WorldWideScience

Sample records for aligned biological networks

  1. Local versus global biological network alignment

    Science.gov (United States)

    Meng, Lei; Striegel, Aaron; Milenković, Tijana

    2016-01-01

    Motivation: Network alignment (NA) aims to find regions of similarities between species’ molecular networks. There exist two NA categories: local (LNA) and global (GNA). LNA finds small highly conserved network regions and produces a many-to-many node mapping. GNA finds large conserved regions and produces a one-to-one node mapping. Given the different outputs of LNA and GNA, when a new NA method is proposed, it is compared against existing methods from the same category. However, both NA categories have the same goal: to allow for transferring functional knowledge from well- to poorly-studied species between conserved network regions. So, which one to choose, LNA or GNA? To answer this, we introduce the first systematic evaluation of the two NA categories. Results: We introduce new measures of alignment quality that allow for fair comparison of the different LNA and GNA outputs, as such measures do not exist. We provide user-friendly software for efficient alignment evaluation that implements the new and existing measures. We evaluate prominent LNA and GNA methods on synthetic and real-world biological networks. We study the effect on alignment quality of using different interaction types and confidence levels. We find that the superiority of one NA category over the other is context-dependent. Further, when we contrast LNA and GNA in the application of learning novel protein functional knowledge, the two produce very different predictions, indicating their complementarity. Our results and software provide guidelines for future NA method development and evaluation. Availability and implementation: Software: http://www.nd.edu/~cone/LNA_GNA Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27357169

  2. GraphAlignment: Bayesian pairwise alignment of biological networks

    Directory of Open Access Journals (Sweden)

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  3. Local graph alignment and motif search in biological networks

    Science.gov (United States)

    Berg, Johannes; Lässig, Michael

    2004-10-01

    Interaction networks are of central importance in postgenomic molecular biology, with increasing amounts of data becoming available by high-throughput methods. Examples are gene regulatory networks or protein interaction maps. The main challenge in the analysis of these data is to read off biological functions from the topology of the network. Topological motifs, i.e., patterns occurring repeatedly at different positions in the network, have recently been identified as basic modules of molecular information processing. In this article, we discuss motifs derived from families of mutually similar but not necessarily identical patterns. We establish a statistical model for the occurrence of such motifs, from which we derive a scoring function for their statistical significance. Based on this scoring function, we develop a search algorithm for topological motifs called graph alignment, a procedure with some analogies to sequence alignment. The algorithm is applied to the gene regulation network of Escherichia coli.

  4. CytoGEDEVO - Global alignment of biological networks with Cytoscape

    DEFF Research Database (Denmark)

    Malek, Maximilian; Ibragimov, Rashid; Albrecht, Mario;

    2016-01-01

    between them model their relations. Protein-protein-interaction (PPI) networks, for instance, show the physical interactions of proteins in an organism. The comparison of such networks promises additional insights into protein and cell function as well as knowledge-transfer across species. Several...... computational approaches have been developed previously to solve the network alignment problem, but only a few concentrate on the usability of the implemented tools for the evaluation of protein-protein interactions by the end-users (biologists and medical researchers). RESULTS: We have created Cyto......GEDEVO, a Cytoscape app for visual and user-assisted network alignment. It extends the previous GEDEVO methodology for global pairwise network alignments with new graphical and functional features. Our main focus was on the usability, even by non-programmers and the interpretability of the network alignment results...

  5. C-GRAAL: common-neighbors-based global GRAph ALignment of biological networks.

    Science.gov (United States)

    Memišević, Vesna; Pržulj, Nataša

    2012-07-01

    Networks are an invaluable framework for modeling biological systems. Analyzing protein-protein interaction (PPI) networks can provide insight into underlying cellular processes. It is expected that comparison and alignment of biological networks will have a similar impact on our understanding of evolution, biological function, and disease as did sequence comparison and alignment. Here, we introduce a novel pairwise global alignment algorithm called Common-neighbors based GRAph ALigner (C-GRAAL) that uses heuristics for maximizing the number of aligned edges between two networks and is based solely on network topology. As such, it can be applied to any type of network, such as social, transportation, or electrical networks. We apply C-GRAAL to align PPI networks of eukaryotic and prokaryotic species, as well as inter-species PPI networks, and we demonstrate that the resulting alignments expose large connected and functionally topologically aligned regions. We use the resulting alignments to transfer biological knowledge across species, successfully validating many of the predictions. Moreover, we show that C-GRAAL can be used to align human-pathogen inter-species PPI networks and that it can identify patterns of pathogen interactions with host proteins solely from network topology.

  6. Node Handprinting: A Scalable and Accurate Algorithm for Aligning Multiple Biological Networks.

    Science.gov (United States)

    Radu, Alex; Charleston, Michael

    2015-07-01

    Due to recent advancements in high-throughput sequencing technologies, progressively more protein-protein interactions have been identified for a growing number of species. Subsequently, the protein-protein interaction networks for these species have been further refined. The increase in the quality and availability of these networks has in turn brought a demand for efficient methods to analyze such networks. The pairwise alignment of these networks has been moderately investigated, with numerous algorithms available, but there is very little progress in the field of multiple network alignment. Multiple alignment of networks from different organisms is ideal at finding abnormally conserved or disparate subnetworks. We present a fast and accurate algorithmic approach, Node Handprinting (NH), based on our previous work with Node Fingerprinting, which enables quick and accurate alignment of multiple networks. We also propose two new metrics for the analysis of multiple alignments, as the current metrics are not as sophisticated as their pairwise alignment counterparts. To assess the performance of NH, we use previously aligned datasets as well as protein interaction networks generated from the public database BioGRID. Our results indicate that NH compares favorably with current methodologies and is the only algorithm capable of performing the more complex alignments. PMID:25695597

  7. FUSE: Multiple Network Alignment via Data Fusion

    OpenAIRE

    Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša

    2014-01-01

    Discovering patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. The objective of a multiple network alignment is to create clusters of nodes that are evolutionarily conserved and functionally consistent across all networks. Unfortunately, the alignment methods ...

  8. Algorithms for Large, Sparse Network Alignment Problems

    CERN Document Server

    Bayati, Mohsen; Gleich, David F; Saberi, Amin; Wang, Ying

    2009-01-01

    We propose a new distributed algorithm for sparse variants of the network alignment problem that occurs in a variety of data mining areas including systems biology, database matching, and computer vision. Our algorithm uses a belief propagation heuristic and provides near optimal solutions for an NP-hard combinatorial optimization problem. We show that our algorithm is faster and outperforms or nearly ties existing algorithms on synthetic problems, a problem in bioinformatics, and a problem in ontology matching. We also provide a unified framework for studying and comparing all network alignment solvers.

  9. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Shahin [Purdue Univ., West Lafayette, IN (United States); Gleich, David F. [Purdue Univ., West Lafayette, IN (United States); Kolda, Tamara G. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Grama, Ananth [Purdue Univ., West Lafayette, IN (United States)

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  10. L-GRAAL: Lagrangian graphlet-based network aligner

    OpenAIRE

    Malod-Dognin, Noël; Pržulj, Nataša

    2015-01-01

    Motivation: Discovering and understanding patterns in networks of protein–protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically...

  11. Pin-Align: A New Dynamic Programming Approach to Align Protein-Protein Interaction Networks

    OpenAIRE

    Farid Amir-Ghiasvand; Abbas Nowzari-Dalini; Vida Momenzadeh

    2014-01-01

    To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein...

  12. Active network alignment: a matching-based approach

    CERN Document Server

    Malmi, Eric; Gionis, Aristides

    2016-01-01

    Network alignment is the problem of matching the nodes of two graphs, maximizing the similarity of the matched nodes and the edges between them. This problem is encountered in a wide array of applications - from biological networks to social networks to ontologies - where multiple networked data sources need to be integrated. Due to the difficulty of the task, an accurate alignment can rarely be found without human assistance. Thus, it is of great practical importance to develop network alignment algorithms that can optimally leverage experts who are able to provide the correct alignment for a small number of nodes. Yet, only a handful of existing works address this active network alignment setting. The majority of the existing active methods focus on absolute queries ("are nodes $a$ and $b$ the same or not?"), whereas we argue that it is generally easier for a human expert to answer relative queries ("which node in the set $\\{b_1, \\ldots, b_n\\}$ is the most similar to node $a$?"). This paper introduces a nov...

  13. Functional alignment of regulatory networks: a study of temperate phages.

    Directory of Open Access Journals (Sweden)

    Ala Trusina

    2005-12-01

    Full Text Available The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation between phage lambda and 186, their networks are found to be similar when difference is measured in terms of global signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the network perspective.

  14. GASOLINE: a Greedy And Stochastic algorithm for Optimal Local multiple alignment of Interaction NEtworks

    OpenAIRE

    Giovanni Micale; Alfredo Pulvirenti; Rosalba Giugno; Alfredo Ferro

    2014-01-01

    The analysis of structure and dynamics of biological networks plays a central role in understanding the intrinsic complexity of biological systems. Biological networks have been considered a suitable formalism to extend evolutionary and comparative biology. In this paper we present GASOLINE, an algorithm for multiple local network alignment based on statistical iterative sampling in connection to a greedy strategy. GASOLINE overcomes the limits of current approaches by producing biologically ...

  15. Synthetic biological networks

    International Nuclear Information System (INIS)

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  16. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  17. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  18. Functional Aspects of Biological Networks

    Science.gov (United States)

    Sneppen, Kim

    2007-03-01

    We discuss biological networks with respect to 1) relative positioning and importance of high degree nodes, 2) function and signaling, 3) logic and dynamics of regulation. Visually the soft modularity of many real world networks can be characterized in terms of number of high and low degrees nodes positioned relative to each other in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). In these terms biological networks looks like rugged landscapes with separated peaks, hub proteins, which each are roughly as essential as any of the individual proteins on the periphery of the hub. Within each sup-domain of a molecular network one can often identify dynamical feedback mechanisms that falls into combinations of positive and negative feedback circuits. We will illustrate this with examples taken from phage regulation and bacterial uptake and regulation of small molecules. In particular we find that a double negative regulation often are replaced by a single positive link in unrelated organisms with same functional requirements. Overall we argue that network topology primarily reflects functional constraints. References: S. Maslov and K. Sneppen. ``Computational architecture of the yeast regulatory network." Phys. Biol. 2:94 (2005) A. Trusina et al. ``Functional alignment of regulatory networks: A study of temerate phages". Plos Computational Biology 1:7 (2005). J.B. Axelsen et al. ``Degree Landscapes in Scale-Free Networks" physics/0512075 (2005). A. Trusina et al. ``Hierarchy and Anti-Hierarchy in Real and Scale Free networks." PRL 92:178702 (2004) S. Semsey et al. ``Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli". (2006) q-bio.MN/0609042

  19. Mutual Community Detection across Multiple Partially Aligned Social Networks

    OpenAIRE

    Zhang, Jiawei; Yu, Philip S.

    2015-01-01

    Community detection in online social networks has been a hot research topic in recent years. Meanwhile, to enjoy more social network services, users nowadays are usually involved in multiple online social networks simultaneously, some of which can share common information and structures. Networks that involve some common users are named as multiple "partially aligned networks". In this paper, we want to detect communities of multiple partially aligned networks simultaneously, which is formall...

  20. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  1. SUMONA: A supervised method for optimizing network alignment.

    Science.gov (United States)

    Tuncay, Erhun Giray; Can, Tolga

    2016-08-01

    This study focuses on improving the multi-objective memetic algorithm for protein-protein interaction (PPI) network alignment, Optimizing Network Aligner - OptNetAlign, via integration with other existing network alignment methods such as SPINAL, NETAL and HubAlign. The output of this algorithm is an elite set of aligned networks all of which are optimal with respect to multiple user-defined criteria. However, OptNetAlign is an unsupervised genetic algorithm that initiates its search with completely random solutions and it requires substantial running times to generate an elite set of solutions that have high scores with respect to the given criteria. In order to improve running time, the search space of the algorithm can be narrowed down by focusing on remarkably qualified alignments and trying to optimize the most desired criteria on a more limited set of solutions. The method presented in this study improves OptNetAlign in a supervised fashion by utilizing the alignment results of different network alignment algorithms with varying parameters that depend upon user preferences. Therefore, the user can prioritize certain objectives upon others and achieve better running time performance while optimizing the secondary objectives.

  2. Services supporting collaborative alignment of engineering networks

    Science.gov (United States)

    Jansson, Kim; Uoti, Mikko; Karvonen, Iris

    2015-08-01

    Large-scale facilities such as power plants, process factories, ships and communication infrastructures are often engineered and delivered through geographically distributed operations. The competencies required are usually distributed across several contributing organisations. In these complicated projects, it is of key importance that all partners work coherently towards a common goal. VTT and a number of industrial organisations in the marine sector have participated in a national collaborative research programme addressing these needs. The main output of this programme was development of the Innovation and Engineering Maturity Model for Marine-Industry Networks. The recently completed European Union Framework Programme 7 project COIN developed innovative solutions and software services for enterprise collaboration and enterprise interoperability. One area of focus in that work was services for collaborative project management. This article first addresses a number of central underlying research themes and previous research results that have influenced the development work mentioned above. This article presents two approaches for the development of services that support distributed engineering work. Experience from use of the services is analysed, and potential for development is identified. This article concludes with a proposal for consolidation of the two above-mentioned methodologies. This article outlines the characteristics and requirements of future services supporting collaborative alignment of engineering networks.

  3. GraphCrunch 2: Software tool for network modeling, alignment and clustering

    Directory of Open Access Journals (Sweden)

    Hayes Wayne

    2011-01-01

    Full Text Available Abstract Background Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. Results We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL" for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other

  4. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng

    2015-06-13

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a \\'blackbox preprocessing\\' to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein-DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the \\'blackbox preprocessing\\'). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein-DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein-protein complex and a protein-RNA complex, which is biologically known as a protein-RNA mimicry case. © The Author 2015. Published by Oxford University Press.

  5. Time Interference Alignment via Delay Offset for Long Delay Networks

    CERN Document Server

    Blasco, Francisco Lazaro; Bauch, Gerhard

    2011-01-01

    Time Interference Alignment is a flavor of Interference Alignment that increases the network capacity by suitably staggering the transmission delays of the senders. In this work the analysis of the existing literature is generalized and the focus is on the computation of the dof for networks with randomly placed users in a n-dimensional Euclidean space. In the basic case without coordination among the transmitters analytical expressions of the sum dof can be derived. If the transmit delays are coordinated, in 20% of the cases time Interference Alignment yields additional dof with respect to orthogonal access schemes. The potential capacity improvements for satellite networks are also investigated.

  6. A Genetic Algorithm on Multiple Sequences Alignment Problems in Biology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The study and comparison of sequences of characters from a finite alphabet is relevant to various areas of science, notably molecular biology. The measurement of sequence similarity involves the consideration of the possible sequence alignments in order to find an optimal one for which the "distance" between sequences is minimum. In biology informatics area, it is a more important and difficult problem due to the long length (100 at least) of sequence, this cause the compute complexity and large memory require. By associating a path in a lattice to each alignment, a geometric insight can be brought into the problem of finding an optimal alignment, this give an obvious encoding of each path. This problem can be solved by applying genetic algorithm, which is more efficient than dynamic programming and hidden Markov model using commomly now.

  7. Logical impossibilities in biological networks

    Directory of Open Access Journals (Sweden)

    Monendra Grover

    2011-10-01

    Full Text Available Biological networks are complex and involve several kinds of molecules. For proper biological function it is important for these biomolecules to act at an individual level and act at the level of interaction of these molecules. In this paper some of the logical impossibilities that may arise in the biological networks and their possible solutions are discussed. It may be important to understand these paradoxes and their possible solutions in order to develop a holistic view of biological function.

  8. Querying Large Biological Network Datasets

    Science.gov (United States)

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  9. Waferscale assembly of Field-Aligned nanotube Networks (FANs)

    DEFF Research Database (Denmark)

    Dimaki, Maria; Bøggild, Peter

    2006-01-01

    We demonstrate the integration of nanotube networks on 512 individual devices on a full 4-inch wafer in less than 60 seconds with a roughly 80% yield using dielectrophoresis. We present here investigations of the morphology and electrical resistance of such field aligned networks for different...... frequencies of the electrical field used to attract the nanotubes to the electrodes. Preliminary data of response to visible light irradiation as well as changes in the humidity indicate that the field aligned networks could be used as sensor components that may well integrate with CMOS due to mild assembly...

  10. A Network Model of Interpersonal Alignment in Dialog

    Directory of Open Access Journals (Sweden)

    Alexander Mehler

    2010-06-01

    Full Text Available In dyadic communication, both interlocutors adapt to each other linguistically, that is, they align interpersonally. In this article, we develop a framework for modeling interpersonal alignment in terms of the structural similarity of the interlocutors’ dialog lexica. This is done by means of so-called two-layer time-aligned network series, that is, a time-adjusted graph model. The graph model is partitioned into two layers, so that the interlocutors’ lexica are captured as subgraphs of an encompassing dialog graph. Each constituent network of the series is updated utterance-wise. Thus, both the inherent bipartition of dyadic conversations and their gradual development are modeled. The notion of alignment is then operationalized within a quantitative model of structure formation based on the mutual information of the subgraphs that represent the interlocutor’s dialog lexica. By adapting and further developing several models of complex network theory, we show that dialog lexica evolve as a novel class of graphs that have not been considered before in the area of complex (linguistic networks. Additionally, we show that our framework allows for classifying dialogs according to their alignment status. To the best of our knowledge, this is the first approach to measuring alignment in communication that explores the similarities of graph-like cognitive representations.

  11. Distributed interference alignment iterative algorithms in symmetric wireless network

    Directory of Open Access Journals (Sweden)

    YANG Jingwen

    2015-02-01

    Full Text Available Interference alignment is a novel interference alignment way,which is widely noted all of the world.Interference alignment overlaps interference in the same signal space at receiving terminal by precoding so as to thoroughly eliminate the influence of interference impacted on expected signals,thus making the desire user achieve the maximum degree of freedom.In this paper we research three typical algorithms for realizing interference alignment,including minimizing the leakage interference,maximizing Signal to Interference plus Noise Ratio (SINR and minimizing mean square error(MSE.All of these algorithms utilize the reciprocity of wireless network,and iterate the precoders between original network and the reverse network so as to achieve interference alignment.We use the uplink transmit rate to analyze the performance of these three algorithms.Numerical simulation results show the advantages of these algorithms.which is the foundation for the further study in the future.The feasibility and future of interference alignment are also discussed at last.

  12. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  13. Inferring Directed Road Networks from GPS Traces by Track Alignment

    Directory of Open Access Journals (Sweden)

    Xingzhe Xie

    2015-11-01

    Full Text Available This paper proposes a method to infer road networks from GPS traces. These networks include intersections between roads, the connectivity between the intersections and the possible traffic directions between directly-connected intersections. These intersections are localized by detecting and clustering turning points, which are locations where the moving direction changes on GPS traces. We infer the structure of road networks by segmenting all of the GPS traces to identify these intersections. We can then form both a connectivity matrix of the intersections and a small representative GPS track for each road segment. The road segment between each pair of directly-connected intersections is represented using a series of geographical locations, which are averaged from all of the tracks on this road segment by aligning them using the dynamic time warping (DTW algorithm. Our contribution is two-fold. First, we detect potential intersections by clustering the turning points on the GPS traces. Second, we infer the geometry of the road segments between intersections by aligning GPS tracks point by point using a “stretch and then compress” strategy based on the DTW algorithm. This approach not only allows road estimation by averaging the aligned tracks, but also a deeper statistical analysis based on the individual track’s time alignment, for example the variance of speed along a road segment.

  14. Design principles in biological networks

    Science.gov (United States)

    Goyal, Sidhartha

    Much of biology emerges from networks of interactions. Even in a single bacterium such as Escherichia coli, there are hundreds of coexisting gene and protein networks. Although biological networks are the outcome of evolution, various physical and biological constraints limit their functional capacity. The focus of this thesis is to understand how functional constraints such as optimal growth in mircoorganisms and information flow in signaling pathways shape the metabolic network of bacterium E. coli and the quorum sensing network of marine bacterium Vibrio harveyi, respectively. Metabolic networks convert basic elemental sources into complex building-blocks eventually leading to cell's growth. Therefore, typically, metabolic pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We showed that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Furthermore, we analyzed several representative metabolic modules and find that, in all cases, simple product-feedback inhibition allows nearly optimal growth, in agreement with the predicted growth-rate by the flux-balance analysis (FBA). Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum sensing (QS) systems. The QS circuit of V. harveyi integrates and funnels different ecological information through a common phosphorelay cascade to a set of small regulatory RNAs (sRNAs) that enables collective behavior. We analyzed the signaling properties and information flow in the QS circuit, which provides a model for information flow in signaling networks more generally. A comparative study of post-transcriptional and conventional transcriptional regulation suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. Furthermore, we develop a new framework for analyzing signal

  15. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole

    2009-01-01

    this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data...

  16. Variation Tendency of the Align Network for the 100MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daeil; Kwon, Hyeokjung; Kim, Hansung; Seo, Donghyuk; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the variation tendency of the align networks is checked and the survey results are considered to compensate the position of the accelerator components in the tunnel. Two years ago, the align networks on the tunnel were installed and checked to align the accelerator components. In recent survey of align networks, the displacement by temperature was confirmed according to comparison of the position. When the accelerator components are realigned, the displacement should be used to compensate position of the accelerator components. 100MeV proton linac for KOMAC (Korea Multi-purpose Accelerator Complex) has been operated at the Gyeong-ju. Linac is composed of a 50keV proton injector, a 3MeV RFQ, DTL tanks and a beam dump. The align networks were built to align the accelerator components. The survey work of align networks should be accomplished whenever need the alignment of the accelerator by using the laser tracker.

  17. Efficient, sparse biological network determination

    Directory of Open Access Journals (Sweden)

    Papachristodoulou Antonis

    2009-02-01

    Full Text Available Abstract Background Determining the interaction topology of biological systems is a topic that currently attracts significant research interest. Typical models for such systems take the form of differential equations that involve polynomial and rational functions. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data much harder. The use of linear dynamics and linearization techniques that have been proposed in the past can circumvent this, but the general problem of developing efficient algorithms for models that provide more accurate system descriptions remains open. Results We present a network determination algorithm that can treat model descriptions with polynomial and rational functions and which does not make use of linearization. For this purpose, we make use of the observation that biochemical networks are in general 'sparse' and minimize the 1-norm of the decision variables (sum of weighted network connections while constraints keep the error between data and the network dynamics small. The emphasis of our methodology is on determining the interconnection topology rather than the specific reaction constants and it takes into account the necessary properties that a chemical reaction network should have – something that techniques based on linearization can not. The problem can be formulated as a Linear Program, a convex optimization problem, for which efficient algorithms are available that can treat large data sets efficiently and uncertainties in data or model parameters. Conclusion The presented methodology is able to predict with accuracy and efficiency the connectivity structure of a chemical reaction network with mass action kinetics and of a gene regulatory network from simulation data even if the dynamics of these systems are non-polynomial (rational and uncertainties in the data are taken into account. It also produces a network structure that can

  18. Multiple deep convolutional neural networks averaging for face alignment

    Science.gov (United States)

    Zhang, Shaohua; Yang, Hua; Yin, Zhouping

    2015-05-01

    Face alignment is critical for face recognition, and the deep learning-based method shows promise for solving such issues, given that competitive results are achieved on benchmarks with additional benefits, such as dispensing with handcrafted features and initial shape. However, most existing deep learning-based approaches are complicated and quite time-consuming during training. We propose a compact face alignment method for fast training without decreasing its accuracy. Rectified linear unit is employed, which allows all networks approximately five times faster convergence than a tanh neuron. An eight learnable layer deep convolutional neural network (DCNN) based on local response normalization and a padding convolutional layer (PCL) is designed to provide reliable initial values during prediction. A model combination scheme is presented to further reduce errors, while showing that only two network architectures and hyperparameter selection procedures are required in our approach. A three-level cascaded system is ultimately built based on the DCNNs and model combination mode. Extensive experiments validate the effectiveness of our method and demonstrate comparable accuracy with state-of-the-art methods on BioID, labeled face parts in the wild, and Helen datasets.

  19. Towards a business-IT aligned maturity model for collaborative networked organizations

    NARCIS (Netherlands)

    Santana Tapia, Roberto; Daneva, Maya; Eck, van Pascal; Wieringa, Roel

    2008-01-01

    Aligning business and IT in networked organizations is a complex endeavor because in such settings, business-IT alignment is driven by economic processes instead of by centralized decision-making processes. In order to facilitate managing business-IT alignment in networked organizations, we need a m

  20. Towards a business-IT alignment maturity model for collaborative networked organizations

    NARCIS (Netherlands)

    Santana Tapia, Roberto; Daneva, Maya; Eck, van Pascal; Wieringa, Roel

    2008-01-01

    Aligning business and IT in networked organizations is a complex endeavor because in such settings, business-IT alignment is driven by economic processes instead of by centralized decision-making processes. In order to facilitate managing business-IT alignment in networked organizations, we need a m

  1. Chimeric alignment by dynamic programming: Algorithm and biological uses

    Energy Technology Data Exchange (ETDEWEB)

    Komatsoulis, G.A.; Waterman, M.S. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-12-01

    A new nearest-neighbor method for detecting chimeric 16S rRNA artifacts generated during PCR amplification from mixed populations has been developed. The method uses dynamic programming to generate an optimal chimeric alignment, defined as the highest scoring alignment between a query and a concatenation of a 5{prime} and a 3{prime} segment from two separate entries from a database of related sequences. Chimeras are detected by studying the scores and form of the chimeric and global sequence alignments. The chimeric alignment method was found to be marginally more effective than k-tuple based nearest-neighbor methods in simulation studies, but its most effective use is in concert with k-tuple methods. 15 refs., 3 figs., 1 tab.

  2. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  3. Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2016-01-01

    . On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...

  4. Network systems biology for targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Zhou

    2012-01-01

    The era of targeted cancer therapies has arrived.However,due to the complexity of biological systems,the current progress is far from enough.From biological network modeling to structural/dynamic network analysis,network systems biology provides unique insight into the potential mechanisms underlying the growth and progression of cancer cells.It has also introduced great changes into the research paradigm of cancer-associated drug discovery and drug resistance.

  5. Biological network motif detection: principles and practice.

    Science.gov (United States)

    Wong, Elisabeth; Baur, Brittany; Quader, Saad; Huang, Chun-Hsi

    2012-03-01

    Network motifs are statistically overrepresented sub-structures (sub-graphs) in a network, and have been recognized as 'the simple building blocks of complex networks'. Study of biological network motifs may reveal answers to many important biological questions. The main difficulty in detecting larger network motifs in biological networks lies in the facts that the number of possible sub-graphs increases exponentially with the network or motif size (node counts, in general), and that no known polynomial-time algorithm exists in deciding if two graphs are topologically equivalent. This article discusses the biological significance of network motifs, the motivation behind solving the motif-finding problem, and strategies to solve the various aspects of this problem. A simple classification scheme is designed to analyze the strengths and weaknesses of several existing algorithms. Experimental results derived from a few comparative studies in the literature are discussed, with conclusions that lead to future research directions. PMID:22396487

  6. Biologically inspired self-organizing networks

    Institute of Scientific and Technical Information of China (English)

    Naoki WAKAMIYA; Kenji LEIBNITZ; Masayuki MURATA

    2009-01-01

    Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore, it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the complete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies.

  7. Optimizing Nutrient Uptake in Biological Transport Networks

    Science.gov (United States)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  8. Displacement Analysis of Building Movement by using the Survey of Align Network at KOMAC

    International Nuclear Information System (INIS)

    100MeV proton linac has been operated and provided to beam users in KOMAC (Korea Multi-purpose Accelerator Complex). Proton linac is composed of a 50keV proton injector, a 3MeV RFQ, 20MeV DTL tanks, 100MeV DTL tanks, beam dump and beam line for 20MeV and 100MeV. To align the accelerator components, the align networks based on reference point were installed on the wall inside tunnel. The survey works of align networks were accomplished by using the laser tracker. In this paper, the survey of align networks is performed and its results are presented. In recent survey of align networks, it was monitored to move the locations. The analysis of displacement was confirmed by compare the align networks. This analysis was used to re-align the accelerator components which can be compensated location of reference points. The displacement monitoring should be performed during the long-term period and need to find the other method for real-time, not the survey of align networks

  9. Displacement Analysis of Building Movement by using the Survey of Align Network at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Seo, Dong-Hyuk; Ahn, Tae-Sung; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2014-10-15

    100MeV proton linac has been operated and provided to beam users in KOMAC (Korea Multi-purpose Accelerator Complex). Proton linac is composed of a 50keV proton injector, a 3MeV RFQ, 20MeV DTL tanks, 100MeV DTL tanks, beam dump and beam line for 20MeV and 100MeV. To align the accelerator components, the align networks based on reference point were installed on the wall inside tunnel. The survey works of align networks were accomplished by using the laser tracker. In this paper, the survey of align networks is performed and its results are presented. In recent survey of align networks, it was monitored to move the locations. The analysis of displacement was confirmed by compare the align networks. This analysis was used to re-align the accelerator components which can be compensated location of reference points. The displacement monitoring should be performed during the long-term period and need to find the other method for real-time, not the survey of align networks.

  10. Proposal for an alignment method of the CLIC linear accelerator - From geodesic networks to the active pre-alignment

    International Nuclear Information System (INIS)

    The compact linear collider (CLIC) is the particle accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nano-metric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved before. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required: 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active pre-alignment but shows the way to the last developments that have to be done for that purpose. A method is proposed. Based on the management of the Helmert transformations between Euclidean coordinate systems, from the geodetic networks to the metrological measurements, this method is likely to solve the CLIC pre-alignment problem. Large scale facilities have been built and Monte-Carlo simulations have been made in order to validate the mathematical modeling of the measurement systems and of the alignment references. When this is done, it will be possible to extrapolate the modeling to the entire CLIC length. It will be the last step towards the demonstration of the CLIC pre-alignment feasibility. (author)

  11. Alignment of the Fibrin Network Within an Autologous Plasma Clot.

    Science.gov (United States)

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2016-01-01

    Autologous plasma clots with longitudinally aligned fibrin fibers could serve as a scaffold for longitudinal axonal regrowth in cases of traumatic peripheral nerve injuries. Three different techniques for assembling longitudinally oriented fibrin fibers during the fibrin polymerization process were investigated as follows: fiber alignment was induced by the application of either a magnetic field or-as a novel approach-electric field or by the induction of orientated flow. Fiber alignment was characterized by scanning electron microscopy analysis followed by image processing using fast Fourier transformation (FFT). Besides FFT output images, area xmin to xmax, as well as full width at half maximum (FWHM) of the FFT graph plot peaks, was calculated to determine the relative degree of fiber alignment. In addition, fluorescently labeled human fibrinogen and mesenchymal stem cells (MSCs) were used to visualize fibrin and cell orientation in aligned and nonaligned plasma clots. Varying degrees of fiber alignment were achieved by the three different methods, with the electric field application producing the highest degree of fiber alignment. The embedded MSCs showed a longitudinal orientation in the electric field-aligned plasma clots. The key feature of this study is the ability to produce autologous plasma clots with aligned fibrin fibers using physical techniques. This orientated internal structure of an autologous biomaterial is promising for distinct therapeutic applications, such as a guiding structure for cell migration and growth dynamics.

  12. Understanding biological functions through molecular networks

    Institute of Scientific and Technical Information of China (English)

    Jing-Dong Jackie Han

    2008-01-01

    The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.

  13. Complex Networks: from Graph Theory to Biology

    Science.gov (United States)

    Lesne, Annick

    2006-12-01

    The aim of this text is to show the central role played by networks in complex system science. A remarkable feature of network studies is to lie at the crossroads of different disciplines, from mathematics (graph theory, combinatorics, probability theory) to physics (statistical physics of networks) to computer science (network generating algorithms, combinatorial optimization) to biological issues (regulatory networks). New paradigms recently appeared, like that of ‘scale-free networks’ providing an alternative to the random graph model introduced long ago by Erdös and Renyi. With the notion of statistical ensemble and methods originally introduced for percolation networks, statistical physics is of high relevance to get a deep account of topological and statistical properties of a network. Then their consequences on the dynamics taking place in the network should be investigated. Impact of network theory is huge in all natural sciences, especially in biology with gene networks, metabolic networks, neural networks or food webs. I illustrate this brief overview with a recent work on the influence of network topology on the dynamics of coupled excitable units, and the insights it provides about network emerging features, robustness of network behaviors, and the notion of static or dynamic motif.

  14. Biological Networks for Cancer Candidate Biomarkers Discovery

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field.

  15. Biological Networks for Cancer Candidate Biomarkers Discovery.

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  16. Simplified models of biological networks.

    Science.gov (United States)

    Sneppen, Kim; Krishna, Sandeep; Semsey, Szabolcs

    2010-01-01

    The function of living cells is controlled by complex regulatory networks that are built of a wide diversity of interacting molecular components. The sheer size and intricacy of molecular networks of even the simplest organisms are obstacles toward understanding network functionality. This review discusses the achievements and promise of a bottom-up approach that uses well-characterized subnetworks as model systems for understanding larger networks. It highlights the interplay between the structure, logic, and function of various types of small regulatory circuits. The bottom-up approach advocates understanding regulatory networks as a collection of entangled motifs. We therefore emphasize the potential of negative and positive feedback, as well as their combinations, to generate robust homeostasis, epigenetics, and oscillations. PMID:20192769

  17. Value-Based Business-IT Alignment in Networked Constellations of Enterprises

    OpenAIRE

    Wieringa, Roel; Gordijn, Jaap; Eck, van, C.F.; Cox, K.; Dubois, E.; Pigneur, Y.; Bleistein, S.J.; Verner, J; Davis, A.M.; Wieringa, R.J.

    2005-01-01

    Business-ICT alignment is the problem of matching ICTservices with the requirements of the business. In businesses of any significant size, business-ICT alignment is a hard problem, which is currently not solved completely. With the advent of networked constellations of enterprises, the problem gets a new dimension, because in such a network, there is not a single point of authority for making decisions about ICT support to solve conflicts in requirements these various enterprises may have. N...

