research Center (CINN), Principado de Asturias - Consejo Superior de Investigaciones Cientificas (CSIC), Univ. de Oviedo, Parque Tecnologico de Asturias, Llanera (Spain); Fernandez, Adolfo [Fundacion ITMA, Parque Tecnologico de Asturias, Llanera (Spain); Merino, Cesar [Grupo Antolin Ingenieria, Burgos (Spain)

    2010-01-15

    Graphitic materials obtained at low temperatures are interesting for a wide range of industrial applications including bipolar plates. In this work, graphite based nanocomposites have been obtained starting from carbon nanofibers and a mixture of carbon nanofibers with 20 vol.% of alumina nanopowders. High density carbon components were obtained by using Spark Plasma Sintering at temperatures as low as 1500-1800 C for this kind of materials. The effect of spark plasma sintering parameters on the final density, and the mechanical and electrical properties of resulting nanocomposites have been investigated. Pure carbon nanofibers with around 90% of theoretical density and fracture strength of 60 MPa have been obtained at temperatures as low as 1500 C applying a pressure of 80 MPa during sintering. It has been proved that attrition milling is a suitable method for preparing homogeneous mixtures of carbon nanofibers and alumina powders. (orig.)

  17. Significantly improving electromagnetic performance of nanopaper and its shape-memory nanocomposite by aligned carbon nanotubes

    Science.gov (United States)

    Lu, Haibao; Gou, Jan

    2012-04-01

    A new nanopaper that exhibits exciting electrical and electromagnetic performances is fabricated by incorporating magnetically aligned carbon nanotube (CNT) with carbon nanofibers (CNFs). Electromagnetic CNTs were blended with and aligned into the nanopaper using a magnetic field, to significantly improve the electrical and electromagnetic performances of nanopaper and its enabled shape-memory polymer (SMP) composite. The morphology and structure of the aligned CNT arrays in nanopaper were characterized with scanning electronic microscopy (SEM). A continuous and compact network of CNFs and aligned CNTs indicated that the nanopaper could have highly conductive properties. Furthermore, the electromagnetic interference (EMI) shielding efficiency of the SMP composites with different weight content of aligned CNT arrays was characterized. Finally, the aligned CNT arrays in nanopapers were employed to achieve the electrical actuation and accelerate the recovery speed of SMP composites.

  18. Carbon Nanofibers as Catalyst Support for Noble Metals

    OpenAIRE

    Toebes, M.L.

    2004-01-01

    In the quest for new and well-defined support materials for heterogeneous catalysts we explored the potential of carbon nanofibers (CNF). CNF belongs to the by now extensive family of synthetic graphite-like carbon materials with advantageous and tunable physico-chemical properties. Aim of the work described in this thesis has been the exploration of the potential of CNF as catalyst support material, notably for platinum and ruthenium, and its role in the performance of these catalysts in hyd...

  19. A catechol biosensor based on electrospun carbon nanofibers

    OpenAIRE

    Dawei Li; Zengyuan Pang; Xiaodong Chen; Lei Luo; Yibing Cai; Qufu Wei

    2014-01-01

    Carbon nanofibers (CNFs) were prepared by combining electrospinning with a high-temperature carbonization technique. And a polyphenol biosensor was fabricated by blending the obtained CNFs with laccase and Nafion. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FE-SEM) were, respectively, employed to investigate the structures and morphologies of the CNFs and of the mixtures. Cyclic voltammetry and chronoamperometry were empl...

  20. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    OpenAIRE

    Manea, F.; Motoc, S.; Pop, A.(National Institute for Physics and Nuclear Engineering, Bucharest, Romania); Remes, A.; Schoonman, J.

    2012-01-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon nanotube composite electrode exhibited the best electroanalytical parameters through applying preconcentration/differential-pulsed voltammetry scheme.

  1. Synthesis and Electrochemical Properties of Carbon Nanofibers and SiO2/Carbon Nanofiber Composite on Ni-Cu/C-Fiber Textiles.

    Science.gov (United States)

    Nam, Ki-Mok; Park, Heai-Ku; Lee, Chang-Seop

    2015-11-01

    In this study, carbon nanofibers (CNFs) were grown by chemical vapor deposition on C-fiber textiles that had Ni and Cu catalyst deposited via electrophoretic deposition. Before the CNFs were coated with silica layer via hydrolysis of TEOS (Tetraethyl orthosilicate), the carbon nanofibers were oxidized by nitric acid. Due to oxidation, the hydroxyl group was created on the carbon nanofibers and this was used as an activation site for the SiO2. The physicochemical properties of the grown carbon nanofibers were investigated with Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), X-ray Diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The structures of SiO2-coated carbon nanofibers were characterized by XPS and TEM. The electrochemical properties and the capacitance of the materials were investigated by galvanostatic charge-discharge and cyclic voltammetry. Different types of carbon nanofibers were grown upon the deposition utilizing catalysts, with the SiO2 uniformly coated on the surface of carbon nanofibers. When used as an anode material for the Li secondary battery, the SiO2/CNFs composite had a lower capacity maintenance and a greater discharge capacity as compared to the carbon nanofibers. PMID:26726630

  2. Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunsil; Kim, Jongwon; Lee, Changseop [Keimyung Univ., Daegu (Korea, Republic of)

    2014-06-15

    This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of 110 .deg. C in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at 700 .deg. C of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as 292 m{sup 2}g{sup -1} high specific surface area.

  3. Fabrication and Characterization of High Temperature Resin/Carbon Nanofiber Composites

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    Multifunctional composites present a route to structural weight reduction. Nanoparticles such as carbon nanofibers (CNF) provide a compromise as a lower cost nanosize reinforcement that yields a desirable combination of properties. Blends of PETI-330 and CNFs were prepared and characterized to investigate the potential of CNF composites as a high performance structural medium. Dry mixing techniques were employed and the effect of CNF loading level on melt viscosity was determined. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, samples containing 30 and 40 wt% CNF were scaled up to approx.300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the process in an attempt to achieve some alignment of CNFs in the flow direction. Moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of CNFs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/CNF composites are discussed. Keywords: resins, carbon nanofibers, scanning electron microscopy, electrical properties, thermal conductivity,injection

  4. Immobilization and release strategies for DNA delivery using carbon nanofiber arrays and self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Peckys, Diana B [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Melechko, Anatoli V [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Simpson, Michael L [University of Tennessee in Knoxville, Knoxville, TN 37996-2200 (United States); McKnight, Timothy E [Measurement Science and Systems Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6006 (United States)], E-mail: peckysdb@ornl.gov

    2009-04-08

    We report a strategy for immobilizing dsDNA (double-stranded DNA) onto vertically aligned carbon nanofibers and subsequently releasing this dsDNA following penetration and residence of these high aspect ratio structures within cells. Gold-coated nanofiber arrays were modified with self-assembled monolayers (SAM) to which reporter dsDNA was covalently and end-specifically bound with or without a cleavable linker. The DNA-modified nanofiber arrays were then used to impale, and thereby transfect, Chinese hamster lung epithelial cells. This mechanical approach enables the transport of bound ligands directly into the cell nucleus and consequently bypasses extracellular and cytosolic degradation. Statistically significant differences were observed between the expression levels from immobilized and releasable DNA, and these are discussed in relation to the distinct accessibility and mode of action of glutathione, an intracellular reducing agent responsible for releasing the bound dsDNA. These results prove for the first time that an end-specifically and covalently SAM-bound DNA can be expressed in cells. They further demonstrate how the choice of immobilization and release methods can impact expression of nanoparticle delivered DNA.

  5. Immobilization and release strategies for DNA delivery using carbon nanofiber arrays and self-assembled monolayers

    International Nuclear Information System (INIS)

    We report a strategy for immobilizing dsDNA (double-stranded DNA) onto vertically aligned carbon nanofibers and subsequently releasing this dsDNA following penetration and residence of these high aspect ratio structures within cells. Gold-coated nanofiber arrays were modified with self-assembled monolayers (SAM) to which reporter dsDNA was covalently and end-specifically bound with or without a cleavable linker. The DNA-modified nanofiber arrays were then used to impale, and thereby transfect, Chinese hamster lung epithelial cells. This mechanical approach enables the transport of bound ligands directly into the cell nucleus and consequently bypasses extracellular and cytosolic degradation. Statistically significant differences were observed between the expression levels from immobilized and releasable DNA, and these are discussed in relation to the distinct accessibility and mode of action of glutathione, an intracellular reducing agent responsible for releasing the bound dsDNA. These results prove for the first time that an end-specifically and covalently SAM-bound DNA can be expressed in cells. They further demonstrate how the choice of immobilization and release methods can impact expression of nanoparticle delivered DNA.

  6. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate

    OpenAIRE

    Mamun, A. A.; Y.M. Ahmed; S.A. Muyibi; M.F.R. Al-Khatib; A.T. Jameel; M.A. AlSaadi

    2016-01-01

    The catalysis and characterization of carbon nanofibers (CNFs) composite are reported in this work. Carbon nanofibers were produced on oil palm shell powdered activated carbon (PAC), which was impregnated with nickel. Chemical Vapor Deposition (CVD) of C2H2 was used in the presence of hydrogen at ∼650 °C. The flow rates of carbon source and hydrogen were fixed. The CNFs formed directly on the surface of the impregnated PAC. Variable weight percentages (1%, 3%, 5%, 7% and 9%) of the catalyst s...

  7. Physicochemical investigations of carbon nanofiber supported Cu/ZrO2 catalyst

    International Nuclear Information System (INIS)

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO2/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO3). The CNF activated with 5% HNO3 produced higher surface area which is 155 m2/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N2 adsorption-desorption. The results showed that increase of HNO3 concentration reduced the surface area and porosity of the catalyst

  8. Physicochemical investigations of carbon nanofiber supported Cu / ZrO2 catalyst

    Science.gov (United States)

    Din, Israf Ud; Shaharun, Maizatul S.; Subbarao, Duvvuri; Naeem, A.

    2014-10-01

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu - ZrO2/ CNF ) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO3). The CNF activated with 5% HNO3 produced higher surface area which is 155 m2/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N2 adsorption-desorption. The results showed that increase of HNO3 concentration reduced the surface area and porosity of the catalyst.

  9. Silicon-Encapsulated Hollow Carbon Nanofiber Networks as Binder-Free Anodes for Lithium Ion Battery

    OpenAIRE

    Ding Nan; Zheng-Hong Huang; Ruitao Lv; Yuxiao Lin; Lu Yang; Xiaoliang Yu; Ling Ye; Wanci Shen; Hongyu Sun; Feiyu Kang

    2014-01-01

    Silicon-encapsulated hollow carbon nanofiber networks with ample space around the Si nanoparticles (hollow Si/C composites) were successfully synthesized by dip-coating phenolic resin onto the surface of electrospun Si/PVA nanofibers along with the subsequent solidification and carbonization. More importantly, the structure and Si content of hollow Si/C composite nanofibers can be effectively tuned by merely varying the concentration of dip solution. As-synthesized hollow Si/C composites show...

  10. In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers

    Science.gov (United States)

    Liu, Xia; Zhao, Hui; Lu, Yingxian; Li, Song; Lin, Liwei; Du, Yanan; Wang, Xiaohong

    2016-03-01

    Capturing the body's mechanical energy from the heart, lungs, and diaphragm can probably meet the requirements for in vivo applications of implantable biomedical devices. In this work, we present a novel contractile cardiomyocyte (CM)-driven biogenerator based on piezoelectric nanofibers (NFs) uniaxially aligned on a PDMS thin film. Flexible nanostructures interact with the CMs, as a physical cue to guide the CMs to align in a specific way, and create mechanical interfaces of contractile CMs and piezoelectric NFs. As such, the cellular construct features specific alignment and synchronous contraction, which realizes the maximal resultant force to drive the NFs to bend periodically. Studies on contraction mapping show that neonatal rat CMs self-assemble into a functional bio-bot film with well-defined axes of force generation. Consequently, the biogenerator produces an average voltage of 200 mV and current of 45 nA at the cell concentration of 1.0 million per ml, offering a biocompatible and scalable platform for biological energy conversion.Capturing the body's mechanical energy from the heart, lungs, and diaphragm can probably meet the requirements for in vivo applications of implantable biomedical devices. In this work, we present a novel contractile cardiomyocyte (CM)-driven biogenerator based on piezoelectric nanofibers (NFs) uniaxially aligned on a PDMS thin film. Flexible nanostructures interact with the CMs, as a physical cue to guide the CMs to align in a specific way, and create mechanical interfaces of contractile CMs and piezoelectric NFs. As such, the cellular construct features specific alignment and synchronous contraction, which realizes the maximal resultant force to drive the NFs to bend periodically. Studies on contraction mapping show that neonatal rat CMs self-assemble into a functional bio-bot film with well-defined axes of force generation. Consequently, the biogenerator produces an average voltage of 200 mV and current of 45 nA at the cell

  11. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates

    International Nuclear Information System (INIS)

    Mono and binary transition metal oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air. The transition metal oxide nanotubes were composed of nano-crystallites of metal oxides. The functional groups on the carbon nanofiber templates were essential for the coating of these templates: they acted as adsorption sites for the metal nitrates, ensuring a uniform metal oxide coating. During the removal of the carbon nanofiber templates by calcination in air, the metal oxide coatings promoted the combustion reaction between the carbon nanofibers and oxygen. - Graphical abstract: Mono and binary transition metal-oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air.

  12. The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhangqi; Huang Ningping; Wang Yichun; Gu Zhongze [State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China); Lu Huijun [Department of Vascular Surgery, Wuxi People' s Hospital, Wuxi 214023 (China); Leach, Michelle K [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Liu Changjian, E-mail: gu@seu.edu.c [Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008 (China)

    2010-12-15

    Nanofibrous scaffolds have been applied widely in tissue engineering to simulate the nanostructure of natural extracellular matrix (ECM) and promote cell bioactivity. The aim of this study was to design a biocompatible nanofibrous scaffold for blood outgrowth endothelial cells (BOECs) and investigate the interaction between the topography of the nanofibrous scaffold and cell growth. Poly(l-lactic acid) (PLLA) random and aligned nanofibers with a uniform diameter distribution were fabricated by electrospinning. NH{sub 3} plasma etching was used to create a hydrophilic surface on the nanofibers to improve type-I collagen adsorption; the conditions of the NH{sub 3} plasma etching were optimized by XPS and water contact angle analysis. Cell attachment, proliferation, viability, phenotype and morphology of BOECs cultured on type-I collagen-coated PLLA film (col-Film), random fibers (col-RFs) and aligned fibers (col-AFs) were detected over a 7 day culture period. The results showed that collagen-coated PLLA nanofibers improved cell attachment and proliferation; col-AFs induced the directional growth of cells along the aligned nanofibers and enhanced endothelialization. We suggest that col-AFs may be a potential implantable scaffold for vascular tissue engineering.

  13. The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells

    International Nuclear Information System (INIS)

    Nanofibrous scaffolds have been applied widely in tissue engineering to simulate the nanostructure of natural extracellular matrix (ECM) and promote cell bioactivity. The aim of this study was to design a biocompatible nanofibrous scaffold for blood outgrowth endothelial cells (BOECs) and investigate the interaction between the topography of the nanofibrous scaffold and cell growth. Poly(l-lactic acid) (PLLA) random and aligned nanofibers with a uniform diameter distribution were fabricated by electrospinning. NH3 plasma etching was used to create a hydrophilic surface on the nanofibers to improve type-I collagen adsorption; the conditions of the NH3 plasma etching were optimized by XPS and water contact angle analysis. Cell attachment, proliferation, viability, phenotype and morphology of BOECs cultured on type-I collagen-coated PLLA film (col-Film), random fibers (col-RFs) and aligned fibers (col-AFs) were detected over a 7 day culture period. The results showed that collagen-coated PLLA nanofibers improved cell attachment and proliferation; col-AFs induced the directional growth of cells along the aligned nanofibers and enhanced endothelialization. We suggest that col-AFs may be a potential implantable scaffold for vascular tissue engineering.

  14. CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    CoSn/carbon composite nanofibers were prepared by electrospinning followed by heat treatment. Uniform morphologies and microstructures were observed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction. The results demonstrated that well-dispersed nanoparticles of CoSn intermetallic compound and Sn with diameter of about 30–50 nm embedded in carbon nanofibers were prepared after carbonization at 850 °C. Compared with pure carbon nanofibers without the nanoparticles, CoSn/carbon composite nanofibers showed a high reversible capacity and excellent cycling performance, resulting from the formation of CoSn intermetallic nanoparticles and buffering by the carbon nanofiber matrix. The nanofiber mats with good flexibility were utilized as anodes in lithium-ion batteries, and the CoSn/carbon composite nanofibers exhibited a good fibrous morphology after the discharge/charge processes. Results indicated that electrospinning could be a feasible method to prepare Co–Sn–C composite nanofibers as anodes in lithium-ion batteries

  15. CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Weili; Luo, Chenghao; Li, Yu; Feng, Yiyu; Feng, Wei, E-mail: weifeng@tju.edu.cn; Zhao, Yunhui; Yuan, Xiaoyan, E-mail: yuanxy@tju.edu.cn [Tianjin University, School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials (China)

    2013-09-15

    CoSn/carbon composite nanofibers were prepared by electrospinning followed by heat treatment. Uniform morphologies and microstructures were observed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction. The results demonstrated that well-dispersed nanoparticles of CoSn intermetallic compound and Sn with diameter of about 30-50 nm embedded in carbon nanofibers were prepared after carbonization at 850 Degree-Sign C. Compared with pure carbon nanofibers without the nanoparticles, CoSn/carbon composite nanofibers showed a high reversible capacity and excellent cycling performance, resulting from the formation of CoSn intermetallic nanoparticles and buffering by the carbon nanofiber matrix. The nanofiber mats with good flexibility were utilized as anodes in lithium-ion batteries, and the CoSn/carbon composite nanofibers exhibited a good fibrous morphology after the discharge/charge processes. Results indicated that electrospinning could be a feasible method to prepare Co-Sn-C composite nanofibers as anodes in lithium-ion batteries.

  16. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    Science.gov (United States)

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification. PMID:27237223

  17. The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers

    International Nuclear Information System (INIS)

    Hybrid nanofibers with different concentrations of multi-walled carbon nanotubes (MWCNTs) in polyacrylonitrile (PAN) were fabricated using the electrospinning technique and subsequently carbonized. The morphology of the fabricated carbon nanofibers (CNFs) at different stages of the carbonization process was characterized by transmission electron microscopy and Raman spectroscopy. The polycrystalline nature of the CNFs was shown, with increasing content of ordered crystalline regions having enhanced orientation with increasing content of MWCNTs. The results indicate that embedded MWCNTs in the PAN nanofibers nucleate the growth of carbon crystals during PAN carbonization

  18. Creation of surface defects on carbon nanofibers by steam treatment

    Institute of Scientific and Technical Information of China (English)

    Zhengfeng; Shao; Min; Pang; Wei; Xia; Martin; Muhler; Changhai; Liang

    2013-01-01

    A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.

  19. Reverse Kebab Structure Formed inside Carbon Nanofibers via Nanochannel Flow.

    Science.gov (United States)

    Nie, Min; Kalyon, Dilhan M; Fisher, Frank T

    2015-09-15

    The morphology of polymers inside a confined space has raised great interest in recent years. However, polymer crystallization within a one-dimensional carbon nanostructure is challenging due to the difficulty of polar solvents carrying polymers to enter a nonpolar graphitic nanotube in bulk solution at normal temperature and pressure. Here we describe a method whereby nylon-11 was crystallized and periodically distributed on the individual graphitic nanocone structure within hollow carbon nanofibers (CNF). Differential scanning calorimetry and X-ray diffraction indicate that the nylon polymer is in the crystalline phase. A mechanism is suggested for the initiation of nanochannel flow in a bulk solvent as a prerequisite condition to achieve interior polymer crystallization. Selective etching of polymer crystals on the outer wall of CNF indicates that both surface tension and viscosity affect the flow within the CNF. This approach provides an opportunity for the interior functionalization of carbon nanotubes and nanofibers for applications in the biomedical, energy, and related fields. PMID:26313253

  20. Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds.

    Science.gov (United States)

    Wu, Shaohua; Duan, Bin; Liu, Penghong; Zhang, Caidan; Qin, Xiaohong; Butcher, Jonathan T

    2016-07-01

    Nanofibrous scaffolds with defined architectures and anisotropic mechanical properties are attractive for many tissue engineering and regenerative medicine applications. Here, a novel electrospinning system is developed and implemented to fabricate continuous processable uniaxially aligned nanofiber yarns (UANY). UANY were processed into fibrous tissue scaffolds with defined anisotropic material properties using various textile-forming technologies, i.e., braiding, weaving, and knitting techniques. UANY braiding dramatically increased overall stiffness and strength compared to the same number of UANY unbraided. Human adipose derived stem cells (HADSC) cultured on UANY or woven and knitted 3D scaffolds aligned along local fiber direction and were >90% viable throughout 21 days. Importantly, UANY supported biochemical induction of HADSC differentiation toward smooth muscle and osteogenic lineages. Moreover, we integrated an anisotropic woven fiber mesh within a bioactive hydrogel to mimic the complex microstructure and mechanical behavior of valve tissues. Human aortic valve interstitial cells (HAVIC) and human aortic root smooth muscle cells (HASMC) were separately encapsulated within hydrogel/woven fabric composite scaffolds for generating scaffolds with anisotropic biomechanics and valve ECM like microenvironment for heart valve tissue engineering. UANY have great potential as building blocks for generating fiber-shaped tissues or tissue microstructures with complex architectures. PMID:27304080

  1. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  2. A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites.

    Science.gov (United States)

    Yang, Yonglai; Gupta, Mool C; Dudley, Kenneth L; Lawrence, Roland W

    2005-06-01

    Electromagnetic interference shielding properties of carbon nanofiber- and multi-walled carbon nanotube-filled polystyrene composites were investigated in the frequency range of 8.2-12.4 GHz (X-band). It was observed that the shielding effectiveness of composites was frequency independent, and increased with the increase of carbon nanofiber or nanotube loading. At the same filler loading, multi-walled carbon nanotube-filled polystyrene composites exhibited higher shielding effectiveness compared to those filled with carbon nanofibers. In particular, carbon nanotubes were more effective than nanofibers in providing high EMI shielding at low filler loadings. The experimental data showed that the shielding effectiveness of the composite containing 7 wt% carbon nanotubes could reach more than 26 dB, implying that such a composite can be used as a potential electromagnetic interference shielding material. The dominant shielding mechanism of carbon nanotube-filled polystyrene composites was also discussed. PMID:16060155

  3. Activated carbon nanofiber webs made by electrospinning for capacitive deionization

    International Nuclear Information System (INIS)

    Activated carbon fiber (ACF) webs with a non-woven multi-scale texture were fabricated from polyacrylonitrile (PAN), and their electrosorption performance in capacitive deionization for desalination was investigated. PAN nanofibers were prepared by electrospinning, followed by oxidative stabilization and activation with carbon dioxide at 750–900 °C, resulting in the ACF webs that were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and nitrogen adsorption. The results show that the as-made ACFs have a specific surface area of 335–712 m2/g and an average nanofiber diameter of 285–800 nm, which can be tuned by varying the activation temperature. With the ACF webs as an electrode, an electrosorption capacity as high as 4.64 mg/g was achieved on a batch-type electrosorptive setup operated at 1.6 V. The ACF webs made by electrospinning are of potential as an excellent electrode material for capacitive deionization for desalination.

  4. Method for production of polymer and carbon nanofibers from water-soluble polymers.

    Science.gov (United States)

    Spender, Jonathan; Demers, Alexander L; Xie, Xinfeng; Cline, Amos E; Earle, M Alden; Ellis, Lucas D; Neivandt, David J

    2012-07-11

    Nanometer scale carbon fibers (carbon nanofibers) are of great interest to scientists and engineers in fields such as materials science, composite production, and energy storage due to their unique chemical, physical, and mechanical properties. Precursors currently used for production of carbon nanofibers are primarily from nonrenewable resources. Lignin is a renewable natural polymer existing in all high-level plants that is a byproduct of the papermaking process and a potential feedstock for carbon nanofiber production. The work presented here demonstrates a process involving the rapid freezing of an aqueous lignin solution, followed by sublimation of the resultant ice, to form a uniform network comprised of individual interconnected lignin nanofibers. Carbonization of the lignin nanofibers yields a similarly structured carbon nanofiber network. The methodology is not specific to lignin; nanofibers of other water-soluble polymers have been successfully produced. This nanoscale fibrous morphology has not been observed in traditional cryogel processes, due to the relatively slower freezing rates employed compared to those achieved in this study. PMID:22716198

  5. Electrospinning of single wall carbon nanotube reinforced aligned fibrils and yarns

    Science.gov (United States)

    Lam, Hoa Le

    Commercial carbon fibers produced from a polyacrylonitrile (PAN) precursor have reached their performance limit. The approach in this study involves the use of single carbon nanotubes (SWNT) with an ultra-high elastic modulus of approximately ˜1 TPa and tensile strength of ˜37 GPa at a breaking strain of ˜6% to reinforce PAN. In order to translate these extraordinary properties to a higher order structure, the need for a media to carry and assemble the SWNT into continuous fibers or yarns is necessary. Effective translation of properties can only be achieved through uniform distribution of SWNT and their alignment in the fiber axis. This has been one of the major challenges since SWNTs tend to agglomerate due to high van der Waals attraction between tubes. It is the goal of this study to develop dispersion technique(s) for the SWNT and process them into aligned fibers utilizing the electrospinning process. The electrospun nanofibers were then characterized by various techniques such as ESEM, Raman microspectroscopy, HRTEM, and tensile testing. Composite nanofibers containing various contents of SWNT up to 10 wt. % with diameter ranging from 40--300 nm were successfully electrospun through varying the polymer concentration and spinning parameters. The inclusion of SWNTs and their alignment in the fiber axis were confirmed by Raman microspectroscopy, polarized Raman and HRETEM. The failure mechanism of the nanofibers was investigated by HRTEM through fiber surface fracture. A two stage rupture mechanism was observed where crazing initiates at a surface defect followed by SWNTs pulling out of the PAN matrix. Such mechanisms consume energy therefore strengthening and toughening the fibers. Mechanical drawing of the fiber prior to heat treatment induced molecular orientation resulting in oriented graphite layers in the carbonized fibers. This study has established a processing base and characterization techniques to support the design and development of SWNT

  6. Carbon nanotube alignment driven rapid actuations

    International Nuclear Information System (INIS)

    Suspended micro-beams made from aligned carbon nanotubes and parylene deflect reversibly in an ac field and the deflection rate is three orders of magnitude greater than those for existing devices. The direction of beam deflection is determined by the area moment of inertia and the actuation mechanism involves rapid accumulation of charges at tube surfaces, the creation of Coulomb repulsive forces between tubes, beam dilation and the formation of compressive stresses at beam ends. Tube alignment plays a crucial role in the first step as is verified by experimental data and calculation. (paper)

  7. A simple method to synthesize carbon nanofibers with a parallel growth mode and their capacitive properties

    International Nuclear Information System (INIS)

    Carbon nanofibers with a parallel growth mode were synthesized by a chemical vapor deposition (CVD) method using a nickel catalyst precursor and acetylene carbon source gas at 550 °C, the growth mechanism and growth model of which were discussed and established, respectively. In the case of no pretreatment, the Brunauer–Emmett–Teller (BET) surface area and total pore volume of the as-synthesized carbon nanofibers were 214 m2·g−1 and 0.36 cm3·g−1, respectively. The maximum specific capacitance of the carbon nanofibers was 205.8 F·g−1, examined at a 0.20 V·s−1 sweep rate. The structure and morphology of the carbon nanofibers were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray powder diffraction (XRD). (paper)

  8. Carbon nanofibers synthesized by pyrolysis of chloroform and ethanol mixture

    International Nuclear Information System (INIS)

    Platelet graphite nanofibers (PGNFs) and turbostratic carbon nanofibers (TSCNFs) were synthesized by the pyrolysis of 3 and 10 vol% chloroform in ethanol, respectively, in the presence of Ni catalyst at 700 °C. Auger electron spectrometry analysis reveals that the participation of chloroform in the synthesis led to Ni–Cl bonding on the surface of the catalysts, resulting in a relatively poor crystalline layer and a coarse surface. Furthermore, the Ni–Cl compound affected the melting point and mobility of Ni, changing the morphology and geometrical shape of Ni particles. A low amount of chlorine in the catalyst led to the formation of smaller catalyst particles with a flat surface, resulting in graphene nanosheets stacked perpendicular to the fiber axis, which became PGNFs. In contrast, a high amount of chlorine in the catalyst led to the aggregation of the catalyst and thus the formation of large catalyst particles with a rough surface, resulting in the random stacking of graphene nanosheets, which became TSCNFs. The participation of chlorine was found to be important in the synthesis of the PGNFs and TSCNFs. - Graphical abstract: Display Omitted - Highlights: • The morphology of CNFs changed while different amount of CHCl3 presented. • The interaction of Ni and Cl changed the geometry and morphology of catalysts. • The structure of CNFs formed attributed to the surface morphology of catalysts. • PGNFs and TSCNFs were perpendicular and random stacking of graphene

  9. Carbon nanofibers synthesized by pyrolysis of chloroform and ethanol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wang-Hua [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Li, Yuan-Yao, E-mail: chmyyl@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China)

    2015-08-01

    Platelet graphite nanofibers (PGNFs) and turbostratic carbon nanofibers (TSCNFs) were synthesized by the pyrolysis of 3 and 10 vol% chloroform in ethanol, respectively, in the presence of Ni catalyst at 700 °C. Auger electron spectrometry analysis reveals that the participation of chloroform in the synthesis led to Ni–Cl bonding on the surface of the catalysts, resulting in a relatively poor crystalline layer and a coarse surface. Furthermore, the Ni–Cl compound affected the melting point and mobility of Ni, changing the morphology and geometrical shape of Ni particles. A low amount of chlorine in the catalyst led to the formation of smaller catalyst particles with a flat surface, resulting in graphene nanosheets stacked perpendicular to the fiber axis, which became PGNFs. In contrast, a high amount of chlorine in the catalyst led to the aggregation of the catalyst and thus the formation of large catalyst particles with a rough surface, resulting in the random stacking of graphene nanosheets, which became TSCNFs. The participation of chlorine was found to be important in the synthesis of the PGNFs and TSCNFs. - Graphical abstract: Display Omitted - Highlights: • The morphology of CNFs changed while different amount of CHCl{sub 3} presented. • The interaction of Ni and Cl changed the geometry and morphology of catalysts. • The structure of CNFs formed attributed to the surface morphology of catalysts. • PGNFs and TSCNFs were perpendicular and random stacking of graphene.

  10. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Haiqing L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  11. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    MnO-carbon hybrid nanofiber composites are fabricated by electrospinning polyimide/manganese acetylacetonate precursor and a subsequent carbonization process. The composition, phase structure and morphology of the composites are characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the composites exhibit good nanofibrous morphology with MnO nanoparticles uniformly encapsulated by carbon nanofibers. The hybrid nanofiber composites are used directly as freestanding anodes for lithium-ion batteries to evaluate their electrochemical properties. It is found that the optimized MnO-carbon nanofiber composite can deliver a high reversible capacity of 663 mAh g−1, along with excellent cycling stability and good rate capability. The superior performance enables the composites to be promising candidates as an anode alternative for high-performance lithium-ion batteries

  12. CHARACTERIZATION OF CARBON NANOFIBERS/ ZrO 2 CERAMIC MATRIX COMPOSITE

    Czech Academy of Sciences Publication Activity Database

    Duszová, A.; Morgiel, J.; Bastl, Zdeněk; Mihály, J.; Dusza, J.

    2013-01-01

    Roč. 58, č. 2 (2013), s. 459-463. ISSN 1733-3490 Institutional support: RVO:61388955 Keywords : carbon nanofibers * nanocomposites * transmission electron microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.763, year: 2013

  13. Effect of carbon nanofibers on tensile and compressive characteristics of hollow particle filled composites

    International Nuclear Information System (INIS)

    The effect of presence of carbon nanofibers on the tensile and compressive properties of hollow particle filled composites is studied. Such composites, called syntactic foams, are known to have high specific modulus and low moisture absorption capabilities and are finding applications as core materials in aerospace and marine sandwich structures. The results of this study show that addition of 0.25 wt.% carbon nanofibers results in improvement in tensile modulus and strength compared to similar syntactic foam compositions that did not contain nanofibers. Compressive modulus decreased and strength remained largely unchanged for most compositions. Tensile and compressive failure features are analyzed using scanning electron microscopy.

  14. Characterization of Plasma Synthesized Vertical Carbon Nanofibers for Nanoelectronics Applications

    Science.gov (United States)

    Lee, Jaesung; Feng, Philip X.-L.; Kaul, Anupama B.

    2013-01-01

    We report on the material characterization of carbon nanofibers (CNFs) which are assembled into a three-dimensional (3D) configuration for making new nanoelectromechanical systems (NEMS). High-resolution scanning electron microscopy (SEM) and x-ray electron dispersive spectroscopy (XEDS) are employed to decipher the morphology and chemical compositions of the CNFs at various locations along individual CNFs grown on silicon (Si) and refractory nitride (NbTiN) substrates, respectively. The measured characteristics suggest interesting properties of the CNF bodies and their capping catalyst nanoparticles, and growth mechanisms on the two substrates. Laser irradiation on the CNFs seems to cause thermal oxidation and melting of catalyst nanoparticles. The structural morphology and chemical compositions of the CNFs revealed in this study should aid in the applications of the CNFs to nanoelectronics and NEMS.

  15. Investigation of Lithium-Air Battery Discharge Product Formed on Carbon Nanotube and Nanofiber Electrodes

    Science.gov (United States)

    Mitchell, Robert Revell, III

    Carbon nanotubes have been actively investigated for integration in a wide variety of applications since their discovery over 20 years ago. Their myriad desirable material properties including exceptional mechanical strength, high thermal conductivities, large surface-to-volume ratios, and considerable electrical conductivities, which are attributable to a quantum mechanical ability to conduct electrons ballistically, have continued to motivate interest in this material system. While a variety of synthesis techniques exist, carbon nanotubes and nanofibers are most often conveniently synthesized using chemical vapor deposition (CVD), which involves their catalyzed growth from transition metal nanoparticles. Vertically-aligned nanotube and nanofiber carpets produced using CVD have been utilized in a variety of applications including those related to energy storage. Li-air (Li-O2) batteries have received much interest recently because of their very high theoretical energy densities (3200 Wh/kgLi2O2 ). which make them ideal candidates for energy storage devices for future fully-electric vehicles. During operation of a Li-air battery O2 is reduced on the surface a porous air cathode, reacting with Li-ions to form lithium peroxide (Li-O2). Unlike the intercalation reactions of Li-ion batteries, discharge in a Li-air cell is analogous to an electrodeposition process involving the nucleation and growth of the depositing species on a foreign substrate. Carbon nanofiber electrodes were synthesized on porous substrates using a chemical vapor deposition process and then assembled into Li-O2 cells. The large surface to volume ratio and low density of carbon nanofiber electrodes were found to yield a very high gravimetric energy density in Li-O 2 cells, approaching 75% of the theoretical energy density for Li 2O2. Further, the carbon nanofiber electrodes were found to be excellent platforms for conducting ex situ electron microscopy investigations of the deposition Li2O2 phase

  16. Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge

    International Nuclear Information System (INIS)

    Deposition of vertically oriented carbon nanofibers (CNFs) has been studied in an atmospheric pressure radio frequency discharge without dielectric barrier covering the metallic electrodes. When the frequency is sufficiently high so that ions reside in the gap for more than one rf cycle ('trapped ions'), the operating voltage decreases remarkably and the transition from a uniform glow discharge to an arc discharge is suppressed even without dielectric barriers. More importantly, the trapped ions are able to build up a cathodic ion sheath. A large potential drop is created in the sheath between the bulk plasma and the electrode, which is essential for aligning growing CNFs. At the same time, the damage to CNFs due to ion bombardment can be minimized at atmospheric pressure. The primary interest of the present work is in identifying the cathodic ion sheath and investigating how it influences the alignment of growing CNFs in atmospheric pressure plasma-enhanced chemical-vapor deposition. Spectral emission profiles of He (706 nm), Hα (656 nm), and CH (432 nm) clearly showed that a dark space is formed between the cathode layer and the heated bottom electrode. However, increasing the rf power induced the transition to a nonuniform γ-mode discharge which creates intense plasma spots in the dark space. Aligned CNFs can be grown at moderate input power during the initial stage of the deposition process. Catalyst particles were heavily contaminated by precipitated carbon in less than 5 min. Alignment deteriorates as CNFs grow and deposition was virtually terminated by the deactivation of catalyst particles

  17. Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites

    International Nuclear Information System (INIS)

    Ultrathin films of polystyrene were deposited on the surfaces of carbon nanofibers using a plasma polymerization treatment. A small percent by weight of these surface-coated nanofibers were incorporated into polystyrene to form a polymer nanocomposite. The plasma coating greatly enhanced the dispersion of the nanofibers in the polymer matrix. High-resolution transmission-electron-microscopy (HRTEM) images revealed an extremely thin film of the polymer layer (∼3 nm) at the interface between the nanofiber and matrix. Tensile test results showed considerably increased strength in the coated nanofiber composite while an adverse effect was observed in the uncoated composites; the former exhibited shear yielding due to enhanced interfacial bonding while the latter fractured in a brittle fashion

  18. Anodes for glucose fuel cells made of carbonized nanofibers with embedded carbon nanotubes

    Science.gov (United States)

    Prilutsky, Sabina; Cohen, Yachin; Zussman, Eyal; Makarov, Vadim; Bubis, Eugenia; Schechner, Pinchas

    2010-03-01

    Electrodes made of carbonized polyacrylonitryle nanofibers, with and without embedded multiwall carbon nanotubes (MWCNT) were fabricated by the electrospinning (ES) process and evaluated as anodes in a glucose fuel cell (FC). The effect of several processing and structural characteristics, such as the presence of MWCNTs, polymer concentration in the ES solution and silver electroless plating, on FC performance were measured The carbon electrodes were successful as anodes showing significant activity even without additional silver catalyst, with noticeable improvement by incorporation of MWCNTs. The orientation of graphitic layers along the fiber axis and the coherence of layer packing were shown to be important for enhanced electrode activity. The maximal values of open circuit voltage (OCV) and peak of power density (PPD) of unmetallized electrodes, 0.4 V and 30 μW/cm^2, were found for composite carbon nanofiber electrode. Electroless silver metallization leads to enhanced performance. Maximal values of OCV and PPD of silvered electrodes were measured to be about 0.9 V and 400 μW/cm^2. Thus, carbonized nanofibers with embedded MWCNTs may form a good basis for glucose FC anodes, but better metallization and cell-configuration allowing proper mixing are required.

  19. Effects of palladium coating on field-emission properties of carbon nanofibers in a hydrogen plasma

    International Nuclear Information System (INIS)

    Results from electron field-emission studies using arrays of patterned carbon nanofiber bundles are reported. We find that the desired field-emission characteristics were not compromised when a protective coating consisting of a layer of palladium of 5 and 30 nm thickness was applied. Following exposure to a hydrogen plasma for several hours we find that the coatings impede plasma damage significantly, whereas the field-emission properties of uncoated nanofibers degraded much more rapidly. The results demonstrate that carbon nanofibers with protective conformal metal coatings can be integrated into harsh plasma environments enabling a range of applications such as field-ionization ion sources and advanced (micro)-plasma discharges. - Highlights: • Carbon nanofibers were uniformly coated with palladium. • Energy-filtered transmission electron microscope confirms uniformity of coating. • Tips were exposed to atomic hydrogen environment. • Field emission characteristics were measured and compared to uncoated samples. • Coated samples show better field emission properties and longer lifetime

  20. Effects of palladium coating on field-emission properties of carbon nanofibers in a hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Ole [E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Persaud, Arun, E-mail: APersaud@lbl.gov [E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapadia, Rehan; Takei, Kuniharu [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 (United States); Allen, Frances I. [E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); Javey, Ali [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 (United States); Schenkel, Thomas [E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-05-01

    Results from electron field-emission studies using arrays of patterned carbon nanofiber bundles are reported. We find that the desired field-emission characteristics were not compromised when a protective coating consisting of a layer of palladium of 5 and 30 nm thickness was applied. Following exposure to a hydrogen plasma for several hours we find that the coatings impede plasma damage significantly, whereas the field-emission properties of uncoated nanofibers degraded much more rapidly. The results demonstrate that carbon nanofibers with protective conformal metal coatings can be integrated into harsh plasma environments enabling a range of applications such as field-ionization ion sources and advanced (micro)-plasma discharges. - Highlights: • Carbon nanofibers were uniformly coated with palladium. • Energy-filtered transmission electron microscope confirms uniformity of coating. • Tips were exposed to atomic hydrogen environment. • Field emission characteristics were measured and compared to uncoated samples. • Coated samples show better field emission properties and longer lifetime.

  1. Physicochemical investigations of carbon nanofiber supported Cu/ZrO{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Din, Israf Ud, E-mail: drisraf@yahoo.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: drisraf@yahoo.com, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Naeem, A., E-mail: naeeem64@yahoo.com [National Centre of Excellence in Physical Chemistry, University of Peshawar (Pakistan)

    2014-10-24

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO{sub 2}/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO{sub 3}). The CNF activated with 5% HNO{sub 3} produced higher surface area which is 155 m{sup 2}/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N{sub 2} adsorption-desorption. The results showed that increase of HNO{sub 3} concentration reduced the surface area and porosity of the catalyst.

  2. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    OpenAIRE

    Xueping Zhang; Dong Liu; Libo Li; Tianyan You

    2015-01-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve ...

  3. Method for production of carbon nanofiber mat or carbon paper

    Science.gov (United States)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  4. Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry

    OpenAIRE

    Koehne, Jessica E.; Marsh, Michael; Boakye, Adwoa; Douglas, Brandon; Kim, In Yong; Chang, Su-Youne; Jang, Dong-Pyo; Bennet, Kevin E.; Kimble, Christopher; Andrews, Russell; Meyyappan, M.; Lee, Kendall H.

    2011-01-01

    A carbon nanofiber (CNF) electrode array was integrated with the Wireless Instantaneous Neurotransmitter Sensor System (WINCS) for detection of dopamine using fast scan cyclic voltammetry (FSCV). Dopamine detection performance by CNF arrays was comparable to that of traditional carbon fiber microelectrodes (CFMs), demonstrating that CNF arrays can be utilized as an alternative carbon electrodes for neurochemical monitoring.

  5. Development of radiation processing to functionalize carbon nanofiber to use in nanocomposite for industrial application

    International Nuclear Information System (INIS)

    Radiation can be used to modify and improve the properties of materials. Electron beam and gamma ray irradiation has potential application in modifying the structure of carbon fibers in order to produce useful defects in the graphite structure and create reactive sites. In this study was investigated a methodology for radiation grafting processing to modify carbon nanofiber surfaces by grafting acrylic acid. The samples were submitted to direct radiation process. Several parameters were changed such as acrylic acid concentration, radiation dose and percentage of inhibitor to achieve functionalization with higher percentage of oxygen functional groups on carbon nanofiber surface and better dispersion. The samples were characterized by X-ray Photoelectron Spectroscopy and the dispersion stability upon storage was visually investigated. Carbon nanofiber directed irradiated with electron beam and gamma ray in a solution of acrylic acid with 6% of inhibitor (FeSO4.7H2O) and irradiated at 100 kGy had an increase of 20% of oxygen content onto carbon nanofiber surface. The Auger D-parameter for the samples direct irradiated grafted ranged between 17.0-17.7 compared to 21.1-18.9 of the unirradiated ones. This indicated that these samples had less sp2 and more sp3 bonding characteristics than unirradiated samples. This can be an indication of C=C bond breaking leading to the formation of new sp3 carbon atoms on carbon nanofiber surface with oxygen functional groups grafted. The samples grafted presented a good and stable dispersion. (author)

  6. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  7. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    Science.gov (United States)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  8. Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template

    Science.gov (United States)

    Zhou, Ming; Zhou, Jinyuan; Li, Ruishan; Xie, Erqing

    2010-02-01

    Well-aligned and suspended polyvinyl pyrrolidone (PVP) nanofibers with 8 mm in length were obtained by electrospinning. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiO x) nanotubes with very high aspect ratios have been prepared by plasma-enhanced chemical vapor deposition (PECVD) process. The inner diameter (20-200 nm) and wall thickness (12-90 nm) of tubes were controlled, respectively, by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. The micro-PL spectrum of SiO x nanotubes shows a strong blue-green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue-green emission is caused by the defects in the nanotubes.

  9. Preparation and characterization of carbon nanofiber-polymide composites

    Science.gov (United States)

    Li, Xiaobing

    Carbon nanofibers (CNFs) are potentially excellent reinforcements in polymer-based composites due to very good mechanical properties, thermal and electrical conductivity, and low cost to manufacture. The dispersion of fibers and the interfacial interaction with the polymer matrix need to be improved for CNF composites to achieve this potential. Treatment of the nanofiber surface with groups that are compatible with the polymer is key to addressing these issues. Attached functional groups may enhance the adhesion between reinforcement phase and matrix phase and reduce the slip of polymer chains on the surfaces of fibers. As a result, load can be transferred to fibers efficiently. In this investigation, CNFs were used as reinforcements in a polyimide (PI) matrix to produce a composite. To improve dispersion of fibers as well as interfacial adhesion, oxidized carbon nanofibers (OCNFs) were functionalized by covalently attaching 1,4-phenylenediamine (1,4-PDA) or polyimide oligomer to the surfaces. The functionalization with diamine was carried out either through direct reaction with OCNFs in dimethylacetimide (DMAc) solvent or through a two-step approach in which oxidized fibers were reacted with thionyl chloride (SOCl2) to improve surface reactivity followed by reaction with PDA in DMAc. The PDA was successfully bonded to the surfaces of fibers using both strategies. The further attachment of oligomer proceeded as expected in DMAc. The functionalized CNFs were characterized using Raman spectroscopy, thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) to confirm the functionalization reaction. Raman spectra and XPS spectra qualitatively indicated target chemical bonds were formed in each reaction step. Quantifications of TGA and XPS consistently supported that desired chemical moieties were present on the surfaces of fibers. In short, the interfaces of fibers were tailored with groups that would mimic the structure of polyimide and can

  10. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation

    Science.gov (United States)

    Yu, Yadong; Lü, Xiaoying; Ding, Fei

    2015-08-01

    Objective. Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. Approach. Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. Main results. The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, mi

  11. Characterisation of hydrophobic carbon nanofiber-silica composite film electrodes for redox liquid immobilisation

    International Nuclear Information System (INIS)

    Carbon (50-150 nm diameter) nanofibers were embedded into easy to prepare thin films of a hydrophobic sol-gel material and cast onto tin-doped indium oxide substrate electrodes. They promote electron transport and allow efficient electrochemical reactions at solid|liquid and at liquid|liquid interfaces. In order to prevent aggregation of carbon nanofibers silica nanoparticles of 7 nm diameter were added into the sol-gel mixture as a 'surfactant' and homogeneous high surface area films were obtained. Scanning electron microscopy reveals the presence of carbon nanofibers at the electrode surface. The results of voltammetric experiments performed in redox probe-ferrocenedimethanol solution in aqueous electrolyte solution indicate that in the absence of organic phase, incomplete wetting within the hydrophobic film of carbon nanofibers can cause hemispherical diffusion regime typical for ultramicroelectrode like behaviour. The hydrophobic film electrode was modified with two types of redox liquids: pure tert-butylferrocene or dissolved in 2-nitrophenyloctylether as a water-insoluble solvent and immersed in aqueous electrolyte solution. With a nanomole deposit of pure redox liquid, stable voltammetric responses are obtained. The presence of carbon nanofibers embedded in the mesoporous matrix substantially increases the efficiency of the electrode process and stability under voltammetric conditions. Also well-defined response for diluted redox liquids is obtained. From measurements in a range of different aqueous electrolyte media a gradual transition from anion transfer dominated to cation transfer dominated processes is inferred depending on the hydrophilicity of the transferring anion or cation

  12. A novel nano-nonwoven fabric with three-dimensionally dispersed nanofibers: entrapment of carbon nanofibers within nonwovens using the wet-lay process

    Science.gov (United States)

    Karwa, Amogh N.; Barron, Troy J.; Davis, Virginia A.; Tatarchuk, Bruce J.

    2012-05-01

    This study demonstrates, for the first time, the manufacturing of novel nano-nonwovens that are comprised of three-dimensionally distributed carbon nanofibers within the matrices of traditional wet-laid nonwovens. The preparation of these nano-nonwovens involves dispersing and flocking carbon nanofibers, and optimizing colloidal chemistry during wet-lay formation. The distribution of nanofibers within the nano-nonwoven was verified using polydispersed aerosol filtration testing, air permeability, low surface tension liquid capillary porometry, SEM and cyclic voltammetry. All these characterization techniques indicated that nanofiber flocks did not behave as large solid clumps, but retained the ‘nanoporous’ structure expected from nanofibers. These nano-nonwovens showed significant enhancements in aerosol filtration performance. The reduction-oxidation reactions of the functional groups on nanofibers and the linear variation of electric double-layer capacitance with nanofiber loading were measured using cyclic voltammetry. More than 65 m2 (700 ft2) of the composite were made during the demonstration of process scalability using a Fourdrinier-type continuous pilot papermaking machine. The scalability of the process with the control over pore size distribution makes these composites very promising for filtration and other nonwoven applications.

