WorldWideScience

Sample records for alice tpc including

  1. ALICE installs its TPC

    CERN Multimedia

    2007-01-01

    The ALICE time projection chamber has been transported to the experimental cavern. The handling of this extremely fragile detector was a long and delicate process. The lorry transporting the TPC took one hour to travel from the assembly hall to the access shaft...200 metres away.The TPC was lowered into the ALICE experimental cavern with extreme care. The gap between the structure and the shaft wall was only 10 centimetres! For ALICE the year started with a flurry of activity...but at a snail's pace. On 8 January, the day CERN reopened after the end-of-year break, teams from ALICE and the TS Department began the transportation of the experiment's time projection chamber (TPC), the largest ever built. This 5-metre long and 5-m diameter cylinder was transported from the clean room where it had been assembled to the experimental cavern. The 300-metre journey took no less than four days! Since the TPC is an extremely fragile object, the utmost precautions were exercised in its transportation. The TPC, which is d...

  2. The ALICE TPC

    CERN Document Server

    Garabatos, C

    2004-01-01

    We describe the ALICE TPC, with emphasis on the design features which are driven by the physics requirements of the detector. In particular, the gas choice and composition, Ne-CO/sub 2/ Ý90-10¿, as well as the unprecedentedly high gain for a TPC (2*10/sup 40/), are direct consequences of the expected performance in the high- multiplicity environment of heavy-ion collisions at the LHC. The characteristics of this mixture are discussed and a viable way of improving the stability of detectors working under these conditions, namely the addition of nitrogen into the mixture, is presented. This results in a more effective Penning transfer of neon excited states onto ionisation of the quencher at no penalty for the charge transport and amplification properties.

  3. Simulation and Calibration of the ALICE TPC including innovative Space Charge Calculations

    CERN Document Server

    Rossegger, S; Riegler, W; Betev, L

    2009-01-01

    ALICE is one of the four main particle detectors located around the LHC accelerator at CERN. It is particularly designed to study the physics of the quark-gluon plasma by means of nucleus--nucleus collisions at center-of-mass energies up to 5.5 TeV per nucleon pair. A Time-Projection Chamber (TPC) was chosen to be its central-sub-detector due to its low mass properties and its capabilities to provide a robust and accurate Particle Identification even within ultra-high multiplicity environments (up to 8000 tracks per unit of eta). To achieve the required physics performance, the space point resolution of the TPC must be in the order of 0.2 mm. Due to its gigantic size of 5~m in diameter and 5~m in length, corrections for static as well as dynamic effects are indispensable in order to accomplish the design goal. The research presented covers all major issues relevant for the final calibration and therefore the enhancement of the TPC performance in terms of resolution. The main focus was to distinguish between t...

  4. Inbetriebnahme und Kalibrierung der ALICE-TPC

    OpenAIRE

    Wiechula, Jens

    2010-01-01

    ALICE (A Large Ion Collider Experiment), is the dedicated heavy-ion experiment at the Large Hadron Collider (LHC) at CERN. It is optimised to reconstruct and identify the particles created in a lead-lead collision with a centre of mass energy of 5.5TeV. The main tracking detector is a large-volume time-projection chamber (TPC). With an active volume of about 88m^3 and a total readout area of 32.5m^2 it is the most challenging TPC ever build. A central electrode divides the 5m long detector in...

  5. ALICE Time Projection Chamber (TPC) Readout Sector in Lab

    CERN Multimedia

    2003-01-01

    The Time Projection Chamber (TPC) is the main particle tracking detector in ALICE. Charged particles crossing the gas of the TPC knock electrons out of their atoms, which drift in the eletric field. By measuring the arrival of electrons at the end of the chamber, at segments such as the one shown here, the TPC will reconstruct the paths of the original charged particles.

  6. Inbetriebnahme und Kalibrierung der ALICE-TPC

    CERN Document Server

    Wiechula, Jens

    2008-01-01

    ALICE (A Large Ion Collider Experiment), is the dedicated heavy-ion experiment at the Large Hadron Collider (LHC) at CERN. It is optimised to reconstruct and identify the particles created in a lead-lead collision with a centre of mass energy of 5.5TeV. The main tracking detector is a large-volume time-projection chamber (TPC). With an active volume of about 88m^3 and a total readout area of 32.5m^2 it is the most challenging TPC ever build. A central electrode divides the 5m long detector into two drift regions. Each readout side is subdivided into 18 inner and 18 outer multi-wire proportional read-out chambers. The readout area is subdivide into 557568 pads, where each pad is read out by and electronics chanin. A complex calibration is needed in order to reach the design position-resolution of the reconstructed particle tracks of about 200um. One part of the calibration lies in understanding the electronic-response. The work at hand presents results of the pedestal and noise behaviour of the front-end elect...

  7. Online drift velocity calibration with the laser system of the ALICE-TPC

    International Nuclear Information System (INIS)

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of ALICE which was designed to perform well at multiplicities of up to 20000 charged primary and secondary tracks emerging from Pb-Pb collisions. For a precise reconstruction of particle tracks in the TPC, the calibration of the drift velocity, which provides time information and thus the z position of the traversing particles, is essential. In this presentation an online method for the calibration of the drift velocity is presented, using the TPC laser system. The resulting time dependent drift velocity correction parameters are entered into a database and provide start values for the offline reconstruction process of ALICE. Even though no tracking information is used, the online drift velocity calibration is in agreement with the full offline calibration including tracking on the level of 2 x 10-4.

  8. Upgrade of the ALICE TPC FEE online radiation monitoring system

    International Nuclear Information System (INIS)

    This paper presents the radiation monitoring system on the Readout Control Unit (RCU) of the the ALICE TPC Front End Electronics. In Run 1, Single Event Upsets (SEUs) in the configuration memory of an SRAM based FPGA were counted, and the results from different run periods with stable beam conditions are presented. For Run 2, a new RCU, the RCU2, has been designed in order to achieve higher data readout rates and increase radiation tolerance. The RCU2 also includes a new radiation monitor solution with increased sensitivity, which is based on counting the number of SEUs in dedicated SRAM memories. The paper presents this new solution together with the results from the targeted irradiation campaigns

  9. Upgrade of the ALICE-TPC read-out electronics

    Energy Technology Data Exchange (ETDEWEB)

    Junique, A; Mager, M; Musa, L; Rehman, A Ur, E-mail: Magnus.Mager@cern.ch [CERN, Geneva (Switzerland)

    2010-12-15

    The ALICE experiment at CERN LHC employs a large volume time projection chamber (TPC) as its main tracking device. Instigated by analyses indicating that the high level trigger is capable of sifting events with rare physics probes, it is endeavoured to read out the TPC an order of magnitude faster then was reckoned during the design of its read-out electronics. Based on an analysis of the read-out performance of the current system, an upgrade of the front-end read-out network is proposed. The performance of the foreseen architecture is simulated with raw data from real 7 TeV pp collisions. Events are superimposed in order to emulate the future ALICE running conditions: high multiplicity events generated either by PbPb collisions or by the superposition (pile-up) of a large number of pp collisions. The first prototype of the main building block has been produced and characterised, demonstrating the feasibility of the approach.

  10. The Readout Control Unit of the ALICE TPC

    CERN Document Server

    Lien, J A; Musa, L

    2004-01-01

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of the central barrel of the ALICE (A Large Ion Collider) Experiment at the Large Hadron Collider (LHC), being constructed at CERN, Geneva. It is a 88 m$^{3}$ cylinder filled with gas and divided into two drift regions by the central electrode located at its axial center. The readout chambers of the TPC are multi-wire proportional chambers with cathode pad readout. About 570 000 pads are read-out by an electronics chain of amplification, digitalization and pre-processing. One of the challenges in designing the TPC for ALICE is the design of Front End Electronics (FEE) to cope with the data rates and the channel occupancy. The Readout Control Unit (RCU), which is presented in this work, is designed to control and monitor the Front End Electronics, and to collect and ship data to the High Level Trigger and the Data Acquisition System, via the Detector Data Link (DDL - optical fibre). The RCU must be capable of reading out up to 200 Mbytes/s f...

  11. A continuous read-out TPC for the ALICE upgrade

    Science.gov (United States)

    Lippmann, C.

    2016-07-01

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb-Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  12. ALICE TPC upgrade for High-Rate operations

    CERN Document Server

    ,

    2015-01-01

    A new type of Time Projection Chamber (TPC) has been proposed for the upgrade of the ALICE (A Large Ion Collider Experiment at CERN) so as to cater to the high luminosity environment expected at the Large Hadron Collider (LHC) facility in future. This device will rely on the intrinsic ion back flow (IBF) suppression of Micro-Pattern Gas Detectors (MPGD) based technology in particular the Gas Electron Multiplier (GEM). GEM is to minimise the space charge effect in the main drift volume and thus will not require the standard gating grid and the resulting intrinsic dead time. It will thus be possible to read all minimum bias Pb--Pb events that the Large Hadron Collider (LHC) will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era in Run 3. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1~TByte/s. The new read-out chambers will consist of stacks of 4 GEM foils combining different hole pitches. In addition to a low ion...

  13. The ALICE TPC Readout Electronics Design, performance optimization and verification of the DAQ circuit

    CERN Document Server

    Attiq, urRehman; Dieter, Røhrich

    2012-12-03

    ALICE (A Large Ion Collider Experiment) is a dedicated heavy-ion experiment at CERN’s LHC (Large Hadron Collider). It is designed to study the physics of strongly interacting matter and the quark-gluon plasma in heavy-ion collisions. It contains a large volume Time Projection Chamber (TPC) as its main tracking device. The ALICE TPC is the largest ever built gaseous TPC, both in terms of dimensions and number of read-out channels (557,578). A total number of 128 channels are packed in one TPC Front End Card (FEC) and 4,356 FECs are distributed over 216 independent readout partitions. Each readout partition steered by a single Readout Control Unit (RCU) functions as an independent unit in the data acquisition system of the TPC. The RCU functions as an interface between the FECs, Data AcQuisition system (DAQ), the Trigger and Timing Circuit (TTC) and the Detector Control System (DCS). The ALICE TPC readout electronics is in operation since the start of the LHC in November 2009. The primary objectives of the wo...

  14. Electronic Devices for Controlling the Very High Voltage in the ALICE TPC Detector

    CERN Document Server

    Boccioli, Marco

    2007-01-01

    The Time Projection Chamber (TPC) is the core of the ALICE experiment at CERN. The TPC Very High Voltage project covers the development of the control system for the power supply that generates the 100kV necessary for the drift field in the TPC. This paper reports on the project progress, introducing the control system architecture from the electronics up to the control level. All the electronic devices will be described, highlighting their communication issues, and the challenges in integrating these devices in a PLC-based control system.

  15. RCU2-The ALICE TPC readout electronics consolidation for Run2

    CERN Document Server

    Alme, J; Christiansen, P; Yang, S; Lien, J; Velure, A; Rehman, A Ur; Torgersen, C; David, E; Gunji, T; Osterman, L; Ullaland, K; Roed, K; Tarantola, A; Langoy, R; Appelshaeuser, H; Oskarsson, A; Alt, T; Costa, F; Bratrud, L; Zhao, C; Lippmann, C; Torsvik, I Nikolai; Kiss, T

    2013-01-01

    This paper presents the solution for optimization of the ALICE TPC readout for running at full energy in the Run2 period after 2014. For the data taking with heavy ion beams an event readout rate of 400 Hz with a low dead time is envisaged for the ALICE central barrel detectors during these three years. A new component, the Readout Control Unit 2 (RCU2), is being designed to increase the present readout rate by a factor of up to 2.6. The immunity to radiation induced errors will also be significantly improved by the new design.

  16. The PreAmplifier ShAper for the ALICE TPC detector

    International Nuclear Information System (INIS)

    In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18–25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e+17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm2 and is implemented in AMS's C35B3C1 0.35μm CMOS technology. Detailed characterization tests were performed on about 48 000 PASA circuits before mounting them on the ALICE TPC front-end cards. After more than two years of operation of the ALICE TPC with p–p and Pb–Pb collisions, the PASA has demonstrated to fulfill all requirements.

  17. Studies of characteristics of triple GEM detector for the ALICE-TPC upgrade

    International Nuclear Information System (INIS)

    Gas Electron Multiplier (GEM) is a novel gas detector in the field of radiation detection. GEM detectors have tremendous advantages over other types gas detectors like high rate handling capability with high efficiency and very low ion back flow (IBF). These detectors are most suitable for the use in the future experiments in high-energy proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) at CERN and Facility for Antiproton and Ion Research (FAIR) at GSI. A Large Ion Collider Experiment (ALICE) at the LHC is a dedicated experiment for the study of Quark Gluon Plasma (QGP). In few years, the data taking rate for Pb-Pb collisions will increase by 100 times to 50 KHz. The ALICE Time Projection Chamber (TPC) is the main tracking detector in ALICE. It is planned that by the year 2018, GEM detectors will replace the present readout planes of TPC. The goal of the present study is to characterize the GEM detector to achieve the performance goal of the TPC

  18. Particle Identification in Jets and High-Multiplicity pp Events with the ALICE TPC

    CERN Document Server

    AUTHOR|(SzGeCERN)683272; Vogelsang, Werner

    The spectra of identified particles in a collision experiment comprise crucial information about the underlying physical processes. The ALICE experiment has powerful Particle IDentification (PID) capabilities, which are unique at the Large Hadron Collider (LHC). In this thesis, a statistical PID method based on the specific energy loss d$E$/d$x$ in the ALICE Time Projection Chamber (TPC) is developed: the TPC Multi-Template Fit (MTF). The MTF allows for the extraction of identified charged particle spectra in a wide momentum range, which extends from about 150 MeV/$c$ to above 20 GeV/$c$. The TPC PID requires a detailed modelling of the TPC d$E$/d$x$ response for momenta above 2-3 GeV/$c$. A framework is developed that allows for the determination of the model parameters and for evaluating the PID information of charged particles. With the MTF, the transverse momentum $p_{\\mathrm{T}}$ spectra of charged pions, kaons and protons at mid-rapidity ($|\\eta| < 0.9$) are measured for pp collisions at $\\sqrt{s}$ ...

  19. First performance results of the ALICE TPC Readout Control Unit 2

    Science.gov (United States)

    Zhao, C.; Alme, J.; Alt, T.; Appelshäuser, H.; Bratrud, L.; Castro, A.; Costa, F.; David, E.; Gunji, T.; Kirsch, S.; Kiss, T.; Langøy, R.; Lien, J.; Lippmann, C.; Oskarsson, A.; Rehman, A. Ur; Røed, K.; Röhrich, D.; Sekiguchi, Y.; Stuart, M.; Ullaland, K.; Velure, A.; Yang, S.; Österman, L.

    2016-01-01

    This paper presents the first performance results of the ALICE TPC Readout Control Unit 2 (RCU2). With the upgraded hardware typology and the new readout scheme in FPGA design, the RCU2 is designed to achieve twice the readout speed of the present Readout Control Unit. Design choices such as using the flash-based Microsemi Smartfusion2 FPGA and applying mitigation techniques in interfaces and FPGA design ensure a high degree of radiation tolerance. This paper presents the system level irradiation test results as well as the first commissioning results of the RCU2. Furthermore, it will be concluded with a discussion of the planned updates in firmware.

  20. Quality assurance of GEM foils in the framework of the TPC upgrade in the ALICE experiment

    CERN Document Server

    Ozcelik, Melih Arslan

    2016-01-01

    In the framework of the TPC upgrade of the ALICE Experiment, new readout chambers will be installed during the LHC long shutdown 2, which is scheduled to start in July 2018. The current MWPCs (Multi Wire Proportional Chambers) will be replaced by readout chambers consisting of GEM (Gas Electron Multipliers) foils in order to meet the increasing readout rate requirements. QA (Quality Assurance) tests on the GEMs are performed to classify the foils. In this report we present the work done during the CERN Summer Student Programme 2016.

  1. The PreAmplifier ShAper for the ALICE TPC-Detector

    CERN Document Server

    Soltveit, H K; Braun-Munzinger, P; Musa, L; Gustafsson, H A; Bonnes, U; Oeschler, H; Osterman, L; Lang, S

    2012-01-01

    In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18-25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e + 17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm$^2$ and is implemented in AMS's C35B3C1 0.35 micron CMOS technology. Detailed characterization test were performed on about 48000 PASA circuits before m...

  2. ALICE TPC Upgrade Activities for LHC Run 3 and Beyond: "SAMPA ASIC Tests with GEM Detector Prototype"

    OpenAIRE

    Engeseth, Kristian Philip

    2015-01-01

    The Time Projection Chamber (TPC) signal readout of the ALICE detector is being upgraded to accommodate the higher collision rates and -energies during LHC Run 3 in 2018. Due to the increased collision rates, the TPC drift time of about 100 μs will be 5 times longer than the average time between interactions, rendering the presently employed gating of the TPC wire-chambers insufficient. Therefore, a Gas Electron Multiplier (GEM) based system will be replacing the wire-chambers. In addition, t...

  3. Status of the R&D activities for the upgrade of the ALICE TPC

    CERN Document Server

    Deisting, Alexander

    2016-01-01

    In order to cope with the high interaction rates provided by the LHC after the long shut-down 2, the ALICE TPC needs to be upgraded. After the upgrade the TPC will run in a continuous mode, without any degradation of the momentum and $\\textrm{d}E/\\textrm{d}x$ resolution compared to the performance of the present TPC. Since readout by MWPCs is no longer feasible with these requirements, new technologies have to be employed. In the new readout the electron amplification is provided by a stack of four GEM foils. Here foils with a standard hole pitch of 140um as well as large pitch foils (280um) are used. Their high voltage settings and orientation have been optimised to provide an energy resolution of $\\sigma_{{E}}/{E}\\leq12\\%$ at the photopeak of $^{55}\\textrm{Fe}$. At the same settings the Ion BackFlow into the drift volume is less than 1% of the effective number of ions produced during gas amplification and the primary ionisations. This is necessary to prevent the accumulation of space charge, which eventuall...

  4. Lossy compression of TPC data and trajectory tracking efficiency for the ALICE experiment

    CERN Document Server

    Nicolaucig, A; Mattavelli, M

    2003-01-01

    In this paper a quasi-lossless algorithm for the on-line compression of the data generated by the Time Projection Chamber (TPC) detector of the ALICE experiment at CERN is described. The algorithm is based on a lossy source code modeling technique, i.e. it is based on a source model which is lossy if samples of the TPC signal are considered one by one; conversely, the source model is lossless or quasi-lossless if some physical quantities that are of main interest for the experiment are considered. These quantities are the area and the location of the center of mass of each TPC signal pulse, representing the pulse charge and the time localization of the pulse. So as to evaluate the consequences of the error introduced by the lossy compression process, the results of the trajectory tracking algorithms that process data off-line after the experiment are analyzed, in particular, versus their sensibility to the noise introduced by the compression. Two different versions of these off- line algorithms are described,...

  5. Fast TPC Online Tracking on GPUs and Asynchronous Data Processing in the ALICE HLT to facilitate Online Calibration

    Science.gov (United States)

    Rohr, David; Gorbunov, Sergey; Krzewicki, Mikolaj; Breitner, Timo; Kretz, Matthias; Lindenstruth, Volker

    2015-12-01

    ALICE (A Large Heavy Ion Experiment) is one of the four major experiments at the Large Hadron Collider (LHC) at CERN, which is today the most powerful particle accelerator worldwide. The High Level Trigger (HLT) is an online compute farm of about 200 nodes, which reconstructs events measured by the ALICE detector in real-time. The HLT uses a custom online data-transport framework to distribute data and workload among the compute nodes. ALICE employs several calibration-sensitive subdetectors, e.g. the TPC (Time Projection Chamber). For a precise reconstruction, the HLT has to perform the calibration online. Online- calibration can make certain Offline calibration steps obsolete and can thus speed up Offline analysis. Looking forward to ALICE Run III starting in 2020, online calibration becomes a necessity. The main detector used for track reconstruction is the TPC. Reconstructing the trajectories in the TPC is the most compute-intense step during event reconstruction. Therefore, a fast tracking implementation is of great importance. Reconstructed TPC tracks build the basis for the calibration making a fast online-tracking mandatory. We present several components developed for the ALICE High Level Trigger to perform fast event reconstruction and to provide features required for online calibration. As first topic, we present our TPC tracker, which employs GPUs to speed up the processing, and which bases on a Cellular Automaton and on the Kalman filter. Our TPC tracking algorithm has been successfully used in 2011 and 2012 in the lead-lead and the proton-lead runs. We have improved it to leverage features of newer GPUs and we have ported it to support OpenCL, CUDA, and CPUs with a single common source code. This makes us vendor independent. As second topic, we present framework extensions required for online calibration. The extensions, however, are generic and can be used for other purposes as well. We have extended the framework to support asynchronous compute

  6. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    CERN Document Server

    Gasik, Piotr

    2016-01-01

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019-2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of $\\sim$0.76 m$^2$ it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  7. The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    CERN Document Server

    Alme, J; Appelshäuser, H; Bablok, S; Bialas, N; Bolgen, R; Bonnes, U; Bramm, R; Braun-Munzinger, P; Campagnolo, R; Christiansen, P; Dobrin, A; Engster, C; Fehlker, D; Foka, P; Frankenfeld, U; Gaardhøje, J J; Garabatos, C; Glässel, P; Gonzalez Gutierrez, C; Gros, P; Gustafsson, H A; Helstrup, H; Hoch, M; Ivanov, M; Janik, R; Junique, A; Kalweit, A; Keidel, R; Kniege, S; Kowalski, M; Larsen, D T; Lesenechal, Y; Lenoir, P; Lindegaard, N; Lippmann, C; Mager, M; Mast, M; Matyja, A; Munkejord, M; Musa, L; Nielsen, B S; Nikolic, V; Oeschler, H; Olsen, E K; Oskarsson, A; Osterman, L; Pikna, M; Rehman, A; Renault, G; Renfordt, R; Rossegger, S; Röhrich, D; Røed, K; Richter, M; Rueshmann, G; Rybicki, A; Sann, H; Schmidt, H R; Siska, M; Sitár, B; Soegaard, C; Soltveit, H K; Soyk, D; Stachel, J; Stelzer, H; Stenlund, E; Stock, R; Strmen, P; Szarka, I; Ullaland, K; Vranic, D; Veenhof, R; Westergaard, J; Wiechula, J; Windelband, B

    2010-01-01

    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate result...

  8. Firmware Development and Integration for ALICE TPC and PHOS Front-end Electronics A Trigger Based Readout and Control System operating in a Radiation Environment

    CERN Document Server

    AUTHOR|(CDS)2068589; Rohrich, Dieter

    2008-01-01

    The readout electronics in PHOS and TPC - two of the major detectors of the ALICE experiment at the LHC - consist of a set of Front End Cards (FECs) that digitize, process and buffer the data from the detector sensors. The FECs are connected to a Readout Control Unit (RCU) via two sets of custom made PCB backplanes. For PHOS, 28 FECs are connected to one RCU, while for TPC the number is varying from 18 to 25 FECs depending on location. The RCU is in charge of the data readout, including reception and distribution of triggers and in moving the data from the FECs to the Data Acquisition System. In addition it does low level control tasks. The RCU consists of an RCU Motherboard that hosts a Detector Control System (DCS) board and a Source Interface Unit. The DCS board is an embedded computer running Linux that controls the readout electronics. All the mentioned devices are implemented in commercial grade SRAM based Field Programmable Gate Arrays (FPGAs). Even if these devices are not very radiation tolerant, the...

  9. Real-time TPC Analysis with the ALICE High-Level Trigger

    CERN Document Server

    Lindenstruth, V; Röhrich, D; Skaali, B; Steinbeck, T M; Stock, R; Tilsner, H; Ullaland, K; Vestbø, A S; Vik, T

    2004-01-01

    The ALICE High-Level Trigger processes data online, to either select interesting (sub-) events, or to compress data efficiently by modeling techniques. Focusing on the main data source, the Time Projection Chamber, the architecure of the system and the current state of the tracking and compression methods are outlined.

  10. ALICE chip processor

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This tiny chip provides data processing for the time projection chamber on ALICE. Known as the ALICE TPC Read Out (ALTRO), this device was designed to minimize the size and power consumption of the TPC front end electronics. This single chip contains 16 low-power analogue-to-digital converters with six million transistors of digital processing and 8 kbits of data storage.

  11. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  12. ALICE comes to life

    CERN Multimedia

    2002-01-01

    On 26 March, a first major part of the ALICE detector arrived at CERN: one of the four cylinders in composite material for the Time Projection Chamber (TPC). The construction of the TPC 'field cage' (the structure that defines the configuration of the electrical field of the TPC) is the fruit of exceptional collaboration between CERN and the Austrian manufacturer Fischer Advanced Composite Components (Fischer ACC).

  13. ALICE presents its first award to Industry

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Behind from left to right (Derrière de gauche à droite): Bernardo Mota, member of the ALTRO design team, Jurgen Schukraft, ALICE Spokesperson, Luciano Musa, leader of the ALTRO Design Team and Coordinator of the ALICE TPC FEE, Roberto Camapagnolo, member of the ALICE TPC FEE team, Jean-Pierre Coffin, Deputy of the ALICE Collaboration Board Chairman, Hans de Groot ALICE Resource Coordinator, Laurent Degoujon, ST - Data Converter Design Manager, Claude Engster, member of the ALICE TPC FEE team, Alain Delpi, ST - Data Converter Business Unit Manager, Carmen Gonzalez, member of the ALICE TPC FEE team, Yiota Foka, ALICE Outreach Coordinator; Front: Fabio Formenti , EP-ED Group Leader, Juan Antonio Rubio, ETT Division Leader.

  14. TPC Workshop

    International Nuclear Information System (INIS)

    The first workshop to focus on time projection chambers was held at TRIUMF (Canada) this summer. Some 75 participants came from groups in Europe and North America using TPCs in a variety of applications in experimental physics. Reports included several general descriptions of existing detectors as well as some proposals for new instruments. A time projection chamber (TPC) is the name given to a class of large volume drift chambers which operate generally with parallel electric and magnetic fields. Applications span energies from a few MeV in double beta decay searches, through intermediate energies in muon decay studies to large high energy arrays planned for LEP at CERN

  15. Prototype ALICE front-end card

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This circuit board is a prototype 48-channel front end digitizer card for the ALICE time projection chamber (TPC), which takes electrical signals from the wire sensors in the TPC and shapes the data before converting the analogue signal to digital data. A total of 4356 cards will be required to process the data from the ALICE TPC, the largest of this type of detector in the world.

  16. ALICE presents its first award to Industry

    CERN Multimedia

    On 19 June, a French company received the first ALICE award to industry. ST Technologies has provided ALICE with a key device for the design of a very sophisticated chip for the readout of the ALICE Time Projection Chamber. Behind from left to right (Derrière de gauche à droite): Bernardo Mota, member of the ALTRO design team, Jurgen Schukraft, ALICE Spokesperson, Luciano Musa, leader of the ALTRO Design Team and Coordinator of the ALICE TPC FEE, Roberto Camapagnolo, member of the ALICE TPC FEE team, Jean-Pierre Coffin, Deputy of the ALICE Collaboration Board Chairman, Hans de Groot ALICE Resource Coordinator, Laurent Degoujon, ST - Data Converter Design Manager, Claude Engster, member of the ALICE TPC FEE team, Alain Delpi, ST - Data Converter Business Unit Manager, Carmen Gonzalez, member of the ALICE TPC FEE team, Yiota Foka, ALICE Outreach Coordinator; Front: Fabio Formenti , EP-ED Group Leader, Juan Antonio Rubio, ETT Division Leader The ALICE experiment is setting new demands on readout electronics i...

  17. Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at $\\sqrt{s_{NN}} = 5.02$ TeV using TPC and EMCal detectors with ALICE at LHC

    CERN Document Server

    Jahnke, Cristiane

    Heavy-ion collisions are a powerful tool to study hot and dense QCD matter, the so-called Quark Gluon Plasma (QGP). Since heavy quarks (charm and beauty) are dominantly produced in the early stages of the collision, they experience the complete evolution of the system. Measurements of electrons from heavy-flavour hadron decay is one possible way to study the interaction of these particles with the QGP. With ALICE at LHC, electrons can be identified with high efficiency and purity. A strong suppression of heavy-flavour decay electrons has been observed at high $p_{m T}$ in Pb-Pb collisions at 2.76 TeV. Measurements in p-Pb collisions are crucial to understand cold nuclear matter effects on heavy-flavour production in heavy-ion collisions. The spectrum of electrons from the decays of hadrons containing charm and beauty was measured in p-Pb collisions at $\\sqrt = 5.02$ TeV. The heavy flavour decay electrons were measured by using the Time Projection Chamber (TPC) and the Electromagnetic Calorimeter (EMCal) detec...