  18. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    Science.gov (United States)

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  19. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Deyasi Krishanu; Upadhyay Shashankaditya; Banerjee Anirban

    2016-03-01

    Networks are widely used to represent interaction pattern among the components in complex systems. Structures of real networks from different domains may vary quite significantly. As there is an interplay between network architecture and dynamics, structure plays an important role in communication and spreading of information in a network. Here we investigate the underlying undirected topology of different biological networks which support faster spreading of information and are better in communication. We analyse the good expansion property by using the spectral gap and communicability between nodes. Different epidemic models are also used to study the transmission of information in terms of spreading of disease through individuals (nodes)in those networks. Moreover, we explore the structural conformation and properties which may be responsible for better communication. Among all biological networks studied here, the undirected structure of neuronal networks not only possesses the small-world property but the same is also expressed remarkably to a higher degree compared to any randomly generated network which possesses the same degree sequence. A relatively high percentage of nodes, in neuronal networks, form a higher core in their structure. Our study shows that the underlying undirected topology in neuronal networks, in a significant way, is qualitatively different from the same in other biologicalnetworks and that they may have evolved in such a way that they inherit a (undirected) structure which is excellent and robust in communication.

  20. Predicting biological networks from genomic data

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Jensen, Lars J; Bork, Peer

    2008-01-01

    Continuing improvements in DNA sequencing technologies are providing us with vast amounts of genomic data from an ever-widening range of organisms. The resulting challenge for bioinformatics is to interpret this deluge of data and place it back into its biological context. Biological networks...... provide a conceptual framework with which we can describe part of this context, namely the different interactions that occur between the molecular components of a cell. Here, we review the computational methods available to predict biological networks from genomic sequence data and discuss how they relate...

  1. Quantifying evolvability in small biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Mugler, Andrew [COLUMBIA UNIV; Ziv, Etay [COLUMBIA UNIV; Wiggins, Chris H [COLUMBIA UNIV

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  2. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  3. Assessing business-IT alignment in networked organizations

    NARCIS (Netherlands)

    Santana Tapia, Roberto Guadalupe

    2009-01-01

    Concerns such as identifying ways to control costs, improve quality, increase effectiveness, and manage risk have become increasingly important for organizations as they face more and more pressure to gain and maintain their competitive edge. Business-IT alignment (B-ITa) is recognized as a solution

  4. Discriminative topological features reveal biological network mechanisms

    Directory of Open Access Journals (Sweden)

    Levovitz Chaya

    2004-11-01

    Full Text Available Abstract Background Recent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them. Results We present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model. Conclusions Our method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.

  5. Attentional Networks and Biological Motion

    OpenAIRE

    Chandramouli Chandrasekaran; Lucy Turner; Heinrich H Bülthoff; Thornton, Ian M.

    2010-01-01

    Our ability to see meaningful actions when presented with pointlight traces of human movement is commonly referred to as the perception of biological motion. While traditionalexplanations have emphasized the spontaneous and automatic nature of this ability, morerecent findings suggest that attention may play a larger role than is typically assumed. Intwo studies we show that the speed and accuracy of responding to point-light stimuli is highly correlated with the ability to control selective ...

  6. Business-IT alignment domains and principles for networked organizations: A qualitative multiple case study

    NARCIS (Netherlands)

    Santana Tapia, R.G.; Daneva, M.; Eck, van P.A.T.; Castro Cárdenas, N.; Oene, van L.

    2008-01-01

    Applying principles for business-IT alignment in networked organizations seems to be key for their survival in competitive environments. In this paper, we present a qualitative multiple case study conducted in three collaborative networked organizations: (i) an outsourcing relation between an intern

  7. Application of Graph Coloring to Biological Networks

    CERN Document Server

    Khor, Susan

    2009-01-01

    We explore the application of graph coloring to biological networks, specifically protein-protein interaction (PPI) networks. First, we find that given similar conditions (i.e. number of nodes, number of links, degree distribution and clustering), fewer colors are needed to color disassortative (high degree nodes tend to connect to low degree nodes and vice versa) than assortative networks. Fewer colors create fewer independent sets which in turn imply higher concurrency potential for a network. Since PPI networks tend to be disassortative, we suggest that in addition to functional specificity and stability proposed previously by Maslov and Sneppen (Science 296, 2002), the disassortative nature of PPI networks may promote the ability of cells to perform multiple, crucial and functionally diverse tasks concurrently. Second, since graph coloring is closely related to the presence of cliques in a graph, the significance of node coloring information to the problem of identifying protein complexes, i.e. dense subg...

  8. Biological and Environmental Research Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, V. [Princeton Univ., NJ (United States). Earth Science Grid Federation (ESGF); Boden, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowley, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dart, Eli [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Dattoria, Vince [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Desai, Narayan [Argonne National Lab. (ANL), Argonne, IL (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foster, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Goldstone, Robin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gregurick, Susan [U.S. Dept. of Energy, Washington, DC (United States). Biological Systems Science Division; Houghton, John [U.S. Dept. of Energy, Washington, DC (United States). Biological and Environmental Research (BER) Program; Izaurralde, Cesar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnston, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Joseph, Renu [U.S. Dept. of Energy, Washington, DC (United States). Climate and Environmental Sciences Division; Kleese-van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Monga, Inder [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Pritchard, Matt [British Atmospheric Data Centre (BADC), Oxon (United Kingdom); Rotman, Lauren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Strand, Gary [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Stuart, Cory [Argonne National Lab. (ANL), Argonne, IL (United States); Tatusova, Tatiana [National Inst. of Health (NIH), Bethesda, MD (United States); Tierney, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Thomas, Brian [Univ. of California, Berkeley, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zurawski, Jason [Internet2, Washington, DC (United States)

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  9. On Feasibility of Interference Alignment in MIMO Interference Networks

    CERN Document Server

    Yetis, Cenk M; Jafar, Syed A; Kayran, Ahmet H

    2009-01-01

    We explore the feasibility of interference alignment in signal vector space -- based only on beamforming -- for K-user MIMO interference channels. Our main contribution is to relate the feasibility issue to the problem of determining the solvability of a multivariate polynomial system, considered extensively in algebraic geometry. It is well known, e.g. from Bezout's theorem, that generic polynomial systems are solvable if and only if the number of equations does not exceed the number of variables. Following this intuition, we classify signal space interference alignment problems as either proper or improper based on the number of equations and variables. Rigorous connections between feasible and proper systems are made through Bernshtein's theorem for the case where each transmitter uses only one beamforming vector. The multi-beam case introduces dependencies among the coefficients of a polynomial system so that the system is no longer generic in the sense required by both theorems. In this case, we show tha...

  10. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  11. Assessing cognitive alignment in different types of dialog by means of a network model.

    Science.gov (United States)

    Mehler, Alexander; Lücking, Andy; Menke, Peter

    2012-08-01

    We present a network model of dialog lexica, called TiTAN (Two-layer Time-Aligned Network) series. TiTAN series capture the formation and structure of dialog lexica in terms of serialized graph representations. The dynamic update of TiTAN series is driven by the dialog-inherent timing of turn-taking. The model provides a link between neural, connectionist underpinnings of dialog lexica on the one hand and observable symbolic behavior on the other. On the neural side, priming and spreading activation are modeled in terms of TiTAN networking. On the symbolic side, TiTAN series account for cognitive alignment in terms of the structural coupling of the linguistic representations of dialog partners. This structural stance allows us to apply TiTAN in machine learning of data of dialogical alignment. In previous studies, it has been shown that aligned dialogs can be distinguished from non-aligned ones by means of TiTAN -based modeling. Now, we simultaneously apply this model to two types of dialog: task-oriented, experimentally controlled dialogs on the one hand and more spontaneous, direction giving dialogs on the other. We ask whether it is possible to separate aligned dialogs from non-aligned ones in a type-crossing way. Starting from a recent experiment (Mehler, Lücking, & Menke, 2011a), we show that such a type-crossing classification is indeed possible. This hints at a structural fingerprint left by alignment in networks of linguistic items that are routinely co-activated during conversation.

  12. Model-Driven Process Design : Aligning Value Networks, Enterprise Goals, Services and IT Systems

    OpenAIRE

    Perjons, Erik

    2011-01-01

    The purpose of business-IT alignment is to optimise the relation between business and IT in order to maximise the business value of IT. Successful business-IT alignment can be enabled by business processes and e-processes functioning as adaptive mediators between business and IT systems. Business processes are the ways actors work in enterprises and collaborate in value networks, while e-processes support a flexible flow of information between IT systems and business processes. The overall go...

  13. Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers†

    OpenAIRE

    Wang, Xianfeng; CHEN, YI CHARLIE; Li, Bingyun

    2014-01-01

    Self-assembled synthetic materials are typically disordered, and controlling the alignment of such materials at the nanometer scale may be important for a variety of biological applications. In this study, we have applied directional freeze-drying, for the first time, to develop well aligned three dimensional (3D) nanofibrous materials using amino acid like L-phenylalanine (Phe). 3D free-standing Phe nanofibrous monoliths have been successfully prepared using directional freeze-drying, and ha...

  14. Network biology concepts in complex disease comorbidities

    DEFF Research Database (Denmark)

    Hu, Jessica Xin; Thomas, Cecilia Engel; Brunak, Søren

    2016-01-01

    The co-occurrence of diseases can inform the underlying network biology of shared and multifunctional genes and pathways. In addition, comorbidities help to elucidate the effects of external exposures, such as diet, lifestyle and patient care. With worldwide health transaction data now often bein...

  15. Network biology methods integrating biological data for translational science

    OpenAIRE

    Bebek, Gurkan; Koyutürk, Mehmet; Nathan D Price; Mark R Chance

    2012-01-01

    The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require complex integration and analysis to provide new molecular variables to better understand the molecular basis of phenotype. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in the development of biomarkers and novel functional targets. This is beginning to change. Network biology approaches, which emphasize the interactions betw...

  16. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    International Nuclear Information System (INIS)

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network

  17. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeonyoon; Stein, Itai Y. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Devoe, Mackenzie E. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Lewis, Diana J.; Lachman, Noa; Buschhorn, Samuel T.; Wardle, Brian L., E-mail: wardle@mit.edu [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Kessler, Seth S. [Metis Design Corporation, 205 Portland St., Boston, Massachusetts 02114 (United States)

    2015-02-02

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network.

  18. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  19. Qualitative networks: a symbolic approach to analyze biological signaling networks

    Directory of Open Access Journals (Sweden)

    Henzinger Thomas A

    2007-01-01

    Full Text Available Abstract Background A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico. Results We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis. Conclusion We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology.

  20. Application of graph colouring to biological networks.

    Science.gov (United States)

    Khor, S

    2010-05-01

    The author explores the application of graph colouring to biological networks, specifically protein-protein interaction (PPI) networks. First, the author finds that given similar conditions (i.e. graph size, degree distribution and clustering), fewer colours are needed to colour disassortative than assortative networks. Fewer colours create fewer independent sets which in turn imply higher concurrency potential for a network. Since PPI networks tend to be disassortative, the author suggests that in addition to functional specificity and stability proposed previously by Maslov and Sneppen (Science, 296, 2002), the disassortative nature of PPI networks may promote the ability of cells to perform multiple, crucial and functionally diverse tasks concurrently. Second, because graph colouring is closely related to the presence of cliques in a graph, the significance of node colouring information to the problem of identifying protein complexes (dense subgraphs in PPI networks), is investigated. The author finds that for PPI networks where 1-11% of nodes participate in at least one identified protein complex, such as H. sapien, DSATUR (a well-known complete graph colouring algorithm) node colouring information can improve the quality (homogeneity and separation) of initial candidate complexes. This finding may help improve existing protein complex detection methods, and/or suggest new methods. [Includes supplementary material]. PMID:20499999

  1. Review of biological network data and its applications.

    Science.gov (United States)

    Yu, Donghyeon; Kim, Minsoo; Xiao, Guanghua; Hwang, Tae Hyun

    2013-12-01

    Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

  2. Algorithmic and analytical methods in network biology.

    Science.gov (United States)

    Koyutürk, Mehmet

    2010-01-01

    During the genomic revolution, algorithmic and analytical methods for organizing, integrating, analyzing, and querying biological sequence data proved invaluable. Today, increasing availability of high-throughput data pertaining to functional states of biomolecules, as well as their interactions, enables genome-scale studies of the cell from a systems perspective. The past decade witnessed significant efforts on the development of computational infrastructure for large-scale modeling and analysis of biological systems, commonly using network models. Such efforts lead to novel insights into the complexity of living systems, through development of sophisticated abstractions, algorithms, and analytical techniques that address a broad range of problems, including the following: (1) inference and reconstruction of complex cellular networks; (2) identification of common and coherent patterns in cellular networks, with a view to understanding the organizing principles and building blocks of cellular signaling, regulation, and metabolism; and (3) characterization of cellular mechanisms that underlie the differences between living systems, in terms of evolutionary diversity, development and differentiation, and complex phenotypes, including human disease. These problems pose significant algorithmic and analytical challenges because of the inherent complexity of the systems being studied; limitations of data in terms of availability, scope, and scale; intractability of resulting computational problems; and limitations of reference models for reliable statistical inference. This article provides a broad overview of existing algorithmic and analytical approaches to these problems, highlights key biological insights provided by these approaches, and outlines emerging opportunities and challenges in computational systems biology.

  3. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.

    Directory of Open Access Journals (Sweden)

    Konstantin Popov

    2016-04-01

    Full Text Available Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN, for simulating active network evolution and dynamics (available at www.medyan.org. This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament's resulting super-diffusive behavior in the actomyosin-cross-linker system

  4. The alignment of technology and structure through roles and networks.

    Science.gov (United States)

    Barley, S R

    1990-03-01

    This paper outlines a role-based approach for conceptualizing and investigating the contention in some previous research that technologies change organizational and occupational structures by transforming patterns of action and interaction. Building on Nadel's theory of social structure, the paper argues that the microsocial dynamics occasioned by new technologies reverberate up levels of analysis in an orderly manner. Specifically, a technology's material attributes are said to have an immediate impact on the nonrelational elements of one or more work roles. These changes, in turn, influence the role's relational elements, which eventually affect the structure of an organization's social networks. Consequently, roles and social networks are held to mediate a technology's structural effects. The theory is illustrated by ethnographic and sociometric data drawn from a comparative field study of the use of traditional and computerized imaging devices in two radiology departments. PMID:10106582

  5. Novel topological descriptors for analyzing biological networks

    Directory of Open Access Journals (Sweden)

    Varmuza Kurt K

    2010-06-01

    Full Text Available Abstract Background Topological descriptors, other graph measures, and in a broader sense, graph-theoretical methods, have been proven as powerful tools to perform biological network analysis. However, the majority of the developed descriptors and graph-theoretical methods does not have the ability to take vertex- and edge-labels into account, e.g., atom- and bond-types when considering molecular graphs. Indeed, this feature is important to characterize biological networks more meaningfully instead of only considering pure topological information. Results In this paper, we put the emphasis on analyzing a special type of biological networks, namely bio-chemical structures. First, we derive entropic measures to calculate the information content of vertex- and edge-labeled graphs and investigate some useful properties thereof. Second, we apply the mentioned measures combined with other well-known descriptors to supervised machine learning methods for predicting Ames mutagenicity. Moreover, we investigate the influence of our topological descriptors - measures for only unlabeled vs. measures for labeled graphs - on the prediction performance of the underlying graph classification problem. Conclusions Our study demonstrates that the application of entropic measures to molecules representing graphs is useful to characterize such structures meaningfully. For instance, we have found that if one extends the measures for determining the structural information content of unlabeled graphs to labeled graphs, the uniqueness of the resulting indices is higher. Because measures to structurally characterize labeled graphs are clearly underrepresented so far, the further development of such methods might be valuable and fruitful for solving problems within biological network analysis.

  6. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    Science.gov (United States)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  7. Comparing artificial and biological dynamical neural networks

    Science.gov (United States)

    McAulay, Alastair D.

    2006-05-01

    Modern computers can be made more friendly and otherwise improved by making them behave more like humans. Perhaps we can learn how to do this from biology in which human brains evolved over a long period of time. Therefore, we first explain a commonly used biological neural network (BNN) model, the Wilson-Cowan neural oscillator, that has cross-coupled excitatory (positive) and inhibitory (negative) neurons. The two types of neurons are used for frequency modulation communication between neurons which provides immunity to electromagnetic interference. We then evolve, for the first time, an artificial neural network (ANN) to perform the same task. Two dynamical feed-forward artificial neural networks use cross-coupling feedback (like that in a flip-flop) to form an ANN nonlinear dynamic neural oscillator with the same equations as the Wilson-Cowan neural oscillator. Finally we show, through simulation, that the equations perform the basic neural threshold function, switching between stable zero output and a stable oscillation, that is a stable limit cycle. Optical implementation with an injected laser diode and future research are discussed.

  8. A biological walker is faster and better recognized when aligned with body axis observer.

    Science.gov (United States)

    Barbieri, Guillaume; Fouque, Florent; Pozzo, Thierry; Pérennou, Dominic

    2013-09-01

    The representation of the vertical direction is a compromise between the directions given by the egocentric and allocentric references. Dissociations between these two referentials in the discrimination of a biological walker which typically refers to a model of verticality questions the coordinate system (allocentric and/or egocentric) used to perceive it. With a point-light display paradigm, the characteristics of an artificial walking pattern were manipulated in order to offer to 10 healthy participants (5 men/5 women; 24.6±3.4 years) a female or male locomotion which had to be identified as such. The body position of the viewer (sitting/lying) and the walking pattern viewed (aligned/rotated in relation to the egocentric referential) were crossed. Three indices were analyzed and 200 trials recorded: percentage of correct identification, reaction time and confidence score. This paper confirms the validity of the walking pattern model since the more pronounced the gradient of the walking pattern (as female or male) the better the recognition. Furthermore, whatever the body position, artificial walking patterns were more easily identified when they were aligned with the egocentric referential rather than tilted. The participant gender had no influence on the walking pattern recognition. We conclude that the perception of a biological walker referenced to the vertical is exclusively improved by a representation of the spatial information in an egocentric coordinate system. PMID:23768527

  9. Learning and coding in biological neural networks

    Science.gov (United States)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  10. New scaling relation for information transfer in biological networks.

    Science.gov (United States)

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-12-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781-4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös-Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  11. Effective identification of conserved pathways in biological networks using hidden Markov models.

    Directory of Open Access Journals (Sweden)

    Xiaoning Qian

    Full Text Available BACKGROUND: The advent of various high-throughput experimental techniques for measuring molecular interactions has enabled the systematic study of biological interactions on a global scale. Since biological processes are carried out by elaborate collaborations of numerous molecules that give rise to a complex network of molecular interactions, comparative analysis of these biological networks can bring important insights into the functional organization and regulatory mechanisms of biological systems. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we present an effective framework for identifying common interaction patterns in the biological networks of different organisms based on hidden Markov models (HMMs. Given two or more networks, our method efficiently finds the top matching paths in the respective networks, where the matching paths may contain a flexible number of consecutive insertions and deletions. CONCLUSIONS/SIGNIFICANCE: Based on several protein-protein interaction (PPI networks obtained from the Database of Interacting Proteins (DIP and other public databases, we demonstrate that our method is able to detect biologically significant pathways that are conserved across different organisms. Our algorithm has a polynomial complexity that grows linearly with the size of the aligned paths. This enables the search for very long paths with more than 10 nodes within a few minutes on a desktop computer. The software program that implements this algorithm is available upon request from the authors.

  12. A simulation model for aligning smart home networks and deploying smart objects

    DEFF Research Database (Denmark)

    Lynggaard, Per

    Smart homes use sensor based networks to capture activities and offer learned services to the user. These smart home networks are challenging because they mainly use wireless communication at frequencies that are shared with other services and equipments. One of the major challenges...... is the interferences produced by WiFi access points in smart home networks which are expensive to overcome in terms of battery energy. Currently, different method exists to handle this. However, they use complex mechanisms such as sharing frequencies, sharing time slots, and spatial reuse of frequencies. This paper...... introduces a unique concept which saves battery energy and lowers the interference level by simulating the network alignment and assign the necessary amount of transmit power to each individual network node and finally, deploy the smart objects. The needed transmit powers are calculated by the presented...

  13. Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers†

    Science.gov (United States)

    Wang, Xianfeng; Chen, Yi Charlie

    2015-01-01

    Self-assembled synthetic materials are typically disordered, and controlling the alignment of such materials at the nanometer scale may be important for a variety of biological applications. In this study, we have applied directional freeze-drying, for the first time, to develop well aligned three dimensional (3D) nanofibrous materials using amino acid like L-phenylalanine (Phe). 3D free-standing Phe nanofibrous monoliths have been successfully prepared using directional freeze-drying, and have presented a unique hierarchical structure with well-aligned nanofibers at the nanometer scale and an ordered compartmental architecture at the micrometer scale. We have found that the physical properties (e.g. nanofiber density and alignment) of the nanofibrous materials could be tuned by controlling the concentration and pH of the Phe solution and the freezing temperature. Moreover, the same strategy (i.e. directional freeze-drying) has been successfully applied to assemble peptide nanofibrous materials using a dipeptide (i.e. diphenylalanine), and to assemble Phe-based nanofibrous composites using polyethylenimine and poly(vinyl alcohol). The tunability of the nanofibrous structures together with the biocompatibility of Phe may make these 3D nanofibrous materials suitable for a variety of applications, including biosensor templates, tissue scaffolds, filtration membranes, and absorbents. The strategy reported here is likely applicable to create aligned nanofibrous structures using other amino acids, peptides, and polymers. PMID:25621167

  14. Modeling and measuring Business/IT Alignment by using a complex-network approach

    OpenAIRE

    Sousa, José Luís da Rocha

    2014-01-01

    Business/IT Alignment is an information systems research field with a long existence and a high number of researchers and represents a central thinking direction over the entanglement between business and information systems. lt aims to achieve a paradigm, on which there is a high degree of visibility and availability of information about the information systems sociomateriality. _ Complex-networks constitute an approach to the study of the emergent properties of complex-sys...

  15. Noncommutative Biology: Sequential Regulation of Complex Networks

    Science.gov (United States)

    Letsou, William; Cai, Long

    2016-01-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  16. OWL reasoning framework over big biological knowledge network.

    Science.gov (United States)

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.

  17. OWL Reasoning Framework over Big Biological Knowledge Network

    Directory of Open Access Journals (Sweden)

    Huajun Chen

    2014-01-01

    Full Text Available Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM and western medicine (WM is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.

  18. A generic algorithm for layout of biological networks

    Directory of Open Access Journals (Sweden)

    Dwyer Tim

    2009-11-01

    Full Text Available Abstract Background Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration. Results We present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks. Conclusion The presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.

  19. Biology Question Generation from a Semantic Network

    Science.gov (United States)

    Zhang, Lishan

    Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions. To boost students' learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student's current competence so that a suitable question could be selected based on the student's previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group. To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators. A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from

  20. Registration algorithm for sensor alignment based on stochastic fuzzy neural network

    Institute of Scientific and Technical Information of China (English)

    Li Jiao; Jing Zhongliang; He Jiaona; Wang An

    2005-01-01

    Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.

  1. Alternate MIMO AF relaying networks with interference alignment: Spectral efficient protocol and linear filter design

    KAUST Repository

    Park, Kihong

    2013-02-01

    In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying, alternate transmission is performed among three relays, and the inter-relay interference due to the alternate relaying is aligned to make additional degrees of freedom. In addition, suboptimal linear filter designs at the nodes are proposed to maximize the achievable sum rate for different fading scenarios when the destination utilizes a minimum mean-square error filter. © 1967-2012 IEEE.

  2. GeneWeaver: data driven alignment of cross-species genomics in biology and disease.

    Science.gov (United States)

    Baker, Erich; Bubier, Jason A; Reynolds, Timothy; Langston, Michael A; Chesler, Elissa J

    2016-01-01

    The GeneWeaver data and analytics website (www.geneweaver.org) is a publically available resource for storing, curating and analyzing sets of genes from heterogeneous data sources. The system enables discovery of relationships among genes, variants, traits, drugs, environments, anatomical structures and diseases implicitly found through gene set intersections. Since the previous review in the 2012 Nucleic Acids Research Database issue, GeneWeaver's underlying analytics platform has been enhanced, its number and variety of publically available gene set data sources has been increased, and its advanced search mechanisms have been expanded. In addition, its interface has been redesigned to take advantage of flexible web services, programmatic data access, and a refined data model for handling gene network data in addition to its original emphasis on gene set data. By enumerating the common and distinct biological molecules associated with all subsets of curated or user submitted groups of gene sets and gene networks, GeneWeaver empowers users with the ability to construct data driven descriptions of shared and unique biological processes, diseases and traits within and across species. PMID:26656951

  3. BioNSi: A Discrete Biological Network Simulator Tool.

    Science.gov (United States)

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-01

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found. PMID:27354160

  4. Power Laws, Scale-Free Networks and Genome Biology

    CERN Document Server

    Koonin, Eugene V; Karev, Georgy P

    2006-01-01

    Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...

  5. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems.

    Science.gov (United States)

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com

  6. Channels Reallocation In Cognitive Radio Networks Based On DNA Sequence Alignment

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2010-06-01

    Full Text Available Nowadays, It has been shown that spectrum scarcity increased due to tremendous growth of new playersin wireless base system by the evolution of the radio communication. Resent survey found that there aremany areas of the radio spectrum that are occupied by authorized user/primary user (PU, which are notfully utilized. Cognitive radios (CR prove to next generation wireless communication system thatproposed as a way to reuse this under-utilised spectrum in an opportunistic and non-interfering basis. ACR is a self-directed entity in a wireless communications environment that senses its environment, trackschanges, and reacts upon its findings and frequently exchanges information with the networks forsecondary user (SU. However, CR facing collision problem with tracks changes i.e. reallocating of otherempty channels for SU while PU arrives. In this paper, channels reallocation technique based on DNAsequence alignment algorithm for CR networks has been proposed.

  7. Channels Reallocation In Cognitive Radio Networks Based On DNA Sequence Alignment

    CERN Document Server

    Singh, Santosh Kumar; Pathak, Vibhakar; 10.5121/ijngn.2010.2203

    2010-01-01

    Nowadays, It has been shown that spectrum scarcity increased due to tremendous growth of new players in wireless base system by the evolution of the radio communication. Resent survey found that there are many areas of the radio spectrum that are occupied by authorized user/primary user (PU), which are not fully utilized. Cognitive radios (CR) prove to next generation wireless communication system that proposed as a way to reuse this under-utilised spectrum in an opportunistic and non-interfering basis. A CR is a self-directed entity in a wireless communications environment that senses its environment, tracks changes, and reacts upon its findings and frequently exchanges information with the networks for secondary user (SU). However, CR facing collision problem with tracks changes i.e. reallocating of other empty channels for SU while PU arrives. In this paper, channels reallocation technique based on DNA sequence alignment algorithm for CR networks has been proposed.

  8. Duplication: a Mechanism Producing Disassortative Mixing Networks in Biology

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Zeng-Rong; WANG Jia-Zeng

    2007-01-01

    Assortative/disassortative mixing is an important topological property of a network. A network is called assortative mixing if the nodes in the network tend to connect to their connectivity peers, or disassortative mixing if nodes with low degrees are more likely to connect with high-degree nodes. We have known that biological networks such as protein-protein interaction networks (PPI), gene regulatory networks, and metabolic networks tend to be disassortative. On the other hand, in biological evolution, duplication and divergence are two fundamental processes. In order to make the relationship between the property of disassortative mixing and the two basic biological principles clear and to study the cause of the disassortative mixing property in biological networks, we present a random duplication model and an anti-preference duplication model. Our results show that disassortative mixing networks can be obtained by both kinds of models from uncorrelated initial networks.Moreover, with the growth of the network size, the disassortative mixing property becomes more obvious.

  9. A unified biological modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2013-12-01

    In order to understand the biological response in a cell, a researcher has to create a biological network and design an experiment to prove it. Although biological knowledge has been accumulated, we still don't have enough biological models to explain complex biological phenomena. If a new biological network is to be created, integrated modeling software supporting various biological models is required. In this research, we design and implement a unified biological modeling and simulation system, called ezBioNet, for analyzing biological reaction networks. ezBioNet designs kinetic and Boolean network models and simulates the biological networks using a server-side simulation system with Object Oriented Parallel Accelerator Library framework. The main advantage of ezBioNet is that a user can create a biological network by using unified modeling canvas of kinetic and Boolean models and perform massive simulations, including Ordinary Differential Equation analyses, sensitivity analyses, parameter estimates and Boolean network analysis. ezBioNet integrates useful biological databases, including the BioModels database, by connecting European Bioinformatics Institute servers through Web services Application Programming Interfaces. In addition, we employ Eclipse Rich Client Platform, which is a powerful modularity framework to allow various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool and a simulation system for understanding the control mechanism by monitoring the change of each component in a biological network. The simulation result can be managed and visualized on ezBioNet, which is available free of charge at http://ezbionet.sourceforge.net or http://ezbionet.cbnu.ac.kr.

  10. Statistical properties and robustness of biological controller-target networks.

    Directory of Open Access Journals (Sweden)

    Jacob D Feala

    Full Text Available Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, in a "many-to-many" control structure. Here we study several of these bipartite (two-layer networks. We analyze both naturally occurring biological networks (composed of transcription factors controlling genes, microRNAs controlling mRNA transcripts, and protein kinases controlling protein substrates and a drug-target network composed of kinase inhibitors and of their kinase targets. Certain statistical properties of these biological bipartite structures seem universal across systems and species, suggesting the existence of common control strategies in biology. The number of controllers is ∼8% of targets and the density of links is 2.5%±1.2%. Links per node are predominantly exponentially distributed. We explain the conservation of the mean number of incoming links per target using a mathematical model of control networks, which also indicates that the "many-to-many" structure of biological control has properties of efficient robustness. The drug-target network has many statistical properties similar to the biological networks and we show that drug-target networks with biomimetic features can be obtained. These findings suggest a completely new approach to pharmacological control of biological systems. Molecular tools, such as kinase inhibitors, are now available to test if therapeutic combinations may benefit from being designed with biomimetic properties, such as "many-to-many" targeting, very wide coverage of the target set, and redundancy of incoming links per target.

  11. CTSS: a robust and efficient method for protein structure alignment based on local geometrical and biological features.

    Science.gov (United States)

    Can, Tolga; Wang, Yuan-Fang

    2003-01-01

    We present a new method for conducting protein structure similarity searches, which improves on the accuracy, robustness, and efficiency of some existing techniques. Our method is grounded in the theory of differential geometry on 3D space curve matching. We generate shape signatures for proteins that are invariant, localized, robust, compact, and biologically meaningful. To improve matching accuracy, we smooth the noisy raw atomic coordinate data with spline fitting. To improve matching efficiency, we adopt a hierarchical coarse-to-fine strategy. We use an efficient hashing-based technique to screen out unlikely candidates and perform detailed pairwise alignments only for a small number of candidates that survive the screening process. Contrary to other hashing based techniques, our technique employs domain specific information (not just geometric information) in constructing the hash key, and hence, is more tuned to the domain of biology. Furthermore, the invariancy, localization, and compactness of the shape signatures allow us to utilize a well-known local sequence alignment algorithm for aligning two protein structures. One measure of the efficacy of the proposed technique is that we were able to discover new, meaningful motifs that were not reported by other structure alignment methods.

  12. SBEToolbox: A Matlab Toolbox for Biological Network Analysis.

    Science.gov (United States)

    Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J

    2013-01-01

    We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.

  13. Controllability and observability of Boolean networks arising from biology.

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  14. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  15. Rigidity and flexibility of biological networks

    CERN Document Server

    Gaspar, Merse E

    2012-01-01

    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks.

  16. Rigidity and flexibility of biological networks.

    Science.gov (United States)

    Gáspár, Merse E; Csermely, Peter

    2012-11-01

    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks. PMID:23165349

  17. Network benchmarking: a happy marriage between systems and synthetic biology.

    Science.gov (United States)

    Minty, Jeremy J; Varedi K, S Marjan; Nina Lin, Xiaoxia

    2009-03-27

    In their new Cell paper, Cantone et al. (2009) present exciting results on constructing and utilizing a small synthetic gene regulatory network in yeast that draws from two rapidly developing fields of systems and synthetic biology.

  18. USING ANALYTIC NETWORK FOR SELECTION OF ENTERPRISE RESOURCE PLANNING (ERP ALIGNED TO BUSINESS STRATEGY

    Directory of Open Access Journals (Sweden)

    Alberto de Medeiros Junior

    2014-10-01

    Full Text Available The choice of an Enterprise Resource Planning (ERP must be made judiciously by the high costs involved in the acquisition of such systems. Managers in areas such as accounting, financial and information technology need support and tools that help in selecting an appropriate ERP for their business. With this article, we present a study aimed at investigating the possibility of a Decision Support System (DSS to be used for this selection interrelating evaluation criteria, which could allow to contemplate the strategic alignment between Business and Information Technology. From the literature review 28 factors related to the selection of software packages, with special emphasis on ERP were identified. For the research procedures, the qualitative ones were adopted, in that the 18 factors considered relevant to a good selection of ERP were classified with the Delphi technique and used as input in a DSS: Analytical Network Process (ANP, applied as a Case Study in a small business that hired the ERP. The results showed that the ANP was efficient in interrelated criteria and evaluated the strategic alignment between Business and Information Technology.

  19. Bayesian variable selection and data integration for biological regulatory networks

    OpenAIRE

    Jensen, Shane T; Chen, Guang; Stoeckert, Jr, Christian J.

    2007-01-01

    A substantial focus of research in molecular biology are gene regulatory networks: the set of transcription factors and target genes which control the involvement of different biological processes in living cells. Previous statistical approaches for identifying gene regulatory networks have used gene expression data, ChIP binding data or promoter sequence data, but each of these resources provides only partial information. We present a Bayesian hierarchical model that integrates all three dat...

  20. Automata networks model for alignment and least effort on vocabulary formation

    CERN Document Server

    Vera, Javier; Goles, Eric

    2015-01-01

    Can artificial communities of agents develop language with scaling relations close to the Zipf law? As a preliminary answer to this question, we propose an Automata Networks model of the formation of a vocabulary on a population of individuals, under two in principle opposite strategies: the alignment and the least effort principle. Within the previous account to the emergence of linguistic conventions (specially, the Naming Game), we focus on modeling speaker and hearer efforts as actions over their vocabularies and we study the impact of these actions on the formation of a shared language. The numerical simulations are essentially based on an energy function, that measures the amount of local agreement between the vocabularies. The results suggests that on one dimensional lattices the best strategy to the formation of shared languages is the one that minimizes the efforts of speakers on communicative tasks.

  1. Toward Network Biology in E. coli Cell.

    Science.gov (United States)

    Mori, Hirotada; Takeuchi, Rikiya; Otsuka, Yuta; Bowden, Steven; Yokoyama, Katsushi; Muto, Ai; Libourel, Igor; Wanner, Barry L

    2015-01-01

    E. coli has been a critically important model research organism for more than 50 years, particularly in molecular biology. In 1997, the E. coli draft genome sequence was published. Post-genomic techniques and resources were then developed that allowed E. coli to become a model organism for systems biology. Progress made since publication of the E. coli genome sequence will be summarized.