  13. A novel nano-nonwoven fabric with three-dimensionally dispersed nanofibers: entrapment of carbon nanofibers within nonwovens using the wet-lay process

    International Nuclear Information System (INIS)

    This study demonstrates, for the first time, the manufacturing of novel nano-nonwovens that are comprised of three-dimensionally distributed carbon nanofibers within the matrices of traditional wet-laid nonwovens. The preparation of these nano-nonwovens involves dispersing and flocking carbon nanofibers, and optimizing colloidal chemistry during wet-lay formation. The distribution of nanofibers within the nano-nonwoven was verified using polydispersed aerosol filtration testing, air permeability, low surface tension liquid capillary porometry, SEM and cyclic voltammetry. All these characterization techniques indicated that nanofiber flocks did not behave as large solid clumps, but retained the ‘nanoporous’ structure expected from nanofibers. These nano-nonwovens showed significant enhancements in aerosol filtration performance. The reduction–oxidation reactions of the functional groups on nanofibers and the linear variation of electric double-layer capacitance with nanofiber loading were measured using cyclic voltammetry. More than 65 m2 (700 ft2) of the composite were made during the demonstration of process scalability using a Fourdrinier-type continuous pilot papermaking machine. The scalability of the process with the control over pore size distribution makes these composites very promising for filtration and other nonwoven applications. (paper)

  14. Spun-wrapped aligned nanofiber (SWAN) lithography for fabrication of micro/nano-structures on 3D objects.

    Science.gov (United States)

    Ye, Zhou; Nain, Amrinder S; Behkam, Bahareh

    2016-07-01

    Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10(-7) m(2) s(-1)) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b(1.5)∝D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features. PMID:27283144

  15. Vertically aligned nanostructure scanning probe microscope tips

    Science.gov (United States)

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  16. Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Xiao [College of Textiles and Clothing, Xin Jiang University, Xinjiang, Urumqi 830046 (China); Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education, Shanghai 201620 (China); Zhou, Huimin; Li, Zhiyong; Shan, Xiaohong [College of Textiles and Clothing, Xin Jiang University, Xinjiang, Urumqi 830046 (China); Xia, Xin, E-mail: xjxiaxin@163.com [College of Textiles and Clothing, Xin Jiang University, Xinjiang, Urumqi 830046 (China); Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education, Shanghai 201620 (China)

    2015-01-25

    Highlights: • Sn{sub 0.92}Sb{sub 0.08}O{sub 2.04} nanoparticles as SnSb alloy precursor. • Carbon-coated SnSb nanoparticles were prepared and then embedded in carbon nanofibers. • The synergic effect of carbon coating and special structure improved cycling stability. - Abstract: Carbon coating and carbon nanofiber processes were used to enhance the cycling performance of SnSb alloys. Carbon-coated SnSb alloys were firstly prepared by a simple hydrothermal method to build the first protection, and then carbon-coated SnSb nanoparticles were embedded in carbon nanofibers via single-spinneret electrospinning followed by carbonization. The crystal structure of carbon-coated SnSb/C hybrid nanofibers was characterized by X-ray diffraction (XRD). The morphologies of carbon-coated SnSb alloys and hybrid nanofibers were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The thermal stability of hybrid nanofibers were determined by thermogravimetric analysis (TGA). The electrochemical properties were investigated as a potential high-capacity anode material for lithium-ion batteries. The results showed that the hybrid nanofibers exhibited excellent electrochemical performance due to the special structure. The carbon shell can effectively hinder the agglomeration of SnSb alloys, while maintaining electronic conduction as well as accommodating drastic volume changes during lithium insertion and extraction and carbon nanofibers formed a further protection. The resultant carbon-coated SnSb nanoparticles dispersed in carbon nanofibers deliver a high capacity of 674 mA h g{sup −1} and a good capacity retention of 68.7% after 50 cycles.

  17. Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes

    International Nuclear Information System (INIS)

    Highlights: • Sn0.92Sb0.08O2.04 nanoparticles as SnSb alloy precursor. • Carbon-coated SnSb nanoparticles were prepared and then embedded in carbon nanofibers. • The synergic effect of carbon coating and special structure improved cycling stability. - Abstract: Carbon coating and carbon nanofiber processes were used to enhance the cycling performance of SnSb alloys. Carbon-coated SnSb alloys were firstly prepared by a simple hydrothermal method to build the first protection, and then carbon-coated SnSb nanoparticles were embedded in carbon nanofibers via single-spinneret electrospinning followed by carbonization. The crystal structure of carbon-coated SnSb/C hybrid nanofibers was characterized by X-ray diffraction (XRD). The morphologies of carbon-coated SnSb alloys and hybrid nanofibers were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The thermal stability of hybrid nanofibers were determined by thermogravimetric analysis (TGA). The electrochemical properties were investigated as a potential high-capacity anode material for lithium-ion batteries. The results showed that the hybrid nanofibers exhibited excellent electrochemical performance due to the special structure. The carbon shell can effectively hinder the agglomeration of SnSb alloys, while maintaining electronic conduction as well as accommodating drastic volume changes during lithium insertion and extraction and carbon nanofibers formed a further protection. The resultant carbon-coated SnSb nanoparticles dispersed in carbon nanofibers deliver a high capacity of 674 mA h g−1 and a good capacity retention of 68.7% after 50 cycles

  18. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate

    Directory of Open Access Journals (Sweden)

    A.A. Mamun

    2016-07-01

    Full Text Available The catalysis and characterization of carbon nanofibers (CNFs composite are reported in this work. Carbon nanofibers were produced on oil palm shell powdered activated carbon (PAC, which was impregnated with nickel. Chemical Vapor Deposition (CVD of C2H2 was used in the presence of hydrogen at ∼650 °C. The flow rates of carbon source and hydrogen were fixed. The CNFs formed directly on the surface of the impregnated PAC. Variable weight percentages (1%, 3%, 5%, 7% and 9% of the catalyst salt (Ni+2 were used for the impregnation. However, the best catalysis was observed on the substrate with 3% Ni+2. The product displayed a relatively high surface area, essentially constituted by the external surface. New functional groups also appeared compared to those in the PAC. Field Emission Scanning Microscopy (FESEM, Transmission Electron Microscopy (TEM, Fourier Transform Infrared (FTIR, BET surface area analysis and energy dispersive X-ray (EDX were used for the characterization of the new carbon nano product, which was produced through a clean novel process.

  19. Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation.

    Science.gov (United States)

    Bhutto, M Aqeel; Wu, Tong; Sun, Binbin; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-08-01

    Bioengineering strategies for peripheral nerve regeneration have been focusing on the development of alternative treatments for nerve repair. In present study we have blended the Vitamin B5 (50mg) with 8% P(LLA-CL) and P(LLA-CL)/SF solutions and produced aligned electrospun nanofiber mashes and characterized the material for its physiochemical and mechanical characteristics. The vitamin loaded composites nanofibers showed tensile strength of 8.73±1.38 and 8.4±1.37 in P(LLA-CL)/Vt and P(LLA-CL)/SF/Vt nanofibers mashes, respectively. By the addition of vitamin B5 the P(LLA-CL) nanofibers become hydrophilic and the contact angle decreased from 96° to 0° in 6min of duration. The effect of vitamin B5 on Schwann cells proliferation and viability were analyzed by using MTT assay and the number of cells cultured on vitamin loaded nanofiber mashes was significantly higher than the without vitamin loaded nanofiber samples after 5th day (pdays culture as compare to P (LLA-CL)/Vt. The in vitro vitamin release behavior was observed in PBS solution and released vitamin was calculated by revers phase HPLC method. The sustain release behavior of vitamin B5 were noted higher in P(LLA-CL)/Vt (80%) nanofibers as compared to P (LLA-CL)/SF/Vt (62%) nanofibers after 24h. The present work provided a basis for further studies of this novel aligned nanofibrous material in nerve tissue repair or regeneration. PMID:27085042

  20. Carbon nanofiber-based luminol-biotin probe for sensitive chemiluminescence detection of protein.

    Science.gov (United States)

    Baj, Stefan; Krawczyk, Tomasz; Pradel, Natalia; Azam, Md Golam; Shibata, Takayuki; Dragusha, Shpend; Skutil, Krzysztof; Pawlyta, Miroslawa; Kai, Masaaki

    2014-01-01

    A carbon nanofiber-based luminol-biotin probe was synthesized for the sensitive chemiluminescence (CL) detection of a target protein by grafting luminol and biotin onto an oxidized carbon nanofiber. This carbon nanofiber was prepared by chemical vapor-deposition with methane in the presence of the Ni-Cu-MgO catalyst, which was followed by oxidization with HNO3-H2SO4 to produce a carboxyl group on the surface of the nanofiber. The material was grafted with luminol and biotin by means of a standard carbodiimide activation of COOH groups to produce corresponding amides. The substance was water-soluble and thus could be utilized as a sensitive CL probe for a protein assay. The probe showed highly specific affinity towards the biotin-labeled antibody via a streptavidin-biotin interaction. The detection limit for this model assay was approximately 0.2 pmol of the biotinized IgG spotted on a polyvinylidene fluoride (PVDF) membrane. Nonspecific binding to other proteins was not observed. Therefore, the synthesized carbon nanofiber-based CL probe may be useful for a sensitive and specific analysis of the target protein. PMID:25382040

  1. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers

    Science.gov (United States)

    Cai, Jie; Niu, Haitao; Wang, Hongxia; Shao, Hao; Fang, Jian; He, Jingren; Xiong, Hanguo; Ma, Chengjie; Lin, Tong

    2016-08-01

    Carbon nanofibers with inter-bonded fibrous structure show high supercapacitor performance when being used as electrode materials. Their preparation is highly desirable from cellulose through a pyrolysis technique, because cellulose is an abundant, low cost natural material and its carbonization does not emit toxic substance. However, interconnected carbon nanofibers prepared from electrospun cellulose nanofibers and their capacitive behaviors have not been reported in the research literature. Here we report a facile one-step strategy to prepare inter-bonded carbon nanofibers from partially hydrolyzed cellulose acetate nanofibers, for making high-performance supercapacitors as electrode materials. The inter-fiber connection shows considerable improvement in electrode electrochemical performances. The supercapacitor electrode has a specific capacitance of ∼241.4 F g-1 at 1 A g-1 current density. It maintains high cycling stability (negligible 0.1% capacitance reduction after 10,000 cycles) with a maximum power density of ∼84.1 kW kg-1. They may find applications in the development of efficient supercapacitor electrodes for energy storage applications.

  2. Effect of carbon nanofibers on the infiltration and thermal conductivity of carbon/carbon composites

    International Nuclear Information System (INIS)

    Highlights: → The CNFs improve the infiltration rate and thermal properties of carbon/carbon composites. → The densification rate increases with the CNF content increasing at the beginning of infiltration. → The values of the thermal conductivity of the composite obtain their maximum values at 5 wt.%. -- Abstract: Preforms containing 0, 5, 10, 15 and 20 wt.% carbon nanofibers (CNFs) were fabricated by spreading layers of carbon cloth, and infiltrated using the electrified preform heating chemical vapor infiltration method (ECVI) under atmospheric pressure. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. Scanning electron microscopy, polarized light micrograph and X-ray diffraction technique were used to analyze the experiment results. The results showed that the infiltration rate increased with the rising of CNF content, and after 120 h of infiltration, the density was the highest when the CNF content was 5 wt.%, but the composite could not be densified efficiently as the CNF content ranged from 10 wt.% to 20 wt.%. CNF-reinforced C/C composites have enhanced thermal conductivity, the values at 5 wt.% were increased by nearly 5.5-24.1% in the X-Y direction and 153.8-251.3% in the Z direction compared to those with no CNFs. When the additive content was increased to 20 wt.%, due to the holes and cavities in the CNF web and between carbon cloth and matrix, the thermal conductivities in the X-Y and Z directions decreased from their maximum values at 5 wt.%.

  3. High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose

    Science.gov (United States)

    Yu, Wendan; Lin, Worong; Shao, Xiaofeng; Hu, Zhaoxia; Li, Ruchun; Yuan, Dingsheng

    2014-12-01

    The Ni3S2 nanoparticles have been successfully grown on the carbon nanofibers (CNFs) derived from bacterial cellulose via a hydrothermal method, which the as-prepared composite exhibited high specific capacitance (883 F g-1 at 2 A g-1), much more than CNFs (108 F g-1 at 2 A g-1), and good cycle stability. The asymmetric supercapacitor was designed to contain the CNFs coated Ni3S2 nanoparticles (Ni3S2/CNFs) as positive electrode and CNFs as negative electrode in 2 M KOH electrolyte. Due to the synergistic effects of the two electrodes, asymmetric cell showed superior electrochemical performances. The optimized asymmetric supercapacitor gave a operating potential of 1.7 V in 2 M KOH aqueous solution, exhibiting a high specific capacitance of 56.6 F g-1 at 1 A g-1 and considerably high energy density of 25.8 Wh kg-1 at a power density of 425 W kg-1. Meanwhile, Ni3S2/CNFs//CNFs asymmetric supercapacitor showed excellent cycling stability with 97% specific capacitance retained after 2500 cycles.

  4. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos?

    Science.gov (United States)

    Kisin, E. R.; Murray, A.R.; Sargent, L.; Lowry, D.; Chirila, M.; Siegrist, K.J.; Schwegler-Berry, D.; Leonard, S.; Castranova, V.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A.

    2011-01-01

    The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf®-III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos>CNF>SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity. PMID:21310169

  5. Genotoxicity of carbon nanofibers: Are they potentially more or less dangerous than carbon nanotubes or asbestos?

    International Nuclear Information System (INIS)

    The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf (registered) -III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos > CNF > SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.

  6. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation

    Science.gov (United States)

    Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong

    2016-09-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.

  7. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation

    Science.gov (United States)

    Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong

    2016-07-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.

  8. Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors

    Science.gov (United States)

    Jiang, Yuting; Yan, Jun; Wu, Xiaoliang; Shan, Dandan; Zhou, Qihang; Jiang, Lili; Yang, Deren; Fan, Zhuangjun

    2016-03-01

    A facile and one-step method is demonstrated to prepare carbon nanofibers (CNFs)-bridged porous carbon nanosheets (PCNs) through carbonization of the mixture of bacterial cellulose and potassium citrate. The CNFs bridge PCNs to form integrated porous carbon architecture with high specific surface area of 1037 m2 g-1, much higher than those of pure PCNs (381 m2 g-1) and CNFs (510 m2 g-1). As a consequence, the PCN/CNF composite displays high specific capacitance of 261 F g-1, excellent rate capability and outstanding cycling stability (97.6% of capacitance retention after 10000 cycles). Moreover, the assembled symmetric supercapacitor with PCN/CNF electrodes delivers an ultrahigh energy density of 20.4 Wh kg-1 and outstanding cycling life (94.8% capacitance retention after 10000 cycles) in an aqueous electrolyte.

  9. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs Cultured on an Aligned-Nanofiber Cardiac Patch.

    Directory of Open Access Journals (Sweden)

    Mahmood Khan

    Full Text Available Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates.hiPSC-CMs were cultured on; 1 a highly aligned polylactide-co-glycolide (PLGA nanofiber scaffold (~50 microns thick and 2 on a standard flat culture plate. Scanning electron microscopy (SEM was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43 was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes.SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro.Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic

  10. Electrochemical behavior of TiO2/carbon dual nanofibers

    International Nuclear Information System (INIS)

    The charge transfer processes are favored in dual nanofibers composed by TiO2Rutile-Csemigraphitic/Csemigraphitic over other systems such as TiO2Anatase and Rutile-Camorphous/Camorphous and TiO2Rutile-Camorphous, dual and single nanofibers respectively. The study of electrochemical impedance spectroscopy (EIS) shows that the net of nanofibers presented a charge transfer resistance value (Rct) of 3.15 Ω. The increased ability of these materials to favor the diffusion of electroactive species in individual nanofibers is that the junction between the n-type semiconductor TiO2 and the semigraphitic material can be of the ohmic kind. Moreover, this observation was supported by cyclic voltammetry (CV) and electrical conductivity studies by two-probe method. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) confirmed the continuity and duality in the morphology of these materials. The effect of heat treatment on crystallinity was evident in the results obtained from the X-Ray Diffraction (XRD) and Selected Area Electron Diffraction (SAED) studies. Due to the electrochemical performance and morphological features of TiO2Rutile-Csemigraphitic/Csemigraphitic dual nanofibers; this novel nanostructured material can be regarded as an excellent candidate for applications such as a base material for electronic devices, photocatalysis, among other similar technologies

  11. Carbon Nanofiber Arrays: A Novel Tool for Microdelivery of Biomolecules to Plants

    Science.gov (United States)

    Davern, Sandra M.; McKnight, Timothy E.; Morrell-Falvey, Jennifer L.; Shpak, Elena D.; Kalluri, Udaya C.; Jelenska, Joanna; Greenberg, Jean T.; Mirzadeh, Saed

    2016-01-01

    Effective methods for delivering bioprobes into the cells of intact plants are essential for investigating diverse biological processes. Increasing research on trees, such as Populus spp., for bioenergy applications is driving the need for techniques that work well with tree species. This report introduces vertically aligned carbon nanofiber (VACNF) arrays as a new tool for microdelivery of labeled molecules to Populus leaf tissue and whole plants. We demonstrated that VACNFs penetrate the leaf surface to deliver sub-microliter quantities of solution containing fluorescent or radiolabeled molecules into Populus leaf cells. Importantly, VACNFs proved to be gentler than abrasion with carborundum, a common way to introduce material into leaves. Unlike carborundum, VACNFs did not disrupt cell or tissue integrity, nor did they induce production of hydrogen peroxide, a typical wound response. We show that femtomole to picomole quantities of labeled molecules (fluorescent dyes, small proteins and dextran), ranging from 0.5–500 kDa, can be introduced by VACNFs, and we demonstrate the use of the approach to track delivered probes from their site of introduction on the leaf to distal plant regions. VACNF arrays thus offer an attractive microdelivery method for the introduction of biomolecules and other probes into trees and potentially other types of plants. PMID:27119338

  12. Ultrasensitive electrospun nickel-doped carbon nanofibers electrode for sensing paracetamol and glucose

    International Nuclear Information System (INIS)

    The long, uniform and smooth Ni(NO3)2-loaded polyvinyl alcohol nanofibers were prepared via electrospinning on a nonconductive quartz plate. The nanofibers were stabilized at 300 °C for 3 h in nitrogen atmosphere, and then the continuous heating to 800 °C at the rate of 2 °C min−1 keeping 3 h was used to prepare nickel-doped carbon nanofibers (Ni:CNFs). The composites were characterized with Raman spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The Ni:CNFs were used as the working electrode to sense paracetamol (PCT) and glucose (GLU), respectively. When sensing PCT, the Ni:CNFs electrode showed an electrochemical behavior like on macroelectrode; but for GLU, it displayed an electrochemical behavior like on microelectrode. For both of the species, higher sensitivities on the Ni:CNFs electrodes were obtained than those on bulk glassy carbon and nickel electrodes

  13. Theoretical and practical aspects of chemical functionalization of carbon nanofibers (CNFs): DFT calculations and adsorption study.

    Science.gov (United States)

    Rokhina, Ekaterina V; Lahtinen, Manu; Makarova, Katerina; Jegatheesan, Veeriah; Virkutyte, Jurate

    2012-06-01

    The nitric acid-functionalized commercial carbon nanofibers (CNFs) were comprehensively studied by instrumental (XRD, BET, SEM, TGA) and theoretical (DFT calculations) methods. The detailed surface study revealed the variation in the characteristics of functionalized CNFs, such as a decreased (up to 34%) surface area and impacted structural, electronic and chemical properties. The effects of functional groups were studied by comparison with pristine nanofibers. The results showed that the C-C bond lengths of the modified CNFs varied significantly. Chemical functionalization altered the frontier orbitals of the pristine material, and therefore altered the nature of their interactions with other substances. Moreover, the pristine and modified CNFs were tested for the removal of phenol from aqueous solutions. It was observed that surface modification tuned the adsorption capacity of carbon nanofibers (up to 0.35 mmol g(-1)), whereas original fibers did not demonstrate any adsorption capacity of phenol. PMID:22209137

  14. Nickel/carbon nanofibers composite electrodes as supercapacitors prepared by electrospinning

    International Nuclear Information System (INIS)

    Nickel-embedded carbon nanofibers were prepared by the processes of stabilization and carbonation after electrospinning a mixture solution of nickel acetate and polyacrylonitrile in N,N-dimethylformamide. The surface morphology and structure of composites were examined by scanning electron microscope (SEM) and X-ray diffraction (XRD). Compared with performances of composite electrodes with different mass ratios of nickel and carbon by cyclic voltammetry (CV) and chronopotentiogram test, the results show that the introduction of a proper proportion of nickel into carbon could enhance both specific capacitance (SC) and electrochemical stability. The specific capacitance of the carbon nanofiber electrode without the Ni loading was 50 F/g, while that of 22.4 wt.% Ni/carbon electrode increased to 164 F/g. The improved specific capacitance may be attributed to synergic effects from each pristine component, and the electrochemical catalysis effect of nickel.

  15. Scaling up the Fabrication of Mechanically-Robust Carbon Nanofiber Foams

    Directory of Open Access Journals (Sweden)

    William Curtin

    2016-02-01

    Full Text Available This work aimed to identify and address the main challenges associated with fabricating large samples of carbon foams composed of interwoven networks of carbon nanofibers. Solutions to two difficulties related with the process of fabricating carbon foams, maximum foam size and catalyst cost, were developed. First, a simple physical method was invented to scale-up the constrained formation of fibrous nanostructures process (CoFFiN to fabricate relatively large foams. Specifically, a gas deflector system capable of maintaining conditions supportive of carbon nanofiber foam growth throughout a relatively large mold was developed. ANSYS CFX models were used to simulate the gas flow paths with and without deflectors; the data generated proved to be a very useful tool for the deflector design. Second, a simple method for selectively leaching the Pd catalyst material trapped in the foam during growth was successfully tested. Multiple techniques, including scanning electron microscopy, surface area measurements, and mechanical testing, were employed to characterize the foams generated in this study. All results confirmed that the larger foam samples preserve the basic characteristics: their interwoven nanofiber microstructure forms a low-density tridimensional solid with viscoelastic behavior. Fiber growth mechanisms are also discussed. Larger samples of mechanically-robust carbon nanofiber foams will enable the use of these materials as strain sensors, shock absorbers, selective absorbents for environmental remediation and electrodes for energy storage devices, among other applications.

  16. High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole

    International Nuclear Information System (INIS)

    Highlights: • N-enriched carbon nanofiber webs are prepared via direct carbonization route with polyporrole as template. • The pyrolysis time plays an important role in N doping level and existing type. • Effect of N-doping on performance of the carbon anode material is investigated. • High reversible capacity of 238 mAh g−1 at 5 A g−1 is attained. -- Abstract: Nitrogen-doped carbon nanofiber webs (N-CNFWs) are prepared by direct pyrolyzation of polypyrrole (PPy) nanofiber webs at 600 °C. The structure and morphology of N-CNFWs are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Raman spectra and elemental analysis. Both the doped N content and the N existing type in carbon, change with the pyrolysis time. As anode material for lithium-ion battery, the N-CNFWs show high capacity and good rate capability. The reversible capacity is up to 668 mAh g−1 at a current density of 0.1 A g−1 and 238 mAh g−1 at 5 A g−1, which can be ascribed to the nanofiber structure and high nitrogen content

  17. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis

    International Nuclear Information System (INIS)

    TiO2 nanofibers (30–50 nm diameter), fabricated by the electro-spinning process, were modified with organo-silane agents via a coupling reaction and were grafted with carbohydrate molecules. The mixture was carbonized to produce a uniform coating of amorphous carbon on the surface of the TiO2 nanofibers. The TiO2@C nanofibers were characterized by high resolution electron microscopy (HRTEM), x-ray diffraction (XRD), x-ray photoelectron (XPS), Fourier transform infrared (FTIR) and UV-vis spectroscopy. The photocatalytic property of the functional TiO2 and carbon nanocomposite was tested via the decomposition of an organic pollutant. The catalytic activity of the covalently functionalized nanocomposite was found to be significantly enhanced in comparison to unfunctionalized composite and pristine TiO2 due to the synergistic effect of nanostructured TiO2 and amorphous carbon bound via covalent bonds. The improvement in performance is due to bandgap modification in the 1D co-axial nanostructure where the anatase phase is bound by nano-carbon, providing a large surface to volume ratio within a confined space. The superior photocatalytic performance and recyclability of 1D TiO2@C nanofiber composites for water purification were established through dye degradation experiments. (papers)

  18. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis

    Science.gov (United States)

    Raghava Reddy, Kakarla; Gomes, Vincent G.; Hassan, Mahbub

    2014-03-01

    TiO2 nanofibers (30-50 nm diameter), fabricated by the electro-spinning process, were modified with organo-silane agents via a coupling reaction and were grafted with carbohydrate molecules. The mixture was carbonized to produce a uniform coating of amorphous carbon on the surface of the TiO2 nanofibers. The TiO2@C nanofibers were characterized by high resolution electron microscopy (HRTEM), x-ray diffraction (XRD), x-ray photoelectron (XPS), Fourier transform infrared (FTIR) and UV-vis spectroscopy. The photocatalytic property of the functional TiO2 and carbon nanocomposite was tested via the decomposition of an organic pollutant. The catalytic activity of the covalently functionalized nanocomposite was found to be significantly enhanced in comparison to unfunctionalized composite and pristine TiO2 due to the synergistic effect of nanostructured TiO2 and amorphous carbon bound via covalent bonds. The improvement in performance is due to bandgap modification in the 1D co-axial nanostructure where the anatase phase is bound by nano-carbon, providing a large surface to volume ratio within a confined space. The superior photocatalytic performance and recyclability of 1D TiO2@C nanofiber composites for water purification were established through dye degradation experiments.

  19. Remarkable improvement in microwave absorption by cloaking a micro-scaled tetrapod hollow with helical carbon nanofibers.

    Science.gov (United States)

    Jian, Xian; Chen, Xiangnan; Zhou, Zuowan; Li, Gang; Jiang, Man; Xu, Xiaoling; Lu, Jun; Li, Qiming; Wang, Yong; Gou, Jihua; Hui, David

    2015-02-01

    Helical nanofibers are prepared through in situ growth on the surface of a tetrapod-shaped ZnO whisker (T-ZnO), by employing a precursor decomposition method then adding substrate. After heat treatment at 900 °C under argon, this new composite material, named helical nanofiber-T-ZnO, undergoes a significant change in morphology and structure. The T-ZnO transforms from a solid tetrapod ZnO to a micro-scaled tetrapod hollow carbon film by reduction of the organic fiber at 900 °C. Besides, helical carbon nanofibers, generated from the carbonization of helical nanofibers, maintain the helical morphology. Interestingly, HCNFs with the T-hollow exhibit remarkable improvement in electromagnetic wave loss compared with the pure helical nanofibers. The enhanced loss ability may arise from the efficient dielectric friction, interface effect in the complex nanostructures and the micro-scaled tetrapod-hollow structure. PMID:25510199

  20. Spun-wrapped aligned nanofiber (SWAN) lithography for fabrication of micro/nano-structures on 3D objects

    Science.gov (United States)

    Ye, Zhou; Nain, Amrinder S.; Behkam, Bahareh

    2016-06-01

    Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features.Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for

  1. Aligned carbon nanotube sheet piezoresistive strain sensors

    Science.gov (United States)

    Li, Ang; Bogdanovich, Alexander E.; Bradford, Philip D.

    2015-09-01

    Carbon nanotubes (CNTs) have a unique set of properties that may be useful in the production of next generation structural health monitoring composites. This research introduces a novel CNT based material system for strain and damage sensing applications. An aligned sheet of interconnected CNTs was drawn from a chemical vapor deposition grown CNT array and then bonded to the surface of glass fiber/epoxy composite coupons. Various types of mechanical tests were conducted, accompanied by real-time electrical data acquisition, in order to evaluate the electro-mechanical behavior of the developed sensing material. Specimens were loaded in the longitudinal and transverse CNT sheet orientations to investigate the anisotropy of the piezoresistive effect. The CNT sheets exhibited good sensing stability, linearity, sensitivity and repeatability within a practical strain range; which are crucial sensor features for health monitoring. It was also demonstrated that the CNT orientation in the sheet had a dramatic effect on the sensitivity, thus validating the usefulness of this sensing material for directional strain/damage monitoring. Finally, pre-straining of the CNT sheet sensors was conducted to further enhance the linearity of electro-mechanical response and long-term stability of the sensors during cyclic loading.

  2. Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers

    NARCIS (Netherlands)

    Tiggelaar, R.M.; Thakur, D.B.; Nair, H.; Lefferts, L.; Seshan, K.; Gardeniers, J.G.E.

    2013-01-01

    Nickel and other metal nanoparticles are known to be active as catalysts in the synthesis of carbon nanofibers. In this paper we investigate how dewetting and break-up of nickel thin films depends on film thickness, film–substrate interaction and pretreatment conditions. This is evaluated for films

  3. Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors

    Science.gov (United States)

    Tran, Chau; Singhal, Richa; Lawrence, Daniel; Kalra, Vibha

    2015-10-01

    Three-dimensional, free-standing, hybrid supercapacitor electrodes combining polyaniline (PANI) and porous carbon nanofibers (P-CNFs) were fabricated with the aim to integrate the benefits of both electric double layer capacitors (high power, cyclability) and pseudocapacitors (high energy density). A systematic investigation of three different electropolymerization techniques, namely, potentiodynamic, potentiostatic, and galvanostatic, for electrodeposition of PANI on freestanding carbon nanofiber mats was conducted. It was found that the galvanostatic method, where the current density is kept constant and can be easily controlled facilitates conformal and uniform coating of PANI on three-dimensional carbon nanofiber substrates. The electrochemical tests indicated that the PANI-coated P-CNFs exhibit excellent specific capacitance of 366 F g-1 (vs. 140 F g-1 for uncoated porous carbon nanofibers), 140 F cm-3 volumetric capacitance, and up to 2.3 F cm-2 areal capacitance at 100 mV s-1 scan rate. Such excellent performance is attributed to a thin and conformal coating of PANI achieved using the galvanostatic electrodeposition technique, which not only provides pseudocapacitance with high rate capability, but also retains the double-layer capacitance of the underlying P-CNFs.

  4. Characterization of carbon nanofibers by SEM, TEM, ESCA and raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Tatarko, P.; Puchý, V.; Dusza, J.; Morgiel, J.; Bastl, Zdeněk; Mihály, J.

    2010-01-01

    Roč. 48, č. 6 (2010), s. 379-385. ISSN 0023-432X Institutional research plan: CEZ:AV0Z40400503 Keywords : carbon micro/nanofiber * cylindrical fiber * bambo-shaped fiber Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.471, year: 2010

  5. Self-heating function of carbon nanofiber cement pastes

    Directory of Open Access Journals (Sweden)

    Galao, O.

    2014-05-01

    Full Text Available The viability of carbon nanofiber (CNF composites incement matrices as a self-heating material is reported in this paper. This functional application would allow the use of CNF cement composites as a heating element in buildings, or for deicing pavements of civil engineering transport infrastructures, such as highways or airport runways. Cement pastes with the addition of different CNF dosages (from 0 to 5% by cement mass have been prepared. Afterwards, tests were run at different fixed voltages (50, 100 and 150V, and the temperature of the specimens was registered. Also the possibility of using a casting method like shotcrete, instead of just pouring the fresh mix into the mild (with no system’s efficiency loss expected was studied. Temperatures up to 138 °C were registered during shotcrete-5% CNF cement paste tests (showing initial 10 °C/min heating rates. However a minimum voltage was required in order to achieve a proper system functioning.En este artículo se estudia la viabilidad del uso de matrices cementicias con adición de nanofibras de carbono (NFC como elementos calefactores. Esto permitiría aumentar la temperatura de estancias en edificación o el deshielo de pavimentos en obras civiles. Se han fabricado pastas de cemento con distintas dosificaciones de NFC (0, 1, 2 y 5% respecto masa del cemento y sometidas al paso de corriente continua a distintos potenciales fijos (50, 100 y 150 V, mientras se controlaba la temperatura en distintos puntos. Se ha estudiado la viabilidad de utilizar la proyección de la pasta fresca como método de puesta en obra, sin perjudicar la eficiencia del sistema. Se consiguieron temperaturas de hasta 138 °C (con velocidades iniciales de 10 °C/min para pasta proyectada con 5% NFC. Además se ha detectado la necesidad de un potencial mínimo para que la densidad de corriente resultante sea suficiente para producir el efecto esperado.

  6. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    Science.gov (United States)

    Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-01

    A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g-1 at a current load of 0.1 A g-1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  7. The Optical Excitation of Zigzag Carbon Nanotubes with Photons Guided in Nanofibers

    CERN Document Server

    Broadfoot, S; Jaksch, D

    2011-01-01

    We consider the excitation of electrons in semiconducting carbon nanotubes by photons from the evanescent field created by a subwavelength-diameter optical fiber. The strongly changing evanescent field of such nanofibers requires dropping the dipole approximation. We show that this leads to novel effects, especially a high dependence of the photon absorption on the relative orientation and geometry of the nanotube-nanofiber setup in the optical and near infrared domain. In particular, we calculate photon absorption probabilities for a straight nanotube and nanofiber depending on their relative angle. Nanotubes orthogonal to the fiber are found to perform much better than parallel nanotubes when they are short. As the nanotube gets longer the absorption of parallel nanotubes is found to exceed the orthogonal nanotubes and approach 100% for extremely long nanotubes. In addition, we show that if the nanotube is wrapped around the fiber in an appropriate way the absorption is enhanced. We find that optical and ne...

  8. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.

    Science.gov (United States)

    Dong, Qiang; Wang, Gang; Wu, Tingting; Peng, Senpei; Qiu, Jieshan

    2015-05-15

    Capacitive deionization (CDI) is an alternative, effective and environmentally friendly technology for desalination of brackish water. The performance of the CDI device is highly determined by the electrode materials. In this paper, a composite of carbon nanotubes (CNTs) embedded in activated carbon nanofiber (ACF) was prepared by a direct co-electrospinning way and subsequent CO2 activation. The introduction of CNTs can greatly improve the conductivity while the CO2-mediated activation can render the final product with high porosity. As such, the hybrid structure can provide an excellent storage space and pathways for ion adsorption and conduction. When evaluated as electrode materials for CDI, the as-prepared CNT/ACF composites with higher electrical conductivity and mesopore ratios exhibited higher electrosorption capacity and good regeneration performance in comparison with the pure ACF. PMID:25595622

  9. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2013-08-01

    Full Text Available Helical carbon nanofibers (HCNFs coated-carbon fibers (CFs were fabricated by catalytic chemical vapor deposition method. TEM and Raman spectroscopy characterizations indicate that the graphitic layers of the HCNFs changed from disorder to order after high temperature annealing. The electromagnetic parameters and microwave absorption properties were measured at 2–18 GHz. The maximum reflection loss is 32 dB at 9 GHz and the widest bandwidth under −10 dB is 9.8 GHz from 8.2 to 18 GHz for the unannealed HCNFs coated-CFs composite with 2.5 mm in thickness, suggesting that HCNFs coated-CFs should have potential applications in high performance microwave absorption materials.

  10. Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility.

    Science.gov (United States)

    Guan, Xiaoyang; Zheng, Guoqiang; Dai, Kun; Liu, Chuntai; Yan, Xingru; Shen, Changyu; Guo, Zhanhu

    2016-06-01

    Electrospun polyamide (PA) 66 nanofiber bundles with high conductivity, improved strength, and robust flexibility were successfully manufactured through simply adsorbing multiwall carbon nanotubes (MWNTs) on the surface of electrospun PA66 nanofibers. The highest electrical conductivity (0.2 S/cm) and tensile strength (103.3 MPa) were achieved for the bundles immersed in the suspension with 0.05 wt % MWNTs, indicating the formation of conductive network from adsorbed MWNTs on the surface of PA66 nanofibers. The decrease of porosity for the bundles immersed in the MWNT dispersion and the formation of hydrogen bond between PA66 nanofibers and MWNTs suggest a superb interfacial interaction, which is responsible for the excellent mechanical properties of the nanocomposite bundles. Furthermore, the resistance fluctuation under bending is less than 3.6%, indicating a high flexibility of the nanocomposite bundles. The resistance of the nanocomposite bundle had a better linear dependence on the temperature applied between 30 and 150 °C. More importantly, such highest working temperature of 150 °C far exceeded that of other polymer-based temperature sensors previously reported. This suggests that such prepared MWNTs-adsorbed electrospun PA66 nanofiber bundles have great potentials in high temperature detectors. PMID:27172292

  11. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO3 template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g−1 at a current load of 0.1 A g−1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors

  12. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan; Xu, Bin; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-30

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO{sub 3} template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO{sub 3} templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g{sup −1} at a current load of 0.1 A g{sup −1} with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  13. Carbon nanofiber mesoporous films: efficient platforms for bio-hydrogen oxidation in biofuel cells.

    Science.gov (United States)

    de Poulpiquet, Anne; Marques-Knopf, Helena; Wernert, Véronique; Giudici-Orticoni, Marie Thérèse; Gadiou, Roger; Lojou, Elisabeth

    2014-01-28

    The discovery of oxygen and carbon monoxide tolerant [NiFe] hydrogenases was the first necessary step toward the definition of a novel generation of hydrogen fed biofuel cells. The next important milestone is now to identify and overcome bottlenecks limiting the current densities, hence the power densities. In the present work we report for the first time a comprehensive study of herringbone carbon nanofiber mesoporous films as platforms for enhanced biooxidation of hydrogen. The 3D network allows mediatorless hydrogen oxidation by the membrane-bound hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. We investigate the key physico-chemical parameters that enhance the catalytic efficiency, including surface chemistry and hierarchical porosity of the biohybrid film. We also emphasize that the catalytic current is limited by mass transport inside the mesoporous carbon nanofiber film. Provided hydrogen is supplied inside the carbon film, the combination of the hierarchical porosity of the carbon nanofiber film with the hydrophobicity of the treated carbon material results in very high efficiency of the bioelectrode. By optimization of the whole procedure, current densities as high as 4.5 mA cm(-2) are reached with a turnover frequency of 48 s(-1). This current density is almost 100 times higher than when hydrogenase is simply adsorbed at a bare graphite electrode, and more than 5 times higher than the average of the previous reported current densities at carbon nanotube modified electrodes, suggesting that carbon nanofibers can be efficiently used in future sustainable H2/O2 biofuel cells. PMID:24296569

  14. Strong Metal-Support Interaction: Growth of Individual Carbon Nanofibers from Amorphous Carbon Interacting with an Electron Beam

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil

    2013-01-01

    The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO/Ni nanopar......The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO....../Ni nanoparticles, devoid of any gaseous carbon source and external heating and stimulated by an electron beam in a 300 kilo volt transmission electron microscope....

  15. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration.

    Science.gov (United States)

    Lee, Paul; Tran, Katelyn; Chang, Wei; Shelke, Namdev B; Kumbar, Sangamesh G; Yu, Xiaojun

    2014-08-01

    Cartilage degeneration is the major cause of disability and poses several challenges to repair and regenerate. Conventional surgical treatments often induce fibrous tissues and compromise its function. Alternative tissue engineering strategies utilized scaffolds, factors and cells alone or in combination with some degree of success. This study reports the use of nanostructured biomimetic scaffold system in regulating the rat bone marrow stem cells (rBMSCs) differentiation into chondrogenic lineage in vitro. The biometric scaffold is essentially a micro-porous polycaprolactone (PCL) spiral structure decorated with sparsely spaced bioactive PCL nanofibers. The bioactivity stems from the use of two major components of hyaline cartilage extracellular matrix (ECM) namely chondroitin sulfate (CS) and hyaluronic acid (HYA). The PCL spiral structure was surface functionalized with PCL nanofibers encapsulated with CS (20% (w/w)) and HYA (0.2% (w/w)). In order to retain and sustain the release of CS and HYA nanofibers were cross-linked using carbodiimide chemistry. This study also evaluated the effect of nanofiber alignment on rBMSCs differentiation and evaluated the production of characteristic hyaline cartilage proteins namely collagen type II and aggrecan in vitro up to 28 days. Rat bone marrow derived stem cells cultured on the aligned nanofibers expressed significantly elevated levels of collagen type II and aggrecan secretions (western blots) as compared to scaffolds decorated with random fibers and tissue culture polystyrene (TCPS). This fiber alignment dependent expression of collagen type II and aggrecan secretion were further confirmed through immunofluorescence staining. This biomimetic and bioactive scaffold may serve as a serve as an efficient scaffold system for cartilage regeneration. PMID:25016647

  16. Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors, Part I: Preparation and characterization

    NARCIS (Netherlands)

    Thakur, D.B.; Tiggelaar, R.M.; Hoang, T.M.C.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2011-01-01

    The preparation and characterization of ruthenium catalytic nanoparticles on carbon nanofiber (CNF) support layers via homogeneous deposition precipitation (HDP) and pulsed laser deposition (PLD) is presented. Prior to ruthenium deposition the CNF layers were functionalized via liquid phase oxidatio

  17. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. PMID:23794416

  18. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments

    International Nuclear Information System (INIS)

    Carbon nanotubes and nanofibers are extensively researched as reinforcing agents in nanocomposites for their multifunctionality, light weight and high strength. However, it is the interface between the nanofiber and the matrix that dictates the overall properties of the nanocomposite. The current trend is to measure elastic properties of the bulk nanocomposite and then compare them with theoretical models to extract the information on the interfacial strength. The ideal experiment is single fiber pullout from the matrix because it directly measures the interfacial strength. However, the technique is difficult to apply to nanocomposites because of the small size of the fibers and the requirement for high resolution force and displacement sensing. We present an experimental technique for measuring the interfacial strength of nanofiber-reinforced composites using the single fiber pullout technique and demonstrate the technique for a carbon nanofiber-reinforced epoxy composite. The experiment is performed in situ in a scanning electron microscope and the interfacial strength for the epoxy composite was measured to be 170 MPa.

  19. Growth and characterization of aligned ultralong and diameter-controlled silicon nanotubes by hot wire chemical vapor deposition using electrospun poly(vinyl pyrrolidone) nanofiber template

    Science.gov (United States)

    Zhou, Ming; Li, Ruishan; Zhou, Jinyuan; Guo, Xiaosong; Liu, Bin; Zhang, Zhenxing; Xie, Erqing

    2009-12-01

    Using aligned suspended polyvinyl pyrrolidone nanofibers array as template, aligned ultralong (about 4 mm) silicon nanotubes have been prepared by a hot wire chemical vapor deposition process. Scanning electron microscopy and transmission electron microscopy demonstrate that the inner diameter (35-200 nm) and wall thickness (20-400 nm) of Si tubes are controlled, respectively, by baking the electrospun nanofibers and by coating time. The tube wall is composed of nanoparticle or nanopillar, and the inner surface of the wall is smoother than the outer surface of the wall. The microphotoluminescence spectra of the thinner Si nanotubes show three light emission bands in the red, green, and blue regions. And the luminescence mechanism is explained according to the quantum-confinement-luminescence center process and radiative recombination from the defect centers.

  20. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance

    International Nuclear Information System (INIS)

    Highlights: ► PAN/AAI/DMF solutions for electrospinning. ► Fe3O4/carbon composite nanofibers as microwave absorbers. ► Microwave absorption performance has been much enhanced than pure carbon naonfibers. ► Microwave absorption mechanisms have been discussed as a key point. - Abstract: Fe3O4/carbon composite nanofibers were prepared by electrospinning polyacrylonitrile (PAN)/acetyl acetone iron (AAI)/dimethyl formamide (DMF) solution, followed by stabilization and carbonization. SEM and TEM observations reveal that the fibers are lengthy and uniform, and are loaded with well-distributed Fe3O4 nanoparticles, which are evidenced by XRD. Electrical and magnetic properties of the samples were studied to show the effect of enhancement of electrical conductivity and magnetic hysteresis performance. Finally, the permittivity and permeability parameters were measured by a vector network analyzer, and the reflectivity loss was calculated based on Transmission Line Theory. Results show that Fe3O4/C composite nanofibers exhibit enhanced properties of microwave absorption as compared to those of pure carbon nanofibers by: decreasing reflectivity loss values; widening absorption width and improving performance in low frequency (2–5 GHz) absorption. Absorption properties can be tuned by changing AAI content, carbonization temperature, composite fiber/paraffin ratio and coating thickness. It is shown that with coating thickness of 5 mm and fiber/paraffin ratio of 5 wt.%, the bandwidth for reflection loss under −5 dB can reach a maximum of 12–13 GHz in the range of 2–18 GHz, accompanying with a minimum reflection loss of −40 to −45 dB, and preferred low frequency band absorption can also be obtained. The mechanisms for the enhanced absorption performance were briefly discussed. It is supposed that this kind of composite material is promising for resolving the problems of weak absorption in the low frequency range and narrow bandwidth absorption.

  1. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  2. Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors

    International Nuclear Information System (INIS)

    The purpose of this work was to investigate the performance of electrodes synthesized with Polyacrylonitrile-based carbon nanofibers (PAN-based CNFs). The homogenous PAN solutions with different concentrations were prepared and electrospun to acquire PAN nanofibers and then CNFs were fabricated by heat treatment. The effective parameters for the production of electrospun CNF electrode were investigated. Scanning electron microscopy (SEM) was used to characterize electrospun nanofibers. Cyclic voltammetry was applied to investigate the changes of behavior of electrospun CNF electrodes with different diameters. The structure of CNFs was also evaluated via X-ray diffraction (XRD) and Raman spectroscopy. The results exhibited that diameter of nanofibers reduced with decreasing polymer concentration and applied voltage and increasing tip-to-collector distance, while feeding rate did not have significant effect on nanofiber diameter. The investigations of electrochemical behavior also demonstrated that cyclic voltammetric response improved as diameter of CNFs electrode decreased. - Highlights: • Electrospun CNFs can be directly used as working electrode. • Cyclic voltammetric response improved as diameter of CNFs electrode decreased. • The diameter of nanofibers reduced with decreasing polymer concentration. • The diameter of nanofibers reduced with decreasing applied voltage. • The diameter of nanofibers reduced with increasing tip-to-collector distance

  3. Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Adabi, Mahdi [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Saber, Reza [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridi-Majidi, Reza, E-mail: refaridi@sina.tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridbod, Farnoush [Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran, Iran. (Iran, Islamic Republic of)

    2015-03-01

    The purpose of this work was to investigate the performance of electrodes synthesized with Polyacrylonitrile-based carbon nanofibers (PAN-based CNFs). The homogenous PAN solutions with different concentrations were prepared and electrospun to acquire PAN nanofibers and then CNFs were fabricated by heat treatment. The effective parameters for the production of electrospun CNF electrode were investigated. Scanning electron microscopy (SEM) was used to characterize electrospun nanofibers. Cyclic voltammetry was applied to investigate the changes of behavior of electrospun CNF electrodes with different diameters. The structure of CNFs was also evaluated via X-ray diffraction (XRD) and Raman spectroscopy. The results exhibited that diameter of nanofibers reduced with decreasing polymer concentration and applied voltage and increasing tip-to-collector distance, while feeding rate did not have significant effect on nanofiber diameter. The investigations of electrochemical behavior also demonstrated that cyclic voltammetric response improved as diameter of CNFs electrode decreased. - Highlights: • Electrospun CNFs can be directly used as working electrode. • Cyclic voltammetric response improved as diameter of CNFs electrode decreased. • The diameter of nanofibers reduced with decreasing polymer concentration. • The diameter of nanofibers reduced with decreasing applied voltage. • The diameter of nanofibers reduced with increasing tip-to-collector distance.

  4. Laccase Biosensor Based on Electrospun Copper/Carbon Composite Nanofibers for Catechol Detection

    Directory of Open Access Journals (Sweden)

    Jiapeng Fu

    2014-02-01

    Full Text Available The study compared the biosensing properties of laccase biosensors based on carbon nanofibers (CNFs and copper/carbon composite nanofibers (Cu/CNFs. The two kinds of nanofibers were prepared by electrospinning and carbonization under the same conditions. Scanning electron microscopy (SEM, X-ray diffraction (XRD and Raman spectroscopy were employed to investigate the morphologies and structures of CNFs and Cu/CNFs. The amperometric results indicated that the Cu/CNFs/laccase(Lac/Nafion/glass carbon electrode (GCE possessed reliable analytical performance for the detection of catechol. The sensitivity of the Cu/CNFs/Lac/Nafion/GCE reached 33.1 μA/mM, larger than that of CNFs/Lac/Nafion/GCE. Meanwhile, Cu/CNFs/Lac/Nafion/GCE had a wider linear range from 9.95 × 10−6 to 9.76 × 10−3 M and a lower detection limit of 1.18 μM than CNFs/Lac/Nafion/GCE. Moreover, it exhibited a good repeatability, reproducibility, selectivity and long-term stability, revealing that electrospun Cu/CNFs have great potential in biosensing.