  18. The ALICE Data Challenges

    CERN Document Server

    Baud, J P; Carminati, F; Collignon, M; Collin, F; Divià, R; Durand, J D; Jarp, S; Jouanigot, J M; Panzer, B; Rademakers, F; Saiz, P; Schossmaier, K; Van de Vyvre, P; Vascotto, Alessandro

    2001-01-01

    Since 1998, the ALICE experiment and the CERN/IT division have jointly executed several large-scale high throughput distributed computing exercises: the ALICE data challenges. The goals of these regular exercises are to test hardware and software components of the data acquisition and computing systems in realistic conditions and to execute an early integration of the overall ALICE computing infrastructure. This paper reports on the third ALICE Data Challenge (ADC III) that has been performed at CERN from January to March 2001. The data used during the ADC III are simulated physics raw data of the ALICE TPC, produced with the ALICE simulation program AliRoot. The data acquisition was based on the ALICE online framework called the ALICE Data Acquisition Test Environment (DATE) system. The data after event building were then formatted with the ROOT I/O package and a data catalogue based on MySQL was established. The Mass Storage System used during ADC III is CASTOR. Different software tools have been used to mo...

  19. The ALICE Data Challenges

    Institute of Scientific and Technical Information of China (English)

    J.P.Baud; W.Carena; 等

    2001-01-01

    Since 1998,the ALICE experiment and the CERN/IT division have jointly executed several large-scale high throughput distributed computing exercises:the ALICE data challenges.The goals of these regular exercises are to test hardware and software components of the data acqusition and computing systems in realistic conditions and to execute an early integration of the overall ALICE computing infrastructure.This paper reports on the third ALICE Data Challenge (ADC III) that has been performed at CERN from January to March 2001.The data used during the ADC Ⅲ are simulated physics raw data of the ALICE TPC,produced with the ALICE simulation program AliRoot.The data acquisition was based on the ALICE online framework called the ALICE Data Acquisition Test Environment (DATE) system.The data after event building,were then formatted with the ROOT I/O package and a data catalogue based on MySQl was established.The Mass Storage System used during ADC III is CASTOR.Different software tools have been used to monitor the performances,DATE has demonstrated performances of more than 500 MByte/s.An aggregate data throughput of 85 MByte/s was sutained in CASTOR over several days.The total collected data amounts to 100 TBytes in 100.00 files.

  20. Cooling in the ALICE detector

    OpenAIRE

    Almén, Ylva

    2015-01-01

    At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland, a new modern particle accelerator called the LHC, Large Hadron Collider, is being projected. One of the four large detectors of the LHC, ALICE, consists of many sub-detectors. Temperature stability in ALICE is of great importance for the experiments performed here.  In the ALICE sub-detector TPC, Time Projection Chamber, there is a great risk for thermal instability.  This will cause false data in the experiments, a...

  1. Alice and Alice

    Directory of Open Access Journals (Sweden)

    Maria Augusta Vilalba Nunes

    2012-05-01

    Full Text Available Two Alices. One follows a rabbit and falls into a hole that seems to have no end, enters into another world, a world out of control, out of context, a world never seen before. The other does not fall anywhere, she only exists in the world. In this world. A world under control? Within the context? It would appear so. But Alice is only ten years old, what would she know about the control and the context of the world, besides the reference that those older and supposedly wiser give her? However, for the adults surrounding her, the world is not under control, their own lives are not. Alice, far from being naive knows that, and thus, her world turns confused, or rather, it turns confused by the complexity of adult relationships that she must undergo. The Alices and their small bodies immersed in these uncontrolled worlds turn their problematic situation into a ludic situation, a game, a playing, within the ease of doing this kind of reversal that only children and the so called crazy have. Thus, Alice and Alice makes a crossing between these two distant worlds characters, but close at the same time. One Alice literature, the other film. One Lewis Carroll, the other Wim Wenders. This essay investigates the relation regarding to the similarities and the discrepancies between the two forms of language, but mainly, the relation between the conditions of the two girls. Based on Deleuze's thought on the reversal of Cartesian thought examined on Carroll’s book, this work will ponder the situations experienced by Wenders’ Alice and consider the possibility that real life can be full of paradoxes, games and situations that move away from reasoning.

  2. Protonated water clusters in TPC's

    Science.gov (United States)

    Kaya, Yunus; Kalkan, Yalçın; Veenhof, Rob

    2016-07-01

    Water vapour is added to the ALICE TPC gas to enhance its stability. These polar molecules create large protonated water clusters around a H+ core. In this context, the reactions H3O+(H2 O) n - 1 +H2 O →H3O+(H2O)n (n=1-9) were studied in the gas phase. Structures for these clusters are suggested and the most stable structures for each cluster size are shown. The thermodynamic parameters Δ Hn-1,n0, Δ Gn-1,n0, Δ Sn-1,n0 and equilibrium constants K n - 1 , n for the reaction were calculated to determine the size of the water clusters. The results are close to experimental data found in the literature. Protonated water clusters at stp have a size of 6-9 which corresponds to a mass of 127.1 - 181.2 g / mole.

  3. ALICE Organisation

    CERN Multimedia

    Hadre, J

    2015-01-01

    ALICE is the acronym for A Large Ion Collider Experiment, one of the largest experiments in the world devoted to research in the physics of matter at an infinitely small scale. Hosted at CERN, the European Laboratory for Nuclear Research, this project involves an international collaboration of more than 1400 physicists, engineers and technicians, including around 340 graduate students, from 132 physics institutes in 37 countries across the world.

  4. ALICE Organisation

    CERN Multimedia

    Gouriou, Nathalie

    2016-01-01

    ALICE is the acronym for A Large Ion Collider Experiment, one of the largest experiments in the world devoted to research in the physics of matter at an infinitely small scale. Hosted at CERN, the European Laboratory for Nuclear Research, this project involves an international collaboration of more than 1400 physicists, engineers and technicians, including about 340 graduate students, from 132 physics institutes in 37 countries across the world.

  5. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  6. On TPC cluster reconstruction

    CERN Document Server

    Dydak, F; Nefedov, Y; Wotschack, J; Zhemchugov, A

    2004-01-01

    For a bias-free momentum measurement of TPC tracks, the correct determination of cluster positions is mandatory. We argue in particular that (i) the reconstruction of the entire longitudinal signal shape in view of longitudinal diffusion, electronic pulse shaping, and track inclination is important both for the polar angle reconstruction and for optimum r phi resolution; and that (ii) self-crosstalk of pad signals calls for special measures for the reconstruction of the z coordinate. The problem of 'shadow clusters' is resolved. Algorithms are presented for accepting clusters as 'good' clusters, and for the reconstruction of the r phi and z cluster coordinates, including provisions for 'bad' pads and pads next to sector boundaries, respectively.

  7. TPC magnet cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  8. ALICE bags data storage accolades

    CERN Multimedia

    2007-01-01

    ComputerWorld has recognized CERN with an award for the 'Best Practices in Storage' for ALICE's data acquisition system, in the category of 'Systems Implementation'. The award was presented to the ALICE DAQ team on 18 April at a ceremony in San Diego, CA. (Top) ALICE physicist Ulrich Fuchs. (Bottom) Three of the five storage racks for the ALICE Data Acquisition system (Photo Antonio Saba). Between 16 and19 April, one thousand people from data storage networks around the world gathered to attend the biannual Storage Networking World Conference. Twenty-five companies and organizations were celebrated as finalists, and five of those were given honorary awards-among them CERN, which tied for first place in the category of Systems Implementation for the success of the ALICE Data Acquisition System. CERN was one of five finalists in this category, which recognizes the winning facility for 'the successful design, implementation and management of an interoperable environment'. 'Successful' could include documentati...

  9. Around ALICE

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ On the occasion of CERN's Golden Jubilee, at the Centre culturel Jean Monnet de Saint-Genis-Pouilly Exposition from Monday 11 October to Sunday 24 October. A presentation of CERN and the ALICE experiment with photos, student-made projects, computer animations, virtual reality demonstrations, and more. Saturday 16 October* Planting of a commemorative tree at 16:00 Public presentation at 16:30, followed by a visit to the subterranean site of the ALICE experiment (Number of places limited, reservations at: Service Culturel de la Marie de Saint-Genis-Pouilly, tél 04. 50. 20. 52. 59, Office de Tourisme Saint-Genis-Pouilly, tél: 04. 50. 42. 29. 37) * for the occasion of the Open Day, with 50 sites at CERN, see: http://intranet.cern.ch/Chronological/2004/CERN50/

  10. Around ALICE

    CERN Multimedia

    2004-01-01

    On the occasion of CERN's Golden Jubilee at Centre Culturel Jean Monnet de Saint-Genis-Pouilly Exposition from Monday 11 October to Sunday 24 October A presentation of CERN and the ALICE experiment with photos, student-made projects, computer animations, virtual reality demonstrations, and more. Saturday 16 October* Planting of a commemorative tree at 16:00 Public presentation at 16:30, followed by a visit to the subterranean site of the ALICE experiment (Number of places limited, reservations at: Service Culturel de la Marie de Saint-Genis-Pouilly, tel 04 50 20 52 59, or the Office de Tourisme Saint-Genis-Pouilly, tel: 04 50 42 29 37) * for the occasion of the Open Day, with 50 sites at CERN, see: http://intranet.cern.ch/Chronological/2004/CERN50/openday/openday_en.html

  11. The ALICE Electronic Logbook

    International Nuclear Information System (INIS)

    All major experiments need tools that provide a way to keep a record of the events and activities, both during commissioning and operations. In ALICE (A Large Ion Collider Experiment) at CERN, this task is performed by the Alice Electronic Logbook (eLogbook), a custom-made application developed and maintained by the Data-Acquisition group (DAQ). Started as a statistics repository, the eLogbook has evolved to become not only a fully functional electronic logbook, but also a massive information repository used to store the conditions and statistics of the several online systems. It's currently used by more than 600 users in 30 different countries and it plays an important role in the daily ALICE collaboration activities. This paper will describe the LAMP (Linux, Apache, MySQL and PHP) based architecture of the eLogbook, the database schema and the relevance of the information stored in the eLogbook to the different ALICE actors, not only for near real time procedures but also for long term data-mining and analysis. It will also present the web interface, including the different used technologies, the implemented security measures and the current main features. Finally it will present the roadmap for the future, including a migration to the web 2.0 paradigm, the handling of the database ever-increasing data volume and the deployment of data-mining tools.

  12. Fitting ALICE

    CERN Document Server

    2004-01-01

    The support structures for the detectors inside the ALICE solenoid magnet (the L3 magnet) were finished in December 2003. After commissioning and testing, over the next year, the structures will be lowered into the cavern and installed in the magnet by spring 2005. At first sight you might mistake them for scaffolding. But a closer look reveals unusual features: Two are made of austenitic (non-magnetic) stainless steel with a cross section that looks like an "H". Another is made of 8 centimetre aluminium square tubes. "Them" are the support structures for the detectors and services inside the ALICE solenoid magnet (the L3 magnet) which were finished in December 2003. «The physicists don't want to have a lot of material close to their detectors; it has to be as few as possible,» says Diego Perini, who is responsible for the common support structures of ALICE. «We therefore had the very difficult task to design something relatively light that i...

  13. O2: A novel combined online and offline computing system for the ALICE Experiment after 2018

    Science.gov (United States)

    Ananya; Alarcon Do Passo Suaide, A.; Alves Garcia Prado, C.; Alt, T.; Aphecetche, L.; Agrawal, N.; Avasthi, A.; Bach, M.; Bala, R.; Barnafoldi, G.; Bhasin, A.; Belikov, J.; Bellini, F.; Betev, L.; Breitner, T.; Buncic, P.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Cliff, F.; Costa, F.; Cunqueiro Mendez, L.; Dash, S.; Delort, C.; Denes, E.; Divia, R.; Doenigus, B.; Engel, H.; Eschweiler, D.; Fuchs, U.; Gheata, A.; Gheata, M.; Gomez Ramirez, A.; Gorbunov, S.; Graczykowski, L.; Grigoras, A.; Grigoras, C.; Grigore, A.; Grosso, R.; Guernane, R.; Gupta, A.; Hrivnacova, I.; Hristov, P.; Ionita, C.; Ivanov, M.; Janik, M.; Kalcher, S.; Kassalias, N.; Kebschull, U.; Khandelwal, R.; Kushpil, S.; Kisel, I.; Kiss, T.; Kollegger, T.; Kowalski, M.; Kretz, M.; Kulakov, I.; Lafage, V.; Lara, C.; Legrand, I.; Lindenstruth, V.; Maevskaya, A.; Malzacher, P.; Morsch, A.; Nandi, B.; Niculescu, M.; Pillot, P.; Planinic, M.; Pluta, J.; Poljak, N.; Rajput, S.; Read, K.; Ribon, A.; Rohr, D.; Rubin, G.; Shahoyan, R.; Sharma, A.; Simonetti, G.; Smorholm, O.; Soós, C.; Szymanski, M.; Telesca, A.; Thaeder, J.; Udupa, A.; Vande Vyvre, P.; Vennedey, F.; von Haller, B.; Wenzel, S.; Zampolli, C.; Zyzak, M.; Alice Collaboration

    2014-06-01

    ALICE (A Large Ion Collider Experiment) is a detector dedicated to the studies with heavy ion collisions exploring the physics of strongly interacting nuclear matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). After the second long shutdown of the LHC, the ALICE Experiment will be upgraded to make high precision measurements of rare probes at low pT, which cannot be selected with a trigger, and therefore require a very large sample of events recorded on tape. The online computing system will be completely redesigned to address the major challenge of sampling the full 50 kHz Pb-Pb interaction rate increasing the present limit by a factor of 100. This upgrade will also include the continuous un-triggered read-out of two detectors: ITS (Inner Tracking System) and TPC (Time Projection Chamber)) producing a sustained throughput of 1 TB/s. This unprecedented data rate will be reduced by adopting an entirely new strategy where calibration and reconstruction are performed online, and only the reconstruction results are stored while the raw data are discarded. This system, already demonstrated in production on the TPC data since 2011, will be optimized for the online usage of reconstruction algorithms. This implies much tighter coupling between online and offline computing systems. An R&D program has been set up to meet this huge challenge. The object of this paper is to present this program and its first results.

  14. The GAP-TPC

    CERN Document Server

    Rossi, B; Boiano, A; Catalanotti, S; Cocco, A G; Covone, G; Di Meo, P; Longo, G; Vanzanella, A; Walker, S; Wang, H; Wang, Y; Fiorillo, G

    2016-01-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency

  15. The ALICE Heavy-Ion Experiment at the CERN LHC

    CERN Document Server

    CERN. Geneva

    1993-01-01

    ALICE (A Large Ion Collider Experiment) is a dedicated heavy-ion detector designed to exploit the physics potential of nucleus-nucleus interactions at the LHC. As a general-purpose experiment, it will allow a comprehensive study of hadrons, electrons and photons produced in the collision of heavy nuclei, up to the highest particle multiplicities anticipated at the LHC. The central part of ALICE, which covers (90±45)¡ (<0.9) over the full azimuth, is embedded in a large magnet with a weak solenoidal field. The base-line design consists (from inside out) of a high-resolution inner tracking system, a cylindrical TPC, a particle identification array (TOF or RICH detectors), and a single-arm electromagnetic calorimeter. Possible upgrades under study include large-acceptance electromagnetic calorimeters and a muon identification system. We will trigger on central collisions with a zero degree calorimeter and measure multiplicity distributions over a large fraction of the available phase space.

  16. Identification of Low Momentum Electrons in The Time Projection Chamber of The ALICE Detector.

    CERN Document Server

    Mwewa, Chilufya

    2013-01-01

    This paper presents results obtained in the study to identify noisy low momentum electrons in the Time Projection Chamber (TPC) of the ALICE detector. To do this, the Circle Hough Transform is employed under the openCV library in python programming. This is tested on simulated tracks in the transverse view of the TPC. It is found that the noisy low momentum electrons can be identified and their exact positions in the transverse plane can be obtained.

  17. Results from the STAR TPC system test

    International Nuclear Information System (INIS)

    A system test of various components of the Solenoidal Tracker at RHIC (STAR) detector, operating in concern, has recently come on-line. Communication between a major sub-detector, a sector of the Time Projection Chamber (TPC), and the trigger, data acquisition and slow controls systems has been established, enabling data from cosmic ray muons to be collected. First results from an analysis of the TPC data are presented. These include measurements of system noise, electronic parameters such as amplifier gains and pedestal values, and tracking resolution for cosmic ray muons and laser induced ionization tracks. A discussion on the experience gained in integrating the different components for the system test is also given

  18. First detector installed inside the ALICE solenoid...

    CERN Multimedia

    2006-01-01

    ALICE's emblematic red magnet welcomed its first detector on 23 September, when the array of seven Cherenkov detectors, named HMPID, was successfully installed. ALICE team members standing in front of the completed HMPID detector.The red magnet, viewed from its front opening. The HMPID unit, seen from the back (top right corner of photo) is placed on a frame and lifted onto a platform during the installation. After the installation of the ACORDE scintillator array and the muon trigger and tracking chambers, the ALICE collaboration fitted the first detector inside the solenoid. The HMPID, for High Momentum Particle Identification, was installed at the 2 o'clock position in the central and most external region of the space frame, just below the solenoid yoke. It will be used to extend the hadron identification capability of the ALICE experiment up to 5 GeV/c, thus complementing the reach of the other particle identification systems (ITS, TPC and TOF). The HMPID is a Ring Imaging Cherenkov (RICH) detector in a...

  19. Pentaquark searches with ALICE

    CERN Document Server

    Bobulska, Dana

    2016-01-01

    In this report we present the results of the data analysis for searching for possible invariant mass signals from pentaquarks in the ALICE data. Analysis was based on filtered data from real p-Pb events at psNN=5.02 TeV collected in 2013. The motivation for this project was the recent discovery of pentaquark states by the LHCb collaboration (c ¯ cuud resonance P+ c ) [1]. The search for similar not yet observed pentaquarks is an interesting research topic [2]. In this analysis we searched for a s ¯ suud pentaquark resonance P+ s and its possible decay channel to f meson and proton. The ALICE detector is well suited for the search of certain candidates thanks to its low material budget and strong PID capabilities. Additionally we might expect the production of such particles in ALICE as in heavy-ion and proton-ion collisions the thermal models describes well the particle yields and ratios [3]. Therefore it is reasonable to expect other species of hadrons, including also possible pentaquarks, to be produced w...

  20. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  1. ALICE HMPID Radiator Vessel

    CERN Multimedia

    2003-01-01

    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure. http://alice-hmpid.web.cern.ch/alice-hmpid

  2. Layout of the ALICE detector (A Large Ion Collision Experiment), an experiment of the LHC

    CERN Document Server

    2004-01-01

    The ALICE Set-up : 1. ITS 2. FMD 3. TPC 4. TRD 5. TOF 6. HMPID 7. PHOS CPV 8. L3magnet 9. Absorber 10. Tracking Chambers 11. Muon Filter 12. Trigger Chambers 13. Dipole Magnet 14. PMD 15. Compensator Magnet

  3. A Bayesian approach to particle identification in ALICE

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Among the LHC experiments, ALICE has unique particle identification (PID) capabilities exploiting different types of detectors. During Run 1, a Bayesian approach to PID was developed and intensively tested. It facilitates the combination of information from different sub-systems. The adopted methodology and formalism as well as the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE will be reviewed. Results are presented with PID performed via measurements of specific energy loss (dE/dx) and time-of-flight using information from the TPC and TOF detectors, respectively. Methods to extract priors from data and to compare PID efficiencies and misidentification probabilities in data and Monte Carlo using high-purity samples of identified particles will be presented. Bayesian PID results were found consistent with previous measurements published by ALICE. The Bayesian PID approach gives a higher signal-to-background ratio and a similar or larger statist...

  4. Overview of recent ALICE results

    CERN Document Server

    Gunji, Taku

    2016-01-01

    The ALICE experiment explores the properties of strongly interacting QCD matter at extremely high temperatures created in Pb-Pb collisions at LHC and provides further insight into small-system physics in (high-multiplicity) pp and p-Pb collisions. The ALICE collaboration presented 27 parallel talks, 50 posters, and 1 flash talk at Quark Matter 2015 and covered various topics including collective dynamics, correlations and fluctuations, heavy flavors, quarkonia, jets and high $p_{\\rm T}$ hadrons, electromagnetic probes, small system physics, and the upgrade program. This paper highlights some of the selected results.

  5. Commissioning of a dual-phase Xenon TPC and first Compton scatter results

    International Nuclear Information System (INIS)

    With the MainzTPC, a small 3D position-sensitive dual-phase xenon time projection chamber (TPC), we aim to measure the xenon response for low-energy recoils (few keV) with better precision than previous experiments. Furthermore the setup allows to study the liquid xenon scintillation pulse shape. The goal is to deepen the understanding of xenon as a detection material in the low-energy regime for Dark Matter searches. Here we report on the commissioning of the MainzTPC and first measurements, including scintillation and charge signals as well as coincidence signals between the TPC and a germanium detector for the Compton scattering.

  6. ALICE's first vacuum bakeout a success

    CERN Multimedia

    2007-01-01

    At the beginning of April, the ALICE central beryllium beam pipe and absorber beam pipes were successfully conditioned. The installation and bakeout shell surround the beam pipe (lower left), running through the middle of the ITS and TPC. Notice the high-tech cooling system, an additional precaution to avoid overheating the ALICE detection equipment.One end of the vacuum sector during the bakeout and pure gas refill. It is unusual for a vacuum sector to end as it does in the middle of a non-accessible detector and made the installation and cabling of the bakeout equipment a more difficult procedure. Just before Easter, the first bakeout and NEG activation of experimental chambers in the LHC was carried out, followed by ultra pure gas refill. The bakeout consisted of externally heating the chambers under vacuum in order to lower their outgassing. This same heating process also activates the NEG, a coating on the inside surface of the beam vacuum chambers, which pumps the residual gas. ALICE's bakeout was pa...

  7. Performance of TPC crosstalk correction

    CERN Document Server

    Dydak, F; Krasnoperov, A; Nefedov, Y; Wotschack, J; Zhemchugov, A

    2004-01-01

    The performance of the CERN-Dubna-Milano (CDM) algorithm for TPC crosstalk correction is presented. The algorithm is designed to correct for uni-directional and bi-directional crosstalk, but not for self-crosstalk. It reduces at the 10% level the number of clusters, and the number of pads with a signal above threshold. Despite of dramatic effects in selected channels with complicated crosstalk patterns, the average longitudinal signal shape of a hit, and the average transverse signal shape of a cluster, are little affected by uni-directional and bi-directional crosstalk. The longitudinal signal shape of hits is understood in terms of preamplifier response, longitudinal diffusion, track inclination, and self-crosstalk. The transverse signal shape of clusters is understood in terms of the TPC's pad response function. The CDM crosstalk correction leads to an average charge decrease at the level of 15%, though with significant differences between TPC sectors. On the whole, crosstalk constitutes a relatively benig...

  8. ALICE - ARC integration

    OpenAIRE

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva; Peters, Andreas; Siaz, Pablo

    2007-01-01

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructur...

  9. ALICE Physics Theoretical Overview

    CERN Document Server

    Alessandro, B; Baier, R; Becattini, F; Botje, M; Carminati, F; Csörgö, T; De Cataldo, G; Foka, P Y; Giovannini, Alberto; Giubellino, P; Guillet, J P; Heinz, Ulrich W; Hencken, K; Iancu, E; Kaidalov, A B; Kajantie, Keijo; Karsch, Frithjof; Koch, V; Kopeliovich, B Z; Kurepin, A B; Laine, Mikko; Lednicky, R; Mangano, Michelangelo L; Monteno, M; Paic, G; Pilon, E; Pshenichnov, I A; Rapp, R; Redlich, Krzysztof; Revol, Jean Pierre Charles; Riggi, F; Safarík, K; Salgado, C A; Schükraft, Jürgen; Sinyukov, Yu M; Tomasik, Boris; Treleani, D; Ugoccioni, R; Venugopalan, R; Vogt, R; Wiedemann, Urs Achim

    2002-01-01

    ALICE is the dedicated heavy-ion experiment at the LHC. This note summarises theoretical developments in the field of hot and dense matter and their relevance for observables accessible to ALICE in nucleus-nucleus, proton-nucleus and proton-proton collisions. In addition, aspects of specific interest for proton-proton, proton-nucleus, ultra-peripheral collisions and cosmic-ray physics, which can be addressed by ALICE, are also discussed.

  10. ALICE brochure (Norwegian version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  11. "Alice imedemaal" Vanemuises

    Index Scriptorium Estoniae

    2004-01-01

    7. veebr. esietendub Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  12. ALICE brochure (English version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  13. ALICE brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  14. ALICE brochure (English version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE studies the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  15. ALICE brochure (French version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  16. ALICE brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  17. ALICE brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  18. Latest work in the ALICE Experiment - July 2009

    CERN Multimedia

    CERN Video Productions

    2009-01-01

    Having already performed a lengthy cosmic ray test run, ALICE decided to immediately start consolidation work after the shutdown last autumn. “We wanted to use the additional time for improvements and upgrades," explains Paul Kuijer, ALICE Deputy Spokesperson, “for example, we realised that the access to the main tracking device, the TPC, was rather difficult, which could lead to unreasonably long service and repair times in the future, so we spent a lot of time moving all the cabling of the inner tracking system to give more space and better access.” This was a major operation, running from October 2008 until July 2009. All cables and services have been re-tested and the inner tracking system is again on-line. Future maintenance was pre-empted in other areas too, such as replacing a number of capacitors on the time projection chamber (TPC), which were suspected to have a reduced lifetime. The shutdown also gave ALICE the chance to install several new detector systems that were originally scheduled for ...

  19. Proton-proton physics in ALICE

    OpenAIRE

    Nayak, Tapan K.

    2007-01-01

    The ALICE experiment has several unique features which makes it an important contributor to proton-proton physics at the LHC, in addition to its specific design goal of studying the physics of strongly interacting matter in heavy-ion collisions. The unique capabilities include its low transverse momentum (\\pT) acceptance, excellent vertexing, particle identification over a broad \\pT range and jet reconstruction. In this report, a brief review of ALICE capabilities is given for studying bulk p...

  20. Front-end electronics and readout system for the ILD TPC

    CERN Document Server

    Hedberg, V; Lundberg, B; Mjörnmark, U; Oskarsson, A; Österman, L; De Lentdecker, G; Yang, Y; Zhang, F

    2015-01-01

    A high resolution TPC is the main option for a central tracking detector at the future International Linear Collider (ILC). It is planned that the MPGD (Micro Pattern Gas Detector) technology will be used for the readout. A Large Prototype TPC at DESY has been used to test the performance of MPGDs in an electron beam of energies up to 6 GeV. The first step in the technology development was to demonstrate that the MPGDs are able to achieve the necessary performance set by the goals of ILC. For this ’proof of principle’ phase, the ALTRO front-end electronics from the ALICE TPC was used, modified to adapt to MPGD readout. The proof of principle has been verified and at present further improvement of the MPGD technology is going on, using the same readout electronics. The next step is the ’feasibility phase’, which aims at producing front-end electronics comparable in size (few mm2) to the readout pads of the TPC. This development work is based on the succeeding SALTRO16 chip, which combines the analogue ...

  1. Overview of ALICE results

    CERN Document Server

    Gagliardi, M

    2014-01-01

    The ALICE experiment at the CERN LHC studies the hot and dense medium formed in ultra-relativistic heavy-ion collisions, and the transition to Quark Gluon Plasma. Several observables are used to characterise the medium. In this contribution we report on the main ALICE results on global properties, particle spectra, anisotropies, heavy flavour and quarkonium production, obtained in Pb-Pb collisions at √ s rmNN =2 . 76 TeV. Measurements performed in p-Pb and pp collisions are also part of the ALICE physics program: selected highlights from such measurements are discussed.

  2. Magnetic field map for a large TPC prototype

    International Nuclear Information System (INIS)

    A new e+e- linear collider with an energy of up to 1000 GeV is currently being planned: the International Linear Collider (ILC). It will allow high precision measurements of the Higgs boson and physics beyond the Standard Model. In the Large Detector Concept (LDC) -which is one of the proposed detector concepts for the ILC- a Time Projection Chamber (TPC) is intended as the main tracking device. Within the EUDET project a large TPC prototype is currently being built as an infrastructure to test different gas amplification and readout technologies. The prototype will be operated in a 1T superconducting solenoid magnet -the PCMAG- at the DESY testbeam area. In order to reach the best possible track reconstruction the magnetic field has to be known very precisely throughout the TPC volume. The magnetic field of PCMAG has been measured in July 2007. In this work the creation of a high precision field map from the measurements is presented. The magnet and modelling techniques for its magnetic field are described. A model of the magnet has been created as a best fit from the measurements and its limitations are investigated. The field map will be included in the reconstruction software for the TPC prototype. (orig.)