  2. The Structure and Function of Biological Networks

    Science.gov (United States)

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  3. Epigenetics and Why Biological Networks are More Controllable than Expected

    Science.gov (United States)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  4. Systematic Functional Annotation and Visualization of Biological Networks.

    Science.gov (United States)

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  5. Stability of biological networks as represented in Random Boolean Nets.

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander; Thompson, Marshall

    2004-09-01

    We explore stability of Random Boolean Networks as a model of biological interaction networks. We introduce surface-to-volume ratio as a measure of stability of the network. Surface is defined as the set of states within a basin of attraction that maps outside the basin by a bit-flip operation. Volume is defined as the total number of states in the basin. We report development of an object-oriented Boolean network analysis code (Attract) to investigate the structure of stable vs. unstable networks. We find two distinct types of stable networks. The first type is the nearly trivial stable network with a few basins of attraction. The second type contains many basins. We conclude that second type stable networks are extremely rare.

  6. Biologically Inspired Optimization of Building District Heating Networks

    OpenAIRE

    Leiming Shang; Xiaomin Zhao

    2013-01-01

    In this paper we show that a biologically inspired model can be successfully applied to problems of building optimal district heating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided by the model and a well-tuned ant colony algorithm and genetic algorithm. The results indicate th...

  7. Inferring biological networks by sparse identification of nonlinear dynamics

    OpenAIRE

    Mangan, Niall M.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J Nathan

    2016-01-01

    Inferring the structure and dynamics of network models is critical to understanding the functionality and control of complex systems, such as metabolic and regulatory biological networks. The increasing quality and quantity of experimental data enable statistical approaches based on information theory for model selection and goodness-of-fit metrics. We propose an alternative method to infer networked nonlinear dynamical systems by using sparsity-promoting $\\ell_1$ optimization to select a sub...

  8. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.

    Science.gov (United States)

    Munier, Pierre; Gordeyeva, Korneliya; Bergström, Lennart; Fall, Andreas B

    2016-05-01

    We show that unidirectional freezing of nanocellulose dispersions produces cellular foams with high alignment of the rod-like nanoparticles in the freezing direction. Quantification of the alignment in the long direction of the tubular pores with X-ray diffraction shows high orientation of cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) at particle concentrations above 0.2 wt % (CNC) and 0.08 wt % (CNF). Aggregation of CNF by pH decrease or addition of salt significantly reduces the particle orientation; in contrast, exceeding the concentration where particles gel by mobility constraints had a relatively small effect on the orientation. The dense nanocellulose network formed by directional freezing was sufficiently strong to resist melting. The formed hydrogels were birefringent and displayed anisotropic laser diffraction patterns, suggesting preserved nanocellulose alignment and cellular structure. Nondirectional freezing of the hydrogels followed by sublimation generates foams with a pore structure and nanocellulose alignment resembling the structure of the initial directional freezing.

  9. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.

    Science.gov (United States)

    Munier, Pierre; Gordeyeva, Korneliya; Bergström, Lennart; Fall, Andreas B

    2016-05-01

    We show that unidirectional freezing of nanocellulose dispersions produces cellular foams with high alignment of the rod-like nanoparticles in the freezing direction. Quantification of the alignment in the long direction of the tubular pores with X-ray diffraction shows high orientation of cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) at particle concentrations above 0.2 wt % (CNC) and 0.08 wt % (CNF). Aggregation of CNF by pH decrease or addition of salt significantly reduces the particle orientation; in contrast, exceeding the concentration where particles gel by mobility constraints had a relatively small effect on the orientation. The dense nanocellulose network formed by directional freezing was sufficiently strong to resist melting. The formed hydrogels were birefringent and displayed anisotropic laser diffraction patterns, suggesting preserved nanocellulose alignment and cellular structure. Nondirectional freezing of the hydrogels followed by sublimation generates foams with a pore structure and nanocellulose alignment resembling the structure of the initial directional freezing. PMID:27071304

  10. The effect of network biology on drug toxicology

    DEFF Research Database (Denmark)

    Gautier, Laurent; Taboureau, Olivier; Audouze, Karine Marie Laure

    2013-01-01

    biology has the opportunity to contribute to a better understanding of a drug's safety profile. The authors believe that considering a drug action and protein's function in a global physiological environment may benefit our understanding of the impact some chemicals have on human health and toxicity. The...... network biology. The authors specifically assess this approach across different biological scales when it is applied to toxicity. Expert opinion: There has been much progress made with the amount of data that is generated by various omics technologies. With this large amount of useful data, network...

  11. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    Science.gov (United States)

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William F.; Yegian, Derek T.; Earnest, Thomas N.; Jaklevich, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2007-09-25

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  12. Minimum network constraint on reverse engineering to develop biological regulatory networks.

    Science.gov (United States)

    Shao, Bin; Wu, Jiayi; Tian, Binghui; Ouyang, Qi

    2015-09-01

    Reconstructing the topological structure of biological regulatory networks from microarray expression data or data of protein expression profiles is one of major tasks in systems biology. In recent years, various mathematical methods have been developed to meet this task. Here, based on our previously reported reverse engineering method, we propose a new constraint, i.e., the minimum network constraint, to facilitate the reconstruction of biological networks. Three well studied regulatory networks (the budding yeast cell cycle network, the fission yeast cell cycle network, and the SOS network of Escherichia coli) were used as the test sets to verify the performance of this method. Numerical results show that the biological networks prefer to use the minimal networks to fulfill their functional tasks, making it possible to apply minimal network criteria in the network reconstruction process. Two scenarios were considered in the reconstruction process: generating data using different initial conditions; and generating data from knock out and over-expression experiments. In both cases, network structures are revealed faithfully in a few steps using our approach.

  13. Using biological networks to improve our understanding of infectious diseases

    Directory of Open Access Journals (Sweden)

    Nicola J. Mulder

    2014-08-01

    Full Text Available Infectious diseases are the leading cause of death, particularly in developing countries. Although many drugs are available for treating the most common infectious diseases, in many cases the mechanism of action of these drugs or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that facilitate infection and disease progression are often not well understood. Since proteins do not work in isolation, understanding biological systems requires a better understanding of the interconnectivity between proteins in different pathways and processes, which includes both physical and other functional interactions. Such biological networks can be generated within organisms or between organisms sharing a common environment using experimental data and computational predictions. Though different data sources provide different levels of accuracy, confidence in interactions can be measured using interaction scores. Connections between interacting proteins in biological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from graph theory. There are many different applications of biological networks, and here we discuss three such applications, specifically applied to the infectious disease tuberculosis, with its causative agent Mycobacterium tuberculosis and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of networks for evolutionary studies, and the generation and use of host–pathogen interaction networks.

  14. Relevance of Dynamic Clustering to Biological Networks

    CERN Document Server

    Kaneko, K

    1993-01-01

    Abstract Network of nonlinear dynamical elements often show clustering of synchronization by chaotic instability. Relevance of the clustering to ecological, immune, neural, and cellular networks is discussed, with the emphasis of partially ordered states with chaotic itinerancy. First, clustering with bit structures in a hypercubic lattice is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and chaotic genetic algorithms. When spontaneous changes of effective couplings are introduced, chaotic itinerancy of clusterings is widely seen through a feedback mechanism, which supports dynamic stability allowing for complexity and diversity, known as homeochaos. Second, synaptic dynamics of couplings is studied in relation with neural dynamics. The clustering structure is formed with a balance between external inputs and internal dynamics. Last, an extension allowing for the growth of the number of elements is given, in connection with cell differentiation. Effecti...

  15. Biological impacts and context of network theory

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-05

    Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World-Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function, robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory-, signal transduction-, protein interaction- and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.

  16. Course 10: Three Lectures on Biological Networks

    Science.gov (United States)

    Magnasco, M. O.

    1 Enzymatic networks. Proofreading knots: How DNA topoisomerases disentangle DNA 1.1 Length scales and energy scales 1.2 DNA topology 1.3 Topoisomerases 1.4 Knots and supercoils 1.5 Topological equilibrium 1.6 Can topoisomerases recognize topology? 1.7 Proposal: Kinetic proofreading 1.8 How to do it twice 1.9 The care and proofreading of knots 1.10 Suppression of supercoils 1.11 Problems and outlook 1.12 Disquisition 2 Gene expression networks. Methods for analysis of DNA chip experiments 2.1 The regulation of gene expression 2.2 Gene expression arrays 2.3 Analysis of array data 2.4 Some simplifying assumptions 2.5 Probeset analysis 2.6 Discussion 3 Neural and gene expression networks: Song-induced gene expression in the canary brain 3.1 The study of songbirds 3.2 Canary song 3.3 ZENK 3.4 The blush 3.5 Histological analysis 3.6 Natural vs. artificial 3.7 The Blush II: gAP 3.8 Meditation

  17. Non-Hermitian localization in biological networks

    Science.gov (United States)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R.

    2016-04-01

    We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90∘ rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  18. Discriminating direct and indirect connectivities in biological networks.

    Science.gov (United States)

    Kang, Taek; Moore, Richard; Li, Yi; Sontag, Eduardo; Bleris, Leonidas

    2015-10-13

    Reverse engineering of biological pathways involves an iterative process between experiments, data processing, and theoretical analysis. Despite concurrent advances in quality and quantity of data as well as computing resources and algorithms, difficulties in deciphering direct and indirect network connections are prevalent. Here, we adopt the notions of abstraction, emulation, benchmarking, and validation in the context of discovering features specific to this family of connectivities. After subjecting benchmark synthetic circuits to perturbations, we inferred the network connections using a combination of nonparametric single-cell data resampling and modular response analysis. Intriguingly, we discovered that recovered weights of specific network edges undergo divergent shifts under differential perturbations, and that the particular behavior is markedly different between topologies. Our results point to a conceptual advance for reverse engineering beyond weight inference. Investigating topological changes under differential perturbations may address the longstanding problem of discriminating direct and indirect connectivities in biological networks. PMID:26420864

  19. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    of advanced cell factories for production of fuels, chemicals, food ingredients and pharmaceuticals. The yeast Saccharomyces cerevisiae represents an excellent model system; the density of biological information available on this organism allows it to serve as a eukaryotic model for studying human diseases....... Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and hence no single...... appropriate guidelines, establish an appropriate infrastructure for the network and organize courses, meetings and conferences that will consolidate the network and promote systems biology. This paper discusses the impacts of systems biology and how YSBN may play a role in the future development of the field...

  20. Using biological networks to integrate, visualize and analyze genomics data.

    Science.gov (United States)

    Charitou, Theodosia; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Network biology is a rapidly developing area of biomedical research and reflects the current view that complex phenotypes, such as disease susceptibility, are not the result of single gene mutations that act in isolation but are rather due to the perturbation of a gene's network context. Understanding the topology of these molecular interaction networks and identifying the molecules that play central roles in their structure and regulation is a key to understanding complex systems. The falling cost of next-generation sequencing is now enabling researchers to routinely catalogue the molecular components of these networks at a genome-wide scale and over a large number of different conditions. In this review, we describe how to use publicly available bioinformatics tools to integrate genome-wide 'omics' data into a network of experimentally-supported molecular interactions. In addition, we describe how to visualize and analyze these networks to identify topological features of likely functional relevance, including network hubs, bottlenecks and modules. We show that network biology provides a powerful conceptual approach to integrate and find patterns in genome-wide genomic data but we also discuss the limitations and caveats of these methods, of which researchers adopting these methods must remain aware. PMID:27036106

  1. Oscillatory Activities in Regulatory Biological Networks and Hopf Bifurcation

    Institute of Scientific and Technical Information of China (English)

    YAN Shi-Wei; WANG Qi; XIE Bai-Song; ZHANG Feng-Shou

    2007-01-01

    Exploiting the nonlinear dynamics in the negative feedback loop, we propose a statistical signal-response model to describe the different oscillatory behaviour in a biological network motif. By choosing the delay as a bifurcation parameter, we discuss the existence of Hopf bifurcation and the stability of the periodic solutions of model equations with the centre manifold theorem and the normal form theory. It is shown that a periodic solution is born in a Hopf bifurcation beyond a critical time delay, and thus the bifurcation phenomenon may be important to elucidate the mechanism of oscillatory activities in regulatory biological networks.

  2. MAPPING OF NATURAL KAPOSI SARCOMA INHIBITOR USING NETWORK BIOLOGY APPROACH

    Directory of Open Access Journals (Sweden)

    Jayadeepa R. M.

    2012-03-01

    Full Text Available Identification of protein-ligand interaction networks on a proteome scale is crucial to address a wide range of biological problems such as correlating molecular functions to physiological processes and designing safe and efficient therapeutics. In this study we have developed a novel computational strategy to identify ligand binding profiles of proteins across gene families and applied it to predicting protein functions, elucidating molecular mechanisms of drug adverse effects, and repositioning safe pharmaceuticals to treat different diseases The resultant network is then extrapolated to proteomics level to sort out the genes only expressed in the specific cancer types. The network is statistically analyzed and represented by the graphical interpretation to encounter the hub nodes. The objective of developing a biological networking is for the evaluation and validation of cancer drugs and their targets. In the field of cancer biology, the drug and their targets holds a role of paramount importance. With the work conducted here it shows the study of relation between drug target networks. Kaposi’s sarcoma (KS is a systemic disease which can present with cutaneous lesions with or without internal involvement. Genes belonging to the group of proto-oncogenes and tumor suppressors are best targeted for cancer studies. Biological networks like gene regulatory networks, protein interaction network is usually created to simplify the studies. In the present study, 26 proteins as receptor were selected for the study; all the receptors were responsible for the cause of Kaposi’s sarcoma. Also, 121 natural anti-Kaposi Sarcoma compounds were selected from different sources the natural components were the best component for blocking of abnormal activity.

  3. Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis

    Science.gov (United States)

    Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German

    2016-01-01

    Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing. PMID:27148392

  4. Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis

    Directory of Open Access Journals (Sweden)

    David Cárdenas-Peña

    2016-01-01

    Full Text Available Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer’s disease (AD or mild cognitive impairment (MCI and healthy controls (NC. Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve at the time it reduces the class biasing.

  5. MS4 - Multi-Scale Selector of Sequence Signatures: An alignment-free method for classification of biological sequences

    Directory of Open Access Journals (Sweden)

    Grasseau Gilles

    2010-07-01

    Full Text Available Abstract Background While multiple alignment is the first step of usual classification schemes for biological sequences, alignment-free methods are being increasingly used as alternatives when multiple alignments fail. Subword-based combinatorial methods are popular for their low algorithmic complexity (suffix trees ... or exhaustivity (motif search, in general with fixed length word and/or number of mismatches. We developed previously a method to detect local similarities (the N-local decoding based on the occurrences of repeated subwords of fixed length, which does not impose a fixed number of mismatches. The resulting similarities are, for some "good" values of N, sufficiently relevant to form the basis of a reliable alignment-free classification. The aim of this paper is to develop a method that uses the similarities detected by N-local decoding while not imposing a fixed value of N. We present a procedure that selects for every position in the sequences an adaptive value of N, and we implement it as the MS4 classification tool. Results Among the equivalence classes produced by the N-local decodings for all N, we select a (relatively small number of "relevant" classes corresponding to variable length subwords that carry enough information to perform the classification. The parameter N, for which correct values are data-dependent and thus hard to guess, is here replaced by the average repetitivity κ of the sequences. We show that our approach yields classifications of several sets of HIV/SIV sequences that agree with the accepted taxonomy, even on usually discarded repetitive regions (like the non-coding part of LTR. Conclusions The method MS4 satisfactorily classifies a set of sequences that are notoriously hard to align. This suggests that our approach forms the basis of a reliable alignment-free classification tool. The only parameter κ of MS4 seems to give reasonable results even for its default value, which can be a great advantage for

  6. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  7. Uncovering Biological Network Function via Graphlet Degree Signatures

    Directory of Open Access Journals (Sweden)

    Nataša Pržulj

    2008-01-01

    Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.

  8. Discovering networks of perturbed biological processes in hepatocyte cultures.

    Directory of Open Access Journals (Sweden)

    Christopher D Lasher

    Full Text Available The liver plays a vital role in glucose homeostasis, the synthesis of bile acids and the detoxification of foreign substances. Liver culture systems are widely used to test adverse effects of drugs and environmental toxicants. The two most prevalent liver culture systems are hepatocyte monolayers (HMs and collagen sandwiches (CS. Despite their wide use, comprehensive transcriptional programs and interaction networks in these culture systems have not been systematically investigated. We integrated an existing temporal transcriptional dataset for HM and CS cultures of rat hepatocytes with a functional interaction network of rat genes. We aimed to exploit the functional interactions to identify statistically significant linkages between perturbed biological processes. To this end, we developed a novel approach to compute Contextual Biological Process Linkage Networks (CBPLNs. CBPLNs revealed numerous meaningful connections between different biological processes and gene sets, which we were successful in interpreting within the context of liver metabolism. Multiple phenomena captured by CBPLNs at the process level such as regulation, downstream effects, and feedback loops have well described counterparts at the gene and protein level. CBPLNs reveal high-level linkages between pathways and processes, making the identification of important biological trends more tractable than through interactions between individual genes and molecules alone. Our approach may provide a new route to explore, analyze, and understand cellular responses to internal and external cues within the context of the intricate networks of molecular interactions that control cellular behavior.

  9. Biologically plausible multi-dimensional reinforcement learning in neural networks

    NARCIS (Netherlands)

    Rombouts, J.O.; Ooyen, A. van; Roelfsema, P.R.; Bohte, S.M.

    2012-01-01

    How does the brain learn to map multi-dimensional sensory inputs to multi-dimensional motor outputs when it can only observe single rewards for the coordinated outputs of the whole network of neurons that make up the brain? We introduce Multi-AGREL, a novel, biologically plausible multi-layer neural

  10. Biologically Inspired Optimization of Building District Heating Networks

    Directory of Open Access Journals (Sweden)

    Leiming Shang

    2013-07-01

    Full Text Available In this paper we show that a biologically inspired model can be successfully applied to problems of building optimal district heating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided by the model and a well-tuned ant colony algorithm and genetic algorithm. The results indicate that although there are not large-scale efficiency savings to be made, the biologically inspired amoeboid movement model is capable of finding results of equal or better optimality than a comparable ant colony algorithm and genetic algorithm.

  11. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    DEFF Research Database (Denmark)

    Schoof, Erwin; Erler, Janine

    cancer networks using Network Biology. Technologies key to this, such as Mass Spectrometry (MS), Next-Generation Sequencing (NGS) and High-Content Screening (HCS) are briefly described. In Chapter II, we cover how signaling networks and mutational data can be modeled in order to gain a better...... number of biological aspects that would need to be understood to enable comprehensive treatment regimens specific to each patient (i.e. personalized medicine). However, in the approaches outlined in this thesis, we chose metastasis as a key process for interrogating the clinical potential of targeting...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...

  12. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    Science.gov (United States)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  13. Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST

    Directory of Open Access Journals (Sweden)

    Oliver Melvin J

    2005-04-01

    Full Text Available Abstract Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST, which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN. W.ND-BLAST provides intuitive Graphic User Interfaces (GUI for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is

  14. Human Metabolic Network: Reconstruction, Simulation, and Applications in Systems Biology

    Science.gov (United States)

    Wu, Ming; Chan, Christina

    2012-01-01

    Metabolism is crucial to cell growth and proliferation. Deficiency or alterations in metabolic functions are known to be involved in many human diseases. Therefore, understanding the human metabolic system is important for the study and treatment of complex diseases. Current reconstructions of the global human metabolic network provide a computational platform to integrate genome-scale information on metabolism. The platform enables a systematic study of the regulation and is applicable to a wide variety of cases, wherein one could rely on in silico perturbations to predict novel targets, interpret systemic effects, and identify alterations in the metabolic states to better understand the genotype-phenotype relationships. In this review, we describe the reconstruction of the human metabolic network, introduce the constraint based modeling approach to analyze metabolic networks, and discuss systems biology applications to study human physiology and pathology. We highlight the challenges and opportunities in network reconstruction and systems modeling of the human metabolic system. PMID:24957377

  15. Imposing early stability to ecological and biological networks through Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2015-03-01

    Full Text Available The stability analysis of the dynamical networks is a well-studied topic, both in ecology and in biology. In this work, I adopt a different perspective: instead of analysing the stability of an arbitrary ecological network, I seek here to impose such stability as soon as possible (or, contrariwise, as late as possible during network dynamics. Evolutionary Network Control (ENC is a theoretical and methodological framework aimed to the control of ecological and biological networks by coupling network dynamics and evolutionary modelling. ENC covers several topics of network control, for instance a the global control from inside and b from outside, c the local (step-by-step control, and the computation of: d control success, e feasibility, and f degree of uncertainty. In this work, I demonstrate that ENC can also be employed to impose early (but, also, late stability to arbitrary ecological and biological networks, and provide an applicative example based on the nonlinear, widely-used, Lotka-Volterra model.

  16. Passing messages between biological networks to refine predicted interactions.

    Directory of Open Access Journals (Sweden)

    Kimberly Glass

    Full Text Available Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation, a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.

  17. High Performance Biological Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP

    Directory of Open Access Journals (Sweden)

    Khaled Benkrid

    2012-01-01

    Full Text Available This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies, namely, Field Programmable Gate Arrays (FPGAs, Graphics Processor Units (GPUs, and IBM’s Cell Broadband Engine (Cell BE, in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria. In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and development tools, FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors and one order of magnitude speed-up compared to domain-specific technologies such as GPUs.

  18. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  19. Curriculum alignment and higher order thinking in introductory biology in Arkansas public two-year colleges

    Science.gov (United States)

    Crandall, Elizabeth Diane

    This dissertation identified the cognitive levels of lecture objectives, lab objectives, and test questions in introductory majors' biology. The study group included courses offered by 27 faculty members at 18 of the 22 community colleges in Arkansas. Using Bloom's Taxonomy to identify cognitive levels, the median lecture learning outcomes were at level 2 (Comprehension) and test assessments at Level 1 (Knowledge). Lab learning outcomes were determined to have a median of level 3 (Analysis). A correlation analysis was performed using SPSS software to determine if there was an association between the Bloom's level of lecture objectives and test assessments. The only significant difference found was at the Analysis level, or Bloom's level 4 (p=.043). Correlation analyses were run for two other data sets. Years of college teaching experience and hours of training in writing objectives and assessments were compared to the Bloom's Taxonomy level of lecture objectives and test items. No significant difference was found for either of these independent variables. This dissertation provides Arkansas two-year college biology faculty with baseline information about the levels of cognitive skills that are required in freshman biology for majors courses. It can serve to initiate conversations about where we are compared to a national study, where we need to be, and how we get there.

  20. Facile: a command-line network compiler for systems biology

    OpenAIRE

    Ollivier Julien F; Siso-Nadal Fernando; Swain Peter S

    2007-01-01

    Abstract Background A goal of systems biology is the quantitative modelling of biochemical networks. Yet for many biochemical systems, parameter values and even the existence of interactions between some chemical species are unknown. It is therefore important to be able to easily investigate the effects of adding or removing reactions and to easily perform a bifurcation analysis, which shows the qualitative dynamics of a model for a range of parameter values. Results We present Facile, a Perl...

  1. Analysis of complex networks from biology to linguistics

    CERN Document Server

    Dehmer, Matthias

    2009-01-01

    Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.

  2. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    Science.gov (United States)

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  3. Importance of randomness in biological networks: A random matrix analysis

    Indian Academy of Sciences (India)

    Sarika Jalan

    2015-02-01

    Random matrix theory, initially proposed to understand the complex interactions in nuclear spectra, has demonstrated its success in diverse domains of science ranging from quantum chaos to galaxies. We demonstrate the applicability of random matrix theory for networks by providing a new dimension to complex systems research. We show that in spite of huge differences these interaction networks, representing real-world systems, posses from random matrix models, the spectral properties of the underlying matrices of these networks follow random matrix theory bringing them into the same universality class. We further demonstrate the importance of randomness in interactions for deducing crucial properties of the underlying system. This paper provides an overview of the importance of random matrix framework in complex systems research with biological systems as examples.

  4. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  5. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  6. Bit by bit control of nonlinear ecological and biological networks using Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2016-06-01

    Full Text Available Evolutionary Network Control (ENC has been first introduced in 2013 to effectively subdue network-like systems. ENC opposes the idea, very common in the scientific literature, that controllability of networks should be based on the identification of the set of driver nodes that can guide the system's dynamics, in other words on the choice of a subset of nodes that should be selected to be permanently controlled. ENC has proven to be effective in the global control (i.e. the focus is on mastery of the final state of network dynamics of linear and nonlinear networks, and in the local (i.e. the focus is on the step-by-step ascendancy of network dynamics control of linear networks. In this work, ENC is applied to the local control of nonlinear networks. Using the Lotka-Volterra model as a case study, I show here that ENC is capable of locally driving nonlinear networks as well, so that also intermediate steps (not only the final state are under our strict control. ENC can be readily applied to any kind of ecological, biological, economic and network-like system.

  7. The Default Mode Network Differentiates Biological From Non-Biological Motion.

    Science.gov (United States)

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. PMID:25217472

  8. PREFACE: Complex Networks: from Biology to Information Technology

    Science.gov (United States)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm

  9. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  10. Eigen-Direction Alignment Based Physical-Layer Network Coding for MIMO Two-Way Relay Channels

    CERN Document Server

    Yang, Tao; Ping, Li; Collings, Iain B; Yuan, Jinhong

    2012-01-01

    In this paper, we propose a novel communication strategy which incorporates physical-layer network coding (PNC) into multiple-input multiple output (MIMO) two-way relay channels (TWRCs). At the heart of the proposed scheme lies a new key technique referred to as eigen-direction alignment (EDA) precoding. The EDA precoding efficiently aligns the two-user's eigen-modes into the same directions. Based on that, we carry out multi-stream PNC over the aligned eigen-modes. We derive an achievable rate of the proposed EDA-PNC scheme, based on nested lattice codes, over a MIMO TWRC. Asymptotic analysis shows that the proposed EDA-PNC scheme approaches the capacity upper bound as the number of user antennas increases towards infinity. For a finite number of user antennas, we formulate the design criterion of the optimal EDA precoder and present solutions. Numerical results show that there is only a marginal gap between the achievable rate of the proposed EDA-PNC scheme and the capacity upper bound of the MIMO TWRC, in ...

  11. Similarities Between Biological and Social Networks in Their Structural Organization

    Science.gov (United States)

    Kahng, Byungnam; Lee, Deokjae; Kim, Pureun

    A branching tree is a tree that is generated through a multiplicative branching process starting from a root. A critical branching tree is a branching tree in which the mean branching number of each node is 1, so that the number of offspring neither decays to zero nor flourishes as the branching process goes on. Moreover, a scale-free branching tree is a branching tree in which the number of offspring is heterogeneous, and its distribution follows a power law. Here we examine three structures, two from biology (a phylogenetic tree and the skeletons of a yeast protein interaction network) and one from social science (a coauthorship network), and find that all these structures are scale-free critical branching trees. This suggests that evolutionary processes in such systems take place in bursts and in a self-organized manner.

  12. Inference of asynchronous Boolean network from biological pathways.

    Science.gov (United States)

    Das, Haimabati; Layek, Ritwik Kumar

    2015-01-01

    Gene regulation is a complex process with multiple levels of interactions. In order to describe this complex dynamical system with tractable parameterization, the choice of the dynamical system model is of paramount importance. The right abstraction of the modeling scheme can reduce the complexity in the inference and intervention design, both computationally and experimentally. This article proposes an asynchronous Boolean network framework to capture the transcriptional regulation as well as the protein-protein interactions in a genetic regulatory system. The inference of asynchronous Boolean network from biological pathways information and experimental evidence are explained using an algorithm. The suitability of this paradigm for the variability of several reaction rates is also discussed. This methodology and model selection open up new research challenges in understanding gene-protein interactive system in a coherent way and can be beneficial for designing effective therapeutic intervention strategy.

  13. Methods of information theory and algorithmic complexity for network biology.

    Science.gov (United States)

    Zenil, Hector; Kiani, Narsis A; Tegnér, Jesper

    2016-03-01

    We survey and introduce concepts and tools located at the intersection of information theory and network biology. We show that Shannon's information entropy, compressibility and algorithmic complexity quantify different local and global aspects of synthetic and biological data. We show examples such as the emergence of giant components in Erdös-Rényi random graphs, and the recovery of topological properties from numerical kinetic properties simulating gene expression data. We provide exact theoretical calculations, numerical approximations and error estimations of entropy, algorithmic probability and Kolmogorov complexity for different types of graphs, characterizing their variant and invariant properties. We introduce formal definitions of complexity for both labeled and unlabeled graphs and prove that the Kolmogorov complexity of a labeled graph is a good approximation of its unlabeled Kolmogorov complexity and thus a robust definition of graph complexity.

  14. Noise Filtering and Prediction in Biological Signaling Networks

    CERN Document Server

    Hathcock, David; Weisenberger, Casey; Ilker, Efe; Hinczewski, Michael

    2016-01-01

    Information transmission in biological signaling circuits has often been described using the metaphor of a noise filter. Cellular systems need accurate, real-time data about their environmental conditions, but the biochemical reaction networks that propagate, amplify, and process signals work with noisy representations of that data. Biology must implement strategies that not only filter the noise, but also predict the current state of the environment based on information delayed due to the finite speed of chemical signaling. The idea of a biochemical noise filter is actually more than just a metaphor: we describe recent work that has made an explicit mathematical connection between signaling fidelity in cellular circuits and the classic theories of optimal noise filtering and prediction that began with Wiener, Kolmogorov, Shannon, and Bode. This theoretical framework provides a versatile tool, allowing us to derive analytical bounds on the maximum mutual information between the environmental signal and the re...

  15. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  16. Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

    Institute of Scientific and Technical Information of China (English)

    Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou

    2011-01-01

    Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.

  17. Detecting modules in biological networks by edge weight clustering and entropy significance

    OpenAIRE

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the informa...

  18. Chapter 5: Network biology approach to complex diseases.

    Directory of Open Access Journals (Sweden)

    Dong-Yeon Cho

    Full Text Available Complex diseases are caused by a combination of genetic and environmental factors. Uncovering the molecular pathways through which genetic factors affect a phenotype is always difficult, but in the case of complex diseases this is further complicated since genetic factors in affected individuals might be different. In recent years, systems biology approaches and, more specifically, network based approaches emerged as powerful tools for studying complex diseases. These approaches are often built on the knowledge of physical or functional interactions between molecules which are usually represented as an interaction network. An interaction network not only reports the binary relationships between individual nodes but also encodes hidden higher level organization of cellular communication. Computational biologists were challenged with the task of uncovering this organization and utilizing it for the understanding of disease complexity, which prompted rich and diverse algorithmic approaches to be proposed. We start this chapter with a description of the general characteristics of complex diseases followed by a brief introduction to physical and functional networks. Next we will show how these networks are used to leverage genotype, gene expression, and other types of data to identify dysregulated pathways, infer the relationships between genotype and phenotype, and explain disease heterogeneity. We group the methods by common underlying principles and first provide a high level description of the principles followed by more specific examples. We hope that this chapter will give readers an appreciation for the wealth of algorithmic techniques that have been developed for the purpose of studying complex diseases as well as insight into their strengths and limitations.

  19. Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications

    Science.gov (United States)

    Namasivayam, Aishwarya Alex; Morales, Alejandro Ferreiro; Lacave, Ángela María Fajardo; Tallam, Aravind; Simovic, Borislav; Alfaro, David Garrido; Bobbili, Dheeraj Reddy; Martin, Florian; Androsova, Ganna; Shvydchenko, Irina; Park, Jennifer; Calvo, Jorge Val; Hoeng, Julia; Peitsch, Manuel C.; Racero, Manuel González Vélez; Biryukov, Maria; Talikka, Marja; Pérez, Modesto Berraquero; Rohatgi, Neha; Díaz-Díaz, Noberto; Mandarapu, Rajesh; Ruiz, Rubén Amián; Davidyan, Sergey; Narayanasamy, Shaman; Boué, Stéphanie; Guryanova, Svetlana; Arbas, Susana Martínez; Menon, Swapna; Xiang, Yang

    2016-01-01

    Biological network models offer a framework for understanding disease by describing the relationships between the mechanisms involved in the regulation of biological processes. Crowdsourcing can efficiently gather feedback from a wide audience with varying expertise. In the Network Verification Challenge, scientists verified and enhanced a set of 46 biological networks relevant to lung and chronic obstructive pulmonary disease. The networks were built using Biological Expression Language and contain detailed information for each node and edge, including supporting evidence from the literature. Network scoring of public transcriptomics data inferred perturbation of a subset of mechanisms and networks that matched the measured outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an up-to-date suite of networks for toxicology and drug discovery applications.

  20. Notes on a PDE system for biological network formation

    KAUST Repository

    Haskovec, Jan

    2016-01-22

    We present new analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transport networks. The model describes the pressure field using a Darcy’s type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. The analytical part extends the results of Haskovec et al. (2015) regarding the existence of weak and mild solutions to the whole range of meaningful relaxation exponents. Moreover, we prove finite time extinction or break-down of solutions in the spatially one-dimensional setting for certain ranges of the relaxation exponent. We also construct stationary solutions for the case of vanishing diffusion and critical value of the relaxation exponent, using a variational formulation and a penalty method. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on mixed finite elements and study the qualitative properties of network structures for various parameter values. Furthermore, we indicate numerically that some analytical results proved for the spatially one-dimensional setting are likely to be valid also in several space dimensions.

  1. A Network Biology Approach to Denitrification in Pseudomonas aeruginosa

    Science.gov (United States)

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  2. A network biology approach to denitrification in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Seda Arat

    Full Text Available Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2, nitric oxide (NO and nitrous oxide (N2O. This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2, nitrate (NO3, and phosphate (PO4 suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA. Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.

  3. Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds.