  5. Synthesis and characterization of electrospun carbon nanofiber supported Pt catalyst for fuel cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The functionalized and optimized e-CNF has been prepared. • Increasing functionalization period, the fiber morphology slightly affected. • The suitability of the Pt/fe-CNF was studied in the lab made set-ups of PEMFC. - Abstract: Polyacrylonitrile polymer nanofibers were prepared using an electrospinner. These nanofibers were subjected to stabilization and carbonization processes. The electrospun carbon nanofibers (e-CNF) were functionalized using sulfuric acid and nitric acid under three different refluxing periods (i.e., 1f, 3f, and 5f) to optimize the functionalization level. The thermal stability of the obtained carbon supports was characterized by TGA. The Pt loaded carbon supports (20 wt%) for the three functionalized (1fe, 3fe, and 5fe-CNF) samples were prepared using chloroplatinic acid with ethylene glycol as the reducing agent. The dispersion of platinum on e-CNF and the size of Pt nanoparticles were characterized by HRSEM and HRTEM and the crystalline nature was confirmed by XRD. The surface area and pore size distribution were calculated from Brunner Emmett Teller method. The performance of five different samples such as Pt/C, Pt/1fe, 3fe, 5fe-CNF and e-CNF as electrodes and laboratory prepared hydrocarbon based sulfonated poly ether ether ketone (SPEEK) as electrolyte were studied in proton exchange membrane fuel cells (PEMFC) and the results were compared with commercially available Pt/C catalyst and Nafion-117 membrane

  6. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Polyacrylonitrile (PAN) and zinc precursor were electrospun and heat-treated for preparing zinc oxide (ZnO) modified carbon nanofibers (CNF). • A facile synthesis of composite webs resulted in uniformly loaded ZnO on the surface of CNFs. • The composites showed significant hydrogen sulfide adsorption efficiency at 300 °C. • The flexible webs can be applied for mid-temperature desulfurization. - Abstract: Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6–29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50–80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H2S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H2S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF

  7. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojung; Bajaj, Bharat [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Byun, Chang Ki; Kwon, Soon-Jin [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Joh, Han-Ik [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Sungho, E-mail: sunghol@kist.re.kr [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Department of Nano Material Engineering, University of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • Polyacrylonitrile (PAN) and zinc precursor were electrospun and heat-treated for preparing zinc oxide (ZnO) modified carbon nanofibers (CNF). • A facile synthesis of composite webs resulted in uniformly loaded ZnO on the surface of CNFs. • The composites showed significant hydrogen sulfide adsorption efficiency at 300 °C. • The flexible webs can be applied for mid-temperature desulfurization. - Abstract: Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6–29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50–80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H{sub 2}S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H{sub 2}S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF.

  8. Controlling growth of aligned carbon nanotubes from porous silicon templates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fabricating well-aligned carbon nanotubes, especially, on a silicon substrate is very important for their applications. In this paper, an aligned carbon nanotube array has been prepared by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) templates. High-magnification transmission electron microscopy images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of carbon nanotubes and the diameters of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.

  9. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    Science.gov (United States)

    Kim, Soojung; Bajaj, Bharat; Byun, Chang Ki; Kwon, Soon-Jin; Joh, Han-Ik; Yi, Kwang Bok; Lee, Sungho

    2014-11-01

    Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6-29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50-80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H2S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H2S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF.

  10. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants.

    Science.gov (United States)

    Xu, Tiefeng; Ni, Dongjing; Chen, Xia; Wu, Fei; Ge, Pengfei; Lu, Wangyang; Hu, Hongguang; Zhu, ZheXin; Chen, Wenxing

    2016-11-01

    The effective elimination of micropollutants by an environmentally friendly method has received extensive attention recently. In this study, a photocatalyst based on polyacrylonitrile (PAN)-supported graphitic carbon nitride coupled with zinc phthalocyanine nanofibers (g-C3N4/ZnTcPc/PAN nanofibers) was successfully prepared, where g-C3N4/ZnTcPc was introduced as the catalytic entity and the PAN nanofibers were employed as support to overcome the defects of easy aggregation and difficult recycling. Herein, rhodamine B (RhB), 4-chlorophenol and carbamazepine (CBZ) were selected as the model pollutants. Compared with the typical hydroxyl radical-dominated catalytic system, g-C3N4/ZnTcPc/PAN nanofibers displayed the targeted adsorption and degradation of contaminants under visible light or solar irradiation in the presence of high additive concentrations. According to the results of the radical scavenging techniques and the electron paramagnetic resonance technology, the degradation of target substrates was achieved by the attack of active species, including photogenerated hole, singlet oxygen, superoxide radicals and hydroxyl radicals. Based on the results of ultra-performance liquid chromatography and mass spectrometry, the role of free radicals on the photocatalytic degradation intermediates was identified and the final photocatalytic degradation products of both RhB and CBZ were some biodegradable small molecules. PMID:27239724

  11. Effects of vapor grown carbon nanofibers on electrical and mechanical properties of a thermoplastic elastomer

    Science.gov (United States)

    Basaldua, Daniel Thomas

    Carbon nanofiber (CNF) reinforced composites are exceptional materials that exhibit superior properties compared to conventional composites. This paper presents the development of a vapor grown carbon nanofiber (VGCNF) thermoplastic polyurethane (TPU) composite by a melt mixing process. Dispersion and distribution of CNFs inside the TPU matrix were examined through scanning electron microscopy to determine homogeneity. The composite material underwent durometer, thermal gravimetric analysis, differential scanning calorimetry, heat transfer, hysteresis, dynamic modulus, creep, tensile, abrasion, and electrical conductivity testing to characterize its properties and predict behavior. The motivation for this research is to develop an elastomer pad that is an electrically conductive alternative to the elastomer pads currently used in railroad service. The material had to be a completely homogenous electrically conductive CNF composite that could withstand a harsh dynamically loaded environment. The new material meets mechanical and conductive requirements for use as an elastomer pad in a rail suspension.

  12. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers

    Institute of Scientific and Technical Information of China (English)

    Li-hua TENG; Tian-di TANG

    2008-01-01

    In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.

  13. Carbon nanofibers, precious commodities from sunlight & CO2 to ameliorate global warming

    CERN Document Server

    Licht, Stuart

    2015-01-01

    This study introduces the high yield, electrolytic synthesis of carbon nanofibers, CNFs, directly from carbon dioxide. Production of a precious commodity such as CNFs from atmospheric carbon dioxide provides impetus to limit this greenhouse gas and mitigate the rate of climate change. CNFs are formed at high rate using inexpensive nickel and steel electrodes in molten electrolytes. The process is demonstrated as a scaled-up stand-alone electrolytic cell, and is also shown compatible with the STEP, solar thermal electrochemical process, using concentrated sunlight at high solar to electric efficiency to provide the heat and electrical energy to drive the CNF production.

  14. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions

    OpenAIRE

    Zhen-Yu Wu; Chao Li; Hai-Wei Liang; Yu-Ning Zhang; Xin Wang; Jia-Fu Chen; Shu-Hong Yu

    2014-01-01

    To address oil spillage and chemical leakage accidents, the development of efficient sorbent materials is of global importance for environment and water source protection. Here we report on a new type of carbon nanofiber (CNF) aerogels as efficient sorbents for oil uptake with high sorption capacity and excellent recyclability. Importantly, the oil uptake ability of the CNF aerogels can be maintained over a wide temperature range, from liquid nitrogen temperature up to ca. 400°C, making them ...

  15. Benzoylation of anisole catalyzed by Ga/SBA-15 supported on carbon nanofibers composite

    OpenAIRE

    EL BERRICHI, F. Z.; Pham-Huu, C.; CHERIF, L.; Louis, B; M. J.; Ledoux

    2011-01-01

    Carbon nanofiber composite (C-NFC) shows several advantages compared to the conventional supports which are usually employed in catalysis such as alumina, silica or activated charcoal. In this present work we have developed a new hybrid catalyst consisting of SBA-15 supported on C-NFC for the benzoylation reaction. The structured materials allow an important improvement of the reaction hydrodynamics and favor the mass transfer between the active phase and the reactants, especially in the liqu...

  16. Aligning carbon fibers in micro-extruded composite ink

    Science.gov (United States)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  17. How do vapor grown carbon nanofibers nucleate and grow from deoiled asphalt?

    International Nuclear Information System (INIS)

    Research highlights: → A modified growth mechanism of carbon nanofibers was proposed. → Growth process includes (1) pyrolysis and aggregation, (2) nucleation, coalescence and self-assembly and (3) deveplopment and maturation. → The nucleation and rearrangement of graphitic layers depend on the crystal orientation of the metal nanoparticles. - Abstract: During the experiments aimed at understanding the evolution mechanism by which vapor grown carbon nanofibers (VGCNFs) nucleate and grow, a series of carbon nanomaterials were synthesized by chemical vapor deposition (CVD) using deoiled asphalt (DOA) as carbon source and ferrocene as catalyst precursor with an experimental strategy developed to quench the CVD at different deposition times (3-30 min). The morphology and microstructure of the products were investigated by field emission scanning electron microscope, high resolution transmission electron microscope and X-ray powder diffractometer. The formation of hollow/metal-encapsulating carbon nanoparticles at short deposition time (3 min) of CVD and the subsequent evolution of these nanoparticles into carbon nanotubes/nanofibers at longer deposition time suggest a multi-step growth model for VGCNFs, which includes the stages of (1) pyrolysis and aggregation, (2) nucleation, coalescence and self-assembly, and (3) development and maturation. At first, C, Fe and Fe/C clusters are produced by decomposition and agglomeration of C and Fe species from the pyrolysis of DOA and ferrocene; second, the carbon nanoparticles are self-assembled into nanowires with dispersive metal nanoparticles, which are further developed into nanotubes for structural stability and minimum surface energy, meanwhile fishbone-like CNFs might be formed by rearranging carbon layers at an angle against the tube axis under the nucleation of small graphitic layers on certain crystal orientation of the metal particles; finally, CNFs are formed by the synergistic action of metal catalysis and

  18. Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers

    International Nuclear Information System (INIS)

    Nickel and other metal nanoparticles are known to be active as catalysts in the synthesis of carbon nanofibers. In this paper we investigate how dewetting and break-up of nickel thin films depends on film thickness, film–substrate interaction and pretreatment conditions. This is evaluated for films evaporated on oxidized silicon and fused silica substrates with or without tantalum coating, which were subsequently exposed to different pretreatment atmospheres (vacuum, nitrogen, air and hydrogen; 1 h, 650 °C). Atomic force microscopy, scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the films. Pretreated Ni films were subjected to a thermal catalytic chemical vapor deposition procedure with brief ethylene exposures (0.5–3 min, 635 °C). It was found that only on the spherical nanoparticles originating from a hydrogen pretreatment of a Ni film with Ta adhesion layer, homogeneously distributed, randomly-oriented, well-attached, and semi-crystalline carbon nanofibers be synthesized. - Highlights: • On the formation of nanoparticles required for carbon nanofiber (CNF) synthesis • Various evaporated thin films on oxidized silicon and fused silica: Ni and Ni/Ta • Pretreatment of nickel-based thin films in vacuum, nitrogen, air and hydrogen • Only on reduced Ni/Ta fast – within 3 min – initiation of CNF nucleation and growth

  19. Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition

    International Nuclear Information System (INIS)

    The pulse electrodeposition (PED) technique was utilized to deposit nanosized (≤10 nm) Ni catalysts on carbon fabric (CF). Via an in situ potential profile, the PED technique can control the Ni catalyst loading, which is an important parameter for the growth of carbon nanofibers (CNFs) on CF. The preparation of CNF-coated CF (carpet-like CF) was carried out in a thermal chemical vapor deposition system with an optimum loading of Ni catalysts deposited in the PED pulse range from 20 to 320 cycles. CNFs grown at 813 K using different pulse cycles had a narrow diameter distribution, around 15 ± 5 nm to 29 ± 7 nm; they have a hydrophobic surface, like lotus leaves. Transmission electron microscopy images confirmed the graphene structural transformation of CNFs with the growth temperature. Solid wire CNFs were initially grown at 813 K with graphene edges exposed on the external surface. At elevated growth temperatures (1073 and 1173 K), bamboo-like CNFs were obtained, with herringbone structures and intersectional hollow cores

  20. Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers

    Science.gov (United States)

    Wei, Bin-bin; Wu, Yan-bo; Yu, Fang-yuan; Zhou, Ya-nan

    2016-04-01

    Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C (1.0C = 170 mA·g-1) in the voltage range of 2.5-4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g-1 with a first charge-discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mAh·g-1, even at 2C.

  1. Silicon-Encapsulated Hollow Carbon Nanofiber Networks as Binder-Free Anodes for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Ding Nan

    2014-01-01

    Full Text Available Silicon-encapsulated hollow carbon nanofiber networks with ample space around the Si nanoparticles (hollow Si/C composites were successfully synthesized by dip-coating phenolic resin onto the surface of electrospun Si/PVA nanofibers along with the subsequent solidification and carbonization. More importantly, the structure and Si content of hollow Si/C composite nanofibers can be effectively tuned by merely varying the concentration of dip solution. As-synthesized hollow Si/C composites show excellent electrochemical performance when they are used as binder-free anodes for Li-ion batteries (LIBs. In particular, when the concentration of resol/ethanol solution is 3.0%, the product exhibits a large capacity of 841 mAh g−1 in the first cycle, prominent cycling stability, and good rate capability. The discharge capacity retention of it was ~90%, with 745 mAh g−1 after 50 cycles. The results demonstrate that the hollow Si/C composites are very promising as alternative anode candidates for high-performance LIBs.

  2. Preparation and characterization of Polyacrylonitrile/ Manganese Dioxides- based Carbon Nanofibers via electrospinning process

    Science.gov (United States)

    Che Othman, F. E.; Yusof, N.; Jaafar, J.; Ismail, A. F.; Hasbullah, H.; Abdullah, N.; Ismail, M. S.

    2016-06-01

    This research reports the production of precursor polyacrylonitrile (PAN)/ manganese dioxide (MnO2) nanofibers (NFs) via electrospinning method followed by stabilization and carbonization processes. Nowadays, electrospinning has become a suitable method in manufacturing continuous NFs, thus it is employed to fabricate NFs in this study. The microstructural properties and adsorption competencies of the produced NFs were also studied. The NFs were prepared by electrospinning the polymer solution of Polyacrylonitrile (PAN) and Manganese Dioxide (MnO2) in, N, N-Dimethylformamide (DMF) solvent. The factors considered in this study were various polymer PAN/MnO2 concentrations which will significantly affect the specific surface area, fiber morphology and the diameter of the NFs prepared. Subsequently, heat treatment is applied by setting up the stabilization temperature at 275 °C and carbonization temperature at 800 °C with constant dwelling time (30 min). Nitrogen gas at constant rate 0.2 L/min was used for stabilization and carbonization with the stabilization rate (2 °C/min) and carbonization rate (5 °C/min). The carbon nanofibers (CNFs) produced were characterized using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) surface area and Fourier Transmission Infrared Spectroscopy (FTIR). It was found that the PAN/MnO2 CNFs were successfully produced with the carbonization temperature of 800 °C. The prepared PAN/MnO2 CNFs prepared showed an enhanced in specific surface area about two times compared to it precursor NFs.

  3. Effect of Carbon Nanofiber Heat Treatment on Physical Properties of Polymeric Nanocomposites—Part I

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2007-01-01

    Full Text Available The definition of a nanocomposite material has broadened significantly to encompass a large variety of systems made of dissimilar components and mixed at the nanometer scale. The properties of nanocomposite materials also depend on the morphology, crystallinity, and interfacial characteristics of the individual constituents. In the current work, vapor-grown carbon nanofibers were subjected to varying heat-treatment temperatures. The strength of adhesion between the nanofiber and an epoxy (thermoset matrix was characterized by the flexural strength and modulus. Heat treatment to 1800C∘ demonstrated maximum improvement in mechanical properties over that of the neat resin, while heat-treatment to higher temperatures demonstrated a slight decrease in mechanical properties likely due to the elimination of potential bonding sites caused by the elimination of the truncated edges of the graphene layers. Both the electrical and thermal properties of the resulting nanocomposites increased in conjunction with the increasing heat-treatment temperature.

  4. NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications

    OpenAIRE

    Dawei Li; Pengfei Lv; Jiadeng Zhu; Yao Lu; Chen Chen; Xiangwu Zhang; Qufu Wei

    2015-01-01

    NiCu alloy nanoparticle-loaded carbon nanofibers (NiCuCNFs) were fabricated by a combination of electrospinning and carbonization methods. A series of characterizations, including SEM, TEM and XRD, were employed to study the NiCuCNFs. The as-prepared NiCuCNFs were then mixed with laccase (Lac) and Nafion to form a novel biosensor. NiCuCNFs successfully achieved the direct electron transfer of Lac. Cyclic voltammetry and linear sweep voltammetry were used to study the electrochemical propertie...

  5. Fabrication of Dense Horizontally Aligned Arrays of Single-Wall Carbon Nanotubes from Vertically Aligned Arrays

    Science.gov (United States)

    Zheng, Gang; Wang, Xueshen; Li, Qunqing; Xie, Jing; Zhu, Zhendong; Zou, Yuan; Liu, Junku; Jiang, Kaili; Fan, Shoushan

    2011-01-01

    The as-grown vertically aligned single-wall carbon nanotube (SWNT) arrays are transferred from the original silicon substrate to a poly(ethylene terephthalate) (PET) substrate, which acts as a stamp. Thin SWNT films can be applied from the stamp to the target substrate and subsequently treated by an ultrasonic process to reduce their thickness to 6.6 nm. The transferred SWNT thin film retains the advantageous super-alignment and high-density properties of the vertical SWNT arrays. The linear density, transmittance, and square resistance of the thin film are as high as 15 tubes per micrometer, 99% at 550 nm, and 16 kΩ, respectively.

  6. Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium–ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: • Flexible Si/SiO2/C composite nanofibers were introduced as Li–ion battery anodes. • SiO2 component of composite nanofibers facilitated the high flexibility. • Flexible Si/SiO2/C composite nanofibers were coated with CVD-carbon. • CVD carbon coating and SiO2 component led to high capacity retention. -- Abstract: High-capacity flexible electrode materials for high-energy lithium–ion batteries become critically important with technological improvements on portable and bendable electronic equipment such as rollup displays, implantable medical devices, active radio-frequency identification tags, and wearable devices. Although different types of bendable electrode materials have been introduced, it is very important to fabricate highly-flexible electrode materials with reasonable fabrication technique and high electrochemical performance similar to those of conventional high-capacity electrode materials. Herein, we introduced high-capacity, flexible Si/SiO2/C nanofiber composite anode materials by simple electrospinning and subsequent heat treatment processes. To further improve the long-term cycling performance, additional nanoscale carbon coating of flexible Si/SiO2/C nanofibers was performed by CVD technique. Electrochemical performance results showed that CVD carbon-coated flexible Si/SiO2/C nanofiber composites exhibited high capacity retention of 86.7% and high coulombic efficiency of 96.7% at the 50th cycle. It is, therefore, demonstrated that CVD carbon-coated flexible Si/SiO2/C nanofiber composites are promising anode material candidate for next-generation flexible and high-energy lithium–ion batteries

  7. Synthesis of Aligned Carbon Nanotubes by Thermal Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Gang; ZHOU Ming; MA Weiwei; CAI Lan

    2009-01-01

    Single crystal silicon was found to be very beneficial to the growth of aligned carbon nanotubes by chemical vapor deposition with C2H2 as carbon source. A thin film of Ni served as catalyst was deposited on the Si substrate by the K575X Peltier Cooled High Resolution Sputter Coater before growth. The growth properties of carbon nanotubes were studied as a function of the Ni catalyst layer thickness. The diameter, growth rate and areal density of the carbon nanotubes were controlled by the initial thickness of the catalyst layer. Steric hindrance between nanotubes forces them to grow in well-aligned manner at an initial stage of growth. Transmission electron microscope analysis revealed that nanotubes grew by a tip growth mechanism.

  8. Effect of Temperature on Morphology and Electrochemical Capacitive Properties of Electrospun Carbon Nanofibers and Nickel Hydroxide Composites

    International Nuclear Information System (INIS)

    Highlights: • Ni(OH)2 nanoflakes connected with electrospun carbon fibers were prepared. • Most Ni(OH)2 nanoflakes were converted to NiO at 350 °C, forming NiO microparticles. • The specific capacitance of the composites reached a maximum at 300 °C. - Abstract: Binder-free Ni(OH)2/carbon nanofiber composites used as supercapacitor electrodes were fabricated through the chemical precipitation of Ni(OH)2 on electrospun carbon nanofibers. These composites exhibited a hierarchical structure in which Ni(OH)2 nanoflakes connected with the carbon fiber network. We varied the annealing temperature to investigate the morphological progress and the subsequent electrochemical performance of the composite fibers. The hierarchical structure remained unchanged when the annealing temperature was lower than 300 °C. At 350 °C, most Ni(OH)2 was converted to NiO, and NiO peeled off from the fiber surface, forming NiO microparticles. Electrochemical measurements revealed that the specific capacity of the Ni(OH)2/carbon nanofiber composites increased with an increase in the annealing temperature and reached a maximum of 455 C/g at 300 °C. In addition, the Ni(OH)2/carbon nanofiber composites exhibited a favorable cycling stability after 2000 cycles without fading. The electrochemical performance of the composites was satisfactory because of the synergetic effect of the faradaic behavior of Ni(OH)2 and easily accessible electron transport in the carbon nanofiber network. At 350 °C, the peeling off and aggregation of NiO microparticles caused a reduction in the specific capacity of the Ni(OH)2/carbon nanofiber composites

  9. Broadband laser polarization control with aligned carbon nanotubes

    CERN Document Server

    Yang, He; Lia, Diao; Chen, Ya; Mattila, Marco; Tian, Ying; Yong, Zhenzhong; Yang, Changxi; Tittonen, Ilkka; Ren, Zhaoyu; Bai, Jingtao; Li, Qingwen; Kauppinen, Esko I; Lipsanen, Harri; Sun, Zhipei

    2015-01-01

    We introduce a simple approach to fabricate aligned carbon nanotube (ACNT) device for broadband polarization control in fiber laser systems. The ACNT device was fabricated by pulling from as-fabricated vertically-aligned carbon nanotube arrays. Their anisotropic property is confirmed with optical and scanning electron microscopy, and with polarized Raman and absorption spectroscopy. The device was then integrated into fiber laser systems (at two technologically important wavelengths of 1 and 1.5 um) for polarization control. We obtained a linearly-polarized light output with the maximum extinction ratio of ~12 dB. The output polarization direction could be fully controlled by the ACNT alignment direction in both lasers. To the best of our knowledge, this is the first time that ACNT device is applied to polarization control in laser systems. Our results exhibit that the ACNT device is a simple, low-cost, and broadband polarizer to control laser polarization dynamics, for various photonic applications (such as ...

  10. Increased Alignment in Carbon Nanotube Growth

    Science.gov (United States)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  11. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends.

    Science.gov (United States)

    Kaerkitcha, Navaporn; Chuangchote, Surawut; Sagawa, Takashi

    2016-12-01

    Hollow carbon nanofibers (HCNFs) were prepared by electrospinning method with several coaxial nozzles, in which the level of the inner nozzle-end is adjustable. Core/shell nanofibers were prepared from poly(methyl methacrylate) (PMMA) as a pyrolytic core and polyacrylonitrile (PAN) as a carbon shell with three types of normal (viz. inner and outer nozzle-ends are balanced in the same level), inward, and outward coaxial nozzles. The influence of the applied voltage on these three types of coaxial nozzles was studied. Specific surface area, pore size diameter, crystallinity, and degree of graphitization of the hollow and mesoporous structures of carbon nanofibers obtained after carbonization of the as spun PMMA/PAN nanofibers were characterized by BET analyses, X-ray diffraction, and Raman spectroscopy in addition to the conductivity measurements. It was found that specific surface area, crystallinity, and graphitization degree of the HCNFs affect the electrical conductivity of the carbon nanofibers. PMID:27067734

  12. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  13. Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shiv; Singh, Abhinav [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bais, Vaibhav Sushil Singh; Prakash, Balaji [Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Verma, Nishith, E-mail: nishith@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2014-05-01

    In the present study, different proteins, namely, bovine serum albumin (BSA), glucose oxidase (GOx) and the laboratory purified YqeH were immobilized in the phenolic resin precursor-based multi-scale web of activated carbon microfibers (ACFs) and carbon nanofibers (CNFs). These biomolecules are characteristically different from each other, having different structure, number of parent amino acid molecules and isoelectric point. CNF was grown on ACF substrate by chemical vapor deposition, using Ni nanoparticles (Nps) as the catalyst. The ultra-sonication of the CNFs was carried out in acidic medium to remove Ni Nps from the tip of the CNFs to provide additional active sites for adsorption. The prepared material was directly used as an adsorbent for proteins, without requiring any additional treatment. Several analytical techniques were used to characterize the prepared materials, including scanning electron microscopy, Fourier transform infrared spectroscopy, BET surface area, pore-size distribution, and UV–vis spectroscopy. The adsorption capacities of prepared ACFs/CNFs in this study were determined to be approximately 191, 39 and 70 mg/g for BSA, GOx and YqeH, respectively, revealing that the carbon micro-nanofibers forming synthesized multi-scale web are efficient materials for the immobilization of protein molecules. - Highlights: • Ni metal Np-dispersed carbon micro-nanofibers (ACFs/CNFs) are prepared. • ACFs/CNFs are mesoporous. • Significant adsorption of BSA, GOx and YqeH is observed on ACFs/CNFs. • Multi-scale web of ACFs/CNFs is effective for protein immobilization.

  14. Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization

    International Nuclear Information System (INIS)

    In the present study, different proteins, namely, bovine serum albumin (BSA), glucose oxidase (GOx) and the laboratory purified YqeH were immobilized in the phenolic resin precursor-based multi-scale web of activated carbon microfibers (ACFs) and carbon nanofibers (CNFs). These biomolecules are characteristically different from each other, having different structure, number of parent amino acid molecules and isoelectric point. CNF was grown on ACF substrate by chemical vapor deposition, using Ni nanoparticles (Nps) as the catalyst. The ultra-sonication of the CNFs was carried out in acidic medium to remove Ni Nps from the tip of the CNFs to provide additional active sites for adsorption. The prepared material was directly used as an adsorbent for proteins, without requiring any additional treatment. Several analytical techniques were used to characterize the prepared materials, including scanning electron microscopy, Fourier transform infrared spectroscopy, BET surface area, pore-size distribution, and UV–vis spectroscopy. The adsorption capacities of prepared ACFs/CNFs in this study were determined to be approximately 191, 39 and 70 mg/g for BSA, GOx and YqeH, respectively, revealing that the carbon micro-nanofibers forming synthesized multi-scale web are efficient materials for the immobilization of protein molecules. - Highlights: • Ni metal Np-dispersed carbon micro-nanofibers (ACFs/CNFs) are prepared. • ACFs/CNFs are mesoporous. • Significant adsorption of BSA, GOx and YqeH is observed on ACFs/CNFs. • Multi-scale web of ACFs/CNFs is effective for protein immobilization

  15. Development and Characterization of a Bioinspired Bone Matrix with Aligned Nanocrystalline Hydroxyapatite on Collagen Nanofibers

    Directory of Open Access Journals (Sweden)

    Hsi-Chin Wu

    2016-03-01

    Full Text Available Various kinds of three-dimensional (3D scaffolds have been designed to mimic the biological spontaneous bone formation characteristics by providing a suitable microenvironment for osteogenesis. In view of this, a natural bone-liked composite scaffold, which was combined with inorganic (hydroxyapatite, Hap and organic (type I collagen, Col phases, has been developed through a self-assembly process. This 3D porous scaffold consisting of a c-axis of Hap nanocrystals (nHap aligning along Col fibrils arrangement is similar to natural bone architecture. A significant increase in mechanical strength and elastic modulus of nHap/Col scaffold is achieved through biomimetic mineralization process when compared with simple mixture of collagen and hydroxyapatite method. It is suggested that the self-organization of Hap and Col produced in vivo could also be achieved in vitro. The oriented nHap/Col composite not only possesses bone-like microstructure and adequate mechanical properties but also enhances the regeneration and reorganization abilities of bone tissue. These results demonstrated that biomimetic nHap/Col can be successfully reconstructed as a bone graft substitute in bone tissue engineering.

  16. Fabrication and electron field-emission of carbon nanofibers grown on silicon nanoporous pillar array

    International Nuclear Information System (INIS)

    Highlights: ► Carbon nanofibers were grown on silicon nanoporous pillar array by a CVD method.► Low turn-on field, high density and stable FE current were obtained in CNTs/Si-NPA.► Defects in CNTs and Si array substrate contributes the excellent FE property. - Abstract: Random orientation carbon nanofibers (CNFs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition (CVD) method with acetylene (C2H2) as carbon precursor and Ni as the catalyst. The synthesized CNFs were mainly composed of amorphous carbon and disordered graphite layers with a core–shell like structure. And, the tangled CNFs and the regular silicon-pillar array formed a nanometer-micron hierarchy structure. The electron field-emission (FE) property of CNFs/Si-NPA was measured and low turn-on field, high-density and stable FE current, high enhancement factor were obtained. The outstanding FE performance of the CNFs/Si-NPA emitters was attributed to the random orientation and defects of CNFs, the undulate surface of the Si-NPA substrate.

  17. Electrical Removal Behavior of Carbon Nanotube and Carbon Nanofiber Film in CuCl2 Solution: Kinetics and Thermodynamics Study

    Directory of Open Access Journals (Sweden)

    Yankun Zhan

    2011-01-01

    Full Text Available The kinetics, thermodynamics, and isotherms during electrical removal of Cu2+ by carbon nanotube and carbon nanofiber (CNT-CNF electrodes in CuCl2 solution were studied under different solution temperatures, initial Cu2+ concentrations, and applied voltages. The result shows that Langmuir isotherm can describe experimental data well, indicating monolayer adsorption, and higher Cu2+ removal and rate constant are achieved at higher voltage, lower initial Cu2+ concentration, and higher solution temperature. Meanwhile, the thermodynamics analyses indicate that the electrical removal of Cu2+ onto CNT-CNF electrodes is mainly driven by a physisorption process.

  18. Dynamics of carbon nanotube alignment by electric fields

    International Nuclear Information System (INIS)

    The dynamics of multiwall carbon nanotube (MWCNT) alignment inside viscous media using electric fields is investigated. Electrical current measurements were performed in situ during the application of an electric field to liquid solutions of deionized water or dissolved polymer containing MWCNTs. The variation of electrical current over time was associated to the dynamics of the MWCNT network formation. The influence of the electric field magnitude and frequency on the MWCNT network formation was studied. MWCNT migration towards the negative electrode was observed when a direct current electric field was applied, whereas formation of an aligned MWCNT network was achieved for an alternating current electric field. The increase of the electric field frequency promotes a faster formation of an aligned MWCNT network and thinner MWCNT bundles. A higher viscosity of the liquid medium yields slower MWCNT alignment evidenced by a slower change of electrical current through the viscous system. An analytical model based on the dielectrophoresis-induced torque, which considers the viscosity of the medium, is also proposed to explain the dynamics of MWCNT alignment. Furthermore, aligned MWCNT/polysulfone solid composites were fabricated and electrically characterized. The solid composites presented anisotropic electrical conductivity, which was more evident for low MWCNT concentrations (0.1–0.2 wt%). (paper)

  19. Nanodrawing of Aligned Single Carbon Nanotubes with a Nanopen.

    Science.gov (United States)

    Yeshua, Talia; Lehmann, Christian; Hübner, Uwe; Azoubel, Suzanna; Magdassi, Shlomo; Campbell, Eleanor E B; Reich, Stephanie; Lewis, Aaron

    2016-03-01

    Single-walled carbon nanotubes (SWCNTs) are considered pivotal components for molecular electronics. Techniques for SWCNT lithography today lack simplicity, flexibility, and speed of direct, oriented deposition at specific target locations. In this paper SWCNTs are directly drawn and placed with chemical identification and demonstrated orientation using fountain pen nanolithography (FPN) under ambient conditions. Placement across specific electrical contacts with such alignment is demonstrated and characterized. The fundamental basis of the drawing process with alignment has potential applications for other related systems such as inorganic nanotubes, polymers, and biological molecules. PMID:26789406

  20. Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability

    OpenAIRE

    Velmurugan Thavasi; Lala, Neeta L.; Seeram Ramakrishna

    2009-01-01

    We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs) onto the surface of Nylon-6 fibers using Triton® X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sensor has demonstrated its responsiveness towards a wide range of solvent vapours at room temperature ...

  1. Fabrication and Experimental Analysis of Axially Oriented Nanofibers.

    Science.gov (United States)

    Aphale, Ashish N; Mahakalkar, Kapil; Macwan, Isaac G; Mukerji, Ishita; Cox, Paris J; Mahapatra, Manoj; Singh, Prabhakar; Ajayan, Pulickel M; Patra, Prabir K

    2016-03-01

    A novel design of a laboratory built axially rotating collector (ARC) having capability to align electrospun nanofibers have been described. A detailed morphological comparison of such nanofibers orientation and their geometry is done using scanning electron microscopy (SEM). For comparison various polymeric solutions were electrospun on conventional static collector as well as ARC. The average diameter of polyvinyl alcohol (PVA) nanofibers was found to be 250 nm while polycaprolactone (PCL) nanofibers were found to be within a range of 600-800 nm. Conducting nanoparticles such as graphene and multi-walled carbon nanotubes (MWNTs) mixed with polymer solutions shown to have a significant influence on the overall geometry of these nanofibers and their diameter distribution. It is evident from the SEM analysis that both graphene and MWNTs in polymer solution play a crucial role in achieving a uniform diameter of nanofibers. Lastly, the formation of the aligned nanofibers using ARC has been mathematically modeled and the electromagnetic field governing the process has been simulated. PMID:27455687

  2. CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property

    Science.gov (United States)

    Guo, Jixi; Guo, Mingxi; Jia, Dianzeng; Song, Xianli; Tong, Fenglian

    2016-08-01

    The coal based activated carbon nanofibers (CBACFs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and acid treated coal. Cadmium sulfide (CdS) nanoparticles loaded on CBACFs were fabricated by solvothermal method. The obtained samples were characterized by FESEM, TEM, and XRD. The results reveal that the CdS nanoparticles are homogeneously dispersed on the surfaces of CBACFs. The CdS/CBACFs nanocomposites exhibited higher photoactivity for photodegradation of methyl blue (MB) under visible light irradiation than pure CdS nanoparticles. CBACFs can be used as low cost support materials for the preparation of nanocomposites with high photocatalytic activity.

  3. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    OpenAIRE

    Seok-Hwan Park; Wan-Jin Lee

    2015-01-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-s...

  4. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish;

    2014-01-01

    A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmui...... coverage (ΓSmax) of the CNFs is one order of magnitude higher than the one of Vulcan. The large discrepancy is due to the fact that the ionomers are inaccessible to the internal surface area of Vulcan with high micro porosity....

  5. Fabrication of Ni-B alloy coated vapor-grown carbon nanofibers by electroless deposition

    OpenAIRE

    Arai, Susumu; Imoto, Yuzo; Suzuki, Yosuke; Endo, Morinobu

    2011-01-01

    Ni-B alloy coated vapor-grown carbon nanofibers (VGCNFs) were fabricated by electroless deposition and their microstructures were investigated. The effects of heat treatment on the coated VGCNFs were also studied. VGCNFs could be coated with a homogeneous Ni-B alloy film using a plating bath containing dimethylaminoborane (DMAB) as a reducing agent. The boron content of the Ni-B alloy film could be varied from 14 to 24 atom% B by varying the DMAB concentration of the plating bath. The VGCNFs ...

  6. Synthesis and photocatalytic property of porous metal oxides nanowires based on carbon nanofiber template

    Science.gov (United States)

    Fan, Weiqiang; Li, Meng; Xu, Jinfu; Bai, Hongye; Zhang, Rongxian; Chen, Chao

    2015-11-01

    A series of porous metal oxides nanowires (Fe2O3, Co3O4, NiO and CuO) have been successfully synthesized, where commercial carbon nanofibers were used as the template. The obtained samples were systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance (UV-Vis DR) spectra and transmission electron microscope (TEM). According to the photodegradation data, the porous metal oxides nanowires exhibit significantly photocatalytic activity for degrading tetracycline (TC). Furthermore, the porous Fe2O3 nanowires show the best photocatalytic performance among all the samples.

  7. Electrospun carbon-cobalt composite nanofiber as an anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Carbon-cobalt (C/Co) composite nanofibers with diameters from 100 to 300 nm were prepared by electrospinning and subsequent heat treatment. They were characterized by X-ray diffraction, scanning electron microscopy, galvanostatic cell cycling and impedance spectroscopy. As a lithium storage material, these fibers exhibit excellent electrochemical properties with high reversible capacity (>750 mA h g-1) and good rate capability (578 mA h g-1 at 1 C rate). These composite fibers are a promising anode material for high-power Li-ion batteries

  8. Thin, Flexible Supercapacitors Made from Carbon Nanofiber Electrodes Decorated at Room Temperature with Manganese Oxide Nanosheets

    Directory of Open Access Journals (Sweden)

    S. K. Nataraj

    2013-01-01

    Full Text Available We report the fabrication and electrochemical performance of a flexible thin film supercapacitor with a novel nanostructured composite electrode. The electrode was prepared by in situ coprecipitation of two-dimensional (2D MnO2 nanosheets at room temperature in the presence of carbon nanofibers (CNFs. The highest specific capacitance of 142 F/g was achieved for CNFs-MnO2 electrodes in sandwiched assembly with PVA-H4SiW12O40·nH2O polyelectrolyte separator.

  9. Arrays of nanofibers composed of a TiC core and a carbon coating for sensitive electrochemical detection of hydrazine

    International Nuclear Information System (INIS)

    Arrays made from quasi-aligned nanofibers consisting of a TiC/C composite were produced directly on a titanium alloy substrate by a thermochemical process. Their morphology, structure and composition were characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The arrays were directly utilized as an electrode without further treatment and display high catalytic activity in terms of hydrazine oxidation. The low overpotential decreases gradually when increasing pH values from 5 to 10. The detection range is linear from 0.1 to 1,635 μM concentrations, and the detection limit is as low as 0.026 μM (S/N=3). The selectivity of the electrode and its general performance and stability are very good. The improved electrochemical properties of the new electrode are attributed to the synergic effect of the highly conducting TiC nanowire core and an abundant amount of edge-plane-like defects on the carbon shells. (author)

  10. Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN) Nanocomposites

    OpenAIRE

    Xiaoxiao Hou; Liqun Zhang; Sizhu Wu; Zhenyu Song

    2011-01-01

    Partially aligned polyacrylonitrile (PAN)-based nanofibers were electrospun from PAN and PAN/single-walled carbon nanotubes (SWNTs) in a solution of dimethylformamide (DMF) to make the nanofiber composites. The as-spun nanofibers were then hot-stretched in the oven to enhance its orientation and crystallinity. With the introduction of SWNTs and by the hot-stretched process, the mechanical properties will be enhanced correspondingly. Scanning electron microscopy (SEM), transmission electron mi...

  11. Direct measurement of hydrogen adsorption in carbon nanotubes/nanofibers by elastic recoil detection

    International Nuclear Information System (INIS)

    Physi- or chemi-sorption of hydrogen in solid materials offers a viable medium for hydrogen storage since the concentration of hydrogen can exceed that in its gaseous form at high compression. Due to their unique architecture, carbon nanotubes are potentially an excellent carbon-based adsorbent for hydrogen. In this work, we report direct measurements of hydrogen adsorption using elastic recoil detection analysis in single-walled, double-walled, and multi-walled nanotubes, as well as carbon nanofibers. Results are presented for hydrogen adsorption treatment at ambient temperature and above, where chemical rather than physical adsorption is anticipated. The results show that the concentration of hydrogen in all samples over the range of conditions investigated is below 1 wt.%, which is well below that required for a viable storage media

  12. Thermoplastic polybutadiene-based polyurethane/carbon nanofiber composites

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Duszová, A.; Poreba, Rafal; Kredatusová, Jana; Bureš, R.; Fáberová, M.; Šlouf, Miroslav

    2014-01-01

    Roč. 67, December (2014), s. 434-440. ISSN 1359-8368 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : carbon fibre * polymer–matrix composites (PMCs) * mechanical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.983, year: 2014

  13. Design and evaluation of carbon nanofiber and silicon materials for neural implant applications

    Science.gov (United States)

    McKenzie, Janice L.

    Reduction of glial scar tissue around central nervous system implants is necessary for improved efficacy in chronic applications. Design of materials that possess tunable properties inspired by native biological tissue and elucidation of pertinent cellular interactions with these materials was the motivation for this study. Since nanoscale carbon fibers possess the fundamental dimensional similarities to biological tissue and have attractive material properties needed for neural biomaterial implants, this present study explored cytocompatibility of these materials as well as modifications to traditionally used silicon. On silicon materials, results indicated that nanoscale surface features reduced astrocyte functions, and could be used to guide neurite extension from PC12 cells. Similarly, it was determined that astrocyte functions (key cells in glial scar tissue formation) were reduced on smaller diameter carbon fibers (125 nm or less) while PC12 neurite extension was enhanced on smaller diameter carbon fibers (100 nm or less). Further studies implicated laminin adsorption as a key mechanism in enhancing astrocyte adhesion to larger diameter fibers and at the same time encouraging neurite extension on smaller diameter fibers. Polycarbonate urethane (PCU) was then used as a matrix material for the smaller diameter carbon fibers (100 and 60 nm). These composites proved very versatile since electrical and mechanical properties as well as cell functions and directionality could be influenced by changing bulk and surface composition and features of these matrices. When these composites were modified to be smooth at the micronscale and only rough at the nanoscale, P19 cells actually submerged philopodia, extensions, or whole cells bodies beneath the PCU in order to interact with the carbon nanofibers. These carbon nanofiber composites that have been formulated are a promising material to coat neural probes and thereby enhance functionality at the tissue interface. This

  14. Preparation of very long and open aligned carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    潘正伟; 常保和; 孙连峰; 钱露茜; 刘祖琴; 唐东升; 王刚; 解思深

    2000-01-01

    Very long and open aligned carbon nanotubes that reach about 2 mm long, an order of magnitude longer than previously reached, have been prepared by chemical vapor deposition over silica dioxide substrates on the surface, where iron/silica nano-composite particles are evenly positioned. The nanotubes are naturally opened at the bottom ends. The growth mechanism of the very long and open-ended nanotubes is also discussed.

  15. Fabrication of Nerve Growth Factor Encapsulated Aligned Poly(ε-Caprolactone Nanofibers and Their Assessment as a Potential Neural Tissue Engineering Scaffold

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2016-02-01

    Full Text Available Peripheral nerve injury is a serious clinical problem to be solved. There has been no breakthrough so far and neural tissue engineering offers a promising approach to promote the regeneration of peripheral neural injuries. In this study, emulsion electrospinning technique was introduced as a flexible and promising technique for the fabrication of random (R and aligned (A Poly(ε-caprolactone (PCL-Nerve Growth Factor (NGF&Bovine Serum Albumin (BSA nanofibrous scaffolds [(R/A-PCL-NGF&BSA], where NGF and BSA were encapsulated in the core while PCL form the shell. Random and aligned pure PCL, PCL-BSA, and PCL-NGF nanofibers were also produced for comparison. The scaffolds were characterized by Field Emission Scanning Electron Microscopy (FESEM and water contact angle test. Release study showed that, with the addition of stabilizer BSA, a sustained release of NGF from emulsion electrospun PCL nanofibers was observed over 28 days. [3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt; MTS] assay revealed that (R/A-PCL-NGF and (R/A-PCL-NGF&BSA scaffolds favored cell growth and showed no cytotoxicity to PC12 cells. Laser scanning confocal microscope images exhibited that the A-PCL-NGF&BSA scaffold increased the length of neurites and directed neurites extension along the fiber axis, indicating that the A-PCL-NGF&BSA scaffold has a potential for guiding nerve tissue growth and promoting nerve regeneration.

  16. Mechanism of Carbon Nanotubes Aligning along Applied Electric Field

    Institute of Scientific and Technical Information of China (English)

    MA Shao-Jie; GUO Wan-Lin

    2008-01-01

    The mechanism of single-walled carbon nanotubes (SWCNTS)aligning in the direction of external electric field is studied by quantum mechanics calculations.The rotational torque on the carbon nanotubes is proportional to the difference between the longitudinal and transverse polarizabilities and varies with the angle of SWCNTs to the external electric field.The longitudinal polarizability increases with second power of length,while the transverse polarizability increases linearly with length.A zigzag SWCNT has larger longitudinal and transverse polarizabilities than an armchair SWCNT with the same diameter and the discrepancy becomes larger for longer tubes.

  17. Aligned carbon nanotube array stiffness from stochastic three-dimensional morphology

    Science.gov (United States)

    Stein, Itai Y.; Lewis, Diana J.; Wardle, Brian L.

    2015-11-01

    The landmark theoretical properties of low dimensional materials have driven more than a decade of research on carbon nanotubes (CNTs) and related nanostructures. While studies on isolated CNTs report behavior that aligns closely with theoretical predictions, studies on cm-scale aligned CNT arrays (>1010 CNTs) oftentimes report properties that are orders of magnitude below those predicted by theory. Using simulated arrays comprised of up to 105 CNTs with realistic stochastic morphologies, we show that the CNT waviness, quantified via the waviness ratio (w), is responsible for more than three orders of magnitude reduction in the effective CNT stiffness. Also, by including information on the volume fraction scaling of the CNT waviness, the simulation shows that the observed non-linear enhancement of the array stiffness as a function of the CNT close packing originates from the shear and torsion deformation mechanisms that are governed by the low shear modulus (~1 GPa) of the CNTs.The landmark theoretical properties of low dimensional materials have driven more than a decade of research on carbon nanotubes (CNTs) and related nanostructures. While studies on isolated CNTs report behavior that aligns closely with theoretical predictions, studies on cm-scale aligned CNT arrays (>1010 CNTs) oftentimes report properties that are orders of magnitude below those predicted by theory. Using simulated arrays comprised of up to 105 CNTs with realistic stochastic morphologies, we show that the CNT waviness, quantified via the waviness ratio (w), is responsible for more than three orders of magnitude reduction in the effective CNT stiffness. Also, by including information on the volume fraction scaling of the CNT waviness, the simulation shows that the observed non-linear enhancement of the array stiffness as a function of the CNT close packing originates from the shear and torsion deformation mechanisms that are governed by the low shear modulus (~1 GPa) of the CNTs. Electronic

  18. Ti-doped SnOx encapsulated in Carbon nanofibers with enhanced lithium storage properties

    International Nuclear Information System (INIS)

    Hybrid nanocomposites composed of carbon nanofibers and Ti-doped SnOx nanoparticles with varied molar ratios of Ti/Sn (=0.05, 0.1 and 0.2) have been prepared through electrospinning technique and subsequent thermal treatments. High-resolution transmission electron microscopy showed that the Ti-doped SnOx nanoparticles with a very small particle size of 2∼4 nm were uniformly encapsulated in the carbon nanofibers (CNFs). Among the as-prepared samples, the electrode with the Ti/Sn molar ratio of 0.1 delivered the best reversible capacity of 670.7 mAh g−1 at the 60th cycle, which was 17.9% higher than that of the pristine SnOx/CNFs (SOC). What is more, the optimal electrode presented good rate performance (302.1 mAh g−1 at 2 A g−1). The enhanced lithium storage properties of Ti-doped SnOx/CNFs (TSOC) can be attributed to the uniform encapsulation of ultrafine SnOx nanoparticles in the conductive CNFs as well as the doping with Ti4+

  19. Controlled morphology evolution of electrospun carbon nanofiber templated tungsten disulfide nanostructures

    International Nuclear Information System (INIS)

    Three-dimensional (3D) WS2-nanoflower decorated and two-dimensional (2D) WS2-nanosheet (NS) wrapped carbon nanofiber (CNF) nanostructures are constructed through a simple approach using (NH4)2WS4 contained electrospun polyacrylonitrile nanofibers (W-PAN NFs) and S powder as the precursor. (NH4)2WS4 are thermally decomposed into WS2 nanoparticles (NPs) during a pre-oxidation treatment of W-PAN NFs. Interestingly, the introducing of S vapor during the carbonization of W-PAN NFs results in unexpected migration of WS2 nanoparticles (WS2 NPs) from the inside of CNFs to the surface to form WS2 NSs or WS2 nanoflowers. It is believed that S not only controls the initial nucleation of WS2 on the surface of CNFs but also induces the migration of WS2 NPs and directs the growth of WS2 into various morphologies. The synthesized catalysts are directly used as the electrode for hydrogen evolution reaction (HER) and they exhibit good electrocatalytic activity

  20. Nanocomposite of Au Nanoparticles/Helical Carbon Nanofibers and Application in Hydrogen Peroxide Biosensor.

    Science.gov (United States)

    Zhai, Mumu; Cui, Rongjing; Gu, Ning; Zhang, Genhua; Lin, Wang; Yu, Lingjun

    2015-06-01

    A combined sol-gel/hydrogen reduction method has been developed for the mass production of helical carbon nanofibers (HCNFs) by the pyrolysis of acetylene at 425 degrees C in the presence of NiO nanoparticles. The synthesized HCNFs were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The helical-structured carbon nanofibers have a large specific surface area and excellent biocompatibility. A novel enzymatic hydrogen peroxide sensor was then successfully fabricated based on the nanocomposites containing HCNFs and gold nanoparticles (AuNPs). The results indicated that the Au/HCNFs nanocomposites exhibited excellent electrocatalytic activity to the reduction of H2O2, offering a wide linear range from 1.0 μM to 3157 μM with a detection limit as low as 0.46 μM. The apparent Michaelis-Menten constant of the biosensor was 0.61 mM. The as-fabricated biosensor showed a rapid and sensitive amperometric response to hydrogen peroxide with acceptable preparation reproducibility and excellent stability. Because of their low cost and high stability, these novel HCNFs represent seem to be a kind of promising biomaterial and may find wide new applications in scopes such as biocatalysis, immunoassay, environmental monitoring and so on. PMID:26369097

  1. Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding.