  3. Magnetic field map for a large TPC prototype

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Christian

    2008-12-15

    A new e{sup +}e{sup -} linear collider with an energy of up to 1000 GeV is currently being planned: the International Linear Collider (ILC). It will allow high precision measurements of the Higgs boson and physics beyond the Standard Model. In the Large Detector Concept (LDC) -which is one of the proposed detector concepts for the ILC- a Time Projection Chamber (TPC) is intended as the main tracking device. Within the EUDET project a large TPC prototype is currently being built as an infrastructure to test different gas amplification and readout technologies. The prototype will be operated in a 1T superconducting solenoid magnet -the PCMAG- at the DESY testbeam area. In order to reach the best possible track reconstruction the magnetic field has to be known very precisely throughout the TPC volume. The magnetic field of PCMAG has been measured in July 2007. In this work the creation of a high precision field map from the measurements is presented. The magnet and modelling techniques for its magnetic field are described. A model of the magnet has been created as a best fit from the measurements and its limitations are investigated. The field map will be included in the reconstruction software for the TPC prototype. (orig.)

  4. Analysis of cosmic-ray events with ALICE at LHC

    Directory of Open Access Journals (Sweden)

    Rodríguez Cahuantzi M.

    2015-01-01

    Full Text Available ALICE is one of the four main experiments of the LHC at CERN. Located 40 meters underground, with 30 m of overburden rock, it can also operate to detect muons produced by cosmic-ray interactions in the atmosphere. An analysis of the data collected with cosmic-ray triggers from 2010 to 2013, corresponding to about 31 days of live time, is presented. Making use of the ability of the Time Projection Chamber (TPC to track large numbers of charged particles, a special emphasis is given to the study of muon bundles, and in particular to events with high-muon density.

  5. ALICE HMPID RICH

    CERN Multimedia

    2003-01-01

    Particle identification plays a key role in the complete understanding of heavy-ion collisions in ALICE at the LHC. . The CsI Photodetector . The Radiator . The Front-End Electronics . Detector performance

  6. ALICE honours industries

    CERN Multimedia

    2006-01-01

    The third annual ALICE Awards ceremony recognizes three companies for their contribution to the experiment's detector. The ALICE Awards winners pictured with CERN Secretary-General, Maximilian Metzger, during the ceremony. Three industries were honoured at the ALICE Awards ceremony on 17 March for their exceptional work on the collaboration's detector. Representatives from the companies accepted their awards at the ceremony, which was also attended by CERN Secretary-General Maximilian Metzger and members of the ALICE Collaboration Board. VTT Microelectronics of Finland received an award for the production of the thin bump bonded ladders (detector arrays, each consisting of 40 960 active cells) for the silicon pixel detector (SPD) in the inner tracking system. A number of technical hurdles had to be overcome: complex and expensive equipment was procured or upgraded, and processes underwent a detailed study and careful tuning. The ladders have a high and stable yield and the production will soon be completed...

  7. ALICE Forward Multiplicity Detector

    CERN Multimedia

    Christensen, C

    2013-01-01

    The Forward Multiplicity Detector (FMD) extends the coverage for multiplicity of charge particles into the forward regions - giving ALICE the widest coverage of the 4 LHC experiments for these measurements.

  8. Implementation of performance testing for TPC-DS benchmark%TPC-DS性能测试工具的实现

    Institute of Scientific and Technical Information of China (English)

    陈旦; 叶晓俊; 施霖

    2011-01-01

    The data model, business model, execution schema and performance metric of TPC-DS benchmark for next generation Decision Support System ( DSS) application performance evaluation were introduced. The implementation architecture and key technologies for a configurable TPC-DS performance testing tool were put forward, including configuration file, query execution control and data maintenance mechanism. By testing practices in different Database Management Systems ( DBMSs), the configurability and usability of the proposed tool for implementation strategies were verified.%阐述了新一代面向决策支持的数据库性能测试基准TPC-DS的数据模型、业务模型、执行模式和度量方法,设计了一个支持不同数据库管理系统(DBMS)性能对比测评的TPC-DS测试框架,阐述了配置文件、查询执行控制、数据维护机制等关键实现技术.最后通过对任务配置和语法配置的实践,验证了工具对不同DBMS、不同优化配置的对比测试可用性.

  9. The ALICE absorbers

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m.

  10. The thousandth ALICE member

    CERN Multimedia

    2006-01-01

    From left to right: Lodovico Riccati, Toru Sugitate and Jurgen Schukraft. On Friday 13 October, the ALICE Collaboration Board accepted, as full members, nine new institutes, bringing the number of scientists from 982 to 1015. To celebrate this event, Lodovico Riccati, Chair of the Collaboration Board, and Jurgen Schukraft, Spokesperson of the ALICE Experiment, presented a small award to the thousandth collaborator, Toru Sugitate, from Hiroshima University.

  11. Installing the ALICE detector

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The huge iron yoke in the cavern at Point 2 in the LHC tunnel is prepared for the installation of the ALICE experiment. The yoke is being reused from the previous L3 experiment that was located at the same point during the LEP project from 1989 to 2000. ALICE will be inserted piece by piece into the cradle where it will be used to study collisions between two beams of lead ions.

  12. R&D on the Gem Readout of the Tesla TPC

    OpenAIRE

    Hamann, Markus

    2003-01-01

    Ongoing studies for the TESLA TPC with GEM readout at DESY/Hamburg University are presented. They include basic GEM performances, tracking and the determination of the resolution using different pad sizes and geometries as well as ion feedback measurements.

  13. TPC track distortions III: fiat lux

    CERN Document Server

    Boyko, I; Dydak, F; Elagin, A; Gostkin, M; Guskov, A; Koreshev, V; Nefedov, Y; Nikolaev, K; Veenhof, R; Wotschack, J; Zhemchugov, A

    2005-01-01

    We present a comprehensive overview and final summary of all four types of static track distortions seen in the HARP TPC, in terms of physical origins, mathematical modelling, and correction algorithms. 'Static'™ distortions are defined as not depending on the event time within the 400 ms long accelerator spill. Calculated static distortions are compared with measurements from cosmic-muon tracks. We characterize track distortions by the r phi residuals of cluster positions with respect to the transverse projection of a helical trajectory constrained by hits in the RPC overlap regions. This method provides a fixed TPC-external reference system (by contrast to the co-moving coordinate system associated with a fit) which solely permits to identify individually, and measure quantitatively, the static TPC track distortions arising from (i) the inhomogeneity of the solenoidal magnetic field, (ii) the inhomogeneity of the electric field from the high-voltage mismatch between the inner and outer TPC field cages, (...

  14. ALICES: advanced software engineering workshop for real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Noel, A.; Rouault, G. [Tractebel, Brussels (Belgium)

    1997-12-01

    The ALICES software workshop is presently being applied for the development of a multifunctional simulator for Belgium`s Tihange-1 nuclear power unit. This will be the best validation for all the functions included in the tools. It is believed that ALICES will permit the development of quality realtime simulators at a significantly lower price.

  15. Data compression using correlations and stochastic processes in the ALICE Time Projection chamber

    CERN Document Server

    Ivanov, M; Krechtchouk, A

    2003-01-01

    In this paper lossless and a quasi lossless algorithms for the online compression of the data generated by the Time Projection Chamber (TPC) detector of the ALICE experiment at CERN are described. The first algorithm is based on a lossless source code modelling technique, i.e. the original TPC signal information can be reconstructed without errors at the decompression stage. The source model exploits the temporal correlation that is present in the TPC data to reduce the entropy of the source. The second algorithm is based on a lossy source code modelling technique. In order to evaluate the consequences of the error introduced by the lossy compression, the results of the trajectory tracking algorithms that process data offline are analyzed, in particular, with respect to the noise introduced by the compression. The offline analysis has two steps: cluster finder and track finder. The results on how these algorithms are affected by the lossy compression are reported. In both compression technique entropy coding ...

  16. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data......AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  17. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data......AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  18. ALICE opens its new nerve centre

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    Twenty-nine fully equipped and ergonomic workstations, one meeting area and 11 large format screens in a completely refurbished room: the ALICE Run Control Centre (ARC) implements the best and newest solutions for its shift workers and expert operators, including access for persons with reduced mobility and very soon a magic window for Point 2 visitors.   The ALICE Run Control Centre. “Our initial intention was just to optimise the old layout,” says Federico Ronchetti from Laboratori Nazionali di Frascati (Italy), a CERN scientific associate currently appointed as ALICE Run Coordinator and person in charge of the ALICE Consolidation Task Force. “However, during the review process, we carried out a study of all the existing control rooms at CERN and became aware we needed a radical change. Hence we started planning a complete redesign of the workspace.” Designed and equipped over many years, the old ALICE control room did not have enough space to fit al...

  19. GEANT4 in ALICE

    CERN Document Server

    Hrivnacova, I

    1999-01-01

    The smooth way of transition from existing GEANT3 based simulation software to GEANT4 adopted by ALICE will be explained. The AliRoot package as a client of the Monte Carlo interface (pure abstract class) is used in GEANT4 based classes for building GEANT4 objects (geometry physics list, primary generator). We shall also summarise our experience with GEANT4 and give an overview of what parts of GEANT4 are used in the current ALICE GEANT4 simulation prototype, what functionality has been added and what problems have been encountered.

  20. Heavy flavour in ALICE

    CERN Document Server

    Pillot, Philippe

    2008-01-01

    Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels

  1. GRID Activities in ALICE

    Institute of Scientific and Technical Information of China (English)

    P.Cerello; T.Anticic; 等

    2001-01-01

    The challenge of LHC computing,with data rates in the range of several PB/year,requires the development of GRID technologies,to optimize the exploitation of distributed computing power and the authomatic access to distributed data storage.In the framework of the EU-DataGrid project,the ALICE experiment is one of the selected test applications for the early development and implementation of GRID Services.Presently,about 15 ALICE sites are makin use of available GRID tools and a large scale test production involving 9 of them was carried out with our simulation program.Results are discussed in detail,as well as future plans.

  2. ALICE Geometry Database

    CERN Document Server

    Santo, J

    1999-01-01

    The ALICE Geometry Database project consists of the development of a set of data structures to store the geometrical information of the ALICE Detector. This Database will be used in Simulation, Reconstruction and Visualisation and will interface with existing CAD systems and Geometrical Modellers.At the present time, we are able to read a complete GEANT3 geometry, to store it in our database and to visualise it. On disk, we store different geometry files in hierarchical fashion, and all the nodes, materials, shapes, configurations and transformations distributed in this tree structure. The present status of the prototype and its future evolution will be presented.

  3. ALICE High Level Trigger

    CERN Multimedia

    Alt, T

    2013-01-01

    The ALICE High Level Trigger (HLT) is a computing farm designed and build for the real-time, online processing of the raw data produced by the ALICE detectors. Events are fully reconstructed from the raw data, analyzed and compressed. The analysis summary together with the compressed data and a trigger decision is sent to the DAQ. In addition the reconstruction of the events allows for on-line monitoring of physical observables and this information is provided to the Data Quality Monitor (DQM). The HLT can process event rates of up to 2 kHz for proton-proton and 200 Hz for Pb-Pb central collisions.

  4. ALICE physicists receive 2014 Lise Meitner Prize

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On Wednesday, 3 September, four ALICE physicists were presented with the European Physical Society's 2014 Lise Meitner Prize for their outstanding contributions to nuclear physics (see here).   ALICE collaboration members Johanna Stachel (Heidelberg University, Germany), Peter Braun-Munzinger (GSI, Germany), Paolo Giubellino (INFN Turin, Italy, and CERN) and Jürgen Schukraft (CERN) were presented with their awards at a private ceremony held in the Globe of Science and Innovation. In addition to members of the ALICE collaboration, the ceremony was attended by members of the CERN Management including the Director-General, Rolf Heuer, as well as the EPS Nuclear Physics Board Chair, Douglas MacGregor, and the EPS Lise Meitner Prize Committee Chair, Victor Zamfir. For more information, please see "EPS honours CERN's heavy-ion researchers".  From left to right: Douglas MacGregor (EPS); Prize recipients Jürgen Schukraft,&a...

  5. Open access for ALICE analysis based on virtualization technology

    CERN Document Server

    Buncic, P; Schutz, Y

    2015-01-01

    Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modi...

  6. The ALICE Electronic Logbook

    CERN Document Server

    Altini, V; Carena, W; Chapeland, S; Chibante Barroso, V; Costa, F; Divia, R; Fuchs, U; Makhlyueva, I; Roukoutakis, F; Schossmaier, K; Soos, C; Vande Vyvre, P; Von Haller, B

    2010-01-01

    All major experiments need tools that provide a way to keep a record of the events and activities, both during commissioning and operations. In ALICE (A Large Ion Collider Experiment) at CERN, this task is performed by the Alice Electronic Logbook (eLogbook), a custom-made application developed and maintained by the Data-Acquisition group (DAQ). Started as a statistics repository, the eLogbook has evolved to become not only a fully functional electronic logbook, but also a massive information repository used to store the conditions and statistics of the several online systems. It's currently used by more than 600 users in 30 different countries and it plays an important role in the daily ALICE collaboration activities. This paper will describe the LAMP (Linux, Apache, MySQL and PHP) based architecture of the eLogbook, the database schema and the relevance of the information stored in the eLogbook to the different ALICE actors, not only for near real time procedures but also for long term data-mining and analy...

  7. ALICE Vzero Detector

    CERN Multimedia

    Cheynis, B

    2013-01-01

    ALICE is the only experiment at CERN specifically designed to study the Quark-Gluon Plasma, the hot and dense matter which is created in ultra relativistic heavy-ion collisions. - VZERO-A (CINVESTAV-UNAM Mexico): 2.8 328 cm away from Interaction Point - VZERO-C (IPN Lyon): -3.6 88 cm away from Interaction Point

  8. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  9. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  10. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  11. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  12. ALICE Upgrades: Plans and Potentials

    CERN Document Server

    Tieulent, Raphael

    2015-01-01

    The ALICE collaboration consolidated and completed the installation of current detectors during LS1 with the aim to accumulate 1 nb$^{-1}$ of Pb-Pb collisions during Run 2 corresponding to about 10 times the Run 1 integrated luminosity. In parallel, the ALICE experiment has a rich detector upgrade programme scheduled during the second LHC long shutdown (LS2, 2018-2019) in order to fully exploit the LHC Runs 3 and 4. The main objectives of this programme are: improving the tracking precision and enabling the read-out of all Pb-Pb interactions at a rate of up to 50 kHz, with the goal to record an integrated luminosity of 10 nb$^{-1}$ after LS2 in minimum-bias trigger mode. This sample would represent an increase by a factor of one hundred with respect to the minimum-bias sample expected during Run 2. The implementation of this upgrade programme, foreseen in LS2, includes: a new low-material Inner Tracking System at central rapidity with a forward rapidity extension to add vertexing capabilities to the current M...

  13. Central Diffraction at ALICE

    CERN Document Server

    Lämsä, Jerry W

    2011-01-01

    The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.

  14. Central diffraction at ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Laemsae, J W; Orava, R, E-mail: risto.orava@helsinki.fi [Helsinki Insitute of Physics, and Division of Elementary Particle Physics, Department of Physics, PL 64 (Gustaf Haellstroeminkatu 2a), FI-00014 University of Helsinki (Finland)

    2011-02-01

    The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.

  15. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  16. Estimation of Weighting Potential for a TPC

    CERN Document Server

    Mukhopadhyay, S; Veenhof, R

    2007-01-01

    In this work, we have computed the three dimensional weighting potential, field and pad response function (PRF) of typical time projection chambers (TPC) using a recently formulated and developed boundary element method solver, namely, the nearly exact BEM solver. A realistic geometry of the device is found to have significant influence on the estimation of signal generation.

  17. TPC1 - SV Channels Gain Shape

    Institute of Scientific and Technical Information of China (English)

    Rainer Hedrich; Irene Marten

    2011-01-01

    T The most prominent ion channel localized in plant vacuoles is the slow activating SV type. Slow vacuolar (SV)channels were discovered by patch clamp studies as early as 1986. In the following two decades, numerous studies revealed that these calcium- and voltage-activated, nonselective cation channels are expressed in the vacuoles of all plants and every plant tissue. The voltage-dependent properties of the SV channel are susceptible to modulation by calcium, pH, redox state, as well as regulatory proteins. In Arabidopsis, the SV channel is encoded by the AtTPC1 gene, and even though its gene product represents the by far largest conductance of the vacuolar membrane, tpc1-loss-of-function mutants appeared not to be impaired in major physiological functions such as growth, development, and reproduction. In contrast, the fou2 gain-of-function point mutation D454N within TPC1 leads to a pronounced growth phenotype and increased synthesis of the stress hormone jasmonate. Since the TPC1 gene is present in all land plants, it likely encodes a very general function. In this review, we will discuss major SV channel properties and their impact on plant cell physiology.

  18. Data links for the EOS TPC

    International Nuclear Information System (INIS)

    We report on the design and performance of high speed data links and slower configuration control links used between the EOS TPC detector and the data processing electronics. Data rates of 5MBytes/s/link are maintained over 30m with optical isolation. Pedestal subtraction, hit detection, and data reordering are performed online. 3 refs., 1 fig

  19. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  20. ALICE-ARC integration

    International Nuclear Information System (INIS)

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  1. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  2. ALICE on the move

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A new management, new modules for its sub-detectors and an increased capacity to probe the properties of the quark-gluon plasma. The new year bodes well for ALICE and ion physics as quarks and gluons prepare to unveil their most profound mysteries.   Installation of one of the new EMCal modules in the detector. Paolo Giubellino, the new ALICE spokesperson, talks with enthusiasm about what has already been done by the ALICE collaboration and what is yet to come. He has recently taken over from Jurgen Schukraft, who led the collaboration from its earliest beginnings. “We had a very exciting first year of operation, with many interesting results coming up in a very short space of time,” says Giubellino, a heavy-ion-physics expert from the Italian National Institute for Nuclear Physics (see box for details). “The Christmas technical stop wasn’t a break for us as we upgraded the detector, completing the installation of the electromagnetic calorimeter (E...

  3. The ALICE silicon strip detector system

    CERN Document Server

    Kuijer, P

    2000-01-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the Large Hadron Collider (LHC) optimized for the study of heavy-ion collisions at a centre-of-mass energy of 5.5 TeV per nucleon. The detector consists essentially of two main components: the central part, composed of detectors mainly devoted to the study of hadronic signals and dielectrons, and the forward muon spectrometer devoted to the study of quarkonia behaviour in dense matter. The central part, which covers +-45 deg. (|eta|<0.9) over the full azimuth, is embedded in a large magnet with a weak solenoidal field. Outside of the Inner Tracking System (ITS), there are a cylindrical TPC and a large area PID array of time-of-flight (TOF) counters. In addition, there are two small-area single-arm detectors: an electromagnetic calorimeter (Photon Spectrometer, PHOS) and an array of RICH counters optimized for high-momentum inclusive particle identification (HMPID). This article describes the silicon strip detector system used in the outer layers o...

  4. Upgrade Strategy for ALICE at High Rate

    CERN Document Server

    Musa, L

    2012-01-01

    The longterm goal of the ALICE experiment is to provide a precise characterization of the Quark-Gluon Plasma (QGP) state. Such a determination of its properties including initial temperature, degrees of freedom, speed of sound, and in general, transport coefficients would be a major achievement. This would go a long way towards a better understanding of QCD as a genuine multi-particle theory. To achieve this goal, high statistics measurements are required, which will give access also to the very rare physics channels needed to understand the dynamics of this condensed phase of QCD. The general upgrade strategy for the ALICE central barrel is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz, that would provide an accumulated sample of the order of 10 nb^-1 in the period 2019-2023. In this document we sketch the modifications/replacements needed in all ALICE central barrel detectors and online systems (Trigger, DAQ and HLT) for high luminosity running. As the ALICE for...

  5. ALICE doffs hat to two companies

    CERN Multimedia

    2007-01-01

    During the fifth annual ALICE Industrial Awards ceremony, the ALICE Collaboration honoured two companies for their outstanding contributions to the construction of the experiment.For the past five years, the ALICE collaboration has been presenting its industrial partners with awards for meeting demanding or unusual requirements, for excellence in design or execution, for delivery on-time and on-budget and for outstanding cooperation. This year, on 9 March, ALICE presented awards to two companies for their exceptional performance. From left to right: Kees Oskamp (ALICE SSD), Arie de Haas (ALICE SSD), Gert-Jan Nooren (ALICE SSD), Shon Shmuel (FIBERNET), Yehuda Mor-Yosef (FIBERNET), Hans Boggild (ALICE), Jurgen Schukraft (ALICE Spokesperson), Catherine Decosse (ALICE) and Jean-Robert Lutz (ALICE SSD). FIBERNET Ltd., based in Yokneam, Israel, was rewarded for the excellent and timely assembly of the Silicon Strip Detector boards (SSD) of the Inner Tracking System with cable connections. Special low-mass cables, ...

  6. ALICE: Physics Performance Report, Volume II

    International Nuclear Information System (INIS)

    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dNch/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of

  7. Progress on a spherical TPC for low energy neutrino detection

    International Nuclear Information System (INIS)

    The new concept of the spherical TPC aims at relatively large target masses with low threshold and background, keeping an extremely simple and robust operation. Such a device would open the way to detect the neutrino-nucleus interaction, which, although a standard process, remains undetected due to the low energy of the neutrino-induced nuclear recoils. The progress in the development of the first 1 m3 prototype at Saclay is presented. Other physics goals of such a device could include supernova detection, low energy neutrino oscillations and study of non-standard properties of the neutrino, among others

  8. ALICE91, Particle Spectra from Compound Nucleus Decay

    International Nuclear Information System (INIS)

    1 - Description of program or function: Several types of calculations and combinations can be performed including a standard Weisskopf-Ewing evaporation with multiple particle emission, S-wave approximation to give an upper limit to the enhancement of gamma-ray deexcitation due to momentum effects, and an evaporation calculation that can include fission competition via the Bohr-Wheeler approach. ALICE91 calculates precompound decay via Hybrid and GDH models with multiple precompound decay algorithms, single and double differential spectra, and reaction product cross sections. 2 - Method of solution: ALICE/85/300 and later revisions of the ALICE/LIVERMORE 82 computer code do precompound, compound/ statistical fission calculations in the general framework of the Weisskopf-Ewing evaporation model, the Bohr-Wheeler transition state model for fission, and the hybrid/geometry dependent models for precompound decay. ALICE/85/300 allows a variable energy mesh size, excitation energies up to 300 MeV, and incorporates several other improvements in calculational approaches. ALICE91 includes options for shell dependent level densities, and an option to use systematics for angular distribution. The new version also includes gamma-ray competition with particle decay models. The IBM PC version (B) was converted from mainframe ALICE-87, which is a revision of ALICE/85/300. Input default options were included in this version. Refer to comments in the file ALICE1.FOR for information on modifications. ALISO differs only in that it will do calculations for natural isotopic targets, giving weighted results at the end. 3 - Restrictions on the complexity of the problem: Users must refer to comments in the FORTRAN source files for input instructions and information. If running the PC version on 32-bit word-length machines, remove CXXXXX from double precision statements for POW and GAM

  9. The ALICE cavern and solenoid

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ALICE experiment, one of the four major experiments of CERN's LHC project, will be housed in the cavern that once contained the L3 experiment at the LEP accelerator. The huge solenoid is the only remaining piece of the L3 experiment and will be used by ALICE.

  10. The ALICE Forward Multiplicity Detector

    CERN Document Server

    Christensen, Christian Holm; Gulbrandsen, Kristjan; Nielsen, Borge Svane; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4 < \\eta < 5.1$. It is placed around the beam pipe at small angles to extend the charged particle acceptance of ALICE into the forward regions, not covered by the central barrel detectors.

  11. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten;

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  12. ALICE honours two Italian suppliers

    CERN Multimedia

    2006-01-01

    During the ALICE week held in Bologna from 19 to 23 June, the Collaboration recognized two of its top suppliers. From left to right: Robert Terpin (MIPOT), Pier Luigi Bellutti (ITC), Andrea Zanotti, President of ITC, Luciano Bosisio (Trieste University), Gennady Zinovjev (Kiev), Catherine Decosse (CERN), Lodovico Riccati, ALICE Collaboration Board Chair (INFN Torino), Paolo Giubellino (INFN Torino), Mario Zen, Director of ITC, Maurizio Boscardin (ITC), Paolo Tonella (ITC), Jurgen Schukraft, ALICE Spokesperson (CERN), Giacomo Vito Margagliotti (Trieste University), Nevio Grion (INFN Trieste), Marco Bregant (INFN Trieste). Front row from left to right: Paolo Traverso (ITC), Federico Carminati, ALICE Computing Project Leader (CERN), and Jean-Robert Lutz, ITS-SSD Project leader (IPHC Strasbourg). It is in the picturesque city of Bologna that the ALICE Collaboration has rewarded two Italian suppliers, Istituto Trentino di Cultura ITC-irst (Trento) and MIPOT (Cormons), both involved in the construction of the Sili...

  13. Alice Munro: A Bibliography

    OpenAIRE

    Bigot, Corinne

    2014-01-01

    I. Collections of short stories by Alice Munro Dance of the Happy Shades, Toronto, Ryerson Press, 1968, 224 pp; New York, McGraw Hill, 1973, 224 pp; London, Allen Lane, 1974, 224 pp. Lives of Girls and Women, Toronto, McGraw Hill Ryerson, 1971, 254 pp; New York,McGraw Hill, 1972, 250 pp; London, Allen Lane, 1974, 250 pp. Something I’ve Been Meaning To Tell You, Toronto and New York, McGraw-Hill Ryerson, 1974, 246 pp. Who Do You Think You Are?, Toronto, Macmillan, 1974, 206 pp. Printed in the ...

  14. Diffraction studies with ALICE

    CERN Document Server

    Zamora, Pedro González

    2013-01-01

    The measurement of Single and Double Di raction cross-sections in pp collisions by the ALICE Collaboration at p s = 0.9, 2.76 and 7 TeV will be presented. The relevance of di raction to the understanding of inelastic pp interactions will be discussed and the measurement of the inelastic pp cross-section will be presented. A brief status of ALICE’s studies of centrally produced systems, selected with a two-pseudorapidity gap topology, will also be given

  15. Data science in ALICE

    CERN Document Server

    CERN. Geneva

    2015-01-01

    ALICE is the LHC experiment dedicated to the study of Heavy Ion collisions. In particular, the detector features low momentum tracking and vertexing, and comprehensive particle identification capabilities. In a single central heavy ion collision at the LHC, thousands of particles per unit rapidity are produced, making the data volume, track reconstruction and search of rare signals particularly challenging. Data science and machine learning techniques could help to tackle some of the challenges outlined above. In this talk, we will discuss some early attempts to use these techniques for the processing of detector signals and for the physics analysis. We will also highlight the most promising areas for the application of these methods.

  16. Building a Class-1 Glove Box for Use with the NIFFTE TPC

    Science.gov (United States)

    Lynn, William

    2012-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure the neutron-induced fission cross sections of actinides with unprecedented accuracy which will aid in the development of the next generation nuclear reactors. Charged particles, including fission fragments, create a trail of electrons within a fill gas through ionization, which then drift in an electric field towards the read-out electronics. Using a MicroMegas mesh, the signal is amplified and then detected by the TPC pad plane. Due to the delicate nature of the MicroMegas mesh, precaution must be taken to prevent damage to the mesh from airborne contaminants which can cause the mesh to short. To avoid radiological contamination, a glove box was chosen for the task of handling and installing actinide targets into the TPC. To protect the TPC electronics, a decision was made to modify the existing glove box to create a Class-1 cleanroom environment. Variables such as glove type, filter, and cleaning agent were tested independently to determine maximum cleanliness, and a procedure for creating an acceptable Class-1 environment inside the glove box for the TPC was developed.

  17. Proportional model calorimeters of the TPC facility

    International Nuclear Information System (INIS)

    Two wire proportional mode gas calorimeter modules have been tested as prototypes for the Pole Tip calorimeters of the TPC Facility at PEP. The results of the tests at several electron energies (0.25 to 12. GeV) and several pressures (1.0 to 30. atms) are presented, comparisons with a detailed simulation program are made, and results from the Pole Tip modules now operating at PEP are given

  18. Highly integrated electronics for the star TPC

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, A.A.; Bieser, F.; Hearn, W.; Kleinfelder, S.; Merrick, T.; Millaud, J.; Noggle, T.; Rai, G.; Ritter, H.G.; Wieman, H. [Lawrence Berkeley Laboratory, CA (United States)

    1991-12-31

    The concept for the STAR TPC front-end electronics is presented and the progress toward the development of a fully integrated solution is described. It is the goal of the R+D program to develop the complete electronics chain for the STAR central TPC detector at RHIC. It is obvious that solutions chosen e.g. for ALEPH are not adequate for the 150000 channels that need to be instrumented for readout. It will be necessary to perform all the signal processing, digitization and multiplexing directly on the detector in order to reduce per channel cost and the amount of cabling necessary to read out the information. We follow the approach chosen by the EOS TPC project, where the readout electronics on the detector consists of an integrated preamplifier, a hybrid shaping amplifier, an integrated switched capacitor array and a highly multiplexed ADC. The STAR electronics will be further integrated so that approximately 16 channels of the preamplifier, the shaper, the analog store and the ADC will be contained in two integrated circuits located directly on the pad plane.