    Science.gov (United States)

    Wu, Shaohua; Duan, Bin; Liu, Penghong; Zhang, Caidan; Qin, Xiaohong; Butcher, Jonathan T

    2016-07-01

    Nanofibrous scaffolds with defined architectures and anisotropic mechanical properties are attractive for many tissue engineering and regenerative medicine applications. Here, a novel electrospinning system is developed and implemented to fabricate continuous processable uniaxially aligned nanofiber yarns (UANY). UANY were processed into fibrous tissue scaffolds with defined anisotropic material properties using various textile-forming technologies, i.e., braiding, weaving, and knitting techniques. UANY braiding dramatically increased overall stiffness and strength compared to the same number of UANY unbraided. Human adipose derived stem cells (HADSC) cultured on UANY or woven and knitted 3D scaffolds aligned along local fiber direction and were >90% viable throughout 21 days. Importantly, UANY supported biochemical induction of HADSC differentiation toward smooth muscle and osteogenic lineages. Moreover, we integrated an anisotropic woven fiber mesh within a bioactive hydrogel to mimic the complex microstructure and mechanical behavior of valve tissues. Human aortic valve interstitial cells (HAVIC) and human aortic root smooth muscle cells (HASMC) were separately encapsulated within hydrogel/woven fabric composite scaffolds for generating scaffolds with anisotropic biomechanics and valve ECM like microenvironment for heart valve tissue engineering. UANY have great potential as building blocks for generating fiber-shaped tissues or tissue microstructures with complex architectures. PMID:27304080

  4. CytoKavosh: a cytoscape plug-in for finding network motifs in large biological networks.

    Science.gov (United States)

    Masoudi-Nejad, Ali; Ansariola, Mitra; Kashani, Zahra Razaghi Moghadam; Salehzadeh-Yazdi, Ali; Khakabimamaghani, Sahand

    2012-01-01

    Network motifs are small connected sub-graphs that have recently gathered much attention to discover structural behaviors of large and complex networks. Finding motifs with any size is one of the most important problems in complex and large networks. It needs fast and reliable algorithms and tools for achieving this purpose. CytoKavosh is one of the best choices for finding motifs with any given size in any complex network. It relies on a fast algorithm, Kavosh, which makes it faster than other existing tools. Kavosh algorithm applies some well known algorithmic features and includes tricky aspects, which make it an efficient algorithm in this field. CytoKavosh is a Cytoscape plug-in which supports us in finding motifs of given size in a network that is formerly loaded into the Cytoscape work-space (directed or undirected). High performance of CytoKavosh is achieved by dynamically linking highly optimized functions of Kavosh's C++ to the Cytoscape Java program, which makes this plug-in suitable for analyzing large biological networks. Some significant attributes of CytoKavosh is efficiency in time usage and memory and having no limitation related to the implementation in motif size. CytoKavosh is implemented in a visual environment Cytoscape that is convenient for the users to interact and create visual options to analyze the structural behavior of a network. This plug-in can work on any given network and is very simple to use and generates graphical results of discovered motifs with any required details. There is no specific Cytoscape plug-in, specific for finding the network motifs, based on original concept. So, we have introduced for the first time, CytoKavosh as the first plug-in, and we hope that this plug-in can be improved to cover other options to make it the best motif-analyzing tool.

  5. CytoKavosh: a cytoscape plug-in for finding network motifs in large biological networks.

    Directory of Open Access Journals (Sweden)

    Ali Masoudi-Nejad

    Full Text Available Network motifs are small connected sub-graphs that have recently gathered much attention to discover structural behaviors of large and complex networks. Finding motifs with any size is one of the most important problems in complex and large networks. It needs fast and reliable algorithms and tools for achieving this purpose. CytoKavosh is one of the best choices for finding motifs with any given size in any complex network. It relies on a fast algorithm, Kavosh, which makes it faster than other existing tools. Kavosh algorithm applies some well known algorithmic features and includes tricky aspects, which make it an efficient algorithm in this field. CytoKavosh is a Cytoscape plug-in which supports us in finding motifs of given size in a network that is formerly loaded into the Cytoscape work-space (directed or undirected. High performance of CytoKavosh is achieved by dynamically linking highly optimized functions of Kavosh's C++ to the Cytoscape Java program, which makes this plug-in suitable for analyzing large biological networks. Some significant attributes of CytoKavosh is efficiency in time usage and memory and having no limitation related to the implementation in motif size. CytoKavosh is implemented in a visual environment Cytoscape that is convenient for the users to interact and create visual options to analyze the structural behavior of a network. This plug-in can work on any given network and is very simple to use and generates graphical results of discovered motifs with any required details. There is no specific Cytoscape plug-in, specific for finding the network motifs, based on original concept. So, we have introduced for the first time, CytoKavosh as the first plug-in, and we hope that this plug-in can be improved to cover other options to make it the best motif-analyzing tool.

  6. A New Computationally Efficient Measure of Topological Redundancy of Biological and Social Networks

    CERN Document Server

    Albert, Reka; Gitter, Anthony; Gursoy, Gamze; Hegde, Rashmi; Paul, Pradyut; Sivanathan, Gowri Sangeetha; Sontag, Eduardo

    2011-01-01

    It is well-known that biological and social interaction networks have a varying degree of redundancy, though a consensus of the precise cause of this is so far lacking. In this paper, we introduce a topological redundancy measure for labeled directed networks that is formal, computationally efficient and applicable to a variety of directed networks such as cellular signaling, metabolic and social interaction networks. We demonstrate the computational efficiency of our measure by computing its value and statistical significance on a number of biological and social networks with up to several thousands of nodes and edges. Our results suggest a number of interesting observations: (1) social networks are more redundant that their biological counterparts, (2) transcriptional networks are less redundant than signaling networks, (3) the topological redundancy of the C. elegans metabolic network is largely due to its inclusion of currency metabolites, and (4) the redundancy of signaling networks is highly (negatively...

  7. Fast statistical alignment.

    Directory of Open Access Journals (Sweden)

    Robert K Bradley

    2009-05-01

    Full Text Available We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/.

  8. Fast statistical alignment.

    Science.gov (United States)

    Bradley, Robert K; Roberts, Adam; Smoot, Michael; Juvekar, Sudeep; Do, Jaeyoung; Dewey, Colin; Holmes, Ian; Pachter, Lior

    2009-05-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/. PMID:19478997

  9. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  10. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  11. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    Science.gov (United States)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  12. Balancing creativity and time efficiency in multi-team R&D projects: The alignment of formal and informal networks

    DEFF Research Database (Denmark)

    Kratzer, Jan; Gemuenden, Hans Georg; Lettl, Christopher

    2008-01-01

    The business world is denoted by an increasing number of multi-team R&D projects, however, managerial knowledge about how to run them successfully is scarce. The present study attempts to shed light at this kind of projects by investigating the alignment of formal and informal network structures...... and their effect on the challenge to balance project creativity and time efficiency. In order to analyse this issue data in two multi-team R&D projects in space industry are collected. There are two intriguing findings that are partly contradicting the state-of-the art knowledge. First, formally ascribed design...... with the team's creativity, whereas it negatively impacts the team's time efficiency....

  13. Aligned platinum nanowire networks from surface-oriented lipid cubic phase templates

    Science.gov (United States)

    Richardson, S. J.; Burton, M. R.; Staniec, P. A.; Nandhakumar, I. S.; Terrill, N. J.; Elliott, J. M.; Squires, A. M.

    2016-01-01

    Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic `single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain QII samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 +/- 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of QII phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic `single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker

  14. Network Biology (http://www.iaees.org/publications/journals/nb/online-version.asp

    Directory of Open Access Journals (Sweden)

    networkbiology@iaees.org

    Full Text Available Network Biology ISSN 2220-8879 URL: http://www.iaees.org/publications/journals/nb/online-version.asp RSS: http://www.iaees.org/publications/journals/nb/rss.xml E-mail: networkbiology@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope NETWORK BIOLOGY (ISSN 2220-8879; CODEN NBEICS is an open access, peer-reviewed international journal that considers scientific articles in all different areas of network biology. It is the transactions of the International Society of Network Biology. It dedicates to the latest advances in network biology. The goal of this journal is to keep a record of the state-of-the-art research and promote the research work in these fast moving areas. The topics to be covered by Network Biology include, but are not limited to: •Theories, algorithms and programs of network analysis •Innovations and applications of biological networks •Ecological networks, food webs and natural equilibrium •Co-evolution, co-extinction, biodiversity conservation •Metabolic networks, protein-protein interaction networks, biochemical reaction networks, gene networks, transcriptional regulatory networks, cell cycle networks, phylogenetic networks, network motifs •Physiological networksNetwork regulation of metabolic processes, human diseases and ecological systems •Social networks, epidemiological networks •System complexity, self-organized systems, emergence of biological systems, agent-based modeling, individual-based modeling, neural network modeling, and other network-based modeling, etc. We are also interested in short communications that clearly address a specific issue or completely present a new ecological network, food web, or metabolic or gene network, etc. Authors can submit their works to the email box of this journal, networkbiology@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal

  15. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay

    2011-09-30

    Factors affecting charge transport through ZnO nanowire mat films were studied by aligning ZnO nanowires on substrates and coupling experimental measurements with 2D nanowire network simulations. Gallium doped ZnO nanowires were aligned on thermally oxidized silicon wafer by shearing a nanowire dispersion in ethanol. Sheet resistances of nanowire thin films that had current flowing parallel to nanowire alignment direction were compared to thin films that had current flowing perpendicular to nanowire alignment direction. Perpendicular devices showed ∼5 fold greater sheet resistance than parallel devices supporting the hypothesis that aligning nanowires would increase conductivity of ZnO nanowire electrodes. 2-D nanowire network simulations of thin films showed that the device sheet resistance was dominated by inter-wire contact resistance. For a given resistivity of ZnO nanowires, the thin film electrodes would have the lowest possible sheet resistance if the inter-wire contact resistance was one order of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using an innovative shear coating technique. Nanowire alignment has shown improvement in ZnO nanowire transparent electrode conductivity. 2D network simulations in conjunction with electrical measurements have revealed different regimes of operation of nanowire thin films and provided a guideline for improving electrical performance of nanowire electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Managing biological networks by using text mining and computer-aided curation

    Science.gov (United States)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  17. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  18. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  19. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    Science.gov (United States)

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  20. Fast Statistical Alignment

    OpenAIRE

    Bradley, Robert K.; Adam Roberts; Michael Smoot; Sudeep Juvekar; Jaeyoung Do; Colin Dewey; Ian Holmes; Lior Pachter

    2009-01-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multi...

  1. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  2. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  3. The redox biology network in cancer pathophysiology and therapeutics

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-08-01

    Full Text Available The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1 and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic, greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular

  4. Comparing the biological coherence of network clusters identified by different detection algorithms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Protein-protein interaction networks serve to carry out basic molecular activity in the cell. Detecting the modular structures from the protein-protein interaction network is important for understanding the organization, function and dynamics of a biological system. In order to identify functional neighborhoods based on network topology, many network cluster identification algorithms have been developed. However, each algorithm might dissect a network from a different aspect and may provide different insight on the network partition. In order to objectively evaluate the performance of four commonly used cluster detection algorithms: molecular complex detection (MCODE), NetworkBlast, shortest-distance clustering (SDC) and Girvan-Newman (G-N) algorithm, we compared the biological coherence of the network clusters found by these algorithms through a uniform evaluation framework. Each algorithm was utilized to find network clusters in two different protein-protein interaction networks with various parameters. Comparison of the resulting network clusters indicates that clusters found by MCODE and SDC are of higher biological coherence than those by NetworkBlast and G-N algorithm.

  5. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.;

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context...... of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules...... and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape....

  6. On the Calculation of System Entropy in Nonlinear Stochastic Biological Networks

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2015-10-01

    Full Text Available Biological networks are open systems that can utilize nutrients and energy from their environment for use in their metabolic processes, and produce metabolic products. System entropy is defined as the difference between input and output signal entropy, i.e., the net signal entropy of the biological system. System entropy is an important indicator for living or non-living biological systems, as biological systems can maintain or decrease their system entropy. In this study, system entropy is determined for the first time for stochastic biological networks, and a computation method is proposed to measure the system entropy of nonlinear stochastic biological networks that are subject to intrinsic random fluctuations and environmental disturbances. We find that intrinsic random fluctuations could increase the system entropy, and that the system entropy is inversely proportional to the robustness and stability of the biological networks. It is also determined that adding feedback loops to shift all eigenvalues to the farther left-hand plane of the complex s-domain could decrease the system entropy of a biological network.

  7. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network.

    Science.gov (United States)

    Hughes, Tyler B; Dang, Na Le; Miller, Grover P; Swamidass, S Joshua

    2016-08-24

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the

  8. Systems Biology in the Context of Big Data and Networks

    OpenAIRE

    Md. Altaf-Ul-Amin; Farit Mochamad Afendi; Samuel Kuria Kiboi; Shigehiko Kanaya

    2014-01-01

    Science is going through two rapidly changing phenomena: one is the increasing capabilities of the computers and software tools from terabytes to petabytes and beyond, and the other is the advancement in high-throughput molecular biology producing piles of data related to genomes, transcriptomes, proteomes, metabolomes, interactomes, and so on. Biology has become a data intensive science and as a consequence biology and computer science have become complementary to each other bridged by other...

  9. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  10. Gene Network Biological Validity Based on Gene-Gene Interaction Relevance

    OpenAIRE

    Francisco Gómez-Vela; Norberto Díaz-Díaz

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in...

  11. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    Science.gov (United States)

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  12. Applying Intelligent Computing Techniques to Modeling Biological Networks from Expression Data

    Institute of Scientific and Technical Information of China (English)

    Wei-Po Lee; Kung-Cheng Yang

    2008-01-01

    Constructing biological networks is one of the most important issues in system sbiology. However, constructing a network from data manually takes a considerable large amount of time, therefore an automated procedure is advocated. To automate the procedure of network construction, in this work we use two intelligent computing techniques, genetic programming and neural computation, to infer two kinds of network models that use continuous variables. To verify the presented approaches, experiments have been conducted and the preliminary results show that both approaches can be used to infer networks successfully.

  13. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  14. Polynomial-Time Algorithm for Controllability Test of a Class of Boolean Biological Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2010-01-01

    Full Text Available In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem. Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.

  15. Hardware Accelerated Sequence Alignment with Traceback

    OpenAIRE

    Scott Lloyd; Snell, Quinn O

    2009-01-01

    Biological sequence alignment is an essential tool used in molecular biology and biomedical applications. The growing volume of genetic data and the complexity of sequence alignment present a challenge in obtaining alignment results in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is pres...

  16. Uncovering disease mechanisms through network biology in the era of next generation sequencing.

    OpenAIRE

    Janet Piñero; Ariel Berenstein; Abel Gonzalez-Perez; Ariel Chernomoretz; Furlong, Laura I.

    2016-01-01

    Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants ...

  17. Mathematical Analysis of a PDE System for Biological Network Formation

    KAUST Repository

    Haskovec, Jan

    2015-02-04

    Motivated by recent physics papers describing rules for natural network formation, we study an elliptic-parabolic system of partial differential equations proposed by Hu and Cai [13, 15]. The model describes the pressure field thanks to Darcy\\'s type equation and the dynamics of the conductance network under pressure force effects with a diffusion rate D >= 0 representing randomness in the material structure. We prove the existence of global weak solutions and of local mild solutions and study their long term behavior. It turns out that, by energy dissipation, steady states play a central role to understand the network formation capacity of the system. We show that for a large diffusion coefficient D, the zero steady state is stable, while network formation occurs for small values of D due to the instability of the zero steady state, and the borderline case D = 0 exhibits a large class of dynamically stable (in the linearized sense) steady states.

  18. Neural network models: from biology to many - body phenomenology

    International Nuclear Information System (INIS)

    The current surge of research on practical side of neural networks and their utility in memory storage/recall, pattern recognition and classification is given in this article. The initial attraction of neural networks as dynamical and statistical system has been investigated. From the view of many-body theorist, the neurons may be thought of as particles, and the weighted connection between the units, as the interaction between these particles. Finally, the author has seen the impressive capabilities of artificial neural networks in pattern recognition and classification may be exploited to solve data management problems in experimental physics and the discovery of radically new theoretically description of physical problems and neural networks can be used in physics. (A.B.)

  19. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    OpenAIRE

    Jim Harkin; Fearghal Morgan; Liam McDaid; Steve Hall; Brian McGinley; Seamus Cawley

    2009-01-01

    FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs) applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable...

  20. Characterization of Adaptation by Morphology in a Planar Biological Network of Plasmodial Slime Mold

    Science.gov (United States)

    Ito, Masateru; Okamoto, Riki; Takamatsu, Atsuko

    2011-07-01

    Growth processes of a planar biological network of plasmodium of a true slime mold, Physarum polycephalum, were analyzed quantitatively. The plasmodium forms a transportation network through which protoplasm conveys nutrients, oxygen, and cellular organelles similarly to blood in a mammalian vascular network. To analyze the network structure, vertices were defined at tube bifurcation points. Then edges were defined for the tubes connecting both end vertices. Morphological analysis was attempted along with conventional topological analysis, revealing that the growth process of the plasmodial network structure depends on environmental conditions. In an attractive condition, the network is a polygonal lattice with more than six edges per vertex at the early stage and the hexagonal lattice at a later stage. Through all growing stages, the tube structure was not highly developed but an unstructured protoplasmic thin sheet was dominantly formed. The network size is small. In contrast, in the repulsive condition, the network is a mixture of polygonal lattice and tree-graph. More specifically, the polygonal lattice has more than six edges per vertex in the early stage, then a tree-graph structure is added to the lattice network at a later stage. The thick tube structure was highly developed. The network size, in the meaning of Euclidean distance but not topological one, grows considerably. Finally, the biological meaning of the environment-dependent network structure in the plasmodium is discussed.

  1. Pattern Learning, Damage and Repair within Biological Neural Networks

    Science.gov (United States)

    Siu, Theodore; Fitzgerald O'Neill, Kate; Shinbrot, Troy

    2015-03-01

    Traumatic brain injury (TBI) causes damage to neural networks, potentially leading to disability or even death. Nearly one in ten of these patients die, and most of the remainder suffer from symptoms ranging from headaches and nausea to convulsions and paralysis. In vitro studies to develop treatments for TBI have limited in vivo applicability, and in vitro therapies have even proven to worsen the outcome of TBI patients. We propose that this disconnect between in vitro and in vivo outcomes may be associated with the fact that in vitro tests assess indirect measures of neuronal health, but do not investigate the actual function of neuronal networks. Therefore in this talk, we examine both in vitro and in silico neuronal networks that actually perform a function: pattern identification. We allow the networks to execute genetic, Hebbian, learning, and additionally, we examine the effects of damage and subsequent repair within our networks. We show that the length of repaired connections affects the overall pattern learning performance of the network and we propose therapies that may improve function following TBI in clinical settings.

  2. Modeling Small Oscillating Biological Networks in Analog VLSI

    OpenAIRE

    Ryckebusch, Sylvie; Bower, James M.; Mead, Carver

    1989-01-01

    We have used analog VLSI technology to model a class of small oscillating biological neural circuits known as central pattern generators (CPG). These circuits generate rhythmic patterns of activity which drive locomotor behaviour in the animal. We have designed, fabricated, and tested a model neuron circuit which relies on many of the same mechanisms as a biological central pattern generator neuron, such as delays and internal feedback. We show that this neuron can be use...

  3. Investigating noise tolerance in an efficient engine for inferring biological regulatory networks.

    Science.gov (United States)

    Komori, Asako; Maki, Yukihiro; Ono, Isao; Okamoto, Masahiro

    2015-06-01

    Biological systems are composed of biomolecules such as genes, proteins, metabolites, and signaling components, which interact in complex networks. To understand complex biological systems, it is important to be capable of inferring regulatory networks from experimental time series data. In previous studies, we developed efficient numerical optimization methods for inferring these networks, but we have yet to test the performance of our methods when considering the error (noise) that is inherent in experimental data. In this study, we investigated the noise tolerance of our proposed inferring engine. We prepared the noise data using the Langevin equation, and compared the performance of our method with that of alternative optimization methods. PMID:25790786

  4. Alignment for CSR

    International Nuclear Information System (INIS)

    Cooled Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) belongs to China great scientific project in China. The alignment for it is very difficult because of very large area and very high accuracy. For the special case in HIRFL-CSR, some new methods and new instruments are used, including the construction of survey control network, the usage of laser tracker, and CSR alignment database system with applications developed to store and analyze data. The author describes the whole procedure of CSR alignment

  5. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    Science.gov (United States)

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes.

  6. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory.

  7. Network-based drug discovery by integrating systems biology and computational technologies.

    Science.gov (United States)

    Leung, Elaine L; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua; Liu, Liang

    2013-07-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple '-omics' databases. The newly developed algorithm- or network-based computational models can tightly integrate '-omics' databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various '-omics' platforms and computational tools would accelerate development of network-based drug discovery and network medicine.

  8. Logical Reduction of Biological Networks to Their Most Determinative Components.

    Science.gov (United States)

    Matache, Mihaela T; Matache, Valentin

    2016-07-01

    Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous

  9. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    OpenAIRE

    Luan Yihui; Nunez-Iglesias Juan; Wang Wenhui; Sun Fengzhu

    2009-01-01

    Abstract Background Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Results ...

  10. Building gene co-expression networks using transcriptomics data for systems biology investigations

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Watson-Haigh, Nathan S.

    2012-01-01

    Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four......) is connected within a network. The two GCN construction methods used were, Weighted Gene Co-expression Network Analysis (WGCNA) and Partial Correlation and Information Theory (PCIT) methods. Nodes were ranked based on their connectivity measures in each of the four different networks created by WGCNA and PCIT...... and node ranks in two methods were compared to identify those nodes which are highly differentially ranked (HDR). A total of 1,017 HDR nodes were identified across one or more of four networks. We investigated HDR nodes by gene enrichment analyses in relation to their biological relevance to phenotypes. We...

  11. Making the right connections: Network biology and plant immune system dynamics

    Directory of Open Access Journals (Sweden)

    Maggie E. McCormack

    2016-04-01

    Full Text Available Network analysis has been a recent focus in biological sciences due to its ability to synthesize global visualizations of cellular processes and predict functions based on inferences from network properties. A protein–protein interaction network, or interactome, captures the emergent cellular states from gene regulation and environmental conditions. Given that proteins are involved in extensive local and systemic molecular interactions such as signaling and metabolism, understanding protein functions and interactions are essential for a systems view of biology. However, in plant sciences these network-based approaches to data integration have been few and far between due to limited data, especially protein–protein interaction data. In this review, we cover network construction from experimental data, network analysis based on topological properties, and finally we discuss advances in networks in plants and other organisms in a comparative approach. We focus on applications of network biology to discover the dynamics of host–pathogen interactions as these have potential agricultural uses in improving disease resistance in commercial crops.

  12. A network biology model of micronutrient related health

    NARCIS (Netherlands)

    Ommen, B. van; Fairweather-Tait, S.; Freidig, A.; Kardinaal, A.; Scalbert, A.; Wopereis, S.

    2008-01-01

    Micronutrients are involved in specific biochemical pathways and have dedicated functions in the body, but they are also interconnected in complex metabolic networks, such as oxidative-reductive and inflammatory pathways and hormonal regulation, in which the overarching function is to optimise healt

  13. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  14. The impact of network biology in pharmacology and toxicology

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Taboureau, Olivier

    2012-01-01

    and tools that allow integration and analysis of such information for understanding the properties of small molecules in the context of cellular networks. With the recent advances in the omics area, global integrative approaches are necessary to cope with the massive amounts of data, and biomedical...

  15. A biologically plausible maturation of an ART network.

    NARCIS (Netherlands)

    M.E.J. Raijmakers; P.C.M. Molenaar

    1999-01-01

    We present a numerical bifurcation analysis of a shunting neural network (SNN). Fold bifurcations appear to occur in the plane of parameters that nle subject to post-natal maturation: the range and strength of lateral connections. The SNN is implemented as a content addressable memory (CAM) in Exact

  16. Revealing gene regulation and association through biological networks

    Science.gov (United States)

    This review had first summarized traditional methods used by plant breeders for genetic improvement, such as QTL analysis and transcriptomic analysis. With accumulating data, we can draw a network that comprises all possible links between members of a community, including protein–protein interaction...

  17. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  18. Functional Genomics Assistant (FUGA: a toolbox for the analysis of complex biological networks

    Directory of Open Access Journals (Sweden)

    Ouzounis Christos A

    2011-10-01

    Full Text Available Abstract Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga.

  19. Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

    Directory of Open Access Journals (Sweden)

    Christoph Nick

    2014-09-01

    Full Text Available The growth of cortical neurons on three dimensional structures of spatially defined (structured randomly oriented, as well as on vertically aligned, carbon nanotubes (CNT is studied. Cortical neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures. These neuron cells attach preferentially on the CNT sidewalls of the vertically aligned CNT architecture instead than onto the tips of the individual CNT pillars.

  20. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  1. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  2. Linking experimental results, biological networks and sequence analysis methods using Ontologies and Generalised Data Structures.

    Science.gov (United States)

    Koehler, Jacob; Rawlings, Chris; Verrier, Paul; Mitchell, Rowan; Skusa, Andre; Ruegg, Alexander; Philippi, Stephan

    2005-01-01

    The structure of a closely integrated data warehouse is described that is designed to link different types and varying numbers of biological networks, sequence analysis methods and experimental results such as those coming from microarrays. The data schema is inspired by a combination of graph based methods and generalised data structures and makes use of ontologies and meta-data. The core idea is to consider and store biological networks as graphs, and to use generalised data structures (GDS) for the storage of further relevant information. This is possible because many biological networks can be stored as graphs: protein interactions, signal transduction networks, metabolic pathways, gene regulatory networks etc. Nodes in biological graphs represent entities such as promoters, proteins, genes and transcripts whereas the edges of such graphs specify how the nodes are related. The semantics of the nodes and edges are defined using ontologies of node and relation types. Besides generic attributes that most biological entities possess (name, attribute description), further information is stored using generalised data structures. By directly linking to underlying sequences (exons, introns, promoters, amino acid sequences) in a systematic way, close interoperability to sequence analysis methods can be achieved. This approach allows us to store, query and update a wide variety of biological information in a way that is semantically compact without requiring changes at the database schema level when new kinds of biological information is added. We describe how this datawarehouse is being implemented by extending the text-mining framework ONDEX to link, support and complement different bioinformatics applications and research activities such as microarray analysis, sequence analysis and modelling/simulation of biological systems. The system is developed under the GPL license and can be downloaded from http://sourceforge.net/projects/ondex/

  3. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...... (MMAE) approach to the data resulted in the highest classification success rate, due to the use of precise forth-order mathematical models which relate the feed offer to the pitch angle of the neck. This thesis shows that wireless sensor networks can be successfully employed to monitor the behavior...... animals can indeed represent the whole herd were carried out. The tagged animals in the herd were equipped with wireless nodes around the neck capable of measuring two behavioral parameters: the pitch angle of the neck (using accelerometer) and the velocity of the movement of the animal (using received...

  4. Detecting modules in biological networks by edge weight clustering and entropy significance.

    Science.gov (United States)

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be

  5. Probabilistic Inference of Biological Networks via Data Integration

    Directory of Open Access Journals (Sweden)

    Mark F. Rogers

    2015-01-01

    Full Text Available There is significant interest in inferring the structure of subcellular networks of interaction. Here we consider supervised interactive network inference in which a reference set of known network links and nonlinks is used to train a classifier for predicting new links. Many types of data are relevant to inferring functional links between genes, motivating the use of data integration. We use pairwise kernels to predict novel links, along with multiple kernel learning to integrate distinct sources of data into a decision function. We evaluate various pairwise kernels to establish which are most informative and compare individual kernel accuracies with accuracies for weighted combinations. By associating a probability measure with classifier predictions, we enable cautious classification, which can increase accuracy by restricting predictions to high-confidence instances, and data cleaning that can mitigate the influence of mislabeled training instances. Although one pairwise kernel (the tensor product pairwise kernel appears to work best, different kernels may contribute complimentary information about interactions: experiments in S. cerevisiae (yeast reveal that a weighted combination of pairwise kernels applied to different types of data yields the highest predictive accuracy. Combined with cautious classification and data cleaning, we can achieve predictive accuracies of up to 99.6%.

  6. Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality.

    Science.gov (United States)

    Mega, Mor; Marom, Gil; Halevi, Rotem; Hamdan, Ashraf; Bluestein, Danny; Haj-Ali, Rami

    2016-07-01

    The cusps of native aortic valve (AV) are composed of collagen bundles embedded in soft tissue, creating a heterogenic tissue with asymmetric alignment in each cusp. This study compares native collagen fiber networks (CFNs) with a goal to better understand their influence on stress distribution and valve kinematics. Images of CFNs from five porcine tricuspid AVs are analyzed and fluid-structure interaction models are generated based on them. Although the valves had similar overall kinematics, the CFNs had distinctive influence on local mechanics. The regions with dilute CFN are more prone to damage since they are subjected to higher stress magnitudes. PMID:26406926

  7. Spatial-Frequency Azimuthally Stable Cartography of Biological Polycrystalline Networks

    Directory of Open Access Journals (Sweden)

    V. A. Ushenko

    2013-01-01

    Full Text Available A new azimuthally stable polarimetric technique processing microscopic images of optically anisotropic structures of biological tissues histological sections is proposed. It has been used as a generalized model of phase anisotropy definition of biological tissues by using superposition of Mueller matrices of linear birefringence and optical activity. The matrix element M44 has been chosen as the main information parameter, whose value is independent of the rotation angle of both sample and probing beam polarization plane. For the first time, the technique of concerted spatial-frequency filtration has been used in order to separate the manifestation of linear birefringence and optical activity. Thereupon, the method of azimuthally stable spatial-frequency cartography of biological tissues histological sections has been elaborated. As the analyzing tool, complex statistic, correlation, and fractal analysis of coordinate distributions of M44 element has been performed. The possibility of using the biopsy of the uterine wall tissue in order to differentiate benign (fibromyoma and malignant (adenocarcinoma conditions has been estimated.

  8. Balancing creativity and time efficiency in multi-team R&D projects : the alignment of formal and informal networks

    NARCIS (Netherlands)

    Kratzer, Jan; Gemuenden, Hans Georg; Lettl, Christopher

    2008-01-01

    The business world is denoted by an increasing number of multi-team research and development (R&D) projects, however, managerial knowledge about how to run them successfully is scarce. The present study attempts to shed light at this kind of projects by investigating the alignment of formal and info

  9. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  10. Discriminating different classes of biological networks by analyzing the graphs spectra distribution

    CERN Document Server

    Takahashi, Daniel Yasumasa; Ferreira, Carlos Eduardo; Fujita, André

    2012-01-01

    The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibl...

  11. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed.

  12. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    Science.gov (United States)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  13. The BIOSCI electronic newsgroup network for the biological sciences. Final report, October 1, 1992--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, D.; Mack, D.

    1996-10-01

    This is the final report for a DOE funded project on BIOSCI Electronic Newsgroup Network for the biological sciences. A usable network for scientific discussion, major announcements, problem solving, etc. has been created.

  14. Integrated analysis of multiple data sources reveals modular structure of biological networks

    International Nuclear Information System (INIS)

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  15. Exploitation of complex network topology for link prediction in biological interactomes

    KAUST Repository

    Alanis Lobato, Gregorio

    2014-06-01

    The network representation of the interactions between proteins and genes allows for a holistic perspective of the complex machinery underlying the living cell. However, the large number of interacting entities within the cell makes network construction a daunting and arduous task, prone to errors and missing information. Fortunately, the structure of biological networks is not different from that of other complex systems, such as social networks, the world-wide web or power grids, for which growth models have been proposed to better understand their structure and function. This means that we can design tools based on these models in order to exploit the topology of biological interactomes with the aim to construct more complete and reliable maps of the cell. In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable and biologically meaningful information that enriches the datasets to which we have access today.

  16. Efficient reconstruction of biological networks via transitive reduction on general purpose graphics processors

    OpenAIRE

    Bošnački Dragan; Odenbrett Maximilian R; Wijs Anton; Ligtenberg Willem; Hilbers Peter

    2012-01-01

    Abstract Background Techniques for reconstruction of biological networks which are based on perturbation experiments often predict direct interactions between nodes that do not exist. Transitive reduction removes such relations if they can be explained by an indirect path of influences. The existing algorithms for transitive reduction are sequential and might suffer from too long run times for large networks. They also exhibit the anomaly that some existing direct interactions are also remove...

  17. GPCODON ALIGNMENT: A GLOBAL PAIRWISE CODON BASED SEQUENCE ALIGNMENT APPROACH

    Directory of Open Access Journals (Sweden)

    Zeinab A. Fareed

    2016-02-01

    Full Text Available The alignment of two DNA sequences is a basic step in the analysis of biological data. Sequencing a long DNA sequence is one of the most interesting problems in bioinformatics. Several techniques have been developed to solve this sequence alignment problem like dynamic programming and heuristic algorithms. In this paper, we introduce (GPCodon alignment a pairwise DNA-DNA method for global sequence alignment that improves the accuracy of pairwise sequence alignment. We use a new scoring matrix to produce the final alignment called the empirical codon substitution matrix. Using this matrix in our technique enabled the discovery of new relationships between sequences that could not be discovered using traditional matrices. In addition, we present experimental results that show the performance of the proposed technique over eleven datasets of average length of 2967 bps. We compared the efficiency and accuracy of our techniques against a comparable tool called “Pairwise Align Codons” [1].

  18. A comprehensive analysis of the dynamic biological networks in HCV induced hepatocarcinogenesis.

    Directory of Open Access Journals (Sweden)

    Bing He

    Full Text Available Hepatocellular carcinoma (HCC is a primary malignancy of the liver, which is closely related to hepatitis C and cirrhosis. The molecular mechanisms underlying the hepatocarcinogenesis induced by HCV infection remain clarified from a standpoint of systems biology. By integrating data from protein-protein interactions, transcriptional regulation, and disease related microarray analysis, we carried out a dynamic biological network analysis on the progression of HCV induced hepatocarcinogenesis, and systematically explored the potentially disease-related mechanisms through a network view. The dysfunctional interactions among proteins and deregulatory relationships between transcription factors and their target genes could be causes for the occurrence and progression of this disease. The six pathologically defined disease stages in the development and progression of HCC after HCV infection were included in this study. We constructed disease-related biological networks for each disease stage, and identified progression-related sub-networks that potentially play roles in the developmental stage of the corresponding disease and participate in the later stage of cancer progression. In addition, we identified novel risk factors related to HCC based on the analysis of the progression-related sub-networks. The dynamic characteristics of the network reflect important features of the disease development and progression, which provide important information for us to further explore underlying mechanisms of the disease.

  19. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.

    Science.gov (United States)

    Wang, Ting; Ren, Zhao; Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L; Sweet, Robert A; Wang, Jieru; Chen, Wei

    2016-02-01

    Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer's disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named "FastGGM". PMID:26872036

  20. KeyPathwayMiner - De-novo network enrichment by combining multiple OMICS data and biological networks

    DEFF Research Database (Denmark)

    Baumbach, Jan; Alcaraz, Nicolas; Pauling, Josch K.;

    We tackle the problem of de-novo pathway extraction. Given a biological network and a set of case-control studies, KeyPathwayMiner efficiently extracts and visualizes all maximal connected sub-networks that contain mainly genes that are dysregulated, e.g., differentially expressed, in most cases...... problems and designed a set of algorithms to tackle the combinatorial explosion of the search space. During the presentation we will demonstrate how to: Import and process the data, set the parameters for the two models, compute and visualize the key pathways, judge and statistically evaluate the results...