    Science.gov (United States)

    Das, Arindam; Hayvaci, Harun T; Tiwari, Manish K; Bayer, Ilker S; Erricolo, Danilo; Megaridis, Constantine M

    2011-01-01

    This paper presents a solvent-based, mild method to prepare superhydrophobic, carbon nanofiber/PTFE-filled polymer composite coatings with high electrical conductivity and reports the first data on the effectiveness of such coatings as electromagnetic interference (EMI) shielding materials. The coatings are fabricated by spraying dispersions of carbon nanofibers and sub-micron PTFE particles in a polymer blend solution of poly(vinyledene fluoride) and poly(methyl methacrylate) on cellulosic substrates. Upon drying, coatings display static water contact angles as high as 158° (superhydrophobic) and droplet roll-off angles of 10° indicating self-cleaning ability along with high electrical conductivities (up to 309 S/m). 100 μm-thick coatings are characterized in terms of their EMI shielding effectiveness in the X-band (8.2-12.4 GHz). Results show up to 25 dB of shielding effectiveness, which changed little with frequency at a fixed composition, thus indicating the potential of these coatings for EMI shielding applications and other technologies requiring both extreme liquid repellency and high electrical conductivity. PMID:20889160

  2. Effect of Sulfur Concentration on the Morphology of Carbon Nanofibers Produced from a Botanical Hydrocarbon

    Directory of Open Access Journals (Sweden)

    Ghosh Kaushik

    2008-01-01

    Full Text Available AbstractCarbon nanofibers (CNF with diameters of 20–130 nm with different morphologies were obtained from a botanical hydrocarbon: Turpentine oil, using ferrocene as catalyst source and sulfur as a promoter by simple spray pyrolysis method at 1,000 °C. The influence of sulfur concentration on the morphology of the carbon nanofibers was investigated. SEM, TEM, Raman, TGA/DTA, and BET surface area were employed to characterize the as-prepared samples. TEM analysis confirms that as-prepared CNFs have a very sharp tip, bamboo shape, open end, hemispherical cap, pipe like morphology, and metal particle trapped inside the wide hollow core. It is observed that sulfur plays an important role to promote or inhibit the CNF growth. Addition of sulfur to the solution of ferrocene and turpentine oil mixture was found to be very effective in promoting the growth of CNF. Without addition of sulfur, carbonaceous product was very less and mainly soot was formed. At high concentration of sulfur inhibit the growth of CNFs. Hence the yield of CNFs was optimized for a given sulfur concentration.

  3. Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction

    International Nuclear Information System (INIS)

    Efficient and non-Pt catalysts are highly desirable for many kinds of electrochemical applications. Herein, we have investigated the free-standing nitrogen-doped carbon nanotubes/carbon nanofibers composite (NCNT/CNFs) as an efficient cathode catalyst for the oxygen reduction reaction (ORR). The composite with a hierarchical structure is prepared by the pyrolysis of pyridine over flexible electrospun carbon nanofibers film (CNFs) supported with the nano-Fe catalyst. Scanning electron microscopy and transmission electron microscopy characterizations indicated that the curved NCNTs are sparsely, but tightly distributed on CNF surface. The as-prepared composite displayed good catalytic activity for ORR in an alkaline medium, with a favorable four-electron pathway, better long-term stability (94.6% retention after 10000 s), selectivity and resistance to the methanol crossover compared to the powder-form NCNTs and commercial Pt/C catalyst. The improved electrochemical performance of the NCNT/CNFs can be mainly attributed to the pyridinic-N doping and unique three-dimensional network structure. The results indicate that this novel composite can be used as a promising Pt-free ORR electrocatalyst

  4. Effect of Sodium Carbonate Concentrations on the Formation and Mechanism of Regenerated Silk Fibroin Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Hao Dou

    2014-01-01

    Full Text Available Degumming is the first process for the preparation of all silk-based products. In this paper, effect of sodium carbonate concentrations for silk degumming on the formation of electrospun silk fibroin nanofibers was investigated and the reason for the silk electrospinning process was explained for the first time by differences from the microstructure of regenerated silk fibroin. With increasing the sodium carbonate concentration, microstructure both in the aqueous solutions and in the electrospinning solutions transformed from nanofibrils to nanoparticles, leading to obvious changes on rheological property; electrospinning solutions with nanofibrils behaved like the native silk dope and owned remarkably higher viscosity than the solutions with nanoparticles showing very low viscosity. More interestingly, nanofibrils favored the formation of silk nanofibers with ease, and even nanofibers could be electrospun at concentration 2%. However, nanoparticles were completely unable to generate nanofibers at high spinning concentration 8%. Importance of sodium carbonate concentrations is heavily emphasized for impacting the microstructure types and further influencing the electrospinning performance of regenerated silk. Hence, sodium carbonate concentrations provide a controllable choice for the preparation of silk-based electrospun biomaterials with desired properties.

  5. Influence of base strength on the catalytic performance of nano-sized alkaline earth metal oxides supported on carbon nanofibers

    NARCIS (Netherlands)

    Frey, A.M.; Yang, J.; Feche, C.; Essayem, N.; Stellwagen, D.R.; Figueras, F.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Nano-sized (3 nm) alkaline earth metal oxides supported on carbon nanofibers were prepared by a facile impregnation and heat treatment method of the corresponding nitrates. These supported catalysts showed a significant improved activity for the aldol reaction and transesterification compared to the

  6. Rhodium nanoparticles supported on carbon nanofibers as an arene hydrogenation catalyst highly tolerant to a coexisting epoxido group.

    Science.gov (United States)

    Motoyama, Yukihiro; Takasaki, Mikihiro; Yoon, Seong-Ho; Mochida, Isao; Nagashima, Hideo

    2009-11-01

    Rhodium nanoparticles supported on a carbon nanofiber (Rh/CNF-T) show high catalytic activity toward arene hydrogenation under mild conditions in high turnover numbers without leaching the Rh species; the reaction is highly tolerant to epoxido groups, which often undergo ring-opening hydrogenation with conventional catalysts. PMID:19788269

  7. Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes

    Science.gov (United States)

    Liao, Yaozu; Yu, Deng-Guang; Wang, Xia; Chain, Wei; Li, Xin-Gui; Hoek, Eric M. V.; Kaner, Richard B.

    2013-04-01

    Electro-active switchable ultrafiltration membranes are of great interest due to the possibility of external control over permeability, selectivity, anti-fouling and cleaning. Here, we report on hybrid single-walled carbon nanotube (SWCNT)-polyaniline (PANi) nanofibers synthesized by in situ polymerization of aniline in the presence of oxidized SWCNTs. The composite nanofibers exhibit unique morphology of core-shell (SWCNT-PANi) structures with average total diameters of 60 nm with 10 to 30 nm thick PANi coatings. The composite nanofibers are easily dispersed in polar aprotic solvents and cast into asymmetric membranes via a nonsolvent induced phase separation. The hybrid SWCNT-PANi membranes are electrically conductive at neutral pH and exhibit ultrafiltration-like permeability and selectivity when filtering aqueous suspensions of 6 nm diameter bovine serum albumin and 48 nm diameter silica particles. A novel flash welding technique is utilized to tune the morphology, porosity, conductivity, permeability and nanoparticle rejection of the SWCNT-PANi composite ultrafiltration membranes. Upon flash welding, both conductivity and pure water permeability of the membranes improves by nearly a factor of 10, while maintaining silica nanoparticle rejection levels above 90%. Flash welding of SWCNT-PANi composite membranes holds promise for formation of electrochemically tunable membranes.Electro-active switchable ultrafiltration membranes are of great interest due to the possibility of external control over permeability, selectivity, anti-fouling and cleaning. Here, we report on hybrid single-walled carbon nanotube (SWCNT)-polyaniline (PANi) nanofibers synthesized by in situ polymerization of aniline in the presence of oxidized SWCNTs. The composite nanofibers exhibit unique morphology of core-shell (SWCNT-PANi) structures with average total diameters of 60 nm with 10 to 30 nm thick PANi coatings. The composite nanofibers are easily dispersed in polar aprotic solvents and

  8. Carbon nanofiber/polyethylene nanocomposite: Processing behavior, microstructure and electrical properties

    International Nuclear Information System (INIS)

    Highlights: • Electrically conductive CNF/HDPE nanocomposite were prepared by melt compounding. • The effect of processing on the nanocomposites macro and micro structures was analyzed. • 1.4 vol% CNF were required to construct a conductive network within the HDPE matrix. • An EMI SE of 42 dB was reported for 15 vol% CNF/HDPE nanocomposite. • An empirical model was developed to estimate the EMI SE. - Abstract: Electrically conductive polymer nanocomposite of high density polyethylene (HDPE) filled with carbon nanofibers (CNFs) were prepared by melt compounding in a batch mixer. The nanocomposite processing behavior was studied by monitoring the mixing torque vs. time as function of filler content. Scanning electron microscopy and optical microscopy were used to investigate the nanocomposite dispersion of nanofiller and the adhesion between the nanofiller and polymer matrix. The electrical and electromagnetic interference (EMI) shielding behaviors of the nanocomposite were reported as function of nanofibers concentration, and an empirical correlation related the EMI SE to the nanocomposite’s electrical resistivity was developed. Good level of CNF dispersion was evident despite the poor adhesion exhibited between the nanofibers and the HDPE matrix. At 1.5 vol% CNF loading, the nanocomposite exhibited an electrical volume resistivity of 105 Ω·cm. EMI shielding effectiveness was found to increase with increase in nanofiller concentration. In the 0.1–1.5 GHz frequency range, 2 mm thick plate made of 5 vol% CNF/HDPE nanocomposite exhibits an EMI shielding effectiveness of 20 dB

  9. Ultralight anisotropic foams from layered aligned carbon nanotube sheets

    Science.gov (United States)

    Faraji, Shaghayegh; L. Stano, Kelly; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D.

    2015-10-01

    In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than

  10. Electrospun composite nanofibers of poly vinyl pyrrolidone and zinc oxide nanoparticles modified carbon paste electrode for electrochemical detection of curcumin.

    Science.gov (United States)

    Afzali, Moslem; Mostafavi, Ali; Shamspur, Tayebeh

    2016-11-01

    A simple and novel ferrocene-nanofiber carbon paste electrode was developed to determine curcumin in a phosphate buffer solution at pH=8. ZnO nanoparticles were produced via a sonochemical process and composite nanofibers of PVP/ZnO were prepared by electrospinning. The characterization was performed by SEM, XRD and IR. The results suggest that the electrospun composite nanofibers having a large surface area promote electron transfer for the oxidation of curcumin and hence the FCNFCPE exhibits high electrocatalytic activity and performs well in regard to the oxidation of curcumin. The proposed method was successfully applied for measurement of curcumin in urine and turmeric as real samples. PMID:27524081

  11. In situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Baek Jong-Beom

    2008-01-01

    Full Text Available Abstract Multiwalled carbon nanotube/nylon-6 nanocomposites (MWNT/nylon-6 were prepared by in situ polymerization, whereby functionalized MWNTs (F-MWNTs and pristine MWNTs (P-MWNTs were used as reinforcing materials. The F-MWNTs were functionalized by Friedel-Crafts acylation, which introduced aromatic amine (COC6H4-NH2 groups onto the side wall. Scanning electron microscopy (SEM images obtained from the fractured surfaces of the nanocomposites showed that the F-MWNTs in the nylon-6 matrix were well dispersed as compared to those of the P-MWNTs. Both nanocomposites could be electrospun into nanofibers in which the MWNTs were embedded and oriented along the nanofiber axis, as confirmed by transmission electron microscopy. The specific strength and modulus of the MWNTs-reinforced nanofibers increased as compared to those of the neat nylon-6 nanofibers. The crystal structure of the nylon-6 in the MWNT/nylon-6 nanofibers was mostly γ-phase, although that of the MWNT/nylon-6 films, which were prepared by hot-pressing the pellets between two aluminum plates and then quenching them in icy water, was mostly α-phase, indicating that the shear force during electrospinning might favor the γ-phase, similarly to the conventional fiber spinning.

  12. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  13. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  14. Facile Synthesis of Coaxial CNTs/MnOx-Carbon Hybrid Nanofibers and Their Greatly Enhanced Lithium Storage Performance

    Science.gov (United States)

    Yang, Zunxian; Lv, Jun; Pang, Haidong; Yan, Wenhuan; Qian, Kun; Guo, Tailiang; Guo, Zaiping

    2015-12-01

    Carbon nanotubes (CNTs)/MnOx-Carbon hybrid nanofibers have been successfully synthesized by the combination of a liquid chemical redox reaction (LCRR) and a subsequent carbonization heat treatment. The nanostructures exhibit a unique one-dimensional core/shell architecture, with one-dimensional CNTs encapsulated inside and a MnOx-carbon composite nanoparticle layer on the outside. The particular porous characteristics with many meso/micro holes/pores, the highly conductive one-dimensional CNT core, as well as the encapsulating carbon matrix on the outside of the MnOx nanoparticles, lead to excellent electrochemical performance of the electrode. The CNTs/MnOx-Carbon hybrid nanofibers exhibit a high initial reversible capacity of 762.9 mAhg-1, a high reversible specific capacity of 560.5 mAhg-1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 396.2 mAhg-1 when cycled at the current density of 1000 mAg-1, indicating that the CNTs/MnOx-Carbon hybrid nanofibers are a promising anode candidate for Li-ion batteries.

  15. Microwave conductance of aligned multiwall carbon nanotube textile sheets

    Science.gov (United States)

    Brown, Brian L.; Bykova, Julia S.; Howard, Austin R.; Zakhidov, Anvar A.; Shaner, Eric A.; Lee, Mark

    2014-12-01

    Multiwall carbon nanotube (MWNT) sheets are a class of nanomaterial-based multifunctional textile with potentially useful microwave properties. To understand better the microwave electrodynamics, complex AC conductance measurements from 0.01 to 50 GHz were made on sheets of highly aligned MWNTs with the alignment texture both parallel and perpendicular to the microwave electric field polarization. In both orientations, the AC conductance is modeled to first order by a parallel frequency-independent conductance and capacitance with no inductive contribution. This is consistent with low-frequency diffusive Drude AC conduction up to 50 GHz, in contrast to the "universal disorder" AC conduction reported in many types of single-wall nanotube materials.

  16. Structural anisotropy of magnetically aligned single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Thick films of aligned single wall carbon nanotubes and ropes have been produced by filtration/deposition from suspension in strong magnetic fields. We measured mosaic distributions of rope orientations in the film plane, for samples of different thicknesses. For an ∼1 μm film the full width at half maximum (FWHM) derived from electron diffraction is 25 degree sign -28 degree sign . The FWHM of a thicker film (∼7 μm) measured by x-ray diffraction is slightly broader, 35±3 degree sign . Aligned films are denser than ordinary filter-deposited ones, and much denser than as-grown material. Optimization of the process is expected to yield smaller FWHMs and higher densities. (c) 2000 American Institute of Physics

  17. Single-step synthesis of graphene-carbon nanofiber hybrid material and its synergistic magnetic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, R.K. [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Jeyapandiarajan, P. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee 247667 (India); Devi Chandrasekhar, K. [Cryogenics Engineering Centre, Indian Institute of Technology, Kharagpur 721302 (India); Daniel, B.S.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee 247667 (India); Venimadhav, A. [Cryogenics Engineering Centre, Indian Institute of Technology, Kharagpur 721302 (India); Sant, S.B. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Jacob, C., E-mail: cxj14_holiday@yahoo.com [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2014-12-05

    Highlights: • Graphene-CNF-alloy nanoparticle hybrid nanostructure fabricated using CVD. • The hybrid consists of highly crystalline graphene, alloy nanoparticles and CNFs. • The hybrid carbon nanomaterial exhibits interesting induced magnetism. - Abstract: Graphene-carbon nanofiber (CNF) hybrid materials were synthesized by a simple one-step chemical vapour deposition method using propane over a Co{sub 63}Ni{sub 37} alloy catalyst supported on a silicon substrate at 800 °C. The process involves catalyst de-wetting, carbon diffusion and precipitation, with the additional carbon being provided by the polymer (photo-resist, HPR-504). The formation of a graphene-CNF hybrid structure was observed in the presence of the polymer. The polymer plays a crucial role in the formation of the flat carbon nanostructures. In the absence of the polymer, only carbon nanotube growth was observed with the same catalyst under identical experimental conditions. The effect of the polymeric photo-resist layer on the growth of the hybrid structure was analyzed. Structural and morphological data in combination with the Raman spectroscopic data confirmed the formation of a few layers of highly crystalline graphene and CNFs in a hybrid structure. The magnetic behaviour of these as-grown graphene-CNF hybrid samples has been analyzed by using a superconducting quantum interference device (SQUID). The results from the magnetic measurements on these samples have also been discussed.

  18. Single-step synthesis of graphene-carbon nanofiber hybrid material and its synergistic magnetic behaviour

    International Nuclear Information System (INIS)

    Highlights: • Graphene-CNF-alloy nanoparticle hybrid nanostructure fabricated using CVD. • The hybrid consists of highly crystalline graphene, alloy nanoparticles and CNFs. • The hybrid carbon nanomaterial exhibits interesting induced magnetism. - Abstract: Graphene-carbon nanofiber (CNF) hybrid materials were synthesized by a simple one-step chemical vapour deposition method using propane over a Co63Ni37 alloy catalyst supported on a silicon substrate at 800 °C. The process involves catalyst de-wetting, carbon diffusion and precipitation, with the additional carbon being provided by the polymer (photo-resist, HPR-504). The formation of a graphene-CNF hybrid structure was observed in the presence of the polymer. The polymer plays a crucial role in the formation of the flat carbon nanostructures. In the absence of the polymer, only carbon nanotube growth was observed with the same catalyst under identical experimental conditions. The effect of the polymeric photo-resist layer on the growth of the hybrid structure was analyzed. Structural and morphological data in combination with the Raman spectroscopic data confirmed the formation of a few layers of highly crystalline graphene and CNFs in a hybrid structure. The magnetic behaviour of these as-grown graphene-CNF hybrid samples has been analyzed by using a superconducting quantum interference device (SQUID). The results from the magnetic measurements on these samples have also been discussed

  19. Enhanced Electrochemical Performance of Electrospun Ag/Hollow Glassy Carbon Nanofibers as Free-standing Li-ion Battery Anode

    International Nuclear Information System (INIS)

    Silver with a high theoretical capacity for lithium storage is an attractive alloy based anode for Li-ion batteries, but large volume changes associated with AgLix alloy formation leads to electrode cracking, pulverization and rapid capacity fading. A buffer matrix, like the electrospun hollow carbon nanofibers, can reduce this problem to a great extent. Herein, we demonstrate the facile synthesis of a free-standing, binder free Ag-C hybrid electrode through co-axial electrospinning, where well dispersed Ag nanoparticles are embedded in hollow carbon nanofibers. Using this approach, the long cycle life of carbon is complemented with the high lithium storage capacity of Ag, resulting in a high performance anode. The Ag-C composite electrode delivers a capacity of 739 mAh g−1 (>conventional graphite anodes) at 50 mA g−1, with ∼85% capacity retention after 100 cycles. In addition, the Ag-C composite nanofibers are highly porous and exhibit a large accessible surface area (∼726.9 m2 g−1) with an average pore diameter of ∼6.07 nm. The encapsulation of Ag in the hollow interiors not only provides additional lithium storage sites but also enhances the electronic conductivity, which combined with the reduced lithium diffusion path lengths in the nanofibers result in faster charge-discharge kinetics and hence a high rate performance

  20. Morphological characterization of carbon nanofiber aerosol using tandem mobility and aerodynamic size measurements

    Energy Technology Data Exchange (ETDEWEB)

    Deye, Gregory J.; Kulkarni, Pramod, E-mail: pskulkarni@cdc.gov; Ku, Bon Ki [National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention (United States)

    2012-09-15

    Characterizing microstructural and transport properties of non-spherical particles, such as carbon nanofibers (CNF), is important for understanding their transport and deposition in human respiratory system and engineered devices such as particle filters. We describe an approach to obtain morphological information of non-spherical particles using a tandem system of differential mobility analyzer (DMA) and an electrical low-pressure impactor (ELPI). Effective density, dynamic shape factors (DSF), particle mass, and fractal dimension-like mass-scaling exponent of nanofibers were derived using the measured mobility and aerodynamic diameters, along with the known material density of CNF. Multiple charging of particles during DMA classification, which tends to bias the measured shape factors and particle mass toward higher values, was accounted for using a correction procedure. Particle mass derived from DMA-ELPI measurements agreed well with the direct mass measurements using an aerosol particle mass analyzer. Effective densities, based on mobility diameters, ranged from 0.32 to 0.67 g cm{sup -3}. The DSF of the CNF ranged from 1.8 to 2.3, indicating highly non-spherical particle morphologies.

  1. Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures

    International Nuclear Information System (INIS)

    Polyacrylonitrile (PAN) solution containing the iron oxide precursor iron (III) acetylacetonate (AAI) was electrospun and thermally treated to produce electrically conducting, magnetic carbon nanofiber mats with hierarchical pore structures. The morphology and material properties of the resulting multifunctional nanofiber mats including the surface area and the electric and magnetic properties were examined using various characterization techniques. Scanning electron microscopy images show that uniform fibers were produced with a fiber diameter of ∼600 nm, and this uniform fiber morphology is maintained after graphitization with a fiber diameter of ∼330 nm. X-ray diffraction (XRD) and Raman studies reveal that both graphite and Fe3O4 crystals are formed after thermal treatment, and graphitization can be enhanced by the presence of iron. A combination of XRD and transmission electron microscopy experiments reveals the formation of pores with graphitic nanoparticles in the walls as well as the formation of magnetite nanoparticles distributed throughout the fibers. Physisorption experiments show that the multifunctional fiber mats exhibit a high surface area (200-400 m2 g-1) and their pore size is dependent on the amount of iron added and graphitization conditions. Finally, we have demonstrated that the fibers are electrically conducting as well as magnetically active.

  2. Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures

    Science.gov (United States)

    Panels, Jeanne E.; Lee, Jinwoo; Park, Kang Yeol; Kang, Seung Yeon; Marquez, Manuel; Wiesner, Ulrich; Lak Joo, Yong

    2008-11-01

    Polyacrylonitrile (PAN) solution containing the iron oxide precursor iron (III) acetylacetonate (AAI) was electrospun and thermally treated to produce electrically conducting, magnetic carbon nanofiber mats with hierarchical pore structures. The morphology and material properties of the resulting multifunctional nanofiber mats including the surface area and the electric and magnetic properties were examined using various characterization techniques. Scanning electron microscopy images show that uniform fibers were produced with a fiber diameter of ~600 nm, and this uniform fiber morphology is maintained after graphitization with a fiber diameter of ~330 nm. X-ray diffraction (XRD) and Raman studies reveal that both graphite and Fe3O4 crystals are formed after thermal treatment, and graphitization can be enhanced by the presence of iron. A combination of XRD and transmission electron microscopy experiments reveals the formation of pores with graphitic nanoparticles in the walls as well as the formation of magnetite nanoparticles distributed throughout the fibers. Physisorption experiments show that the multifunctional fiber mats exhibit a high surface area (200-400 m2 g-1) and their pore size is dependent on the amount of iron added and graphitization conditions. Finally, we have demonstrated that the fibers are electrically conducting as well as magnetically active.

  3. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    Science.gov (United States)

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-05-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12-1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor.

  4. Growth of bridging carbon nanofibers in cracks formed by heat-treating iron oxide thin sheets in acetylene gas

    OpenAIRE

    Takeshi Hikata; Soichiro Okubo; Yugo Higashi; Teruaki Matsuba; Risa Utsunomiya; Sadahiro Tsurekawa; Katsuhisa Murakami; Jun-ichi Fujita

    2013-01-01

    We produced novel carbon nanofibers (CNFs) by oxidizing high-purity iron foil and then carburizing it in acetylene gas flow. This formed cracks in the heat-treated iron foil with CNFs bridging the two walls of each crack. The CNFs were drawn out from the walls as the crack opened during heat treatment. This will be a new method to grow and arrange carbon nanotubes and nanosheets without using metal nanoparticles or template substrates.

  5. Growth of bridging carbon nanofibers in cracks formed by heat-treating iron oxide thin sheets in acetylene gas

    Directory of Open Access Journals (Sweden)

    Takeshi Hikata

    2013-04-01

    Full Text Available We produced novel carbon nanofibers (CNFs by oxidizing high-purity iron foil and then carburizing it in acetylene gas flow. This formed cracks in the heat-treated iron foil with CNFs bridging the two walls of each crack. The CNFs were drawn out from the walls as the crack opened during heat treatment. This will be a new method to grow and arrange carbon nanotubes and nanosheets without using metal nanoparticles or template substrates.

  6. Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries

    Science.gov (United States)

    Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-01-01

    A novel one-dimensional nanohybrid comprised of conductive graphitic carbon (GC)-coated hollow FeSe2 nanospheres decorating reduced graphene oxide (rGO) nanofiber (hollow nanosphere FeSe2@GC–rGO) was designed as an efficient anode material for sodium ion batteries and synthesized by introducing the nanoscale Kirkendall effect into the electrospinning method. The electrospun nanofibers transformed into hollow nanosphere FeSe2@GC–rGO hybrid nanofibers through a Fe@GC–rGO intermediate. The discharge capacities of the bare FeSe2 nanofibers, nanorod FeSe2–rGO–amorphous carbon (AC) hybrid nanofibers, and hollow nanosphere FeSe2@GC–rGO hyrbid nanofibers at a current density of 1 A g−1 for the 150th cycle were 63, 302, and 412 mA h g−1, respectively, and their corresponding capacity retentions measured from the 2nd cycle were 11, 73, and 82%, respectively. The hollow nanosphere FeSe2@GC–rGO hybrid nanofibers delivered a high discharge capacity of 352 mA h g−1 even at an extremely high current density of 10 A g−1. The enhanced electrochemical properties of the hollow nanosphere FeSe2@GC–rGO composite nanofibers arose from the synergetic effects of the FeSe2 hollow morphology and highly conductive rGO matrix. PMID:27033096

  7. Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries

    Science.gov (United States)

    Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-04-01

    A novel one-dimensional nanohybrid comprised of conductive graphitic carbon (GC)-coated hollow FeSe2 nanospheres decorating reduced graphene oxide (rGO) nanofiber (hollow nanosphere FeSe2@GC–rGO) was designed as an efficient anode material for sodium ion batteries and synthesized by introducing the nanoscale Kirkendall effect into the electrospinning method. The electrospun nanofibers transformed into hollow nanosphere FeSe2@GC–rGO hybrid nanofibers through a Fe@GC–rGO intermediate. The discharge capacities of the bare FeSe2 nanofibers, nanorod FeSe2–rGO–amorphous carbon (AC) hybrid nanofibers, and hollow nanosphere FeSe2@GC–rGO hyrbid nanofibers at a current density of 1 A g‑1 for the 150th cycle were 63, 302, and 412 mA h g‑1, respectively, and their corresponding capacity retentions measured from the 2nd cycle were 11, 73, and 82%, respectively. The hollow nanosphere FeSe2@GC–rGO hybrid nanofibers delivered a high discharge capacity of 352 mA h g‑1 even at an extremely high current density of 10 A g‑1. The enhanced electrochemical properties of the hollow nanosphere FeSe2@GC–rGO composite nanofibers arose from the synergetic effects of the FeSe2 hollow morphology and highly conductive rGO matrix.

  8. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO.

    Science.gov (United States)

    Wu, Hongxin; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2016-06-01

    With the deterioration of air quality, great efforts were devoted to designing various photocatalysts for effective removal of NOx in air. However, the present photocatalysts have a fatal problem of low photocatalytic efficiency. In this work, a hollow porous carbon nitride nanosphere coupled with reduced graphene oxide (HCNS/rGO) was exploited as a visible-light photocatalyst to remove nitrogen monoxide in air at a low concentration (600 ppb level) under irradiation of an energy saving lamp. HCNS/rGO showed a NO removal ratio of 64%, which was superior to that of most other visible-light photocatalysts. The excellent photocatalytic ability of HCNS/rGO originates from the hollow porous morphology of HCNS and the grafted rGO on the surface. HCNS/rGO was immobilized on porous carbonized polymer nanofibers to obtain a photocatalytic membrane without affecting photocatalytic efficiency. Furthermore, the membrane showed excellent photochemical stability and recyclability. PMID:27245319

  9. High power direct methanol fuel cell with a porous carbon nanofiber anode layer

    International Nuclear Information System (INIS)

    Highlights: • This study demonstrates a novel porous carbon nanofiber anode (PNCF) layer. • PNFC anode layer DMFC presents power density of 23.0 mW cm−2. • This unit operates at room temperature and consumes low concentration of methanol. - Abstract: Three anode electrodes containing Pt–Ru Black as a catalyst were fabricated with a porous layer made with different carbon materials: carbon black (CB), carbon nanofiber (CNF) and a combination of both carbon materials (CB + CNF). The carbon-based porous layer was coated onto a carbon cloth with PTFE pre-treatment for delivering hydrophobic properties and applied in direct methanol fuel cells (DMFCs). Characterisation of electrochemical properties for three different anode electrodes was performed with cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) at room temperature in a half-cell configuration. The evolution of the surface morphology of diffusion layer and electrodes was characterised by using variable-pressure scanning electron microscopy (VP-SEM). The electrochemical results indicate that electrode with CNF layer showed the highest current densities compared to CB and CB + CNF with the same catalyst loading. VP-SEM measurements show the network formation within the structure, which could facilitate the methanol mass transfer and improve the catalyst efficiency. The electrodes were applied to a single-cell DMFC, and the cell performance was experimentally investigated under passive operating mode and room temperature. A maximum power density of 23.0 mW cm−2 at a current density of 88.0 mA cm−2 with a 3 M dilute methanol solution was achieved. The results show that the electrodes with a CNF layer could improve the performance of DMFC as compared with commercially used CB and prove it’s potentially application in DMFC technology especially for portable power source applications due to several advantages as followings: operating at low concentration of

  10. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO

    Science.gov (United States)

    Wu, Hongxin; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2016-06-01

    With the deterioration of air quality, great efforts were devoted to designing various photocatalysts for effective removal of NOx in air. However, the present photocatalysts have a fatal problem of low photocatalytic efficiency. In this work, a hollow porous carbon nitride nanosphere coupled with reduced graphene oxide (HCNS/rGO) was exploited as a visible-light photocatalyst to remove nitrogen monoxide in air at a low concentration (600 ppb level) under irradiation of an energy saving lamp. HCNS/rGO showed a NO removal ratio of 64%, which was superior to that of most other visible-light photocatalysts. The excellent photocatalytic ability of HCNS/rGO originates from the hollow porous morphology of HCNS and the grafted rGO on the surface. HCNS/rGO was immobilized on porous carbonized polymer nanofibers to obtain a photocatalytic membrane without affecting photocatalytic efficiency. Furthermore, the membrane showed excellent photochemical stability and recyclability.With the deterioration of air quality, great efforts were devoted to designing various photocatalysts for effective removal of NOx in air. However, the present photocatalysts have a fatal problem of low photocatalytic efficiency. In this work, a hollow porous carbon nitride nanosphere coupled with reduced graphene oxide (HCNS/rGO) was exploited as a visible-light photocatalyst to remove nitrogen monoxide in air at a low concentration (600 ppb level) under irradiation of an energy saving lamp. HCNS/rGO showed a NO removal ratio of 64%, which was superior to that of most other visible-light photocatalysts. The excellent photocatalytic ability of HCNS/rGO originates from the hollow porous morphology of HCNS and the grafted rGO on the surface. HCNS/rGO was immobilized on porous carbonized polymer nanofibers to obtain a photocatalytic membrane without affecting photocatalytic efficiency. Furthermore, the membrane showed excellent photochemical stability and recyclability. Electronic supplementary information

  11. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends

    OpenAIRE

    Kaerkitcha, Navaporn; Chuangchote, Surawut; Sagawa, Takashi

    2016-01-01

    Hollow carbon nanofibers (HCNFs) were prepared by electrospinning method with several coaxial nozzles, in which the level of the inner nozzle-end is adjustable. Core/shell nanofibers were prepared from poly(methyl methacrylate) (PMMA) as a pyrolytic core and polyacrylonitrile (PAN) as a carbon shell with three types of normal (viz. inner and outer nozzle-ends are balanced in the same level), inward, and outward coaxial nozzles. The influence of the applied voltage on these three types of coax...

  12. Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Lithium-sulfur (Li-S) battery with new configuration is demonstrated by inserting a flexible activated carbon nanofiber (ACNF) interlayer between the sulfur cathode and the separator. The ACNF with tunable pore structure is fabricated by a combination of electrospinning polyimide and a subsequent activation treatment. The influence of the textual characteristics of ACNFs on the electrochemical performance of Li-S batteries has been studied. The highly porous ACNF not only effectively intercepts/stabilizes the shuttling migration of polysulfides within the cathode region, but also provides reliable ionic/electronic conductivity for fast kinetics. The lightweight ACNF interlayer with higher specific surface area can yield enhanced cell performance at a low mass ratio of ACNF/sulfur (0.4). An initial specific capacity of 1224 mAh g−1 along with high Coulombic efficiency, long cycling stability and good rate capability is achieved in the modified Li-S cell

  13. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  14. Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry

    International Nuclear Information System (INIS)

    Surface functionalization of carbon nanofibers (CNFs) with aminopropyl terminated polydimethylsiloxane [(PDMS-NH2)] and other organic diamines was achieved using carbodiimide chemistry. The carbodiimide chemistry provides faster reaction rate so that the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. CNF functionalized with PDMS-NH2 fibers were further functionalized with oligomer of polyimide (6FDA-BisP) using imidization reaction. The formation of block copolymer on the surface of CNF is proposed as an effective method to engineer the interphase between the fiber and the polymer, which is essential to modulate and enhance the properties of the nanocomposite. The efficiency of the carbodiimide chemistry to functionalize amine terminated groups on CNF and the functionalization of block copolymer was characterized using thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy.

  15. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Liu Tian

    2011-01-01

    Full Text Available Abstract We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated-reinforced high-density polyethylene (HDPE composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  16. Optical limiting of high-repetition-rate laser pulses by carbon nanofibers suspended in polydimethylsiloxane

    Science.gov (United States)

    Videnichev, Dmitry A.; Belousova, Inna M.

    2014-06-01

    The optical limiting (OL) behavior of carbon nanofibers (CNFs) in polydimethylsiloxane (PDMS) was studied and compared with that of CNFs in water, and polyhedral multi-shell fullerene-like nanostructures (PMFNs) also in water. It was shown that when switching from single-shot to pulse-periodic regime of laser pulses (10 Hz), the CNF in PDMS suspension retains its OL characteristics, while in the aqueous suspensions, considerable degradation of OL characteristics is observed. It was also observed that a powerful laser pulse causes the CNF in PDMS suspension to become opaque for at least three seconds, while such a pulse brings out a bleaching effect in aqueous PMFN and CNF suspensions. The processes of OL degradation in aqueous suspensions, bleaching and darkening of the studied materials are discussed herein.

  17. Carbon nanofiber supported bimetallic PdAu nanoparticles for formic acid electrooxidation

    Science.gov (United States)

    Qin, Yuan-Hang; Jiang, Yue; Niu, Dong-Fang; Zhang, Xin-Sheng; Zhou, Xing-Gui; Niu, Li; Yuan, Wei-Kang

    2012-10-01

    Carbon nanofiber (CNF) supported PdAu nanoparticles are synthesized with sodium citrate as the stabilizing agent and sodium borohydride as the reducing agent. High resolution transmission electron microscopy (HRTEM) characterization indicates that the synthesized PdAu particles are well dispersed on the CNF surface and X-ray diffraction (XRD) characterization indicates that the alloying degree of the synthesized PdAu nanoparticles can be improved by adding tetrahydrofuran to the synthesis solution. The results of electrochemical characterization indicate that the addition of Au can promote the electrocatalytic activity of Pd/C catalyst for formic acid oxidation and the CNF supported high-alloying PdAu catalyst possesses better electrocatalytic activity and stability for formic acid oxidation than either the CNF supported low-alloying PdAu catalyst or the CNF supported Pd catalyst.

  18. Synthesis of highly dispersed and active palladium/carbon nanofiber catalyst for formic acid electrooxidation

    Science.gov (United States)

    Qin, Yuan-Hang; Yue-Jiang; Yang, Hou-Hua; Zhang, Xin-Sheng; Zhou, Xing-Gui; Niu, Li; Yuan, Wei-Kang

    2011-05-01

    Highly dispersed and active palladium/carbon nanofiber (Pd/CNF) catalyst is synthesized by NaBH4 reduction with trisodium citrate as the stabilizing agent. The obtained Pd/CNF catalyst is characterized by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The results show that the Pd nanoparticles with an average particle size of ca. 3.8 nm are highly dispersed on the CNF support even with a small ratio of citrate to Pd precursor, which is believed to be due to the pH adjustment of citrate stabilized colloidal Pd nanoparticles. The cyclic voltammetry and chronoamperometry techniques show that the obtained Pd/CNF catalyst exhibits good catalytic activity and stability for the electrooxidation of formic acid.

  19. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite

    International Nuclear Information System (INIS)

    We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes. (author)

  20. Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers

    Institute of Scientific and Technical Information of China (English)

    Olga Yu. Podyacheva; Andrei I. Stadnichenko; Svetlana A. Yashnik; Olga A. Stonkus; Elena M. Slavinskaya; Andrei I. Boronin; Andrei V. Puzynin; Zinfer R. Ismagilov

    2014-01-01

    The nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers (N-CNFs) with cobalt oxide contents of 10-90 wt%were examined as catalysts in the CO oxidation and superca-pacity electrodes. Depending on Со3О4 content, such nanocomposites have different morphologies of cobalt oxide nanoparticles, distributions over the bulk, and ratios of Со3+/Co2+ cations. The 90%Со3О4-N-CNFs nanocomposite showed the best activity because of the increased concentration of defects in N-CNFs. The capacitance of electrodes containing 10%Со3О4-N-CNFs was 95 F/g, which is 1.7 times higher than electrodes made from N-CNFs.

  1. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Anjali, E-mail: joshianjali1982@gmail.com; Sharma, Arti [Centre For Nanoscience and Nanotechnology, Panjab University, Chandigarh (India); Nayyar, Harsh [Department of Botany, Panjab University, Chandigarh (India); Verma, Gaurav [Dr. SS Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh (India)

    2015-08-28

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  2. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    International Nuclear Information System (INIS)

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds

  3. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Science.gov (United States)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  4. High Thermal and Electrical Conductivity of Template Fabricated P3HT/MWCNT Composite Nanofibers.

    Science.gov (United States)

    Smith, Matthew K; Singh, Virendra; Kalaitzidou, Kyriaki; Cola, Baratunde A

    2016-06-15

    Nanoporous alumina membranes are filled with multiwalled carbon nanotubes (MWCNTs) and then poly(3-hexylthiophene-2,5-diyl) (P3HT) melt, resulting in nanofibers with nanoconfinement induced coalignment of both MWCNT and polymer chains. The simple sonication process proposed here can achieve vertically aligned arrays of P3HT/MWCNT composite nanofibers with 3 wt % to 55 wt % MWCNT content, measured using thermogravimetric methods. Electrical and thermal transport in the composite nanofibers improves drastically with increasing carbon nanotube content where nanofiber thermal conductivity peaks at 4.7 ± 1.1 Wm(-1)K(-1) for 24 wt % MWCNT and electrical percolation occurs once 20 wt % MWCNT content is surpassed. This is the first report of the thermal conductivity of template fabricated composite nanofibers and the first proposed processing technique to enable template fabrication of composite nanofibers with high filler content and long aspect ratio fillers, where enhanced properties can also be realized on the macroscale due to vertical alignment of the nanofibers. These materials are interesting for thermal management applications due to their high thermal conductivity and temperature stability. PMID:27200459

  5. Nitrogen-doped porous carbon nanofiber webs/sulfur composites as cathode materials for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Nitrogen-doped porous carbon nanofiber webs-sulfur composites (N-CNFWs/S) were synthesized for the first time with sulfur (S) encapsulated into nitrogen-doped porous carbon nanofiber webs (N-CNFWs) via a modified oxidative template route, carbonization-activation and thermal treatment. The composites were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), and thermogravimetry (TG) measurements. The results show that sulfur is well dispersed and immobilized homogeneously in the micropores of nitrogen-doped porous carbon nanofiber webs (N-CNFWs) with high electrical conductivity, surface area and large pore volume. The electrochemical tests show that the N-CNFWs/S composites with 60 wt. % of S have a high initial discharge capacity of 1564 mA h g−1, a good cycling stability at the current density of 175 mA g−1, and excellent rate capability (reversible discharging capacity of above 400 mA h g−1 at 1600 mA g−1)

  6. Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.

    Science.gov (United States)

    Park, Hyeong-Il; Sohn, Myungbeom; Kim, Dae Sik; Park, Cheolho; Choi, Jeong-Hee; Kim, Hansu

    2016-04-21

    Carbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles. These results indicate that CNFs and the carbon coating layer have a beneficial effect on the capacity retention characteristics of 3DNP Si particles by providing continuous electron-conduction pathways in the electrode during cycling. The approach presented here provides another way to improve the electrochemical performances of porous Si-based high capacity anode materials for lithium-ion batteries. PMID:26970098

  7. Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hou

    2011-04-01

    Full Text Available Partially aligned polyacrylonitrile (PAN-based nanofibers were electrospun from PAN and PAN/single-walled carbon nanotubes (SWNTs in a solution of dimethylformamide (DMF to make the nanofiber composites. The as-spun nanofibers were then hot-stretched in the oven to enhance its orientation and crystallinity. With the introduction of SWNTs and by the hot-stretched process, the mechanical properties will be enhanced correspondingly. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray scattering (XRD, differential scanning calorimetry (DSC, and the tensile test were used to characterize the microstructure and performances of the nanofibers. The orientation and crystallinity of the as-spun and hot-stretched nanofibers confirmed by X-ray have increased. Differential scanning calorimetry showed that the glass transition temperature of PAN increased about 3 °C by an addition of 0.75 wt% SWNTs indicating a strong interfacial interaction between PAN and SWNTs. The tensile strength and the modulus of the nanofibers increased revealing significant load transfer across the nanotube-matrix interface. For PAN nanofibers, the improved fiber alignment, orientation and crystallinity resulted in enhanced mechanical properties, such as the tensile strength and modulus of the nanofibers. It was concluded that the hot-stretched nanofiber and the PAN/SWNTs nanofibers can be used as a potential precursor to produce high-performance nanocomposites.

  8. Consolidation of carbon nanofiber/copper composites by hot-pressing and spark plasma sintering: a comparative study.

    Science.gov (United States)

    Barcena, Jorge; Martinez, Vladimir; Martinez, Ramon; Maudes, Jon; Sarries, Jose-Ignacio; Carol, Iñaki; Gonzalez, Javier-Jesus; Coleto, Javier

    2009-03-01

    Vapour grown carbon nanofibers have been incorporated into a copper matrix at 20 and 40 volume fractions. The manufacturing route involves the dispersion of the carbon nanofibers and their subsequent coating by electroless plating with copper. The consolidation of the composite powders was performed by two different techniques: hot-pressing and spark plasma sintering. A comparative study of the two processes is reported, in terms of microstructure, dispersion and porosity. The consolidation by hot-pressing (at 900 degrees C, 30 MPa) led to poreless composites (relative density > 96%) and to a homogeneous microstructure. On the other hand, spark plasma sintering (at 400 degrees C, 75 MPa) led to lower densification (relative density < 96%) and heterogeneous microstructure. PMID:19435042

  9. High-performance aqueous asymmetric supercapacitor based on carbon nanofibers network and tungsten trioxide nanorod bundles electrodes

    International Nuclear Information System (INIS)

    The demand for high-performance energy storage devices such as supercapacitors and lithium-ion batteries has been increasing to meet the application requirements of renewable energy systems. Here, high energy density aqueous asymmetric supercapacitor (ASC) is assembled based on carbon nanofibers (CNF) network positive electrode and tungsten trioxide (WO3) nanorod bundles negative electrode. Polyaniline-based CNF are prepared by direct carbonization of polyaniline nanofibers. WO3 nanorod bundles are synthesized via a simple sodium chloride assisted hydrothermal process. The CNF//WO3 ASC device operates with a voltage of 1.6 V and achieved a high energy density of 35.3 Wh kg−1 at a power density of 314 W kg−1. Furthermore, the device shows an excellent cycling performance with capacitance retention of 88% after 1000 cycles

  10. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    Science.gov (United States)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.; Shaner, Eric A.; Lee, Mark

    2015-07-01

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. This is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  11. Self aligned hysteresis free carbon nanotube field-effect transistors

    Science.gov (United States)

    Shlafman, M.; Tabachnik, T.; Shtempluk, O.; Razin, A.; Kochetkov, V.; Yaish, Y. E.

    2016-04-01

    Hysteresis phenomenon in the transfer characteristics of carbon nanotube field effect transistor (CNT FET) is being considered as the main obstacle for successful realization of electronic devices based on CNTs. In this study, we prepare four kinds of CNTFETs and explore their hysteretic behavior. Two kinds of devices comprise on-surface CNTs (type I) and suspended CNTs (type II) with thin insulating layer underneath and a single global gate which modulates the CNT conductance. The third and fourth types (types III and IV) consist of suspended CNT over a metallic local gate underneath, where for type IV the local gate was patterned self aligned with the source and drain electrodes. The first two types of devices, i.e., type I and II, exhibit substantial hysteresis which increases with scanning range and sweeping time. Under high vacuum conditions and moderate electric fields ( |E |>4 ×106 V /cm ), the hysteresis for on-surface devices cannot be eliminated, as opposed to suspended devices. Interestingly, type IV devices exhibit no hysteresis at all at ambient conditions, and from the different roles which the global and local gates play for the four types of devices, we could learn about the hysteresis mechanism of this system. We believe that these self aligned hysteresis free FETs will enable the realization of different electronic devices and sensors based on CNTs.

  12. Fabrication and characterization of vertically aligned carbon-nanotube membranes

    Science.gov (United States)

    Castellano, Richard; Akin, Cevat; Purri, Matt; Shan, Jerry; Kim, Sangil; Fornasiero, Francesco

    2015-11-01

    Membranes having vertically-aligned carbon-nanotube (VACNT) pores offer promise as highly efficient and permeable membranes for use as breathable thin films, or in filtration and separation applications, among others. However, current membrane-fabrication techniques utilizing chemical-vapor-deposition-grown VACNT arrays are costly and difficult to scale up. We have developed a solution-based, electric-field-assisted approach as a cost-effective and scalable method to produce large-area VACNT membranes. Nanotubes are dispersed in a liquid polymer, and aligned and electrodeposited with the aid of an electric field prior to crosslinking the polymer to create VACNT membranes. We experimentally examine the electrodeposition process, focusing on parameters including the electric field, composition of the solution, and CNT functionalization that can affect the nanotube number density in the resulting membrane. We characterize the CNT pore size and number density and investigate the transport properties of the membrane. Size-exclusion tests are used to check for defects and infer the pore size of the VACNT membranes. Dry-gas membrane permeability is measured with a pressurized nitrogen-flow system, while moisture-vapor-transfer rate is measured with the ASTM-E96 upright-cup test. We discuss the measured transport properties of the solution-based, electric-field-fabricated VACNT membranes in reference to their application as breathable thin films. We would like to acknowledge DTRA for their funding and support of our research.