  19. Momentum scale in the HARP TPC

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M

    2007-01-01

    Recently a claim was made that the reconstruction of the large angle tracks in the HARP TPC was affected by a momentum bias as large as 15% at 500 MeV/c transverse momentum. In the following we recall the main issues with the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. Proton-proton elastic scattering data off the hydrogen target are used to alibrate the momentum of charged particles with a precision evaluated to be 3.5%. A full description of the time development of the dynamic distortions in the TPC during physics spills is now available together with a correction algorithm. This allows a new cross-check using an enlarged data set made by comparing positive and negative pion elasticscattering data collected with negative polarity of the solenoid magnet. These data confirm the absence of a bias in the sagitta measurement. The dE/dx versus momentum curves are revisited, and shown to provide a confirmation that the HARP momentum calibration is correc...

  20. The Latest from ALICE

    CERN Multimedia

    2009-01-01

    After intensive installation operations from October 2008 until July 2009 (see Bulletin 31/7/2009), ALICE started a full-detector cosmics run in August, which is scheduled to last until the end of October. In addition to the Silicon Pixel and ACORDE detectors, the latter specially built for triggering on cosmic muons, ALICE is now making extensive use of the trigger provided by the Time Of Flight array. The high granularity and the low noise (0.1 Hz/cm2) of the TOF MRPCs, combined with the large coverage (~150 m2), offers a wide range of trigger combinations. This extended cosmic run serves many purposes: to test the performance of each individual detector; to ensure their integration in the central Data Acquisition; to perform alignment and calibration; to check the reconstruction software; to fine-tune the tracking algorithms; and last but not least, to train the personnel for the long shifts ahead. More than 100 million events h...

  1. ALICE pp physics programme

    CERN Document Server

    Kraus, Ingrid

    2009-01-01

    The physics programme of the ALICE experiment at CERN-LHC comprises besides studies of high-energy heavy-ion collisions measurements of proton-proton interactions at unprecedented energies, too. This paper focuses on the global event characterisation in terms of the multiplicity distribution of charged hadrons and mean transverse momentum. These bulk observables become accessible because the detector features excellent track reconstruction, especially at low transverse momenta. The measurement of strange hadrons is of particular interest since the strange-particle phase-space was found to be suppressed beyond canonical reduction at lower center-of-mass energies and the production mechanism of soft particles is not yet fully understood. Here we benefit in particular from particle identification down to very low transverse momentum, i.e. 100 - 300 MeV/c, giving access to spectra and integrated yields of identified hadrons. Equipped with these features, ALICE will play a complementary role w.r.t. other LHC exper...

  2. ALICE Expert System

    CERN Document Server

    Ionita, C

    2014-01-01

    The ALICE experiment at CERN employs a number of human operators (shifters), who have to make sure that the experiment is always in a state compatible with taking Physics data. Given the complexity of the system and the myriad of errors that can arise, this is not always a trivial task. The aim of this paper is to describe an expert system that is capable of assisting human shifters in the ALICE control room. The system diagnoses potential issues and attempts to make smart recommendations for troubleshooting. At its core, a Prolog engine infers whether a Physics or a technical run can be started based on the current state of the underlying sub-systems. A separate C++ component queries certain SMI objects and stores their state as facts in a Prolog knowledge base. By mining the data stored in dierent system logs, the expert system can also diagnose errors arising during a run. Currently the system is used by the on-call experts for faster response times, but we expect it to be adopted as a standard tool by reg...

  3. Open access for ALICE analysis based on virtualization technology

    Science.gov (United States)

    Buncic, P.; Gheata, M.; Schutz, Y.

    2015-12-01

    Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.

  4. Supplemental figures for "Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider"

    CERN Document Server

    2016-01-01

    This note contains additional figures for the analysis of the cosmic ray data taken in the period 2010-2013 and published in JCAP 1601 no. 01, (2016) 032 (arXiv:1507.07577). The angular distribution of the muons crossing the TPC gives a description of the environment above the ALICE detector with its main shafts. The location of the five high muon multiplicity events found in the data, i.e., events with more than 100 muons reconstructed in the TPC, is given in the scatter plot $\\theta$ (zenith angle) vs $\\Phi$ (azimuth angle).

  5. ALICE honours two Italian suppliers

    CERN Document Server

    2006-01-01

    From left to right: Robert Terpin (MIPOT), Pier Luigi Bellutti (ITC), Andrea Zanotti, President of ITC, Luciano Bosisio (Trieste University), Gennady Zinovjev (Kiev), Catherine Decosse (CERN), Lodovico Riccati, ALICE Collaboration Board Chair (INFN Torino), Paolo Giubellino (INFN Torino), Mario Zen, Director of ITC, Maurizio Boscardin (ITC), Paolo Tonella (ITC), Jurgen Schukraft, ALICE Spokesperson (CERN), Giacomo Vito Margagliotti (Trieste University), Nevio Grion (INFN Trieste), Marco Bregant (INFN Trieste) Front row from left to right: Paolo Traverso (ITC), Federico Carminati, ALICE Computing Project Leader (CERN), and Jean-Robert Lutz, ITS-SSD Project leader (IPHC Strasbourg).

  6. CERN Open Days 2013, Point 2 - ALICE: ALICE Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: Visitors will be guided through the ALICE experiment, an extraordinary particle physics detector located at a depth of 80 meters below ground.  ALICE started up in 2008 to study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe. Visitors will also be able to walk inside the LHC tunnel, where superconducting magnets guide the beams of protons at unprecedented energies around the LHC. In addition to the underground visit, several ALICE physicists and engineers will be available to answer visitors' questions. On surface no restricted access  Above ground, scientific  and other kinds of shows will entertain the visitors to ALICE, even the youngest, throughout the day.

  7. ALICE Particle Identification

    CERN Document Server

    Hussein Ezzelarab, Nada

    2014-01-01

    During my stay at CERN, I have attended lectures mornings and worked on my research project under orienting guidance of my supervisors afternoons. The lectures were informative and pedagog- ically well-prepared and presented. Their contents was an excellent combination of theoretical and experimental topics in high-energy physics. Furthermore, I was privileged to visit the ALICE, CMS and LHCb detectors and the LINIAC accelerator. I have participated in workshop on ”MadGraph software”. I was furnished with excellent experiences and cultural exchanges with good colleagues from different countries. I got opportunities to know what the other students have done, in which projects they were involved and how they performed their scientific researches, especially regarding LHC data analysis. For my own project, I have to prove excellent experience with C++ and of course LINUX, ROOT and AliROOT. Tools such as Histograms, Graphs, Fitting, trees and many others were very essential. Furthermore, I am very proud getti...

  8. How to Advance TPC Benchmarks with Dependability Aspects

    Science.gov (United States)

    Almeida, Raquel; Poess, Meikel; Nambiar, Raghunath; Patil, Indira; Vieira, Marco

    Transactional systems are the core of the information systems of most organizations. Although there is general acknowledgement that failures in these systems often entail significant impact both on the proceeds and reputation of companies, the benchmarks developed and managed by the Transaction Processing Performance Council (TPC) still maintain their focus on reporting bare performance. Each TPC benchmark has to pass a list of dependability-related tests (to verify ACID properties), but not all benchmarks require measuring their performances. While TPC-E measures the recovery time of some system failures, TPC-H and TPC-C only require functional correctness of such recovery. Consequently, systems used in TPC benchmarks are tuned mostly for performance. In this paper we argue that nowadays systems should be tuned for a more comprehensive suite of dependability tests, and that a dependability metric should be part of TPC benchmark publications. The paper discusses WHY and HOW this can be achieved. Two approaches are introduced and discussed: augmenting each TPC benchmark in a customized way, by extending each specification individually; and pursuing a more unified approach, defining a generic specification that could be adjoined to any TPC benchmark.

  9. First Physics Results from ALICE

    International Nuclear Information System (INIS)

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. The main purpose of ALICE is to investigate the properties of a state of deconfined nuclear matter, the Quark Gluon Plasma. Heavy flavour measurements will play a crucial role in this investigation. The physics programme of ALICE has started by studying proton-proton collisions at unprecedented high energies. We will present the first results on open heavy flavour and quarkonia in proton-proton collisions at √s = 7 TeV measured by the ALICE experiment at both mid- and forward-rapidities. We will conclude with the prospects for heavy flavour and quarkonium measurements in both proton-proton and nucleus-nucleus collisions. Also presented are first results of neutral meson reconstruction and its perspectives, as well as further physics studies. (author)

  10. First Physics Results from ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Peressounko, Dmitri [Russian Research Centre - RRC ' Kurchatov Institute' , Kurchatov sq.1, Moscow, 123182 (Russian Federation); Castillo Castellanos, Javier [service de physique nucleaire - SPhN, IRFU, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Belikov, Iouri [Institut Pluridisciplinaire Hubert Curien - IPHC, 23 rue du loess - BP28, 67037 Strasbourg cedex 2 (France)

    2010-07-01

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. The main purpose of ALICE is to investigate the properties of a state of deconfined nuclear matter, the Quark Gluon Plasma. Heavy flavour measurements will play a crucial role in this investigation. The physics programme of ALICE has started by studying proton-proton collisions at unprecedented high energies. We will present the first results on open heavy flavour and quarkonia in proton-proton collisions at {radical}s = 7 TeV measured by the ALICE experiment at both mid- and forward-rapidities. We will conclude with the prospects for heavy flavour and quarkonium measurements in both proton-proton and nucleus-nucleus collisions. Also presented are first results of neutral meson reconstruction and its perspectives, as well as further physics studies. (author)

  11. ALICE: Physics Performance Report, Volume I

    International Nuclear Information System (INIS)

    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 900 physicists and senior engineers, from both nuclear and high-energy physics, from about 80 institutions in 28 countries. The experiment was approved in February 1997. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2001 and construction has started for most detectors. Since the last comprehensive information on detector and physics performance was published in the ALICE Technical Proposal in 1996, the detector as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) will give an updated and comprehensive summary of the current status and performance of the various ALICE subsystems, including updates to the Technical Design Reports, where appropriate, as well as a description of systems which have not been published in a Technical Design Report. The PPR will be published in two volumes. The current Volume I contains: 1. a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE,; 2. relevant experimental conditions at the LHC,; 3. a short summary and update of the subsystem designs, and; 4. a description of the offline framework and Monte Carlo generators. Volume II, which will be published separately, will contain detailed simulations of combined detector performance, event reconstruction, and analysis of a representative sample of relevant physics observables from global event characteristics to hard processes

  12. That’s a matter for ALICE!

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    ALICE has launched a new online newsletter to report on developments at the detector: ALICE Matters. The fortnightly newsletter will keep members of the collaboration – and a wider readership – up-to-date with the latest news from the detector.   Screenshot of the ALICE Matters website. The new ALICE Matters newsletter highlights the work of ALICE collaborators through news, interviews and feature articles. Published online every fortnight, it will report the latest developments from the experiment, providing information about operation and data taking, installation work during technical stops, and news from ALICE members. The newsletter is aimed at members of the collaboration, but as an online publication it is also open to the general public. “We often receive questions from people who follow our progress and are interested in what's happening at ALICE,” explains Despina Hatzifotiadou, ALICE Outreach Coordinator. “With ALICE Matters, we can n...

  13. Future prospects of the TPC idea

    International Nuclear Information System (INIS)

    General aspects affecting TPC size, readout plane characteristics and operation in the LEP environment are presented, with the general conclusion that modest improvements relative to PEP-4 can be realized in several areas. The problem of positive ion reduction is discussed according to two qualitatively new operating modes, asynchronous and synchronous gating. Either gating mode appears to offer a means to eliminate almost completely the ion return flux. Some speculative ideas involving 3-component gas mixtures, low-mass components and parallel plane geometry are presented as future possibilities

  14. Preparing the ALICE DAQ upgrade

    Science.gov (United States)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Kiss, T.; Rauch, W.; Rubin, G.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.

    2012-12-01

    In November 2009, after 15 years of design and installation, the ALICE experiment started to detect and record the first collisions produced by the LHC. It has been collecting hundreds of millions of events ever since with both proton and heavy ion collisions. The future scientific programme of ALICE has been refined following the first year of data taking. The physics targeted beyond 2018 will be the study of rare signals. Several detectors will be upgraded, modified, or replaced to prepare ALICE for future physics challenges. An upgrade of the triggering and readout systems is also required to accommodate the needs of the upgraded ALICE and to better select the data of the rare physics channels. The ALICE upgrade will have major implications in the detector electronics and controls, data acquisition, event triggering and offline computing and storage systems. Moreover, the experience accumulated during more than two years of operation has also lead to new requirements for the control software. We will review all these new needs and the current R&D activities to address them. Several papers of the same conference present in more details some elements of the ALICE online system.

  15. ALICE A Large Ion Collider Experiment

    CERN Multimedia

    Klein, J; Hristov, P Z; Mager, M; Miskowiec, D C; Selyuzhenkov, I; Bertelsen, H; Kox, S; Cheynis, B; Cheshkov, C V; Hamar, G; Choudhury, S; Agnello, M; Miake, Y; Inaba, M; Maldonado cervantes, I A; Fernandez tellez, A; Kulibaba, V; Zinovjev, G; Martynov, Y; Usenko, E; Pshenichnov, I; Nikolaev, S; Vasiliev, A; Vinogradov, A; Moukhanova, T; Vasilyev, A; Kozlov, Y; Voloshin, K; Kiselev, S; Kirilko, Y; Lyublev, E; Kondratyeva, N; Yin, Z; Zhu, J; Luo, J; Pikna, M; Hasko, J; Pastircak, B; Donigus, B; Rascanu, B T; Mercado-perez, J; Westerhoff, U; Wilde, M R; Feldkamp, L; Scott, H; Hanratty, L D; Marangio, G; Gianotti, P; Muccifora, V; Morando, M; Di liberto, S; Haque, M R; Langoy, R; Lovhoiden, G; Nilsson, M S; Bartke, J G; Sputowska, I A; Ilkiv, I; Christiansen, P; Dodokhov, V; Yurevich, V; Fedunov, A; Malakhov, A; Efremov, A; Feofilov, G; Vinogradov, L; Asryan, A; Kovalenko, V; Piyarathna, D; Myers, C J; Martashvili, I; Scott, R M; Bombara, M; Oh, H; Cherney, M G; Malagalage, K J; D'erasmo, G; Wagner, V; Smakal, R; Lopez, X B; Batista camejo, A; Sambyal, S S; Sharma, R; Sartorelli, G; Xaplanteris karampatsos, L; Mlynarz, J; Garishvili, I; Murray, C J; Oh, S; Srivastava, B K; Utrobicic, A; Becker, B; Usai, G; Razazi, V; Zbroszczyk, H P; Pappalardo, G; Khlebnikov, A; Basmanov, V; Punin, V; Demanov, V; Gotovac, S; Irfan, M; Felea, D; Zgura, S I; Vernet, R; Son, C; Shtejer diaz, K; Hwang, S; Alfaro molina, J R; Jahnke, C; Garcia-solis, E J; Hitchcock, T M; Franz degenhardt, H; Brun, R; Divia, R; Schukraft, J; Riedler, P; Floris, M; Eulisse, G; Von haller, B; Kouzinopoulos, C; Haake, R; Ivanov, M; Malzacher, P; Schweda, K O; Gaardhoeje, J J; Bearden, I G; Borel, H; Pereira da costa, H D A; Faivre, J; Germain, M; Schutz, Y R; Delagrange, H; Batigne, G; Stocco, D; Estienne, M D; Bergognon, A A E; Zoccarato, Y D; Levai, P; Bencedi, G; Mahapatra, D P; Ghosh, P; Das, T K; Alessandro, B; Cerello, P; De marco, N; Fragiacomo, E; Grion, N; Paic, G; Ovchynnyk, V; Karavicheva, T; Kucheryaeva, M; Skuratovskiy, O; Mal kevich, D; Bogdanov, A; Rasanen, S S; Pereira, L G; Cai, X; Zhu, X; Wang, M; Fan, F; Sitar, B; Zagiba, M; Cerny, V; Renfordt, R A E; Reygers, K J; Zimmermann, M B; Gonzalez zamora, P; Loo, K K; Jones, P G; Bianchi, N; Dainese, A; Giubilato, P; Festanti, A; Mazzoni, A M; Torii, H; Hori, Y; Tsuji, T; Herrera corral, G A; Reicher, M; Lodato, D F; Van der maarel, J; Tveter, T S; Batzing, P C; Kowalski, M; Rybicki, A; Kielbowicz, M M; Deloff, A; Petrovici, A; Nomokonov, P; Parfenov, A; Koshurnikov, E; Shahaliyev, E; Rogochaya, E; Kondratev, V; Oreshkina, N; Tarasov, A; Norenberg, M; Bodnya, E; Bogolyubskiy, M; Symons, T; Blanco, F; Madagodahettige don, D M; Umaka, E N; Rana, D B; Schaefer, B; De pasquale, S; Fusco girard, M; Song, M; Kim, T; Jeon, H; Kushpil, V; Porteboeuf, S J; Nandi, B K; Sarkar - sinha, T; Aggarwal, M M; Jena, D; Arcelli, S; Scapparone, E; Shevel, A; Nikulin, V; Komkov, B; Voloshin, S; Hille, P T; Kannan, S; Simatovic, G; Cicalo, C; De falco, A; Graczykowski, L K; Matynia, R M; Barbera, R; Palmeri, A; Vinogradov, Y; Vikhlyantsev, O; Telnov, A; Tumkin, A; Khan, M M; Erdal, H A; Keidel, R; Yeo, I; Vilakazi, Z; Klay, J L; Boswell, B D; Lindenstruth, V; Goel, A; Breitner, T G; Sahoo, R; Roy, A; Lagana fernandes, C; Musa, L; Perini, D; Vande vyvre, P; Fuchs, U; Aglieri rinella, G; Salgueiro domingues da silva, R M; Kalweit, A P; Martinez pedreira, M; Francescon, A; Bond, P M; Marin, A M; Staley, F M; Castillo castellanos, J E; Furget, C; Real, J; Martino, J F; Sahu, P K; Sahu, S K; Baral, R C; Singaraju, R N; Ahammed, Z; Saini, J; Basu, S; Di bari, D; Bruno, G E; Biasotto, M; Giubellino, P; Esumi, S; Sano, M; Drakin, Y; Manko, V; Nikulin, S; Yushmanov, I; Kozlov, K; Kerbikov, B; Stavinskiy, A; Sultanov, R; Zhu, H; Cajko, F; Meres, M; Kralik, I; Glassel, P; Schicker, R M; Grajcarek, R; Evans, D; Tudor jones, G; Kinson, J; Bhattacharjee, B; Rizzi, V; Orlandi, A; Fabris, D; Viesti, G; Lea, R; Kuijer, P G; Nooren, G; Roehrich, D; Lonne, P; Wikne, J; Figiel, J; Gorlich, L M; Shabratova, G; Lobanov, V; Zaporozhets, S; Pocheptsov, T; Ivanov, A; Iglovikov, V; Ochirov, A; Petrov, V; Jacobs, P M; De gruttola, D; Raniwala, R; Corsi, F; Pajares vales, C; Varma, R; Kumar, J; Parmar, S; Bala, R; Gupta, R; Nania, R; Zalite, A; Samsonov, V; Pruneau, C A; Caines, H L; Aronsson, T; Adare, A M; Zwick, S M; Fearick, R W; Ostrowski, P K; Kulasinski, K; La rocca, P; Ilkaev, R; Ilkaeva, L; Pavlov, V; Mikhaylyukov, K; Rybin, A; Naumov, N; Mudnic, E; Cortese, P; Listratenko, O; Stan, I; Song, J; Krawutschke, T; Kim, S Y; Hwang, D S; Lee, S H; Leon monzon, I; Vorobyev, I; Yan, Y; Mazumder, R; Araujo silva figueredo, M; Shahoyan, R; Kluge, A; Safarik, K; Tauro, A; Caffarri, D; Lakomov, I; Van hoorne, J W; Foka, P; Frankenfeld, U M; Masciocchi, S; Schwarz, K E; Hansen, A; Baldisseri, A; Aphecetche, L B; Berenyi, D; Sahoo, S; Nayak, T K; Muhuri, S; Patra, R N; Adhya, S P; Saavedra san martin, O; Scomparin, E; Arnaldi, R; Rui, R; Mizuno, S; Enyo, H; Cuautle flores, E; Potin, S; Zynovyev, M; Kurepin, A; Belyaev, S; Ryabinkin, E; Kiselev, I; Pestov, Y; Hayrapetyan, A; Manukyan, N; Lutz, J; Belikov, I; Roy, C S; Takahashi, J; Tang, S; Szarka, I; Sandor, L; Vrlakova, J; Antonczyk, D W; Bailhache, R M; Anguelov, V; Wilk, A; Ladron de guevara, P; Acero fernandez, A; Diaz corchero, M A; Platt, R J; Kour, R; Scott, P A; Das, S; Di nezza, P; Turrisi, R; Hayashi, S; Van rijn, A J; Bertens, R A; Altinpinar, S; Fehlker, D; Velure, A; Skaali, B; Richter, M R; Milosevic, J; Qvigstad, H; Dordic, O; Zhao, C; Siemiarczuk, T; Petrovici, M; Petris, M; Stenlund, E A; Otterlund, I; Soegaard, C; Malinina, L; Fateev, O; Kolozhvari, A; Altsybeev, I; Sadovskiy, S; Soloviev, A; Ploskon, M A; Mayes, B W; Sorensen, S P; Awes, T; Virgili, T; Pagano, P; Putis, M; Kim, B; Krus, M; Gonzalez ferreiro, E; Vulpescu, B; Sett, P; Sinha, B; Khan, P; Antonioli, P; Scioli, G; Sakaguchi, H; Volkov, S; Ivanov, V; Khanzadeev, A; Malaev, M; Markert, C; Lisa, M A; Salzwedel, J S N; Loggins, V R; Schuster, T R; Hicks, B R; Scharenberg, R P; Planinic, M; Masoni, A; Incani, E; Debski, P R; Oleniacz, J; Yanovskiy, V; Domrachev, S; Smirnova, Y; Zimmermann, S; Ahmad, N; Shestakov, V; Kileng, B; Seo, J; Lopez torres, E; Ceballos sanchez, C; Jang, H J; Buthelezi, E Z; Steyn, G F; Suleymanov, M K O; Belmont moreno, E; Perales, M; Kobdaj, C; Mishra, A N; Keil, M; Morsch, A; Rademakers, A; Soos, C; Zampolli, C; Grigoras, C; Chibante barroso, V M; Schuchmann, S; Grigoras, A G; Berzano, D; Wegrzynek, A T; Braun-munzinger, P; Andronic, A; Arbor, N; Erazmus, B E; Pichot, P; Pillot, P; Grossiord, J; Boldizsar, L; Costanza, S; Botta, E; Gallio, M; Masera, M; Simonetti, L; Prino, F; Oppedisano, C; Toscano, L; Nappi, G; Rachevski, A; Vargas trevino, A D; Naumov, S; Trubnikov, V; Alkin, A; Ivanytskyi, O; Guber, F; Karavichev, O; Nyanin, A; Sibiryak, Y; Peresunko, D Y; Patarakin, O; Aleksandrov, D; Blau, D; Yasnopolskiy, S; Chumakov, M; Vetlitskiy, I; Nedosekin, A; Selivanov, A; Okorokov, V; Grigoryan, A; Papikyan, V; Kuhn, C C; Wan, R; Zhou, D; Mares, J; Zavada, P; Pitz, N; Zimmermann, A; Lu, X; Bock, F; Wilkinson, J J; Rubio montero, A J; Reolon, A R; Antinori, F; Gunji, T; Snellings, R; Mischke, A; Yang, H; Grelli, A; Nystrand, J I; Ullaland, K; Haaland, O S; Matyja, A T; Klusek-gawenda, M J; Schiaua, C C; Andrei, C; Herghelegiu, A I; Tydesjo, H; Panebrattsev, Y; Penev, V; Efimov, L; Zanevskiy, Y; Vechernin, V; Zarochentsev, A; Kolevatov, R; Agapov, A; Polishchuk, B; Loizides, C; Anwar, R; Anticic, T; Kwon, Y; Kim, M; Moon, T; Bielcikova, J; Kushpil, S; Petran, M; Rosnet, P; Ramillien barret, V; Sahoo, B; Das bose, L; Hatzifotiadou, D; Shigaki, K; Jha, D M; Soltz, R A; Mastroserio, A; Puddu, G; Serci, S; Siddi, E; Siddhanta, S; Petta, C; Badala, A; Putevskoy, S; Shapovalova, E; Ahmad, A; Haiduc, M; Mitu, C M; Hetland, K F; Gago medina, A M; Menchaca-rocha, A A; De cuveland, J; Hutter, D; Langhammer, M; Dahms, T; Watkins, E P; Kumar, L; Riegler, W; Telesca, A; Lazaridis, L; Martin, N A; Nielsen, B S; Chojnacki, M; Espagnon, B; Uras, A; Lemmon, R C; Agocs, A G; Viyogi, Y; Pal, S K; Singhal, V; Khan, S A; Alam, S N; Bagnasco, S; Camerini, P; Rodriguez cahuantzi, M; Maslov, M; Kurepin, A; Ippolitov, M; Lebedev, V; Tsvetkov, A; Klimov, A; Agafonov, G; Martemiyanov, A; Loginov, V; Kononov, S; Grigoryan, S; Jangal, S G; Hnatic, M; Kalinak, P; Appelshaeuser, H; Ulery, J G; Luettig, P J; Heckel, S T; Windelband, B S; Wang, Y; Pachmayer, Y C; Lohner, D; Klein-boesing, C; Schmidt, H R; Hess, B A; Trzaska, W H; Kral, J; Lietava, R; Matthews, Z L; Palaha, A S; Raha, S; Calero diaz, L; Segato, G; Scarlassara, F; Canoa roman, V; Cruz albino, R; Botje, M; Huang, M; Gladysz-dziadus, E; Marszal, T; Dobrowolski, T A; Oskarsson, A N E; Ljunggren, H M; Vodopyanov, A; Akichine, P; Kuznetsov, A; Vedeneyev, V; Naumenko, P; Bilov, N; Rogalev, R; Evdokimov, S; Braidot, E; Bellwied, R; De caro, A; Kang, J H; Gorbunov, Y; Lee, J; Ferencei, J; Kucera, V; Pachr, M; Baldit, A; Manso, F; Crochet, P; Dash, S; Roy, P K; Cifarelli, L; Laurenti, G; Margotti, A; Bellini, F; Sugitate, T; Zhalov, M; Pavlinov, A; Harris, J W; Caballero orduna, D; Pluta, J M; Kisiel, A R; Wrobel, D; Zhitnik, A; Nazarenko, S; Zavyalov, N; Miroshnikov, D; Kuryakin, A; Vyushin, A; Mamonov, A; Vickovic, L; Tariq, M; Niculescu, M; Ahn, S U; Ahn, S; Foertsch, S V; Brown, C R; Munzer, R H; Harton, A V; Khosonthongkee, K; Oliveira da silva, A C; Betev, L; Buncic, P; Carena, F; Di mauro, A; Martinengo, P; Gargiulo, C; Grosse-oetringhaus, J F; Costa, F; Baltasar dos santos pedrosa, F; Laudi, E; Lippmann, C; Schmidt, C J; Christensen, C H; Rakotozafindrabe, A M; Conesa balbastre, G; Martinez-garcia, G; Suire, C P; Ducroux, L; Tieulent, R N; Barnafoldi, G G; Pochybova, S; Dubey, A K; Acharya, S; Ricci, R A; Vercellin, E; Beole, S; Chujo, T; Watanabe, K; Onishi, H; Akiba, Y; Vergara limon, S; Tejeda munoz, G; Svistunov, S; Reshetin, A; Maevskaya, A; Antonenko, V; Mishustin, N; Meleshko, E; Korsheninnikov, A; Balygin, K; Zagreev, B; Akindinov, A; Mikhaylov, K; Gushchin, O; Grigoryev, V; Gulkanyan, H; Sanchez castro, X; Peretti pezzi, R; Siska, M; Vokal, S; Beitlerova, A; Kramer, F; Book, J H; Heide, M A; Passfeld, A; Montes prado, E; Rak, J; Jusko, A; Ghosh, S K; Spiriti, E; Ronchetti, F; Casanova diaz, A O; Lunardon, M; Meddi, F; Van leeuwen, M; De rooij, R S; Djuvsland, O; Lindal, S; Aiftimiei, C; Berceanu, I; Kuzmin, N; Melkumov, G; Zinchenko, A; Shklovskaya, A; Bunzarov, Z I; Chernenko, S; Toulina, T; Kompaniets, M; Titov, A; Kharlov, Y; Dantsevich, G; Stolpovskiy, M; Porter, R J; Datskova, O V; Nattrass, C; Mazer, J A; Harmanova, Z; Seger, J E; Kim, J; Kim, D S; Jung, W W; Kim, H; Adamova, D; Bielcik, J; Pospisil, V; Cepila, J; Dupieux, P; Bastid, N; Das, D; Bhati, A K; Gupta, A; Sharma, S; Williams, C; Pesci, A; Roshchin, E; Grounds, A; Humanic, T; Steinpreis, M D; Yaldo, C G; Abelev, B B; Smirnov, N; Heinz, M T; Connors, M E; Barile, F; Fiore, E M; Orzan, G; Wielanek, D H; Servais, E L J; Patecki, M; Zhelezov, S; Morkin, A; Zabelin, O; Hussain, T; Ramello, L; Rogachevskiy, O; Kim, E J; Coccetti, F; Calvo villar, E; Rauf, A W; Sandoval, A; Berger, M E; Cervantes jr, M; Kebschull, U W; Engel, H; Karasu uysal, A; Alarcon do passo suaide, A; Augustinus, A; Carena, W; Chochula, P; Chapeland, S; Dobrin, A F; Reidt, F; Averbeck, R P; Garabatos cuadrado, J; Boggild, H; Gulbrandsen, K H; Hansen, J C; Charvet, J F; Shabetai, A; Hadjidakis, C M; Vertesi, R; Mitra, J; Altini, V; Riccati, L; Ferretti, A; Gagliardi, M; Bufalino, S; Margagliotti, G V; Sakata, D; Niida, T; Martinez hernandez, M I; Karpechev, E; Veselovskiy, A; Konevskikh, A; Finogeev, D; Fokin, S; Karadzhev, K; Kucheryaev, Y; Plotnikov, V; Ryabinin, M; Golubev, A; Kaplin, V; Ter-minasyan, A; Abramyan, A; Hippolyte, B; Zhou, F; Zhang, H; Strmen, P; Kapusta, S; Krivan, F; Reichelt, P S; Marquard, M; Broker, T A; Zyzak, M; Kulakov, I; Sahlmuller, B; Stachel, J; Wessels, J P; Kalliokoski, T E A; Chang, B; Krivda, M; De cataldo, G; Paticchio, V; Fantoni, A; Soramel, F; Bombonati, C; Gomez jimenez, R; Christakoglou, P; Peitzmann, T; Veldhoen, M; Skjerdal, K; Wagner, B; Yang, S; Cyz, A; Wilk, G A; Kurashvili, P; Pop, A; Arefiev, V; Batyunya, B; Kadyshevskiy, V; Lioubochits, V; Zryuev, V; Sokolov, M; Patalakha, D; Pinsky, L; Timmins, A R; Raniwala, S; Kim, D W; Sumbera, M; Petracek, V; Krelina, M; Vasileiou, M; Spyropoulou-stassinaki, M; Koyithatta meethaleveedu, G; Chattopadhyay, S; Potukuchi, B; Basile, M; Falchieri, D; Miftakhov, N; Berdnikov, Y; Garner, R M; Konyushikhin, M; Joseph, N; Browning, T A; Cleymans, J W A; Dietel, T; Pawlak, T J; Kucinski, M; Janik, M A; Surma, K D; Niedziela, J; Riggi, F; Ivanov, A; Selin, I; Budnikov, D; Filchagin, S; Sitta, M; Gheata, M; Danu, A; Diomkin, V; Helstrup, H; Subasi, M; Murray, S; Mathis, A M; Banerjee, S S; Goyal, D; Rist, J A S; Jena, C; Lara martinez, C E

    2002-01-01

    %title\\\\ \\\\ALICE is a general-purpose heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 750~physicists and $\\sim$70 institutions in 27 countries.\\\\ \\\\The detector is designed to cope with the highest particle multiplicities anticipated for Pb-Pb reactions (dN/dy~$\\approx$~8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and p-nucleus), which provide reference data for the nucleus-nucleus collisions.\\\\ \\\\ALICE consists of a central part, which measures event-by-event hadrons, electrons and photons, and a forward spectrometer to measure muons. The central part, which covers polar angles from 45$^{0} $ to 135$^{0} $ ($\\mid \\eta \\mid $ < 0.9) over the full azimuth, is embedded in the large L3 solenoidal mag...