  1. ezBioNet: A modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2012-10-01

    To achieve robustness against living environments, a living organism is composed of complicated regulatory mechanisms ranging from gene regulations to signal transduction. If such life phenomena are to be understand, an integrated analysis tool that should have modeling and simulation functions for biological reactions, as well as new experimental methods for measuring biological phenomena, is fundamentally required. We have designed and implemented modeling and simulation software (ezBioNet) for analyzing biological reaction networks. The software can simultaneously perform an integrated modeling of various responses occurring in cells, ranging from gene expressions to signaling processes. To support massive analysis of biological networks, we have constructed a server-side simulation system (VCellSim) that can perform ordinary differential equations (ODE) analysis, sensitivity analysis, and parameter estimates. ezBioNet integrates the BioModel database by connecting the european bioinformatics institute (EBI) servers through Web services APIs and supports the handling of systems biology markup language (SBML) files. In addition, we employed eclipse RCP (rich client platform) which is a powerful modularity framework allowing various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool, as well as a simulation system, to understand the control mechanism by monitoring the change of each component in a biological network. A researcher may perform the kinetic modeling and execute the simulation. The simulation result can be managed and visualized on ezBioNet, which is freely available at http://ezbionet.cbnu.ac.kr.

  2. Slow poisoning and destruction of networks: edge proximity and its implications for biological and infrastructure networks

    CERN Document Server

    Banerjee, Soumya Jyoti; Roy, Soumen

    2014-01-01

    There have been many studies on malicious targeting of network nodes using degree, betweenness etc. We propose a new network metric, edge proximity, ${\\cal P}_e$, which demonstrates the importance of specific edges in a network, hitherto not captured by existing network metrics. Effects of removing edges with high ${\\cal P}_e$ might initially seem inconspicuous but is eventually shown to be very harmful for the network. When compared to existing strategies, removal of edges by ${\\cal P}_e$, leads to remarkable increase of diameter and average path length in real and random networks till the first disconnection and beyond. ${\\cal P}_e$ can be consistently used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a network. Targeting by ${\\cal P}_e$ causes notable efficiency loss in US and European power grid. ${\\cal P}_e$ identifies proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural connections...

  3. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  4. Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Jacob Beal

    Full Text Available BACKGROUND: The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. METHODOLOGY/PRINCIPAL FINDINGS: To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes (~ 50% and latency of the optimized engineered gene networks. CONCLUSIONS/SIGNIFICANCE: Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.

  5. Discriminating different classes of biological networks by analyzing the graphs spectra distribution.

    Directory of Open Access Journals (Sweden)

    Daniel Yasumasa Takahashi

    Full Text Available The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1 protein-protein interaction networks of different species and (2 on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length failed.

  6. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    OpenAIRE

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased...

  7. Beyond Alignment

    DEFF Research Database (Denmark)

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...

  8. The Google matrix controls the stability of structured ecological and biological networks

    Science.gov (United States)

    Stone, Lewi

    2016-09-01

    May's celebrated theoretical work of the 70's contradicted the established paradigm by demonstrating that complexity leads to instability in biological systems. Here May's random-matrix modelling approach is generalized to realistic large-scale webs of species interactions, be they structured by networks of competition, mutualism or both. Simple relationships are found to govern these otherwise intractable models, and control the parameter ranges for which biological systems are stable and feasible. Our analysis of model and real empirical networks is only achievable on introducing a simplifying Google-matrix reduction scheme, which in the process, yields a practical ecological eigenvalue stability index. These results provide an insight into how network topology, especially connectance, influences species stable coexistence. Constraints controlling feasibility (positive equilibrium populations) in these systems are found more restrictive than those controlling stability, helping explain the enigma of why many classes of feasible ecological models are nearly always stable.

  9. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs

    Science.gov (United States)

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  10. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery.

    Directory of Open Access Journals (Sweden)

    Sapna Kumari

    Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

  11. A comparative analysis on computational methods for fitting an ERGM to biological network data

    Directory of Open Access Journals (Sweden)

    Sudipta Saha

    2015-03-01

    Full Text Available Exponential random graph models (ERGM based on graph theory are useful in studying global biological network structure using its local properties. However, computational methods for fitting such models are sensitive to the type, structure and the number of the local features of a network under study. In this paper, we compared computational methods for fitting an ERGM with local features of different types and structures. Two commonly used methods, such as the Markov Chain Monte Carlo Maximum Likelihood Estimation and the Maximum Pseudo Likelihood Estimation are considered for estimating the coefficients of network attributes. We compared the estimates of observed network to our random simulated network using both methods under ERGM. The motivation was to ascertain the extent to which an observed network would deviate from a randomly simulated network if the physical numbers of attributes were approximately same. Cut-off points of some common attributes of interest for different order of nodes were determined through simulations. We implemented our method to a known regulatory network database of Escherichia coli (E. coli.

  12. Biana: a software framework for compiling biological interactions and analyzing networks

    Directory of Open Access Journals (Sweden)

    Planas-Iglesias Joan

    2010-01-01

    Full Text Available Abstract Background The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. Results We introduce BIANA (Biologic Interactions and Network Analysis, a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i the integration of multiple sources of biological information, including biological entities and their relationships, and ii the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. Conclusions BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.

  13. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/ PMID:20154426

  14. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  15. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Directory of Open Access Journals (Sweden)

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  16. Insights into biological information processing: structural and dynamical analysis of a human protein signalling network

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Alberto de la; Fotia, Giorgio; Maggio, Fabio; Mancosu, Gianmaria; Pieroni, Enrico [CRS4 Bioinformatica, Parco Tecnologico POLARIS, Ed.1, Loc Piscinamanna, Pula (Italy)], E-mail: alf@crs4.it

    2008-06-06

    We present an investigation on the structural and dynamical properties of a 'human protein signalling network' (HPSN). This biological network is composed of nodes that correspond to proteins and directed edges that represent signal flows. In order to gain insight into the organization of cell information processing this network is analysed taking into account explicitly the edge directions. We explore the topological properties of the HPSN at the global and the local scale, further applying the generating function formalism to provide a suitable comparative model. The relationship between the node degrees and the distribution of signals through the network is characterized using degree correlation profiles. Finally, we analyse the dynamical properties of small sub-graphs showing high correlation between their occurrence and dynamic stability.

  17. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    Science.gov (United States)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  18. A Systems’ Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

  19. Biologically-inspired On-chip Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the "biologically-inspired" approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks, We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  20. Hardware Acceleration of Bioinformatics Sequence Alignment Applications

    NARCIS (Netherlands)

    Hasan, L.

    2011-01-01

    Biological sequence alignment is an important and challenging task in bioinformatics. Alignment may be defined as an arrangement of two or more DNA or protein sequences to highlight the regions of their similarity. Sequence alignment is used to infer the evolutionary relationship between a set of pr

  1. Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Juncker, Agnieszka; Roque, Francisco José Sousa Simões Almeida;

    2010-01-01

    Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human protein-protein association network built upon the integration...... of chemical toxicology and systems biology. This computational systems chemical biology model reveals uncharacterized connections between compounds and diseases, thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify unexpected potential...... associations between chemicals and proteins. Examples are shown for chemicals associated with breast cancer, lung cancer and necrosis, and potential protein targets for di-ethylhexyl-phthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxin, pirinixic acid and permethrine. The chemical-protein associations are supported...

  2. Visual analysis of transcriptome data in the context of anatomical structures and biological networks

    Directory of Open Access Journals (Sweden)

    Astrid eJunker

    2012-11-01

    Full Text Available The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks.

  3. Alignment fixture

    Science.gov (United States)

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  4. A systems biology approach identifies Molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    OpenAIRE

    Nil Turan; Susana Kalko; Anna Stincone; Kim Clarke; Ayesha Sabah; Katherine Howlett; S John Curnow; Rodriguez, Diego A.; Marta Cascante; Laura O'Neill; Stuart Egginton; Josep Roca; Francesco Falciani

    2011-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular an...

  5. Classification of Time Series Gene Expression in Clinical Studies via Integration of Biological Network

    OpenAIRE

    Liwei Qian; Haoran Zheng; Hong Zhou; Ruibin Qin; Jinlong Li

    2013-01-01

    The increasing availability of time series expression datasets, although promising, raises a number of new computational challenges. Accordingly, the development of suitable classification methods to make reliable and sound predictions is becoming a pressing issue. We propose, here, a new method to classify time series gene expression via integration of biological networks. We evaluated our approach on 2 different datasets and showed that the use of a hidden Markov model/Gaussian mixture mode...

  6. ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.

    Science.gov (United States)

    Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi

    2015-01-01

    Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks. PMID:26357321

  7. Network-based analysis of affected biological processes in type 2 diabetes models.

    Directory of Open Access Journals (Sweden)

    Manway Liu

    2007-06-01

    Full Text Available Type 2 diabetes mellitus is a complex disorder associated with multiple genetic, epigenetic, developmental, and environmental factors. Animal models of type 2 diabetes differ based on diet, drug treatment, and gene knockouts, and yet all display the clinical hallmarks of hyperglycemia and insulin resistance in peripheral tissue. The recent advances in gene-expression microarray technologies present an unprecedented opportunity to study type 2 diabetes mellitus at a genome-wide scale and across different models. To date, a key challenge has been to identify the biological processes or signaling pathways that play significant roles in the disorder. Here, using a network-based analysis methodology, we identified two sets of genes, associated with insulin signaling and a network of nuclear receptors, which are recurrent in a statistically significant number of diabetes and insulin resistance models and transcriptionally altered across diverse tissue types. We additionally identified a network of protein-protein interactions between members from the two gene sets that may facilitate signaling between them. Taken together, the results illustrate the benefits of integrating high-throughput microarray studies, together with protein-protein interaction networks, in elucidating the underlying biological processes associated with a complex disorder.

  8. Double network bacterial cellulose hydrogel to build a biology-device interface

    Science.gov (United States)

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2013-12-01

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  9. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    Science.gov (United States)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  10. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  11. Content-rich biological network constructed by mining PubMed abstracts

    Directory of Open Access Journals (Sweden)

    Sharp Burt M

    2004-10-01

    Full Text Available Abstract Background The integration of the rapidly expanding corpus of information about the genome, transcriptome, and proteome, engendered by powerful technological advances, such as microarrays, and the availability of genomic sequence from multiple species, challenges the grasp and comprehension of the scientific community. Despite the existence of text-mining methods that identify biological relationships based on the textual co-occurrence of gene/protein terms or similarities in abstract texts, knowledge of the underlying molecular connections on a large scale, which is prerequisite to understanding novel biological processes, lags far behind the accumulation of data. While computationally efficient, the co-occurrence-based approaches fail to characterize (e.g., inhibition or stimulation, directionality biological interactions. Programs with natural language processing (NLP capability have been created to address these limitations, however, they are in general not readily accessible to the public. Results We present a NLP-based text-mining approach, Chilibot, which constructs content-rich relationship networks among biological concepts, genes, proteins, or drugs. Amongst its features, suggestions for new hypotheses can be generated. Lastly, we provide evidence that the connectivity of molecular networks extracted from the biological literature follows the power-law distribution, indicating scale-free topologies consistent with the results of previous experimental analyses. Conclusions Chilibot distills scientific relationships from knowledge available throughout a wide range of biological domains and presents these in a content-rich graphical format, thus integrating general biomedical knowledge with the specialized knowledge and interests of the user. Chilibot http://www.chilibot.net can be accessed free of charge to academic users.

  12. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    Science.gov (United States)

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis. PMID:25502388

  13. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    Science.gov (United States)

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  14. Hardware Acceleration of Bioinformatics Sequence Alignment Applications

    OpenAIRE

    Hasan, L.

    2011-01-01

    Biological sequence alignment is an important and challenging task in bioinformatics. Alignment may be defined as an arrangement of two or more DNA or protein sequences to highlight the regions of their similarity. Sequence alignment is used to infer the evolutionary relationship between a set of protein or DNA sequences. An accurate alignment can provide valuable information for experimentation on the newly found sequences. It is indispensable in basic research as well as in practical applic...

  15. Main activities of the Latin American Network of Biological Dosimetry (LBDNet)

    International Nuclear Information System (INIS)

    The Latin American Biological Dosimetry Network (LBDNET) was constituted in 2007 for mutual assistance in case of a radiation emergency in the region supported by IAEA Technical Cooperation Projects RLA/9/054 and RLA/9/061. The main objectives are: a) to strengthen the technical capacities of Biological Dosimetry Services belonging to laboratories existing in the region (Argentine, Brazil, Chile, Cuba, Mexico, Peru and Uruguay) integrated in National Radiological Emergency Plans to provide a rapid biodosimetric response in a coordinated manner between countries and with RANET-IAEA/BioDoseNet-WHO, b) to provide support to other countries in the region lacking Biological Dosimetry laboratories, c) to consolidate the organization of the Latin American Biological Dosimetry Network for mutual assistance. The activities developed include technical meetings for protocols and chromosomal aberration scoring criteria unification, blood samples cultures exercises, chromosomal aberrations analysis at microscope, discussion of statistical methods and specialized software for dose calculation, the intercomparison between laboratory data after the analysis of slides with irradiated material and the intercomparison of the analysis of captured images distributed electronically in the WEB. The last exercise was the transportation of an irradiated human blood sample to countries inside and outside of the region. At the moment the exercises are concluded and they are pending to be published in reference journals. Results obtained show the capacity in the region for a biodosimetric response to a radiological accident. In the future the network will integrate techniques for high dose exposure evaluation and will enhance the interaction with other emergency systems in the region. (authors)

  16. Formal modeling and analysis of ER-α associated Biological Regulatory Network in breast cancer

    Science.gov (United States)

    Tareen, Samar H.K.; Siddiqa, Amnah; Bibi, Zurah; Ahmad, Jamil

    2016-01-01

    Background Breast cancer (BC) is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s). It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER-α) associated Biological Regulatory Network (BRN) for a small part of complex events that leads to BC metastasis. Methods A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN) to analyze the logical parameters of the involved entities. Results In-silico based discrete and continuous modeling of ER-α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER-α, IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. Conclusion The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER-α, IGF-1R and EGFR) for wet lab experiments as well as provided valuable insights in the treatment of cancers such as BC.

  17. Interfacing a biosurveillance portal and an international network of institutional analysts to detect biological threats.

    Science.gov (United States)

    Riccardo, Flavia; Shigematsu, Mika; Chow, Catherine; McKnight, C Jason; Linge, Jens; Doherty, Brian; Dente, Maria Grazia; Declich, Silvia; Barker, Mike; Barboza, Philippe; Vaillant, Laetitia; Donachie, Alastair; Mawudeku, Abla; Blench, Michael; Arthur, Ray

    2014-01-01

    The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an

  18. Interfacing a biosurveillance portal and an international network of institutional analysts to detect biological threats.

    Science.gov (United States)

    Riccardo, Flavia; Shigematsu, Mika; Chow, Catherine; McKnight, C Jason; Linge, Jens; Doherty, Brian; Dente, Maria Grazia; Declich, Silvia; Barker, Mike; Barboza, Philippe; Vaillant, Laetitia; Donachie, Alastair; Mawudeku, Abla; Blench, Michael; Arthur, Ray

    2014-01-01

    The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an

  19. Building the process-drug–side effect network to discover the relationship between biological Processes and side effects

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-03-01

    Full Text Available Abstract Background Side effects are unwanted responses to drug treatment and are important resources for human phenotype information. The recent development of a database on side effects, the side effect resource (SIDER, is a first step in documenting the relationship between drugs and their side effects. It is, however, insufficient to simply find the association of drugs with biological processes; that relationship is crucial because drugs that influence biological processes can have an impact on phenotype. Therefore, knowing which processes respond to drugs that influence the phenotype will enable more effective and systematic study of the effect of drugs on phenotype. To the best of our knowledge, the relationship between biological processes and side effects of drugs has not yet been systematically researched. Methods We propose 3 steps for systematically searching relationships between drugs and biological processes: enrichment scores (ES calculations, t-score calculation, and threshold-based filtering. Subsequently, the side effect-related biological processes are found by merging the drug-biological process network and the drug-side effect network. Evaluation is conducted in 2 ways: first, by discerning the number of biological processes discovered by our method that co-occur with Gene Ontology (GO terms in relation to effects extracted from PubMed records using a text-mining technique and second, determining whether there is improvement in performance by limiting response processes by drugs sharing the same side effect to frequent ones alone. Results The multi-level network (the process-drug-side effect network was built by merging the drug-biological process network and the drug-side effect network. We generated a network of 74 drugs-168 side effects-2209 biological process relation resources. The preliminary results showed that the process-drug-side effect network was able to find meaningful relationships between biological processes

  20. A Non-Homogeneous Dynamic Bayesian Network with Sequentially Coupled Interaction Parameters for Applications in Systems and Synthetic Biology

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homog

  1. Networks and their applications to biological systems: From ecological dynamics to gene regulation

    Science.gov (United States)

    Sevim, Volkan

    In this dissertation, we study three biological applications of networks. The first one is a biological coevolution model, in which a species is defined by a genome in the form of a finite bitstring and the interactions between species are given by a fixed matrix with randomly distributed elements. Here we study a version of the model, in which the matrix elements are correlated to a controllable degree by means of an averaging scheme. This method allows creation of mutants resembling their ancestors (wildtype). We compare long kinetic Monte Carlo simulations of models with uncorrelated and correlated interactions. We find that while there are quantitative differences, most qualitative features, such as 1/f behavior in power spectral densities for the diversity indices and the power-law distribution of species lifetimes, are not significantly affected by the correlations in the interaction matrix. The second application is the growth of a directed network, in which the growth is constrained by the cost of adding links to the existing nodes. This is a new preferential-attachment scheme, in which a new node attaches to an existing node i with probability pi(k i, k'i ) ∝ ( k'i /ki)gamma, where ki and k'i are the number of outgoing and incoming links at i, respectively, and gamma is a constant. First, we calculate the degree distribution for the outgoing links for a simplified form of this function, pi( ki) ∝ k-1i , both analytically and by Monte Carlo simulations. The distribution decays like kmuk/Gamma(k) for large k, where mu is a constant. We relate this mechanism to simple food-web models by implementing it in the cascade model. We also study the generalized case, pi(ki, k'i ) ∝ ( k'i /ki)gamma, by simulations. The third application is the evolution of robustness to mutations and noise in gene regulatory networks. It has been shown that robustness to mutations and noise can evolve through stabilizing selection for optimal phenotypes in model gene regulatory

  2. Why Traditional Expository Teaching-Learning Approaches May Founder? An Experimental Examination of Neural Networks in Biology Learning

    Science.gov (United States)

    Lee, Jun-Ki; Kwon, Yong-Ju

    2011-01-01

    Using functional magnetic resonance imaging (fMRI), this study investigates and discusses neurological explanations for, and the educational implications of, the neural network activations involved in hypothesis-generating and hypothesis-understanding for biology education. Two sets of task paradigms about biological phenomena were designed:…

  3. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    Science.gov (United States)

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. PMID:25320069

  4. Combined model of intrinsic and extrinsic variability for computational network design with application to synthetic biology.

    Directory of Open Access Journals (Sweden)

    Tina Toni

    Full Text Available Biological systems are inherently variable, with their dynamics influenced by intrinsic and extrinsic sources. These systems are often only partially characterized, with large uncertainties about specific sources of extrinsic variability and biochemical properties. Moreover, it is not yet well understood how different sources of variability combine and affect biological systems in concert. To successfully design biomedical therapies or synthetic circuits with robust performance, it is crucial to account for uncertainty and effects of variability. Here we introduce an efficient modeling and simulation framework to study systems that are simultaneously subject to multiple sources of variability, and apply it to make design decisions on small genetic networks that play a role of basic design elements of synthetic circuits. Specifically, the framework was used to explore the effect of transcriptional and post-transcriptional autoregulation on fluctuations in protein expression in simple genetic networks. We found that autoregulation could either suppress or increase the output variability, depending on specific noise sources and network parameters. We showed that transcriptional autoregulation was more successful than post-transcriptional in suppressing variability across a wide range of intrinsic and extrinsic magnitudes and sources. We derived the following design principles to guide the design of circuits that best suppress variability: (i high protein cooperativity and low miRNA cooperativity, (ii imperfect complementarity between miRNA and mRNA was preferred to perfect complementarity, and (iii correlated expression of mRNA and miRNA--for example, on the same transcript--was best for suppression of protein variability. Results further showed that correlations in kinetic parameters between cells affected the ability to suppress variability, and that variability in transient states did not necessarily follow the same principles as variability in

  5. Putting the biological species concept to the test: using mating networks to delimit species.

    Directory of Open Access Journals (Sweden)

    Lélia Lagache

    Full Text Available Although interfertility is the key criterion upon which Mayr's biological species concept is based, it has never been applied directly to delimit species under natural conditions. Our study fills this gap. We used the interfertility criterion to delimit two closely related oak species in a forest stand by analyzing the network of natural mating events between individuals. The results reveal two groups of interfertile individuals connected by only few mating events. These two groups were largely congruent with those determined using other criteria (morphological similarity, genotypic similarity and individual relatedness. Our study, therefore, shows that the analysis of mating networks is an effective method to delimit species based on the interfertility criterion, provided that adequate network data can be assembled. Our study also shows that although species boundaries are highly congruent across methods of species delimitation, they are not exactly the same. Most of the differences stem from assignment of individuals to an intermediate category. The discrepancies between methods may reflect a biological reality. Indeed, the interfertility criterion is an environment-dependant criterion as species abundances typically affect rates of hybridization under natural conditions. Thus, the methods of species delimitation based on the interfertility criterion are expected to give results slightly different from those based on environment-independent criteria (such as the genotypic similarity criteria. However, whatever the criterion chosen, the challenge we face when delimiting species is to summarize continuous but non-uniform variations in biological diversity. The grade of membership model that we use in this study appears as an appropriate tool.

  6. International institute for collaborative cell biology and biochemistry--history and memoirs from an international network for biological sciences.

    Science.gov (United States)

    Cameron, L C

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world.

  7. Stochastic robustness and relative stability of multiple pathways in biological networks

    CERN Document Server

    Guo, Yongyi; Qian, Min; Ge, Hao

    2015-01-01

    Multiple dynamic pathways always exist in biological networks, but their robustness against internal fluctuations and relative stability have not been well recognized and carefully analyzed yet. Here we try to address these issues through an illustrative example, namely the Siah-1/beta-catenin/p14/19 ARF loop of protein p53 dynamics. Its deterministic Boolean network model predicts that two parallel pathways with comparable magnitudes of attractive basins should exist after the protein p53 is activated when a cell becomes harmfully disturbed. Once the low but non-neglectable intrinsic fluctuations are incorporated into the model, we show that a phase transition phenomenon is emerged: in one parameter region the probability weights of the normal pathway, reported in experimental literature, are comparable with the other pathway which is seemingly abnormal with the unknown functions, whereas, in some other parameter regions, the probability weight of the abnormal pathway can even dominate and become globally at...

  8. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012

    Directory of Open Access Journals (Sweden)

    Dirce M. Santin

    2016-03-01

    Full Text Available This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  9. Partitioning Biological Networks into Highly Connected Clusters with Maximum Edge Coverage.

    Science.gov (United States)

    Hüffner, Falk; Komusiewicz, Christian; Liebtrau, Adrian; Niedermeier, Rolf

    2014-01-01

    A popular clustering algorithm for biological networks which was proposed by Hartuv and Shamir identifies nonoverlapping highly connected components. We extend the approach taken by this algorithm by introducing the combinatorial optimization problem Highly Connected Deletion, which asks for removing as few edges as possible from a graph such that the resulting graph consists of highly connected components. We show that Highly Connected Deletion is NP-hard and provide a fixed-parameter algorithm and a kernelization. We propose exact and heuristic solution strategies, based on polynomial-time data reduction rules and integer linear programming with column generation. The data reduction typically identifies 75 percent of the edges that are deleted for an optimal solution; the column generation method can then optimally solve protein interaction networks with up to 6,000 vertices and 13,500 edges within five hours. Additionally, we present a new heuristic that finds more clusters than the method by Hartuv and Shamir. PMID:26356014

  10. Inference of biological networks using Bi-directional Random Forest Granger causality.

    Science.gov (United States)

    Furqan, Mohammad Shaheryar; Siyal, Mohammad Yakoob

    2016-01-01

    The standard ordinary least squares based Granger causality is one of the widely used methods for detecting causal interactions between time series data. However, recent developments in technology limit the utilization of some existing implementations due to the availability of high dimensional data. In this paper, we are proposing a technique called Bi-directional Random Forest Granger causality. This technique uses the random forest regularization together with the idea of reusing the time series data by reversing the time stamp to extract more causal information. We have demonstrated the effectiveness of our proposed method by applying it to simulated data and then applied it to two real biological datasets, i.e., fMRI and HeLa cell. fMRI data was used to map brain network involved in deductive reasoning while HeLa cell dataset was used to map gene network involved in cancer. PMID:27186478

  11. Algorithmic and complexity results for decompositions of biological networks into monotone subsystems.

    Science.gov (United States)

    DasGupta, Bhaskar; Enciso, German Andres; Sontag, Eduardo; Zhang, Yi

    2007-01-01

    A useful approach to the mathematical analysis of large-scale biological networks is based upon their decompositions into monotone dynamical systems. This paper deals with two computational problems associated to finding decompositions which are optimal in an appropriate sense. In graph-theoretic language, the problems can be recast in terms of maximal sign-consistent subgraphs. The theoretical results include polynomial-time approximation algorithms as well as constant-ratio inapproximability results. One of the algorithms, which has a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming relaxation approach of Goemans-Williamson [Goemans, M., Williamson, D., 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42 (6), 1115-1145]. The algorithm was implemented and tested on a Drosophila segmentation network and an Epidermal Growth Factor Receptor pathway model, and it was found to perform close to optimally.

  12. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    Science.gov (United States)

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community. PMID:26871500

  13. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  14. Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode

    Science.gov (United States)

    Yuan, Weiyong; Zhao, Ming; Yuan, Jia; Li, Chang Ming

    2016-07-01

    The sluggish oxygen evolution reaction (OER) represents a major kinetic bottleneck in water splitting. Herein we report the synthesis of a novel Ni foam (NF) supported 3-D vertically aligned and interconnected layered CoO nanosheet array with controlled density, layer thickness, and interlayer spacing, and the conformal self-assembly of graphene on this nanosheet array. The obtained CoO layered nanosheet/graphene hybrid nanoarray was directly used as an OER electrode, showing a current density of 10 mA cm-2 at an overpotential of 330 mV and a Tafel slope of 79 mV dec-1, both of which are much lower than pristine NF and the nanosheet array without graphene, and are among the lowest reported for Co-based OER catalysts and transition metal oxide-based ones measured under the same conditions. In addition, it can retain 92.4% of the current density after 66 h of chronoamperometry testing at a potential of 1.0 V vs. SCE, and 94.3% of the current density at 1.0 V vs. SCE after 200 cyclic voltammetry cycles (0-1.0 V vs. SCE). The excellent catalytic activity and stability toward OER are ascribed to the 3-D NF supported robustly grown networked layered nanosheet array structure and the synergistic effects between CoO layered nanosheets and graphene.

  15. Strategy-aligned fuzzy approach for market segment evaluation and selection: a modular decision support system by dynamic network process (DNP)

    Science.gov (United States)

    Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah

    2013-05-01

    In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.

  16. The Latin American Biological Dosimetry Network (LBDNet): Argentina, Brazil, Chile, Cuba, Mexico, Peru, Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Di Giorgio, M.; Vallerga, M.; Radl, A. [Autoridad Regulatoria Nuclear, Av. del Libertador 8250, C1429 BNP CABA (Argentina); Taja, M.; Seoane, A.; De Luca, J. [Universidad Nacionald de La Plata, Av. 7 No. 1776, La Plata 1900, Buenos Aires (Argentina); Stuck O, M. [Instituto de Radioproteccion y Dosimetria, Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro (Brazil); Valdivia, P., E-mail: lbdnet@googlegroups.co [Comision Chilena de Energia, Amutanegui 95, Santiago Centro, Santiago (Chile)

    2010-10-15

    Biological dosimetry is a necessary support for national radiation protection programs and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 for mutual assistance in case of radiation emergencies and for providing support to other Latin American countries that do not have bio dosimetry laboratories. In the frame of the IAEA Technical Cooperation Projects RLA/9/54 and RLA/9/61 the following activities have been performed: a) An international intercomparison exercise organized during 2007-2008 included six European countries and LBDNet laboratories. Relevant parameters related with dose assessment were evaluated through triage and conventional scoring criteria. A new approach for statistical data analysis was developed including assessment of inter-laboratory reproducibility and intra-laboratory repeatability. Overall, the laboratory performance was satisfactory for mutual cooperation purposes. b) In 2009, LBDNet and two European countries carried out a digital image intercomparison exercise involving dose assessment from metaphase images distributed electronically through internet. The main objectives were to evaluate scoring feasibility on metaphase images and time response. In addition a re-examination phase was considered in which the most controversial images were discussed jointly, this allowed for the development of a homogeneous scoring criteria within the network. c) A further exercise was performed during 2009 involving the shipment of biological samples for biological dosimetry assessment. The aim of this exercise was to test the timely and properly sending and receiving blood samples under national and international regulations. A total of 14 laboratories participated in this joint IAEA, PAHO and WHO. (Author)

  17. The Annotation, Mapping, Expression and Network (AMEN suite of tools for molecular systems biology

    Directory of Open Access Journals (Sweden)

    Primig Michael

    2008-02-01

    Full Text Available Abstract Background High-throughput genome biological experiments yield large and multifaceted datasets that require flexible and user-friendly analysis tools to facilitate their interpretation by life scientists. Many solutions currently exist, but they are often limited to specific steps in the complex process of data management and analysis and some require extensive informatics skills to be installed and run efficiently. Results We developed the Annotation, Mapping, Expression and Network (AMEN software as a stand-alone, unified suite of tools that enables biological and medical researchers with basic bioinformatics training to manage and explore genome annotation, chromosomal mapping, protein-protein interaction, expression profiling and proteomics data. The current version provides modules for (i uploading and pre-processing data from microarray expression profiling experiments, (ii detecting groups of significantly co-expressed genes, and (iii searching for enrichment of functional annotations within those groups. Moreover, the user interface is designed to simultaneously visualize several types of data such as protein-protein interaction networks in conjunction with expression profiles and cellular co-localization patterns. We have successfully applied the program to interpret expression profiling data from budding yeast, rodents and human. Conclusion AMEN is an innovative solution for molecular systems biological data analysis freely available under the GNU license. The program is available via a website at the Sourceforge portal which includes a user guide with concrete examples, links to external databases and helpful comments to implement additional functionalities. We emphasize that AMEN will continue to be developed and maintained by our laboratory because it has proven to be extremely useful for our genome biological research program.

  18. Workshop to launch a network on biological opportunities for GHG management, Dec 15-16, 2010, Toronto: results and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-12-15

    A workshop was conducted in Toronto, Ontario on December 15 and 16, 2010 in order to launch a network on biological opportunities for management of greenhouse gases (GHGs). The workshop was sponsored by the Climate Change and Emissions Management Corporation (CCEMC) and brought together 37 persons from the Canadian climate change community. The aim was to gather leading thinkers to evaluate potential bio GHG opportunities, to determine areas for bio GHG opportunity focus and to develop a knowledge network to support investment in bio GHG opportunities. During this workshop priorities for biological work were set through the selection of bio GHG sub-wedges which require further consideration. In addition 4 potential management models were studied for the creation of an effective biological knowledge network. This workshop permitted the organisation of a knowledge network on bio GHG opportunities and it was decided in conclusion that CCEMC would lead its development.

  19. Incorporation and characterization of biological molecules in droplet-interface bilayer networks for novel active systems

    Science.gov (United States)

    Sarles, Stephen A.; Ghanbari Bavarsad, Pegah; Leo, Donald J.

    2009-03-01

    Biological molecules including phospholipids and proteins offer scientists and engineers a diverse selection of materials to develop new types of active materials and smart systems based on ion conduction. The inherent energy-coupling abilities of these components create novel kinds of transduction elements. Networks formed from droplet-interface bilayers (DIB) are a promising construct for creating cell mimics that allow for the assembly and study of these active biological molecules. The current-voltage relationship of symmetric, "lipid-in" dropletinterface bilayers are characterized using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). "Lipid-in" diphytanoyl phosphatidylcholine (DPhPC) droplet-interface bilayers have specific resistances of nearly 10MΩ•cm2 and rupture at applied potentials greater than 300mV, indicating the "lipid-in" approach produces higher quality interfacial membranes than created using the original "lipid-out" method. The incorporation of phospholipids into the droplet interior allows for faster monolayer formation but does not inhibit the selfinsertion of transmembrane proteins into bilayer interfaces that separate adjacent droplets. Alamethicin proteins inserted into single and multi-DIB networks produce a voltage-dependent membrane conductance and current measurements on bilayers containing this type of protein exhibit a reversible, 3-4 order-of-magnitude conductance increase upon application of voltage.

  20. Classification of time series gene expression in clinical studies via integration of biological network.

    Directory of Open Access Journals (Sweden)

    Liwei Qian

    Full Text Available The increasing availability of time series expression datasets, although promising, raises a number of new computational challenges. Accordingly, the development of suitable classification methods to make reliable and sound predictions is becoming a pressing issue. We propose, here, a new method to classify time series gene expression via integration of biological networks. We evaluated our approach on 2 different datasets and showed that the use of a hidden Markov model/Gaussian mixture models hybrid explores the time-dependence of the expression data, thereby leading to better prediction results. We demonstrated that the biclustering procedure identifies function-related genes as a whole, giving rise to high accordance in prognosis prediction across independent time series datasets. In addition, we showed that integration of biological networks into our method significantly improves prediction performance. Moreover, we compared our approach with several state-of-the-art algorithms and found that our method outperformed previous approaches with regard to various criteria. Finally, our approach achieved better prediction results on early-stage data, implying the potential of our method for practical prediction.