  13. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

    Science.gov (United States)

    Moreira, João Vitor Silva; Corat, Evaldo José; May, Paul William; Cardoso, Lays Dias Ribeiro; Lelis, Pedro Almeida; Zanin, Hudson

    2016-08-01

    We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge-discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

  14. Covering vertically aligned carbon nanotubes with a multiferroic compound

    KAUST Repository

    Mahajan, Amit

    2014-10-30

    This work highlights the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were fabricated in-situ deposited on the surface of VA-MWCNTs by RF (radio frequency) magnetron sputtering. For in situ deposition temperature of 400 °C and deposition time up to 2 h, BFO films cover the MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by piezo force microscopy. G type antiferromagnetic ordering with weak ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe.

  15. Electrospun coaxial titanium dioxide/carbon nanofibers for use in anodes of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Coaxial TiO2/carbon nanofibers (TCNFs) were fabricated by coaxial electrospinning. • After carbonization, TCNFs were formed with anatase TiO2 shell and carbon core. • The carbon core improved electron transport and minimized charge recombination. • The performance of TCNF-based DSSC device shows a high η value, 7.5%. - Abstract: TiO2/carbon coaxial-structured nanofibers (TCNFs), applied as photoanodes in dye-sensitized solar cells (DSSCs), were fabricated by coaxial electrospinning. The precursor of the TCNFs was electrospun using polyacrylonitrile in the core and a blend of titanium isopropoxide and polyvinylpyrrolidone in the shell. After calcination at 500 °C for 2 h in air and subsequent carbonization at 1000 °C for 2 h in nitrogen, the TCNFs were formed with nanocrystalline TiO2 in the shell layer and carbon in the core. The structure and morphology of the TCNFs were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The photovoltaic properties of the TCNF photoelectrode-based DSSCs were investigated by determining current density-voltage (J–V) curves, incident photon-to-current conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS). The power conversion efficiency (PCE) of the TCNF photoelectrode-based DSSC was 7.5%, higher than those of DSSCs with TiO2 nanofiber (TNF)- and TiO2 nanoparticle (TNP)-based photoelectrodes. An increase in the electron transport and suppression of charge recombination were found with the carbon core and nanocrystalline TiO2 shell configuration of the TCNFs

  16. Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2

    Directory of Open Access Journals (Sweden)

    Yang Li

    2015-11-01

    Full Text Available We describe the preparation of nanoporous carbon nanofibers (CNFs decorated with platinum nanoparticles (PtNPs in this work by electrospining polyacrylonitrile (PAN nanofibers and subsequent carbonization and binding of PtNPs. The fabricated nanoporous CNF-PtNP hybrids were further utilized to modify glass carbon electrodes and used for the non-enzymatic amperometric biosensor for the highly sensitive detection of hydrogen peroxide (H2O2. The morphologies of the fabricated nanoporous CNF-PtNP hybrids were observed by scanning electron microscopy, transmission electron microscopy, and their structure was further investigated with Brunauer–Emmett–Teller (BET surface area analysis, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The cyclic voltammetry experiments indicate that CNF-PtNP modified electrodes have high electrocatalytic activity toward H2O2 and the chronoamperometry measurements illustrate that the fabricated biosensor has a high sensitivity for detecting H2O2. We anticipate that the strategies utilized in this work will not only guide the further design and fabrication of functional nanofiber-based biomaterials and nanodevices, but also extend the potential applications in energy storage, cytology, and tissue engineering.

  17. IN-SITU SYNCHROTRON SAXS/WAXD STUDIES DURING MELT SPINNING OF MODIFIED CARBON NANOFIBER AND ISOTACTIC POLYPROPYLENE NANOCOMPOSITE

    International Nuclear Information System (INIS)

    The structural development of a nanocomposite, containing 95 wt% isotactic polypropylene (iPP) and 5 wt% modified carbon nanofiber (MCNF), during fiber spinning was investigated by in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The modification of carbon nanofibers (CNFs) was accomplished by a chemical surface treatment using in situ polymerization of olefin segments to enhance its compatibility with iPP, where the iPP/MCNF nanocomposite was prepared by twostep blending to ensure the dispersion of MCNF. X-ray results showed that at low spin-draw ratios, the iPP/MCNF nanocomposite fiber exhibited much higher iPP crystalline orientation than the control iPP fiber. At higher spin-draw ratios, the crystalline orientation of the nanocomposite fiber and that of the pure iPP fiber was about the same. The crystallinity of the composite fiber was higher than that of the control iPP fiber, indicating the nucleating effect of the modified carbon nanofibers. The nanocomposite fiber also showed larger long periods at low spin-draw ratios. Measurements of mechanical properties indicated that the nanocomposite fiber with 5 wt% MCNF had much higher tensile strength, modulus and longer elongation to break. The mechanical enhancement can be attributed to the dispersion of MCNF in the matrix, which was confirmed by SEM results

  18. Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers

    Science.gov (United States)

    Nilmoung, S.; Kidkhunthod, P.; Pinitsoontorn, S.; Rujirawat, S.; Yimnirun, R.; Maensiri, S.

    2015-04-01

    This work reports the fabrication and properties of carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers by using electrospinning technique followed by carbonization process under mixed air and argon atmosphere. The as-prepared samples were characterized by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray absorption spectroscopy, and vibrating sample magnetometry. It was found that the structure of CoFe2O4 was cubic spinel with the variation of crystallite size between 22 and 54 nm depending on the magnetic source content. X-ray absorption near-edge spectra at the Fe (7,112 eV) and Co (7,709 eV) absorption K-edge were used to confirm the Fe3+ and Co2+ oxidation states of CoFe2O4 nanoparticles. The X-ray absorption fine structure analysis indicated that CoFe2O4 nanoparticles had a structure analogous to bulk-inverted spinel structure. All composite nanofibers exhibited ferromagnetic behavior related to the distribution of cations over tetrahedral and octahedral sites, whereas diamagnetic behavior was observed in pure carbon nanofibers. The magnetization was clearly enhanced with respect to the increase of magnetic source content, whereas the coercivity and the squareness ( M r/ M s) were dependent of crystallite size.

  19. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    Science.gov (United States)

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry. PMID:21780388

  20. Aligned Carbon Nanotube Thin Films from Liquid Crystal Polyelectrolyte Inks.

    Science.gov (United States)

    Tune, Daniel D; Blanch, Adam J; Shearer, Cameron J; Moore, Katherine E; Pfohl, Moritz; Shapter, Joseph G; Flavel, Benjamin S

    2015-11-25

    Single walled carbon nanotube thin films are fabricated by solution shearing from high concentration sodium nanotubide polyelectrolyte inks. The solutions are produced by simple stirring of the nanotubes with elemental sodium in dimethylacetamide, and the nanotubes are thus not subject to any sonication-induced damage. At such elevated concentrations (∼4 mg mL(-1)), the solutions exist in the liquid crystal phase and during deposition this order is transferred to the films, which are well aligned in the direction of shear with a 2D nematic order parameter of ∼0.7 determined by polarized absorption measurements. Compared to similarly formed films made from superacids, the polyelectrolyte films contain smaller bundles and a much narrower distribution of bundle diameters. After p-doping with an organic oxidizer, the films exhibit a very high DC electrical to optical conductivity ratio of σ(DC)/σ(OP) ∼ 35, corresponding to a calculated DC conductivity of over 7000 S cm(-1). When very thin (T550 ∼ 96%), smooth (RMS roughness, R(q) ∼ 2.2 nm), and highly aligned films made via this new route are used as the front electrodes of carbon nanotube-silicon solar cells, the power conversion efficiency is almost an order of magnitude greater than that obtained when using the much rougher (R(q) ∼ 20-30 nm) and less conductive (peak σ(DC)/σ(OP) ∼ 2.5) films formed by common vacuum filtration of the same starting material, and having the same transmittance. PMID:26511159

  1. Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex® EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: • This work suggested the efficient use of MWCNTs to impart high mechanical properties to nanofibers and while maintaining the toxicity of the materials. • The mechanical properties of the nanofibers can be improved by introducing 2% of MWCNTs, above this point the mechanical property is reduced in nanofibers fabricated from Tecoflex® EG 80A. • The presence of MWCNTs in the nanofibers reflecting the successful electrospining event can be ascertained by FT-IR, Raman, and TEM. • The nanofibers obtained while introducing MWCNTs represent no toxic behavior to cultured fibroblast. - Abstract: The present study discusses the design, development, and characterization of electrospun Tecoflex® EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The Fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C–N and N–H bonds in polyurethanes are responsible for the interactions with MWCNTs. Furthermore, tensile testing indicated an increase in the Young's modulus of the nanofibers as the MWCNTs concentration was increased. Finally, NIH 3T3 fibroblasts were seeded on the obtained nanofibers, demonstrating cell biocompatibility and proliferation. Therefore, the results indicate the successful formation of polyurethane nanofibers with enhanced mechanical properties, and demonstrate their biocompatibility, suggesting their potential application in biomedical areas

  2. Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex{sup ®} EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas-Pan American, Edinburg TX 78539 (United States); Sheikh, Faheem A. [Department of Chemistry, University of Texas-Pan American, Edinburg TX 78539 (United States); Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Cantu, Travis; Eubanks, Thomas M.; Salinas, M. Esther; Farhangi, Chakavak S.; Ahmad, Hassan [Department of Chemistry, University of Texas-Pan American, Edinburg TX 78539 (United States); Hassan, M. Shamshi; Khil, Myung-seob [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Maffi, Shivani K. [Regional Academic Health Center-Edinburg (E-RAHC), Medical Research Division, 1214 W. Schunior St, Edinburg TX 78541 (United States); Department of Molecular Medicine, University of Texas Health Science Center, 15355 Lambda Dr. San Antonio TX 78245 (United States); Kim, Hern [Energy and Environment Fusion Technology Center, Department of Energy and Biotechnology, Myongji University, Yongin Kyonggi-do 449-728 (Korea, Republic of); Bowlin, Gary l. [Department of Biomedical Engineering, The University of Memphis, Memphis TN 38152 (United States)

    2014-12-01

    Highlights: • This work suggested the efficient use of MWCNTs to impart high mechanical properties to nanofibers and while maintaining the toxicity of the materials. • The mechanical properties of the nanofibers can be improved by introducing 2% of MWCNTs, above this point the mechanical property is reduced in nanofibers fabricated from Tecoflex{sup ®} EG 80A. • The presence of MWCNTs in the nanofibers reflecting the successful electrospining event can be ascertained by FT-IR, Raman, and TEM. • The nanofibers obtained while introducing MWCNTs represent no toxic behavior to cultured fibroblast. - Abstract: The present study discusses the design, development, and characterization of electrospun Tecoflex{sup ®} EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The Fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C–N and N–H bonds in polyurethanes are responsible for the interactions with MWCNTs. Furthermore, tensile testing indicated an increase in the Young's modulus of the nanofibers as the MWCNTs concentration was increased. Finally, NIH 3T3 fibroblasts were seeded on the obtained nanofibers, demonstrating cell biocompatibility and proliferation. Therefore, the results indicate the successful formation of polyurethane nanofibers with enhanced mechanical properties, and demonstrate their biocompatibility, suggesting their potential application in biomedical areas.

  3. Photoluminescence of rare earth3+ doped uniaxially aligned HfO2 nanotubes prepared by sputtering with electrospun polyvinylpyrolidone nanofibers as templates

    Science.gov (United States)

    Liu, L. X.; Ma, Z. W.; Xie, Y. Z.; Su, Y. R.; Zhao, H. T.; Zhou, M.; Zhou, J. Y.; Li, J.; Xie, E. Q.

    2010-01-01

    Rare earth (RE) ions (Eu3+,Tb3+) doped uniaxially aligned HfO2 nanotubes were prepared by radio frequency sputtering with electrospun polyvinylpyrolidone (PVP) nanofiber templates. The as-sputtered samples were annealed at different temperatures (500-1000 °C) in O2 ambient in order to remove their PVP cores and make the HfO2 shells well crystallized. Morphologies and crystal configuration of the samples were investigated by optical microscope, scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. The nanotubes have uniform intact structure with an average diameter of 200 nm and a wall thickness of about 25 nm. Photoluminescence (PL) properties of the RE doped nanotubes have been studied in detail. The emission peaks of the aligned HfO2:Eu and HfO2:Tb nanotubes could correspond to the D50→F7J (J =0-2) transitions of Eu3+ and the D54→F7J (J =3-6) transitions of Tb3+, respectively. The PL intensities of the HfO2:RE3+ nanotubes were higher by several orders of magnitude than that of the films. This enhancement in the PL could be ascribed to the high density of surface states of HfO2:RE3+ nanotubes.

  4. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  5. NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2015-11-01

    Full Text Available NiCu alloy nanoparticle-loaded carbon nanofibers (NiCuCNFs were fabricated by a combination of electrospinning and carbonization methods. A series of characterizations, including SEM, TEM and XRD, were employed to study the NiCuCNFs. The as-prepared NiCuCNFs were then mixed with laccase (Lac and Nafion to form a novel biosensor. NiCuCNFs successfully achieved the direct electron transfer of Lac. Cyclic voltammetry and linear sweep voltammetry were used to study the electrochemical properties of the biosensor. The finally prepared biosensor showed favorable electrocatalytic effects toward hydroquinone. The detection limit was 90 nM (S/N = 3, the sensitivity was 1.5 µA µM−1, the detection linear range was 4 × 10−7–2.37 × 10−6 M. In addition, this biosensor exhibited satisfactory repeatability, reproducibility, anti-interference properties and stability. Besides, the sensor achieved the detection of hydroquinone in lake water.

  6. Hierarchical Graphene-Containing Carbon Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Dufficy, Martin K; Khan, Saad A; Fedkiw, Peter S

    2016-01-20

    We present a method to produce composite anodes consisting of thermally reduced graphene oxide-containing carbon nanofibers (TRGO/CNFs) via electrospinning a dispersion of polyacrylonitrile (PAN) and graphene oxide (GO) sheets in dimethylformamide followed by heat treatment at 650 °C. A range of GO (1-20 wt % GO relative to polymer concentration) was added to the polymer solution, with each sample comprising similar polymer chain packing and subsequent CNF microstructure, as assessed by X-ray diffraction. An increase from 0 to 20 wt % GO in the fibers led to carbonized nonwovens with enhanced electronic conductivity, as TRGO sheets conductively connected the CNFs. Galvanostatic half-cell cycling revealed that TRGO addition enhanced the specific discharge capacity of the fibers. The optimal GO concentration of 5 wt % GO enhanced first-cycle discharge capacities at C/24 rates (15.6 mA g(-1)) 150% compared to CNFs, with a 400% capacity increase at 2-C rates (750 mA g(-1)). We attribute the capacity enhancement to a high degree of GO exfoliation. The TRGO/CNFs also experienced no capacity fade after 200 cycles at 2-C rates. Impedance spectroscopy of the composite anodes demonstrated that charge-transfer resistances decreased as GO content increased, implying that high GO loadings result in more electrochemically active material. PMID:26704705

  7. Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery

    Science.gov (United States)

    Wei, Guanjie; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-05-01

    To improve the electrochemical activity of polyacrylonitrile (PAN)-based electrospun carbon nanofibers (ECNFs) toward vanadium redox couples, the multi-wall carbon nanotubes (CNTs) and Bi-based compound as electrocatalyst have been embedded in the ECNFs to make composite electrode, respectively. The morphology and electrochemical properties of pristine ECNFs, CNTs/ECNFs and Bi/ECNFs have been characterized. Among the three kinds of electrodes, the CNTs/ECNFs show best electrochemical activity toward VO2+/VO2+ redox couple, while the Bi/ECNFs present the best electrochemical activity toward V2+/V3+ redox couple. Furthermore, the high overpotential of hydrogen evolution on Bi/ECNFs makes the side-reaction suppressed. Because of the large property difference between the two composite electrodes, the CNTs/ECNFs and Bi/ECNFs are designed to act as positive and negative electrode for vanadium redox flow battery (VRFB), respectively. It not only does improve the kinetics of two electrode reactions at the same time, but also reduce the kinetics difference between them. Due to the application of asymmetric electrodes, performance of the cell is improved greatly.

  8. Effect of filler surface properties on stress relaxation behavior of carbon nanofiber/polyurethane nanocomposites

    Science.gov (United States)

    Sedat Gunes, I.; Jimenez, Guillermo; Jana, Sadhan

    2009-03-01

    The effect of carbon nanofiber (CNF) surface properties on tensile stress relaxation behavior of CNF/polyurethane (PU) nanocomposites was analyzed. PU was synthesized from methylene diisocyanate, polypropylene glycol (PPG diol), and butanediol. CNF, oxidized CNF (ox-CNF), and PPG diol grafted CNF (ol-CNF) were selected as fillers. ol-CNF was obtained by grafting PPG diol onto ox-CNF by reacting it with the carboxyl groups present on ox-CNF surface. The atomic ratios of oxygen to carbon present on the filler surfaces were 0.13 and 0.18 on ox-CNF and on ol-CNF as compared to 0.015 on CNF, mostly due to the presence oxygen containing polar groups on the surfaces of the former. The composites were prepared by in-situ polymerization and melt mixing in a chaotic mixer. The stress relaxation behavior of composites was determined at room temperature after inducing a tensile strain of 100%. The presence of fillers augmented the rate of stress relaxation in composites which was highest in the presence of CNF. The results suggested that relatively weak polymer-filler interactions in composites of CNF promoted higher stress relaxation.

  9. Textural and electrochemical characterization of porous carbon nanofibers as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Wei; Wu, Yung-Tai; Hu, Chi-Chang; Li, Yuan-Yao [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2007-10-11

    Porous carbon nanofibers (CNFs) enriched with the graphitic structure were synthesized by thermal decomposition from a mixture containing polyethylene glycol and nickel chloride (catalyst). The textural and electrochemical properties of porous CNFs were systematically compared with those of commercially available multi-walled carbon nanotubes (MWCNTs). The high ratio of mesopores and large amount of open edges of porous CNFs with a higher specific surface area, very different from that of MWCNTs, are favorable for the penetration of electrolytes meanwhile the graphene layers of porous CNFs serve as a good electronic conductive medium of electrons. The electrochemical properties of porous CNFs and MWCNTs were characterized for the application of supercapacitors using cyclic voltammetry, galvanostatic charge-discharge method, and electrochemical impedance spectroscopic analyses. The porous CNFs show better capacitive performances (C{sub S} = 98.4 F g{sup -1} at 25 mV s{sup -1} and an onset frequency of behaving as a capacitor at 1.31 kHz) than that of MWCNTs (C{sub S} = 17.8 F g{sup -1} and an onset frequency at 1.01 kHz). This work demonstrates the promising capacitive properties of porous CNFs for the application of electrochemical supercapacitors. (author)

  10. Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials

    Directory of Open Access Journals (Sweden)

    Galao, O.

    2012-09-01

    Full Text Available This paper reports on recent work that is directed at studying the changes in the mechanical properties of Portland cement based mortars due to the addition of carbon nanofiber (CNF. Both flexural and compression strength has been determined and related to the CNF addition to the mix, to the curing time and to the porosity and density of the matrix. Also, corrosion of embedded steel rebars in CNF cement pastes exposed to carbonation and chloride attacks has been investigated. The increase in CNF addition implies higher corrosion intensity and higher levels of mechanical properties.En este artículo se han estudiado los cambios en las propiedades mecánicas de los morteros de cemento Portland debido a la adición de nanofibras de carbono (NFC. Se han determinado las resistencias a flexotracción y a compresión de los morteros en relación a la cantidad de NFC añadidas a la mezcla, al tiempo de curado y a la porosidad y densidad de los mismos. Además se han investigado los niveles de corrosión de barras de acero embebidas en pastas de cemento con NFC expuestos al ataque por carbonatación y por ingreso de cloruros. El aumento en el porcentaje de NFC añadido se traduce en un aumento la intensidad de corrosión registrada y una mejora de las propiedades mecánicas.

  11. Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces

    CERN Document Server

    Nair, Hrudya; Tran, Tuan; van Houselt, Arie; Prosperetti, Andrea; Lohse, Detlef; Sun, Chao

    2013-01-01

    Droplets impacting on a superheated surface can either exhibit a contact boiling regime, in which they make direct contact with the surface and boil violently, or a film boiling regime, in which they remain separated from the surface by their own vapor. The transition from the contact to the film boiling regime depends not only on the temperature of the surface and kinetic energy of the droplet, but also on the size of the structures fabricated on the surface. Here we experimentally show that surfaces covered with carbon-nanofibers delay the transition to film boiling to much higher temperature compared to smooth surfaces. We present physical arguments showing that, because of the small scale of the carbon fibers, they are cooled by the vapor flow just before the liquid impact, thus permitting contact boiling up to much higher temperatures than on smooth surfaces. We also show that, as long as the impact is in the film boiling regime, the spreading factor of impacting droplets follows the same $\\We^{3/10}$ sc...

  12. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  13. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    Science.gov (United States)

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors. PMID:26449440

  14. Third Harmonic Generation from Aligned Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Morris, Darius T., Jr.

    Optical properties of single-wall carbon nanotubes (SWCNTs) have been extensively studied during the last decade, and much basic knowledge has been accumulated on how light emission, scattering, and absorption occur in the realm of linear optics. However, their nonlinear optical properties remain largely unexplored. Here, we have observed strong third harmonic generation from highly aligned SWCNTs with intense mid-infrared radiation. Through power dependent experiments, we have determined the absolute value of the third-order nonlinear optical susceptibility, chi(3), of our SWCNT film to be 6.92 x 10--12 esu, which is three orders of magnitude larger than that of the fused silica reference sample we used. Furthermore, through polarization-dependent third harmonic generation experiments, all the nonzero tensor elements of chi(3) have also been extracted. The contribution of the weaker tensor elements to the overall chi (3) signal has been calculated to be approximately 1/6 of that of the dominant c3z zzz component. These results open up new possibilities for application of carbon nanotubes in optoelectronics.

  15. Dielectrophoresis in particle confinement: Aligned carbon particles in polymer matrix below percolation threshold

    Science.gov (United States)

    Knaapila, M.; Høyer, H.; Helgesen, G.

    2014-09-01

    We review preparation and properties of confined, aligned string-like particle assemblies formed by dielectrophoresis under alternating electric fields. Particular attention is placed on carbon particles aligned in the oligomer matrix. In these systems the particle fraction is low, below the isotropic percolation threshold. The matrix is polymerized after alignment, which locks the aligned strings in place. Application examples are discussed including particle separation, conductivity enhancement and piezoresistive sensors.

  16. Free-Standing Thin Webs of Activated Carbon Nanofibers by Electrospinning for Rechargeable Li-O2 Batteries.

    Science.gov (United States)

    Nie, Hongjiao; Xu, Chi; Zhou, Wei; Wu, Baoshan; Li, Xianfeng; Liu, Tao; Zhang, Huamin

    2016-01-27

    Free-standing activated carbon nanofibers (ACNF) were prepared through electrospinning combining with CO2 activation and then used for nonaqueous Li-O2 battery cathodes. As-prepared ACNF based cathode was loosely packed with carbon nanofibers complicatedly overlapped. Owing to some micrometer-sized pores between individual nanofibers, relatively high permeability of O2 across the cathode becomes feasible. Meanwhile, the mesopores introduced by CO2 activation act as additional nucleation sites for Li2O2 formation, leading to an increase in the density of Li2O2 particles along with a size decrease of the individual particles, and therefore, flake-like Li2O2 are preferentially formed. In addition, the free-standing structure of ACNF cathode eliminates the side reactions about PVDF. As a result, the Li-O2 batteries with ACNF cathodes showed increased discharge capacities, reduced overpotentials, and longer cycle life in the case of full discharge and charge operation. This provides a novel pathway for the design of cathodes for Li-O2 battery. PMID:26691321

  17. Preparation of carbon nanoparticles and nanofibers by a simple microwave based method and studying the field emission properties

    International Nuclear Information System (INIS)

    Research highlights: → A novel and simple microwave based method for preparation of carbon nanostructures were developed. → The mw-plasma method can produce catalyst nanoparticles from a solid metallic source. → The resulting nanostructure exhibit good field emission (FE) properties. → Deposition of nanoparticles through the mw-plasma method improves field emission properties. - Abstract: A novel, simple and fast method for preparation of graphitic nanostructures such as nanofibers and nanospheres which uses a standard microwave oven is described. In this method polystyrene is used as carbon source and a solid metal such as nickel or iron provides both the trigger to initiate the plasma, as well as a source for sputtering catalyst particles which are required for formation of nanofibers. The mechanism of this process is discussed through analysis of different properties of the resulting products, by examining the effect of changing the microwave processing time and the nature of the metallic trigger/catalyst source. The effect of morphology of nanoparticles (nanofibers vs. nanospheres), as well as the effect of trigger/catalyst material and the deposition method on electron field emission properties of these samples, are also investigated.

  18. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers.

    Science.gov (United States)

    Lin, Min; Zou, Hong Yan; Yang, Tong; Liu, Ze Xi; Liu, Hui; Huang, Cheng Zhi

    2016-02-01

    The inner filter effect (IFE), which results from the absorption of the excitation or emission light by absorbers, has been employed as an alternative approach in sensing systems due to its flexibility and simplicity. In this work, highly photoluminescent carbon nanodots (CDs), which were simply prepared through a new one-step microwave synthesis route, were loaded in electrospun nanofibers, and the obtained nanofibers were then successfully applied to develop a fluorescent IFE-based visual sensor for tetracycline hydrochloride (Tc) sensing in milk. This developed visual sensor has high selectivity owing to the requirements of the spectral overlap between the CDs and Tc, showing high promise in sensing chemistry with an efficient response and economic effect. PMID:26781447

  19. High performance transistors via aligned polyfluorene-sorted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Gerald J.; Joo, Yongho; Singha Roy, Susmit; Gopalan, Padma; Arnold, Michael S., E-mail: msarnold@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2014-02-24

    We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ∼50 s-SWCNTs μm{sup −1}. At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 10{sup 7} and 46 cm{sup 2} V{sup −1} s{sup −1}, respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm{sup −1} and the on/off ratio is 4 × 10{sup 5}. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off ratio due to spurious metallic nanotubes that bridge the channel. 4071 individual and small bundles of s-SWCNTs are tested in 400 nm channel length FETs, and all show semiconducting behavior, demonstrating the high fidelity of polyfluorenes as selective agents and the promise of assembling s-SWCNTs from solution to create high performance semiconductor electronic devices.

  20. Measurement of Vertically Aligned Carbon Nanotube Array Compression Response

    Science.gov (United States)

    Cao, Changhong

    The use of carbon nanotubes (CNTs) in the form of vertically aligned arrays or films has been of interest due to the super-compressible response and the ability to be used as electrical and thermal contacts. CNT arrays have shown the remarkable ability to react as foam-like structures and exhibit localized, coordinated buckling within specific regions. An understanding of the buckling region evolution and the resulting effects on the bulk CNT array response are important, unanswered fundamental questions necessary for the future application of CNT arrays. Here, we report on the low-cycle compression of bulk vertically aligned CNT arrays to observe initiation and growth of the buckling as a function of compressive strain and the contacting substrate material. A critical strain of ˜5.5% is found above which the buckling region length increased and below which remained at or below the applied strain. The results are corroborated with nanoindentation on the surfaces, which indicate a stiffening of the near surface by 9.4%-16.5% with increasing applied strain. Also, contact counterfaces with different stiffness, lithium niobate and a polymer gel, were compared, which resulted in changes of ˜32% in total array height after cyclic compression. Raman spectroscopy on CNT arrays before and after compressive deformation was performed observing repeatable vibrational shifts in the strained regions. Also, to observe the applicability of CNT arrays as contact sensors, electrical resistance change during compression was measured and found to increase by 4 times in the parallel versus vertical direction. Observation and results of the buckling region nature and relationship with applied strain and contacting substrates are important for applying the nanotube arrays to energy absorbing cushions, tunable dampers, thermal contacts, contact sensing, chemical sensing, or in sliding contact.

  1. High performance transistors via aligned polyfluorene-sorted carbon nanotubes

    International Nuclear Information System (INIS)

    We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ∼50 s-SWCNTs μm−1. At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 107 and 46 cm2 V−1 s−1, respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm−1 and the on/off ratio is 4 × 105. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off ratio due to spurious metallic nanotubes that bridge the channel. 4071 individual and small bundles of s-SWCNTs are tested in 400 nm channel length FETs, and all show semiconducting behavior, demonstrating the high fidelity of polyfluorenes as selective agents and the promise of assembling s-SWCNTs from solution to create high performance semiconductor electronic devices

  2. Biocompatibility evaluation of electrospun aligned poly(propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; ZHAO Zhe; ZHAO Bin; QI Hong-xu; PENG Jiang; ZHANG Li; XU Wen-jing; HU Ping; LU Shi-bi

    2011-01-01

    Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate)(PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering. Methods Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-cell migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (MTT) assay. Results The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10-20 μm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers.However, on the random fiber films

  3. Thermoelectric properties of carbon nanotube and nanofiber based ethylene-octene copolymer composites for thermoelectric devices, Journal of Nanomaterials

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, J.; Kovář, M.; Svoboda, P.

    2013-01-01

    Roč. 2013, August (2013). ISSN 1687-4110 Grant ostatní: TBU Zlin(CZ) iga/ft/2013/018; GA MŠk(CZ) EE.2.3.20.0104; GA MŠk(CZ) ED2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : CNF * carbon nanotubes * carbon nanofibers * power-factor * nanocomposites * behavior * network Subject RIV: BK - Fluid Dynamics Impact factor: 1.611, year: 2013 http://www.hindawi.com/journals/jnm/2013/792875/

  4. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    International Nuclear Information System (INIS)

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network

  5. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeonyoon; Stein, Itai Y. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Devoe, Mackenzie E. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Lewis, Diana J.; Lachman, Noa; Buschhorn, Samuel T.; Wardle, Brian L., E-mail: wardle@mit.edu [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Kessler, Seth S. [Metis Design Corporation, 205 Portland St., Boston, Massachusetts 02114 (United States)

    2015-02-02

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network.

  6. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers

    Science.gov (United States)

    Lin, Min; Zou, Hong Yan; Yang, Tong; Liu, Ze Xi; Liu, Hui; Huang, Cheng Zhi

    2016-01-01

    The inner filter effect (IFE), which results from the absorption of the excitation or emission light by absorbers, has been employed as an alternative approach in sensing systems due to its flexibility and simplicity. In this work, highly photoluminescent carbon nanodots (CDs), which were simply prepared through a new one-step microwave synthesis route, were loaded in electrospun nanofibers, and the obtained nanofibers were then successfully applied to develop a fluorescent IFE-based visual sensor for tetracycline hydrochloride (Tc) sensing in milk. This developed visual sensor has high selectivity owing to the requirements of the spectral overlap between the CDs and Tc, showing high promise in sensing chemistry with an efficient response and economic effect.The inner filter effect (IFE), which results from the absorption of the excitation or emission light by absorbers, has been employed as an alternative approach in sensing systems due to its flexibility and simplicity. In this work, highly photoluminescent carbon nanodots (CDs), which were simply prepared through a new one-step microwave synthesis route, were loaded in electrospun nanofibers, and the obtained nanofibers were then successfully applied to develop a fluorescent IFE-based visual sensor for tetracycline hydrochloride (Tc) sensing in milk. This developed visual sensor has high selectivity owing to the requirements of the spectral overlap between the CDs and Tc, showing high promise in sensing chemistry with an efficient response and economic effect. Electronic supplementary information (ESI) available: Experimental section and additional figures (Fig. S1-S9). See DOI: 10.1039/c5nr08177g

  7. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC

    International Nuclear Information System (INIS)

    Porous carbon nanofibers (PCNFs) were used as the support to prepare platinum (Pt) catalyst (Pt/PCNFs) for proton exchange membrane fuel cell (PEMFC) applications. As a comparison, Pt supported on carbon black (Vulcan XC-72) (Pt/Vulcan) was also synthesized by the same ethylene glycol reduction method. Platinum was more uniformly deposited on PCNFs than that on the Vulcan XC-72. The electrocatalytic activity and stability of the resultant catalysts along with the commercial one (JM20) were investigated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) with a rotating disk electrode (RDE). The Pt/PCNFs exhibited much-enhanced electrocatalytic activity and stability compared with the Pt/Vulcan and JM20. The mass activity (at 0.80 V) of Pt/PCNFs is 2.6 times higher and 20% higher than that of Pt/Vulcan and JM20, respectively; the Pt/PCNFs retained about 50% of ECSA whereas JM20 and Pt/Vulcan kept only 25% and 5% of ECSA, respectively, even after 1000 cycles. Furthermore, the single cell performance of Pt/PCNFs was superior to that of Pt/Vulcan and even better than JM20 during high current densities. The cross-section of the membrane electrode assembly (MEA) showed that the Pt/PCNFs construct a loose three-dimensionally connected catalyst layer that is totally different from the tightly stacking catalyst layer composed of carbon black support. Thus, the mass transfer resistance is reduced and water drainage becomes easy when Pt/PCNFs were used as cathode catalyst. These results indicate PCNFs a promising candidate as catalyst supports for the enhancement of PEMFC performance

  8. High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries

    Science.gov (United States)

    Zhang, Shu; Li, Ying; Xu, Guanjie; Li, Shuli; Lu, Yao; Toprakci, Ozan; Zhang, Xiangwu

    2012-09-01

    Li2MnSiO4 has been considered as a promising cathode material with an extremely high theoretically capacity of 332 mAh g-1. However, due to its low intrinsic conductivity and poor structural stability, only about half of the theoretical capacity has been realized in practice and the capacity decays rapidly during cycling. To realize the high capacity and improve the cycling performance, Li2Mn0.8Fe0.2SiO4/carbon composite nanofibers were prepared by the combination of iron doping and electrospinning. X-ray diffraction, scanning electron microscope, and transmission electronic microscope were applied to characterize the Li2Mn0.8Fe0.2SiO4/carbon nanofibers. It was found that Li2Mn0.8Fe0.2SiO4 nanoparticles were embedded into continuous carbon nanofiber matrices, which formed free-standing porous mats that could be used as binder-free cathodes. The iron doping improved the conductivity and purity of the active material, and the carbon nanofiber matrix facilitated ion transfer and charge diffusion. As a result, Li2Mn0.8Fe0.2SiO4/carbon nanofiber cathodes showed promising improvement on reversible capacity and cycling performance.

  9. Synthesis and Application of Si/Carbon Nanofiber Composites Based on Ni and Mo Catalysts for Anode Material of Lithium Secondary Batteries.

    Science.gov (United States)

    Jang, Eunyi; Park, Heal-Ku; Lee, Chang-Seop

    2016-05-01

    In this paper, carbon nanofibers (CNFs) and Si/carbon nanofiber composites were synthesized for use as the anode material of lithium secondary batteries. Catalysts were prepared based on Ni and Mo metals and CNFs were grown through chemical vapor deposition (CVD). In addition, the grown CNFs were mixed with silicon particles to synthesize Si/carbon nanofibers composites. The physiochemical characteristics of the synthesized CNFs and Si/carbon nanofiber composites were analyzed by SEM, EDS, XRD, Raman, BET and XPS. The electrochemical characteristics were investigated by using cyclic voltammetry and galvanostatic charge-discharge. Using CNFs and Si/carbon nanofiber composites as the anode material, three electrode cells were assembled and the electrochemical characteristics were measured using LiPF6 and LiClO4 as electrolytes. As a result of the galvanostatic charge-discharge of CNFs that were grown through catalysts with Ni and Mo concentration ratio of 6:4, the initial discharge capacity when using LiPF6 as the electrolyte was 570 mAh/g and the retention rate was 15.05%. In the case of using LiClO4 as the electrolyte, the initial discharge capacity was 263 mAh/g and the retention rate was 67.23%. PMID:27483824

  10. Three-Dimensional Force Sensing Device Using Carbon Nanofiber Polymer Composites: Design and Fabrication

    Science.gov (United States)

    Chang, Fuh-Yu; Liu, Chia-Ming; Chen, Tse-Min; Chen, Chia-Ming; Lin, Yu-Hsien; Huang, Shu-Jiuan

    2012-06-01

    We propose an innovative three-dimensional force sensing device fabricated with carbon nanofiber (CNF) polymer composites. The device has four piezoresistive strain sensors made onto a polyimide substrate using surface patterning treatment and tilted-drop process with CNF polymer solutions. The proposed design and fabrication process is simpler than that of other three-dimensional force sensors and the device is suitable for mass production. The fabricated strain sensor properties using CNF polymer solutions with different composition ratios were investigated. An equation was derived using simple percolation theory to predict the conductivity of CNF polymer composites. The measured gauge factors were in the 4.84 to 17.68 range for CNF polymer composites with CNF 8.85-45.2 wt %. A programmable system on chip (PSoC) with built-in operational (OP) amplifier, analog-to-digital (AD) converter and multiplexer was used to develop a scanning and analyzing circuit for the three-dimensional force sensing device. The proposed integrated system was successfully applied to control a computer screen cursor.

  11. Structure and electrochemical applications of boron-doped graphitized carbon nanofibers

    Science.gov (United States)

    Yeo, Jae-Seong; Jang, Sang-Min; Miyawaki, Jin; An, Bai; Mochida, Isao; Rhee, Choong Kyun; Yoon, Seong-Ho

    2012-08-01

    Boron-doped graphitized carbon nanofibers (CNFs) were prepared by optimizing CNFs preparation, surface treatment, graphitization and boron-added graphitization. The interlayer spacing (d002) of the boron-doped graphitized CNFs reached 3.356 Å, similar to that of single-crystal graphite. Special platelet CNFs (PCNFs), for which d002 is less than 3.400 Å, were selected for further heat treatment. The first heat treatment of PCNFs at 2800 °C yielded a d002 between 3.357 and 3.365 Å. Successive nitric acid treatment and a second heat treatment with boric acid reduced d002 to 3.356 Å. The resulting boron-doped PCNFs exhibited a high discharge capacity of 338 mAh g-1 between 0 and 0.5 V versus Li/Li+ and 368 mAh g-1 between 0 and 1.5 V versus Li/Li+. The first-cycle Coulombic efficiency was also enhanced to 71-80%. Such capacity is comparable to that of natural graphite under the same charge/discharge conditions. The boron-doped PCNFs also exhibited improved rate performance with twice the capacity of boron-doped natural graphite at a discharge rate of 5 C.

  12. Structure and electrochemical applications of boron-doped graphitized carbon nanofibers

    International Nuclear Information System (INIS)

    Boron-doped graphitized carbon nanofibers (CNFs) were prepared by optimizing CNFs preparation, surface treatment, graphitization and boron-added graphitization. The interlayer spacing (d002) of the boron-doped graphitized CNFs reached 3.356 Å, similar to that of single-crystal graphite. Special platelet CNFs (PCNFs), for which d002 is less than 3.400 Å, were selected for further heat treatment. The first heat treatment of PCNFs at 2800 °C yielded a d002 between 3.357 and 3.365 Å. Successive nitric acid treatment and a second heat treatment with boric acid reduced d002 to 3.356 Å. The resulting boron-doped PCNFs exhibited a high discharge capacity of 338 mAh g−1 between 0 and 0.5 V versus Li/Li+ and 368 mAh g−1 between 0 and 1.5 V versus Li/Li+. The first-cycle Coulombic efficiency was also enhanced to 71–80%. Such capacity is comparable to that of natural graphite under the same charge/discharge conditions. The boron-doped PCNFs also exhibited improved rate performance with twice the capacity of boron-doped natural graphite at a discharge rate of 5 C. (paper)

  13. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Directory of Open Access Journals (Sweden)

    Amparo Borrell, Olga García-Moreno, Ramón Torrecillas, Victoria García-Rocha and Adolfo Fernández

    2012-01-01

    Full Text Available Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C. The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  14. Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors.

    Science.gov (United States)

    Qin, Kaiqiang; Kang, Jianli; Li, Jiajun; Shi, Chunsheng; Li, Yuxiang; Qiao, Zhijun; Zhao, Naiqin

    2015-01-27

    A micrometer-thin solid-state supercapacitor (SC) was assembled using two pieces of porous carbon nanofibers/ultrathin graphite (pCNFs/G) hybrid films, which were one-step synthesized by chemical vapor deposition using copper foil supported Co catalyst. The continuously ultrathin graphite sheet (∼ 25 nm) is mechanically compliant to support the pCNFs even after etching the copper foil and thus can work as both current collector and support directly with nearly ignorable fraction in a SC stack. The pCNFs are seamlessly grown on the graphite sheet with an ohmic contact between the pCNFs and the graphite sheet. Thus, the accumulated electrons/ions can duly transport from the pCNFs to graphite (current collector), which results in a high rate performance. The maximum energy density and power density based on the whole device are up to 2.4 mWh cm(-3) and 23 W cm(-3), which are even orders higher than those of the most reported electric double-layer capacitors and pseudocapacitors. Moreover, the specific capacitance of the device has 96% retention after 5000 cycles and is nearly constant at various curvatures, suggesting its wide application potential in powering wearable/miniaturized electronics. PMID:25567451

  15. Carbon Nanofibers-Poly-3-hydroxyalkanoates Nanocomposite: Ultrasound-Assisted Dispersion and Thermostructural Properties

    Directory of Open Access Journals (Sweden)

    A. M. Gumel

    2014-01-01

    Full Text Available The conductivity and high surface-to-volume ratio of carbon nanofibers (CNFs composited with the medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA have attracted much attention as smart biomaterial. However, poor CNF dispersion leads to tactoid agglomerated composite with poor crystallite morphology resulting in inferior thermomechanical properties. We employed acoustic sonication to enhance the construction of exfoliated PHA/CNFs nanocomposites. The effects of CNF loading and the insonation variables (power intensity, frequency, and time on the stability and microscopic morphology of the nanocomposites were studied. Sonication improved the dispersion of CNFs into the polymer matrix, thereby improving the physical morphology, crystallinity, and thermomechanical properties of the nanocomposites. For example, compositing the polymer with 10% w/w CNF resulted in 66% increase in crystallite size, 46% increase in micromolecular elastic strain, and 17% increase in lattice strain. Nevertheless, polymer degradation was observed following the ultrasound exposure. The constructed bionanocomposite could potentially be applied for organic electroconductive materials, biosensors and stimuli-responsive drug delivery devices.

  16. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers

    International Nuclear Information System (INIS)

    Effects of untreated and pretreated carbon nanofibers (CNFs) on the crystallization behavior, friction behavior, and mechanical properties of ultra high molecular weight polyethylene (UHMWPE)/high density polyethylene (HDPE) nanocomposites prepared by a twin-screw extrusion were studied. The differential scanning calorimetry and wide angle X-ray diffraction measurements indicated that the addition of CNFs impacted the temperature of crystallization, but had no significant effects on the crystalline structure of the UHMWPE/HDPE blend. The degree of crystallinity, and the tensile strength and modulus of the UHMWPE/HDPE systems exhibited an increasing trend initially with addition of CNFs, followed by a decrease at higher contents. With the increase of untreated CNF content, the friction coefficient of UHMWPE/HDPE was decreasing and displayed less change in the process of friction. The microstructure features on the fracture surfaces and friction surfaces of the polymer blend and the nanocomposites were analyzed in detail by scanning electron microscope observations. The degree of crystallinity of the nanocomposites with the pretreated CNFs exhibited a decrease due to the better interface adhesion compared to that in the nanocomposites with the same loading untreated CNFs. The enhancement in tensile strength of nanocomposites containing 0.5 wt% treated CNFs was four times higher (32%) than that of the nanocomposites containing untreated CNFs (8%) over that of the pure polymer

  17. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    International Nuclear Information System (INIS)

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  18. Post-treatment method for improving field emission from carbon nanotubes/nanofibers

    Institute of Scientific and Technical Information of China (English)

    GUO Ping-sheng; SUN Zhuo; ZHENG Zhi-hao

    2006-01-01

    A novel post-treatment method is reported for improving the field emission characteristics of screen-printed carbon nanotubes/nanofibers (CNTs/CNFs) cathodes.After the treatment at the temperature of 500℃ in H2 and C2H2 gas for 20 minutes,the CNTs/CNFs cathodes exhibit much better field emission properties than those untreated.The emission current increases from 0.02 mA/cm2 to 0.5 mA/cm2 at 3.9 V/μm with a decrease in the turn-on field from 2.4 V to 1.8 V ,and the emission site density is increased by almost four orders in magnitude.The enhanced field emission of treated CNTs/CNFs cathodes is attributed to the appearance of a large number of exposed CNTs/CNFs caused by heat treatment.This surface morphology is very favorable for the electron field emission.

  19. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Science.gov (United States)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-02-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  20. Relationship Between Structure and Dynamic Mechanical Properties of a Carbon Nanofiber Reinforced Elastomeric Nanocomposite

    International Nuclear Information System (INIS)

    The tensile and dynamic mechanical properties of a nanocomposite, containing modified carbon nanofibers (MCNFs) homogenously dispersed in an elastomeric ethylene/propylene (EP) copolymer semicrystalline matrix (84.3 wt% P), have been correlated with the structure development. These properties were characterized by in situ synchrotron X-ray diffraction during stretching, dynamic mechanical analysis and X-ray analysis techniques over a wide temperature range. Upon sequential drawing, the tensile strength of the nanocomposite film was notably higher than that of the unfilled polymer even though both samples exhibited a similar amount of crystal fraction and the same degree of crystal orientation, revealing the effect of nanofiller reinforcement in the semicrystalline matrix. The mechanical spectra of the 10 wt% MCNF filled samples in both stretched and non-stretched states showed broadening of the elastic modulus at high temperatures, where the corresponding crystallinity index also decreased. It is conceivable that a significant fraction of chain orientation is induced in the vicinity of the nanofillers during stretching, and these stretched chains with reduced mobility significantly enhance the thermal mechanical properties

  1. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites

    International Nuclear Information System (INIS)

    The properties of semi-crystalline polymer nanocomposites are affected by the nanofillers directly and indirectly, as two phases, i.e., crystalline and amorphous, exist in the polymer. The effects of nanofillers on the two phases could be competitive. The dielectric properties and conductivity of carbon nanofibers (CNF)/semi-crystalline polymer nanocomposites are studied in this paper. CNF/polypropylene (PP) nanocomposites are prepared in experiment by melt blending. The resulting morphology and crystalline structure are characterized by means of differential scanning calorimetry, wide angle X-ray diffraction and scanning electron microscopy. The PP nanocomposite containing 5 wt.% CNF exhibits a surprisingly high dielectric constant under wide sweep frequencies attended by low dielectric loss. Its dielectric constant is >600 under lower frequency, and remains >200 at a frequency of 4000 Hz. The electrical and thermal conductivities of the nanocomposites are studied, and enhancements are seen with increased CNF content. Theoretical analyses on the physical properties are carried out by applying the existing models. Research results indicate that a common commercial plastic with good comprehensive performance, which exhibited the potential for applications in advanced electronics, was obtained by a simple industry benign technique

  2. Bending actuation in a single-layer carbon-nanofiber/polypyrrole composite film and its fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Kim, Cheol [Kyungpook National University, Daegu (Korea, Republic of)

    2011-07-15

    Thin CNF/PPy composite single-layer films were produced by the electrophoretic deposition and polymerization process which was developed for this study. It was demonstrated that the films could generate a bending motion subjected to an actuating electric voltage even though they consisted of only single-layer. Carbon nanofiber and polypyrrole composite films were obtained from only one side of a working electrode. Several different CNF/PPy films were synthesized, as varying the CNF weight ratios from 3%, 5%, and 7% to 10%. Conductivity of pure PPy and CNF/PPy composite films were measured. Conductivity of the films is improved linearly from 77.9S/cm (pure PPy film) to 124.3 S/cm (10% CNF/PPy) as the CNF weight ratio increases. Adding CNF was effective for improving the conductivity of PPy. As results of electromechanical actuation tests with the films, it was noticed that the strain of the films was reduced a little as the CNF weight ratio increased. Bending motions were observed for both PPy and CNF/PPy films subjected to a voltage. The tip bending deflections was in the range of 0.5 mm to 2 mm. CNF/PPy films showed a great potential to be a good candidate for small light actuators.

  3. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    Science.gov (United States)

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-05-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g-1 at 100 mA g-1 and maintain a high reversible capacity of 772 mAh g-1 without showing obvious decay after 50 cycles.

  4. Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors.