  16. Upgrade of the ALICE Inner Tracking System

    Science.gov (United States)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  17. Team Primacy Concept (TPC) Based Employee Evaluation and Job Performance

    Science.gov (United States)

    Muniute, Eivina I.; Alfred, Mary V.

    2007-01-01

    This qualitative study explored how employees learn from Team Primacy Concept (TPC) based employee evaluation and how they use the feedback in performing their jobs. TPC based evaluation is a form of multirater evaluation, during which the employee's performance is discussed by one's peers in a face-to-face team setting. The study used Kolb's…

  18. ALICE rewards one of its suppliers

    CERN Multimedia

    2007-01-01

    On 6 October 2007 the ALICE Collaboration Board awarded one of its prestigious Industrial Awards to Hewlett-Packard for its instrumental role in enabling ALICE physicists to collect and process experimental data on the Grid. From left to right: Jurgen Schukraft, ALICE Spokesperson; Michel Bénard, Hewlett Packard, Director, Technology Programs and University Relations; Federico Carminati, ALICE Computing Project Leader; Lodovico Riccati, ALICE Collaboration Board Chairperson; Arnaud Pierson, Hewlett Packard, E.M.E.A Program Manager, University Relations and HP Labs; Latchezar Betev, ALICE Distributed Computing Coordinator.The ALICE DAQ and Offline groups have been collaborating with HP since 1993 in the yearly Computing and GRID physics data challenges programme. These are high-level exercises of readiness of hardware and software frameworks for data acquisition and processing. HP hosted ALICE experts in their "centre de compétences"...

  19. The ALICE time machine

    Directory of Open Access Journals (Sweden)

    Ferretti Alessandro

    2013-09-01

    Full Text Available According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. In such a state the normal nuclear matter could not exist: it is believed that a few microsecond after big-bang the matter underwent a phase transition, from a state called Quark-Gluon Plasma (QGP to a hadron gas. Some of the unexplained features of the Universe could be explained by the QGP properties. One of the aims of the CERN LHC is to recreate (on a smaller scale a QGP state, compressing and heating ordinary nuclear matter by means of ultrarelativistic heavy-ion collisions. The ALICE experiment at CERN is dedicated to the study of the medium produced in these collisions : in particular, the study of the heavy quarkonia suppression pattern can give a measure of the temperature reached in these collisions, helping us to understand how close we are getting to the conditions of the starting point of the Universe.

  20. Alice in Danceland

    Directory of Open Access Journals (Sweden)

    Fabio Ciambella

    2012-12-01

    Full Text Available Lo scopo di questo saggio è quello di presentare un ‘case study’ finora inesplorato nel campo degli studi sugli adattamenti: la danza in Alice’s Adventures in Wonderland (1865 di Lewis Carroll e le sue trasformazioni in sede di transmodalizzazione. In particolar modo si prenderanno in esame i due adattamenti cinematografici più celebri del romanzo dello scrittore vittoriano: il cartone animato prodotto dalla Disney nel 1951 e il film del 2010 diretto dal regista californiano Tim Burton. Se in Alice’s Adventures in Wonderland di Carroll la danza è quella delle aragoste del capitolo (il decimo per l'esattezza che si intitola proprio “The Lobster Quadrille”, nel capolavoro Disney non vi è traccia alcuna né di aragoste, né tanto meno di tartarughe o grifoni. Eppure paradossalmente la danza nel cartone animato è un motivo ricorrente, che fa da sfondo alle peripezie della protagonista dall'inizio alla fine dell'opera. Quel che stupisce ancora di più lo spettatore di Alice di Burton è la presenza della danza in due precisi momenti della pellicola – all'inizio e alla fine – che non sono presenti né nell’ipotesto, né nell'adattamento Disney. In altre parole, sebbene la danza sia presente nelle tre opere, essa non compare mai nello stesso momento o con le stesse modalità.

  1. ALICE tests its digital chain

    CERN Multimedia

    2007-01-01

    During its 7th data challenge, ALICE successfully tested the infrastructure of its data acquisition, transfer and storage system. The ALICE experiment will need a rock-solid data acquisition, selection, transfer, storage and handling system to analyse the billions of bits of data that will be generated every second. The heavy ion collisions at the LHC will generate 10 times more data per second than proton collisions. The ALICE teams have therefore been hard at it for several years designing a cutting-edge informatics system, whose reliability is regularly put to the test in the annual data challenges. Last December, groups from the Collaboration and the IT Department joined forces, or rather cables, in the 7th of these challenges. The teams of ALICE DAQ (data acquisition), ALICE Offline (data handling), IT-CS-IO (network) and IT-FIO (CASTOR and data storage) all took part in testing the various components of the infrastructure, from data acquisition to transfer and storage. Working in close collaboration,...

  2. Signal Processing in the MicroBooNE LArTPC

    CERN Document Server

    Joshi, Jyoti

    2015-01-01

    The MicroBooNE experiment is designed to observe interactions of neutrinos with a Liquid Argon Time Projection Chamber (LArTPC) detector from the on-axis Booster Neutrino Beam (BNB) and off-axis Neutrinos at the Main Injector (NuMI) beam at Fermi National Accelerator Laboratory. The detector consists of a $2.5~m\\times 2.3~m\\times 10.4~m$ TPC including an array of 32 PMTs used for triggering and timing purposes. The TPC is housed in an evacuable and foam insulated cryostat vessel. It has a 2.5 m drift length in a uniform field up to 500 V/cm. There are 3 readout wire planes (U, V and Y co-ordinates) with a 3-mm wire pitch for a total of 8,256 signal channels. The fiducial mass of the detector is 60 metric tons of LAr. In a LArTPC, ionization electrons from a charged particle track drift along the electric field lines to the detection wire planes inducing bipolar signals on the U and V (induction) planes, and a unipolar signal collected on the (collection) Y plane. The raw wire signals are processed by speciali...

  3. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    Science.gov (United States)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  4. Industrial collaborators honoured by ALICE

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Picture 01 : the winners gather after the ALICE Award ceremony (from left to right): Yuri Saveliev, Stanislav Burachas and Sergei Beloglovsky of North Crystals; Maximilian Metzger, CERN's secretary-general; Rang Cai of ATM; Jürgen Schukraft, ALICE spokesperson; Erich Pamminger and Daniel Gattinger of FACC; and Tiejun Wang of ATM. The ALICE collaboration has presented its second round of awards to three companies for their novel and remarkable contributions to major detector systems: Advance Technology and Materials (ATM), Fischer Advanced Composite Components (FACC) and North Crystals. The awards presented to these three leaders in advanced, modern materials were beautifully sculpted from one of the oldest materials used by mankind to manufacture tools - Mexican Obsidian

  5. Managing Information Flow in ALICE

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    ALICE is one of the experiments at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The ALICE detector control system is an integrated system collecting 18 different detectors’ controls and general services. Is implemented using the commercial SCADA package PVSS. Information of general interest, such as beam and condition data, and data related to shared plants or systems, are made available to all the subsystems via the distribution capabilities of PVSS. Great care has been taken to build a modular and hierarchical system, limiting the interdependencies of the various subsystems. Accessing remote resources in a PVSS distributed environment is very simple and can be initiated unilaterally. In order to improve the reliability of distributed data and to avoid unforeseen and unwished dependencies, the ALICE DCS group has enforced the centralization of global data required by the subsystems. A tool has been developed to monitor the level of interdependency and to understand the ...

  6. The ALICE forward multiplicity detector

    International Nuclear Information System (INIS)

    The ALICE experiment is designed to study the properties of hadron and nucleus collisions in a new energy regime at the Large Hadron Collider at CERN. A fundamental observable in such collisions is the multiplicity distribution of charged particles. A forward multiplicity detector has been designed to extend the charged particle multiplicity coverage of the ALICE experiment to pseudorapidities of -3.4<η<-1.7 and 1.7<η<5.0. This detector consists of five rings, each containing 10240 Si strips, divided into sectors comprised of Si sensors bonded and glued to hybrid PC boards equipped with radiation hard preamplifiers. The output of these preamplifiers is multiplexed into custom-made fast ADC chips located directly behind the Si sensors on the detector frame. These ADCs are read out, via optical fibers, to a data acquisition farm of commodity PCs. The design and characteristics of the ALICE Forward Multiplicity Detector will be discussed

  7. ALICE DCS web feed publication

    CERN Document Server

    Verdu Torres, Daniel

    2015-01-01

    The ALICE Detector Control System is a complex hardware and software infrastructure and is running in a protected network environment. Monitoring data, announcements and alarms are made accessible to interested users in several different ways: dedicated panels running on operator nodes, web sites, email and sms. The project aims to aggregate information coming from several different systems, categorize according to its nature, reformat and publish on a dedicated web site. For this purpose, I have used "WinCC_OA" software tool, which is the software used by the ALICE DCS group.

  8. A Muti-channel Distributed DAQ for n-TPC

    OpenAIRE

    Xiaolei, Cheng; jianfang, Liu; Qian, Yu; libo, Niu; Yulan, Li

    2015-01-01

    A new fast neutron spectrometer named n-TPC has been designed by LPRI (Key Laboratory of Particle & Radiation Imaging, Ministry of Education) at Tsinghua University. The neutron energy spectrum can be calculated from the recoil angle and energy of the recoil proton detected by a 704-pad GEM-TPC. In beam tests at IHIP (Institute of Heavy Ion Physics, Peking University) in 2014, n-TPC performed better than 6 percents at 6MeV energy resolution and 0.5 percents detection efficiency. To find the b...

  9. The ALICE High Level Trigger: status and plans

    CERN Document Server

    Krzewicki, Mikolaj; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-01-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before t...

  10. Alice Views Jupiter and Io

    Science.gov (United States)

    2007-01-01

    This graphic illustrates the pointing and shows the data from one of many observations made by the New Horizons Alice ultraviolet spectrometer (UVS) instrument during the Pluto-bound spacecraft's recent encounter with Jupiter. The red lines in the graphic show the scale, orientation, and position of the combined 'box and slot' field of view of the Alice UVS during this observation. The positions of Jupiter's volcanic moon, Io, the torus of ionized gas from Io, and Jupiter are shown relative to the Alice field of view. Like a prism, the spectrometer separates light from these targets into its constituent wavelengths. Io's volcanoes produce an extremely tenuous atmosphere made up primarily of sulfur dioxide gas, which, in the harsh plasma environment at Io, breaks down into its component sulfur and oxygen atoms. Alice observed the auroral glow from these atoms in Io's atmosphere and their ionized counterparts in the Io torus. Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

  11. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  12. On the horizon for ALICE

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    ALICE – the LHC experiment specifically designed to study the physics of the Quark Gluon Plasma (QGP) and, more generally, of strongly interacting matter at extreme energy densities – is planning a series of upgrades during the long shutdowns of the accelerator in the coming years. The new ALICE will have enhanced read-out capabilities and improved efficiency when tracking particles and identifying the vertex of the interactions.     Corrado Gargiulo, ALICE's Project Engineer with ITS prototype. The new ITS will consist of 7 layers of silicon sensors supported by a ultra-light carbon fibre structure.  The LHC has been operated with lead ions for only about two months, but this has been sufficient for ALICE and other LHC experiments to produce results that previous accelerators took several years of operation to produce. “Prior to the start-up of the LHC heavy-ion programme, the nature of the QGP as an almost-perfect liquid had already...

  13. Alices in a nuclear Wonderland

    Science.gov (United States)

    Brown, Kate

    2014-02-01

    Denise Kiernan's The Girls of Atomic City tells the story of a dozen women who left rural America in the early 1940s and tumbled suddenly, like Alice down the rabbit hole, into the nascent US military-industrial complex, with all its regulations, factory discipline, dangers and surveillance.

  14. ALICE Holds Up to Challenge

    CERN Multimedia

    2006-01-01

    ALICE's main austenitic stainless steel support structure (the Space Frame) has recently gone through many tests that proved quite challenging: insuring the structure is sound and lowering it horizontally into the ALICE cavern. This structure is constructed to hold the large volume detectors, such as the Time Projection Chamber, Transition Radiation Detector and Time of Flight inside the ALICE solenoid magnet. After the final assembly at CERN, two large mobile cranes were needed for the job of lifting and turning the 14 tonne frame onto its side. Once shifted, it was placed in Building SX2, one of the surface assembly areas designated for ALICE. The structure, which is 8 m in diameter and 7 m long, underwent many tests in its new position. Geometric control tests were performed by measuring each of the 18 cells and placing wooden or metal samples constructed to the same dimensions as the real thing inside the structure. The most important check was the movement of the real Time Projection Chamber from its s...

  15. The ALICE Magnetic System Computation.

    CERN Document Server

    Klempt, W; CERN. Geneva; Swoboda, Detlef

    1995-01-01

    In this note we present the first results from the ALICE magnetic system computation performed in the 3-dimensional way with the Vector Fields TOSCA code (version 6.5) [1]. To make the calculations we have used the IBM RISC System 6000-370 and 6000-550 machines combined in the CERN PaRC UNIX cluster.

  16. The ALICE experiment at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Aamodt, K [Department of Physics, University of Oslo, Oslo (Norway); Abrahantes Quintana, A [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Madrid/Havana, Spain (Cuba); Achenbach, R [Kirchhoff-Institut fuer Physik, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany BMBF (Germany); Acounis, S [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, Nantes (France); Adamova, D [Academy of Sciences of the Czech Republic, Nuclear Physics Institute, Rez/Prague (Czech Republic); Adler, C [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany BMBF (Germany); Aggarwal, M [Physics Department, Panjab University, Chandigarh (India); Agnese, F [IPHC, Universite Louis Pasteur, CNRS/IN2P3, Strasbourg (France); Rinella, G Aglieri [CERN, European Organization for Nuclear Reasearch, Geneva (Switzerland); Ahammed, Z [Variable Energy Cyclotron Centre, Kolkata (India); Ahmad, A; Ahmad, N; Ahmad, S [Department of Physics Aligarh Muslim University, Aligarh (India); Akindinov, A [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Akishin, P [JINR, Joint Institute for Nuclear Research, Dubna, (Russian Federation); Aleksandrov, D [Russian Research Center Kurchatov Institute, Moscow (Russian Federation); Alessandro, B; Alfarone, G [Sezione INFN, Torino (Italy); Alfaro, R [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Alici, A [Dipartimento di Fisica dell' Universita and Sezione INFN, Bologna (Italy)], E-mail: Hans-Ake.Gustafsson@hep.lu.se (and others)

    2008-08-15

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 x 16 x 26 m{sup 3} with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010

  17. TPC Readout Electronics with Time-to-Digital Converters

    CERN Document Server

    Kaukher, Alexander

    2009-01-01

    Development of readout electronics for Time Projection Chamber for a Linear Collider is ongoing under stringent requirements on high channel density, lowest possible power consumption and small material budget. In the studied TPC readout electronics time and charge of TPC signals are measured with the help of Time-to-Digit Converters. Optimization of performance of this electronics is considered and a methodology of signal simulation is presented.

  18. A radial TPC for heavy ions

    CERN Document Server

    Garabatos, C

    2000-01-01

    The CERES experiment at the CERN SPS has been recently upgraded with a TPC with radial drift field, the first one of its sort. Constructed during 1998, it has been successfully operated in commissioning and physics runs, with muon, proton, and heavy-ion beams. A high voltage electrode of about 0.5 m radius is surrounded by sixteen 2 m long readout chambers, placed at a radius of 1.3 m, with chevron-shaped readout pads. The field cage is enclosed by two low-mass voltage degraders at each end of the cylindrical structure. A Ne-CO/sub 2/ [80-20] gas mixture allows for a safe operation and good transport properties under drift fields ranging from 200 to 600 V/cm. A spatial resolution better than 700 microns and 350 microns in r and rdelta (phi), respectively, has been achieved in a highly inhomogeneous magnetic field. Details of its construction as well as results of the operation and performance in a high multiplicity environment are presented. (0 refs).

  19. Single Event Upsets in SRAM FPGA based readout electronics for the Time Projection Chamber in the ALICE experiment

    CERN Document Server

    Røed, K; Helstrup, H; Natås, T

    2009-01-01

    Single Event Upsets in SRAM FPGA based readout electronics for the Time Projection Chamber in the ALICE experiment irradiation test results have been used to predict the single event upset rate expected during operation in the ALICE experiment. Due to the number of FPGAs utilized in the TPC front-end electronics, single event upsets can be a reliability concern. In order to reduce the probability of system malfunction, a reconfiguration solution was developed that enables the possibility to clear single event upsets in the configuration memory of the FPGA. Irradiation test results show that combined with additional system level mitigation techniques, this reconfiguration solution can be used to finally reduce the functional failure rate of the FPGA. Because irradiation testing can be time consuming, costly and sometimes even technically difficult, a software based fault injection solution has been implemented without any modification to the existing hardware setup. It provides an alternative and possibly syst...

  20. ALICE moves into warp drive.

    CERN Document Server

    CERN. Geneva

    2012-01-01

    A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). Since its successful start-up in 2010, the LHC has been performing outstandingly, providing to the experiments long periods of stable collisions and an integrated luminosity that greatly exceeds the planned targets. To fully explore these privileged conditions, we aim at maximizing the experiment's data taking productivity during stable collisions. We present in this paper the evolution of the online systems in order to spot reasons of inefficiency and address new requirements. This paper describes the features added to the ALICE Electronic Logbook (eLogbook) to allow the Run Coordination team to identify, prioritize, fix and follow causes of inefficiency in the experiment. Thorough monitoring of the data taking efficiency provides reports for the collaboration to portray its evolution and evaluate the measures (fix...

  1. Tests of gases in a mini-TPC with pixel chip readout

    Energy Technology Data Exchange (ETDEWEB)

    Vahsen, S. [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Oliver-Mallory, K.; Lopez-Thibodeaux, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kadyk, J., E-mail: jakadyk@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Garcia-Sciveres, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2014-02-21

    Gases for potential use as targets for directional dark matter detection were tested in a prototype detector using two sequential Gas Electron Multipliers, or GEMs. The sensitive volume consists of a mini-TPC of 12 cm length and 7.5 cm diameter. An FEI3 pixel chip, developed for the ATLAS experiment, was used to produce spatial measurements with high resolution. An Fe55 source produced photoelectrons by X-ray conversions in the sensitive volume, and images of these were recorded by the chip. Spatial resolution plots are shown for the gases, which include the practical electron range of the photoelectrons and the effects of diffusion in the mini-TPC. Avalanche gain and gain resolution measurements were made for the four gases tested, at atmospheric and sub-atmospheric pressures: Ar(70)/CO{sub 2}(30), CF{sub 4}, He(80)/CF{sub 4}(20) and He(80)/isobutane(20)

  2. Layout of the ALICE detector

    CERN Multimedia

    2003-01-01

    The ALICE experiment will study the collisions of beams of lead nuclei in an attempt to produce a new state of matter known as 'quark-gluon plasma'. The barrel of the detector will be housed in the solenoid that once contained the L3 experiment when LEP was in operation at CERN, between 1989 and 2000. Outside of the solenoid, a dipole magnet will bend the path of charged particles called muons, allowing their momenta to be measured.

  3. ALICE through the phase transition

    CERN Document Server

    CERN. Geneva

    2000-01-01

    While proton-proton collisions will be the principal diet of CERN's LHC machine, heavy-ion collisions will also be on the menu. The ALICE experiment will be ready and waiting. Another of ALICE's TDRs concerns the experiment's inner tracking system (ITS). This is the innermost layer of the detector, responsible for tracking emerging particles where their density will be at its highest. ALICE physicists have been working with colleagues from fellow LHC experiment LHCb to develop silicon pixel chips for the inner two layers of the ITS.The result is a chip with 50 x 425 mu m cells; a prototype detector based on this chip is being tested this year.The ITS has six layers, all using silicon technology, and about 10 million digital and 2 million analogue readout channels to digest the huge number of particles produced in LHC lead-ion collisions. The collaboration has opted for a hybrid ITS structure combining sensors, electronics and mechanical support. Beam tests so far have indicated that the ITS should achieve pos...

  4. ALICE upgrades its powerful eyes

    CERN Multimedia

    Yuri Kharlov, ALICE Collaboration

    2013-01-01

    The ALICE Photon Spectrometer (PHOS) is a high-resolution photon detector that measures the photons coming out of the extremely hot plasma created in the lead-lead collisions at the LHC. Taking advantage of the long accelerator shut-down, the ALICE teams are now repairing and upgrading the existing modules and getting ready to install the brand-new module in time for the next run. The upgraded PHOS detector will be faster and more stable with wider acceptance and improved photon identification.   PHOS crystal matrix during repair. The key feature and the main complexity of the ALICE PHOS detector is that it operates at a temperature of -25°C, which makes it the second-coldest equipment element at the LHC after the cryogenic superconducting magnets. Since 2009 when it was installed, the PHOS detector, with its cold and warm volumes, has been immersed in airtight boxes to avoid condensation in the cold volumes. The 10,752 lead tungstate crystals of the PHOS were completely insulated fr...

  5. Analysis and optimization of energy resolution of neutron-TPC

    Institute of Scientific and Technical Information of China (English)

    黄孟; 李玉兰; 牛莉博; 李金; 李元景

    2015-01-01

    Neutron-TPC (nTPC) is a fast neutron spectrometer based on GEM-TPC (Gas Electron Multiplier-Time Pro-jection Chamber) and expected to be used in nuclear physics, nuclear reactor operation monitoring, and thermo-nuclear fusion plasma diagnostics. By measuring the recoiled proton energy and slopes of the proton tracks, the incident neutron energy can be deduced. It has higher n/γseparation ability and higher detection efficiency than conventional neutron spectrometers. In this paper, neutron energy resolution of nTPC is studied using the analytical method. It is found that the neutron energy resolution is determined by 1) the proton energy resolu-tion (σEp/Ep), and 2) standard deviation of slopes of the proton tracks caused by multiple Coulomb scattering (σk(scat ering)) and by the track fitting accuracy (σk(fit)). Suggestions are made for optimizing energy resolution of nTPC. Proper choices of the cut parameters of reconstructed proton scattering angles (θcut), the number of fitting track points (N ), and the working gas help to improve the neutron energy resolution.

  6. A Muti-channel Distributed DAQ for n-TPC

    CERN Document Server

    Xiaolei, Cheng; Qian, Yu; libo, Niu; Yulan, Li

    2015-01-01

    A new fast neutron spectrometer named n-TPC has been designed by LPRI (Key Laboratory of Particle & Radiation Imaging, Ministry of Education) at Tsinghua University. The neutron energy spectrum can be calculated from the recoil angle and energy of the recoil proton detected by a 704-pad GEM-TPC. In beam tests at IHIP (Institute of Heavy Ion Physics, Peking University) in 2014, n-TPC performed better than 6 percents at 6MeV energy resolution and 0.5 percents detection efficiency. To find the best working parameters (the component and proportion of the gas, the high voltage between each GEM layer, etc.) of the n-TPC and support its application in various conditions, a multichannel distributed DAQ has been design to read out the signals from the 704 channels. With over 25 Ms/s sampling rate and 12 bit resolution for each channel, it can record the time and amplitude information as well as traditional DAQs in the TPC application domain. The main design objective of this distributed DAQ, however, is more flexi...

  7. Resolution studies of a GEM-based TPC

    Energy Technology Data Exchange (ETDEWEB)

    Killenberg, M.

    2006-12-15

    Currently there are four different concept studies trying to optimise the detector for the requirements at the ILC. In three of these detector concepts a time projection chamber (TPC) is foreseen as the main tracking device. To achieve the intended spatial resolution of 100 {mu}m, micro pattern gas detectors (MPGD) are considered for gas amplification. The two different MPGDs discussed for the ILC TPC are Micro-Mesh Gaseous Detectors (Micromegas) and Gas Electron Multiplier foils (GEMs). The current thesis shows resolution studies with a TPC prototype equipped with a triple GEM readout structure. A hodoscope made up of silicon strip sensors gives a precision reference track, allowing an unbiased measurement of the spatial resolution. High statistics measurements have been conducted at the DESY test beam facility, which provides positrons with a tunable energy between 1 GeV and 6 GeV. Using the independent measurement of the hodoscope allows systematic studies of the homogeneity of the TPC's electric field. The fluctuations of the field in the chamber's central region were found to be {delta}E/E=8.10{sup -3}. Field distortions have been determined and corrected, reducing the remaining deviations to a level well below the spatial resolution of the TPC. One important task is to reduce the number of ions drifting back into the sensitive volume. Special GEM settings with minimised ion backdrift have been examined with respect to their influence on the spatial resolution and it was found that the spatial resolution is not degraded using these special settings. The TPC prototype has been operated in a 4 T magnetic field, provided by a superconducting solenoid located at DESY Hamburg. Again the spatial resolution measured with the ion backdrift optimised settings is compared to that achieved with nonoptimised settings. In both cases the measured resolution is approximately 130 {mu}m. (orig.)