  1. Classification of time series gene expression in clinical studies via integration of biological network.

    Science.gov (United States)

    Qian, Liwei; Zheng, Haoran; Zhou, Hong; Qin, Ruibin; Li, Jinlong

    2013-01-01

    The increasing availability of time series expression datasets, although promising, raises a number of new computational challenges. Accordingly, the development of suitable classification methods to make reliable and sound predictions is becoming a pressing issue. We propose, here, a new method to classify time series gene expression via integration of biological networks. We evaluated our approach on 2 different datasets and showed that the use of a hidden Markov model/Gaussian mixture models hybrid explores the time-dependence of the expression data, thereby leading to better prediction results. We demonstrated that the biclustering procedure identifies function-related genes as a whole, giving rise to high accordance in prognosis prediction across independent time series datasets. In addition, we showed that integration of biological networks into our method significantly improves prediction performance. Moreover, we compared our approach with several state-of-the-art algorithms and found that our method outperformed previous approaches with regard to various criteria. Finally, our approach achieved better prediction results on early-stage data, implying the potential of our method for practical prediction. PMID:23516469

  2. Implementation of Biological Routing Protocol in Tunnel Wireless Sensor Network (TWSN

    Directory of Open Access Journals (Sweden)

    M.Muzaffar Zahar

    2013-08-01

    Full Text Available A routing protocol is a core issue in Wireless Sensor Network (WSN especially on undetermined situationand crucial condition to guarantee the transmission of data. Therefore, any implementation of routingprotocol in a tunnel environment will suit with their application to minimize dropped data in itscommunication. This paper presents a biological routing protocol named as Biological Tunnel RoutingProtocol (BioTROP in Tunnel Wireless Sensor Network (TWSN. BioTROP has been tested with fourchallenging situations for marking its standard soon. By setting it in low power transmission, all nodesappear as source node and intermediate nodes concurrently, faster transmission rate and free-locationsetup for each node; these conditions make BioTROP as an ad-hoc protocol with lightweight coding size intunnel environment. This protocol is tested only in real test bed experiment using 7 TelosB nodes at apredetermined distance. The results have shown more than 70 percent of the transmitted data packets weresuccessfully delivered at the base station.

  3. Interconnection between biological abnormalities in borderline personality disorder: use of the Bayesian networks model.

    Science.gov (United States)

    De la Fuente, José Manuel; Bengoetxea, Endika; Navarro, Felipe; Bobes, Julio; Alarcón, Renato Daniel

    2011-04-30

    There is agreement in that strengthening the sets of neurobiological data would reinforce the diagnostic objectivity of many psychiatric entities. This article attempts to use this approach in borderline personality disorder (BPD). Assuming that most of the biological findings in BPD reflect common underlying pathophysiological processes we hypothesized that most of the data involved in the findings would be statistically interconnected and interdependent, indicating biological consistency for this diagnosis. Prospectively obtained data on scalp and sleep electroencephalography (EEG), clinical neurologic soft signs, the dexamethasone suppression and thyrotropin-releasing hormone stimulation tests of 20 consecutive BPD patients were used to generate a Bayesian network model, an artificial intelligence paradigm that visually illustrates eventual associations (or inter-dependencies) between otherwise seemingly unrelated variables. The Bayesian network model identified relationships among most of the variables. EEG and TSH were the variables that influence most of the others, especially sleep parameters. Neurological soft signs were linked with EEG, TSH, and sleep parameters. The results suggest the possibility of using objective neurobiological variables to strengthen the validity of future diagnostic criteria and nosological characterization of BPD.

  4. Measuring information flow in cellular networks by the systems biology method through microarray data.

    Science.gov (United States)

    Chen, Bor-Sen; Li, Cheng-Wei

    2015-01-01

    In general, it is very difficult to measure the information flow in a cellular network directly. In this study, based on an information flow model and microarray data, we measured the information flow in cellular networks indirectly by using a systems biology method. First, we used a recursive least square parameter estimation algorithm to identify the system parameters of coupling signal transduction pathways and the cellular gene regulatory network (GRN). Then, based on the identified parameters and systems theory, we estimated the signal transductivities of the coupling signal transduction pathways from the extracellular signals to each downstream protein and the information transductivities of the GRN between transcription factors in response to environmental events. According to the proposed method, the information flow, which is characterized by signal transductivity in coupling signaling pathways and information transductivity in the GRN, can be estimated by microarray temporal data or microarray sample data. It can also be estimated by other high-throughput data such as next-generation sequencing or proteomic data. Finally, the information flows of the signal transduction pathways and the GRN in leukemia cancer cells and non-leukemia normal cells were also measured to analyze the systematic dysfunction in this cancer from microarray sample data. The results show that the signal transductivities of signal transduction pathways change substantially from normal cells to leukemia cancer cells.

  5. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    Science.gov (United States)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  6. Hydrologic and biologic influences on stream network nutrient concentrations: Interactions of hydrologic turnover and concentration-dependent nutrient uptake

    Science.gov (United States)

    Mallard, John; McGlynn, Brian; Covino, Tim

    2016-04-01

    Stream networks lie in a crucial landscape position between terrestrial ecosystems and downstream water bodies. As such, whether inferring terrestrial watershed processes from watershed outlet nutrient signals or predicting the effect of observed terrestrial processes on stream nutrient signals, it is requisite to understand how stream networks can modulate terrestrial nutrient inputs. To date integrated understanding and modeling of physical and biological influences on nutrient concentrations at the stream network scale have been limited. However, watershed scale groundwater ‑ surface water exchange (hydrologic turnover), concentration-variable biological uptake, and the interaction between the two can strongly modify stream water nutrient concentrations. Stream water and associated nutrients are lost to and replaced from groundwater with distinct nutrient concentrations while in-stream nutrients can also be retained by biological processes at rates that vary with concentration. We developed an empirically based network scale model to simulate the interaction between hydrologic turnover and concentration-dependent nutrient uptake across stream networks. Exchange and uptake parameters were measured using conservative and nutrient tracer addition experiments in the Bull Trout Watershed, central Idaho. We found that the interaction of hydrologic turnover and concentration-dependent uptake combined to modify and subsequently stabilize in-stream concentrations, with specific concentrations dependent on the magnitude of hydrologic turnover, groundwater concentrations, and the shape of nutrient uptake kinetic curves. We additionally found that by varying these physical and biological parameters within measured ranges we were able to generate a spectrum of stream network concentration distributions representing a continuum of shifting magnitudes of physical and biological influences on in-stream concentrations. These findings elucidate the important and variable role

  7. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  8. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator

    Directory of Open Access Journals (Sweden)

    Thomas eHoellinger

    2013-05-01

    Full Text Available The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996 was recently modeled (Barliya et al., 2009 by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  9. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Melissa A Metzler

    Full Text Available The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process.A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation.Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1 activates the Mist1 promoter [corrected]. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation.This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  10. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    Science.gov (United States)

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton-Jacobi inequality - constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  11. 黄金菊药效组分解热的生物效应%Biological Effects on Active Antipyretic Components Alignment of Huangjinju

    Institute of Scientific and Technical Information of China (English)

    郑璐璐; 张贵君; 张春晖; 王晶娟

    2011-01-01

    目的:验证和进一步确定黄金菊解热的药效组分,为建立与其临床疗效对应的质量标准提供科学依据.方法:在HPLC分析法确定初步药效组分基础上,采用大鼠的酵母致热实验,对发热模型进行连续10 h的体温检测,设立了黄金菊水煎剂组、药效组分的低中高剂量组、阳性组与模型组进行比较,同时选用同类病症常用药双黄连口服液进行同步对照.结果:空白组与模型组相比,统计学差异显著(P<0.01),用药各组与模型组相比,差异有统计学意义(P<0.05),黄金菊的低、中、高药效组分组的大鼠体温在2~6 h的发热期内均低于模型组体温,具有明显的解热作用.结论:黄金菊的药效组分(黄芩苷、绿原酸、荭草苷和牡荆苷)可以作为黄金菊的解热药效组分.%Objective: To verify and further define the active components alignment of antipyretic and provide the scientific basis date for the clinical curative effect of quality standards on Huangjinju. Method:On the basis of determining the active components alignment by HPLC analysis about classic prescription, take the fever model rats were made by dry yeast and provide the model of the fever for 10 hours of temperature detection,and set up the Huangjinju decoction group and the active components alignment group (high,middle and low dose) and the Positive group to compare with the model group, while similar symptoms common drugs used to synchronize the control Shuanghuanglian oral. Result: Comparing with the model group,there was significant difference( P < 0.01 ) among the control group and the treatment group ( P < 0.05 ). the active components alignment ( high, middle and low dose) groups when body temperature in rats 2-6 hours after treatment temperature were lower than the model group,with significant antipyretic effect. Conclusion:The active components alignment of Huangjinju (baicalin,Chlorogenic acid,orientin and vitexin)really have significant

  12. A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Nil Turan

    2011-09-01

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.

  13. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology

    OpenAIRE

    Grzegorczyk, M.; Husmeier, D.

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint pr...

  14. Monotonicity, frustration, and ordered response: an analysis of the energy landscape of perturbed large-scale biological networks

    Directory of Open Access Journals (Sweden)

    Altafini Claudio

    2010-06-01

    Full Text Available Abstract Background For large-scale biological networks represented as signed graphs, the index of frustration measures how far a network is from a monotone system, i.e., how incoherently the system responds to perturbations. Results In this paper we find that the frustration is systematically lower in transcriptional networks (modeled at functional level than in signaling and metabolic networks (modeled at stoichiometric level. A possible interpretation of this result is in terms of energetic cost of an interaction: an erroneous or contradictory transcriptional action costs much more than a signaling/metabolic error, and therefore must be avoided as much as possible. Averaging over all possible perturbations, however, we also find that unlike for transcriptional networks, in the signaling/metabolic networks the probability of finding the system in its least frustrated configuration tends to be high also in correspondence of a moderate energetic regime, meaning that, in spite of the higher frustration, these networks can achieve a globally ordered response to perturbations even for moderate values of the strength of the interactions. Furthermore, an analysis of the energy landscape shows that signaling and metabolic networks lack energetic barriers around their global optima, a property also favouring global order. Conclusion In conclusion, transcriptional and signaling/metabolic networks appear to have systematic differences in both the index of frustration and the transition to global order. These differences are interpretable in terms of the different functions of the various classes of networks.

  15. A biologically plausible learning rule for the Infomax on recurrent neural networks.

    Science.gov (United States)

    Hayakawa, Takashi; Kaneko, Takeshi; Aoyagi, Toshio

    2014-01-01

    A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.

  16. Predicting drug-target interaction networks based on functional groups and biological features.

    Directory of Open Access Journals (Sweden)

    Zhisong He

    Full Text Available BACKGROUND: Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. METHODS/PRINCIPAL FINDINGS: To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. CONCLUSION/SIGNIFICANCE: Our results indicate that the network prediction system thus established is quite promising and encouraging.

  17. Semantic data integration and knowledge management to represent biological network associations.

    Science.gov (United States)

    Losko, Sascha; Heumann, Klaus

    2009-01-01

    The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data including experimental data from "-omics" platforms, phenotype information, and clinical data. For bioinformatics, several challenges remain: to structure this information as biological networks enabling scientists to identify relevant information; to integrate this information as specific "knowledge bases"; and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation and, thus, the generation of new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we will introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

  18. Biological network module-based model for the analysis of differential expression in shotgun proteomics.

    Science.gov (United States)

    Xu, Jia; Wang, Lily; Li, Jing

    2014-12-01

    Protein differential expression analysis plays an important role in the understanding of molecular mechanisms as well as the pathogenesis of complex diseases. With the rapid development of mass spectrometry, shotgun proteomics using spectral counts has become a prevailing method for the quantitative analysis of complex protein mixtures. Existing methods in differential proteomics expression typically carry out analysis at the single-protein level. However, it is well-known that proteins interact with each other when they function in biological processes. In this study, focusing on biological network modules, we proposed a negative binomial generalized linear model for differential expression analysis of spectral count data in shotgun proteomics. In order to show the efficacy of the model in protein expression analysis at the level of protein modules, we conducted two simulation studies using synthetic data sets generated from theoretical distribution of count data and a real data set with shuffled counts. Then, we applied our method to a colorectal cancer data set and a nonsmall cell lung cancer data set. When compared with single-protein analysis methods, the results showed that module-based statistical model which takes account of the interactions among proteins led to more effective identification of subtle but coordinated changes at the systems level. PMID:25327611

  19. SEBINI-CABIN: An Analysis Pipeline for Biological Network Inference, with a Case Study in Protein-Protein Interaction Network Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Domico, Kelly O.; White, Amanda M.; Auberry, Deanna L.; Auberry, Kenneth J.; Hooker, Brian S.; Hurst, G. B.; McDermott, Jason E.; McDonald, W. Hayes; Pelletier, Dale A.; Schmoyer, Denise D.; Cannon, William R.

    2007-12-01

    One of the core tasks of the emerging discipline of systems biology is the reconstruction of the various biological networks in an organism. The importance of understanding such regulatory, interaction, and signaling networks has fueled the development by bioinformatics researchers of many inference algorithms for determining their structure. The Software Environment for BIological Network Inference (SEBINI) has been created to provide an interactive environment for the deployment, testing, and improvement of algorithms used to reconstruct the structures of regulatory and interaction networks from high-throughput expression data. Networks inferred from the SEBINI software platform can be further analyzed using the Collective Analysis of Biological Interaction Networks (CABIN) tool, a software package for exploratory data analysis that allows basic integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources. Thus, the combined SEBINI–CABIN platform aids in the more accurate determination of biological networks, in less time, with less effort. In this paper, we present a case study demonstrating the use of the SEBINI and CABIN tools for protein-protein interaction network reconstruction. Incorporating the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro) algorithm into the SEBINI toolkit, we have created a pipeline for structural inference and supplemental analysis of protein-protein interaction networks from sets of mass spectrometry bait-prey experiment data. To the best of our knowledge the pipeline so designed is the first to be publicly available for such use. A demonstration web site for SEBINI can be accessed from https://www.emsl.pnl.gov/NIT/NIT.html. Source code and PostgreSQL database schema are available under open source license. Contact: ronald.taylor@pnl.gov. For commercial use, some algorithms included in SEBINI require licensing from the original developers. The

  20. FUSE: a profit maximization approach for functional summarization of biological networks

    Directory of Open Access Journals (Sweden)

    Seah Boon-Siew

    2012-03-01

    Full Text Available Abstract Background The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL principle to maximize information gain of the summary graph while satisfying the level of detail constraint. Results We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. Conclusion By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  1. Enhanced Dynamic Algorithm of Genome Sequence Alignments

    OpenAIRE

    Arabi E. keshk

    2014-01-01

    The merging of biology and computer science has created a new field called computational biology that explore the capacities of computers to gain knowledge from biological data, bioinformatics. Computational biology is rooted in life sciences as well as computers, information sciences, and technologies. The main problem in computational biology is sequence alignment that is a way of arranging the sequences of DNA, RNA or protein to identify the region of similarity and relationship between se...

  2. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  3. A biologically inspired neural network model to transformation invariant object recognition

    Science.gov (United States)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  4. A distributed system for fast alignment of next-generation sequencing data

    Science.gov (United States)

    Srimani, Jaydeep K.; Wu, Po-Yen; Phan, John H.; Wang, May D.

    2016-01-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  5. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  6. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  7. Enhancement of COPD biological networks using a web-based collaboration interface [v2; ref status: indexed, http://f1000r.es/5ew

    Directory of Open Access Journals (Sweden)

    The sbv IMPROVER project team (in alphabetical order

    2015-05-01

    Full Text Available The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website (https://bionet.sbvimprover.com/ and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD

  8. Dose-response aligned circuits in signaling systems.

    Directory of Open Access Journals (Sweden)

    Long Yan

    Full Text Available Cells use biological signal transduction pathways to respond to environmental stimuli and the behavior of many cell types depends on precise sensing and transmission of external information. A notable property of signal transduction that was characterized in the Saccharomyces cerevisiae yeast cell and many mammalian cells is the alignment of dose-response curves. It was found that the dose response of the receptor matches closely the dose responses of the downstream. This dose-response alignment (DoRA renders equal sensitivities and concordant responses in different parts of signaling system and guarantees a faithful information transmission. The experimental observations raise interesting questions about the nature of the information transmission through DoRA signaling networks and design principles of signaling systems with this function. Here, we performed an exhaustive computational analysis on network architectures that underlie the DoRA function in simple regulatory networks composed of two and three enzymes. The minimal circuits capable of DoRA were examined with Michaelis-Menten kinetics. Several motifs that are essential for the dynamical function of DoRA were identified. Systematic analysis of the topology space of robust DoRA circuits revealed that, rather than fine-tuning the network's parameters, the function is primarily realized by enzymatic regulations on the controlled node that are constrained in limiting regions of saturation or linearity.

  9. Computing alignment plots efficiently

    CERN Document Server

    Krusche, Peter

    2009-01-01

    Dot plots are a standard method for local comparison of biological sequences. In a dot plot, a substring to substring distance is computed for all pairs of fixed-size windows in the input strings. Commonly, the Hamming distance is used since it can be computed in linear time. However, the Hamming distance is a rather crude measure of string similarity, and using an alignment-based edit distance can greatly improve the sensitivity of the dot plot method. In this paper, we show how to compute alignment plots of the latter type efficiently. Given two strings of length m and n and a window size w, this problem consists in computing the edit distance between all pairs of substrings of length w, one from each input string. The problem can be solved by repeated application of the standard dynamic programming algorithm in time O(mnw^2). This paper gives an improved data-parallel algorithm, running in time $O(mnw/\\gamma/p)$ using vector operations that work on $\\gamma$ values in parallel and $p$ processors. We show ex...

  10. Bayesian coestimation of phylogeny and sequence alignment

    Directory of Open Access Journals (Sweden)

    Jensen Jens

    2005-04-01

    Full Text Available Abstract Background Two central problems in computational biology are the determination of the alignment and phylogeny of a set of biological sequences. The traditional approach to this problem is to first build a multiple alignment of these sequences, followed by a phylogenetic reconstruction step based on this multiple alignment. However, alignment and phylogenetic inference are fundamentally interdependent, and ignoring this fact leads to biased and overconfident estimations. Whether the main interest be in sequence alignment or phylogeny, a major goal of computational biology is the co-estimation of both. Results We developed a fully Bayesian Markov chain Monte Carlo method for coestimating phylogeny and sequence alignment, under the Thorne-Kishino-Felsenstein model of substitution and single nucleotide insertion-deletion (indel events. In our earlier work, we introduced a novel and efficient algorithm, termed the "indel peeling algorithm", which includes indels as phylogenetically informative evolutionary events, and resembles Felsenstein's peeling algorithm for substitutions on a phylogenetic tree. For a fixed alignment, our extension analytically integrates out both substitution and indel events within a proper statistical model, without the need for data augmentation at internal tree nodes, allowing for efficient sampling of tree topologies and edge lengths. To additionally sample multiple alignments, we here introduce an efficient partial Metropolized independence sampler for alignments, and combine these two algorithms into a fully Bayesian co-estimation procedure for the alignment and phylogeny problem. Our approach results in estimates for the posterior distribution of evolutionary rate parameters, for the maximum a-posteriori (MAP phylogenetic tree, and for the posterior decoding alignment. Estimates for the evolutionary tree and multiple alignment are augmented with confidence estimates for each node height and alignment column

  11. The structural molecular biology network of the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    João A.R.G. Barbosa

    2006-06-01

    Full Text Available This article describes the achievements of the Structural Molecular Biology Network (SMolBNet, a collaborative program of structural molecular biology, centered in the State of São Paulo, Brazil, and supported by São Paulo State Funding Agency (FAPESP. It gathers twenty scientific groups and is coordinated by the scientific staff of the Center of Structural Molecular Biology, at the National Laboratory of Synchrotron Light (LNLS, in Campinas. The SMolBNet program has been aimed at 1 solving the structure of proteins of interest related to the research projects of the groups. In some cases, the choice has been to select proteins of unknown function or of possible novel structure obtained from the sequenced genomes of the FAPESP genomic program; 2 providing the groups with training in all the steps of the protein structure determination: gene cloning, protein expression, protein purification, protein crystallization and structure determination. Having begun in 2001, the program has been successful in both aims. Here, four groups reveal their participation in the program and describe the structural aspects of the proteins they have selected to study.Esse artigo descreve realizações do Programa SMolBNet (Rede de Biologia Molecular Estrutural do Estado de São Paulo, apoiado pela FAPESP (Fundação de Apoio à Pesquisa do Estado de São Paulo. Ele reúne vinte grupos de pesquisa e é coordenado pelos pesquisadores do Laboratório Nacional de Luz Síncrotron (LNLS, em Campinas. O Programa SMolBNet tem como metas: Elucidar a estrutura tridimensional de proteínas de interesse aos grupos de pesquisa componentes do Programa; Prover os grupos com treinamento em todas as etapas de determinação de estrutura: clonagem gênica, expressão de proteínas, purificação de proteínas, cristalização de proteínas e elucidação de suas estruturas. Tendo começado em 2001, o Programa alcançou sucesso em ambas as metas. Neste artigo, quatro dos grupos

  12. ModuLand plug-in for Cytoscape: extensively overlapping modules, community centrality and their use in biological networks

    CERN Document Server

    Szalay-Beko, Mate; Szappanos, Balazs; Kovacs, Istvan A; Papp, Balazs; Csermely, Peter

    2011-01-01

    Summary: The extensively overlapping structure of network modules is an increasingly recognized feature of biological networks. Here we introduce a user-friendly implementation of our previous network module determination method, ModuLand, as a plug-in of the widely used Cytoscape program. We show the utility of this approach a.) to identify an extensively overlapping modular structure; b.) to define a modular core and hierarchy allowing an easier functional annotation; c.) to identify key nodes of high community centrality, modular overlap or bridgeness in protein structure, protein-protein interaction and metabolic networks. Availability and implementation: The ModuLand Cytoscape plug-in was written in C++, has a JAVA-based graphical interface, can be installed as a single plug-in and can run on Windows, Linux, or Mac OS. The plug-in and its user guide can be downloaded from: http://www.linkgroup.hu/modules_bioinfo_download.php

  13. The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond1

    Science.gov (United States)

    Mueller, Lukas A.; Solow, Teri H.; Taylor, Nicolas; Skwarecki, Beth; Buels, Robert; Binns, John; Lin, Chenwei; Wright, Mark H.; Ahrens, Robert; Wang, Ying; Herbst, Evan V.; Keyder, Emil R.; Menda, Naama; Zamir, Dani; Tanksley, Steven D.

    2005-01-01

    The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond. PMID:16010005

  14. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artificial neural network analysis based on self-organizing-maps (SOM). Our results suggest that in addition to the expected NPP enhancing effect of stronger equatorward alongshore wind, three factors have an inhibiting effect: (1) strong eddy activity, (2) narrow continental shelf, and (3) deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC) method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  15. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are highly productive ocean regions. Yet, substantial differences in net primary production (NPP exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neural network analysis based on self-organizing-maps (SOMs. We show that in addition to the expected NPP enhancing effect of stronger alongshore wind, three factors have an inhibiting effect: (1 strong eddy activity, (2 narrow continental shelf, and (3 deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of a weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  16. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions

    Science.gov (United States)

    Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.

  17. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    Science.gov (United States)

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  18. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    Institute of Scientific and Technical Information of China (English)

    YUAN Wu-Jie; LUO Xiao-Shu; JIANG Pin-Qun

    2007-01-01

    In this paper,we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism.Then we study excitement properties of the model under alternating current (AC) stimulation.The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli,such as refractory period and the brain neural excitement response induced by different intensities of nolse and coupling.The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  19. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.

    Science.gov (United States)

    Miura, Takashi; Yokokawa, Ryuji

    2016-08-01

    Organ culture systems are used to elucidate the mechanisms of pattern formation in developmental biology. Various organ culture techniques have been used, but the lack of microcirculation in such cultures impedes the long-term maintenance of larger tissues. Recent advances in microfluidic devices now enable us to utilize self-organized perfusable capillary networks in organ cultures. In this review, we will overview past approaches to organ culture and current technical advances in microfluidic devices, and discuss possible applications of microfluidics towards the study of developmental biology. PMID:27272910

  20. 基于社会网络的IT与业务匹配多主体仿真%Multi-agent Simulation Approach to Business-IT Alignment in Social Network

    Institute of Scientific and Technical Information of China (English)

    张延林; 肖静华; 李礼; 谢康

    2011-01-01

    Business-IT alignment(BIA) has been one of the top concerns of practitioners and scholars for decades because it enables organizations to improve their business performance.Although numerous studies concerned on how to accomplish BIA look alignment as an end state or as an ongoing process,multiagent simulation based on complex adaptive system is still rarely discussed in the existing literatures.This paper attempts to fulfill this gap by designing and simulating a comprehensive BIA game model to discuss how the different network structures influence the whole alignment.Drawing on prior literature,the coordination and communication between IT and business managers are identified as critical success factors for BIA.Regarding the IT and business units or individuals as rational agents in view of game theory,a BIA game model is established.Using multiagent simulation methodology based on the social network,the results show: the threshold of alignment cost for the whole alignment increases from regular lattice to small world and then to random network.Moreover,strategic evolution process is one of key reasons for the difference between whole alignment and whole misalignment.Overall,the main contribution of this study is a dynamic analysis framework of BIA key factors proposed from the perspective of multi-agent simulation in social network,which provides a more ample prescriptive insight to understand complex dynamic and emergent nature of alignment for practitioners and scholars in IS fields.%IT与业务匹配(BIA)能创造更高的组织绩效,如何取得BIA成为信息系统理论与实践的热点研究问题之一。本文将BIA的静态研究和动态研究相结合,构建多主体交互的BIA博弈模型,并基于社会网络进行多主体仿真,探讨不同的社会网络结构对总体匹配的影响。试验结果显示:由规则格子到小世界以及随机网络,提升了匹配成本对总体匹配的阈值,策略演化过程是造成总

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  2. Data-driven, data-intensive computing for modelling and analysis of biological networks: application to bioethanol production

    Science.gov (United States)

    Park, Byung-Hoon; Samatova, Nagiza F.; Karpinets, Tatiana; Jallouk, Andrew; Molony, Scott; Horton, Scott; Arcangeli, Steven

    2007-07-01

    Modelling biological networks is inherently data-driven and data-intensive. The combinatorial nature of this type of modelling, however, requires new methods capable of dealing with the enormous size and irregularity of the search. Searching via 'backtracking' is one possible solution that avoids exhaustive searches by constraining the search space to the subspace of feasible solutions. Despite its wide use in many combinatorial optimization problems, there are currently few parallel implementations of backtracking capable of effectively dealing with the memory-intensive nature of the process and the extremely unbalanced loads present. In this paper, a parallel, scalable, and memory-efficient backtracking algorithm within the context of maximal clique enumeration is presented, and its applicability to large-scale biological networks aimed at studying the mechanisms for efficient bioethanol production is discussed.

  3. The virome: a missing component of biological interaction networks in health and disease.

    Science.gov (United States)

    Handley, Scott A

    2016-01-01

    Host-associated viral populations, viromes, have been understudied relative to their contribution to human physiology. Viruses interact with host gene networks, influencing both health and disease. Analysis of host gene networks in the absence of virome analysis risks missing important network information. PMID:27037032

  4. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining

    OpenAIRE

    Sivachenko Andrey Y; Huan Tianxiao; Harrison Scott H; Chen Jake Y

    2008-01-01

    Abstract Background New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of c...

  5. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells

    Science.gov (United States)

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-01-01

    Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication

  6. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Victor Trevino

    2016-04-01

    Full Text Available The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell

  7. In-silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics

    OpenAIRE

    Yin, Lianhong; Zheng, Lingli; Xu, Lina; Dong, Deshi; Han, Xu; Qi, Yan; Zhao, Yanyan; Xu, Youwei; Peng, Jinyong

    2015-01-01

    Background Inverse docking technology has been a trend of drug discovery, and bioinformatics approaches have been used to predict target proteins, biological activities, signal pathways and molecular regulating networks affected by drugs for further pharmacodynamic and mechanism studies. Methods In the present paper, inverse docking technology was applied to screen potential targets from potential drug target database (PDTD). Then, the corresponding gene information of the obtained drug-targe...

  8. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Science.gov (United States)

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  9. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Science.gov (United States)

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  10. Building gene co-expression networks using transcriptomics data for systems biology investigations: Comparison of methods using microarray data

    OpenAIRE

    Kadarmideen, Haja N; Watson-Haigh, Nathan S

    2012-01-01

    Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four different treatments with Metyrapone, an inhibitor of cortisol biosynthesis. We conducted several microarray quality control checks before applying GCN methods to filtered datasets. Then we compared ...

  11. IMAGA: INTRON MULTIPLE ALIGNMENT USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    V. AMOUDA,

    2010-11-01

    Full Text Available Multiple sequence alignment (MSA is one of the multi-dimensional problems in biology. This paper describes a new approach to solve MSA, a NP-hard problem using modified Genetic Algorithm with new mutation operator. A web based tool iMAGA (Intron Multiple Alignment using Genetic Algorithm is developed for aligning the intron sequences in order to find the pattern. It has two modules (i iExtractor/ iClassifier which extracts and classifies introns (ii iAligner/ Pattern Finder which aligns the intron sequences and finds the patterns. iAligner, the core module of the tool aligns any type of sequences (DNA, RNA, Protein & Intron. In this module GA is applied in which the chromosome consists of gap positions. On applying conventional mutation operator leads to problems like repetition and increase in number of gap positions. To overcome theseproblems, a newly designed mutation operator X-Shuffler is proposed.To validate the alignment, the sum-of-pairs score is used to compare iMAGA with widely used tools. The data sets chosen from the standard BaliBASE, SMART and OXBENCH benchmark alignment suite. To validate the pattern obtained using iMAGA tool, the similarity percentage of the pattern is compared with MEME, a widely used motif finder. Dataset of Saccharomyces Cerviceae with 254 intron sequences are used to prove this work. The tool is available at www.imaga.bicpu.edu.in.

  12. Networks as a Privileged Way to Develop Mesoscopic Level Approaches in Systems Biology

    OpenAIRE

    Alessandro Giuliani

    2014-01-01

    The methodologies advocated in computational biology are in many cases proper system-level approaches. These methodologies are variously connected to the notion of “mesosystem” and thus on the focus on relational structures that are at the basis of biological regulation. Here, I describe how the formalization of biological systems by means of graph theory constitutes an extremely fruitful approach to biology. I suggest the epistemological relevance of the notion of graph resides in its multil...

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and J. Pivarski

    2011-01-01

    Alignment efforts in the first few months of 2011 have shifted away from providing alignment constants (now a well established procedure) and focussed on some critical remaining issues. The single most important task left was to understand the systematic differences observed between the track-based (TB) and hardware-based (HW) barrel alignments: a systematic difference in r-φ and in z, which grew as a function of z, and which amounted to ~4-5 mm differences going from one end of the barrel to the other. This difference is now understood to be caused by the tracker alignment. The systematic differences disappear when the track-based barrel alignment is performed using the new “twist-free” tracker alignment. This removes the largest remaining source of systematic uncertainty. Since the barrel alignment is based on hardware, it does not suffer from the tracker twist. However, untwisting the tracker causes endcap disks (which are aligned ...

  14. Improving the alignment quality of consistency based aligners with an evaluation function using synonymous protein words.

    Directory of Open Access Journals (Sweden)

    Hsin-Nan Lin

    Full Text Available Most sequence alignment tools can successfully align protein sequences with higher levels of sequence identity. The accuracy of corresponding structure alignment, however, decreases rapidly when considering distantly related sequences (<20% identity. In this range of identity, alignments optimized so as to maximize sequence similarity are often inaccurate from a structural point of view. Over the last two decades, most multiple protein aligners have been optimized for their capacity to reproduce structure-based alignments while using sequence information. Methods currently available differ essentially in the similarity measurement between aligned residues using substitution matrices, Fourier transform, sophisticated profile-profile functions, or consistency-based approaches, more recently.In this paper, we present a flexible similarity measure for residue pairs to improve the quality of protein sequence alignment. Our approach, called SymAlign, relies on the identification of conserved words found across a sizeable fraction of the considered dataset, and supported by evolutionary analysis. These words are then used to define a position specific substitution matrix that better reflects the biological significance of local similarity. The experiment results show that the SymAlign scoring scheme can be incorporated within T-Coffee to improve sequence alignment accuracy. We also demonstrate that SymAlign is less sensitive to the presence of structurally non-similar proteins. In the analysis of the relationship between sequence identity and structure similarity, SymAlign can better differentiate structurally similar proteins from non- similar proteins. We show that protein sequence alignments can be significantly improved using a similarity estimation based on weighted n-grams. In our analysis of the alignments thus produced, sequence conservation becomes a better indicator of structural similarity. SymAlign also provides alignment visualization that

  15. Comparative analysis of housekeeping and tissue-selective genes in human based on network topologies and biological properties.

    Science.gov (United States)

    Yang, Lei; Wang, Shiyuan; Zhou, Meng; Chen, Xiaowen; Zuo, Yongchun; Sun, Dianjun; Lv, Yingli

    2016-06-01

    Housekeeping genes are genes that are turned on most of the time in almost every tissue to maintain cellular functions. Tissue-selective genes are predominantly expressed in one or a few biologically relevant tissue types. Benefitting from the massive gene expression microarray data obtained over the past decades, the properties of housekeeping and tissue-selective genes can now be investigated on a large-scale manner. In this study, we analyzed the topological properties of housekeeping and tissue-selective genes in the protein-protein interaction (PPI) network. Furthermore, we compared the biological properties and amino acid usage between these two gene groups. The results indicated that there were significant differences in topological properties between housekeeping and tissue-selective genes in the PPI network, and housekeeping genes had higher centrality properties and may play important roles in the complex biological network environment. We also found that there were significant differences in multiple biological properties and many amino acid compositions. The functional genes enrichment and subcellular localizations analysis was also performed to investigate the characterization of housekeeping and tissue-selective genes. The results indicated that the two gene groups showed significant different enrichment in drug targets, disease genes and toxin targets, and located in different subcellular localizations. At last, the discriminations between the properties of two gene groups were measured by the F-score, and expression stage had the most discriminative index in all properties. These findings may elucidate the biological mechanisms for understanding housekeeping and tissue-selective genes and may contribute to better annotate housekeeping and tissue-selective genes in other organisms. PMID:26897376

  16. An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm

    OpenAIRE

    Kumar, Manish

    2015-01-01

    One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the pop...

  17. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    Directory of Open Access Journals (Sweden)

    Luan Yihui

    2009-09-01

    Full Text Available Abstract Background Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Results Recent studies have shown that the degree distribution of the nodes is not an adequate statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two yeast coexpression networks. We showed that 2nd order degree correlation information gave better predictions of gene interactions in both protein interaction and gene coexpression networks. However, in the biologically important task of predicting functionally homogeneous modules, degree correlation information performs marginally better in the case of the MIPS and BIOGRID protein interaction networks, but worse in the case of gene coexpression networks. Conclusion Our use of dK models showed that incorporation of degree correlations could increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the use of third-order degree correlations decreased accuracy. However, it is possible that other parameter estimation methods, such as maximum likelihood, will show the usefulness of incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.