    Science.gov (United States)

    Shi, Kaiyuan; Zhitomirsky, Igor

    2013-10-01

    Thin films of multiwalled carbon nanotubes (MWCNT), graphene and polypyrrole (PPy) nanofibers were prepared by cathodic electrophoretic deposition (EPD) from aqueous suspensions, containing safranin (SAF) as a new dispersant. The results of Fourier transform infrared spectroscopy, UV-Vis spectroscopy studies and sedimentation tests, coupled with deposition yield and electron microscopy data showed that SAF adsorbed on MWCNT, graphene and PPy, provided their dispersion and charging in the suspensions and allowed efficient EPD. The deposition yield can be controlled by the variation of SAF concentration in the suspensions and deposition time. The use of SAF as a co-dispersant for MWCNT, graphene and PPy, allowed controlled EPD of composite graphene-MWCNT and graphene-PPy films. The proposed approach for the deposition of PPy paves the way for EPD of neutral polymers using organic dyes as dispersing and charging agents. The composite films were investigated for application in electrochemical supercapacitors (ES). The graphene-MWCNT and graphene-PPy films showed significant increase in capacitance, decrease in resistance and increase in capacitance retention at high charge-discharge rates compared to the films of individual components. The analysis of electrochemical testing results and electron microscopy data provided an insight into the influence of composite microstructure on electrochemical performance. The composites, prepared by EPD are promising materials for electrodes of ES. PMID:23880521

  5. Growth of carbon nanofiber coatings on nickel thin films on fused silica by catalytic thermal chemical vapor deposition: On the use of titanium, titanium–tungsten and tantalum as adhesion layers

    NARCIS (Netherlands)

    Thakur, D.B.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2009-01-01

    Coatings of carbon nanofiber (CNF) layers were synthesized on fused silica substrates using a catalytic thermal chemical vapor deposition process (C-TCVD). The effects of various adhesion layers–titanium, titanium–tungsten and tantalum–under the nickel thin film on the attachment of carbon nanofiber

  6. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode.

    Science.gov (United States)

    Kalambate, Pramod K; Rawool, Chaitali R; Karna, Shashi P; Srivastava, Ashwini K

    2016-12-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (Ip) current for MM is found to be rectilinear in the range 4.0×10(-8)-2.0×10(-5)M with a detection limit of 7.1×10(-9)M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. PMID:27612735

  7. Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures

    International Nuclear Information System (INIS)

    We are presenting a sensor for hydrogen peroxide (H2O2) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H2O2. If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H2O2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H2O2. (author)

  8. Effects of Thickness and Amount of Carbon Nanofiber Coated Carbon Fiber on Improving the Mechanical Properties of Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ferial Ghaemi

    2016-01-01

    Full Text Available In the current study, carbon nanofibers (CNFs were grown on a carbon fiber (CF surface by using the chemical vapor deposition method (CVD and the influences of some parameters of the CVD method on improving the mechanical properties of a polypropylene (PP composite were investigated. To obtain an optimum surface area, thickness, and yield of the CNFs, the parameters of the chemical vapor deposition (CVD method, such as catalyst concentration, reaction temperature, reaction time, and hydrocarbon flow rate, were optimized. It was observed that the optimal surface area, thickness, and yield of the CNFs caused more adhesion of the fibers with the PP matrix, which enhanced the composite properties. Besides this, the effectiveness of reinforcement of fillers was fitted with a mathematical model obtaining good agreement between the experimental result and the theoretical prediction. By applying scanning electronic microscope (SEM, transmission electron microscope (TEM, and Raman spectroscopy, the surface morphology and structural information of the resultant CF-CNF were analyzed. Additionally, SEM images and a mechanical test of the composite with a proper layer of CNFs on the CF revealed not only a compactness effect but also the thickness and surface area roles of the CNF layers in improving the mechanical properties of the composites.

  9. Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability

    Directory of Open Access Journals (Sweden)

    Velmurugan Thavasi

    2009-01-01

    Full Text Available We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs onto the surface of Nylon-6 fibers using Triton® X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sensor has demonstrated its responsiveness towards a wide range of solvent vapours at room temperature and only mg quantities of MWCNTs were expended. The large surface area and porous nature of the electrospun Nylon-6/MWCNT nanofibers facilitates greater analyte permeability. The experimental analysis has indicated that the dipole moment, functional group and vapour pressure of the analytes determine the magnitude of the responsiveness.

  10. Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability

    Science.gov (United States)

    Lala, Neeta L.; Thavasi, Velmurugan; Ramakrishna, Seeram

    2009-01-01

    We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs) onto the surface of Nylon-6 fibers using Triton® X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sensor has demonstrated its responsiveness towards a wide range of solvent vapours at room temperature and only mg quantities of MWCNTs were expended. The large surface area and porous nature of the electrospun Nylon-6/MWCNT nanofibers facilitates greater analyte permeability. The experimental analysis has indicated that the dipole moment, functional group and vapour pressure of the analytes determine the magnitude of the responsiveness. PMID:22389589

  11. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    Science.gov (United States)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  12. Aligned carbon nanotube thin films for DNA electrochemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Berti, F. [Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Firenze 50019 (Italy); Lozzi, L. [Department of Physics, University of L' Aquila, Coppito, L' Aquila 67100 (Italy); Palchetti, I. [Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Firenze 50019 (Italy); Santucci, S. [Department of Physics, University of L' Aquila, Coppito, L' Aquila 67100 (Italy); Marrazza, G. [Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Firenze 50019 (Italy)], E-mail: giovanna.marrazza@unifi.it

    2009-09-01

    Carbon nanotubes are interesting materials for DNA electrochemical sensing due to their unique electric properties: high surface area, fast heterogeneous electron transfer, and electrochemical stability. In this work aligned Carbon NanoTube (CNT) thin films were designed and tested as candidate platforms for DNA immobilization and for the development of an electrochemical genosensor. The films were prepared by Chemical Vapor Deposition (CVD) using acetylene and ammonia as precursor gases and nickel particles as catalyst. A preliminary electrochemical characterization was performed using cyclic voltammetry since, so far, these films have been used only for gas sensing. The surfaces were then covalently functionalized with a DNA oligonucleotide probe, complementary to the sequence of the most common inserts in the GMOs: the Promoter 35S. The genosensor format involved the immobilization of the probe onto the sensor surface, the hybridization with the target-sequence and the electrochemical detection of the duplex formation. Careful attention was paid to the probe immobilization conditions in order to minimize the signal due to non-specifically adsorbed sequences. For the detection of the hybridization event both label-free and enzyme-labelled methods were investigated. In case of the enzyme-labelled method a target concentration at nanomolar level can be easily detected, with a linear response from 50 nM to 200 nM, whereas the label-free method showed a linear response between 0.5 {mu}M and 10 {mu}M. The reproducibility was 11% and 20% with the enzyme-labelled method and the label-free method, respectively. The batch-to-batch reproducibility of the different sensors was also evaluated.

  13. Visible Aligned Carbon Nanotube-MoS2 Hybrids

    Science.gov (United States)

    Wang, Rui; Hong, Tu; Wang, Tianjiao; Ali, Ahmad Iffat; Chani, Devpaul Singh; Xu, Yaqiong

    Single-walled carbon nanotubes (SWNTs) have gained great interest due to their excellent electrical, mechanical and thermal properties. Recent progress in two-dimensional (2D) materials has opened up new horizons in the realm of physics and engineering that could lead to the revolution of future electronics and optoelectronics. Various hybrid structures have been developed for different applications. Here we report a facile method to synthesize ultrathin 2D hybrids between horizontally-aligned SWNT and monolayer molybdenum sulfide (MoS2) through chemical vapor deposition (CVD). These hybrid structures can be imaged under an optical microscope; and their Raman mapping indicates that MoS2 flakes are partially grown on top of SWNTs. Moreover, strong photocurrent signals have been observed in SWNT-MoS2 hybrids through scanning photocurrent measurements. These fundamental studies may provide a new way to fabricate 2D hybrids for future electronics and optoelectronics. Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 37235, USA.

  14. Nanoscratch technique for aligning multiwalled carbon nanotubes synthesized by the arc discharge method in open air

    Indian Academy of Sciences (India)

    A Joseph Berkmans; M Jagannatham; Prathap Haridoss

    2015-08-01

    Horizontally aligned and densely packed multiwalled carbon nanotubes (MWCNTs) were synthesized in an open air, without the need for a controlled atmosphere, using a rotating cathode arc discharge method with the help of a metal scraper. The physical force exerted by the scraper results in in-situ alignment of MWCNTs along the direction of scrape marks. This strategy, which enables the alignment of nanotubes in a controlled fashion to any length and direction of interest, was examined to determine the force required to align a nanotube. A model is developed to understand the alignment process. Using the nanoscratch technique to mimic this strategy, and incorporating the data obtained from the nanoscratch technique into the model developed, the minimum force required to align a MWCNT, as well as the energy required to align a gram of nanotubes, has been estimated. The method demonstrated represents an economical approach for large-scale synthesis of aligned MWCNTs at low costs.

  15. Fe{sub 3}O{sub 4}/carbon composite nanofiber absorber with enhanced microwave absorption performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ting [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Huang, Daqing [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Yang, Ying [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Kang, Feiyu, E-mail: fykang@tsinghua.edu.cn [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gu, Jialin [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer PAN/AAI/DMF solutions for electrospinning. Black-Right-Pointing-Pointer Fe{sub 3}O{sub 4}/carbon composite nanofibers as microwave absorbers. Black-Right-Pointing-Pointer Microwave absorption performance has been much enhanced than pure carbon naonfibers. Black-Right-Pointing-Pointer Microwave absorption mechanisms have been discussed as a key point. - Abstract: Fe{sub 3}O{sub 4}/carbon composite nanofibers were prepared by electrospinning polyacrylonitrile (PAN)/acetyl acetone iron (AAI)/dimethyl formamide (DMF) solution, followed by stabilization and carbonization. SEM and TEM observations reveal that the fibers are lengthy and uniform, and are loaded with well-distributed Fe{sub 3}O{sub 4} nanoparticles, which are evidenced by XRD. Electrical and magnetic properties of the samples were studied to show the effect of enhancement of electrical conductivity and magnetic hysteresis performance. Finally, the permittivity and permeability parameters were measured by a vector network analyzer, and the reflectivity loss was calculated based on Transmission Line Theory. Results show that Fe{sub 3}O{sub 4}/C composite nanofibers exhibit enhanced properties of microwave absorption as compared to those of pure carbon nanofibers by: decreasing reflectivity loss values; widening absorption width and improving performance in low frequency (2-5 GHz) absorption. Absorption properties can be tuned by changing AAI content, carbonization temperature, composite fiber/paraffin ratio and coating thickness. It is shown that with coating thickness of 5 mm and fiber/paraffin ratio of 5 wt.%, the bandwidth for reflection loss under -5 dB can reach a maximum of 12-13 GHz in the range of 2-18 GHz, accompanying with a minimum reflection loss of -40 to -45 dB, and preferred low frequency band absorption can also be obtained. The mechanisms for the enhanced absorption performance were briefly discussed. It is supposed that this kind of composite material

  16. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites

    Science.gov (United States)

    Liao, Quanwen; Liu, Zhichun; Liu, Wei; Deng, Chengcheng; Yang, Nuo

    2015-11-01

    The ultra-low thermal conductivity of bulk polymers may be enhanced by combining them with high thermal conductivity materials such as carbon nanotubes. Different from random doping, we find that the aligned carbon nanotube-polyethylene composites has a high thermal conductivity by non-equilibrium molecular dynamics simulations. The analyses indicate that the aligned composite not only take advantage of the high thermal conduction of carbon nanotubes, but enhance thermal conduction of polyethylene chains.

  17. Optimization of a porous carbon nanofiber layer for the membrane electrode assembly in DMFC

    International Nuclear Information System (INIS)

    Highlights: • Nano-materials carbon-based electrodes are able to improve the performance of the electrodes. • Thus, this study is statistically optimizing the preparation of a CNF support for anode. • Finally, this study obtains a high performance DMFC at 21.90 mW cm−2 after the optimization. - Abstract: The performance of direct methanol fuel cells (DMFCs) is strongly influenced by the components in the membrane electrode assembly (MEA), which include a membrane, anode and cathode. The use of nano-materials to improve the performance of fuel cells has attracted the interest of researchers. The incorporation of nano-materials into these carbon-based electrodes is able to improve the performance of the electrodes. The aim of this study is to determine and optimize the parameter effecting the preparation of a nano-structured anode for high power density DMFCs. The two parameters investigated in this study were the Nafion content and the carbon loading. Both the traditional one-factor-at-a-time (OFAT) and the response surface methodology (RSM) optimization techniques were used to determine the optimum parameters. The results from the OFAT study indicated that the possible optimum levels for the Nafion content and carbon nanofiber (CNF) loading range from 2.7 to 3.5 mg cm−2 and 2.5 to 3.5 mg cm−2, respectively. A quadratic model was developed based on the RSM results, and an analysis of variance (ANOVA) showed that the model provides a good fit to the experimental data. This result indicated that the developed model successfully predicted the response with good accuracy. The maximum power density (response) was predicted and experimentally validated using the optimum composition of a 3.04 mg cm−2 Nafion content and 2.91 mg cm−2 carbon loading. The model validation revealed that the experimental value obtained under the optimum conditions (21.90 mW cm−2) was in good agreement with the values predicted by the model (22.64 mW cm−2)

  18. Optimized electrospinning synthesis of iron-nitrogen-carbon nanofibers for high electrocatalysis of oxygen reduction in alkaline medium

    Science.gov (United States)

    Yan, Xingxu; Liu, Kexi; Wang, Xiangqing; Wang, Tuo; Luo, Jun; Zhu, Jing

    2015-04-01

    To achieve iron-nitrogen-carbon (Fe-N-C) nanofibers with excellent electrocatalysis for replacing high-cost Pt-based catalysts in the cathodes of fuel cells and metal-air batteries, we have investigated and evaluated the effects of polyacrylonitrile (PAN) concentration and the proportion of iron to PAN, along with voltage and flow rate during the electrospinning process, and thus proposed three criteria to optimize these parameters for ideal nanofiber catalysts. The best half-wave potential of an optimized catalysts is 0.82 V versus reversible hydrogen electrode in an alkaline medium, which reaches the best range of the non-precious-metal catalysts reported and is very close to that of commercial Pt/C catalysts. Furthermore, the electron-transfer number of our catalysts is superior to that of the Pt/C, indicating the catalysts undergo a four-electron process. The durability of the optimized Fe-N-C nanofibers is also better than that of the Pt/C, which is attributed to the homogeneous distribution of the active sites in our catalysts.

  19. Production of templated carbon nano materials, carbon nanofibers and super capasitors

    OpenAIRE

    Sakintuna, Billur; Dumanlı, Ahu Gümrah; Dumanli, Ahu Gumrah; Nalbant, Aslı; Nalbant, Asli; Erden, Ayça; Erden, Ayca; Yürüm, Yuda; Yurum, Yuda

    2008-01-01

    i. Porous carbons are usually obtained via carbonization of precursors of natural or synthetic origin, followed by activation. To meet the requirements, a novel approach, the template carbonization method, has been proposed. Replication, the process of filling the external and / or internal pores of a solid with a different material, physically or chemically separating the resulting material from the template, is a technique that is widely used in microporosity and printing. Th...

  20. Superemission in vertically-aligned single-wall carbon nanotubes

    Science.gov (United States)

    Khmelinskii, Igor; Makarov, Vladimir

    2016-09-01

    Presently we used two samples of vertically aligned single-wall carbon nanotubes (VA SWCNTs) with parallelepiped geometry, sized 0.02 cm × 0.2 cm × 1.0 cm and 0.2 cm × 0.2 cm × 1.0 cm. We report absorption and emission properties of the VA SWCNTs, including strong anisotropy in both their absorption and emission spectra. We found that the emission spectra extend from the middle-IR range to the near-IR range, with such extended spectra being reported for the first time. Pumping the VA SWCNTs in the direction normal to their axis, superemission (SE) was observed in the direction along their axis. The SE band maximum is located at 7206 ± 0.4 cm-1. The energy and the power density of the superemission were estimated, along with the diffraction-limited divergence. At the pumping energy of 3 mJ/pulse, the SE energy measured by the detector was 0.74 mJ/pulse, corresponding to the total SE energy of 1.48 mJ/pulse, with the energy density of 18.5 mJ cm-2/pulse and the SE power density of 1.2 × 105 W cm-2/pulse. We report that a bundle of VA SWCNTs is an emitter with a relatively small divergence, not exceeding 3.9 × 10-3 rad. We developed a theoretical approach to explain such absorption and emission spectra. The developed theory is based on the earlier proposed SSH theory, which we extended to include the exchange interactions between the closest SWCNT neighbors. The developed theoretical ideas were implemented in a homemade FORTRAN code. This code was successfully used to calculate and reproduce the experimental spectra and to determine the SWCNT species that originate the respective absorption bands, with acceptable agreement between theory and experiment.

  1. Corn-shape carbon nanofibers with dense graphite synthesized by microwave plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Corn-shape carbon nanofibers (CCNFs) with metal-free tips have been synthesized by a microwave plasma-enhanced chemical-vapor deposition method using CH4 and H2 gasses. The CCNFs were grown on Ni/SiO2/Si and Ni/Mo mesh substrates using a bias-enhanced growth method, and they were analyzed by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The cones are composed of cylindrical pure graphite sheets, and have nanometer-sized tips and roots. The tips' apex angles of CCNFs have cone angles of 20 deg., 39 deg., and 60 deg. depending on the growth conditions such as substrate temperature

  2. Fabrication of ultra thin and aligned carbon nanofibres from electrospun polyacrylonitrile nanofibres

    Indian Academy of Sciences (India)

    Javed Rafique; Jie Yu; Xiaoxiong Zha; Khalid Rafique

    2010-10-01

    Ultra thin and aligned carbon nanofibres (CNFs) have been fabricated by heat treatment from aligned polyacrylonitrile (PAN) nanofibre precursors prepared by electrospinning. The alignment of the precursor nanofibres was achieved by using a modified electrospinning set up developed recently, where a tip collector was used to collect and align the nanofibres. The average diameter of the aligned CNFs is about 80 nm. The stabilization and carbonization behaviour were studied mainly based on the randomly oriented PAN nanofibres. The effects of stabilization and carbonization temperatures, temperature-increasing rates, and with and without substrates on the morphology and structure of the CNFs were investigated. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy were used to characterize the structure of the CNFs and thermogravimetric/differential temperature analysis was used to evaluate the thermal behaviour of PAN nanofibres.

  3. Growth of Aligned Carbon Nanotubes through Microwave Plasma Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    王升高; 汪建华; 马志斌; 王传新; 满卫东

    2005-01-01

    Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment.

  4. Carbon nanofiber reinforced epoxy matrix composites and syntactic foams - mechanical, thermal, and electrical properties

    Science.gov (United States)

    Poveda, Ronald Leonel

    The tailorability of composite materials is crucial for use in a wide array of real-world applications, which range from heat-sensitive computer components to fuselage reinforcement on commercial aircraft. The mechanical, electrical, and thermal properties of composites are highly dependent on their material composition, method of fabrication, inclusion orientation, and constituent percentages. The focus of this work is to explore carbon nanofibers (CNFs) as potential nanoscale reinforcement for hollow particle filled polymer composites referred to as syntactic foams. In the present study, polymer composites with high weight fractions of CNFs, ranging from 1-10 wt.%, are used for quasi-static and high strain rate compression analysis, as well as for evaluation and characterization of thermal and electrical properties. It is shown that during compressive characterization of vapor grown carbon nanofiber (CNF)/epoxy composites in the strain rate range of 10-4-2800 s-1, a difference in the fiber failure mechanism is identified based on the strain rate. Results from compression analyses show that the addition of fractions of CNFs and glass microballoons varies the compressive strength and elastic modulus of epoxy composites by as much as 53.6% and 39.9%. The compressive strength and modulus of the syntactic foams is also shown to generally increase by a factor of 3.41 and 2.96, respectively, with increasing strain rate when quasi-static and high strain rate testing data are compared, proving strain rate sensitivity of these reinforced composites. Exposure to moisture over a 6 month period of time is found to reduce the quasi-static and high strain rate strength and modulus, with a maximum of 7% weight gain with select grades of CNF/syntactic foam. The degradation of glass microballoons due to dealkalization is found to be the primary mechanism for reduced mechanical properties, as well as moisture diffusion and weight gain. In terms of thermal analysis results, the

  5. Facile Fabrication of Binder-free Metallic Tin Nanoparticle/Carbon Nanofiber Hybrid Electrodes for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    In this work, a Sn nanoparticle (NP)/carbon nanofiber (CNF) hybrid with unique structure has been designed and fabricated via electrospinning and subsequent heat treatment. The cell assembled by the binder-free Sn NP/CNF hybrid demonstrates an effective capacity (46 mAh g−1 at 200 mA g−1 after 200 cycles) with high coulombic efficiency (up to 99.8%), suggesting a facile strategy for the scalable fabrication of electrochemically stable electrodes for LIBs. For understanding the electrochemical behaviors of the metallic Sn and carbon nanofibers in the lithiation/delithiation process, in situ transmission electron microscopy was applied to study the single hybrid structure. In the first charge/discharge process, real-time size variation of the Sn NP and CNFs was mainly focused, suggesting a two-step lithiation process in the metallic Sn NP. Structural characterization also indicates an irreversible delithiation in a single Sn NP/CNF hybrid structure. The electrochemical performance based on influence of carbonization temperature has also been discussed. The results and fundamental understanding of the lithiation/delithiation in the Sn-based hybrid anodes enables the communities to design flexible high-performance electrodes based on metallic active materials in a rational way

  6. Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits.

    Science.gov (United States)

    Dahm, Matthew M; Schubauer-Berigan, Mary K; Evans, Douglas E; Birch, M Eileen; Fernback, Joseph E; Deddens, James A

    2015-07-01

    Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P 1 μg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF

  7. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles.

    Science.gov (United States)

    Numnuam, Apon; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-06-01

    A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of -0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0-400 μmol L(-1), with a very low limit of detection of 1.0 μmol L(-1) (s/n = 3). The operational stability of the uricase/Chi-CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis-Menten constant of 0.21 mmol L(-1) indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P > 0.05). PMID:24718436

  8. Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition

    International Nuclear Information System (INIS)

    The van der Waals agglomeration of carbon nanofibers (CNFs) and the weight difference and poor wettability between CNFs and aluminum hinder the fabrication of dense CNF-reinforced aluminum matrix composites with superior properties. In this study, to improve this situation, CNFs were coated with aluminum by a simple and low-cost in situ chemical vapor deposition (in situ CVD). Iodine was used to accelerate the transport of aluminum atoms. The coating layer formed by the in situ CVD was characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Fourier transform-infrared spectroscopy, and x-ray photoelectron spectroscopy. The results confirmed that the CNFs were successfully coated with aluminum. The composites were fabricated to investigate the effect of the aluminum coating formed on the CNFs. The dispersion of CNFs, density, Vickers micro-hardness and thermal conductivity of the composites fabricated by powder metallurgy were improved. Pressure-less infiltration experiments were conducted to fabricate composites by casting. The results demonstrated that the wettability and infiltration were dramatically improved by the aluminum coating layer on CNFs. The aluminum coating formed by the in situ CVD technique was proved to be effective for the fabrication of CNF-reinforced aluminum matrix composites. (paper)

  9. Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition

    Science.gov (United States)

    Ogawa, Fumio; Masuda, Chitoshi

    2015-01-01

    The van der Waals agglomeration of carbon nanofibers (CNFs) and the weight difference and poor wettability between CNFs and aluminum hinder the fabrication of dense CNF-reinforced aluminum matrix composites with superior properties. In this study, to improve this situation, CNFs were coated with aluminum by a simple and low-cost in situ chemical vapor deposition (in situ CVD). Iodine was used to accelerate the transport of aluminum atoms. The coating layer formed by the in situ CVD was characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Fourier transform-infrared spectroscopy, and x-ray photoelectron spectroscopy. The results confirmed that the CNFs were successfully coated with aluminum. The composites were fabricated to investigate the effect of the aluminum coating formed on the CNFs. The dispersion of CNFs, density, Vickers micro-hardness and thermal conductivity of the composites fabricated by powder metallurgy were improved. Pressure-less infiltration experiments were conducted to fabricate composites by casting. The results demonstrated that the wettability and infiltration were dramatically improved by the aluminum coating layer on CNFs. The aluminum coating formed by the in situ CVD technique was proved to be effective for the fabrication of CNF-reinforced aluminum matrix composites.

  10. Electrocatalytic oxygen evolution reaction at a FeNi composite on a carbon nanofiber matrix in alkaline media

    Institute of Scientific and Technical Information of China (English)

    Xianghua An; Dongyoon Shin; Joey D. Ocon; Jae Kwang Lee; Young-il Son; Jaeyoung Lee

    2014-01-01

    Non-noble metals such as Fe and Ni have comparable electrocatalytic activity and stability to that of Ir and Ru in an oxygen evolution reaction (OER). In this study, we synthesized carbon nanofibers with embedded FeNi composites (FeNi-CNFs) as OER electrocatalysts by a facile route comprising electrospinning and the pyrolysis of a mixture of metal precursors and a polymer solution. FeNi-CNFs demonstrated catalytic activity and stability that were better than that of 20 wt%Ir on Vulcan carbon black in oxidizing water to produce oxygen in an alkaline media. Physicochemical and electrochemical characterization revealed that Fe and Ni had synergistic roles that enhanced OER activity by the uniform formation and widening of pores in the carbon structure, while the CNF matrix also contributed to the increased stability of the catalyst.

  11. Controlled growth of vertically aligned carbon nanotubes on metal substrates

    Science.gov (United States)

    Gao, Zhaoli

    Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their

  12. Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wan-Kuen, E-mail: wkjo@knu.ac.kr; Kang, Hyun-Jung

    2015-02-11

    Highlights: • A multiwalled carbon nanotube/titania composite nanofiber (MTCN) was synthesized. • Photocatalytic function of visible-activated MTCN was examined using tubular reactor. • MTCNs could be effectively used for the purification of sub-ppm gas-phase limonene. • The experimental results agreed well with Langmuir–Hinshelwood model. • Certain gas-phase intermediates were determined, but not for adsorbed intermediates. - Abstract: This study was conducted under visible-light exposure to investigate the photocatalytic characteristics of a multiwalled carbon nanotube/titania (TiO{sub 2}) composite nanofiber (MTCN) using a continuous-flow tubular reactor. The MTCN was prepared by a sol–gel process, followed by an electrospinning technique. The photocatalytic decomposition efficiency for limonene on the MTCN was higher than those obtained from reference TiO{sub 2} nanofibers or P25 TiO{sub 2}, and the experimental results agreed well with the Langmuir–Hinshelwood model. The CO concentrations generated during the photocatalysis did not reach levels toxic to humans. The mineralization efficiency for limonene on the MTCN was also higher than that for P25 TiO{sub 2}. Moreover, the mineralization efficiency obtained using the MTCN increased steeply from 8.3 to 91.1% as the residence time increased from 7.8 to 78.0 s, compared to the increase in the decomposition efficiencies for limonene from 90.1 to 99.9%. Three gas-phase intermediates (methacrolein, acetic acid, and limonene oxide) were quantitatively determined for the photocatalysis for limonene over the MTCN, whereas only two intermediates (acetic acid and limonene oxide) were quantitatively determined over P25 TiO{sub 2}. Other provisional gas-phase intermediates included cyclopropyl methyl ketone and 2-ethylbutanal.

  13. Woven Glass Fiber Composites with Aligned Carbon Nanotube Sheet Interlayers

    OpenAIRE

    Hardik Bhanushali; Philip D. Bradford

    2016-01-01

    This investigation describes the design, fabrication, and testing of woven glass fiber reinforced epoxy matrix laminates with aligned CNT sheets integrated between plies in order to improve the matrix dominated through thickness properties such as the interlaminar fracture toughness at ply interfaces. Using aligned CNT sheets allows for a concentration of millimeter long CNTs at the most likely point of laminate failure. Mode I and Mode II interlaminar fracture toughness of various CNT modifi...

  14. Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibres

    OpenAIRE

    Yu, Hana; Longana, Marco L; Jalalvand, Meisam; WISNOM, Michael R.; Potter, Kevin D

    2015-01-01

    The aim of this research is to manufacture intermingled hybrid composites using aligned discontinuous fibres to achieve pseudo-ductility. Hybrid composites, made with different types of fibres that provide a balanced suite of modulus, strength and ductility, allow avoiding catastrophic failure that is a key limitation of composites. Two different material combinations of high strength carbon/E-glass and high modulus carbon/E-glass were selected. Several highly aligned and well dispersed short...

  15. Oriented nanofibers embedded in a polymer matrix

    Science.gov (United States)

    Barrera, Enrique V. (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Lozano, Karen (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  16. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications

    International Nuclear Information System (INIS)

    This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes. - Graphical abstract: A novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode is synthesized for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers are grown on activated carbon microfibers by

  17. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Amit R. [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); Saurakhiya, Neelam; Deva, Dinesh [DST Unit on Nanosciences, Kanpur, 208016 (India); Sharma, Ashutosh [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); DST Unit on Nanosciences, Kanpur, 208016 (India); Verma, Nishith, E-mail: nishith@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); Center for Environmental Science and Engineering, Kanpur 208016 (India)

    2013-10-15

    This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes. - Graphical abstract: A novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode is synthesized for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers are grown on activated carbon microfibers by

  18. Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition

    International Nuclear Information System (INIS)

    The interaction between the main operational variables during the growth of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) by catalytic chemical vapor deposition is studied. In this contribution, we report the influence of the carbon source (i.e. acetylene, ethylene and propylene), the reaction/activation temperature, the rate of heating, the reaction time, the metal loading, and the metallic nanoparticle size and distribution on the growth and alignment of carbon nanotubes. Fe/Al thin films deposited onto silicon samples by electron-beam evaporation are used as catalyst. A phenomenological growth mechanism is proposed to explain the interaction between these multiple factors. Three different outcomes of the synthesis process are found: i) formation of forests of non-aligned, randomly oriented multi-walled carbon nanotubes, ii) growth of vertically aligned tubes with a thin and homogeneous carbonaceous layer on the top, and iii) formation of vertically aligned carbon nanotubes. This carbonaceous layer (ii) has not been reported before. The main requirements to promote vertically aligned carbon nanotube growth are determined. (paper)

  19. Growth and Characterization of Carbon Nanofibers on Fe/C-Fiber Textiles Coated by Deposition-Precipitation and Dip-Coating.

    Science.gov (United States)

    Lee, Sang-Won; Lee, Chang-Seop

    2015-09-01

    This research was conducted to synthesize carbon nanofibers on C-fiber textiles, by thermal chemical vapor deposition (CVD) using Fe catalyst. The substrate, which was a carbon textile consisting of non-woven carbon fibers and attached graphite particles, was oxidized by nitric acid, before the deposition process. Hydroxyl groups were created on the C-fiber textile, due to the oxidization step. Fe(III) hydroxide was subsequently deposited on the oxidized surface of the C-fiber textile. To deposit ferric particles, two different methods were tested: (i) deposition-precipitation, and (ii) dip-coating. For the experiments using both types of catalyst deposition, the weight ratio of Fe to C-fiber textile was also varied. Ferric particles were reduced to iron after deposition, by using H2/N2 gas, and carbon nanofibers (CNFs) were grown by flowing ethylene gas. Properties of carbon nanofibers created like this were analyzed through Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), N2-sorption (BET), X-ray Diffraction (XRD), X-ray Photoelectron Spectoscopy (XPS), Thermal analysis (TG/DTA), and Raman spectroscopy. In the case of the deposition-precipitation method, the results show that the diameter of carbon nanofibers grew up to 40-60 nm and 30-55 nm, at which the weight ratios of Fe catalyst to C-fiber textiles were 1:30 and 1:70, respectively. When Fe particles were deposited by the dip-coating method, the diameter of carbon nanofibers grew up to 40-60 nm and 25-30 nm, for the ratios of Fe catalyst to C-fiber textiles of 1:10 and 1:30, respectively. PMID:26716329

  20. Aligned Carbon Nanotubes as Porous Materials for Selective Gas Adsorption

    OpenAIRE

    Rahimi, Mahshid

    2016-01-01

    Carbon dioxide and sulfur dioxide are environmentally noxious components of flue and exhaust gases. Hence, new solutions for carbon dioxide and sulfur dioxide sequestration and storage are highly important. We used grand-canonical Monte Carlo simulations to understand the adsorption of carbon dioxide and sulfur dioxide in bundles of regular parallel arrays of carbon nanotubes of different tube diameters and different intertube distances. Such carbon nanotube arrays have recently become availa...

  1. Facile electrospinning preparation of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers as bifunctional electrocatalyst

    Science.gov (United States)

    Wang, Zhuang; Zuo, Pengjian; Fan, Liquan; Han, Jianan; Xiong, Yueping; Yin, Geping

    2016-04-01

    A novel electrochemical catalyst of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers (Cosbnd Nsbnd P-CNFs) is prepared by a facile and cost-effective electrospinning technique. Excellent features of the porous carbon nanofibers with large amounts of Co atoms, N/P-doping effect, abundant pyridinic-N and Cosbnd Nx clusters as catalytic active sites, and the advantages of the structure and composition result in a high catalytic efficiency. In alkaline or acidic media, Cosbnd Nsbnd P-CNFs exhibits remarkable electrocatalytic activities and kinetics for oxygen reduction reaction (ORR), superior methanol tolerance and stability, and a similar four-electron pathway. In addition, Cosbnd Nsbnd P-CNFs also shows excellent performance for hydrogen evolution reaction (HER), offering a low onset potential of -0.216 V and a stable current density of 10 mA cm-2 at potential of -0.248 V. The mechanism of ORR and HER catalytic active site arises from the doping of N/P atoms in the Co-based CNFs, which is responsible for the excellent electrocatalytic performance. Due to the excellent catalytic efficiencies, Cosbnd Nsbnd P-CNFs act as a promising catalyst material for fuel cells and water splitting technologies.

  2. Processing, wear, and mechanical properties of polyethylene composites prepared with pristine and organosilane-treated carbon nanofibers

    Science.gov (United States)

    Wood, Weston

    Polymers and nanocomposites have been increasingly used for tribological applications over the last few decades. In particular, ultrahigh molecular weight polyethylene (UHMWPE) is a high performance polymer with excellent strength, toughness, and wear resistance. Because of these properties, UHMWPE is an ideal material for a variety of applications including body armor, components of sporting goods such as skies and snowboards, and liners in total joint replacement. Though the toughness and wear resistance far exceed that of most other polymeric materials, there is a high demand for improving the tribological and mechanical properties of UHMWPE for many applications. The approach used in this work for improving such properties is through nanocomposite technology, specifically via the incorporation of carbon nanofibers. In order to obtain the full potential of nanocomposite technology, two critical issues need to be addressed: appropriate interactions between the filler and matrix and proper dispersion of the nano-reinforcement. These critical issues are particularly important for UHMWPE nanocomposites in that UHMWPE is an extremely viscous polymer and thus cannot be processed conventionally, typically resulting in dispersion issues far worse than that of other composite systems. Furthermore, UHMWPE is non-polar, so interactions between filler and matrix will be limited to Van der Waals forces for untreated nanofillers. Therefore, the research presented aims at solving these issues by using a paraffin-assisted processing method and applying appropriate surface treatment to the carbon nanofibers. Under optimized processing conditions, wear and mechanical properties of UHMWPE composites can be substantially improved.

  3. Quasi one dimensional transport in individual electrospun composite nanofibers

    International Nuclear Information System (INIS)

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube αbulk ∼ 0.06 which agrees with theoretical predictions

  4. Synthesis, Optimization, and Performance Demonstration of Electrospun Carbon Nanofiber-Carbon Nanotube Composite Sorbents for Point-of-Use Water Treatment.

    Science.gov (United States)

    Peter, Katherine T; Vargo, John D; Rupasinghe, Thilini P; De Jesus, Aribet; Tivanski, Alexei V; Sander, Edward A; Myung, Nosang V; Cwiertny, David M

    2016-05-11

    We developed an electrospun carbon nanofiber-carbon nanotube (CNF-CNT) composite with optimal sorption capacity and material strength for point-of-use (POU) water treatment. Synthesis variables including integration of multiwalled carbon nanotubes (CNTs) and macroporosity (via sublimation of phthalic acid), relative humidity (20 and 40%), and stabilization temperature (250 and 280 °C) were used to control nanofiber diameter and surface area (from electron microscopy and BET isotherms, respectively), surface composition (from XPS), and strength (from AFM nanoindentation and tensile strength tests). Composites were then evaluated using kinetic, isotherm, and pH-edge sorption experiments with sulfamethoxazole (log Kow = 0.89) and atrazine (log Kow = 2.61), representative micropollutants chosen for their different polarities. Although CNFs alone were poor sorbents, integration of CNTs and macroporosity achieved uptake comparable to granular activated carbon. Through reactivity comparisons with CNT dispersions, we propose that increasing macroporosity exposes the embedded CNTs, thereby enabling their role as the primary sorbent in nanofiber composites. Because the highest capacity sorbents lacked sufficient strength, our optimal formulation (polyacrylonitrile 8 wt %, CNT 2 wt %, phthalic acid 2.4 wt %; 40% relative humidity; 280 °C stabilization) represents a compromise between strength and performance. This optimized sorbent was tested with a mixture of ten organic micropollutants at environmentally relevant concentrations in a gravity-fed, flow-through filtration system, where removal trends suggest that both hydrophobic and specific binding interactions contribute to micropollutant uptake. Collectively, this work highlights the promise of CNF-CNT filters (e.g., mechanical strength, ability to harness CNT sorption capacity), while also prioritizing areas for future research and development (e.g., improved removal of highly polar micropollutants, sensitivity to

  5. Periodically striped films produced from super-aligned carbon nanotube arrays

    International Nuclear Information System (INIS)

    We report a novel way to draw films from super-aligned carbon nanotube arrays at large drawing angles. The obtained super-aligned carbon nanotube films have a periodically striped configuration with alternating thinner and thicker film sections, and the width of the stripes is equal to the height of the original arrays. Compared with ordinary uniform films, the striped films provide a better platform for understanding the mechanism of spinning films from arrays because carbon nanotube junctions are easily observed and identified at the boundary of the stripes. Further studies show that the carbon nanotube junctions are bottleneck positions for thermal conduction and mechanical strength of the film, but do not limit its electrical conduction. These films can be utilized as striped and high-degree polarized light emission sources. Our results will be valuable for new applications and future large-scale production of tunable super-aligned carbon nanotube films.

  6. Aligned Carbon Nano tubes Array by DC Glow Plasma Etching for Super capacitor

    International Nuclear Information System (INIS)

    To open the end of carbon nano tubes and make these ends connect with functional carboxyl group, aligned carbon nano tubes (CNTs) arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nano tubes array as electrode materials to build super capacitor, we found that the capacity (32.2 F/g) increased significantly than that of pure carbon nano tubes (6.7 F/g)

  7. Aligned Carbon Nanotubes Array by DC Glow Plasma Etching for Supercapacitor

    OpenAIRE

    Yongfeng Luo; Xi Li; Zhiqiang Gong; Zhongzhi Sheng; Xiaofang Peng; Qunying Mou; Mengdong He; Xianjun Li; Hong Chen

    2013-01-01

    To open the end of carbon nanotubes and make these ends connect with functional carboxyl group, aligned carbon nanotubes (CNTs) arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nanotubes array as electrode materials to build supercapacitor, we found that the capacity (32.2 F/g) increased significantly than that of pure carbon nanotubes (6.7 F/g).

  8. Macroscopic Ensembles of Aligned Carbon Nanotubes in Bubble Imprints Studied by Polarized Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Shota Ushiba

    2014-01-01

    Full Text Available We study the alignment of single-wall carbon nanotubes (SWCNTs in bubble imprints through polarized Raman microscopy. A hemispherical bubble containing SWCNTs is pressed against a glass substrate, resulting in an imprint of the bubble membrane with a coffee ring on the substrate. We find that macroscopic ensembles of aligned SWCNTs are obtained in the imprints, in which there are three patterns of orientations: (i azimuthal alignment on the coffee ring, (ii radial alignment at the edge of the membrane, and (iii random orientation at the center of the membrane. We also find that the alignment of SWCNTs in the imprints can be manipulated by spinning bubbles. The orientation of SWCNTs on the coffee ring is directed radially, which is orthogonal to the case of unspun bubbles. This approach enables one to align SWCNTs in large quantities and in a short time, potentially opening up a wide range of CNT-based electronic and optical applications.

  9. Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuanhe; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Li, Xiang; Liu, Yongfeng; Pan, Hongge, E-mail: hgpan@zju.edu.cn

    2014-09-01

    Highlights: • Mesohollow and microporous carbon fibers were prepared via electrospinning and carbonization. • Sulfur (S) incorporated into the porous fibers by thermal heating in 60 wt.%, forming composite. • S fills fully in the micropores and partially in the mesohollows of the carbon fibers. • The composite shows high capacity and capacity retention as cathode material for Li–S batteries. • Mesohollow and microporous structure is effective in improving the property of S cathode. - Abstract: Mesohollow and microporous carbon nanofibers (MhMpCFs) were prepared by a coaxial electrospinning with polyacrylonitrile (PAN) and polymethylmethacrylate (PMMA) as outer and inner spinning solutions followed by a carbonization. The carbon fibers were thermal treated with sublimed sulfur to form S/MhMpCFs composite, which was used as cathode material for lithium–sulfur batteries. Electrochemical study shows that the S/MhMpCFs cathode material provides a maximum capacity of 815 mA h/g after several cycles of activation, and the capacity retains 715 mA h/g after 70 cycles, corresponding to a retention of 88%. The electrochemical property of the S/MhMpCFs composite is much superior than the S-incorporated solid carbon fibers prepared from electrospinning of single PAN. The mechanism of the enhanced electrochemical property of the S/MhMpCFs composite is discussed.

  10. Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes.

    Science.gov (United States)

    Iqbal, Nousheen; Wang, Xianfeng; Ahmed Babar, Aijaz; Yu, Jianyong; Ding, Bin

    2016-08-15

    Controllable synthesis of carbon nanofibers (CNFs) with hierarchical porosity and high flexibility are extremely desirable for CO2 adsorption and energy storage applications. Herein, we report a nickel cobaltite/carbon nanotubes doped CNFs (NiCo2O4/CNTs CNFs) mesoporous membrane that shows well-developed flexibility, tailored pore structure, hydrophobic character, and high stability. Ascribed to these unique features, NiCo2O4/CNTs CNFs membrane shows high CO2 capture of 1.54mmol/g at 25°C and 1.0bar, and electrochemical measurements for supercapacitors exhibit good performance with specific capacitances of 220F/g (in 1M KOH) at a current density of 1A/g. The successful synthesis of such hybrid membrane provides new insight into development of various multifunctional applications. PMID:27209394

  11. Glutathione modified screen-printed carbon nanofiber electrode for the voltammetric determination of metal ions in natural samples.

    Science.gov (United States)

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2016-08-01

    This work reports the development of a glutathione modified electrode via electrografting on a screen-printed carbon nanofiber substrate (GSH-SPCNFE). GSH-SPCNFE was compared to a classical screen-printed carbon electrode modified with glutathione (GSH-SPCE) for the simultaneous voltammetric determination of Cd(II) and Pb(II). Their electrochemical characterization and analytical performance suggest that SPCNFE could be a much better support for GSH immobilization. The applicability of GSH-SPCNFE for the determination of low concentration levels of Pb(II) and Cd(II) ions in environmental samples was successfully tested in a certified wastewater reference material by means of stripping voltammetry with a very high reproducibility and good trueness. PMID:27216650

  12. Direct synthesis of mesostructured carbon nanofibers decorated with silver-nanoparticles as a multifunctional membrane for water treatment

    Science.gov (United States)

    Aboueloyoun Taha, Ahmed

    2015-12-01

    One-dimensional (1D) porous carbon nanofibers (CNFs) decorated by silver (Ag) nanoparticles (NPs) were prepared using a one-pot/self-template synthesis strategy by combining electrospinning and carbonization methods. The characterization results revealed that AgNPs were homogenously distributed along the CNFs and possessed a relatively uniform nano-size of about 12 nm. The novel membrane distinctively displayed enhanced photocatalytic activity under visible-light irradiation. The membrane exhibited excellent dye degradation and bacteria disinfection in batch experiments. The high photocatalytic activity can be attributed to the highly accessible surface areas, good light absorption capability, and high separation efficiency of photogenerated electron-hole pairs. The as-prepared membranes can be easily recycled because of their 1D property.

  13. Improving interfacial adhesion with epoxy matrix using hybridized carbon nanofibers containing calcium phosphate nanoparticles for bone repairing.

    Science.gov (United States)

    Gao, Xukang; Lan, Jinle; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-04-01

    Hybridized carbon nanofibers containing calcium phosphate nanoparticles (CNF/CaP) were investigated as osteocompatible nanofillers for epoxy resin. The CNF/CaP was produced by electrospinning mixture solution of polyacrylonitrile and CaP precursor sol-gel, followed by preoxidation and carbonization. The continuous and long CNF/CaP was ultrasonically chopped, mixed into epoxy resin and thermo-cured. Compared to pure CNFs with similar ultrasonication treatment, the shortened CNF/CaP reinforced composites demonstrated significant enhancement in flexural properties of epoxy composites, benefiting from the improved interfacial adhesion between CNF/CaP and resin matrix. The resulting composites also displayed good biocompatibility and sustained calcium ion release, which categorized them as promising materials for bone repairing. PMID:26838838

  14. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.

    Science.gov (United States)

    Tsang, Melissa; Chun, Young Wook; Im, Yeon Min; Khang, Dongwoo; Webster, Thomas J

    2011-07-01

    Polyurethane (PU) is a versatile elastomer that is commonly used in biomedical applications. In turn, materials derived from nanotechnology, specifically carbon nanofibers (CNFs), have received increasing attention for their potential use in biomedical applications. Recent studies have shown that the dispersion of CNFs in PU significantly enhances composite nanoscale surface roughness, tensile properties, and thermal stability. Although there have been studies concerning normal primary cell functions on such nanocomposites, there have been few studies detailing cancer cell responses. Since many patients who require bladder transplants have suffered from bladder cancer, the ideal bladder prosthetic material should not only promote normal primary human urothelial cell (HUC) function, but also inhibit the return of bladder cancerous cell activity. This study examined the correlation between transitional (UMUC) and squamous (or SCaBER) urothelial carcinoma cells and HUC on PU:CNF nanocomposites of varying PU and CNF weight ratios (from pure PU to 4:1 [PU:CNF volume ratios], 2:1, 1:1, 1:2, and 1:4 composites to pure CNF). Composites were characterized for mechanical properties, wettability, surface roughness, and chemical composition by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and goniometry. The adhesion and proliferation of UMUC and SCaBER cancer cells were assessed by MTS assays. Cellular responses were further quantified by measuring the amounts of nuclear mitotic protein 22 (NMP-22), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha. Results demonstrated that both UMUC and SCaBER cell proliferation rates decreased over time on substrates with increased CNF in PU. In addition, with the exception of VEGF from UMUC (which was the same across all materials), composites containing the most CNF activated cancer cells (UMUC and SCaBER) the least, as shown by

  15. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  16. Woven Glass Fiber Composites with Aligned Carbon Nanotube Sheet Interlayers

    Directory of Open Access Journals (Sweden)

    Hardik Bhanushali

    2016-01-01

    Full Text Available This investigation describes the design, fabrication, and testing of woven glass fiber reinforced epoxy matrix laminates with aligned CNT sheets integrated between plies in order to improve the matrix dominated through thickness properties such as the interlaminar fracture toughness at ply interfaces. Using aligned CNT sheets allows for a concentration of millimeter long CNTs at the most likely point of laminate failure. Mode I and Mode II interlaminar fracture toughness of various CNT modified samples were investigated using double cantilever beam (DCB and end notched flexure (ENF experiments, respectively. Short beam strength (SBS and in-plane tensile properties of the CNT modified samples were also investigated. Moderate improvement was observed in Mode I and Mode II fracture toughness at crack initiation when aligned CNT sheets with a basis weight of 0.354 g/m2 were used to modify the ply interface. No compromise in the in-plane mechanical properties of the laminate was observed and very little improvement was observed in the shear related short beam strength of the CNT modified laminates as compared to the control samples. Integration of aligned CNT sheets into the composite laminate imparted in-plane and through thickness electrical properties into the nonconductive glass fiber reinforced epoxy composite laminates.

  17. Electrospun Nanofibers Applications in Dentistry

    OpenAIRE

    Seo, Seog-Jin; Kim, Hae-Won; Lee, Jung-Hwan

    2016-01-01

    Nanofibrous structures exhibit many interesting features, such as high surface area and surface functionalization and porosity in the range from submicron to nanoscale, which mimics the natural extracellular matrix. In particular, electrospun nanofibers have gained great attention in the field of tissue engineering due to the ease of fabrication and tailorability in pore size, scaffold shape, and fiber alignment. For the reasons, recently, polymeric nanofibers or bioceramic nanoparticle-incor...