  8. ALICE Awards ceremony on 17 March 2006

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The third annual ALICE Awards ceremony recognizes three companies for their contribution to the experiment's detector. Representatives from the companies accepted their awards at the ceremony, which was also attended by CERN Secretary-General Maximilian Metzger and members of the ALICE Collaboration Board.

  9. NOTE receives the prestigious ALICE Industrial Award

    CERN Multimedia

    2006-01-01

    "NOTE Lund has been given the ALICE Industrial Award due to good co-operation, great capacity for innovation and high quality of work, as a PCB manufacturer in the CERN project ALICE. Only a small number of awards have so far been conferred to a select number of companies."

  10. B decays studies with the TPC at PEP

    International Nuclear Information System (INIS)

    In the past the TPC/2 photon collaboration at PEP has not been in a position to contribute much to B decay studies because it did not have a good position resolution at the origin. Now that a new Vertex Chamber (VC) has been built and tested, the B-physics program can proceed. Last November, there was a short run at the beam energy of 13.6 GeV. The TPC and VC worked well. With the 300 pb to the minus 1 that is planned in the next 18 months, the B lifetime should be measured with accuracy equal to the present world average. 2 refs., 4 figs

  11. ALICE gets its first ‘upgrade’

    CERN Multimedia

    2009-01-01

    The ALICE experiment has reached another milestone with the successful installation of the first two modules of the electromagnetic calorimeter. Preparations for installing the EMCal in the ALICE cavern. On 17 and 19 March the first two sections of the electromagnetic calorimeter (EMCal) were fitted in the ALICE cavern. The full EMCal, a lead-scintillator sampling calorimeter, will be made up of 12 separate modules plus 2 half modules. Weighing 8 tons each, these modules required a whole new support structure to be built and a sophisticated ‘bridge’ device (pictured) to install them in situ. Project Leader, Tom Cormier from Wayne State University, notes that: "The EMCal is a late addition to ALICE, arriving in effect as a first upgrade. Indeed full approval with construction funds occurred only in early 2008." Although ALICE has excellent momentum measurement and identification capabilities for charged hadrons it previously lac...

  12. Studies for dimuon measurement with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, D. [Institut de Physique, Orsay (France)

    1995-07-15

    The idea of measuring dimuon in the ALICE detector is not new, since it already appeared in the Aachen Conference. In the meantime studies were aiming at the use of the two detectors of LHC p-p physics, CMS and ATLAS, already dedicated to dimuon measurement, for these same measurements in heavy ion collisions, whereas the detector dedicated to heavy ions physics at LHC, ALICE, was considering all the other observables. Recently, the interest for dimuon measurements in ALICE was renewed by demands from LHC committee, stiring the activities of a working group in the ALICE collaboration, also associated to a more recent move from new groups. In the following the author briefly describes the interest of measuring dimuons in heavy ion collisions, particularly in ALICE, then the experimental strategy and first estimates of the performances that could be reached with the proposed system.

  13. Test System for Standard ALICE DCS Components

    CERN Document Server

    AUTHOR|(CDS)2160773

    2016-01-01

    Currently, the ALICE DCS project is supervising equipment installed in the ALICE experiment site at CERN. Hence, the aim of this project was to provide a test bench in the DCS lab, where a real equipment and software tools will be deployed. Using this test bench, test procedures which exercise the devices under the test in a configurable way and provide logging and trending of the acquired data were implemented. The setup was devised using the ALICE software framework and Siemens SCADA system WINCC OA, providing the same functionality as the systems installed in ALICE, and will be used for the commissioning of the new software and hardware, burn-in tests of new modules and log-term stability tests of ALICE hardware.

  14. Interview with Jurgen Schukraft, ALICE Spokesperson

    CERN Multimedia

    CERN Video Productions

    2009-01-01

    Questions : 1. How does it feel to be the Spokesperson of a large worldwide collaboration as ALICE at the very moment when the LHC is going to produce the first data? 2. Is ALICE ready for data taking? 3. Did you take advantage of the long shut down? 4. What was ALICE designed for? 5. What can you expect to find at 3.5 TeV per beam and later at 7? 6. Is ALICE going to take data only with the lead iron beams from the LHC? 7. Can you tell us more about the primordial soup of gluons and quarks? 8. What is going to happen in the ALICE control room on collision day?

  15. ALICE moves into warp drive

    Science.gov (United States)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; von Haller, B.

    2012-12-01

    A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). Since its successful start-up in 2010, the LHC has been performing outstandingly, providing to the experiments long periods of stable collisions and an integrated luminosity that greatly exceeds the planned targets. To fully explore these privileged conditions, we aim at maximizing the experiment's data taking productivity during stable collisions. We present in this paper the evolution of the online systems towards helping us understand reasons of inefficiency and address new requirements. This paper describes the features added to the ALICE Electronic Logbook (eLogbook) to allow the Run Coordination team to identify, prioritize, fix and follow causes of inefficiency in the experiment. Thorough monitoring of the data taking efficiency provides reports for the collaboration to portray its evolution and evaluate the measures (fixes and new features) taken to increase it. In particular, the eLogbook helps decision making by providing quantitative input, which can be used to better balance risks of changes in the production environment against potential gains in quantity and quality of physics data. It will also present the evolution of the Experiment Control System (ECS) to allow on-the-fly error recovery actions of the detector apparatus while limiting as much as possible the loss of integrated luminosity. The paper will conclude with a review of the ALICE efficiency so far and the future plans to improve its monitoring.

  16. ALICE moves into warp drive

    International Nuclear Information System (INIS)

    A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). Since its successful start-up in 2010, the LHC has been performing outstandingly, providing to the experiments long periods of stable collisions and an integrated luminosity that greatly exceeds the planned targets. To fully explore these privileged conditions, we aim at maximizing the experiment's data taking productivity during stable collisions. We present in this paper the evolution of the online systems towards helping us understand reasons of inefficiency and address new requirements. This paper describes the features added to the ALICE Electronic Logbook (eLogbook) to allow the Run Coordination team to identify, prioritize, fix and follow causes of inefficiency in the experiment. Thorough monitoring of the data taking efficiency provides reports for the collaboration to portray its evolution and evaluate the measures (fixes and new features) taken to increase it. In particular, the eLogbook helps decision making by providing quantitative input, which can be used to better balance risks of changes in the production environment against potential gains in quantity and quality of physics data. It will also present the evolution of the Experiment Control System (ECS) to allow on-the-fly error recovery actions of the detector apparatus while limiting as much as possible the loss of integrated luminosity. The paper will conclude with a review of the ALICE efficiency so far and the future plans to improve its monitoring.

  17. Soft QGP probes with ALICE

    CERN Document Server

    Graczykowski, Łukasz Kamil

    2016-01-01

    In heavy-ion collisions at the LHC a hot and dense medium of deconfided partons, the Quark-Gluon Plasma (QGP), is created. Its global properties can be characterized by the measurements of particles in the low transverse momentum (or "soft") regime, which represent the majority of created particles. In this report we outline a selection of measurements of the soft probes by the ALICE experiment in pp, p--Pb, and Pb--Pb collisions. The paper focuses on recent flow measurements via angular correlations and femtoscopic studies. The first ever preliminary analysis of $\\mathrm{K}^0_{\\rm S}\\mathrm{K}^{\\pm}$ femtoscopy is also presented.

  18. Recent hadronic resonance measurements at ALICE

    CERN Document Server

    Knospe, A G

    2016-01-01

    In heavy-ion physics, measurements of short-lived hadronic resonances allow the properties of the hadronic phase of the collision to be studied. In addition, resonances can be used along with stable hadrons to study parton energy loss in the quark-gluon plasma and the mechanisms that shape hadron pT spectra at intermediate transverse momenta. Resonance measurements in small systems serve as a reference for heavy-ion collisions and contribute to searches for collective effects. An overview of recent results on hadronic resonance production measured in ALICE is presented. These results include the pT spectra and yields of the rho(770)0, K*(892)0, and phi(1020) mesons in pp, p-Pb, and Pb-Pb collisions at different energies as well as the Sigma(1385)+/- and Xi(1530)0 baryons in pp and p-Pb collisions.

  19. The ALICE analysis train system

    CERN Document Server

    Zimmermann, Markus

    2015-01-01

    In the ALICE experiment hundreds of users are analyzing big datasets on a Grid system. High throughput and short turn-around times are achieved by a centralized system called the LEGO trains. This system combines analysis from different users in so-called analysis trains which are then executed within the same Grid jobs thereby reducing the number of times the data needs to be read from the storage systems. The centralized trains improve the performance, the usability for users and the bookkeeping in comparison to single user analysis. The train system builds upon the already existing ALICE tools, i.e. the analysis framework as well as the Grid submission and monitoring infrastructure. The entry point to the train system is a web interface which is used to configure the analysis and the desired datasets as well as to test and submit the train. Several measures have been implemented to reduce the time a train needs to finish and to increase the CPU efficiency.

  20. Research and development program on dense TPC's at LBL

    International Nuclear Information System (INIS)

    We have initiated a research and development program at LBL to develop high density TPC's. We are motivated by their potential use as tracking calorimeters to study nucleon decay. They may also be useful in the study of cosmic neutrino fluxes, double β decay and other low rate processes. Of these applications, the use of dense TPC's to study nucleon decay is the most challenging one because it requires instrumenting very large masses. Our R and D program is aimed at developing large TPC's which are competitive in cost with other proposed nucleon decay detectors while offering superior capabilities for energy resolution, particle identification and uniformity of response. There are two ways of obtaining high density TPC's: the first is to use a cryogenic liquid such as liquid argon or liquid methane; the second is to pressurize a gas such as argon or methane to several hundred atmospheres where the density of the gas approaches that of the liquid state. While we are interested in studying both approaches, we are concentrating on the high pressure approach since it offers the potential advantage of proportional wire amplification. A wire amplification of about 3 orders of magnitude would eliminate the noise problems which are inherent in ionization mode detectors such as liquid argon chambers. A possible 10 kton detector is described, and its properties are discussed in terms of tracking, energy measurements and particle identification

  1. Scale model of the ALICE detector arrives from India.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    A 1:10 scale model of the ALICE detector, designed and built in India, has arrived at CERN. Photo 01: Members of the ALICE Technical Board pictured with the detector model in building 40. Photos 02 03: (left to right) Christian Fabjan, ALICE technical coordinator; Yogendra Viyogi, Photon Multiplicity Detector (PMD) project leader and ALICE representative from the Variable Energy Cyclotron Centre (VECC), Calcutta; and Jurgen Schukraft, spokesperson for the ALICE collaboration.

  2. Stellar Helium Burning Studied with an Optical Readout TPC (O-TPC) at HIγS

    International Nuclear Information System (INIS)

    An Optical Readout Time Projection Chamber (O-TPC) operating with the gas mixture of CO2(80%) + N2(20%) at 100 torr with gamma beams from the HIγS facility of TUNL at Duke University were used to study the formation of carbon and oxygen during helium burning. Measurements were carried out with circularly polarized gamma-ray beams at energies: Eγ = 9.08, 9.38, 9.58, 9.78, 10.08, 10.38 and 10.68 MeV. We have begun the process of extracting complete angular distributions for the 16O(γ,α)12C reaction and the 12C(γ,3α) reaction (eventually with energy bins of approximately 100 keV) in order to determine the values of SE1, SE2 and the mixing phase φ12 of the 16O(γ, α)12C reaction. The rate of carbon formation at high temperatures (T > 3 GK) was suggested to increase due to contributions from a higher lying 2+ state. We have measured an angular distribution of (essentially) pure E2 transition at Eγ = 9.78 MeV of the 12C(γ, 3α) reaction, providing conclusive evidence for the elusive 2+2 state in 12C.

  3. Studies in Nuclear Astrophysics with an Optical Readout TPC (O-TPC) at HIγS

    International Nuclear Information System (INIS)

    An Optical Readout Time Projection Chamber (O-TPC) operating with the gas mixture of CO2(80%) + N2(20%) at 100 torr with gamma beams from the HIγS facility of TUNL at Duke University were used to study the formation of carbon and oxygen during helium burning. Measurements were carried out with circularly polarized gamma-ray beams at energies: Eγ = 9.08, 9.38, 9.58, 9.78, 10.08, 10.38 and 10.68 MeV. We have begun the process of extracting complete angular distributions for the 16O(γ, α)12C reaction and the 12C(γ, 3α) reaction (eventually with energy bins of approximately 100 keV) in order to determine the values of SE1, SE2 and the mixing phase φ12 of the 16O(γ, α)12C reaction. The rate of carbon formation at high temperatures (T > 3 GK) was suggested to increase due to contributions from a higher lying 2+ state. We have measured an angular distribution of (essentially) pure E2 transition at Eγ = 9.78 MeV of the 12C(γ, 3α) reaction, providing conclusive evidence for the elusive 2+2 state in 12C.

  4. More Than ALICE: Development of an augmented reality mobile application for the ALICE detector

    CERN Document Server

    Ouellette, Jeff

    2016-01-01

    More Than ALICE is a mobile application for iOS and Android built in the Unity Engine. This project concerns the development of the second edition of the application, which is meant to completely succeed the original version built in 2014. The purpose of the application is to describe the various components of the ALICE detector and to overlay live collisions to increase public awareness for the research goals of the ALICE collaboration. The application provides an augmented reality (AR) interface via the Vuforia SDK to track images of the ALICE detector or components of the paper model of ALICE that can be purchased at the ALICE secretariat office. For those without access to either images of the detector or the detector model, the app provides a virtual detector model (VR) that contains the same functionality as the augmented reality.

  5. Proton-Proton Physics with ALICE

    OpenAIRE

    Grosse-Oetringhaus, J. F.

    2008-01-01

    The goal of the ALICE experiment at LHC is to study strongly interacting matter at high energy densities as well as the signatures and properties of the quark-gluon plasma. This goal manifests itself in a rich physics program. Although ALICE will mainly study heavy-ion collisions, a dedicated program will concentrate on proton-proton physics. The first part will introduce the ALICE experiment from a pp measurement's point of view. Two unique properties are its low pT cut-off and the excellent...

  6. Combined tracking in the ALICE detector

    CERN Document Server

    Badalà, A; Lo Re, G; Palmeri, A; Pappalardo, G S; Pulvirenti, A; Riggi, F

    2004-01-01

    A neural network based algorithm to perform track recognition in the ALICE Inner Tracking System (ITS) for high transverse momentum particles (p //t greater than 1 GeV/c) is presented. The model is based on the Denby Peterson scheme, with some original improvements which are necessary to cope with the very high track density expected in ALICE. The application is used in combination with the standard tracking procedure for track reconstruction in ALICE in order to increase the efficiency, especially for rapidly decaying particles. Results are shown for a test performed simulating some central Pb-Pb events at 5.5 ATeV in the center of mass system.

  7. The ALICE Workload Management System: Status before the real data taking

    International Nuclear Information System (INIS)

    With the startup of LHC, the ALICE detector will collect data at a rate that, after two years, will reach 4PB per year. To process such a large amount of data, ALICE has developed AliEn, a distributed computing environment, integrated with the WLCG environment. The ALICE environment presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called ALICE Data Challenges. Within the ALICE distributed computing environment, the AliEn Workload Management Structure was created to submit to the WLCG infrastructure, and has played a crucial role to achieve the mentioned results. ALICE has more than 80 sites distributed all over the world and this WMS together with the operations management structure defined by the experiment has demonstrated a reliability and performance level ready to begin the data taking at the end of the year. In this talk we will focus on the description and current status of the AliEn WMS, emphasizing the last functionalities that have been included to handle from a single entry point the different matchmaking services of WLCG (lcg-RB, gLite WMS) and also the CREAM Computing Element; the latter has been extensively tested by the experiment during summer 2008.

  8. Hadron Correlations Measured with ALICE

    CERN Document Server

    Grosse-Oetringhaus, Jan Fiete

    2013-01-01

    Angular particle correlations are a powerful tool to study collective effects and in-medium jet modification as well as their interplay in the hot and dense medium produced in central heavy-ion collisions. We present measurements of two-particle angular correlations of inclusive charged and identified particles performed with the ALICE detector. The near-side peak in the short-range correlation region is quantitatively analyzed: while the rms of the peak in $\\phi$-direction is independent of centrality within uncertainties, we find a significant broadening in $\\eta$-direction from peripheral to central collisions. The particle content of the near-side peak is studied finding that the $p/\\pi$ ratio of particles associated to a trigger particle is much smaller than the one in the bulk of the particles and consistent with fragmentation of a parton in vacuum.

  9. The ALICE data acquisition system

    CERN Document Server

    Carena, F; Chapeland, S; Chibante Barroso, V; Costa, F; Dénes, E; Divià, R; Fuchs, U; Grigore, A; Kiss, T; Simonetti, G; Soós, C; Telesca, A; Vande Vyvre, P; Von Haller, B

    2014-01-01

    In this paper we describe the design, the construction, the commissioning and the operation of the Data Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large Hadron Collider (LHC). The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for the overall control of the experiment. They are two computing systems made of hundreds of PCs and data storage units interconnected via two networks. The collection of experimental data from the detectors is performed by several hundreds of high-speed optical links. We describe in detail the design considerations for these systems handling the extreme data throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting requirements into hardware (custom optical links and commercial computing equipment), infrastructure (racks, cooling, power distribution, control room), and software led to many innovative solutions which are described together with ...

  10. Dynamical K/π, p/π, and K/p fluctuations in Pb-Pb collisions with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Arslandok, Mesut [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The study of event-by-event fluctuations of identified hadrons may reveal the degrees of freedom of the strongly interacting matter created in heavy-ion collisions and reflect the underlying dynamics of the system. The observable ν{sub dyn}, which is given in terms of the moments of identified-particle multiplicity distributions, is used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of given particle ratios. The ALICE detector at the LHC is well suited for the study of ν{sub dyn}, due to its excellent particle identification (PID) capabilities. Particle identification that is based on the measurement of the specific ionisation energy loss dE/dx works well on a statistical basis, however, suffers from ambiguities when applied on the event-by-event level. A novel experimental technique called the ''Identity Method'' was recently proposed to overcome such limitations. The method follows a probabilistic approach using the inclusive dE/dx distributions measured in the ALICE TPC, and determines the moments of the multiplicity distributions by an unfolding procedure. In this contribution, dynamical K/π, p/π, and K/p fluctuation analysis that applies the Identity Method to Pb-Pb data from ALICE are presented.

  11. Measurement of the charged-particle multiplicity in proton-proton collisions with the ALICE detector

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Oetringhaus, Jan Fiete

    2009-04-17

    This thesis has introduced the theoretical framework to describe multiple-particle production. The functioning of two event generators, Pythia and Phojet, as well as theoretical descriptions of the charged-particle multiplicity have been discussed. A summary of pseudorapidity-density (dN{sub ch}/d{eta}) and multiplicity-distribution measurements of charged particles has been presented. Existing results have been shown in an energy range of {radical}(s) = 6GeV to 1.8TeV from bubble chamber experiments and detectors at the ISR, Sp anti pS, and Tevatron. The validity of the introduced models was reviewed and the behavior as function of {radical}(s) was discussed. Analysis procedures for two basic measurements with ALICE, the pseudorapidity density and the multiplicity distribution of charged particles, have been developed. The former allows corrections on a bin-by-bin basis, while the latter requires unfolding of the measured distribution. The procedures have been developed for two independent subdetectors of ALICE, the Silicon Pixel Detector (SPD) and the Time-Projection Chamber (TPC). This allows the comparison of the analysis result in the overlapping regions as an independent cross-check of the measured distribution. Their implementation successfully reproduces different assumed spectra. The procedures have been extensively tested on simulated data using two different event generators, Pythia and Phojet. A comprehensive list of systematic uncertainties was evaluated. Some of these uncertainties still require measured data to verify or extract their magnitude. (orig.)

  12. Transverse momentum spectra of hadrons identified with the ALICE Inner Tracking System

    CERN Document Server

    Milano, L

    2013-01-01

    The Inner Tracking System is the ALICE detector closest to the beam axis. It is composed of six layers of silicon detectors: two innermost layers of Silicon Pixel Detectors (SPD), two intermediate layers of Silicon Drift Detectors (SDD) and two outermost layers of Silicon Strip Detectors (SSD). The ITS can be used as a standalone tracker in order to recover tracks that are not reconstructed by the Time Projection Chamber (TPC) and to reconstruct low momentum particles with $p_{t}$ down to 100 MeV/c. Particle identification in the ITS is performed by measuring the energy loss signal in the SDD and SSD layers. The ITS allows to extend the charged particle identification capability in the ALICE central rapidity region at low $p_{t}$: it is possible to separate $\\pi/K$ in the range 100 MeV/c $< p_{t} <$ 500 MeV/c and $K/p$ in the range 200 MeV/c $ < p_{t} <$ 800 MeV/c. The identification of hadron in the ITS will be discussed in detail, different methods used to extract the $p_{t}$ spectra of $\\pi, K$...

  13. ... ALICE forges ahead with further detectors

    CERN Document Server

    2006-01-01

    Following the installation of the HMPID, the project has progressed swiftly with further detectors being lowered into the ALICE cavern. The first supermodule of the ALICE transition radiation detector was successfully installed on 10 October. The TRD collaborators from Germany standing next to the supermodule mounted in a rotating frame (bottom left corner) in the ALICE cavern. In the final configuration, 18 supermodules that make up the transition radiation detector will cylindrically surround the large time projection chamber in the central barrel of the ALICE experiment. Each supermodule is about 7 metre long and consists of 30 drift chambers in six layers. The construction of the modules is a collaboration between five institutes in Germany (Universities of Frankfurt and Heidelberg and Gesellschaft fuer Schwerionenforschung mbH in Darmstadt), Romania (NIPNE Bucharest) and Russia (JINR Dubna) with radiators (See 'Did you know?' section) produced at the University of Muenster, Germany. During the summer, ...

  14. Alice'i imedemaa Pariisis / Isabel Chiang

    Index Scriptorium Estoniae

    Chiang, Isabel

    2000-01-01

    1998. a. Pariisis Catherine Alice Mamet' poolt asutatud mööblisalongist, seal tegutsevate disainerite (Pucci de Rossi, Satch, Guy Ferrer, Pablo Pares jt.) loomingunäiteid. Pariisis disaini õppiva tudengi Isabel Chiangi eluloolisi andmeid. 15 illustratsiooni

  15. Minimum Bias Measurements with ALICE at the LHC

    CERN Document Server

    Sicking, Eva

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the seven experiments at the the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland. ALICE is especially designed for heavy-ion collisions but it also operates a rich proton-proton (pp) program. ALICE has collected pp collision data at $\\sqrt{s}=$ 0.9, 2.36, 2.76, and 7 TeV and lead-lead (Pb--Pb) collision data at $\\sqrt{s_{\\mathrm{NN}}}=$2.76 TeV. Here, we report minimum bias measurements obtained until the end of 2010: the results include measurements of charged-particle pseudorapidity, multiplicity and transverse momentum distributions. Also, the two-pion Bose-Einstein correlation and the measurement of antiproton-to-proton ratio will be discussed. Furthermore, results on the production of identified particles including strange particles will be shown as well as first results from the first Pb--Pb run at the LHC.

  16. The thousandth ALICE member 

    CERN Multimedia

    2006-01-01

    On Friday 13 October, the ALICE Collaboration Board accepted nine new institutes, bringing the number of scientists to 1015. To celebrate this event, the thousandth collaborator, Toru Sugitate, from Hiroshima University, received a small award. From left to right: Lodovico Riccati, Chair of the Collaboration Board, Toru Sugitate and Jurgen Schukraft, Spokesperson of the ALICE Experiment.

  17. ALICE: Simulated lead-lead collision

    CERN Multimedia

    2003-01-01

    This track is an example of simulated data modelled for the ALICE detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. ALICE will focus on the study of collisions between nuclei of lead, a heavy element that produces many different particles when collided. It is hoped that these collisions will produce a new state of matter known as the quark-gluon plasma, which existed billionths of a second after the Big Bang.

  18. Microstrip detector for the ALICE experiment

    CERN Multimedia

    Laurent Guiraud

    1996-01-01

    This photo shows a close up of one of the silicon microstrip detectors that will be installed on the ALICE experiment at the LHC. 1698 double-sided modules of these silicon microstrips will be installed in the two outermost layers of the ALICE inner tracking system. The microstrips have to be specially designed to withstand the high resolution levels at the heart of the detector.

  19. ALICE takes its ITS to heart

    CERN Document Server

    2007-01-01

    In the study of heavy-ion events, the ALICE Inner Tracking System must use the most delicate materials. A hundred physicists and engineers from around the world witnessed its impressive journey to the centre of the ALICE experiment. ALICE's ITS on its way into the TCP. On 15 March, after 15 years of development, construction, commissioning and testing, the Inner Tracking System (ITS) finally reached its ultimate destination at the heart of ALICE. With almost five square meters of double-sided silicon strip detectors and over one square meter of silicon drift detectors, ALICE's ITS is the largest system built for either type of silicon detector. In ALICE's search for heavy-ion events at the LHC, it is necessary for the ITS to be extremely lightweight and delicate. For this reason the ITS was designed and built using the smallest amounts of only the lightest materials, with the design team developing innovative construction and assembly systems. The team prepared in detail for the final transport from the fi...

  20. Construction and performance of the ALICE Transition Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Emschermann, David

    2010-01-20

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-p{sub t} e{sup +}e{sup -} pairs within 6.5 {mu}s after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m{sup 2}. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  1. Analytical solutions for space charge fields in TPC drift volumes

    CERN Document Server

    Rossegger, S; Schnizer, B

    2011-01-01

    At high particle rates and high multiplicities, Time Projection Chambers can suffer from field distortions due to slow moving ions that accumulate within the drift volume. These variations modify the electron trajectory along the drift path, affecting the tracking performance of the detector. In order to calculate the track distortions due to an arbitrary space charge distribution in a TPC, novel representations of the Green's function for a TPC-like geometry were worked out. This analytical approach permits accurate predictions of track distortions due to an arbitrary space charge distribution (by solving the Langevin equation) as well as the possibility to benchmark common numerical methods to calculate such space charge fields. (C) 2011 Elsevier B.V. All rights reserved.

  2. ARIADNE, a Photographic LAr TPC at the CERN Neutrino Platform

    CERN Document Server

    Mavrokoridis, K; Nessi, M; Roberts, A; Smith, N A; Touramanis, C; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2016-01-01

    This letter of intent describes a novel and innovative two-phase LAr TPC with photographic capabilities as an attractive alternative readout method to the currently accepted segmented THGEMs which will require many thousands of charge readout channels for kton-scale two-phase TPCs. These colossal LAr TPCs will be used for the future long-baseline-neutrino-oscillation experiments. Optical readout also presents many other clear advantages over current readout techniques such as ease of scalability, upgrade, installation and maintenance, and cost effectiveness. This technology has already been demonstrated at the Liverpool LAr facility with the photographic capturing of cosmic muon tracks and single gammas using a 40-litre prototype. We have now secured ERC funding to develop this further with the ARIADNE programme. ARIADNE will be a 1-ton two-phase LAr TPC utilizing THGEM and EMCCD camera readouts in order to photograph interactions, allowing for track reconstruction and particle identification. We are request...

  3. NEXT: Neutrino Experiment with high pressure Xenon gas TPC

    Energy Technology Data Exchange (ETDEWEB)

    Yahlali, Nadia, E-mail: Nadia.Yahlali@ific.uv.e [Instituto de Fisica Corpuscular (Centro mixto UV-CSIC), Apdo. de Correos 22085, E-46071 Valencia (Spain); Ball, M.; Carcel, S.; Diaz, J.; Gil, A.; Gomez Cadenas, J.J.; Martin-Albo, J.; Monrabal, F.; Serra, L.; Sorel, M. [Instituto de Fisica Corpuscular (Centro mixto UV-CSIC), Apdo. de Correos 22085, E-46071 Valencia (Spain)

    2010-05-21

    The search of the neutrinoless double-{beta} decay address the major Physics goals of revealing the nature of the neutrino and setting an absolute scale for its mass. The observation of a positive {beta}{beta}{sup 0{nu}}signal, the unique signature of Majorana neutrinos, would have deep consequences in particle physics and cosmology. Therefore, any claim of observing a positive signal shall require extremely robust evidences. NEXT is a new double-{beta} experiment which aims at building a 100 kg high pressure {sup 136}Xe gas TPC, to be hosted in the Canfranc Underground Laboratory (LSC), in Spain. This paper address the novel design concept of NEXT TPC believed to provide a pathway for an optimized and robust double-{beta} experiment.