  18. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications.

    Science.gov (United States)

    Sengupta, Urmi; Ukil, Sanchaita; Dimitrova, Nevenka; Agrawal, Shipra

    2009-01-01

    Type 2 diabetes mellitus (T2D) is a multifactorial and genetically heterogeneous disease which leads to impaired glucose homeostasis and insulin resistance. The advanced form of disease causes acute cardiovascular, renal, neurological and microvascular complications. Thus there is a constant need to discover new and efficient treatment against the disease by seeking to uncover various novel alternate signalling mechanisms that can lead to diabetes and its associated complications. The present study allows detection of molecular targets by unravelling their role in altered biological pathways during diabetes and its associated risk factors and complications. We have used an integrated functional networks concept by merging co-expression network and interaction network to detect the transcriptionally altered pathways and regulations involved in the disease. Our analysis reports four novel significant networks which could lead to the development of diabetes and other associated dysfunctions. (a) The first network illustrates the up regulation of TGFBRII facilitating oxidative stress and causing the expression of early transcription genes via MAPK pathway leading to cardiovascular and kidney related complications. (b) The second network demonstrates novel interactions between GAPDH and inflammatory and proliferation candidate genes i.e., SUMO4 and EGFR indicating a new link between obesity and diabetes. (c) The third network portrays unique interactions PTPN1 with EGFR and CAV1 which could lead to an impaired vascular function in diabetic nephropathy condition. (d) Lastly, from our fourth network we have inferred that the interaction of beta-catenin with CDH5 and TGFBR1 through Smad molecules could contribute to endothelial dysfunction. A probability of emergence of kidney complication might be suggested in T2D condition. An experimental investigation on this aspect may further provide more decisive observation in drug target identification and better understanding of

  19. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications.

    Directory of Open Access Journals (Sweden)

    Urmi Sengupta

    Full Text Available Type 2 diabetes mellitus (T2D is a multifactorial and genetically heterogeneous disease which leads to impaired glucose homeostasis and insulin resistance. The advanced form of disease causes acute cardiovascular, renal, neurological and microvascular complications. Thus there is a constant need to discover new and efficient treatment against the disease by seeking to uncover various novel alternate signalling mechanisms that can lead to diabetes and its associated complications. The present study allows detection of molecular targets by unravelling their role in altered biological pathways during diabetes and its associated risk factors and complications. We have used an integrated functional networks concept by merging co-expression network and interaction network to detect the transcriptionally altered pathways and regulations involved in the disease. Our analysis reports four novel significant networks which could lead to the development of diabetes and other associated dysfunctions. (a The first network illustrates the up regulation of TGFBRII facilitating oxidative stress and causing the expression of early transcription genes via MAPK pathway leading to cardiovascular and kidney related complications. (b The second network demonstrates novel interactions between GAPDH and inflammatory and proliferation candidate genes i.e., SUMO4 and EGFR indicating a new link between obesity and diabetes. (c The third network portrays unique interactions PTPN1 with EGFR and CAV1 which could lead to an impaired vascular function in diabetic nephropathy condition. (d Lastly, from our fourth network we have inferred that the interaction of beta-catenin with CDH5 and TGFBR1 through Smad molecules could contribute to endothelial dysfunction. A probability of emergence of kidney complication might be suggested in T2D condition. An experimental investigation on this aspect may further provide more decisive observation in drug target identification and better

  20. Properties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models

    OpenAIRE

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2013-01-01

    We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transformed into one specific chemical that is an intrinsic property of the network. We propose a self-consi...

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  3. Pattern-recognition by an artificial network derived from biologic neuronal systems.

    Science.gov (United States)

    Alkon, D L; Blackwell, K T; Barbour, G S; Rigler, A K; Vogl, T P

    1990-01-01

    A novel artificial neural network, derived from neurobiological observations, is described and examples of its performance are presented. This DYnamically STable Associative Learning (DYSTAL) network associatively learns both correlations and anticorrelations, and can be configured to classify or restore patterns with only a change in the number of output units. DYSTAL exhibits some particularly desirable properties: computational effort scales linearly with the number of connections, i.e., it is O(N) in complexity; performance of the network is stable with respect to network parameters over wide ranges of their values and over the size of the input field; storage of a very large number of patterns is possible; patterns need not be orthogonal; network connections are not restricted to multi-layer feed-forward or any other specific structure; and, for a known set of deterministic input patterns, the network weights can be computed, a priori, in closed form. The network has been associatively trained to perform the XOR function as well as other classification tasks. The network has also been trained to restore patterns obscured by binary or analog noise. Neither global nor local feedback connections are required during learning; hence the network is particularly suitable for hardware (VLSI) implementation.

  4. Large-scale photonic neural networks with biology-like processing elements: the role of electron-trapping materials

    Science.gov (United States)

    Farhat, Nabil H.; Wen, Zhimin

    1995-08-01

    Neural networks employing pulsating biology-oriented integrate-and-fire (IF) model neurons, that can exhibit synchronicity (phase-locking), bifurcation, and chaos, have features that make them potentially useful for learning and recognition of spatio-temporal patterns, generation of complex motor control, emulating higher-level cortical functions like feature binding, separation of object from background, cognition and other higher-level functions; all of which are beyond the ready reach of nonpulsating sigmoidal neuron networks. The spiking nature of biology-oriented neural networks makes their study in digital hardware impractical. Prange and Klar convincingly argued that the best way of realizing such networks is through analog CMOS technology rather than digital hardware. They showed, however, that the number of neurons one can accommodate on a VLSI chip limited to a hundred or so, even when submicron CMOS technology is used, because of the relatively large size of the neuron/dendrite cell. One way of reducing the size of neuron/dendrite cell is to reduce the structural complexity of the cell by realizing some of the processes needed in the cell's operation externally to the chip and by coupling these processes to the cell optically. Two such processes are the relaxation mechanism of the IF neuron and dendritic-tree processing. We have shown, by examining the blue light impulse response of electron trapping materials (ETMs) used under simultaneous infrared and blue light bias, that these materials offer features that can be used in realizing both the optical relaxation and synapto-dendritic response mechanisms. Experimental results demonstrating the potential of this approach in realizing dense arrays of biology-oriented neuron/dendrite cells will be presented, focusing on the concept and design of ETM-based image intensifier as new enabling technology.

  5. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps.

    Science.gov (United States)

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless 'geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses

  6. Defining Biological Networks for Noise Buffering and Signaling Sensitivity Using Approximate Bayesian Computation

    OpenAIRE

    Shuqiang Wang; Yanyan Shen; Changhong Shi; Tao Wang; Zhiming Wei; Hanxiong Li

    2014-01-01

    Reliable information processing in cells requires high sensitivity to changes in the input signal but low sensitivity to random fluctuations in the transmitted signal. There are often many alternative biological circuits qualifying for this biological function. Distinguishing theses biological models and finding the most suitable one are essential, as such model ranking, by experimental evidence, will help to judge the support of the working hypotheses forming each model. Here, we employ the ...

  7. FiBi - A French network of facilities for irradiation in biology: The organisation of the network and the research opportunities associated

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard-Lecanu, E.; Coffigny, H.; Poncy, J.L. [CEA Fontenay aux Roses, 92 (France); Authier, N.; Verrey, B. [CEA Valduc, 21 - Is sur Tille (France); Bailly, I. [CEA Bruyeres le Chatel, 91 (France); Baldacchino, G.; Bordy, J.M.; Carriere, M.; Leplat, J.J.; Pin, S.; Pommeret, S.; Thuret, J.Y.; Renault, J.P. [CEA Saclay, 91 - Gif sur Yvette (France); Cortella, I. [CEA Grenoble, Dept. Etudes des Reacteurs (DER), 38 (France); Duval, D. [Schering-CIS bio International, 91 - Saclay (France); Khodja, H.; Testard, I. [Atomic Energy Commission, 14 - Caen (France)

    2006-07-01

    The Life Science Division of the Atomic Energy Commission has developed a national network of available irradiation facilities for biological studies. One aim is to optimise the irradiation of biological samples, through a compendium of existing facilities allowing for the preserving and the irradiation of these samples in good conditions, and for providing an appropriate and reliable dosimetry. Given the high cost of the facilities and their specialization (nature and precision of irradiation on a cell scale, dose and dose rate), closeness is no longer the only criteria of choice for biologists. Development is leaning towards the implementation of irradiation platforms gathering irradiation tools associated with specific methods belonging to biology: cell culture, molecular biology and even animal care houses. The aim is to be able to offer biologists the most appropriate experimental tools, and to modify them according to the changing needs of radiobiology. This work is currently in progress and the database is still not exhaustive and shall be implemented as and when new documents are drawn up and new facilities are opened. (author)

  8. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    DEFF Research Database (Denmark)

    Herrgard, Markus; Swainston, Neil; Dobson, Paul;

    2008-01-01

    and content, and use different terminologies to describe the same chemical entities. This makes comparisons between them difficult and underscores the desirability of a consolidated metabolic network that collects and formalizes the 'community knowledge' of yeast metabolism. We describe how we have produced...... of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms....

  9. Computer-assisted curation of a human regulatory core network from the biological literature

    NARCIS (Netherlands)

    Thomas, P.; Durek, P.; Solt, I.; Klinger, B.; Witzel, F.; Schulthess, P.; Mayer, Y.; Tikk, D.; Blüthgen, N.; Leser, U.

    2015-01-01

    Motivation: A highly interlinked network of transcription factors (TFs) orchestrates the context-dependent expression of human genes. ChIP-chip experiments that interrogate the binding of particular TFs to genomic regions are used to reconstruct gene regulatory networks at genome-scale, but are plag

  10. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    NARCIS (Netherlands)

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Novère, Nicolas Le; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and cont

  11. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function

    Science.gov (United States)

    Martin, O. C.; Krzywicki, A.; Zagorski, M.

    2016-07-01

    Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent "motifs", that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure.

  12. Adverse effects of biologics: a network meta-analysis and Cochrane overview

    DEFF Research Database (Denmark)

    Singh, J. A.; Wells, G. A.; Christensen, Robin Daniel Kjersgaard;

    2011-01-01

    Background Biologics are used for the treatment of rheumatoid arthritis and many other conditions. While the efficacy of biologics has been established, there is uncertainty regarding the adverse effects of this treatment. Since serious risks such as tuberculosis (TB) reactivation, serious...

  13. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing.

    Science.gov (United States)

    Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W

    2016-04-18

    Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.

  14. Supramolecular chirality in organo-, hydro-, and metallogels derived from bis-amides of L-(+)-tartaric acid: formation of highly aligned 1D silica fibers and evidence of 5-c net SnS topology in a metallogel network.

    Science.gov (United States)

    Das, Uttam Kumar; Dastidar, Parthasarathi

    2012-10-01

    A series of bis-amides derived from L-(+)-tartaric acid was synthesized as potential low-molecular-weight gelators. Out of 14 bis-amides synthesized, 13 displayed organo-, hydro-, and ambidextrous gelation behavior. The gels were characterized by methods including circular dichroism, differential scanning calorimetry, optical and electron microscopy, and rheology. One of the gels derived from di-3-pyridyltartaramide (D-3-PyTA) displayed intriguing nanotubular morphology of the gel network, which was exploited as a template to generate highly aligned 1D silica fibers. The gelator D-3-PyTA was also exploited to generate metallogels by treatment with various Cu(II) /Zn(II) salts under suitable conditions. A structure-property correlation on the basis of single-crystal and powder X-ray diffraction data was attempted to gain insight into the structures of the gel networks in both organo- and metallogels. Such study led to the determination of the gel-network structure of the Cu(II) coordination-polymer-based metallogel, which displayed a 2D sheet architecture made of a chloride-bridged double helix that resembled a 5-c net SnS topology.

  15. Latin-American Biological Dosimetry Network (LBDNET) Intercomparison Exercise. Evaluation through triage and conventional scoring criteria. Development of a new approach for statistical data analysis

    International Nuclear Information System (INIS)

    Biological Dosimetry is a necessary support for National Radiation Protection Programs and Emergency Response Schemes. A Latin-American Biological Dosimetry Network (LBDNET) has been constituted by the biological dosimetry laboratories from: Argentina, Brazil, Chile, Cuba, Mexico, Peru, and Uruguay (IAEA Regional Project RLA9/054, 2007). The biological dosimetry laboratory of Argentina organized an international biological dosimetry intercomparison for the analysis of some relevant parameters involved in dose assessment, to reinforce the response capability in accidental situations requiring the activation of mutual assistance mechanisms and thus, constituting the bases of the LBDNET organization. (authors)

  16. Dynamics on and of complex networks applications to biology, computer science, and the social sciences

    CERN Document Server

    Ganguly, Niloy; Mukherjee, Animesh

    2009-01-01

    This self-contained book systematically explores the statistical dynamics on and of complex networks having relevance across a large number of scientific disciplines. The theories related to complex networks are increasingly being used by researchers for their usefulness in harnessing the most difficult problems of a particular discipline. The book is a collection of surveys and cutting-edge research contributions exploring the interdisciplinary relationship of dynamics on and of complex networks. Towards this goal, the work is thematically organized into three main sections: Part I studies th

  17. PANET: a GPU-based tool for fast parallel analysis of robustness dynamics and feed-forward/feedback loop structures in large-scale biological networks.

    Directory of Open Access Journals (Sweden)

    Hung-Cuong Trinh

    Full Text Available It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic property which can be induced by an observed result because it has no function to simulate the observation on a large number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and example datasets are freely available at http://panet-csc.sourceforge.net/.

  18. The effect of nano scale inhomogeneity and silicate network connectivity on the activity of glasses with biological applications

    International Nuclear Information System (INIS)

    Classical molecular dynamics simulations of six soda-lime phospho silicate glasses are analyzed to identify correlations between specific structural features of the glasses and their biological activity, namely the dissolution in physiological fluids and the rate of deposition of a bone-like apatite film on their surface. Structural markers of the bioactivity can be identified in the silicate connectivity and the formation of nanometer-size calcium clusters separated from the silicate network, with the latter associated with less bioactive or bio-inactive compositions. The simulations show how these key structural features are affected by the glass composition, and suggest that different strategies (i.e. compositional ranges)can be employed to modify them in a rational and systematic way, in order to steer the biological activity of the glass towards the level required by different biomedical applications.

  19. Social insect colony as a biological regulatory system: Information flow in dominance networks

    OpenAIRE

    Nandi, Anjan K.; Sumana, Annagiri; Bhattacharya, Kunal

    2014-01-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the...

  20. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures

    OpenAIRE

    Poole, Matthew; Kentzoglanakis, Kyriakos

    2011-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modelling the dynamical behaviour of gene regulatory systems. More specifically, ACO is used for searching the discre...

  1. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  2. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    Most of the work in muon alignment since December 2009 has focused on the geometry reconstruction from the optical systems and improvements in the internal alignment of the DT chambers. The barrel optical alignment system has progressively evolved from reconstruction of single active planes to super-planes (December 09) to a new, full barrel reconstruction. Initial validation studies comparing this full barrel alignment at 0T with photogrammetry provide promising results. In addition, the method has been applied to CRAFT09 data, and the resulting alignment at 3.8T yields residuals from tracks (extrapolated from the tracker) which look smooth, suggesting a good internal barrel alignment with a small overall offset with respect to the tracker. This is a significant improvement, which should allow the optical system to provide a start-up alignment for 2010. The end-cap optical alignment has made considerable progress in the analysis of transfer line data. The next set of alignment constants for CSCs will there...

  4. Orthodontics and Aligners

    Science.gov (United States)

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  5. MetNetAPI: A flexible method to access and manipulate biological network data from MetNet

    Directory of Open Access Journals (Sweden)

    Sucaet Yves

    2010-11-01

    Full Text Available Abstract Background Convenient programmatic access to different biological databases allows automated integration of scientific knowledge. Many databases support a function to download files or data snapshots, or a webservice that offers "live" data. However, the functionality that a database offers cannot be represented in a static data download file, and webservices may consume considerable computational resources from the host server. Results MetNetAPI is a versatile Application Programming Interface (API to the MetNetDB database. It abstracts, captures and retains operations away from a biological network repository and website. A range of database functions, previously only available online, can be immediately (and independently from the website applied to a dataset of interest. Data is available in four layers: molecular entities, localized entities (linked to a specific organelle, interactions, and pathways. Navigation between these layers is intuitive (e.g. one can request the molecular entities in a pathway, as well as request in what pathways a specific entity participates. Data retrieval can be customized: Network objects allow the construction of new and integration of existing pathways and interactions, which can be uploaded back to our server. In contrast to webservices, the computational demand on the host server is limited to processing data-related queries only. Conclusions An API provides several advantages to a systems biology software platform. MetNetAPI illustrates an interface with a central repository of data that represents the complex interrelationships of a metabolic and regulatory network. As an alternative to data-dumps and webservices, it allows access to a current and "live" database and exposes analytical functions to application developers. Yet it only requires limited resources on the server-side (thin server/fat client setup. The API is available for Java, Microsoft.NET and R programming environments and offers

  6. Underlying Principles of Natural Selection in Network Evolution: Systems Biology Approach

    OpenAIRE

    Bor-Sen Chen; Wei-Sheng Wu

    2007-01-01

    Systems biology is a rapidly expanding field that integrates diverse areas of science such as physics, engineering, computer science, mathematics, and biology toward the goal of elucidating the underlying principles of hierarchical metabolic and regulatory systems in the cell, and ultimately leading to predictive understanding of cellular response to perturbations. Because post-genomics research is taking place throughout the tree of life, comparative approaches offer a way for combining data...

  7. Defining Biological Networks for Noise Buffering and Signaling Sensitivity Using Approximate Bayesian Computation

    Directory of Open Access Journals (Sweden)

    Shuqiang Wang

    2014-01-01

    Full Text Available Reliable information processing in cells requires high sensitivity to changes in the input signal but low sensitivity to random fluctuations in the transmitted signal. There are often many alternative biological circuits qualifying for this biological function. Distinguishing theses biological models and finding the most suitable one are essential, as such model ranking, by experimental evidence, will help to judge the support of the working hypotheses forming each model. Here, we employ the approximate Bayesian computation (ABC method based on sequential Monte Carlo (SMC to search for biological circuits that can maintain signaling sensitivity while minimizing noise propagation, focusing on cases where the noise is characterized by rapid fluctuations. By systematically analyzing three-component circuits, we rank these biological circuits and identify three-basic-biological-motif buffering noise while maintaining sensitivity to long-term changes in input signals. We discuss in detail a particular implementation in control of nutrient homeostasis in yeast. The principal component analysis of the posterior provides insight into the nature of the reaction between nodes.

  8. Meta-Alignment with Crumble and Prune: Partitioning very large alignment problems for performance and parallelization

    Directory of Open Access Journals (Sweden)

    Paten Benedict

    2011-05-01

    Full Text Available Abstract Background Continuing research into the global multiple sequence alignment problem has resulted in more sophisticated and principled alignment methods. Unfortunately these new algorithms often require large amounts of time and memory to run, making it nearly impossible to run these algorithms on large datasets. As a solution, we present two general methods, Crumble and Prune, for breaking a phylogenetic alignment problem into smaller, more tractable sub-problems. We call Crumble and Prune meta-alignment methods because they use existing alignment algorithms and can be used with many current alignment programs. Crumble breaks long alignment problems into shorter sub-problems. Prune divides the phylogenetic tree into a collection of smaller trees to reduce the number of sequences in each alignment problem. These methods are orthogonal: they can be applied together to provide better scaling in terms of sequence length and in sequence depth. Both methods partition the problem such that many of the sub-problems can be solved independently. The results are then combined to form a solution to the full alignment problem. Results Crumble and Prune each provide a significant performance improvement with little loss of accuracy. In some cases, a gain in accuracy was observed. Crumble and Prune were tested on real and simulated data. Furthermore, we have implemented a system called Job-tree that allows hierarchical sub-problems to be solved in parallel on a compute cluster, significantly shortening the run-time. Conclusions These methods enabled us to solve gigabase alignment problems. These methods could enable a new generation of biologically realistic alignment algorithms to be applied to real world, large scale alignment problems.

  9. A Review on Algorithms for Network Motif Discovery in Biological Networks%生物网络模体发现算法研究综述

    Institute of Scientific and Technical Information of China (English)

    覃桂敏; 高琳; 呼加璐

    2009-01-01

    网络模体发现是生物网络数据分析中的一个核心问题.首先分析了网络模体发现中相关的基本计算问题:随机网络建模,子图搜索和模体统计意义评价等.其次对生物网络模体发现算法进行了综述和评价,从研究方法上将模体分为精确模体,概率模体和其它模体三类,并对识别每类模体的典型算法进行研究和分析.为了对网络模体进行深入分析与研究,引入了与模体发现密切相关的生物网络模块发现问题.最后讨论了网络模体发现算法的最新进展和下一步的研究方向.%Network motif discovery is a key problem in data analysis of biological networks. This survey first analyzes basic computational issues in motif discovery, which are modeling random networks, searching subgraphs, and evaluating motif significance. Then the motif discovery algorithms are reviewed and evaluated. The algorithms are divided into three major categories from the aspect of research methods, I.e. exact motif discovery, probability motif discovery, and other motif discovery. And several typical algorithms in each category are analyzed. In order to make a thorough analysis on network motifs, we introduce a related problem, modular discovery.Finally,we report the recent progresses from the algorithmic viewpoint and further discuss the future research trends.

  10. Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics.

    Science.gov (United States)

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2014-01-01

    Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems. PMID:24335433

  11. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  12. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  14. Faster exon assembly by sparse spliced alignment

    CERN Document Server

    Tiskin, Alexander

    2007-01-01

    Assembling a gene from candidate exons is an important problem in computational biology. Among the most successful approaches to this problem is \\emph{spliced alignment}, proposed by Gelfand et al., which scores different candidate exon chains within a DNA sequence of length $m$ by comparing them to a known related gene sequence of length n, $m = \\Theta(n)$. Gelfand et al.\\ gave an algorithm for spliced alignment running in time O(n^3). Kent et al.\\ considered sparse spliced alignment, where the number of candidate exons is O(n), and proposed an algorithm for this problem running in time O(n^{2.5}). We improve on this result, by proposing an algorithm for sparse spliced alignment running in time O(n^{2.25}). Our approach is based on a new framework of \\emph{quasi-local string comparison}.

  15. Tevatron Alignment Issues 2003-2004

    CERN Document Server

    Volk, James T; Elementi, Luciano; Gelfand, Norman M; Gollwitzer, Keith; Greenwood, John A; Martens, Michael A; Moore, Craig D; Nobrega, Alfred; Russell, Allison D; Sager, Terry; Shiltsev, Vladimir; Stefanski, Raymond; Syphers, Michael J; Wojcik, George

    2005-01-01

    It was observed during the early part of Run II that dipole corrector currents in the Tevatron were changing over time. Measurement of the roll for dipoles and quadrupoles confirmed that there was a slow and systematic movement of the magnets from their ideal position. A simple system using a digital protractor and laptop computer was developed to allow roll measurements of all dipoles and quadrupoles. These measurements showed that many magnets in the Tevatron had rolled more than 1 milli-radian. To aid in magnet alignment a new survey network was built in the Tevatron tunnel. This network is based on the use of free centering laser tracker. During the measurement of the network coordinates for all dipole, quadrupole and corrector magnets were obtained. This paper discusses roll measurement techniques and data, the old and new Tevatron alignment network.

  16. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models.

    Directory of Open Access Journals (Sweden)

    Alex Greenfield

    Full Text Available BACKGROUND: Current technologies have lead to the availability of multiple genomic data types in sufficient quantity and quality to serve as a basis for automatic global network inference. Accordingly, there are currently a large variety of network inference methods that learn regulatory networks to varying degrees of detail. These methods have different strengths and weaknesses and thus can be complementary. However, combining different methods in a mutually reinforcing manner remains a challenge. METHODOLOGY: We investigate how three scalable methods can be combined into a useful network inference pipeline. The first is a novel t-test-based method that relies on a comprehensive steady-state knock-out dataset to rank regulatory interactions. The remaining two are previously published mutual information and ordinary differential equation based methods (tlCLR and Inferelator 1.0, respectively that use both time-series and steady-state data to rank regulatory interactions; the latter has the added advantage of also inferring dynamic models of gene regulation which can be used to predict the system's response to new perturbations. CONCLUSION/SIGNIFICANCE: Our t-test based method proved powerful at ranking regulatory interactions, tying for first out of methods in the DREAM4 100-gene in-silico network inference challenge. We demonstrate complementarity between this method and the two methods that take advantage of time-series data by combining the three into a pipeline whose ability to rank regulatory interactions is markedly improved compared to either method alone. Moreover, the pipeline is able to accurately predict the response of the system to new conditions (in this case new double knock-out genetic perturbations. Our evaluation of the performance of multiple methods for network inference suggests avenues for future methods development and provides simple considerations for genomic experimental design. Our code is publicly available at http://err.bio.nyu.edu/inferelator/.

  17. Real Interference Alignment

    CERN Document Server

    Motahari, Abolfazl Seyed; Maddah-Ali, Mohammad-Ali; Khandani, Amir Keyvan

    2010-01-01

    In this paper, we show that the total Degrees-Of-Freedoms (DOF) of the $K$-user Gaussian Interference Channel (GIC) can be achieved by incorporating a new alignment technique known as \\emph{real interference alignment}. This technique compared to its ancestor \\emph{vector interference alignment} performs on a single real line and exploits the properties of real numbers to provide optimal signaling. The real interference alignment relies on a new coding scheme in which several data streams having fractional multiplexing gains are sent by transmitters and interfering streams are aligned at receivers. The coding scheme is backed up by a recent result in the field of Diophantine approximation, which states that the convergence part of the Khintchine-Groshev theorem holds for points on non-degenerate manifolds.

  18. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  19. Weber's law for biological responses in autocatalytic networks of chemical reactions.

    Science.gov (United States)

    Inoue, Masayo; Kaneko, Kunihiko

    2011-07-22

    Biological responses often obey Weber's law, according to which the magnitude of the response depends only on the fold change in the external input. In this study, we demonstrate that a system involving a simple autocatalytic reaction shows such a response when a chemical is slowly synthesized by the reaction from a faster influx process. We also show that an autocatalytic reaction process occurring in series or in parallel can obey Weber's law with an oscillatory adaptive response. Considering the simplicity and ubiquity of the autocatalytic process, our proposed mechanism is thought to be commonly observed in biological reactions. PMID:21867048

  20. Mulan: Multiple-Sequence Local Alignment and Visualization for Studying Function and Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, I; Loots, G; Giardine, B; Hou, M; Ma, J; Hardison, R; Stubbs, L; Miller, W

    2004-07-14

    Multiple sequence alignment analysis is a powerful approach for understanding phylogenetic relationships, annotating genes and detecting functional regulatory elements. With a growing number of partly or fully sequenced vertebrate genomes, effective tools for performing multiple comparisons are required to accurately and efficiently assist biological discoveries. Here we introduce Mulan (http://mulan.dcode.org/), a novel method and a network server for comparing multiple draft and finished-quality sequences to identify functional elements conserved over evolutionary time. Mulan brings together several novel algorithms: the tba multi-aligner program for rapid identification of local sequence conservation and the multiTF program for detecting evolutionarily conserved transcription factor binding sites in multiple alignments. In addition, Mulan supports two-way communication with the GALA database; alignments of multiple species dynamically generated in GALA can be viewed in Mulan, and conserved transcription factor binding sites identified with Mulan/multiTF can be integrated and overlaid with extensive genome annotation data using GALA. Local multiple alignments computed by Mulan ensure reliable representation of short-and large-scale genomic rearrangements in distant organisms. Mulan allows for interactive modification of critical conservation parameters to differentially predict conserved regions in comparisons of both closely and distantly related species. We illustrate the uses and applications of the Mulan tool through multi-species comparisons of the GATA3 gene locus and the identification of elements that are conserved differently in avians than in other genomes allowing speculation on the evolution of birds. Source code for the aligners and the aligner-evaluation software can be freely downloaded from http://bio.cse.psu.edu/.

  1. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Directory of Open Access Journals (Sweden)

    de los Reyes Benildo G

    2008-04-01

    Full Text Available Abstract Background Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM, facilitates the inference. Identifying NMs defined by specific transcription factors (TF establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO information. Results The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1 Gene set enrichment

  2. Creating biological nanomaterials using synthetic biology

    OpenAIRE

    MaryJoe K Rice; Ruder, Warren C.

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic bi...

  3. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  4. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks

    KAUST Repository

    Lautenschläger, Karin

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (±0.6)×104cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, sofar for unknown reasons, recorded a slight but significantly higher TCC (1.3(±0.1)×105cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful

  5. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    Science.gov (United States)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment. PMID:22850067

  6. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    Science.gov (United States)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-07-12

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.

  7. Algorithm engineering for optimal alignment of protein structure distance matrices

    OpenAIRE

    Wohlers, Inken; Andonov, Rumen; Klau, Gunnar W.

    2011-01-01

    International audience Protein structural alignment is an important problem in computational biology. In this paper, we present first successes on provably optimal pairwise alignment of protein inter-residue distance matrices, using the popular Dali scoring function. We introduce the structural alignment problem formally, which enables us to express a variety of scoring functions used in previous work as special cases in a unified framework. Further, we propose the first mathematical model...

  8. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    Science.gov (United States)

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  9. Galaxy Alignments: An Overview

    Science.gov (United States)

    Joachimi, Benjamin; Cacciato, Marcello; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais

    2015-11-01

    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

  10. Galaxy alignments: An overview

    CERN Document Server

    Joachimi, Benjamin; Kitching, Thomas D; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais

    2015-01-01

    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

  11. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    The alignment of shape data to a common mean before its subsequent processing is an ubiquitous step within the area shape analysis. Current approaches to shape analysis or, as more specifically considered in this work, shape classification perform the alignment in a fully unsupervised way......, not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  12. Autworks: a cross-disease network biology application for Autism and related disorders

    OpenAIRE

    Nelson Tristan H; Jung Jae-Yoon; DeLuca Todd F; Hinebaugh Byron K; St Gabriel Kristian; Wall Dennis P

    2012-01-01

    Abstract Background The genetic etiology of autism is heterogeneous. Multiple disorders share genotypic and phenotypic traits with autism. Network based cross-disorder analysis can aid in the understanding and characterization of the molecular pathology of autism, but there are few tools that enable us to conduct cross-disorder analysis and to visualize the results. Description We have designed Autworks as a web portal to bring together gene interaction and gene-disease association data on au...

  13. The dynamics of living and thinking systems, biological networks, and the laws of physics

    OpenAIRE

    2004-01-01

    Discrete chaotic dynamics (DCD) of living and thinking systems are presented in a form of networks of interacting agents with the abilities of energy and information exchange. Special dynamical principles followed by the systems of basic discrete time and space difference equations are introduced. Emergent, self-organized behavior of complex living and thinking systems is presented by the different patterns generated by the DCD algorithms. Artificial life and brain systems based on DCD p...

  14. The dynamics of living and thinking systems, biological networks, and the laws of physics

    OpenAIRE

    V. Gontar

    2004-01-01

    Discrete chaotic dynamics (DCD) of living and thinking systems are presented in a form of networks of interacting agents with the abilities of energy and information exchange. Special dynamical principles followed by the systems of basic discrete time and space difference equations are introduced. Emergent, self-organized behavior of complex living and thinking systems is presented by the different patterns generated by the DCD algorithms. Artificial life and brai...

  15. Parametric motion control of robotic arms: A biologically based approach using neural networks

    Science.gov (United States)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  16. [Tabular excel editor for analysis of aligned nucleotide sequences].

    Science.gov (United States)

    Demkin, V V

    2010-01-01

    Excel platform was used for transition of results of multiple aligned nucleotide sequences obtained using the BLAST network service to the form appropriate for visual analysis and editing. Two macros operators for MS Excel 2007 were constructed. The array of aligned sequences transformed into Excel table and processed using macros operators is more appropriate for analysis than initial html data.

  17. MicroRNA functional network in pancreatic cancer: From biology to biomarkers of disease

    Indian Academy of Sciences (India)

    Jin Wang; Subrata Sen

    2011-08-01

    MicroRNAs (miRs), the 17- to 25-nucleotide-long non-coding RNAs, regulate expression of approximately 30% of the protein-coding genes at the post-transcriptional level and have emerged as critical components of the complex functional pathway networks controlling important cellular processes, such as proliferation, development, differentiation, stress response' and apoptosis. Abnormal expression levels of miRs, regulating critical cancerassociated pathways, have been implicated to play important roles in the oncogenic processes, functioning both as oncogenes and as tumour suppressor genes. Elucidation of the genetic networks regulated by the abnormally expressing miRs in cancer cells is proving to be extremely significant in understanding the role of these miRs in the induction of malignant-transformation-associated phenotypic changes. As a result, the miRs involved in the oncogenic transformation process are being investigated as novel biomarkers of disease detection and prognosis as well as potential therapeutic targets for human cancers. In this \\article, we review the existing literature in the field documenting the significance of aberrantly expressed miRs in human pancreatic cancer and discuss how the oncogenic miRs may be involved in the genetic networks regulating functional pathways deregulated in this malignancy.

  18. Theoretical approaches to holistic biological features: Pattern formation, neural networks and the brain-mind relation

    Indian Academy of Sciences (India)

    Alfred Gierer

    2002-06-01

    The topic of this article is the relation between bottom-up and top-down, reductionist and ``holistic” approaches to the solution of basic biological problems. While there is no doubt that the laws of physics apply to all events in space and time, including the domains of life, understanding biology depends not only on elucidating the role of the molecules involved, but, to an increasing extent, on systems theoretical approaches in diverse fields of the life sciences. Examples discussed in this article are the generation of spatial patterns in development by the interplay of autocatalysis and lateral inhibition; the evolution of integrating capabilities of the human brain, such as cognition-based empathy; and both neurobiological and epistemological aspects of scientific theories of consciousness and the mind.

  19. Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle

    OpenAIRE

    Alexandre, Pamela A.; Kogelman, Lisette; Santana, Miguel H. A.; Passarelli, Danielle; Pulz, Lidia H.; Fantinato-Neto, Paulo; Silva, Paulo L.; Leme, Paulo R; Strefezzi, Ricardo F.; Coutinho, Luiz L.; Ferraz, José B. S.; Eler, Joanie P.; Kadarmideen, Haja; Fukumasu, Heidge

    2015-01-01

    Background The selection of beef cattle for feed efficiency (FE) traits is very important not only for productive and economic efficiency but also for reduced environmental impact of livestock. Considering that FE is multifactorial and expensive to measure, the aim of this study was to identify biological functions and regulatory genes associated with this phenotype. Results Eight genes were differentially expressed between high and low feed efficient animals (HFE and LFE, respectively). Co-e...