  18. Imaging, Spectroscopic, Mechanical and Biocompatibility Studies of Electrospun Tecoflex(®) EG 80A Nanofibers and Composites Thereof Containing Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Macossay, Javier; Sheikh, Faheem A; Cantu, Travis; Eubanks, Thomas M; Salinas, M Esther; Farhangi, Chakavak S; Ahmad, Hassan; Hassan, M Shamshi; Khil, Myung-Seob; Maffi, Shivani K; Kim, Hern; Bowlin, Gary L

    2014-12-01

    The present study discusses the design, development and characterization of electrospun Tecoflex(®) EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C-N and N-H bonds in polyurethanes are responsible for the interactions with MWCNTs. Furthermore, tensile testing indicated an increase in the Young's modulus of the nanofibers as the MWCNTs concentration was increased. Finally, NIH 3T3 fibroblasts were seeded on the obtained nanofibers, demonstrating cell biocompatibility and proliferation. Therefore, the results indicate the successful formation of polyurethane nanofibers with enhanced mechanical properties, and demonstrate their biocompatibility, suggesting their potential application in biomedical areas. PMID:25435600

  19. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity

    Science.gov (United States)

    Kong, Junhua; Liu, Zhaolin; Yang, Zhengchun; Tan, Hui Ru; Xiong, Shanxin; Wong, Siew Yee; Li, Xu; Lu, Xuehong

    2012-01-01

    A carbon/SnO2/carbon core/shell/shell hybrid nanofibrous mat was successfully prepared via single-spinneret electrospinning followed by carbonization and hydrothermal treatment. The morphology and structure of carbon/SnO2/carbon hybrid nanofibers were characterized by field-emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, wide-angle X-ray diffraction and X-ray photoelectron spectroscopy, and their electrochemical properties were studied as an anode in lithium ion batteries (LIBs). It is shown that the designed hybrid nanofibrous mat exhibits excellent electrochemical properties, including high reversible capacity with high columbic efficiency and impressive rate capacity. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by both the carbon core and deposited carbon skin. Furthermore, the embedded and de-aggregated SnO2 nanoparticles in the carbon phase, which are less than 10 nm in size, provide large numbers of reaction sites for lithium ions and ensure complete alloying with them.A carbon/SnO2/carbon core/shell/shell hybrid nanofibrous mat was successfully prepared via single-spinneret electrospinning followed by carbonization and hydrothermal treatment. The morphology and structure of carbon/SnO2/carbon hybrid nanofibers were characterized by field-emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, wide-angle X-ray diffraction and X-ray photoelectron spectroscopy, and their electrochemical properties were studied as an anode in lithium ion batteries (LIBs). It is shown that the designed hybrid nanofibrous mat exhibits excellent electrochemical properties, including high reversible capacity with high columbic efficiency and impressive rate capacity. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion

  20. Si-Carbon Composite Nanofibers with Good scalability and Favorable Architecture for Highly Reversible Lithium Storage and Superb Kinetics

    International Nuclear Information System (INIS)

    We demonstrate a simple electrospinning for preparing Si-carbon composite Nanofiber (NF) in which aciniform aggregates of Si particles are well encased by amorphous carbon. The Si-carbon composite NF exhibit a significantly improved electrochemical performance with a high specific capacity of 1250 mAh·g−1 and a superior cycling performance during 50 cycles at a rate of 0.2 C. More importantly, Si-carbon composite NF maintain about 70% of initial capacity at 0.2 C and an excellent cycling stability even at 25 times higher current density compared to the initial condition, proving that it has superb kinetics compared to ever reported Si or SiOx materials. The electrochemical superiority of Si-carbon composite NF can be attributed to amorphous carbon framework accommodating the inherent volume expansion of Si during lithiation as well as the enlarged contact area between active materials and conducting agent attributed to the morphological characteristics of its one dimensional (1D) nanostructure

  1. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ian, E-mail: ian.holt@rjah.nhs.uk [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Gestmann, Ingo, E-mail: Ingo.Gestmann@fei.com [FEI Europe B.V., Achtseweg Noord 5, 5651 Eindhoven (Netherlands); Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Glyndwr University, Plas Coch, Mold Rd, Wrexham LL11 2AW (United Kingdom)

    2013-10-15

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth.

  2. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    International Nuclear Information System (INIS)

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth

  3. Mechanical and electromagnetic interference shielding Properties of poly(vinyl alcohol)/graphene and poly(vinyl alcohol)/multi-walled carbon nanotube composite nanofiber mats and the effect of Cu top-layer coating.

    Science.gov (United States)

    Fujimori, Kazushige; Gopiraman, Mayakrishnan; Kim, Han-Ki; Kim, Byoung-Suhk; Kim, Ick-Soo

    2013-03-01

    We report the mechanical property and electromagnetic interference shielding effectiveness (EMI SE) of poly(vinyl alcohol) (PVA)/graphene and PVA/multi-walled carbon nanotube (MWCNT) composite nanofibers prepared by electrospinning. The metal (Cu) was deposited on the resultant PVA composite nanofibers using metal deposition technique in order to improve the mechanical properties and EMI shielding properties. The resulting PVA composite nanofibers and Cu-deposited corresponding nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and wide angle X-ray diffraction (WAXD). Tensile tests were performed on the PVA/graphene and PVA/MWCNT composite nanofibers. The tensile strength of the PVA/graphene and PVA/MWCNT composite nanofibers was found to be 19.2 +/- 0.3 MPa at graphene content - 6.0 wt% and 12.2 +/- 0.2 MPa at MWCNT content - 3.0 wt%, respectively. The EMI SE of the Cu-deposited PVA/graphene composite nanofibers was significantly improved compared to pure PVA/graphene composite nanofibers, and also depended on the thickness of Cu metal layer deposited on the PVA composite nanofibers. PMID:23755586

  4. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.

    Science.gov (United States)

    Dirican, Mahmut; Lu, Yao; Ge, Yeqian; Yildiz, Ozkan; Zhang, Xiangwu

    2015-08-26

    Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle). PMID:26252051

  5. Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)

    International Nuclear Information System (INIS)

    Composite nanofiber sheets containing multiwalled carbon nanotubes and cobalt chloride dispersed in PAN (polyacrylonitrile) were produced by an electrospinning technique. The synthesized PAN/CoCl2/CNTs composite nanofiber was used as the catalyst for hydrogen production from the hydrolysis of sodium borohydride. FT-IR characterization showed that the pretreated CNTs possess different organic functional groups which help improve the compatibility between CNTs and PAN organic polymer. SEM (scanning electron microscopy), TEM (transmission electron microscopy) and EDX (energy-dispersive X-ray technique) were used to characterize the composite nanofiber and it was found that CNTs can be coaxially dispersed into the PAN nanofiber. During the hydrolysis of NaBH4, this PAN/CoCl2/CNTs composite nanofiber exhibited higher catalytic activity compared to the composite without CNTs doping. Kinetic analysis of NaBH4 hydrolysis shows that the reaction of NaBH4 hydrolysis based on this catalyst can be ascribed to the first-order reaction and the activation energy of the catalyst was approximately 52.857 kJ/mol. Meanwhile, the composite nanofiber catalyst shows excellent stability and reusability in the recycling experiment. - Highlights: • Composite nanofiber sheets were prepared via electrospinning. • PAN (polyacrylonitrile)/CoCl2 (cobalt chloride)/CNTs (carbon nanotubes) nanofiber was used as the catalyst for hydrogen production. • CNTs can be coaxially dispersed into the PAN nanofiber. • PAN/CoCl2/CNTs composite nanofiber exhibited higher catalytic activity. • The composite nanofiber catalyst shows excellent stability and reusability

  6. Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes into Dense, Aligned Rafts

    CERN Document Server

    Wu, Justin; Antaris, Alexander; Choi, Charina L; Xie, Liming; Wu, Yingpeng; Diao, Shuo; Chen, Changxin; Chen, Yongsheng; Dai, Hongjie

    2013-01-01

    Single-walled carbon nanotubes are promising nanoelectronic materials but face long-standing challenges including production of pure semiconducting SWNTs and integration into ordered structures. Here, highly pure semiconducting single-walled carbon nanotubes are separated from bulk materials and self-assembled into densely aligned rafts driven by depletion attraction forces. Microscopy and spectroscopy revealed a high degree of alignment and a high packing density of ~100 tubes/micron within SWNT rafts. Field-effect transistors made from aligned SWNT rafts afforded short channel (~150 nm long) devices comprised of tens of purely semiconducting SWNTs derived from chemical separation within a < 1 micron channel width, achieving unprecedented high on-currents (up to ~120 microamperes per device) with high on/off ratios. The average on-current was ~ 3-4 microamperes per tube. The results demonstrated densely aligned high quality semiconducting SWNTs for integration into high performance nanoelectronics.

  7. Preparation and characterization of aligned carbon nanotubes/polylactic acid composite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kong Yuxia; Yuan Jie [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Qiu Jun, E-mail: qiujun@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials of Education of Ministry, Shanghai 201804 (China)

    2012-07-01

    Aligned functionalized multiwalled carbon nanotubes/polylactic acid (MWNTs-PCL/PLA) composite fibers were successfully prepared by electrospinning processing. The MWNTs bonded with the polycaprolactone chains exhibited excellent uniform dispersion in PLA solution by comparing with the acid-functionalized MWNTs and amino-functionalized MWNTs. Optical microscopy was used to study the aligned degree of the fibers and to investigate the influences of the electrodes distance on the alignment and structure of the fibers, and results showed that the best quality of aligned fibers with dense structure and high aligned degree were obtained at an electrodes distance of 3 cm. Moreover, the MWNTs embedded inside the MWNTs-PCL/PLA fibers displayed well orientation along the axes of the fibers, which was demonstrated by field emission scanning electron microscopy, transmission electron microscopy and Raman spectroscopy.

  8. Solution processed large area field effect transistors from dielectrophoreticly aligned arrays of carbon nanotubes

    OpenAIRE

    Stokes, Paul; Silbar, Eliot; Zayas, Yashira M.; Khondaker, Saiful I.

    2008-01-01

    We demonstrate solution processable large area field effect transistors (FETs) from aligned arrays of carbon nanotubes (CNTs). Commercially available, surfactant free CNTs suspended in aqueous solution were aligned between source and drain electrodes using ac dielectrophoresis technique. After removing the metallic nanotubes using electrical breakdown, the devices displayed p-type behavior with on-off ratios up to ~ 2X10^4. The measured field effect mobilities are as high as 123 cm2/Vs, which...

  9. Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4×10-5 Sm-1. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.

  10. Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, M. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Arias-Duran, A. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Ramos, J.A.; Mondragon, I. [Dep. Ingenieria Quimica y M. Ambiente. Esc. Politecnica. UPV/EHU, Pza. Europa 1, Donostia-San Sebastian 20018 (Spain); Candal, R. [INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Escuela de Ciencia y Tecnologia-UNSAM, San Martin, Prov. De Buenos Aires (Argentina); Goyanes, S. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Rubiolo, G.H., E-mail: rubiolo@cnea.gov.ar [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Dep. Materiales, Comision Nacional de Energia Atomica (CNEA-CAC), Avda Gral Paz 1499, B1650KNA San Martin (Argentina)

    2012-08-15

    In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4 Multiplication-Sign 10{sup -5} Sm{sup -1}. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.

  11. Aligned carbon nanotubes physics, concepts, fabrication and devices

    CERN Document Server

    Ren, Zhifeng; Wang, Yang

    2012-01-01

    This book surveys the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. The text illustrates major fabrication methods in detail, particularly the most widely used PECVD growth techniques.

  12. Using Converter Dust to Produce Low Cost Cementitious Composites by in situ Carbon Nanotube and Nanofiber Synthesis

    Directory of Open Access Journals (Sweden)

    Péter Ludvig

    2011-03-01

    Full Text Available Carbon nanotubes (CNTs and nanofibers (CNFs were synthesized on clinker and silica fume particles in order to create a low cost cementitious nanostructured material. The synthesis was carried out by an in situ chemical vapor deposition (CVD process using converter dust, an industrial byproduct, as iron precursor. The use of these materials reduces the cost, with the objective of application in large-scale nanostructured cement production. The resulting products were analyzed by scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA and were found to be polydisperse in size and to have defective microstructure. Some enhancement in the mechanical behavior of cement mortars was observed due to the addition of these nano-size materials. The contribution of these CNTs/CNFs to the mechanical strength of mortar specimens is similar to that of high quality CNTs incorporated in mortars by physical mixture.

  13. A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Shama Parveen

    2013-01-01

    Full Text Available Excellent mechanical, thermal, and electrical properties of carbon nanotubes (CNTs and nanofibers (CNFs have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. After achieving a considerable success in utilizing these unique materials in various polymeric matrices, recently tremendous interest is also being noticed on developing CNT and CNF reinforced cement-based composites. However, the problems related to nanomaterial dispersion also exist in case of cementitious composites, impairing successful transfer of nanomaterials' properties into the composites. Performance of cementitious composites also depends on their microstructure which is again strongly influenced by the presence of nanomaterials. In this context, the present paper reports a critical review of recent literature on the various strategies for dispersing CNTs and CNFs within cementitious matrices and the microstructure and mechanical properties of resulting nanocomposites.

  14. Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Iron oxide film with spaced radial nanorods is formed on the VGCF (vapor-grown carbon nanofiber) scaffolds by means of anodic electrodeposition. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that the iron oxide film deposited on the VGCF surface is α-Fe2O3 and consists of spaced radial nanorods having 16-21 nm in diameter after annealing at 400 deg. C. Galvanostatic charge/discharge results indicate that the α-Fe2O3/VGCF anode (970 mAh g-1) has higher capacity than bare α-Fe2O3 anode (680 mAh g-1) at 10 C current discharge. VGCF scaffolds fabricated by electrophoretic deposition favor the electron conduction, and the spaced radial nanorods on VGCFs facilitate the migration of lithium ion from the electrolyte. Electrochemical reactions between α-Fe2O3 and lithium ion are therefore improved significantly by this tailored architecture.

  15. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS). PMID:26726677

  16. Effects of Feed Gas Composition and Catalyst Thickness on Carbon Nanotube and Nanofiber Synthesis by Plasma Enhanced Chemical Vapor Deposition

    OpenAIRE

    R K Garg; Kim, S. S.; Hash, D. B; Gore, Jay P.; Fisher, Timothy

    2008-01-01

    Many engineering applications require carbon nanotubes with specific characteristics such as wall structure, chirality and alignment. However, precise control of nanotube properties grown to application specifications remains a significant challenge. Plasma-enhanced chemical vapor deposition (PECVD) offers a variety of advantages in the synthesis of carbon nanotubes in that several important synthesis parameters can be controlled independently. This paper reports an experimental study of the ...

  17. Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells

    International Nuclear Information System (INIS)

    Highlights: • Electrospun carbon nanofiber mats were prepared from a natural product of lignin. • The freestanding mats were flexible with BET specific surface area of ∼583 m2/g. • The mats were surface-deposited with Ag nanoparticles via the scCO2 method. • Novel electrocatalytic systems of Ag/ECNFs exhibited high activities towards ORR. - Abstract: Ag nanoparticles (AgNPs) (11, 15, and 25 wt.%) were deposited on the surface of the freestanding and mechanically flexible mats consisting of lignin-derived electrospun carbon nanofibers (ECNFs) by the supercritical CO2 method followed by the thermal treated at 180 °C. The electrochemical activity of Ag/ECNFs electrocatalyst systems towards oxygen reduction reaction (ORR) was studied in 0.1 M KOH aqueous solution using the rotating disk/rotating ring disk electrode (RDE/RRDE) technique. The SEM, TEM, and XRD results indicated that, the spherical AgNPs were uniformly distributed on the ECNF surface with sizes in the range of 2-10 nm. The electrocatalytic results revealed that, all of the Ag/ECNFs systems exhibited high activity in ORR and demonstrated close-to-theoretical four-electron pathway. In particular, the mass activity of 15 wt.% Ag/ECNFs system was the highest (119 mA mg−1), exceeding that of HiSPEC 4100™ commercial Pt/C catalyst (98 mA mg−1). This study suggested that the lignin-derived ECNF mats surface-deposited with AgNPs would be promising as cost-effective and highly efficient electrocatalyst for ORR in alkaline fuel cells

  18. Large-scale and controllable synthesis of metal-free nitrogen-doped carbon nanofibers and nanocoils over water-soluble Na2CO3

    OpenAIRE

    Ding, Qian; Song, Xueyin; Yao, Xiujuan; Qi, Xiaosi; Au, Chak-Tong; Wei ZHONG; Du, Youwei

    2013-01-01

    Using acetylene as carbon source, ammonia as nitrogen source, and Na2CO3 powder as catalyst, we synthesized nitrogen-doped carbon nanofibers (N-CNFs) and carbon nanocoils (N-CNCs) selectively at 450°C and 500°C, respectively. The water-soluble Na2CO3 is removed through simple washing with water and the nitrogen-doped carbon nanomaterials can be collected in high purity. The approach is simple, inexpensive, and environment-benign; it can be used for controlled production of N-CNFs or N-CNCs. W...

  19. Preparation and characterization of aligned carbon nanotubes coated with titania nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YU Hongtao; ZHAO Huimin; QUAN Xie; CHEN Shuo

    2006-01-01

    Well-aligned carbon nanotubes coated with titania (TiO2) were prepared by atmospheric pressure chemical vapor deposition (APCVD), and the sequential experiments including carbon nanotubes preparation, air-oxidation purification and titania nanoparticles coating were performed at different temperatures in the same reactor. Scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction patterns (XRD), and energy- dispersive X-ray spectra (EDX) demonstrated the well-aligned nanotubes and TiO2 nanoparticles in close proximity and the average diameter of TiO2 nanoparticles was 11.5 nm.

  20. Dynamic finite element analysis of the crack-inclusion interaction in aligned CNF composites under impact loading conditions

    Science.gov (United States)

    Ting, Huat Tung

    The interaction between a crack and an inclusion of microfiber in an aligned carbon nanofiber (CNF) toughened composite under impact loading conditions was studied by using dynamic finite element analysis (FEA). The nanocomposite material used in this study was T300/Epon 862 enhanced with aligned carbon nanofibers (CNFs). The dynamic stress intensity factors (DSIFs) were evaluated to describe the dynamic fracture behavior of the fracture model. In this study, a numerical homogenization model using FEA was first employed to determine the effective material properties of the equivalent matrix material of Epon 862 and aligned CNFs. The effects of T300 microfiber inclusion eccentricity and CNF alignment angle on the DSIFs were examined in this study. The displacement extrapolation method for monoclinic materials was utilized to calculate the DSIFs. The numerical results demonstrated a mechanism known as "crack-tip shielding" and demonstrated that the CNF alignment angle has an impact on the DSIFs.

  1. Characteristics and Electrochemical Performance of Si-Carbon Nanofibers Composite as Anode Material for Binder-Free Lithium Secondary Batteries.

    Science.gov (United States)

    Hyun, Yura; Park, Heai-Ku; Park, Ho-Seon; Lee, Chang-Seop

    2015-11-01

    The carbon nanofibers (CNFs) and Si-CNFs composite were synthesized using a chemical vapor deposition (CVD) method with an iron-copper catalyst and silicon-covered Ni foam. Acetylene as a carbon source was flowed into the quartz reactor of a tubular furnace heated to 600 degrees C. This temperature was maintained for 10 min to synthesize the CNFs. The morphologies, compositions, and crystal quality of the prepared CNFs were characterized by Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), X-ray Diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the Si-CNFs composite as an anode of the Li secondary batteries were investigated using a three-electrode cell. The as-deposited Si-CNF composite on the Ni foam was directly employed as an working electrode without any binder, and lithium foil was used as the counter and reference electrode. A glass fiber separator was used as the separator membrane. Two kinds of electrolytes were employed; 1) 1 M LiPF6 was dissolved in a mixture of EC (ethylene carbonate): PC (propylene carbonate): EMC (Ethyl methyl carbonate) in a 1:1:1 volume ratio and 2) 1 M LiClO4 was dissolved in a mixture of propylene carbonate (PC): ethylene carbonate (EC) in a 1:1 volume ratio. The galvanostatic charge-discharge cycling and cyclic voltammetry measurements were carried out at room temperature by using a battery tester. The resulting Si-CNFs composite achieved the large discharge capacity of 613 mAh/g and much improved cycle-ability with the retention rate of 87% after 20 cycles. PMID:26726625

  2. Synthesis of Polyaniline (PANI) in Nano-Reaction Field of Cellulose Nanofiber (CNF), and Carbonization

    OpenAIRE

    Yuki Kaitsuka; Noriko Hayashi; Tomoko Shimokawa; Eiji Togawa; Hiromasa Goto

    2016-01-01

    Polymerization of aniline in the presence of cellulose nano-fiber (CNF) is carried out. We used dried CNF, CNF suspension, and CNF treated by enzyme and ultra-sonification to obtain polyaniline (PANI)/CNF as a synthetic polymer/natural nano-polymer composite. The polymerization proceeds on the surface of CNF as a nano-reaction field. Resultant composites show extended effective π-conjugation length because CNF as a reaction field in molecular level produced polymer with expanded coil structur...

  3. Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction.

    Science.gov (United States)

    Lai, Feili; Miao, Yue-E; Huang, Yunpeng; Zhang, Youfang; Liu, Tianxi

    2016-02-17

    To remit energy crisis and environmental deterioration, non-noble metal nanocomposites have attracted extensive attention, acting as a fresh kind of cost-effective electrocatalysts for hydrogen evolution reaction (HER). In this work, hierarchically organized nitrogen-doped carbon nanofiber/molybdenum disulfide (pBC-N/MoS2) nanocomposites were successfully prepared via the combination of in situ polymerization, high-temperature carbonization process, and hydrothermal reaction. Attributing to the uniform coating of polyaniline on the surface of bacterial cellulose, the nitrogen-doped carbon nanofiber network acts as an excellent three-dimensional template for hydrothermal growth of MoS2 nanosheets. The obtained hierarchical pBC-N/MoS2 nanocomposites exhibit excellent electrocatalytic activity for HER with small overpotential of 108 mV, high current density of 8.7 mA cm(-2) at η = 200 mV, low Tafel slope of 61 mV dec(-1), and even excellent stability. The greatly improved performance is benefiting from the highly exposed active edge sites of MoS2 nanosheets, the intimate connection between MoS2 nanosheets and the highly conductive nitrogen-doped carbon nanofibers and the three-dimensional networks thus formed. Therefore, this work provides a novel strategy for design and application of bacterial cellulose and MoS2-based nanocomposites as cost-effective HER eletrocatalysts. PMID:26302501

  4. Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in heat transfer nanofluids

    International Nuclear Information System (INIS)

    Highlights: → High speed microscopy was utilized to allow real time visualization of the movement of nanoparticles including SWNT and Fe2O3. → This electrostatic force induced alignment could maintain nanotube perfect conjugate structures which result in excellent thermal, electrical, and mechanical properties. → The alignment of the carbon nanotubes in nanosuspensions may offer new opportunities for the development of nanofluids. → These nanosuspensions also could be used in films, polymer composites, transparent electrodes, electromagnetic interference shielding, new sensors, etc. - Abstract: High speed microscopy was utilized to allow real time visualization of the movement of single walled carbon nanotubes (SWNT) with magnetically sensitive nanoparticles (Fe2O3) and a chemical surfactant (NaDSSB) in water. Initially, entangled SWNT, Fe2O3 and NaDSSB mixtures were randomly dispersed in the fluid. Upon extended exposure to the magnetic field, the mixture slowly vibrated, the nanoparticles straightened and aligned with respect to the magnetic field. The aligned nanoparticle chains appeared to be continuous and unbroken, forming a combination of aligned particles and clusters. Because of the semi-continuous nature of these nanosuspensions and the inherent viscosity of the fluid, some minutes are required for the mixtures to respond to the applied magnetic field and align. Time dependent thermal conductivity experiments indicate that the alignment process dominates the thermal conductivity enhancement as opposed to micro convection. Scanning Electron Microscopy (SEM) images also show that the SWNT and Fe2O3 particles are well aligned under the influence of the magnetic field. Verification of the assumption that electrostatic attraction between nanotube/surfactant and metal oxides makes aggregation happen was obtained, by changing the nature of the charge of the surfactant from a negative charge (NaSDDB) to a positive charge (CTAB). Compared with the

  5. Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in heat transfer nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Haiping, E-mail: Haiping.Hong@sdsmt.edu [Department of Material and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Luan, Xinning; Horton, Mark [Department of Material and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Li, Chen [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Peterson, G.P. [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-10-20

    Highlights: {yields} High speed microscopy was utilized to allow real time visualization of the movement of nanoparticles including SWNT and Fe{sub 2}O{sub 3}. {yields} This electrostatic force induced alignment could maintain nanotube perfect conjugate structures which result in excellent thermal, electrical, and mechanical properties. {yields} The alignment of the carbon nanotubes in nanosuspensions may offer new opportunities for the development of nanofluids. {yields} These nanosuspensions also could be used in films, polymer composites, transparent electrodes, electromagnetic interference shielding, new sensors, etc. - Abstract: High speed microscopy was utilized to allow real time visualization of the movement of single walled carbon nanotubes (SWNT) with magnetically sensitive nanoparticles (Fe{sub 2}O{sub 3}) and a chemical surfactant (NaDSSB) in water. Initially, entangled SWNT, Fe{sub 2}O{sub 3} and NaDSSB mixtures were randomly dispersed in the fluid. Upon extended exposure to the magnetic field, the mixture slowly vibrated, the nanoparticles straightened and aligned with respect to the magnetic field. The aligned nanoparticle chains appeared to be continuous and unbroken, forming a combination of aligned particles and clusters. Because of the semi-continuous nature of these nanosuspensions and the inherent viscosity of the fluid, some minutes are required for the mixtures to respond to the applied magnetic field and align. Time dependent thermal conductivity experiments indicate that the alignment process dominates the thermal conductivity enhancement as opposed to micro convection. Scanning Electron Microscopy (SEM) images also show that the SWNT and Fe{sub 2}O{sub 3} particles are well aligned under the influence of the magnetic field. Verification of the assumption that electrostatic attraction between nanotube/surfactant and metal oxides makes aggregation happen was obtained, by changing the nature of the charge of the surfactant from a negative

  6. Pulse gas alignment and AFM manipulation of single-wall carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    TIAN XiaoJun; WANG YueChao; XI Ning; DONG ZaiLi; TUNG Steve

    2008-01-01

    In the fabrication process of nanoelectronic device arrays based on single-wall carbon nanotube (SWCNT), oriented alignment of SWCNTs and property modification of metallic SWCNTs in the array are the key problems to be solved. Pulse gas alignment with substrate downward tilt is proposed to realize the controllable alignment of SWCNTs. Experimental results demonstrate that 84% SWCNTs are aligned in -15°- 15° angular to the pulse gas direction. A modified nanomanipulation technology based on atomic force microscope (AFM) is utilized to perform various kinds of SWCNT manipulation, such as SWCNT separation from the "Y" CNT, catalyst removal from the SWCNT end, continual nano buckles fabrication on SWCNT and even stretching to break, which provides a feasible way to modify the size, shape and the electrical property of SWCNTs.

  7. Electrospun Nanofibers Applications in Dentistry

    Directory of Open Access Journals (Sweden)

    Seog-Jin Seo

    2016-01-01

    Full Text Available Nanofibrous structures exhibit many interesting features, such as high surface area and surface functionalization and porosity in the range from submicron to nanoscale, which mimics the natural extracellular matrix. In particular, electrospun nanofibers have gained great attention in the field of tissue engineering due to the ease of fabrication and tailorability in pore size, scaffold shape, and fiber alignment. For the reasons, recently, polymeric nanofibers or bioceramic nanoparticle-incorporated nanofibers have been used in dentistry, and their nanostructure and flexibility have contributed to highly promotive cell homing behaviors, resulting in expecting improved dental regeneration. Here, this paper focuses on recently applied electrospun nanofibers in dentistry in the range from the process to the applications.

  8. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density

    Science.gov (United States)

    Zhao, Lei; Qiu, Yejun; Yu, Jie; Deng, Xianyu; Dai, Chenglong; Bai, Xuedong

    2013-05-01

    Improvement of energy density is an urgent task for developing advanced supercapacitors. In this paper, aqueous supercapacitors with high voltage of 1.8 V and energy density of 29.1 W h kg-1 were fabricated based on carbon nanofibers (CNFs) and Na2SO4 electrolyte. The CNFs with radially grown graphene sheets (GSs) and small average diameter down to 11 nm were prepared by electrospinning and carbonization in NH3. The radially grown GSs contain between 1 and a few atomic layers with their edges exposed on the surface. The CNFs are doped with nitrogen and oxygen with different concentrations depending on the carbonizing temperature. The supercapacitors exhibit excellent cycling performance with the capacity retention over 93.7% after 5000 charging-discharging cycles. The unique structure, possessing radially grown GSs, small diameter, and heteroatom doping of the CNFs, and application of neutral electrolyte account for the high voltage and energy density of the present supercapacitors. The present supercapacitors are of high promise for practical application due to the high energy density and the advantages of neutral electrolyte including low cost, safety, low corrosivity, and convenient assembly in air.

  9. Magnetic properties of NiFe{sub 2}O{sub 4}/carbon nanofibers from Venezuelan petcoke

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Silva, Pedro; Molina, Wilmer; Brämer-Escamilla, Werner; Alcalá, Olgi [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cañizales, Edgard [Área de Análisis Químico Inorgánico, PDVSA, INTEVEP, Los Teques 1070-A (Venezuela, Bolivarian Republic of)

    2015-05-01

    NiFe{sub 2}O{sub 4}/carbon nanofibers (NiFe{sub 2}O{sub 4}/CNFs) have been successfully synthesized by hydrotermal method using Venezuelan petroleum coke (petcoke) as carbon source and NiFe{sub 2}O{sub 4} as catalyst. The morphology, structural and magnetic properties of nanocomposite products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM) and electron paramagnetic resonance (EPR). XRD analysis revealed a cubic spinel structure and ferrite phase with high crystallinity. HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. At room temperature, NiFe{sub 2}O{sub 4}/CNFs show superparamagnetic behavior with a maximum magnetization of 15.35 emu/g. Our findings indicate that Venezuelan petroleum coke is suitable industrial carbon source for the growth of magnetic CNFs. - Highlights: • NiFe{sub 2}O{sub 4}/CNFs have been synthesized by hydrothermal method using petroleum coke. • Nickel ferrite nanoparticles were used as the catalyst. • HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. • The size of the nanoparticles defines the diameter of the CNFs.

  10. Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries.

    Science.gov (United States)

    Kim, Dongha; Lee, Daehee; Kim, Joosun; Moon, Jooho

    2012-10-24

    The SnO(2) anode is a promising anode for next-generation Li ion batteries because of its high theoretical capacity. However, it exhibits inherent capacity fading because of the large volume change and pulverization that occur during the charge/discharge cycles. The buffer matrix, such as electrospun carbon nanofibers (CNFs), can alleviate this problem to some extent, but SnO(2) particles are thermodynamically incompatible with the carbon matrix such that large Sn agglomerates form after carbonization upon melting of the Sn. Herein, we introduce well-dispersed nanosized SnO(2) attached to CNFs for high-performance anodes developed by Ni presence. The addition of Ni increases the stability of the SnO(2) such that the morphologies of the dispersed SnO(2) phase are modified as a function of the Ni composition. The optimal adding composition is determined to be Ni:Sn = 10:90 wt % in terms of the crystallite size and the distribution uniformity. A high capacity retention of 447.6 mA h g(-1) after 100 cycles can be obtained for 10 wt % Ni-added SnO(2)-CNFs, whereas Ni-free Sn/SnO(2)-CNFs have a capacity retention of 304.6 mA h g(-1). PMID:22999049

  11. Effects of potassium on Ni-K/Al2O3 catalysts in the synthesis of carbon nanofibers by catalytic hydrogenation of CO2.

    Science.gov (United States)

    Chen, Ching S; Lin, Jarrn H; You, Jiann H; Yang, Kuo H

    2010-03-25

    Commercially available Ni/Al(2)O(3) samples containing various concentrations of potassium were used to achieve carbon deposition from CO(2) via catalytic hydrogenation. Experimental results show that K additives can induce the formation of carbon nanofibers or carbon deposition on Ni/Al(2)O(3) during the reverse water-gas shift reaction. This work proposes that the formation rate of carbon deposition depends closely on ensemble control, suggesting that the ensemble size necessary to form carbon may be approximately 0.5 potassium atoms. The results of CO(2) temperature-programmed desorption provide strong evidence that the new adsorption sites for CO(2) created on Ni-K/Al(2)O(3) closely depend upon the synthesis of carbon nanofibers. It is found that some potassium-related active phases obtained by calcination and reduction pretreatments can participate in the carbon deposition reaction. The formation pathway for carbon deposition suggests that the main source of carbon deposition is CO(2) and that the pathway is independent of the reaction products CO and CH(4) in the reverse water-gas shift reaction. PMID:19655780

  12. Fabrication of Aligned Carbon Nanotube/Polycaprolactone/Gelatin Nanofibrous Matrices for Schwann Cell Immobilization

    OpenAIRE

    Shiao-Wen Tsai; Chun-Chiang Huang; Lih-Rou Rau; Fu-Yin Hsu

    2014-01-01

    In this study, we utilized a mandrel rotating collector consisting of two parallel, electrically conductive pieces of tape to fabricate aligned electrospun polycaprolactone/gelatin (PG) and carbon nanotube/polycaprolactone/gelatin (PGC) nanofibrous matrices. Furthermore, we examined the biological performance of the PGC nanofibrous and film matrices using an in vitro culture of RT4-D6P2T rat Schwann cells. Using cell adhesion tests, we found that carbon nanotube inhibited Schwann cell attach...

  13. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

    OpenAIRE

    Claudia Struzzi; Mattia Scardamaglia; Axel Hemberg; Luca Petaccia; Jean-François Colomer; Rony Snyders; Carla Bittencourt

    2015-01-01

    Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering...

  14. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer–Tropsch Catalysts

    Science.gov (United States)

    2016-01-01

    The Fischer–Tropsch Synthesis converts synthesis gas from alternative carbon resources, including natural gas, coal, and biomass, to hydrocarbons used as fuels or chemicals. In particular, iron-based catalysts at elevated temperatures favor the selective production of C2–C4 olefins, which are important building blocks for the chemical industry. Bulk iron catalysts (with promoters) were conventionally used, but these deactivate due to either phase transformation or carbon deposition resulting in disintegration of the catalyst particles. For supported iron catalysts, iron particle growth may result in loss of catalytic activity over time. In this work, the effects of promoters and particle size on the stability of supported iron nanoparticles (initial sizes of 3–9 nm) were investigated at industrially relevant conditions (340 °C, 20 bar, H2/CO = 1). Upon addition of sodium and sulfur promoters to iron nanoparticles supported on carbon nanofibers, initial catalytic activities were high, but substantial deactivation was observed over a period of 100 h. In situ Mössbauer spectroscopy revealed that after 20 h time-on-stream, promoted catalysts attained 100% carbidization, whereas for unpromoted catalysts, this was around 25%. In situ carbon deposition studies were carried out using a tapered element oscillating microbalance (TEOM). No carbon laydown was detected for the unpromoted catalysts, whereas for promoted catalysts, carbon deposition occurred mainly over the first 4 h and thus did not play a pivotal role in deactivation over 100 h. Instead, the loss of catalytic activity coincided with the increase in Fe particle size to 20–50 nm, thereby supporting the proposal that the loss of active Fe surface area was the main cause of deactivation. PMID:27330847

  15. A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva.

    Science.gov (United States)

    Ye, Daixin; Liang, Guohai; Li, Huixiang; Luo, Juan; Zhang, Song; Chen, Hui; Kong, Jilie

    2013-11-15

    Here, we report on a novel nonenzymatic amperometric glucose sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode. The results of the scanning electron microscopy indicate that electronic network was formed through their direct binding with the graphene/carbon nanofiber, which leads to larger active surface areas and faster electron transfer for the glucose sensor. High electrocatalytic activity toward the oxidation of glucose was observed with a rapid response (<2 s), a low detection limit (0.1 µM), a wide and useful linear range (1-5.3 mM) as well as good stability and repeatability. Moreover, the common interfering species, such as ascorbic acid, uric acid, dopamine and so forth did not cause obvious interference. The sensor can also be used for quantification of glucose concentration in real saliva samples. Therefore, this work has demonstrated a simple and effective sensing platform for nonenzymatic detection of glucose. PMID:24148397

  16. Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Highlights: • Electrospun carbon nanofiber webs were prepared by pyrolysis of polyacrylonitrile. • The webs as binder-free and current collector-free electrodes for SIBs and LIBs. • Different layer spacing and pore size for Li and Na lead different electrochemical behavior. • Electrochemical performances of the electrodes were high. - Abstract: A series of hard carbon nanofiber-based electrodes derived from electrospun polyacrylonitrile (PAN) nanofibers (PAN-CNFs) have been fabricated by stabilization in air at about 280 °C and then carbonization in N2 at heat treatment temperatures (HTT) between 800 and 1500 °C. The electrochemical performances of the binder-free, current collector-free carbon nanofiber-based anodes in lithium-ion batteries and sodium-ion batteries are systematically investigated and compared. We demonstrate the presence of similar alkali metal insertion mechanisms in both cases, but just the differences of the layer spacing and pore size available for lithium and sodium ion lead the discharge capacity delivered at sloping region and plateau region to vary from the kinds of alkali elements. Although the anodes in sodium-ion batteries show poorer rate capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 275 mAh g−1 and similar cycling stability due to the conductive 3-D network, weakly ordered turbostratic structure and a large interlayer spacing between graphene sheets. The feature of high capacity and stable cycling performance makes PAN-CNFs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries

  17. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Science.gov (United States)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    , lithographically fabricated ap - proaches to form cantilever or bridgetype structures. Top-down approaches, however, rely on complicated and expensive e-beam lithography, and often require a release mechanism. Reso - nance effects in structures synthesized using bottom-up approaches have also recently been reported based on carbon nanotubes, but such approaches have relied on a planar two-dimensional (2D) geometry. In this innovation, vertically aligned tubes synthesized using a bottom- up approach have been considered, where the vertical orientation of the tubes has the potential to increase integration density even further. The simulation of a vertically oriented, cantilevered carbon nanotube was performed using COMSOL Multi - physics, a finite element simulation package. All simulations were performed in a 2D geometry that provided consistent results and minimized computational complexity. The simulations assumed a vertically oriented, cantilevered nanotube of uniform density (1.5 g/cu cm). An elastic modulus was assumed to be 600 GPa, relative permittivity of the nanotube was assumed to be 5.0, and Poisson s ratio was assumed to be 0.2. It should be noted that the relative permittivity and Poisson s ratio for the nanotubes of interest are not known accurately. However, as in previous simulations, the relative permittivity and Poisson s ratios were treated as weak variables in the simulation, and no significant changes were recognized when these variables were varied.

  18. Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage.

    Science.gov (United States)

    Li, Daohao; Lv, Chunxiao; Liu, Long; Xia, Yanzhi; She, Xilin; Guo, Shaojun; Yang, Dongjiang

    2015-08-26

    Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (∼10-40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g(-1) at 1 A g(-1), good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g(-1) at 1 A g(-1) and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage. PMID:27162980

  19. Vertically aligned carbon nanotubes for sensing unidirectional fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Keivan, E-mail: k_kiani@kntu.ac.ir

    2015-05-15

    From applied mechanics points of view, potential application of ensembles of single-walled carbon nanotubes (SWCNTs) as fluid flow sensors is aimed to be examined. To this end, useful nonlocal analytical and numerical models are developed. The deflection of the ensemble of SWCNTs at the tip is introduced as a measure of its sensitivity. The influences of the length and radius of the SWCNT, intertube distance, fluid flow velocity, and distance of the ensemble from the leading edge of the rigid base on the deflection field of the ensemble are comprehensively examined. The obtained results display how calibration of an ensemble of SWCNTs can be methodically carried out in accordance with the characteristics of the ensemble and the external fluid flow.

  20. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    Science.gov (United States)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (grown CNTs bundles.

  1. Optimal Synthesis of Horizontally Aligned Single-Walled Carbon Nanotubes and Their Biofunctionalization for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Dawoon Jung

    2016-01-01

    Full Text Available As an influential candidate for highly sensitive biomolecule sensor, which can capture disease related biomolecules, carbon nanotube is useful material due to its unique properties. To adopt as a sensing platform, it is strongly needed to find optimal refined synthetic condition. In order to find the optimal synthetic conditions of horizontally aligned CNT, we performed quantity control of the mixed gases of H2 and CH4 injected. We successfully find that the formation of amorphous-like carbon was critically affected by some gas condition such as the flow rate of injected gases and ratios of gas mixture. Moreover, it should be noted that our horizontally aligned carbon nanotube array platform developed would offer another potential in developing nanoscale light source, where light emission results from electron-hole carrier recombination.

  2. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing.

    Science.gov (United States)

    Wang, Li; Ye, Yinjian; Zhu, Haozhi; Song, Yonghai; He, Shuijian; Xu, Fugang; Hou, Haoqing

    2012-11-16

    Glucose detection is very important in biological analysis, clinical diagnosis and the food industry, and especially for the routine monitoring of diabetes. This work presents an electrochemical approach to the detection of glucose based on Prussian blue (PB) nanostructures/carboxylic group-functionalized carbon nanofiber (FCNF) nanocomposites. The hybrid nanocomposites were constructed by growing PB onto the FCNFs. The obtained PB-FCNF nanocomposites were characterized by scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The mechanism of formation of PB-FCNF nanocomposites was investigated and is discussed in detail. The PB-FCNF modified glassy carbon electrode (PB-FCNF/GCE) shows good electrocatalysis toward the reduction of H(2)O(2), a product from the reduction of O(2) followed by glucose oxidase (GOD) catalysis of the oxidation of glucose to gluconic acid. Further immobilizing GOD on the PB-FCNF/GCE, an amperometric glucose biosensor was achieved by monitoring the generated H(2)O(2) under a relatively negative potential. The resulting glucose biosensor exhibited a rapid response of 5 s, a low detection limit of 0.5 μM, a wide linear range of 0.02-12 mM, a high sensitivity of 35.94 μA cm(-2) mM(-1), as well as good stability, repeatability and selectivity. The sensor might be promising for practical application. PMID:23090569

  3. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing

    International Nuclear Information System (INIS)

    Glucose detection is very important in biological analysis, clinical diagnosis and the food industry, and especially for the routine monitoring of diabetes. This work presents an electrochemical approach to the detection of glucose based on Prussian blue (PB) nanostructures/carboxylic group-functionalized carbon nanofiber (FCNF) nanocomposites. The hybrid nanocomposites were constructed by growing PB onto the FCNFs. The obtained PB–FCNF nanocomposites were characterized by scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The mechanism of formation of PB–FCNF nanocomposites was investigated and is discussed in detail. The PB–FCNF modified glassy carbon electrode (PB–FCNF/GCE) shows good electrocatalysis toward the reduction of H2O2, a product from the reduction of O2 followed by glucose oxidase (GOD) catalysis of the oxidation of glucose to gluconic acid. Further immobilizing GOD on the PB–FCNF/GCE, an amperometric glucose biosensor was achieved by monitoring the generated H2O2 under a relatively negative potential. The resulting glucose biosensor exhibited a rapid response of 5 s, a low detection limit of 0.5 μM, a wide linear range of 0.02–12 mM, a high sensitivity of 35.94 μA cm−2 mM−1, as well as good stability, repeatability and selectivity. The sensor might be promising for practical application. (paper)

  4. Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction.

    Science.gov (United States)

    Zhang, Xiaoyan; Li, Libo; Guo, Yaxiao; Liu, Dong; You, Tianyan

    2016-06-15

    A novel amorphous flower-like molybdenum sulfides@nitrogen doped carbon nanofibers (MoSx@NCNFs) films are successfully synthesized by combining electrospinning, carbonization and a mild hydrothermal process. NCNFs, as a conductive substrate, can accelerate the electron transfer rate and depress the aggregation of MoSx nanoparticles. The resultant amorphous flower-like MoSx on NCNFs exposes abundant S(2-)/S2(2-) active edge sites which is of great importance for hydrogen evolution reaction (HER) catalytic performance. Electrochemical measurements demonstrate the superior electrocatalytic activity of MoSx@NCNFs toward HER deriving from the synergistic effect between NCNFs and amorphous MoSx. The overpotential is only 137mV to reach the current density of 10mAcm(-2) with a Tafel slope of 41mVdecade(-1) at MoSx@NCNFs. Meanwhile, MoSx@NCNFs exhibits satisfactory long-time stability for HER. Noteworthy, the obtained composites show a free-standing structure which can be directly used as electrode materials. This work provides a feasible way to design promising noble-metal free electrocatalysts in the aspect of energy conversion. PMID:27015391

  5. Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes

    Science.gov (United States)

    Jeon, Wonjae; Yun, Jongju; Khan, Fakhre Alam; Baik, Seunghyun

    2015-08-01

    Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ~17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ~17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of

  6. Hierarchical Electrospun and Cooperatively Assembled Nanoporous Ni/NiO/MnOx/Carbon Nanofiber Composites for Lithium Ion Battery Anodes.

    Science.gov (United States)

    Bhaway, Sarang M; Chen, Yu-Ming; Guo, Yuanhao; Tangvijitsakul, Pattarasai; Soucek, Mark D; Cakmak, Miko; Zhu, Yu; Vogt, Bryan D

    2016-08-01

    A facile method to fabricate hierarchically structured fiber composites is described based on the electrospinning of a dope containing nickel and manganese nitrate salts, citric acid, phenolic resin, and an amphiphilic block copolymer. Carbonization of these fiber mats at 800 °C generates metallic Ni-encapsulated NiO/MnOx/carbon composite fibers with average BET surface area (150 m(2)/g) almost 3 times higher than those reported for nonporous metal oxide nanofibers. The average diameter (∼900 nm) of these fiber composites is nearly invariant of chemical composition and can be easily tuned by the dope concentration and electrospinning conditions. The metallic Ni nanoparticle encapsulation of NiO/MnOx/C fibers leads to enhanced electrical conductivity of the fibers, while the block copolymers template an internal nanoporous morphology and the carbon in these composite fibers helps to accommodate volumetric changes during charging. These attributes can lead to lithium ion battery anodes with decent rate performance and long-term cycle stability, but performance strongly depends on the composition of the composite fibers. The composite fibers produced from a dope where the metal nitrate is 66% Ni generates the anode that exhibits the highest reversible specific capacity at high rate for any composition, even when including the mass of the nonactive carbon and Ni(0) in the calculation of the capacity. On the basis of the active oxides alone, near-theoretical capacity and excellent cycling stability are achieved for this composition. These cooperatively assembled hierarchical composites provide a platform for fundamentally assessing compositional dependencies for electrochemical performance. Moreover, this electrospinning strategy is readily scalable for the fabrication of a wide variety of nanoporous transition metal oxide fibers. PMID:27399605

  7. Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry.

    Science.gov (United States)

    Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L

    2016-08-01

    Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation. PMID:27082129

  8. Effects of experimental conditions on the growth of vertically aligned carbon nitride nanocone arrays

    International Nuclear Information System (INIS)

    Vertically aligned carbon nitride nanocone (CNNC) arrays were prepared on Ni-covered (100) silicon wafers by an abnormal glow discharge plasma assisted chemical vapor deposition method. In order to control the growth of the CNNC arrays, the distance of the anode tip to the substrate surface was adjusted for it affected the contents and activities of the species in the plasmas leading to the CNNC growth. Based on the characterization of the as-grown thin films and the analysis of the growth environments, the effects of the experimental conditions on the growth of the CNNC arrays were studied and their growth mechanism was discussed. The tip−substrate distance strongly affects the CNNC growth. Under appropriate experimental conditions, the vertically-aligned and intact CNNC arrays with the β-C3N4 microstructure and the minimum tip curvature diameter of only 3–4 nm could be fabricated. This kind of CNNC arrays have many potential applications, such as tips for microscopes, electron-emitting units in field emission displays, electron-capture electrodes of solar cells etc. - Highlights: ►Vertically aligned carbon nitride nanocone arrays were prepared. ►An abnormal glow discharge plasma assisted chemical vapor deposition method. ►Tip-substrate distance strongly affects the growth of carbon nitride nanocones. ►The growth mechanism of carbon nitride nanocones is discussed

  9. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    Science.gov (United States)

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-01

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. PMID:22619167

  10. Synthesis and characterization of well-aligned carbon nitrogen nanotubes by microwave plasma chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    马旭村; 徐贵昌; 王恩哥

    2000-01-01

    Well-aligned carbon nitrogen nanotube films have been synthesized successfully on meso-porous silica substrates by microwave plasma chemical vapor deposition (MWPCVD) method. Studies on their morphology, structure, and composition by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX), respectively, indicate that these nanotubes consist of linearly polymerized carbon nitrogen nanobells, and the nitrogen atoms have been doped into carbon netweork to form a new structure C1-xNx( x = 0.16±0.01). X-ray photoelectron spectroscopy (XPS) results of the samples further demonstrate that carbon bonds cova-lently with nitrogen in all the carbon nitrogen nanotube films.