  4. The iTPC upgrade for BES-II

    Science.gov (United States)

    Videbaek, Flemming; STAR Collaboration

    2015-10-01

    STAR has proposed to upgrade the inner sectors of the STAR TPC to increase the segmentation on the inner padplane and to renew the inner sector wires. The upgrade will provide better momentum resolution, better dE/dx resolution and, most importantly, it will provide improved acceptance at high rapidity to | η| compared to the current TPC configuration of | η| energy trends that only appear near the edge of the current STAR acceptance. In the area of dielectron measurements it reduces hadron contamination from a dominant source of uncertainty to an expected statistical uncertainty of only 10%, and will enable significantly improved understanding of in-medium modifications. In this talk I will discuss the physics impact and give a technical overview of the detector upgrade. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science.

  5. The ALICE High Level Trigger: status and plans

    Science.gov (United States)

    Krzewicki, Mikolaj; Rohr, David; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-12-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before the upgrade, during Run 2. For opportunistic use as a Grid computing site during periods of inactivity of the experiment a virtualisation based setup is deployed.

  6. Materials Testing and Performance Optimization for the SAMURAI-TPC

    Science.gov (United States)

    Long, K. D.; Lynch, W. G.; Barney, J.; Chajecki, Z.; Estee, J.; Shane, R.; Tangwanchareon, S.; Tsang, M. B.; Yurkon, J.

    2012-10-01

    The SAMURAI time-projection chamber (TPC) will be used to make measurements of pion spectra from heavy ion collisions at RIBF in Japan. Such research provides an opportunity to study supra-saturation density neutron-rich matter in the laboratory, and is critical to understanding the structure of neutron stars. It will provide a complete, 3D picture of the ionization deposited in a gas volume, from which particle types and momenta can be determined. The gas-containment volume is composed of surfaces of aluminum and plastic, as well as halogen-free printed circuit board. During multiplication of the ionized electrons at the anode wire plane of the TPC, UV photons are produced. These cause unwanted discharges when they interact with oxidized aluminum surfaces, which have low work functions. This problem can be addressed by application of a suitable conductive paint or epoxy. Paints were investigated to insure they did not contain any materials capable of inhibiting the performance of the detector gas. These investigations were cross-checked by tests carried out using an existing BRAHMS-TPC. Details on these tests and the materials chosen will be shown. The design and optimization of the gating grid, used to limit data collection to triggered events, will also be discussed.

  7. Fission cross section uncertainties with the NIFFTE TPC

    Science.gov (United States)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Slow Control System for the NIFFTE Collaboration TPC

    Science.gov (United States)

    Ringle, Erik; Niffte Collaboration Collaboration

    2011-10-01

    As world energy concerns continue to dominate public policy in the 21st century, the need for cleaner and more efficient nuclear power is necessary. In order to effectively design and implement plans for generation IV nuclear reactors, more accurate fission cross-section measurements are necessary. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration, in an effort to meet this need, has constructed a Time Projection Chamber (TPC) which aims to reduce the uncertainty of the fission cross-section to less than 1%. Using the Maximum Integration Data Acquisition System (MIDAS) framework, slow control measurements are integrated into a single interface to facilitate off-site monitoring. The Hart Scientific 1560 Black Stack will be used with two 2564 Thermistor Scanner Modules to monitor internal temperature of the TPC. A Prologix GPIB to Ethernet controller will be used to interface the hardware with MIDAS. This presentation will detail the design and implementation of the slow control system for the TPC. This work was supported by the U.S. Department of Energy Division of Energy Research.

  9. The commissioning of the O-TPC at TUNL

    Science.gov (United States)

    Seo, P.-N.; Ahmed, M. W.; Clinton, E. R.; Howell, C. R.; Stave, S. C.; Weller, H. R.; Young, A. H.; Gai, M.; Bromberger, B.; Dangendorf, V.; Tittelmeier, K.

    2008-04-01

    We are commissioning the Optical Readout Time Projection Chamber (O-TPC) that will be used in an experiment at the HIgS facility at TUNL for studying oxygen formation during stellar helium burning by studying the time reversed ^16O(,)^12C reaction. The initial calibration of the O-TPC was carried out at the LNS at Avery Point with a CMAC based data acquisition system. The tests at TUNL used a VME based data acquisition system that also controls a CCD camera. Under stable conditions an energy resolution as good as 2.6% was measured for the charge signal and single and double tracks of alpha particles from a ^148Gd source were recorded in the CCD camera. These tracks were analyzed using an automated pattern recognition algorithm that allows us to extract that track centroid (from which the scattering angle is deduced) as well as DE/DX along the track. The azimuthal angle of the track is deduced from the Time Projection. The O-TPC is found to be ready for accepting beams from the HIgS facility.

  10. Methods and results for calibration and track separation of a GEM based TPC using an UV-laser

    International Nuclear Information System (INIS)

    In the last 30 years high energy physics could write an impressive story of success. Since the introduction of the Standard Model (SM), it has met every experimental test. However the final confirmation has to prove the mechanism of electroweak symmetry breaking, which could not be confirmed yet. The most favored theory, which includes the introduction of a Higgs field, could not be verified experimentally. Furthermore there is clear evidence, that the SM is only a low energy description of nature and its principles, as the SM describes only 4 % of the known matter in the universe. There are two different approaches in accelerator driven high energy physics to clarify the open questions. The Large Hadron Collider (LHC) have a good opportunity to measure some of the missing pieces with its high center of mass energy. The International Linear Collider (ILC) will then measure their parameters with high precision. To guarantee this high precision the detectors have to be able to identify every single particle and determine its properties with high accuracy. These high requirements to the single detectors as well as the interconnectivity between all detectors are summarised by the concept of particle flow (PFLOW). This means that all particles must be separable, which includes in particular the main tracking device. A possible candidate for the central tracking device is a Time Projection Chamber (TPC). In this work a TPC with Gas Electron Multipliers (GEM) as gas amplification system was used. The GEMs replace the conventional wire amplification system of the TPC. In this PhD work a method to determine the drift velocity of a TPC was developed and tested using an ultraviolet laser. To ensure a high accuracy of the method all relevant gas parameters were measured with a slow control system. Furthermore the laser was used to investigate the separation capability of nearby tracks. Therefore an existing TPC prototype, which was developed to operate in a 5 T magnet facility

  11. Methods and results for calibration and track separation of a GEM based TPC using an UV-laser

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Markus

    2008-12-15

    In the last 30 years high energy physics could write an impressive story of success. Since the introduction of the Standard Model (SM), it has met every experimental test. However the final confirmation has to prove the mechanism of electroweak symmetry breaking, which could not be confirmed yet. The most favored theory, which includes the introduction of a Higgs field, could not be verified experimentally. Furthermore there is clear evidence, that the SM is only a low energy description of nature and its principles, as the SM describes only 4 % of the known matter in the universe. There are two different approaches in accelerator driven high energy physics to clarify the open questions. The Large Hadron Collider (LHC) have a good opportunity to measure some of the missing pieces with its high center of mass energy. The International Linear Collider (ILC) will then measure their parameters with high precision. To guarantee this high precision the detectors have to be able to identify every single particle and determine its properties with high accuracy. These high requirements to the single detectors as well as the interconnectivity between all detectors are summarised by the concept of particle flow (PFLOW). This means that all particles must be separable, which includes in particular the main tracking device. A possible candidate for the central tracking device is a Time Projection Chamber (TPC). In this work a TPC with Gas Electron Multipliers (GEM) as gas amplification system was used. The GEMs replace the conventional wire amplification system of the TPC. In this PhD work a method to determine the drift velocity of a TPC was developed and tested using an ultraviolet laser. To ensure a high accuracy of the method all relevant gas parameters were measured with a slow control system. Furthermore the laser was used to investigate the separation capability of nearby tracks. Therefore an existing TPC prototype, which was developed to operate in a 5 T magnet facility

  12. European Researchers Night, Students on Shift at ALICE

    CERN Document Server

    Fons Rademakers

    2010-01-01

    During European Researchers' Night, on Friday 24 September 2010, from 17:00 to 24:00, pupils from French and Swiss schools visited ALICE and took shifts in the control room, helping the ALICE physicists run the experiment.

  13. Heavy ion physics with the ALICE experiment at LHC

    CERN Document Server

    Zampolli, Chiara

    2007-01-01

    ALICE is the experiment at the LHC collider at CERN dedicated to heavy ion physics. In this report, the ALICE detector will be presented, together with its expected performance as far as some selected physics topics are concerned.

  14. The ALICE data acquisition system

    Science.gov (United States)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Kiss, T.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; von Haller, B.

    2014-03-01

    In this paper we describe the design, the construction, the commissioning and the operation of the Data Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large Hadron Collider (LHC). The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for the overall control of the experiment. They are two computing systems made of hundreds of PCs and data storage units interconnected via two networks. The collection of experimental data from the detectors is performed by several hundreds of high-speed optical links. We describe in detail the design considerations for these systems handling the extreme data throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting requirements into hardware (custom optical links and commercial computing equipment), infrastructure (racks, cooling, power distribution, control room), and software led to many innovative solutions which are described together with a presentation of all the major components of the systems, as currently realized. We also report on the performance achieved during the first period of data taking (from 2009 to 2013) often exceeding those specified in the DAQ Technical Design Report.

  15. The ALICE data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Dénes, E. [Research Institute for Particle and Nuclear Physics, Wigner Research Center, Budapest (Hungary); Divià, R.; Fuchs, U. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Grigore, A. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Politehnica Univesity of Bucharest, Bucharest (Romania); Kiss, T. [Cerntech Ltd., Budapest (Hungary); Simonetti, G. [Dipartimento Interateneo di Fisica ‘M. Merlin’, Bari (Italy); Soós, C.; Telesca, A.; Vande Vyvre, P. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Haller, B. von, E-mail: bvonhall@cern.ch [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland)

    2014-03-21

    In this paper we describe the design, the construction, the commissioning and the operation of the Data Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large Hadron Collider (LHC). The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for the overall control of the experiment. They are two computing systems made of hundreds of PCs and data storage units interconnected via two networks. The collection of experimental data from the detectors is performed by several hundreds of high-speed optical links. We describe in detail the design considerations for these systems handling the extreme data throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting requirements into hardware (custom optical links and commercial computing equipment), infrastructure (racks, cooling, power distribution, control room), and software led to many innovative solutions which are described together with a presentation of all the major components of the systems, as currently realized. We also report on the performance achieved during the first period of data taking (from 2009 to 2013) often exceeding those specified in the DAQ Technical Design Report.

  16. Neutral pion measurement with the ALICE EMCal

    Energy Technology Data Exchange (ETDEWEB)

    Sahlmueller, Baldo [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    The quark-gluon plasma produced in heavy-ion collisions at the LHC can be studied via transverse momentum distributions of identified hadrons that are produced through different mechanisms in these collisions. The neutral pion offers a complimentary measurement to the measurement of charged hadrons with the ALICE tracking system, since it can be measured in calorimeters such as the ALICE EMCal via its two-photon-decay. The measurement in p-p collisions is a necessary baseline for interpreting the heavy-ion results. Furthermore, the π{sup 0} can be regarded as a standard candle in the calibration of calorimeters in heavy-ion collisions. Hence, understanding the π{sup 0} measurement is an important test for the detector. We present the status and first results of ongoing π{sup 0} analyses in the ALICE p-p data with the EMCal and compare them with complimentary measurements with the ALICE PHOS and the ALICE tracking system. We focus on technical aspects of the analysis.

  17. TPC2 controls pigmentation by regulating melanosome pH and size.

    Science.gov (United States)

    Ambrosio, Andrea L; Boyle, Judith A; Aradi, Al E; Christian, Keith A; Di Pietro, Santiago M

    2016-05-17

    Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca(2+) release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca(2+) sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size. PMID:27140606

  18. A pixel TPC for the linear collider. A testbeam with the demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Lupberger, Michael [Universitaet Bonn (Germany); Collaboration: LCTPC-Deutschland-Collaboration

    2015-07-01

    A Time Projection Chamber (TPC) is foreseen as tracker for the ILD, one of the two detector concepts at the planned International Linear Collider (ILC). At the TPC endplates, Micromegas or GEMs will be used as gas amplification structure. Besides segmented anodes, also an active endplate with pixel ASICs is considered as a readout option. We use the Timepix chip as readout ASIC in our experiments. In a photolithographic process a grid has been produced on top of the chip to form a so called InGrid, which is a Micromegas-like detector. An endplate module with an array of eight InGrids has been tested as readout of a prototype time projection chamber at DESY in March 2013. Meanwhile, a complete module has been equipped with 96 InGrid chips. 50% of the module surface is covered with pixels, resulting in 6.2 million readout channels. For that reason, the readout system was largely extended, also using the scalability that it provides. This final design of the module and readout system, including data transfer and concentration, cooling, low and high voltage distribution will be tested in another testbeam campaign at the beginning of 2015. Design choices, implementations and impressions from the construction and commissioning phase are presented.

  19. The ALICE silicon pixel detector readout electronics

    CERN Document Server

    Krivda, M; Burns, M; Caselle, M; Kluge, A; Manzari, V; Torcato de Matos, C; Morel, M; Riedler, P; Aglieri Rinella, G; Sandor, L; Stefanini, G

    2010-01-01

    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the ALICE inner tracking system (ALICE Collaboration, 1999) [1]. The SPD is built with 120 detector modules (half-staves) and contains about 10 million pixels in total. The half-staves are connected to the off-detector electronics, housed in a control room 100 m away, via bidirectional optical links. The stream of data from the front-end electronics is processed in 20 VME readout modules, called routers, based on FPGAs. Three 2-channel link-receiver daughter cards, also based on FPGAs, are plugged in each router. Each link-receiver card receives data via the optical link from two half-staves, applies the zero suppression and passes them to the router to be processed and sent to the ALICE–DAQ system through the detector data link (DDL). The SPD control, configuration and data monitoring are performed using the VME interface embedded in the router.

  20. Performance of the ALICE VZERO system

    CERN Document Server

    Abbas, E.; Adam, J.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A.G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Masoodi, A.Ahmad; Ahmed, I.; Ahn, S.A.; Ahn, S.U.; Aimo, I.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R.Alfaro; Alici, A.; Alkin, A.; Almaraz Avina, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshauser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bach, M.; Badala, A.; Baek, Y.W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Ban, J.; Baral, R.C.; Barbera, R.; Barile, F.; Barnafoldi, G.G.; Barnby, L.S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P.C.; Baumann, C.; Bearden, I.G.; Beck, H.; Behera, N.K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A.A.E.; Bertens, R.A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bottger, S.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Boldizsar, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossu, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T.A.; Browning, T.A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Casanova Diaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Casula, E.A.R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chung, S.U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M.E.; Contin, G.; Contreras, J.G.; Cormier, T.M.; Corrales Morales, Y.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Alaniz, E.Cruz; Albino, R.Cruz; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, I.; Das, S.; Das, D.; Dash, S.; Dash, A.; De, S.; de Barros, G.O.V.; De Caro, A.; De Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Denes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G.D.; de Rooij, R.; Diaz Corchero, M.A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divia, R.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Donigus, B.; Dordic, O.; Dubey, A.K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H.A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernandez Tellez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M.A.S.; Filchagin, S.; Finogeev, D.; Fionda, F.M.; Fiore, E.M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D.R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glassel, P.; Gomez, R.; Ferreiro, E.G.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L.K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B.H.; Hanratty, L.D.; Hansen, A.; Harmanova-Tothova, Z.; Harris, J.W.; Hartig, M.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S.T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B.A.; Hetland, K.F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Huang, M.; Humanic, T.J.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G.M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, M.; Ivanov, A.; Ivanov, V.; Ivanytskyi, O.; Jacholkowski, A.; Jacobs, P.M.; Jahnke, C.; Jang, H.J.; Janik, M.A.; Jayarathna, P.H.S.Y.; Jena, S.; Jha, D.M.; Jimenez Bustamante, R.T.; Jones, P.G.; Jung, H.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinak, P.; Kalliokoski, T.; Kalweit, A.; Kang, J.H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Ketzer, B.; Khan, M.M.; Khan, P.; Khan, S.A.; Khan, K.H.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, M.; Kim, T.; Kim, B.; Kim, S.; Kim, M.; Kim, D.J.; Kim, J.S.; Kim, J.H.; Kim, D.W.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Kluge, A.; Knichel, M.L.; Knospe, A.G.; Kohler, M.K.; Kollegger, T.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Kralik, I.; Kramer, F.; Kravcakova, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P.G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A.B.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; La Pointe, S.L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, S.C.; Lee, G.R.; Legrand, I.; Lehnert, J.; Lemmon, R.C.; Lenhardt, M.; Lenti, V.; Leon, H.; Leoncino, M.; Leon Monzon, I.; Levai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Ljunggren, H.M.; Lodato, D.F.; Loenne, P.I.; Loggins, V.R.; Loginov, V.; Lohner, D.; Loizides, C.; Loo, K.K.; Lopez, X.; Lopez Torres, E.; Lovhoiden, G.; Lu, X.G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N.A.; Martinengo, P.; Martinez, M.I.; Martinez Garcia, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Perez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A.N.; Miskowiec, D.; Mitu, C.; Mizuno, S.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D.A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Muller, H.; Munhoz, M.G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B.K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T.K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B.S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S.; Oh, S.K.; Oleniacz, J.; Da Silva, A.C. Oliveira; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Passfeld, A.; Patalakha, D.I.; Paticchio, V.; Paul, B.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Perez Lara, C.E.; Perrino, D.; Peryt, W.; Pesci, A.; Pestov, Y.; Petracek, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D.B.; Planinic, M.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P.L.M.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Pospisil, V.; Potukuchi, B.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, S.; Raniwala, R.; Rasanen, S.S.; Rascanu, B.T.; Rathee, D.; Rauch, W.; Rauf, A.W.; Razazi, V.; Read, K.F.; Real, J.S.; Redlich, K.; Reed, R.J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Riccati, L.; Ricci, R.A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Rodriguez Manso, A.; Roed, K.; Rogochaya, E.; Rohr, D.; Rohrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, P.; Roy, C.; Rubio Montero, A.J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Sahu, P.K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C.A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sandor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkamo, J.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schmidt, H.R.; Schmidt, C.; Schuchmann, S.; Schukraft, J.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P.A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, S.; Sharma, N.; Rohni, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B.C.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.J.M.; Sogaard, C.; Soltz, R.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J.H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T.J.M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M.A.; J.Tapia Takaki, D.; Peloni, A.Tarantola; Tarazona Martinez, A.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Ter Minasyan, A.; Terrevoli, C.; Thader, J.; Thomas, D.; Tieulent, R.; Timmins, A.R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Trubnikov, V.; Truesdale, D.; Trzaska, W.H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T.S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urciuoli, G.M.; Usai, G.L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Van Hoorne, J.W.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, Y.; Vinogradov, L.; Vinogradov, A.; Virgili, T.; Viyogi, Y.P.; Vodopyanov, A.; Volkl, M.A.; Voloshin, S.; Voloshin, K.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, Y.; Wang, Y.; Wang, M.; Watanabe, K.; Weber, M.; Wessels, J.P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Williams, M.C.S.; Windelband, B.; Winn, M.; Yaldo, C.G.; Yamaguchi, Y.; Yang, S.; Yang, P.; Yang, H.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.K.; Yoon, J.; Yuan, X.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I.S.; Zhalov, M.; Zhang, Y.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, Y.; Zhou, F.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-01-01

    ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton--proton, proton--nucleus and nucleus--nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus--nucleus collisions. After describing the VZERO system, this publication presents its performance over more than four years of operation at the LHC.

  1. ALICE gives its first thesis awards

    CERN Multimedia

    2008-01-01

    For the first time the ALICE collaboration has given two of its doctoral students awards for their outstanding theses. Winners Christian Holm Christensen and Zaida Conesa del Valle holding their awards.On 29 October the ALICE collaboration honoured two students for their outstanding theses at a ceremony held at CERN. The two awards, one of which was given for a physics thesis and the other for a technical thesis, went to Zaida Conesa Del Valle (Laboratoire de physique subatomique et des technologies associées) and Christian Holm Christensen (Niels Bohr Institute) respectively. "It is very gratifying to see that the collaboration appreciates our work," said Zaida Conesa del Valle, winner of the physics award for her thesis: Performance of the ALICE Muon Spectrometer. Weak Boson Production and Measurement in Heavy Ion Collisions at the LHC. "I also feel specially thankful to all the people who worked with me," she added. "It was pl...

  2. The GridKa Tier-1 Computing center within the ALICE grid framework

    International Nuclear Information System (INIS)

    The GridKa computing center, hosted by Steinbuch Centre for Computing at the Karlsruhe Institute for Technology (KIT) in Germany, is serving as the largest Tier-1 center used by the ALICE collaboration at the LHC. In 2013, GridKa provides 30k HEPSPEC06, 2.7 PB of disk space, and 5.25 PB of tape storage to ALICE. The 10 Gbit/s network connections from GridKa to CERN, several Tier-1 centers and the general purpose network are used by ALICE intensively. In 2012 a total amount of ∼1 PB was transferred to and from GridKa. As Grid framework, AliEn (ALICE Environment) is being used to access the resources, and various monitoring tools including the MonALISA (MONitoring Agent using a Large Integrated Services Architecture) are always running to alert in case of any problem. GridKa on-call engineers provide 24/7 support to guarantee minimal loss of availability of computing and storage resources in case of hardware or software problems. We introduce the GridKa Tier-1 center from the viewpoint of ALICE services.

  3. The GridKa Tier-1 Computing Center within the ALICE Grid Framework

    Science.gov (United States)

    Park, WooJin J.; Christopher, Jung; Heiss, Andreas; Petzold, Andreas; Schwarz, Kilian

    2014-06-01

    The GridKa computing center, hosted by Steinbuch Centre for Computing at the Karlsruhe Institute for Technology (KIT) in Germany, is serving as the largest Tier-1 center used by the ALICE collaboration at the LHC. In 2013, GridKa provides 30k HEPSPEC06, 2.7 PB of disk space, and 5.25 PB of tape storage to ALICE. The 10Gbit/s network connections from GridKa to CERN, several Tier-1 centers and the general purpose network are used by ALICE intensively. In 2012 a total amount of ~1 PB was transferred to and from GridKa. As Grid framework, AliEn (ALICE Environment) is being used to access the resources, and various monitoring tools including the MonALISA (MONitoring Agent using a Large Integrated Services Architecture) are always running to alert in case of any problem. GridKa on-call engineers provide 24/7 support to guarantee minimal loss of availability of computing and storage resources in case of hardware or software problems. We introduce the GridKa Tier-1 center from the viewpoint of ALICE services.

  4. AliEn - EDG Interoperability in ALICE

    OpenAIRE

    Bagnasco, S.; Barbera, R.; Buncic, P.; Carminati, F.; P. Cerello; Saiz, P.

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Stora...

  5. Development of the Pattern Recognition Algorithm for Low Energy Particles in the Inner Tracking System of ALICE

    CERN Document Server

    Kolojvari, A A; CERN. Geneva; Tulina, T A

    1994-01-01

    The work is being carried out on the development of pattern recognition / initial parameters reconstruction algorithm for low energy charged particles tracks in the Inner Tracking System (ITS) of ALICE at the LHC. The algorithm should use the information only from ITS since it is supposed that it will be applied mainly to the particles which do not reach the next tracking detector, the TPC, due to their low energy and the presence of magnetic field. The algorithm is based on the transformation of any three space coordinate measurements inside the sensitive volume, placed into the solenoidal magnetic field, to the space of initial track parameters. The toy program for recognition of regular spiral trajectories is created. Some ideas are developed and tested. The further possibilities are discussed.

  6. Atmospheric Lithosphere-Ionosphere Charge Exchange (ALICE) for coupling between earthquake regions, clouds and the ionosphere

    Science.gov (United States)

    Harrison, Giles; Aplin, Karen; Rycroft, Michael

    2014-05-01

    Atmospheric Lithosphere-Ionosphere Charge Exchange (ALICE) has been proposed as a mechanism to link seismic activity and ionospheric changes detected overhead, which has been observed in data obtained by the DEMETER spacecraft. The ALICE mechanism can explain changes in the natural extremely low frequency (ELF) radio noise observed by DEMETER nocturnally before major earthquakes. ALICE operates through the vertical fair weather current density of global atmospheric electricity, through the modification of surface layer ionisation rates and the associated current flow to the ionosphere. These ideas are extended here to include possible effects on layer clouds through which the current density passes. Specifically, we estimate possible layer cloud changes for changes in surface layer ionisation known in some earthquakes.

  7. The Level 0 Pixel Trigger System for the ALICE Silicon Pixel Detector: implementation, testing and commissioning

    CERN Document Server

    Aglieri-Rinella, G

    2008-01-01

    The ALICE Silicon Pixel Detector transmits 1200 Fast-OR signals every 100 ns on 120 optical readout channels. They indicate the presence of at least one hit in the pixel matrix of each readout chip. The ALICE Level 0 Pixel Trigger System extracts them, processes them and delivers an input signal to the Central Trigger Processor for the first level trigger decision within a latency of 800 ns. This paper describes tests and measurements made on the system during the qualification and commissioning phases. These included Bit Error Rate tests on the Fast-OR data path, the measurement of the overall process latency and the recording of calibration data with cosmic rays. The first results of the operation of the Pixel Trigger System with the SPD detector in the ALICE experiment are also presented.

  8. Fibre optic cables for the ALICE experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    These thin fibres will transmit the signal received in detectors at the ALICE experiment when it starts up with the LHC in 2008. The analogue signals produced in the detectors are first converted into digital pulse, which are transported in light down such fibres. Computers then read this digital signal to produce the final set of data.

  9. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  10. Alice Munro: "Wild Swans" and Things.

    Science.gov (United States)

    Raabe, David

    2001-01-01

    Discusses how to analyze short stories by Alice Munro. Explains importance of metonymy in reading and teaching these stories. Suggests that the endings of Munro's stories should be examined closely. Concludes that teaching Munro's stories in this way brings students to a greater understanding of her stories. (PM)

  11. Strangeness detection in ALICE experiment at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Safarik, K. [European Lab. for Particle Physics, Geneva (Switzerland)

    1995-07-15

    The authors present some parameters of the ALICE detector which concern the detection of strange particles. The results of a simulation for neutral strange particles and cascades, together with estimated rates are presented. They also briefly discuss the detection of charged K-mesons. Finally, they mention the possibility of open charm particle detection.

  12. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  13. ALICE physicists receive 2014 Lise Meitner Prize

    CERN Document Server

    Jeanneret, Guillaume

    2014-01-01

    September 3rd, 2014: ALICE collaboration members Johanna Stachel (Heidelberg University, Germany), Peter Braun-Munzinger (GSI, Germany), Paolo Giubellino (INFN Turin, Italy, and CERN) and Jürgen Schukraft (CERN) were presented the 2014 Lise Meitner Prize at a private ceremony held in the Globe of Science and Innovation.

  14. Alice Sagritsa Imedemaa asus Jaroslavlis / Ants Juske

    Index Scriptorium Estoniae

    Juske, Ants, 1956-

    2009-01-01

    21. ja 22. augustil 2009 Karepal Richard Sagritsa majamuuseumis etendunud monoetendusest "Minu kunstnikud", mille pani Richard Sagritsa naise Alice Sagritsa päevikute põhjal kokku Teet Veispak, lavastaja Üllar Saaremäe, osatäitja Liisa Aibel. Tegevus toimub Jaroslavlis, kuhu 1942. a. hakati koondama eesti kunstirahvast

  15. Alice, Greenfoot, and Scratch--A Discussion

    Science.gov (United States)

    Utting, Ian; Cooper, Stephen; Kolling, Michael; Maloney, John; Resnick, Mitchel

    2010-01-01

    This article distills a discussion about the goals, mechanisms, and effects of three environments which aim to support the acquisition and development of computing concepts (problem solving and programming) in pre-University and non-technical students: Alice, Greenfoot, and Scratch. The conversation started in a special session on the topic at the…

  16. Round Two for Three ALICE Industrial Awards

    CERN Multimedia

    2004-01-01

    Excellency in industrial collaboration with the LHC experimental teams is one important contribution to the successful development and realization of the experiments. A few weeks ago the ALICE collaboration presented a second round of awards to industrial collaborators for their novel and remarkable contributions to major detector systems.

  17. Software and Parameters for Detailed TPC Studies in the CLIC CDR

    CERN Document Server

    Killenberg, M.

    2011-01-01

    For the TPC occupancy and time stamping studies in the CLIC CDR the MarlinTPC software package has been used in combination with Mokka for the full detector simulation. This document describes the working principle of the Marlin processors used for digitisation and reconstruction, and lists the parameters for reference.

  18. Progress on the superconducting magnet for the time projection chamber experiment (TPC) at PEP

    International Nuclear Information System (INIS)

    The TPC (Time Projection Chamber) experiment at PEP will have a two meter inside diameter superconducting magnet which creatests a 1.5 T uniform solenoidal field for the TPC. The superconducting magnet coil, cryostat, cooling system, and the TPC gas pressure vessel (which operatests at 11 atm) were designed to be about two thirds of a radiation length thick. As a result, a high current density coil design was chosen. The magnet is cooled by forced flow two phase helium. The TPC magnet is the largest adiabatically stable superconducting magnet built to date. The paper presents the parameters of the TPC thin solenoid and its subsystems. Tests results from the Spring 1980 cryogenic tes are presented. The topics to be dealt with in the paper are cryogenic services and the tests of magnet subsystems such as the folded current leads. Large thin superconducting magnet technology will be important to large detectors to be used on LEP

  19. Radiation hard analog circuits for ALICE ITS upgrade

    Science.gov (United States)

    Gajanana, D.; Gromov, V.; Kuijer, P.; Kugathasan, T.; Snoeys, W.