  20. Tidal alignment of galaxies

    CERN Document Server

    Blazek, Jonathan; Seljak, Uroš

    2015-01-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between ...

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  4. Incremental Alignment Manifold Learning

    Institute of Scientific and Technical Information of China (English)

    Zhi Han; De-Yu Meng; Zong-Sen Xu; Nan-Nan Gu

    2011-01-01

    A new manifold learning method, called incremental alignment method (IAM), is proposed for nonlinear dimensionality reduction of high dimensional data with intrinsic low dimensionality. The main idea is to incrementally align low-dimensional coordinates of input data patch-by-patch to iteratively generate the representation of the entire dataset. The method consists of two major steps, the incremental step and the alignment step. The incremental step incrementally searches neighborhood patch to be aligned in the next step, and the alignment step iteratively aligns the low-dimensional coordinates of the neighborhood patch searched to generate the embeddings of the entire dataset. Compared with the existing manifold learning methods, the proposed method dominates in several aspects: high efficiency, easy out-of-sample extension, well metric-preserving, and averting of the local minima issue. All these properties are supported by a series of experiments performed on the synthetic and real-life datasets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically argued and experimentally demonstrated.

  5. MicroRNA-1 properties in cancer regulatory networks and tumor biology.

    Science.gov (United States)

    Weiss, Martin; Brandenburg, Lars-Ove; Burchardt, Martin; Stope, Matthias B

    2016-08-01

    Short non-coding microRNAs have been identified to orchestrate crucial mechanisms in cancer progression and treatment resistance. MicroRNAs are involved in posttranscriptional modulation of gene expression and therefore represent promising targets for anticancer therapy. As mircoRNA-1 (miR-1) exerted to be predominantly downregulated in the majority of examined tumors, miR-1 is classified to be a tumor suppressor with high potential to diminish tumor development and therapy resistance. Here we review the complex functionality of miR-1 in tumor biology. PMID:27286699

  6. Real-Time Illumination Invariant Face Detection Using Biologically Inspired Feature Set and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Reza Azad

    2014-06-01

    Full Text Available In recent years, face detection has been thoroughly studied due to its wide potential applications, including face recognition, human-computer interaction, video surveillance, etc.In this paper, a new and illumination invariant face detection method, based on features inspired by the human's visual cortexand applying BP neural network on the extracted featureset is proposed.A feature set is extracted from face and non-face images, by means of a feed-forward model, which contains a view and illumination invariant C2 features from all images in the dataset. Then, these C2 feature vector which derived from a cortex-like mechanism passed to a BP neural network. In the result part, the proposed approach is applied on FEI and Wild face detection databases and high accuracy rate is achieved. In addition, experimental results have demonstrated our proposed face detector outperforms the most of the successful face detection algorithms in the literature and gives the first best result on all tested challenging face detection databases.

  7. Enhanced Dynamic Algorithm of Genome Sequence Alignments

    Directory of Open Access Journals (Sweden)

    Arabi E. keshk

    2014-05-01

    Full Text Available The merging of biology and computer science has created a new field called computational biology that explore the capacities of computers to gain knowledge from biological data, bioinformatics. Computational biology is rooted in life sciences as well as computers, information sciences, and technologies. The main problem in computational biology is sequence alignment that is a way of arranging the sequences of DNA, RNA or protein to identify the region of similarity and relationship between sequences. This paper introduces an enhancement of dynamic algorithm of genome sequence alignment, which called EDAGSA. It is filling the three main diagonals without filling the entire matrix by the unused data. It gets the optimal solution with decreasing the execution time and therefore the performance is increased. To illustrate the effectiveness of optimizing the performance of the proposed algorithm, it is compared with the traditional methods such as Needleman-Wunsch, Smith-Waterman and longest common subsequence algorithms. Also, database is implemented for using the algorithm in multi-sequence alignments for searching the optimal sequence that matches the given sequence.

  8. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    Science.gov (United States)

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  9. Five Years of Designing Wireless Sensor Networks in the Doñana Biological Reserve (Spain): An Applications Approach

    Science.gov (United States)

    Larios, Diego F.; Barbancho, Julio; Sevillano, José L.; Rodríguez, Gustavo; Molina, Francisco J.; Gasull, Virginia G.; Mora-Merchan, Javier M.; León, Carlos

    2013-01-01

    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task. PMID:24025554

  10. Hybrid coordination-network-engineering for bridging cascaded channels to activate long persistent phosphorescence in the second biological window

    Science.gov (United States)

    Qin, Xixi; Li, Yang; Zhang, Ruili; Ren, Jinjun; Gecevicius, Mindaugas; Wu, Yiling; Sharafudeen, Kaniyarakkal; Dong, Guoping; Zhou, Shifeng; Ma, Zhijun; Qiu, Jianrong

    2016-02-01

    We present a novel “Top-down” strategy to design the long phosphorescent phosphors in the second biological transparency window via energy transfer. Inherence in this approach to material design involves an ingenious engineering for hybridizing the coordination networks of hosts, tailoring the topochemical configuration of dopants, and bridging a cascaded tunnel for transferring the persistent energy from traps, to sensitizers and then to acceptors. Another significance of this endeavour is to highlight a rational scheme for functionally important hosts and dopants, Cr/Nd co-doped Zn1-xCaxGa2O4 solid solutions. Such solid-solution is employed as an optimized host to take advantage of its characteristic trap site level to establish an electron reservoir and network parameters for the precipitation of activators Nd3+ and Cr3+. The results reveal that the strategy employed here has the great potential, as well as opens new opportunities for future new-wavelength, NIR phosphorescent phosphors fabrication with many potential multifunctional bio-imaging applications.

  11. Supramolecular assembly of biological molecules purified from bovine nerve cells: from microtubule bundles and necklaces to neurofilament networks

    International Nuclear Information System (INIS)

    With the completion of the human genome project, the biosciences community is beginning the daunting task of understanding the structures and functions of a large number of interacting biological macromolecules. Examples include the interacting molecules involved in the process of DNA condensation during the cell cycle, and in the formation of bundles and networks of filamentous actin proteins in cell attachment, motility and cytokinesis. In this proceedings paper we present examples of supramolecular assembly based on proteins derived from the vertebrate nerve cell cytoskeleton. The axonal cytoskeleton in vertebrate neurons provides a rich example of bundles and networks of neurofilaments, microtubules (MTs) and filamentous actin, where the nature of the interactions, structures, and structure-function correlations remains poorly understood. We describe synchrotron x-ray diffraction, electron microscopy, and optical imaging data, in reconstituted protein systems purified from bovine central nervous system, which reveal unexpected structures not predicted by current electrostatic theories of polyelectrolyte bundling, including three-dimensional MT bundles and two-dimensional MT necklaces

  12. Discovering Patterns in Biological Sequences by Optimal Segmentation

    OpenAIRE

    Bockhorst, Joseph; Jojic, Nebojsa

    2012-01-01

    Computational methods for discovering patterns of local correlations in sequences are important in computational biology. Here we show how to determine the optimal partitioning of aligned sequences into non-overlapping segments such that positions in the same segment are strongly correlated while positions in different segments are not. Our approach involves discovering the hidden variables of a Bayesian network that interact with observed sequences so as to form a set of independent mixture ...

  13. Ultra-large alignments using phylogeny-aware profiles.

    Science.gov (United States)

    Nguyen, Nam-Phuong D; Mirarab, Siavash; Kumar, Keerthana; Warnow, Tandy

    2015-01-01

    Many biological questions, including the estimation of deep evolutionary histories and the detection of remote homology between protein sequences, rely upon multiple sequence alignments and phylogenetic trees of large datasets. However, accurate large-scale multiple sequence alignment is very difficult, especially when the dataset contains fragmentary sequences. We present UPP, a multiple sequence alignment method that uses a new machine learning technique, the ensemble of hidden Markov models, which we propose here. UPP produces highly accurate alignments for both nucleotide and amino acid sequences, even on ultra-large datasets or datasets containing fragmentary sequences. UPP is available at https://github.com/smirarab/sepp . PMID:26076734

  14. Conformational fluctuations affect protein alignment in dilute liquid crystal media

    DEFF Research Database (Denmark)

    Louhivuori, M.; Otten, R.; Lindorff-Larsen, Kresten;

    2006-01-01

    The discovery of dilute liquid crystalline media to align biological macromolecules has opened many new possibilities to study protein and nucleic acid structures by NMR spectroscopy. We inspect the basic alignment phenomenon for an ensemble of protein conformations to deduce relative contributions...... of each member to the residual dipolar coupling signals. We find that molecular fluctuations can affect the alignment and discover a resulting emphasis of certain conformations. However, the internal fluctuations are largely uncorrelated with those of the alignment, implying that proteins have liquidlike...

  15. An Ant-Based Model for Multiple Sequence Alignment

    CERN Document Server

    Guinand, Frédéric

    2008-01-01

    Multiple sequence alignment is a key process in today's biology, and finding a relevant alignment of several sequences is much more challenging than just optimizing some improbable evaluation functions. Our approach for addressing multiple sequence alignment focuses on the building of structures in a new graph model: the factor graph model. This model relies on block-based formulation of the original problem, formulation that seems to be one of the most suitable ways for capturing evolutionary aspects of alignment. The structures are implicitly built by a colony of ants laying down pheromones in the factor graphs, according to relations between blocks belonging to the different sequences.

  16. Towards biological plausibility of electronic noses: A spiking neural network based approach for tea odour classification.

    Science.gov (United States)

    Sarkar, Sankho Turjo; Bhondekar, Amol P; Macaš, Martin; Kumar, Ritesh; Kaur, Rishemjit; Sharma, Anupma; Gulati, Ashu; Kumar, Amod

    2015-11-01

    The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis. PMID:26356597

  17. Towards biological plausibility of electronic noses: A spiking neural network based approach for tea odour classification.

    Science.gov (United States)

    Sarkar, Sankho Turjo; Bhondekar, Amol P; Macaš, Martin; Kumar, Ritesh; Kaur, Rishemjit; Sharma, Anupma; Gulati, Ashu; Kumar, Amod

    2015-11-01

    The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis.

  18. MaxAlign: maximizing usable data in an alignment

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Sackett, Peter Wad; Pedersen, Anders Gorm

    2007-01-01

    BACKGROUND: The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. RESULTS: MaxAlign is a program that optimizes...... the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical...... analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign...

  19. Proteomic dissection of biological pathways/processes through profiling protein-protein interaction networks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cellular functions, either under the normal or pathological conditions or under different stresses, are the results of the coordinated action of multiple proteins interacting in macromolecular complexes or assemblies. The precise determination of the specific composition of protein complexes, especially using scalable and high-throughput methods, represents a systematic approach toward revealing particular cellular biological functions. In this regard, the direct profiling protein-protein interactions (PPIs) represent an efficient way to dissect functional pathways for revealing novel protein functions. In this review, we illustrate the technological evolution for the large-scale and precise identification of PPIs toward higher physiologically relevant accuracy. These techniques aim at improving the efficiency of complex pull-down, the signal specificity and accuracy in distinguishing specific PPIs, and the accuracy of identifying physiological relevant PPIs. A newly developed streamline proteomic approach for mapping the binary relationship of PPIs in a protein complex is introduced.

  20. Partial Alignment for Improvement of Beam Transmission at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Hyuk; Kim, Dae-Il; Ahn, Tae-Sung; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The ion source and steering magnets were aligned for improving the beam transmission. It is expected that the re-alignment of accelerator components can reduce the beam loss which can occur for the dislocation among them. The center displacements of RFQ and 20MeV DTL are different to 100MeV DTL, so it is necessary to re-align in next maintenance period. 100MeV proton linac placed in KOMAC (Korea Multi-purpose Accelerator Complex) has been operated and provided to beam users. There are two maintenance periods every year, winter (Jan-Feb) and summer (Jul-Aug). In maintenance period, proton linac is re-aligned for the improvement of beam transmission. 4 newly steering magnet are installed in beam line. To align the steering magnet, network align in tunnel is measured using by laser tracker. In addition, the position of ion source is away from the position of RFQ in the result of the survey of network align. The alignment of steering magnet after installation is performed. At the same time, the position of accelerator component is checked and aligned partially.

  1. Ergodic Secret Alignment

    CERN Document Server

    Bassily, Raef

    2010-01-01

    In this paper, we introduce two new achievable schemes for the fading multiple access wiretap channel (MAC-WT). In the model that we consider, we assume that perfect knowledge of the state of all channels is available at all the nodes in a causal fashion. Our schemes use this knowledge together with the time varying nature of the channel model to align the interference from different users at the eavesdropper perfectly in a one-dimensional space while creating a higher dimensionality space for the interfering signals at the legitimate receiver hence allowing for better chance of recovery. While we achieve this alignment through signal scaling at the transmitters in our first scheme (scaling based alignment (SBA)), we let nature provide this alignment through the ergodicity of the channel coefficients in the second scheme (ergodic secret alignment (ESA)). For each scheme, we obtain the resulting achievable secrecy rate region. We show that the secrecy rates achieved by both schemes scale with SNR as 1/2log(SNR...

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2010-01-01

    For the last three months, the Muon Alignment group has focussed on providing a new, improved set of alignment constants for the end-of-year data reprocessing. These constants were delivered on time and approved by the CMS physics validation team on November 17. The new alignment incorporates several improvements over the previous one from March for nearly all sub-systems. Motivated by the loss of information from a hardware failure in May (an entire MAB was lost), the optical barrel alignment has moved from a modular, super-plane reconstruction, to a full, single loop calculation of the entire geometry for all DTs in stations 1, 2 and 3. This makes better use of the system redundancy, mitigating the effect of the information loss. Station 4 is factorised and added afterwards to make the system smaller (and therefore faster to run), and also because the MAB calibration at the MB4 zone is less precise. This new alignment procedure was tested at 0 T against photogrammetry resulting in precisions of the order...

  5. RNA Structural Alignments, Part I

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Gorodkin, Jan

    2014-01-01

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...

  6. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  7. New Markov-autocorrelation indices for re-evaluation of links in chemical and biological complex networks used in metabolomics, parasitology, neurosciences, and epidemiology.

    Science.gov (United States)

    González-Díaz, Humberto; Riera-Fernández, Pablo

    2012-12-21

    The development of new methods for the computational re-evaluation of links in chemical and biological complex networks is very important to save time and resources. The Moreau-Broto autocorrelation indices (MBis) are well-known topological indices (TIs) used in QSAR/QSPR studies to encode the structural information contained in molecular graphs. In addition, MBis and similar autocorrelation measures have been used to study other systems like, for example, proteins. In the present work, MBis are combined with Markov chains to develop a general class of stochastic MBis of order k (MB(k)) that is used to encode the structural information contained in different types of large complex networks. The MB(k) values obtained for the nodes (centralities) of these networks are used as input variables to seek QSPR-like equations (by means of linear discriminant analysis) in which the outputs are numerical scores S(L(ij)) that allow us to discriminate between connected and nonconnected nodes and therefore re-evaluate the connectivity of the whole network. The models developed in this work produced the following results in terms of overall accuracy for network reconstruction: metabolic networks (72.10%), parasite-host networks (88.70%), CoCoMac brain cortex coactivation network (81.89%), and fasciolosis spreading network (86.39%).

  8. Magnetically aligned supramolecular hydrogels.

    Science.gov (United States)

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-12-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2 , it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  9. The Childhood Solid Tumor Network: A new resource for the developmental biology and oncology research communities.

    Science.gov (United States)

    Stewart, Elizabeth; Federico, Sara; Karlstrom, Asa; Shelat, Anang; Sablauer, Andras; Pappo, Alberto; Dyer, Michael A

    2016-03-15

    Significant advances have been made over the past 25 years in our understanding of the most common adult solid tumors such as breast, colon, lung and prostate cancer. Much less is known about childhood solid tumors because they are rare and because they originate in developing organs during fetal development, childhood and adolescence. It can be very difficult to study the cellular origins of pediatric solid tumors in developing organs characterized by rapid proliferative expansion, growth factor signaling, developmental angiogenesis, programmed cell death, tissue reorganization and cell migration. Not only has the etiology of pediatric cancer remained elusive because of their developmental origins, but it also makes it more difficult to treat. Molecular targeted therapeutics that alter developmental pathway signaling may have devastating effects on normal organ development. Therefore, basic research focused on the mechanisms of development provides an essential foundation for pediatric solid tumor translational research. In this article, we describe new resources available for the developmental biology and oncology research communities. In a companion paper, we present the detailed characterization of an orthotopic xenograft of a pediatric solid tumor derived from sympathoadrenal lineage during development. PMID:26068307

  10. Strategic Alignment of Business Intelligence

    OpenAIRE

    Cederberg, Niclas

    2010-01-01

    This thesis is about the concept of strategic alignment of business intelligence. It is based on a theoretical foundation that is used to define and explain business intelligence, data warehousing and strategic alignment. By combining a number of different methods for strategic alignment a framework for alignment of business intelligence is suggested. This framework addresses all different aspects of business intelligence identified as relevant for strategic alignment of business intelligence...

  11. Orientation and Alignment Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Hartmann, J -M; Faucher, O; Gershnabel, E; Prior, Y; Averbukh, I Sh

    2015-01-01

    We present what is probably the simplest classical system featuring the echo phenomenon - a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation/alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_2 molecules excited by a pair of femtosecond laser pulses.

  12. Aligning Mental Representations

    DEFF Research Database (Denmark)

    Kano Glückstad, Fumiko

    2013-01-01

    This work introduces a framework that implements asymmetric communication theory proposed by Sperber and Wilson [1]. The framework applies a generalization model known as the Bayesian model of generalization (BMG) [2] for aligning knowledge possessed by two communicating parties. The work focuses...... on the application of the BMG to publicly available datasets, the Leuven natural concept database [3] representing semantic structures of domain knowledge possessed by individual subjects [3]. Results indicate that the BMG is potentially a model applicable to simulating the alignment of domain knowledge from...

  13. PILOT optical alignment

    Science.gov (United States)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  14. BioCreative V track 4: a shared task for the extraction of causal network information using the Biological Expression Language

    Science.gov (United States)

    Rinaldi, Fabio; Ellendorff, Tilia Renate; Madan, Sumit; Clematide, Simon; van der Lek, Adrian; Mevissen, Theo; Fluck, Juliane

    2016-01-01

    Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representation format which has been designed to be both human readable and machine processable. The specific goal of track 4 was to evaluate text mining systems capable of automatically constructing BEL statements from given evidence text, and of retrieving evidence text for given BEL statements. Given the complexity of the task, we designed an evaluation methodology which gives credit to partially correct statements. We identified various levels of information expressed by BEL statements, such as entities, functions, relations, and introduced an evaluation framework which rewards systems capable of delivering useful BEL fragments at each of these levels. The aim of this evaluation method is to help identify the characteristics of the systems which, if combined, would be most useful for achieving the overall goal of automatically constructing causal biological networks from text. PMID:27402677

  15. BioCreative V track 4: a shared task for the extraction of causal network information using the Biological Expression Language.

    Science.gov (United States)

    Rinaldi, Fabio; Ellendorff, Tilia Renate; Madan, Sumit; Clematide, Simon; van der Lek, Adrian; Mevissen, Theo; Fluck, Juliane

    2016-01-01

    Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representation format which has been designed to be both human readable and machine processable. The specific goal of track 4 was to evaluate text mining systems capable of automatically constructing BEL statements from given evidence text, and of retrieving evidence text for given BEL statements. Given the complexity of the task, we designed an evaluation methodology which gives credit to partially correct statements. We identified various levels of information expressed by BEL statements, such as entities, functions, relations, and introduced an evaluation framework which rewards systems capable of delivering useful BEL fragments at each of these levels. The aim of this evaluation method is to help identify the characteristics of the systems which, if combined, would be most useful for achieving the overall goal of automatically constructing causal biological networks from text. PMID:27402677

  16. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC

    Directory of Open Access Journals (Sweden)

    Miklós István

    2009-08-01

    Full Text Available Abstract Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/

  17. Systems biology study of mucopolysaccharidosis using a human metabolic reconstruction network.

    Science.gov (United States)

    Salazar, Diego A; Rodríguez-López, Alexander; Herreño, Angélica; Barbosa, Hector; Herrera, Juliana; Ardila, Andrea; Barreto, George E; González, Janneth; Alméciga-Díaz, Carlos J

    2016-02-01

    Mucopolysaccharidosis (MPS) is a group of lysosomal storage diseases (LSD), characterized by the deficiency of a lysosomal enzyme responsible for the degradation of glycosaminoglycans (GAG). This deficiency leads to the lysosomal accumulation of partially degraded GAG. Nevertheless, deficiency of a single lysosomal enzyme has been associated with impairment in other cell mechanism, such as apoptosis and redox balance. Although GAG analysis represents the main biomarker for MPS diagnosis, it has several limitations that can lead to a misdiagnosis, whereby the identification of new biomarkers represents an important issue for MPS. In this study, we used a system biology approach, through the use of a genome-scale human metabolic reconstruction to understand the effect of metabolism alterations in cell homeostasis and to identify potential new biomarkers in MPS. In-silico MPS models were generated by silencing of MPS-related enzymes, and were analyzed through a flux balance and variability analysis. We found that MPS models used approximately 2286 reactions to satisfy the objective function. Impaired reactions were mainly involved in cellular respiration, mitochondrial process, amino acid and lipid metabolism, and ion exchange. Metabolic changes were similar for MPS I and II, and MPS III A to C; while the remaining MPS showed unique metabolic profiles. Eight and thirteen potential high-confidence biomarkers were identified for MPS IVB and VII, respectively, which were associated with the secondary pathologic process of LSD. In vivo evaluation of predicted intermediate confidence biomarkers (β-hexosaminidase and β-glucoronidase) for MPS IVA and VI correlated with the in-silico prediction. These results show the potential of a computational human metabolic reconstruction to understand the molecular mechanisms this group of diseases, which can be used to identify new biomarkers for MPS. PMID:26276570

  18. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy.

    Science.gov (United States)

    D'Asti, Esterina; Rak, Janusz

    2016-04-01

    tumour settings, a property necessitating more personalised and biologically-based approaches to anticoagulation. PMID:27067976

  19. Sample-Align-D: A High Performance Multiple Sequence Alignment System using Phylogenetic Sampling and Domain Decomposition

    CERN Document Server

    Saeed, Fahad

    2009-01-01

    Multiple Sequence Alignment (MSA) is one of the most computationally intensive tasks in Computational Biology. Existing best known solutions for multiple sequence alignment take several hours (in some cases days) of computation time to align, for example, 2000 homologous sequences of average length 300. Inspired by the Sample Sort approach in parallel processing, in this paper we propose a highly scalable multiprocessor solution for the MSA problem in phylogenetically diverse sequences. Our method employs an intelligent scheme to partition the set of sequences into smaller subsets using kmer count based similarity index, referred to as k-mer rank. Each subset is then independently aligned in parallel using any sequential approach. Further fine tuning of the local alignments is achieved using constraints derived from a global ancestor of the entire set. The proposed Sample-Align-D Algorithm has been implemented on a cluster of workstations using MPI message passing library. The accuracy of the proposed solutio...

  20. Aligned Nanofibers for Regenerating Arteries, Nerves, and Muscles

    Science.gov (United States)

    McClendon, Mark Trosper

    Cells are the fundamental unit of the human body, and therefore the ability to control cell behavior is the most important challenge in regenerative medicine. Peptides are the language of biology which is why synthetic peptide amphiphile (PA) molecules hold great potential as a biomaterial. The work presented in this dissertation explores a variety of liquid crystalline PA nanofibers as a means for directing cell growth. Shaping the alignment of these nanofiber networks requires a deep understanding of their rheological properties which presents a difficult challenge as they exist in complex solid and liquid environments. Using PA molecules that self-assemble into high aspect ratio nanofibers and liquid crystalline solutions, this work investigates the influence of shear flow on macroscopic and microscopic nanofiber alignment. To this end, a shear force applied to PA solutions was systematically varied while the alignment was probed using small angle x-ray scattering. Nanofibers were found to respond to shear flow by aligning parallel to the flow direction. By changing pH and PA chemical sequence it was observed that increasing the interfiber electrostatic repulsive interactions resulted in a greater dependence on shear rate. Nanofiber solutions having greater repulsion did not drastically increase in alignment when the applied strain was increased by two orders of magnitude (1 s -1 to 100 s-1), while solutions with nanofibers having less repulsion increased there alignment four fold with the same strain increase. say exactly what you mean by resulted in greater dependence: did it result in fibers aligning under lower shear rates or higher rates--give the results Anionic PA solutions typically used to encapsulate living cells at neutral pH were found to require minimal shear rates, Bioluminescence and histology showed that stem cell engraftment into myofibers was greatly enhanced when delivered by PA gels compared to saline solution. The final section of this

  1. Comparison of Modules of Wild Type and Mutant Huntingtin and TP53 Protein Interaction Networks: Implications in Biological Processes and Functions

    Science.gov (United States)

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, Pradeep K.

    2013-01-01

    Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins separately and identify the structural modules of each of the networks. The functional role of these modules are then assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of significantly enriched () GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN, representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs. We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53 networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases where mutations alter the ability of the protein to interact with other proteins. PMID:23741403

  2. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  3. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  5. Parameters for accurate genome alignment

    Directory of Open Access Journals (Sweden)

    Hamada Michiaki

    2010-02-01

    Full Text Available Abstract Background Genome sequence alignments form the basis of much research. Genome alignment depends on various mundane but critical choices, such as how to mask repeats and which score parameters to use. Surprisingly, there has been no large-scale assessment of these choices using real genomic data. Moreover, rigorous procedures to control the rate of spurious alignment have not been employed. Results We have assessed 495 combinations of score parameters for alignment of animal, plant, and fungal genomes. As our gold-standard of accuracy, we used genome alignments implied by multiple alignments of proteins and of structural RNAs. We found the HOXD scoring schemes underlying alignments in the UCSC genome database to be far from optimal, and suggest better parameters. Higher values of the X-drop parameter are not always better. E-values accurately indicate the rate of spurious alignment, but only if tandem repeats are masked in a non-standard way. Finally, we show that γ-centroid (probabilistic alignment can find highly reliable subsets of aligned bases. Conclusions These results enable more accurate genome alignment, with reliability measures for local alignments and for individual aligned bases. This study was made possible by our new software, LAST, which can align vertebrate genomes in a few hours http://last.cbrc.jp/.

  6. An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm.

    Science.gov (United States)

    Kumar, Manish

    2015-01-01

    One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the population evolution and quality of the sequence aligned. The proposed method is assessed with protein benchmark dataset, e.g., BALIBASE, by comparing the obtained results to those obtained with other alignment algorithms, e.g., SAGA, RBT-GA, PRRP, HMMT, SB-PIMA, CLUSTALX, CLUSTAL W, DIALIGN and PILEUP8 etc. Experiments on a wide range of data have shown that the proposed algorithm is much better (it terms of score) than previously proposed algorithms in its ability to achieve high alignment quality. PMID:27065770

  7. Fast global sequence alignment technique

    KAUST Repository

    Bonny, Mohamed Talal

    2011-11-01

    Bioinformatics database is growing exponentially in size. Processing these large amount of data may take hours of time even if super computers are used. One of the most important processing tool in Bioinformatics is sequence alignment. We introduce fast alignment algorithm, called \\'Alignment By Scanning\\' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the \\'GAP\\' (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 51% enhancement in alignment score when it is compared with the GAP Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  8. Stress-sensitive neurosignalling in depression: an integrated network biology approach to candidate gene selection for genetic association analysis

    Directory of Open Access Journals (Sweden)

    J. Anke M. van Eekelen

    2012-07-01

    Full Text Available Genetic risk for depressive disorders is poorly understood despite consistent suggestions of a high heritable component. Most genetic studies have focused on risk associated with single variants, a strategy which has so far only yielded small (often non-replicable risks for depressive disorders. In this paper we argue that more substantial risks are likely to emerge from genetic variants acting in synergy within and across larger neurobiological systems (polygenic risk factors. We show how knowledge of major integrated neurobiological systems provides a robust basis for defining and testing theoretically defensible polygenic risk factors. We do this by describing the architecture of the overall stress response. Maladaptation via impaired stress responsiveness is central to the aetiology of depression and anxiety and provides a framework for a systems biology approach to candidate gene selection. We propose principles for identifying genes and gene networks within the neurosystems involved in the stress response and for defining polygenic risk factors based on the neurobiology of stress-related behaviour. We conclude that knowledge of the neurobiology of the stress response system is likely to play a central role in future efforts to improve genetic prediction of depression and related disorders.

  9. Comparison of Metabolic Network between Muscle and Intramuscular Adipose Tissues in Hanwoo Beef Cattle Using a Systems Biology Approach.

    Science.gov (United States)

    Lee, Hyun-Jeong; Park, Hye-Sun; Kim, Woonsu; Yoon, Duhak; Seo, Seongwon

    2014-01-01

    The interrelationship between muscle and adipose tissues plays a major role in determining the quality of carcass traits. The objective of this study was to compare metabolic differences between muscle and intramuscular adipose (IMA) tissues in the longissimus dorsi (LD) of Hanwoo (Bos taurus coreanae) using the RNA-seq technology and a systems biology approach. The LD sections between the 6th and 7th ribs were removed from nine (each of three cows, steers, and bulls) Hanwoo beef cattle (carcass weight of 430.2 ± 40.66 kg) immediately after slaughter. The total mRNA from muscle, IMA, and subcutaneous adipose and omental adipose tissues were isolated and sequenced. The reads that passed quality control were mapped onto the bovine reference genome (build bosTau6), and differentially expressed genes across tissues were identified. The KEGG pathway enrichment tests revealed the opposite direction of metabolic regulation between muscle and IMA. Metabolic gene network analysis clearly indicated that oxidative metabolism was upregulated in muscle and downregulated in IMA. Interestingly, pathways for regulating cell adhesion, structure, and integrity and chemokine signaling pathway were upregulated in IMA and downregulated in muscle. It is thus inferred that IMA may play an important role in the regulation of development and structure of the LD tissues and muscle/adipose communication.

  10. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.

    Science.gov (United States)

    Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

    2010-01-20

    An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance. PMID:20090802

  11. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure

    Science.gov (United States)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-01

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  12. MUSE alignment onto VLT

    Science.gov (United States)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  13. Dynamics of carbon nanotube alignment by electric fields

    International Nuclear Information System (INIS)

    The dynamics of multiwall carbon nanotube (MWCNT) alignment inside viscous media using electric fields is investigated. Electrical current measurements were performed in situ during the application of an electric field to liquid solutions of deionized water or dissolved polymer containing MWCNTs. The variation of electrical current over time was associated to the dynamics of the MWCNT network formation. The influence of the electric field magnitude and frequency on the MWCNT network formation was studied. MWCNT migration towards the negative electrode was observed when a direct current electric field was applied, whereas formation of an aligned MWCNT network was achieved for an alternating current electric field. The increase of the electric field frequency promotes a faster formation of an aligned MWCNT network and thinner MWCNT bundles. A higher viscosity of the liquid medium yields slower MWCNT alignment evidenced by a slower change of electrical current through the viscous system. An analytical model based on the dielectrophoresis-induced torque, which considers the viscosity of the medium, is also proposed to explain the dynamics of MWCNT alignment. Furthermore, aligned MWCNT/polysulfone solid composites were fabricated and electrically characterized. The solid composites presented anisotropic electrical conductivity, which was more evident for low MWCNT concentrations (0.1–0.2 wt%). (paper)

  14. Formatt: Correcting protein multiple structural alignments by incorporating sequence alignment

    Directory of Open Access Journals (Sweden)

    Daniels Noah M

    2012-10-01

    Full Text Available Abstract Background The quality of multiple protein structure alignments are usually computed and assessed based on geometric functions of the coordinates of the backbone atoms from the protein chains. These purely geometric methods do not utilize directly protein sequence similarity, and in fact, determining the proper way to incorporate sequence similarity measures into the construction and assessment of protein multiple structure alignments has proved surprisingly difficult. Results We present Formatt, a multiple structure alignment based on the Matt purely geometric multiple structure alignment program, that also takes into account sequence similarity when constructing alignments. We show that Formatt outperforms Matt and other popular structure alignment programs on the popular HOMSTRAD benchmark. For the SABMark twilight zone benchmark set that captures more remote homology, Formatt and Matt outperform other programs; depending on choice of embedded sequence aligner, Formatt produces either better sequence and structural alignments with a smaller core size than Matt, or similarly sized alignments with better sequence similarity, for a small cost in average RMSD. Conclusions Considering sequence information as well as purely geometric information seems to improve quality of multiple structure alignments, though defining what constitutes the best alignment when sequence and structural measures would suggest different alignments remains a difficult open question.

  15. Inflation by alignment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [PH -TH Division, CERN,CH-1211, Genève 23 (Switzerland); Department of Physics & Astronomy, McMaster University,1280 Main Street West, Hamilton ON (Canada); Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo ON (Canada); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  16. Orbit IMU alignment: Error analysis

    Science.gov (United States)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  17. Nuclear reactor alignment plate configuration

    Science.gov (United States)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  18. Alignment of concerns

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn;

    E-health promises to enable and support active patient participation in chronic care. However, these fairly recent innovations are complicated matters and emphasize significant challenges, such as patients’ and clinicians’ different ways of conceptualizing disease and illness. Informed by insights...... from medical phenomenology and our own empirical work in telemonitoring and medical care of heart patients, we propose a design rationale for e-health systems conceptualized as the ‘alignment of concerns’....

  19. Alignment reference device

    Science.gov (United States)

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  20. Seeking the perfect alignment

    CERN Multimedia

    2002-01-01

    The first full-scale tests of the ATLAS Muon Spectrometer are about to begin in Prévessin. The set-up includes several layers of Monitored Drift Tubes Chambers (MDTs) and will allow tests of the performance of the detectors and of their highly accurate alignment system.   Monitored Drift Chambers in Building 887 in Prévessin, where they are just about to be tested. Muon chambers are keeping the ATLAS Muon Spectrometer team quite busy this summer. Now that most people go on holiday, the beam and alignment tests for these chambers are just starting. These chambers will measure with high accuracy the momentum of high-energy muons, and this implies very demanding requirements for their alignment. The MDT chambers consist of drift tubes, which are gas-filled metal tubes, 3 cm in diameter, with wires running down their axes. With high voltage between the wire and the tube wall, the ionisation due to traversing muons is detected as electrical pulses. With careful timing of the pulses, the position of the muon t...