  11. Preparation and characterization of Li3V2(PO4)3 grown on carbon nanofiber as cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Bead-like nanocomposite Li3V2(PO4)3 (LVP) grown on carbon nanofiber (CNF) have been prepared by electrospinning and heat-treatment. The primary LVP crystals are squeezed together and grow outward because of the limitation of the reaction space for LVP precursors in PVP fiber, accompanying with the carbon nanofibers shrank in diameters. Compared with the traditional carbon-coated LVP, the combination of the “beads” (LVP nanoparticles) and the “string” (carbon fiber) are effective in conductivity and stability. A small amount of carbon content (5.27 wt%) in LVP/CNF is sufficient to enhance the rate performance and cycle ability. The initial discharge capacity of LVP/CNF is 196 mAh g−1 at 0.1 C, which is very close to the theoretical value (197 mAh g−1) of pure LVP in 3.0-4.8 V. In the long-term cycles at 20C-rate, LVP/CNF delivers the initial capacities of 127.5 mAh g−1, and remains 102.0 mAh g−1 at the 1000th cycle. Bead-like structure of LVP nanoparticles grown in carbon fibers is stable in thousands charge/discharge cycles at high current rate

  12. Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes.

    Science.gov (United States)

    Sarkar, Sourangsu; Zou, Jianhua; Liu, Jianhua; Xu, Chengying; An, Linan; Zhai, Lei

    2010-04-01

    Polymer-derived ceramic fibers with aligned multiwalled carbon nanotubes (MWCNTs) are fabricated through the electrospinning of polyaluminasilazane solutions with well-dispersed MWCNTs followed by pyrolysis. Poly(3-hexylthiophene)-b-poly (poly (ethylene glycol) methyl ether acrylate) (P3HT-b-PPEGA), a conjugated block copolymer compatible with polyaluminasilazane, is used to functionalize MWCNT surfaces with PPEGA, providing a noninvasive approach to disperse carbon nanotubes in polyaluminasilazane chloroform solutions. The electrospinning of the MWCNT/polyaluminasilazane solutions generates polymer fibers with aligned MWCNTs where MWCNTs are oriented along the electrospun jet by a sink flow. The subsequent pyrolysis of the obtained composite fibers produces ceramic fibers with aligned MWCNTs. The study of the effect of polymer and CNT concentration on the fiber structures shows that the fiber size increases with the increment of polymer concentration, whereas higher CNT content in the polymer solutions leads to thinner fibers attributable to the increased conductivity. Both the SEM and TEM characterization of the polymer and ceramic fibers demonstrates the uniform orientation of CNTs along the fibers, suggesting excellent dispersion of CNTs and efficient CNT alignment via the electrospinning. The electrical conductivity of a ceramic fibers with 1.2% aligned MWCNTs is measured to be 1.58 x 10(-6) S/cm, which is more than 500 times higher than that of bulk ceramic (3.43 x 10(-9) S/cm). Such an approach provides a versatile method to disperse CNTs in preceramic polymer solutions and offers a new approach to integrate aligned CNTs in ceramics. PMID:20423134

  13. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos

    Directory of Open Access Journals (Sweden)

    Murray Ashley R

    2012-04-01

    Full Text Available Abstract Background Carbon nanotubes (CNT and carbon nanofibers (CNF are allotropes of carbon featuring fibrous morphology. The dimensions and high aspect ratio of CNT and CNF have prompted the comparison with naturally occurring asbestos fibers which are known to be extremely pathogenic. While the toxicity and hazardous outcomes elicited by airborne exposure to single-walled CNT or asbestos have been widely reported, very limited data are currently available describing adverse effects of respirable CNF. Results Here, we assessed pulmonary inflammation, fibrosis, oxidative stress markers and systemic immune responses to respirable CNF in comparison to single-walled CNT (SWCNT and asbestos. Pulmonary inflammatory and fibrogenic responses to CNF, SWCNT and asbestos varied depending upon the agglomeration state of the particles/fibers. Foci of granulomatous lesions and collagen deposition were associated with dense particle-like SWCNT agglomerates, while no granuloma formation was found following exposure to fiber-like CNF or asbestos. The average thickness of the alveolar connective tissue - a marker of interstitial fibrosis - was increased 28 days post SWCNT, CNF or asbestos exposure. Exposure to SWCNT, CNF or asbestos resulted in oxidative stress evidenced by accumulations of 4-HNE and carbonylated proteins in the lung tissues. Additionally, local inflammatory and fibrogenic responses were accompanied by modified systemic immunity, as documented by decreased proliferation of splenic T cells ex vivo on day 28 post exposure. The accuracies of assessments of effective surface area for asbestos, SWCNT and CNF (based on geometrical analysis of their agglomeration versus estimates of mass dose and number of particles were compared as predictors of toxicological outcomes. Conclusions We provide evidence that effective surface area along with mass dose rather than specific surface area or particle number are significantly correlated with toxicological

  14. Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection.

    Science.gov (United States)

    Jia, Xueen; Hu, Guangzhi; Nitze, Florian; Barzegar, Hamid Reza; Sharifi, Tiva; Tai, Cheuk-Wai; Wågberg, Thomas

    2013-11-27

    We report on a novel sensing platform for H2O2 and glucose based on immobilization of palladium-helical carbon nanofiber (Pd-HCNF) hybrid nanostructures and glucose oxidase (GOx) with Nafion on a glassy carbon electrode (GCE). HCNFs were synthesized by a chemical vapor deposition process on a C60-supported Pd catalyst. Pd-HCNF nanocomposites were prepared by a one-step reduction free method in dimethylformamide (DMF). The prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Nafion/Pd-HCNF/GCE sensor exhibits excellent electrocatalytic sensitivity toward H2O2 (315 mA M(-1) cm(-2)) as probed by cyclic voltammetry (CV) and chronoamperometry. We show that Pd-HCNF-modified electrodes significantly reduce the overpotential and enhance the electron transfer rate. A linear range from 5.0 μM to 2.1 mM with a detection limit of 3.0 μM (based on the S/N = 3) and good reproducibility were obtained. Furthermore, a sensing platform for glucose was prepared by immobilizing the Pd-HCNFs and glucose oxidase (GOx) with Nafion on a glassy carbon electrode. The resulting biosensor exhibits a good response to glucose with a wide linear range (0.06-6.0 mM) with a detection limit of 0.03 mM and a sensitivity of 13 mA M(-1) cm(-2). We show that small size and homogeneous distribution of the Pd nanoparticles in combination with good conductivity and large surface area of the HCNFs lead to a H2O2 and glucose sensing platform that performs in the top range of the herein reported sensor platforms. PMID:24180258

  15. Mechanical properties of aligned carbon nanotube architectures: origin from 3D morphology

    Science.gov (United States)

    Stein, Itai Y.; Wardle, Brian L.

    The scale-dependent properties of carbon nanotubes (CNTs) continue to motivate their study for next-generation material architectures. While recent work has shown that aligned CNT arrays can be made on the cm-scale, such systems exhibit properties that are orders of magnitude below those predicted by existing theories. This deviation mainly stems from the rudimentary assumptions made about the CNT morphology: CNTs are either devoid of local curvature (i.e. waviness) or have waviness that is easy to model, e.g. using helices and sine waves. Here, we use a simulation framework comprised of 105 CNTs with realistic 3D stochastic morphologies to elucidate the role morphology plays in the orders of magnitude over-prediction of the effective stiffness of aligned CNT structures. Application to aligned CNT polymer and carbon matrix nanocomposites reveals that the elimination of the torsion deformation mechanism, which dominates the effective compliance of CNT arrays, through CNT interactions with the matrix is responsible for the stiffness enhancement in CNT nanocomposites. This works paves the way to more accurate property prediction of CNT nanocomposites, and further work to predict the transport properties of aligned CNT architectures is planned.

  16. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes

    Science.gov (United States)

    He, Xiaowei; Gao, Weilu; Xie, Lijuan; Li, Bo; Zhang, Qi; Lei, Sidong; Robinson, John M.; Hároz, Erik H.; Doorn, Stephen K.; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M.; Adams, W. Wade; Hauge, Robert H.; Kono, Junichiro

    2016-07-01

    The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm2) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 106 nanotubes in a cross-sectional area of 1 μm2. The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.

  17. Parallel and orthogonal E-field alignment of single-walled carbon nanotubes by ac dielectrophoresis

    International Nuclear Information System (INIS)

    We designed planar electrodes, for dielectrophoretic manipulation of single-walled carbon nanotubes (SWNTs), built as metal-oxide-semiconductor nanogap capacitors with common substrate and oxide thicknesses of 17 and 150 nm. Such design generates high electric fields (109 V m-1) and also the fringing field is curved due to the conducting substrate, unlike fields generated by conventionally used planar electrodes. Scanning electron microscopy images showed SWNTs aligned parallel and perpendicular to the electrodes. Raman spectroscopic mapping was used to produce separate images of the metallic (m-SWNT) and semiconducting (s-SWNT) nanotube density distributions. As expected, parallel alignment of the m-SWNTs with the E-field was found; however, also a perpendicular alignment of s-SWNTs was observed. Such orthogonal alignment of s-SWNTs is a rare observation and has not been experimentally reported before in detail with Raman images. Due to the unique electrode design, we were able to obtain substantial separation of m-SWNTs and s-SWNTs. Numerical modeling of the electric field factor of the dielectrophoresis force was done, and it matched perfectly with the experimental results. The orthogonal alignment of s-SWNTs results from comparable values of parallel and perpendicular polarizability to the nanotube axis.

  18. Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, A.; Torrecillas, R. [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN) Consejo Superior de Investigaciones Cientificas, Universidad de Oviedo, Principado de Asturias, Parque Tecnologico de Asturias, Llanera Asturias (Spain); Rocha, V.G.; Fernandez, A. [ITMA Materials Technology, Parque Tecnologico de Asturias, Llanera Asturias (Spain)

    2012-08-15

    There is an increasing demand of multifunctional materials for a wide variety of technological developments. Bipolar plates for proton exchange membrane fuel cells are an example of complex functionality components that must show among other properties high mechanical strength, electrical, and thermal conductivity. The present research explored the possibility of using alumina-carbon nanofibers (CNFs) nanocomposites for this purpose. In this study, it was studied for the first time the whole range of powder compositions in this system. Homogeneous powders mixtures were prepared and subsequently sintered by spark plasma sintering. The materials obtained were thoroughly characterized and compared in terms of properties required to be used as bipolar plates. The control on material microstructure and composition allows designing materials where mechanical or electrical performances are enhanced. A 50/50 vol.% alumina-CNFs composite appears to be a very promising material for this kind of application. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Fe3O4 nanoparticles-wrapped carbon nanofibers as high-performance anode for lithium-ion battery

    International Nuclear Information System (INIS)

    One-dimensional hierarchical nanostructures composed of Fe3O4 nanoparticles and carbon nanofibers (CNFs) have been successfully synthesized through a facile solvothermal method followed by a simple thermal annealing treatment. X-ray diffraction and electron microscopy reveal that Fe3O4 nanoparticles with a size of 80–100 nm are uniformly dispersed on CNFs. The Fe3O4/CNFs nanocomposites show an enhanced reversible capacity and excellent rate performance as anode for Li-ion battery. The reversible capacity of the nanocomposites retains 684 mAh g−1 after 55 cycles at 100 mA g−1. Even when cycled at various rate (100, 200, 500, 1000, and 2000 mA g−1) for 50 cycles, the capacity can recover to 757 mAh g−1 at the current of 100 mA g−1. The enhanced electrochemical performances are attributed to the characteristics of interconnected one-dimensional nanostructures that provide three-dimensional networks for Li-ion diffusion and electron transfer, and can further accommodate the volumetric change of Fe3O4 nanoparticles during charge–discharge cycling

  20. COx-Free Hydrogen and Carbon Nanofibers Produced from Direct Decomposition of Methane on Nickel-Based Catalysts

    Institute of Scientific and Technical Information of China (English)

    Siang-Piao Chai; Sharif Hussein Sharif Zein; Abdul Rahman Mohamed

    2006-01-01

    Direct decomposition of methane was carried out using a fixed-bed reactor at 700 ℃ for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2catalysts (where M=AgO, CoO, CuO, FeO, MnOx and MoO) in methane decomposition was investigated.The experimental results indicate that among the tested catalysts, NiO/SiO2 promoted with CuO give the highest hydrogen yield. In addition, the examination of the most suitable catalyst support, including Al2O3, CeO2, La2O3, SiO2, and TiO2, shows that the decomposition of methane over NiO-CuO favors SiO2 support. Furthermore, the optimum ratio of NiO to CuO on SiO2 support for methane decomposition was determined. The experimental results show that the optimum weight ratio of NiO to CuO fell at 8:2(w/w) since the highest yield of hydrogen was obtained over this catalyst.

  1. Magnetite (Fe3O4)-filled carbon nanofibers as electro-conducting/superparamagnetic nanohybrids and their multifunctional polymer composites

    International Nuclear Information System (INIS)

    A mild-temperature, nonchemical technique is used to produce a nanohybrid multifunctional (electro-conducting and magnetic) powder material by intercalating iron oxide nanoparticles in large aspect ratio, open-ended, hollow-core carbon nanofibers (CNFs). Single-crystal, superparamagnetic Fe3O4 nanoparticles (10 nm average diameter) filled the CNF internal cavity (diameter <100 nm) after successive steps starting with dispersion of CNFs and magnetite nanoparticles in aqueous or organic solvents, sequencing or combining sonication-assisted capillary imbibition and concentration-driven diffusion, and finally drying at mild temperatures. The influence of several process parameters—such as sonication type and duration, concentration of solids dispersed in solvent, CNF-to-nanoparticle mass ratio, and drying temperature—on intercalation efficiency (evaluated in terms of particle packing in the CNF cavity) was studied using electron microscopy. The magnetic CNF powder was used as a low-concentration filler in poly(methyl methacrylate) to demonstrate thin free-standing polymer films with simultaneous magnetic and electro-conducting properties. Such films could be implemented in sensors, optoelectromagnetic devices, or electromagnetic interference shields

  2. PdCo alloy nanoparticle-embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite.

    Science.gov (United States)

    Liu, Dong; Guo, Qiaohui; Zhang, Xueping; Hou, Haoqing; You, Tianyan

    2015-07-15

    PdCo alloy nanoparticle-embedded carbon nanofiber (PdCo/CNF) prepared by electrospinning and thermal treatment was employed as a high-performance platform for the determination of hydrogen peroxide and nitrite. The as-obtained PdCo/CNF were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were employed to investigate the electrochemical behaviors of the resultant biosensor. The proposed PdCo/CNF-based biosensor showed excellent analytical performances toward hydrogen peroxide (detection limit: 0.1 μM; linear range: 0.2 μM-23.5 mM) and nitrite (detection limit: 0.2 μM; linear range: 0.4-30 μM and 30-400 μM). The superior analytical properties could be attributed to the synergic effect and firmly embedment of well-dispersed PdCo alloy nanoparticles. These attractive electrochemical properties make this robust electrode material promising for the development of effective electrochemical sensors. PMID:25818356

  3. The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers

    Directory of Open Access Journals (Sweden)

    Liao CZ

    2014-03-01

    Full Text Available Cheng Zhu Liao,1,2 Hoi Man Wong,3 Kelvin Wai Kwok Yeung,3 Sie Chin Tjong2 1Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, People's Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, 3Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Abstract: This study focuses on the design, fabrication, microstructural and property characterization, and biocompatibility evaluation of polypropylene (PP reinforced with carbon nanofiber (CNF and hydroxyapatite nanorod (HANR fillers. The purpose is to develop advanced PP/CNF–HANR hybrids with good mechanical behavior, thermal stability, and excellent biocompatibility for use as craniofacial implants in orthopedics. Several material-examination techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile tests, and impact measurement are used to characterize the microstructural, mechanical, and thermal properties of the hybrids. Furthermore, osteoblastic cell cultivation and colorimetric assay are also employed for assessing their viability on the composites. The CNF and HANR filler hybridization yields an improvement in Young's modulus, impact strength, thermal stability, and biocompatibility of PP. The PP/2% CNF–20% HANR hybrid composite is found to exhibit the highest elastic modulus, tensile strength, thermal stability, and biocompatibility. Keywords: nanocomposite, implant, cellular viability, mechanical behavior

  4. Carbon nanofiber/cobalt oxide nanopyramid core-shell nanowires for high-performance lithium-ion batteries

    Science.gov (United States)

    An, Geon-Hyoung; Ahn, Hyo-Jin

    2014-12-01

    Carbon nanofiber (CNF)/Co3O4 nanopyramid core-shell nanowires (NWs) are synthesized using an electrospinning method followed by reduction and hydrothermal treatment in order to improve the capacity, cycle stability, and high-rate capability of the electrodes in Li ion batteries (LIBs). The morphology, crystal structure, and chemical states of all samples are investigated by means of field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. For comparison, conventional CNFs, octahedral Co3O4, and Co3O4/CNF composite electrodes are prepared. LIB cells fabricate with the CNF/Co3O4 nanopyramid core-shell NWs exhibit superb discharge capacity (1173 mAh g-1 at the 1st cycle), cycle stability (795 mAh g-1 at 50 cycles), high initial Coulombic efficiency (84.8%), and high-rate capability (570 mAh g-1 at a current density of 700 mA g-1) as compared to the conventional CNF, octahedral Co3O4, and Co3O4/CNF composite electrodes. The performance improvement is owing to the introduction of one-dimensional CNFs relative to efficient electron transport in the core region, extensive utilization of Co3O4 nanopyramids with high capacity grown closely on the CNFs in the shell region, and the network structures of the electrode relative to the improvement of Li ion diffusion.

  5. Ultrasensitive Bisphenol A Field-Effect Transistor Sensor Using an Aptamer-Modified Multichannel Carbon Nanofiber Transducer.

    Science.gov (United States)

    Kim, Sung Gun; Lee, Jun Seop; Jun, Jaemoon; Shin, Dong Hoon; Jang, Jyongsik

    2016-03-16

    Bisphenol A (BPA) is a known endocrine-disrupting compound (EDC) that has a structure similar to that of the hormone estrogen. Even low concentrations of BPA are able to bind estrogen receptors, thereby inducing severe diseases such as reproductive disorders, chronic diseases, and various types of cancer. Despite such serious effects, the use of BPA remains widespread. Therefore, monitoring of both dietary and nondietary exposure to BPA is important for human healthcare. Herein, we present a field-effect transistor (FET) sensor using aptamer-modified multichannel carbon nanofibers (MCNFs) to detect BPA. The MCNFs are fabricated via single-nozzle electrospinning of two immiscible polymer solutions followed by thermal treatment in an inert atmosphere. The MCNFs are then oxidized using a solution of HNO3 and H2SO4 to introduce carboxyl groups on the surface of the fibers. The carboxyl-functionalized MCNFs (CMCNFs) are immobilized on an amine-functionalized electrode substrate by forming a covalent bond, and amine-functionalized BPA-binding aptamers are modified in the same manner on the CMCNFs. The resulting FET sensors exhibit a high sensitivity, as well as specificity toward BPA at an unprecedentedly low concentration of 1 fM. Furthermore, these sensors are stable and could be reused for repeated assays. PMID:26883578

  6. Ultrafine TiO2 Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium-Sulfur Battery.

    Science.gov (United States)

    Liang, Gemeng; Wu, Junxiong; Qin, Xianying; Liu, Ming; Li, Qing; He, Yan-Bing; Kim, Jang-Kyo; Li, Baohua; Kang, Feiyu

    2016-09-01

    Although lithium-sulfur (Li-S) batteries deliver high specific energy densities, lots of intrinsic and fatal obstacles still restrict their practical application. Electrospun carbon nanofibers (CNFs) decorated with ultrafine TiO2 nanoparticles (CNF-T) were prepared and used as a multifunctional interlayer to suppress the volume expansion and shuttle effect of Li-S battery. With this strategy, the CNF network with abundant space and superior conductivity can accommodate and recycle the dissolved polysulfides for the bare sulfur cathode. Meanwhile, the ultrafine TiO2 nanoparticles on CNFs work as anchoring points to capture the polysulfides with the strong interaction, making the battery perform with remarkable and stable electrochemical properties. As a result, the Li-S battery with the CNF-T interlayer delivers an initial reversible capacity of 935 mA h g(-1) at 1 C with a capacity retention of 74.2% after 500 cycles. It is believed that this simple, low-cost and scalable method will definitely bring a novel perspective on the practical utilization of Li-S batteries. PMID:27508357

  7. Early Combination of Material Characteristics and Toxicology Is Useful in the Design of Low Toxicity Carbon Nanofiber

    Directory of Open Access Journals (Sweden)

    Tore Syversen

    2012-09-01

    Full Text Available This paper describes an approach for the early combination of material characterization and toxicology testing in order to design carbon nanofiber (CNF with low toxicity. The aim was to investigate how the adjustment of production parameters and purification procedures can result in a CNF product with low toxicity. Different CNF batches from a pilot plant were characterized with respect to physical properties (chemical composition, specific surface area, morphology, surface chemistry as well as toxicity by in vitro and in vivo tests. A description of a test battery for both material characterization and toxicity is given. The results illustrate how the adjustment of production parameters and purification, thermal treatment in particular, influence the material characterization as well as the outcome of the toxic tests. The combination of the tests early during product development is a useful and efficient approach when aiming at designing CNF with low toxicity. Early quality and safety characterization, preferably in an iterative process, is expected to be efficient and promising for this purpose. The toxicity tests applied are preliminary tests of low cost and rapid execution. For further studies, effects such as lung inflammation, fibrosis and respiratory cancer are recommended for the more in-depth studies of the mature CNF product.

  8. Preparation and electrochemical properties of RuO2-containing activated carbon nanofiber composites with hollow cores

    International Nuclear Information System (INIS)

    RuO2-containing activated carbon nanofibers with hollow cores (PMRu-ACNFs) are prepared through one-step electrospinning using polyacrylonitrile (PAN), poly(methyl methacrylate) (PMMA), and ruthenium(III) acetylacetonate followed by thermal treatment. The porous PMRu-ACNF composites exhibit an improved morphological structure and textual properties due to the increased surface area, unique nanotexture, and presence of several functional groups such RuO2 in the ACNFs. Electrochemical measurements of PMRu-ACNF reveal a maximum specific capacitance of 180 Fg−1 and high energy densities of 20-14 Whkg−1 in the power density range of 400 to 10,000 W kg−1 in aqueous KOH electrolyte. In contrast, the ACNF electrodes show a lower specific capacitance and the energy density rapidly drops to 2 Whkg−1 at power densities of 4,000 Wkg−1. Therefore, the PMRu-ACNF composite electrodes may be more suitable as supercapacitors than regular ACNFs are, due to the synergistic effect between the electric double-layer capacitance of porous ACNFs and the pseudocapacitance of RuO2

  9. Pressure Effects on the Atomic and Electronic Structure of Aligned Small Diameter Carbon Nanotubes

    OpenAIRE

    Saxena, Sumit; Trevor A. Tyson

    2008-01-01

    Density functional methods have been used to calculate the electronic properties of aligned smalldiameter single-walled carbon nanotubes under hydrostatic pressures. Abrupt pressure induced semiconductor-metal and metal-semiconductor transitions concomitant with changes in structure are observed. Novel and unexpected unit cell nanotube cross-sections are found. These tubes are observed to form interlinking structures at very high pressures. The large changes in electronic structure and the ab...

  10. Tritrichomonas foetus adhere to superhydrophilic vertically aligned multi-walled carbon nanotube surface

    International Nuclear Information System (INIS)

    For the first time, we show that Tritrichomonas foetus can adhere on superhydrophilic vertically aligned carbon nanotubes (VACNT) films. Scanning electron microscopy shows an unusual adhesion with a higher membrane filopodium projection in all directions, directly attached to superhydrophilic VACNT tips. Highlights: → This is a new method to study the T. foetus adhesion mechanism. → SEM images and interfacial adhesion force show a high adhesion level. → It is very important for future understanding mechanism adhesion and protein expression.

  11. Alignment of Multi-walled Carbon Nanotubes in Polyacrylonitrile Fibers by Mechanical Drawing

    Institute of Scientific and Technical Information of China (English)

    WANG Biao; WEN Zhi-wei; PENG Kun; WANG Hua-ping

    2010-01-01

    Polyacrylonitrile(PAN)/multi-waUed carbon nanotubes(MWNTs)narmcomposites were prepared by an in-situ polymerization method and the fibers from these composites were obtained by a wet-spinning process.The orientation behavior of MWNTs in the PAN fibers was investigated by X-ray diffraction and sound velocity methods.The dispersion and the alignment of the nanotubes were also studied by scanning electron microscopy.

  12. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors

    OpenAIRE

    Wei Xue; Kan Kan Yeung; Martin, Caleb M.; Pengfei Li

    2011-01-01

    Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs). The SWNTs are dispersed in deionized (DI) water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with “teeth”-like patterns—fabricated with photolithography and wet etching—are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to...

  13. Tritrichomonas foetus adhere to superhydrophilic vertically aligned multi-walled carbon nanotube surface

    Energy Technology Data Exchange (ETDEWEB)

    Moreira Machado, Susane [Laboratorio de Biologia Celular e Tecidual, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi 2911, 12244-000, Sao Jose dos Campos, SP (Brazil); Oliveira Lobo, Anderson, E-mail: loboao@yahoo.com [Laboratorio de Nanotecnologia Biomedica (NanoBio), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, SP (Brazil); Laboratorio de Espectroscopia Vibracional Biomedica, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Avenida Shishima Hifumi, 2911, CEP 12244-000, Sao Jose dos Campos, SP (Brazil); Bueno Loureiro Sapucahy, Ariel [Laboratorio de Biologia Celular e Tecidual, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi 2911, 12244-000, Sao Jose dos Campos, SP (Brazil); Marciano, Fernanda Roberta [Laboratorio de Nanotecnologia Biomedica (NanoBio), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, SP (Brazil); Laboratorio de Espectroscopia Vibracional Biomedica, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Avenida Shishima Hifumi, 2911, CEP 12244-000, Sao Jose dos Campos, SP (Brazil); Corat, Evaldo Jose [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010 SP (Brazil); Soares da Silva, Newton [Laboratorio de Biologia Celular e Tecidual, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi 2911, 12244-000, Sao Jose dos Campos, SP (Brazil)

    2011-10-10

    For the first time, we show that Tritrichomonas foetus can adhere on superhydrophilic vertically aligned carbon nanotubes (VACNT) films. Scanning electron microscopy shows an unusual adhesion with a higher membrane filopodium projection in all directions, directly attached to superhydrophilic VACNT tips. Highlights: {yields} This is a new method to study the T. foetus adhesion mechanism. {yields} SEM images and interfacial adhesion force show a high adhesion level. {yields} It is very important for future understanding mechanism adhesion and protein expression.

  14. Enhanced electrical properties of vertically aligned carbon nanotube-epoxy nanocomposites with high packing density

    OpenAIRE

    Souier, Tewfik; Santos, Sergio; Al Ghaferi, Amal; Stefancich, Marco; Chiesa, Matteo

    2012-01-01

    During their synthesis, multi-walled carbon nanotubes can be aligned and impregnated in a polymer matrix to form an electrically conductive and flexible nanocomposite with high backing density. The material exhibits the highest reported electrical conductivity of CNT-epoxy composites (350 S/m). Here, we show how conductive atomic force microscopy can be used to study the electrical transport mechanism in order to explain the enhanced electrical properties of the composite. The high spatial re...

  15. Co-production of hydrogen and carbon nanofibers from methane decomposition over zeolite Y supported Ni catalysts

    International Nuclear Information System (INIS)

    Highlights: • Methane cracking requires an optimum temperature range of 550–600 °C for H2 yield. • At 550 and 600 °C, catalyst showed longer activity for the whole test. • At 600 °C, a 614.25 gc/gNi of carbon was obtained using 30% Ni/Y zeolite catalysts. • Produced filamentous carbon has the same diameter as the metallic nickel itself. • VHSV has reverse and non-linear relevancy to the weight of Ni/Y zeolite catalyst. - Abstract: The objective of this paper is to study the influences of different operating conditions on the hydrogen formation and properties of accumulated carbon from methane decomposition using zeolite Y supported 15% and 30% Ni, respectively, at a temperature range between 500 and 650 °C in a pilot scale fixed bed reactor. The temperature ramp was showed a significant impact on the thermo-catalytic decomposition (TCD) of methane. An optimum temperature range of 550–600 °C were required to attain the maximum amount of methane conversion and revealed that at 550 and 600 °C, catalyst showed longer activity for the whole studied of experimental runs. Additionally, at 550 °C, the methane decomposition is two times longer for 30% Ni/Y zeolite than that for 15% Ni/Y zeolite catalyst, whereas it is almost three times higher at 500 °C. A maximum carbon yield of 614.25 and 157.54 gc/gNi were reported after end of the complete reaction at 600 °C with 30% and 15% Ni/Y zeolite catalyst, respectively. From BET, TPD, and XRD analysis, we had reported that how the chemistry between the TCD of methane and metal content of the catalysts could significantly affect the hydrogen production as well as carbon nano-fibers. TEM analysis ensured that the produced carbon had fishbone type structures with a hollow core and grew from crystallites of Ni anchored on the external surface of the catalysts and irrespective of the metal loadings, the whisker types of nano filaments were formed as confirmed from FESEM analysis. Nevertheless, the effect of

  16. Nondestructive evaluation of ±45° flat-braided carbon-fiber-reinforced polymers with carbon nanofibers using HTS-SQUID gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y., E-mail: hatukade@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Shinyama, Y.; Yoshida, K. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Takai, Y. [Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Aly-Hassan, M.S.; Nakai, A.; Hamada, H. [Advanced Fibro-Science Division, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Adachi, S.; Tanabe, K. [International Superconductivity Technology Center, Superconductivity Research Laboratory, 10-13, Shinonome 1-chome, Koto-ku, Tokyo 135-0062 (Japan); Tanaka, S. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2013-01-15

    Highlights: ► Tensile load was applied to braided CFRPs with and without CNFs and cutting edges. ► Visualization method using SQUID gradiometer was also applied to the braided CFRPs. ► Different destructive mechanisms and current distributions were obtained. ► Dispersed CNFs enhanced mechanical and electrical properties of the braided CFRPs. -- Abstract: Step-by-step tensile tests were applied to flat-braided carbon-fiber-reinforced polymers with and without added dispersions of carbon nanofibers (CNFs) and with and without sample sides cut off to study their mechanical properties and destructive mechanisms by means of in situ observation and stress–strain measurements. An ex situ nondestructive evaluation technique, using a high-temperature superconductor superconducting quantum interference device gradiometer, was also applied to the samples to study their electrical properties; the relationships between the mechanical and electrical properties by visualizing current maps in the samples during ac current injection was also studied. Clear differences were observed in the mechanical and electrical properties and the destructive mechanisms between the samples with and without CNFs and with and without cut off sides. These differences were mainly attributed to the addition of CNFs, which enhanced the mechanical and electrical connections between the carbon fiber bundles.

  17. Nondestructive evaluation of ±45° flat-braided carbon-fiber-reinforced polymers with carbon nanofibers using HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Highlights: ► Tensile load was applied to braided CFRPs with and without CNFs and cutting edges. ► Visualization method using SQUID gradiometer was also applied to the braided CFRPs. ► Different destructive mechanisms and current distributions were obtained. ► Dispersed CNFs enhanced mechanical and electrical properties of the braided CFRPs. -- Abstract: Step-by-step tensile tests were applied to flat-braided carbon-fiber-reinforced polymers with and without added dispersions of carbon nanofibers (CNFs) and with and without sample sides cut off to study their mechanical properties and destructive mechanisms by means of in situ observation and stress–strain measurements. An ex situ nondestructive evaluation technique, using a high-temperature superconductor superconducting quantum interference device gradiometer, was also applied to the samples to study their electrical properties; the relationships between the mechanical and electrical properties by visualizing current maps in the samples during ac current injection was also studied. Clear differences were observed in the mechanical and electrical properties and the destructive mechanisms between the samples with and without CNFs and with and without cut off sides. These differences were mainly attributed to the addition of CNFs, which enhanced the mechanical and electrical connections between the carbon fiber bundles

  18. Porous Core-Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction.

    Science.gov (United States)

    Ren, Guangyuan; Lu, Xianyong; Li, Yunan; Zhu, Ying; Dai, Liming; Jiang, Lei

    2016-02-17

    The development of nonprecious-metal-based electrocatalysts with high oxygen reduction reaction (ORR) activity, low cost, and good durability in both alkaline and acidic media is very important for application of full cells. Herein, we developed a facile and economical strategy to obtain porous core-shell Fe3C embedded nitrogen-doped carbon nanofibers (Fe3C@NCNF-X, where X denotes pyrolysis temperature) by electrospinning of polyvinylidene fluoride (PVDF) and FeCl3 mixture, chemical vapor phase polymerization of pyrrole, and followed by pyrolysis of composite nanofibers at high temperatures. Note that the FeCl3 and polypyrrole acts as precursor for Fe3C core and N-doped carbon shell, respectively. Moreover, PVDF not only plays a role as carbon resources, but also provides porous structures due to hydrogen fluoride exposure originated from thermal decomposition of PVDF. The resultant Fe3C@NCNF-X catalysts, particularly Fe3C@NCNF-900, showed efficient electrocatalytic performance for ORR in both alkaline and acidic solutions, which are attributed to the synergistic effect between Fe3C and N-doped carbon as catalytic active sites, and carbon shell protects Fe3C from leaching out. In addition, the Fe3C@NCNF-X catalyst displayed a better long-term stability, free from methanol crossover and CO-poisoning effects than those of Pt/C, which is of great significance for the design and development of advanced electrocatalysts based on nonprecious metals. PMID:26808226

  19. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  20. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization

    International Nuclear Information System (INIS)

    Carbon nanotubes have been the subject of considerable attention because of their exceptional physical and mechanical properties. These properties observed at the nanoscale have motivated researchers to utilize carbon nanotubes as reinforcement in composite materials. In this research, a micro-scale twin-screw extruder was used to achieve dispersion of multi-walled carbon nanotubes in a polystyrene matrix. Highly aligned nanocomposite films were produced by extruding the polymer melt through a rectangular die and drawing the film prior to cooling. Randomly oriented nanocomposites were produced by achieving dispersion first with the twin-screw extruder followed by pressing a film using a hydraulic press. The tensile behaviour of the aligned and random nanocomposite films with 5 wt.{%} loading of nanotubes were characterized. Addition of nanotubes increased the tensile modulus, yield strength and ultimate strengths of the polymer films, and the improvement in elastic modulus with the aligned nanotube composite is five times greater than the improvement for the randomly oriented composite. (author)

  1. RAPID COMMUNICATION: Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization

    Science.gov (United States)

    Thostenson, Erik T.; Chou, Tsu-Wei

    2002-08-01

    Carbon nanotubes have been the subject of considerable attention because of their exceptional physical and mechanical properties. These properties observed at the nanoscale have motivated researchers to utilize carbon nanotubes as reinforcement in composite materials. In this research, a micro-scale twin-screw extruder was used to achieve dispersion of multi-walled carbon nanotubes in a polystyrene matrix. Highly aligned nanocomposite films were produced by extruding the polymer melt through a rectangular die and drawing the film prior to cooling. Randomly oriented nanocomposites were produced by achieving dispersion first with the twin-screw extruder followed by pressing a film using a hydraulic press. The tensile behaviour of the aligned and random nanocomposite films with 5 wt.{%} loading of nanotubes were characterized. Addition of nanotubes increased the tensile modulus, yield strength and ultimate strengths of the polymer films, and the improvement in elastic modulus with the aligned nanotube composite is five times greater than the improvement for the randomly oriented composite.

  2. A one-step technique to prepare aligned arrays of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mahanandia, Pitamber [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)], E-mail: pitam@physics.iisc.ernet.in

    2008-04-16

    A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 deg. C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation.

  3. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    OpenAIRE

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-01-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided t...

  4. Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma

    Directory of Open Access Journals (Sweden)

    A. Kodumagulla

    2014-03-01

    Full Text Available Vertically-aligned carbon nanofibres (VACNFs have been synthesized in a mixture of acetone and air using catalytic DC plasma-enhanced chemical vapour deposition. Typically, ammonia or hydrogen is used as an etchant gas in the mixture to remove carbon that otherwise passivates the catalyst surface and impedes growth. Our demonstration of the use of air as the etchant gas opens up the possibility that ion etching could be sufficient to maintain the catalytic activity state during synthesis. It also demonstrates a path toward growing VACNFs in the open atmosphere.

  5. Crystallographic growth and alignment of carbon nanotubes on few-layer graphene

    Science.gov (United States)

    Arash, Aram; Hunley, Patrick D.; Nasseri, Mohsen; Boland, Mathias J.; Sundararajan, Abhishek; Hudak, Bethany M.; Guiton, Beth S.; Strachan, Douglas R.

    2015-03-01

    Hybrid carbon nanotube and graphene structures are emerging as an exciting material system built from a common sp2 carbon backbone. Such hybrid systems have promise for use in improving the performance of energy storage and high-speed electronic applications. Towards the attainment of such hybrid materials, the catalytic growth and crystallographic alignment of these integrated structures are investigated along with the atomic-scale features of their interfaces. The catalytic activity of nanoparticles to form carbon nanotubes on the surface of few-layer graphene is tuned through precise feedstock application. Through careful materials synthesis, the interfaces of these hybrid carbon nanotube - graphene systems are investigated through ultra-high resolution electron microscopy.

  6. Quantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Hansen, Reinack; Joshi, Hrishikesh; Kutty, R. Govindan; Liu, Zheng; Zheng, Lianxi; Yang, Jinglei; Zhao, Yanli

    2016-04-01

    Photoactive materials that are triggered by the irradiation of light to generate an electrical response provide an ecofriendly platform to afford efficient power sources and switches. A chemical assembly of well-known elements with aligned carbon nanotube bundles is reported here, which was employed to form an efficient photo-induced charge transfer device. The primary elements of this device are ultra-long multi-walled carbon nanotube (MWCNT) bundles, polyaniline (PANI) thin film coating, and CdSe quantum dots (QDs). Highly ordered and horizontally aligned MWCNT bundles were coated with PANI to enhance charge transfer properties of active QDs in this platform. The obtained device (CdSe-MWCNT@PANI) constructed on a silicon base exhibits highly efficient power conversion capabilities owing to the aligned MWCNT bundle assisted enhanced charge transport pathways generated within the device. The device also shows a short circuit current density (Jsc) of 9.81 mA cm-2 and an open circuit voltage (Voc) of 0.46 V. The power conversion efficiency (PCE) of the device is 5.41%, and the current response is quite stable, highly responsive, and reproducible.Photoactive materials that are triggered by the irradiation of light to generate an electrical response provide an ecofriendly platform to afford efficient power sources and switches. A chemical assembly of well-known elements with aligned carbon nanotube bundles is reported here, which was employed to form an efficient photo-induced charge transfer device. The primary elements of this device are ultra-long multi-walled carbon nanotube (MWCNT) bundles, polyaniline (PANI) thin film coating, and CdSe quantum dots (QDs). Highly ordered and horizontally aligned MWCNT bundles were coated with PANI to enhance charge transfer properties of active QDs in this platform. The obtained device (CdSe-MWCNT@PANI) constructed on a silicon base exhibits highly efficient power conversion capabilities owing to the aligned MWCNT bundle assisted

  7. Toward CH4 dissociation and C diffusion during Ni/Fe-catalyzed carbon nanofiber growth: A density functional theory study

    Science.gov (United States)

    Fan, Chen; Zhou, Xing-Gui; Chen, De; Cheng, Hong-Ye; Zhu, Yi-An

    2011-04-01

    First-principles calculations have been performed to investigate CH4 dissociation and C diffusion during the Ni/Fe-catalyzed growth of carbon nanofibers (CNFs). Two bulk models with different Ni to Fe molar ratios (1:1 and 2:1) are constructed, and x-ray diffraction (XRD) simulations are conducted to evaluate their reliability. With the comparison between the calculated and experimental XRD patterns, these models are found to be well suited to reproduce the crystalline structures of Ni/Fe bulk alloys. The calculations indicate the binding of the C1 derivatives to the Ni/Fe closest-packed surfaces is strengthened compared to that on Ni(111), arising from the upshift of the weighted d-band centers of catalyst surfaces. Then, the transition states for the four successive dehydrogenation steps in CH4 dissociation are located using the dimer method. It is found that the energy barriers for the first three steps are rather close on the alloyed Ni/Fe and Ni surfaces, while the activation energy for CH dissociation is substantially lowered with the introduction of Fe. The dissolution of the generated C from the surface into the bulk of the Ni/Fe alloys is thermodynamically favorable, and the diffusion of C through catalyst particles is hindered by the Fe component. With the combination of density functional theory calculations and kinetic analysis, the C concentration in catalyst particles is predicted to increase with the Fe content. Meanwhile, other experimental conditions, such as the composition of carbon-containing gases, feedstock partial pressure, and reaction temperature, are also found to play a key role in determining the C concentration in bulk metal, and hence the microstructures of generated CNFs.

  8. Development of Radiation Processing to Functionalize Carbon Nanofiber to Use in Nanocomposites for Industrial Application

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on carbon materials have been thoroughly investigated because of its importance in the fields of nuclear, medical, and materials science. Basically, the effect of ionizing radiation on carbon materials takes place as a displacement of carbon atoms from their amorphous or graphitic structures. For nanocarbon materials, only destructive effects were observed in early experiments involving bombardment of carbon nanotubes and fullerenes with ions. However, recent work reveals that radiation can exploit defect creation for novel materials development especially in electronic nanotechnology (Krasheninnikov et al., 2007)

  9. Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries

    Science.gov (United States)

    Wan, Yizao; Yang, Zhiwei; Xiong, Guangyao; Guo, Ruisong; Liu, Ze; Luo, Honglin

    2015-10-01

    There is growing interest in flexible, cost-effective, and binder-free energy storage devices to meet the special needs of modern electronic systems. Herein we report a general, scalable, eco-friendly, and cost-effective approach for the fabrication of nano-Fe3O4-anchored three-dimensional (3D) carbon nanofiber (CNFs) aerogels (Fe3O4@BC-CNFs). The preparation processes include the anchoring of Fe2O3 nanoparticles on bacterial cellulose (BC) nanofibers with intrinsic 3D network structure and subsequent carbonization at different temperatures. The aerogel carbonized at 600 °C (Fe3O4@BC-CNFs-600) is highly flexible and was directly used as working electrodes in lithium-ion batteries without metal current collectors, conducting additives, or binders. The Fe3O4@BC-CNFs-600 demonstrates greatly improved electrochemical performance in comparison to the bare Fe3O4 nanoparticles. In addition to its excellent flexibility, a stable capacity of 755 mAh g-1 for up to 80 cycles is also higher than most of carbon-Fe3O4 hybrids. The high reversible capacity and excellent rate capability are attributed to its 3D porous network structure with well-dispersed Fe3O4 nanoparticles on the surfaces of CNFs.

  10. Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Graphical Abstract: Multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets grown on electrospun carbon nanofiber membranes were prepared via electrospinning combined with solution co-deposition for high-performance supercapacitor electrodes. - Highlights: • Ni-Co LDH@CNFhybridswerepreparedbyelectrospinningandsolutionco-deposition. • Ni-Co LDH@CNF hybrids show high electrochemical performance for supercapacitors. • This method can be extended to other bimetallic@CNF hybrids for electrode materials. - Abstract: Hybrid nanomaterials with hierarchical structures have been considered as one kind of the most promising electrode materials for high-performance supercapacitors with high capacity and long cycle lifetime. In this work, multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide (Ni-Co LDH) nanorods/nanosheets on carbon nanofibers (CNFs) were prepared by electrospinning technique combined with one-step solution co-deposition method. Carbon nanofiber membranes were obtained by electrospinning of polyacrylonitrile (PAN) followed by pre-oxidation and carbonization. The successful growth of Ni-Co LDH with different morphologies on CNF membrane by using two kinds of auxiliary agents reveals the simplicity and universality of this method. The uniform and immense growth of Ni-Co LDH on CNFs significantly improves its dispersion and distribution. Meanwhile the hierarchical structure of carbon nanofiber@nickel-cobalt layered double hydroxide nanorods/nanosheets (CNF@Ni-Co LDH NR/NS) hybrid membranes provide not only more active sites for electrochemical reaction but also more efficient pathways for electron transport. Galvanostatic charge-discharge measurements reveal high specific capacitances of 1378.2 F g−1 and 1195.4 F g−1 (based on Ni-Co LDH mass) at 1 A g−1 for CNF@Ni-Co LDH NR and CNF@Ni-Co LDH NS hybrid membranes, respectively. Moreover, cycling stabilities for both hybrid membranes are

  11. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Trihalide Perovskite Interface - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Przepioski, Joshua [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene-2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  12. Negative refraction and self-collimation in the far infrared with aligned carbon nanotube films

    International Nuclear Information System (INIS)

    This study demonstrates the far-infrared self-collimation and low-loss transmission of aligned carbon nanotube (CNT) films or arrays. The anisotropic dielectric functions of the CNT array is modeled using the effective medium theory considering the degree of alignment. The spectral regions where hyperbolic dispersion is satisfied are in the far-infrared. In the hyperbolic regime, energy propagates inside the CNT film along the optical axis for nearly all incidence angles. The self-collimation effect is also examined for tilted CNT thin films by tracing the Poynting vector trajectories. Low-loss transmission is explored to understand the impact of alignment on the penetration depth and transmission through the film. In conjunction with the surface radiative properties, the self-collimation and transmission characteristics are distinguished between the two hyperbolic bands of the CNT film. The insight obtained from this work may lead to the utilization of CNT arrays in polarization filtering and infrared imaging. - Highlights: • Demonstrated far-infrared hyperbolic metamaterials based on aligned CNTs. • Demonstrated negative energy refraction angle and loss-enhanced transmission. • Demonstrated self-collimation in CNT thin films through energy streamlines. • Predicted reflectance and penetration depth for tilted CNT films. • Investigated the angle-dependent transmittance of tilted CNT films

  13. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    Energy Technology Data Exchange (ETDEWEB)

    Przepioski, Joshua [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  14. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    Directory of Open Access Journals (Sweden)

    Davood Askari and Mehrdad N Ghasemi-Nejhad

    2012-01-01

    Full Text Available The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength using carbon nanotubes (CNTs as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  15. Rainbow channeling of protons in very short carbon nanotubes with aligned Stone-Wales defects

    Science.gov (United States)

    Ćosić, M.; Petrović, S.; Bellucci, S.

    2016-01-01

    In this paper proton channeling through armchair single-walled-carbon-nanotubes (SWCNTs) with aligned Stone-Wales defects has been investigated. The energy of the proton beam was 1 GeV, while the lengths of the SWCNTs have been varied from 200 nm up to 1000 nm. The linear density of aligned defects has been varied in the whole range, from minimally up to maximally possible values. Here are presented results of a detailed morphological analysis concerning: the formation, evolution and interaction of the nanotube rainbows. The potential of the SWCNT has been constructed from Molère's expression of the Thomas-Fermi's proton-carbon interaction-energy, using the approximation of the continuous atomic string. Trajectories of the channeled protons were obtained by solving the corresponding classical equations of motions. Distributions of the transmitted protons were obtained by the Monte-Carlo simulation. The shape of angular distributions has been explained in the framework of the theory of nanotube rainbows. The aim of this study is also to investigate the applicability of the proton rainbow channeling for the characterization of nanotubes with aligned Stone-Wales defects.

  16. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    International Nuclear Information System (INIS)

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications. (paper)

  17. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    International Nuclear Information System (INIS)

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests. (paper)

  18. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.

    2015-11-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.

  19. Effect of aligned carbon nanotubes on electrical conductivity behaviour in polycarbonate matrix

    Indian Academy of Sciences (India)

    M M Larijani; E J Khamse; Z Asadollahi; M Asadi

    2012-06-01

    This article reports effects of alignment of embedded carbon nanotubes in a polycarbonate polymer matrix under magnetic, direct and alternating current electric fields on the electrical properties of the resulting nanocomposites. Composites consisting of different quantities of carbon nanotubes in a polycarbonate matrix have been prepared using a solution casting technique. The effects of field strength and nanotube concentration on the resulted network structure and conductivity of the composites were studied by in situ optical microscopy, transmission electron microscopy and four-point probe technique. The results showed that the composites prepared in the presence of field had better conductivity than those of as-prepared composites. It was also concluded that the application of alternating current electric field and magnetic field in this system led to the formation of relatively continuing networks while direct current electric field only prevented agglomeration of the carbon nanotubes in the polycarbonate matrix and created relatively uniform distribution of nanotubes in the matrix.

  20. Tunneling phenomena in aligned multi-walled carbon nanotube sheets: conductivity and Raman correlations

    International Nuclear Information System (INIS)

    We performed simultaneous Raman spectroscopy and electrical conductivity measurements on self-standing aligned multi-walled carbon nanotubes sheets at varying inter-tube distances. A sapphire anvil cell is used here to modulate the inter-tube distance and promote the subsequent electronic tunneling phenomena. We observe a singular correlation between the intensity of the so called defect bands of carbon materials and their conductivity. This indicates that the conditions of the resonant processes that originate these bands are modified by the tunneling phenomena. Such an issue has never been reported before and has potential technological applications. Additionally, the provided AFM images evidence the debundling of the carbon nanotubes that had been described to occur after small compression. (paper)