    2016-03-01

    The ALICE experiment is planning to upgrade the ITS (Inner Tracking System) [1] detector during the LS2 shutdown. The present ITS will be fully replaced with a new one entirely based on CMOS monolithic pixel sensor chips fabricated in TowerJazz CMOS 0.18 μ m imaging technology. The large (3 cm × 1.5 cm = 4.5 cm2) ALPIDE (ALICE PIxel DEtector) sensor chip contains about 500 Kpixels, and will be used to cover a 10 m2 area with 12.5 Gpixels distributed over seven cylindrical layers. The ALPOSE chip was designed as a test chip for the various building blocks foreseen in the ALPIDE [2] pixel chip from CERN. The building blocks include: bandgap and Temperature sensor in four different flavours, and LDOs for powering schemes. One flavour of bandgap and temperature sensor will be included in the ALPIDE chip. Power consumption numbers have dropped very significantly making the use of LDOs less interesting, but in this paper all blocks are presented including measurement results before and after irradiation with neutrons to characterize robustness against displacement damage.

  20. A large area Micromegas TPC for tracking at the ILC

    International Nuclear Information System (INIS)

    The study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-Products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e+e- collider. The leading project for this is called ILC. The team that I joined is working on the R and D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-Called Micromegas device, with a charge-Sharing anode made of a resistive-Capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-Bench setup has been assembled at CERN (Chapter 4) to study the response to a 55Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion back-flow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several

  1. Amplification and Scintillation Properties of Oxygen-Rich Gas Mixtures for Optical-TPC Applications

    CERN Document Server

    Weissman, L; Chechik, R; Dangendorf, V; Gai, M; Tittelmeier, K; Weller, H R

    2006-01-01

    We studied electron amplification and light emission from avalanches in oxygen-containing gas mixtures. The mixtures investigated in this work included, among others, CO2 and N2O mixed with Triethylamine (TEA) or N2. Double-Step Parallel Gap (DSPG) multipliers and THick Gas Electron Multipliers (THGEM) were investigated. High light yields were measured from CO2+N2 and CO2+TEA, though with different emission spectra. We observed the characteristic wave-length emission of N2 and of TEA and used a polymer wave-length shifter to convert TEA UV-light into the visible spectrum. The results of these measurements indicate the applicability of optical recording of ionizing tracks in a TPC target-detector designed to study the cross section of the 16O(g,a)12C reaction, a central problem in nuclear astrophysics.

  2. Meson and baryon correlation studies using the PEP-TPC/2γ Facility

    International Nuclear Information System (INIS)

    Results on vector meson, and strange and charmed-baryon production are presented for data taken during the period 1982--1986 using the TPC/2γ detector at PEP. Vector mesons (ρ0, K* and φ) with 0, 1 and 2 strange quarks are used to obtain redundant measures of strange-quark suppression and of the vector to pseudoscalar ratio in hadronization. Measurements of the production rates of Λ, Ξ-, Ω and Ξ*0 hyperons and for the Λc and of rapidity correlations between Λ bar Λ pairs provide sensitive tests of baryon production in fragmentation models. In addition, two- and three-particle correlations between like sign pions provide further evidence for the Bose-Einstein effect in e+e- interactions including the relativistic motion of particle sources. 9 refs., 7 figs

  3. Upgrade of the Inner Tracking System of ALICE

    CERN Document Server

    Kofarago, Monika

    2015-01-01

    The upgrade of the Inner Tracking System (ITS) of ALICE is planned for the second long shutdown of the LHC in 2019-2020. The ALICE physics program after the shutdown requires the ITS to have improved tracking capabilities and improved impact parameter resolution at very low transverse momentum, as well as a substantial increase in the readout rate. To fulfill these requirements the current ITS will be replaced by seven layers of Monolithic Active Pixel Sensors. The new detector will be moved as close as 23 mm to the interaction point and will have a significantly reduced material budget. Several prototypes of the sensor have been developed to test different aspects of the sensor design including prototypes with analog and digital readout, as well as small and final-size sensors. These prototypes have been thoroughly characterized both in laboratory tests and at test beam facilities including studies on the radiation hardness of the sensors. This contribution gives an overview of the current status of the rese...

  4. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  5. The liquid argon TPC for the ICARUS experiment

    CERN Document Server

    Arneodo, F

    1997-01-01

    The ICARUS project aims at the realisation of a large liquid argon TPC to be run at the Underground Laboratories of Gran Sasso in Italy. An intense R&D; activity has put on firm grounds this new detector technology and experimentally confirmed its feasibility on a few ton scale. Based on these solid achievements, the collaboration is now confident of being able to build and safely operate a multi-kton detector. The reseach program of the experiment involves the systematic study of a wide spectrum of physical phenomena covering many orders of magnitude in the energy deposited in the detector: from the few MeV of solar neutrino interactions, to the about one GeV of the proton decay and atmospheric neutrinos, up to the higher energies of neutrinos from accelerators.

  6. NEXT, a HPGXe TPC for neutrinoless double beta decay searches

    CERN Document Server

    Granena, F; Nova, F; Rico, J; Sánchez, F; Nygren, D R; Barata, J A S; Borges, F I G M; Conde, C A N; Dias, T H V T; Fernandes, L M P; Freitas, E D C; Lopes, J A M; Monteiro, C M B; Santos, J M F dos; Santos, F P; Tavora, L M N; Veloso, J F C A; Calvo, E; Gil-Botella, I; Novella, P; Palomares, C; Verdugo, A; Giomataris, Yu; Ferrer-Ribas, E; Hernando-Morata, J A; Martínez, D; Cid, X; Ball, M; Carcel, S; Cervera-Villanueva, Anselmo; Díaz, J; Gil, A; Gómez-Cadenas, J J; Martín-Albo, J; Monrabal, F; Munoz-Vidal, J; Serra, L; Sorel, M; Yahlali, N; Bosch, R Esteve; Lerche, C W; Martinez, J D; Mora, F J; Sebastiá, A; Tarazona, A; Toledo, J F; Lazaro, M; Perez, J L; Ripoll, L; Carmona, J M; Cebrián, S; Dafni, T; Galan, J; Gomez, H; Iguaz, F J; Irastorza, I G; Luzón, G; Morales, J; Rodríguez, A; Ruz, J; Tomas, A; Villar, J A

    2009-01-01

    We propose a novel detection concept for neutrinoless double-beta decay searches. This concept is based on a Time Projection Chamber (TPC) filled with high-pressure gaseous xenon, and with separated-function capabilities for calorimetry and tracking. Thanks to its excellent energy resolution, together with its powerful background rejection provided by the distinct double-beta decay topological signature, the design discussed in this Letter Of Intent promises to be competitive and possibly out-perform existing proposals for next-generation neutrinoless double-beta decay experiments. We discuss the detection principles, design specifications, physics potential and R&D plans to construct a detector with 100 kg fiducial mass in the double-beta decay emitting isotope Xe(136), to be installed in the Canfranc Underground Laboratory.

  7. NEXT: R and D towards a xenon high pressure TPC

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Thorsten [Universitat Autonoma de Barcelona, Barcelona (Spain); Sanchez, Federico [IFAE, Barcelona (Spain); Gomez-Cadenas, J.J.; Martin-Albo, Justo; Ball, Markus; Novella, Pau; Monrabal, Francesc; Cervera, Anselmo [IFIC, Valencia (Spain); Garcia Irastorza, Igor [Universidad de Zaragoza, Zaragoza (Spain)

    2008-07-01

    An open question within the Standard Model is the nature of the neutrino. Is it a Majorana or a Dirac particle? The only way to answer this, is the search for neutrino-less double beta decays. Various experimental approaches are investigated for this reason e.g. diodes, bolometers, liquid Xenon. The key points for all of them is the high requirements on the energy resolution to distinguish between the decay with two neutrinos and the neutrino-less decay and the external background suppression. Recently some Spanish groups started a R and D program to investigate the possibility to use a pressurized Xenon TPC with MPGD readout (MM, LEM (GEM)). In the presentation the choice of gaseous Xe is motivated and an overview about the R and D plans is given.

  8. Topological signature in the NEXT high pressure xenon TPC

    CERN Document Server

    ,

    2016-01-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence to amplify the signal from ionization. One of the main advantages of this technology is the possibility to use the topology of events with energies close to Qbb as an extra tool to reject background. In these proceedings we show with data from prototypes that an extra background rejection factor of 24.3 +- 1.4 (stat.)% can be achieved, while maintaining an efficiency of 66.7 +- 1.% for signal events. The performance expected in NEW, the next stage of the experiment, is to improve to 12.9% +- 0.6% background acceptance for 66.9% +- 0.6% signal efficiency.

  9. ALFA: The new ALICE-FAIR software framework

    Science.gov (United States)

    Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; Vande Vyvre, P.; Winckler, N.

    2015-12-01

    The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of large parts of a common software framework in an experiment independent way. The FairRoot project has already shown the feasibility of such an approach for the FAIR experiments and extending it beyond FAIR to experiments at other facilities[1, 2]. The ALFA framework is a joint development between ALICE Online- Offline (O2) and FairRoot teams. ALFA is designed as a flexible, elastic system, which balances reliability and ease of development with performance using multi-processing and multithreading. A message- based approach has been adopted; such an approach will support the use of the software on different hardware platforms, including heterogeneous systems. Each process in ALFA assumes limited communication and reliance on other processes. Such a design will add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to meet computing and throughput demands. ALFA does not dictate any application protocols. Potentially, any content-based processor or any source can change the application protocol. The framework supports different serialization standards for data exchange between different hardware and software languages.

  10. TAB Bonded SSD Module for the STAR and ALICE Trackers

    CERN Document Server

    Lutz, Jean Robert; Baudot, J; Bonnet, D; Coffin, J P; Germain, M; Gojak, C; Jundt, F; Kühn, C E; Suire, C; Tarchini, A; Berst, D; Clauss, G; Colledani, C; Dulinski, W; Boucham, A; Bouvier, S; Castillo, J; Drancourt, C; Erazmus, B; Guilloux, G; Martin, L; Roy, C

    1999-01-01

    Presentation made at LEB99, 20-24 September 1999A novel compact detector module has been produced by the "IReS"-"Subatech"-"Thomson-CSF-Detexis" collaboration. It includes a Double-Sided (DS) Silicon Strip Detector (SSD) and the related Front End Electronics (FEE) located on two hybrids, one for the N side and one for the P side. Bumpless Tape Automated Bonding (TAB) is used to connect the detector to the hybrids by means of microcables with neither wirebonding nor pitch adapter. Each of the six dedicated ALICE128C FE chip [1], located on the hybrid, is TABed on identical single layer microcables, which connect its inputs to the DS SSD and its outputs to the hybrid [2]. These microcables are bent in order to fold over the two hybrids on the DS SSD. This module meets the specifications of two experiments, ALICE (A Large Ion Collider Experiment) on the LHC accelerator at CERN [3] and STAR (Solenoid Tracker At Rhic) on the RHIC accelerator at BNL (Brookhaven National Laboratory)[4]. It can be used with air cooli...

  11. Description and Optimisation of the ALICE dimuon trigger

    CERN Document Server

    Roig, O

    1998-01-01

    The main considerations about the ALICE dimuon trigger can be found in the Addendum to the ALICE Technical Proposal (T.P. in this note), concerning the forward muon spectrometer. The main task of the trigger is to select the dimuon signals, mainly from J/Psi and Upsilon resonances, amongst the huge background of muons from pions, kaons, charm decays and soft background in order to keep the acquisition rates at a satisfactory level. This is achieved with a cut on the muon transverse momentum performed by the trigger electronics and processors. A dimuon mass cut can also be done (not treated in this note). This note presents a detailed simulation which goal is to optimize the dimuon trigger. It includes the description of the set-up geometry and segmentation as well as the trigger electronics functions. Many improvements are suggested by the results of this simulation, as compared to the T.P. An update of the trigger rates and efficiency is given. Even though we describe the main elements of the dimuon trigge...

  12. The scene is set for ALICE

    CERN Multimedia

    2008-01-01

    Now that the electromagnetic calorimeter support and the mini space frame have been installed, practically all ALICE’s infrastructure is in place. The calorimeter support, an austenitic stainless steel shell weighing 30 tonnes, was slid gently inside the detector, in between the face of the magnet and the space frame. With the completion of two major installation projects, the scene is finally set for the ALICE experiment…or at least it nearly is, as a few design studies, minor installation jobs and measurements still need to be carried out before the curtain can finally be raised. The experiment’s chief engineer Diego Perini confirms: "All the heavy infrastructure for ALICE has been in place and ready for the grand opening since December 2007." The next step will be the installation of additional modules on the TOF and TRD detectors between January and March 2008, and physicists have already started testing the equipment with co...

  13. Performance optimisations for distributed analysis in ALICE

    CERN Document Server

    Betev, L; Gheata, M; Grigoras, C; Hristov, P

    2014-01-01

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the framewo rks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available r esources and ranging from fully I/O - bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by a...

  14. Energy Loss Signals in the ALICE TRD

    CERN Document Server

    Xian-Guo, Lu

    2013-01-01

    We present the energy loss measurements with the ALICE TRD in the $\\beta\\gamma$ range 1--10$^{4}$, where $\\beta=v/c$ and $\\gamma=1/\\sqrt{1-\\beta^2}$. The measurements are conducted in three different scenarios: 1) with pions and electrons from testbeams; 2) with protons, pions and electrons in proton-proton collisions at center-of-mass energy 7 TeV; 3) with muons detected in ALICE cosmic runs. In the testbeam and cosmic ray measurements, ionization energy loss (dE/dx) signal as well as ionization energy loss plus transition radiation (dE/dx+TR) signal are measured. With cosmic muons the onset of TR is observed. Signals from TeV cosmic muons are consistent with those from GeV electrons in the other measurements. Numerical descriptions of the signal spectra and the $\\beta\\gamma$-dependence of the most probable signals are also presented.

  15. The Wonderland of Operating the ALICE Experiment

    CERN Document Server

    Augustinus, A; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L; Chochula, P

    2011-01-01

    ALICE is one of the experiments at the Large Hadron Collider (LHC), CERN, Geneva, Switzerland. Composed of 18 sub-detectors each with numerous subsystems that need to be controlled and operated in a safe and efficient way. The Detector Control System (DCS) is the key to this and has been used by detector experts with success during the commissioning of the individual detectors. During the transition from commissioning to operation, more and more tasks were transferred from detector experts to central operators. By the end of the 2010 datataking campaign, the ALICE experiment was run by a small crew of central operators, with only a single controls operator. The transition from expert to non-expert operation constituted a real challenge in terms of tools, documentation and training. A relatively high turnover and diversity in the operator crew that is specific to the HEP experiment environment (as opposed to the more stable operation crews for accelerators) made this challenge even bigger. Thi...

  16. Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Belikov, Iouri

    2016-01-01

    A Large Ion Collider Experiment (ALICE) is built to study the properties of the strongly interacting matter created in heavy-ion collisions at the LHC. With the upgrade of its Inner Tracking System (ITS), the ALICE experiment is going to increase the rate of data taking by almost two orders of magnitude. At the same time, the precision of secondary vertex reconstruction will become by at least a factor 3 better than it currently is. In this talk, we briefly show some selected physics results motivating the upgrade of the ITS, describe the design goals and the layout of the new detector, and highlight a few important measurements that will be realized after the completion of this upgrade.

  17. ATLAS, CMS, LHCb and ALICE Career Networking Event 2015

    CERN Multimedia

    Marinov, Andrey; Strom, Derek Axel

    2015-01-01

    A networking event for alumni of the ATLAS, CMS, LHCb and ALICE experiments as well as current ATLAS/CMS/LHCb/ALICE postdocs and graduate students. This event offers an insight into career opportunities outside of academia. Various former members of the ATLAS, CMS, LHCb and ALICE collaborations will give presentations and be part of a panel discussion and elaborate on their experience in companies in a diverse range of fields (industry, finance, IT,...). Details at https://indico.cern.ch/event/440616

  18. Performance optimisations for distributed analysis in ALICE

    Science.gov (United States)

    Betev, L.; Gheata, A.; Gheata, M.; Grigoras, C.; Hristov, P.

    2014-06-01

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the frameworks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available resources and ranging from fully I/O-bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by an important factor to satisfy the analysis needs. We have instrumented all analysis jobs with "sensors" collecting comprehensive monitoring information on the job running conditions and performance in order to identify bottlenecks in the data processing flow. This data are collected by the MonALISa-based ALICE Grid monitoring system and are used to steer and improve the job submission and management policy, to identify operational problems in real time and to perform automatic corrective actions. In parallel with an upgrade of our production system we are aiming for low level improvements related to data format, data management and merging of results to allow for a better performing ALICE analysis.

  19. Upgrade of the ALICE Inner Tracking System

    OpenAIRE

    Reidt, Felix; Collaboration, for the ALICE

    2014-01-01

    During the Long Shutdown 2 of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System. It will replace the current six layer detector system with a seven layer detector using Monolithic Active Pixel Sensors. The upgraded Inner Tracking System will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity of the LHC. The choice of Monolithic Active Pixel Sensors has be...

  20. Alice, Greenfoot, and Scratch - A Discussion

    OpenAIRE

    Utting, Ian; Cooper, Stephen; Kölling, Michael; Maloney, John; Resnick, Mitchel

    2010-01-01

    This article distills a discussion about the goals, mechanisms, and effects of three environments which aim to support the acquisition and development of computing concepts (problem solving and programming) in pre-University and non-technical students: Alice, Greenfoot, and Scratch. The conversation started in a special session on the topic at the 2010 ACM SIGCSE Symposium on Computer Science Education and continued during the creation of the resulting Special Issue of the ACM Transactions on...

  1. The ALICE Software Release Validation cluster

    Science.gov (United States)

    Berzano, D.; Krzewicki, M.

    2015-12-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.

  2. One module of the ALICE photon spectrometer

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first module for the ALICE photon spectrometer has been completed. Each of the five modules will contain 3584 lead-tungstate crystals, a material as transparent as ordinary silica glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, allowing the energy of electrons, positrons and photons to be measured through the 17 920 detection channels.

  3. Performance optimisations for distributed analysis in ALICE

    International Nuclear Information System (INIS)

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the frameworks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available resources and ranging from fully I/O-bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by an important factor to satisfy the analysis needs. We have instrumented all analysis jobs with ''sensors'' collecting comprehensive monitoring information on the job running conditions and performance in order to identify bottlenecks in the data processing flow. This data are collected by the MonALISa-based ALICE Grid monitoring system and are used to steer and improve the job submission and management policy, to identify operational problems in real time and to perform automatic corrective actions. In parallel with an upgrade of our production system we are aiming for low level improvements related to data format, data management and merging of results to allow for a better performing ALICE analysis

  4. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  5. ALICE: The best is yet to come

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The ALICE wonderland is the ion-ion collisions. However, the proton run was intensely used by the collaboration to get to know its detector in detail and to produce its first results in QCD-related matters. This very successful preparatory phase will now allow ALICE to enter the uncharted territory of the quark-gluon plasma at the extreme energies provided by the LHC.   The ALICE detector is optimized to study ion-ion collisions in which quark-gluon plasma may be formed. This type of matter, which existed a few moments after the Big Bang and appears when quarks and gluons are deconfined to form a highly dense and hot soup, has been studied at CERN’s SPS in the 1990s and later, from 2000 onwards, at much higher energy at RHIC in the US. Now it’s ALICE’s turn. “Quark-gluon plasma is created at very high temperatures but starts to cool down very quickly to become normal matter again. The high energy of the LHC puts us much higher above the threshold of its for...

  6. Physics with the ALICE Transition Radiation Detector

    CERN Document Server

    Pachmayer, Yvonne

    2013-01-01

    The ALICE Transition Radiation Detector (TRD) significantly enlarges the scope of physics observables studied in ALICE, because it allows due to its electron identification capability to measure open heavy-flavour production and quarkonium states, which are essential probes to characterize the Quark-Gluon-Plasma created in nucleus-nucleus collisions at LHC. In addition the TRD enables to enhance rare probes due to its trigger contributions. We report on the first results of the electron identification capability of the ALICE Transition Radiation Detector (TRD) in pp collisions at $\\sqrt{s}$ = 7 TeV using a one-dimensional likelihood method on integrated charge measured in each TRD chamber. The analysis of heavy flavour production in pp collisions at $\\sqrt{s}$ = 7 TeV with this particle identification method, which extends the $p_{t}$ range of the existing measurement from $p_{t}$ = 4 GeV/c to 10 GeV/c and reduces the systematic uncertainty due to particle identification, is presented. The performance of the ...

  7. CERN: ALICE in the looking-glass

    International Nuclear Information System (INIS)

    While proton-proton collisions will provide the main research thrust at CERN's planned LHC high energy collider to be built in the LEP tunnel, its 27-kilometre superconducting magnet ring will also be able to handle all the other high energy beams on the CERN menu, opening up the possibility of both heavy ion and electron-proton collisions to augment the LHC research programme. A major new character in the LHC cast - ALICE (A Large Ion Collider Experiment) - has recently published a letter of intent, announcing its intention to appear on the LHC stage. Three letters of intent for major LHC proton-proton experiments were aired last year (January, page 6), and ALICE, if approved, would cohabit with the final solution for the protonproton sector (see box). Only a single major heavy ion experiment is envisaged. The protonproton detectors have some heavy ion capability, but could only look at some very specific signals. (Detailed plans for LHC's electron proton collision option are on hold, awaiting the initial exploration of this field by the new HERA collider which came into operation last year at the DESY Laboratory in Hamburg.) Describing the ALICE detector and its research aims, spokesman Jurgen Schukraft echoes T.D.Lee's observations on the state of particle physics. It is becoming increasingly clear that resolving some of today's particle puzzles require a deeper understanding of the vacuum

  8. Alice Walker’s Womanism in Meridian

    Institute of Scientific and Technical Information of China (English)

    GAN Lin

    2015-01-01

    Meridian is one of Alice Walker’s early work. It tells a story that happened in the American south during the 1960s and early 70s’. It describes the life of the main character, Meridian Hill, a black woman from a southern town, who got out of the oppression of white society, and ends up in participate in Civil Rights Movement. The paper firstly illustrates the soul of womanism—anti-sexism, anti-racism, sisiterhood as well as the maternity love, then analyzes how these theories permeated into the novel—Meridian. The paper paid attention to the function of this novel on the improvement of Alice Walker ’s womanism. In proving that womanism not only permeates into Meridian, but also improved womanism from many perspectives, it comes to the conclusion that Meridian is a novel to improve Alice Walker’s womanism, it serves as the good novel to highlight the African Culture, and made a great contribution for the encouragement of black women to seek for freedom in the society.

  9. LS1 Report: ALICE ups the ante

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    SPS up and running... LHC almost cold... CCC Operators back at their desks... all telltale signs of the start of Run 2! For the experiments, that means there are just a few short months left for them to prepare for beams. The CERN Bulletin will be checking in with each of the Big Four to see how they are getting on during these closing months...   It has been a long road for the ALICE LS1 team. From major improvements to the 19 sub-detectors to a full re-cabling and replacement of LEP-era electrical infrastructure, no part of the ALICE cavern has gone untouched.* With the experiment set to close in early December, the teams are making finishing touches before turning their focus towards re-commissioning and calibration. "Earlier this week, we installed the last two modules of the di-jet calorimeter," explains Werner Riegler, ALICE technical coordinator. "These are the final parts of a 60 degree calorimeter extension that is installed opposite the present calorimeter, c...

  10. Track reconstruction of normal muon decays in the LAMPF TPC: one working scheme

    International Nuclear Information System (INIS)

    A working scheme for track reconstruction of normal muon decays in the LAMPF TPC is here outlined. Muon tracks stopping in the TPC and helical electron tracks from muon decay are both identified and fitted for complete event reconstruction. Because of certain geometrical characteristics of the TPC, novel techniques are deployed to find the tracks. Normal road tracing methods do not work reliably; they are replaced by, among other things, a random search technique that locates the helix's planar projection and a carefully worked-out method for correctly putting each coordinate on its proper turn in the helix

  11. Status of the ALICE experiment and first results on heavy flavour production

    International Nuclear Information System (INIS)

    The ALICE experiment is the LHC detector mainly dedicated to the study of the Quark Gluon Plasma (QGP) in Pb-Pb collisions. The detector has started the data taking less than one year ago, delivering immediately relevant results. An overview of the first physics results obtained in the first six month of running of the experiment will be summarized, giving special emphasis to heavy flavour measurements. Heavy flavours are ideal probes to explore both the formation and properties of the QGP, since they experience the full collision history and are expected to be copiously produced at LHC, much more than at any other collider. With ALICE we will measure heavy flavours down to small transverse momentum, combining hadronic and leptonic channels, both at central and forward rapidity. In particular, in the central rapidity region, it is possible to exclusively reconstruct open charm mesons and baryons via hadronic decay channels. Furthermore, the good identification of electrons allows to measure the production both of charmonium and open beauty. First results from p-p collisions at 7 TeV will be shown, including the clear signals of open and hidden charm hadrons reconstructed at ALICE. These data provide interesting insight into QCD processes in a new energy regime, are important as a baseline for the Pb-Pb program and demonstrate the potential for heavy flavour cross section measurements with the ALICE detector.

  12. The ALICE muon spectrometer: trigger detectors and quarkonia detection in p-p collisions

    CERN Document Server

    Gagliardi, Martino

    This work was carried out in the context of the optimisation of the performances of the muon spectrometer of the forthcoming ALICE experiment at the Large Hadron Collider (LHC, CERN). The aim of ALICE is the study of nuclear matter at the highest energy densities ever accessed experimentally. More in detail, the focus is on the expected phase transition to a deconfined phase of matter where the degrees of freedom are those of quarks and gluons: the Quark-Gluon Plasma. The conditions for QGP formation are expected to be achieved in highly relativistic heavy ion collisions. The energy in the centre of mass of Pb-Pb collisions at the LHC will be 5.5 TeV per nucleon pair. The ALICE physics program also includes data-taking in p-p collisions at the centre-of-mass-energy of 14 TeV. The ALICE muon spectrometer has been designed for the detection of heavy quarkonia through their muon decay: both theoretical predictions and experimental data obtained at SPS and RHIC indicate that the production of these resonances sho...

  13. Sealed operation, and circulation and purification of gas in the HARPO TPC

    CERN Document Server

    Frotin, M; Attié, D; Bernard, D; Dauvois, V; Delbart, A; Durand, D; Geerebaert, Y; Legand, S; Magnier, P; Poilleux, P; Semeniouk, I

    2015-01-01

    HARPO is a time projection chamber (TPC) demonstrator of a gamma-ray telescope and polarimeter in the MeV-GeV range, for a future space mission. We present the evolution of the TPC performance over a five month sealed-mode operation, by the analysis of cosmic-ray data, followed by the fast and complete recovery of the initial gas properties using a lightweight gas circulation and purification system.

  14. Behavior of TPC`s in a high particle flux environment

    Energy Technology Data Exchange (ETDEWEB)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J. [Brookhaven National Lab., Upton, NY (United States); Chan, C.S.; Kramer, M.A.; Zhao, K.H.; Zhu, Y. [City College of New York, New York (United States); Hallman, T.J.; Madansky, L. [Johns Hopkins Univ., Baltimore, MD (United States); Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Mutchler, G.S.; Roberts, J.B. [Bonner Nuclear Lab., Houston, TX (United States)

    1991-12-31

    TPC`s (Time Projection Chamber) used in E-810 at the TAGS (Alternating Gradient Synchrotron) were exposed to fluxes equivalent to more than 10 minimum ionizing particles per second to find if such high fluxes cause gain changes or distortions of the electric field. Initial results of these and other tests are presented and the consequences for the RHIC (Relativistic Heavy Ion Collider) TPC-based experiments are discussed.

  15. Optically read out GEM-based TPC operation and preliminary scintillation studies

    CERN Document Server

    Galgoczi, Gabor

    2016-01-01

    The main goal of this project was to realise the reconstruction of tracks in an optically read out GEM (Gas Electron Multiplier) based Time Projection Chamber (TPC). Secondary goal was to initialise a series of systematic studies on the scintillation of particles in Ar/CF4 (80-20%) mixture. Track reconstruction is needed for primary scintillation studies as only tracks fully contained can be considered. A vetoing and trigerring logic was built for the TPC from NIM modules.

  16. Muon tomography of rock density using Micromegas-TPC telescope

    Science.gov (United States)

    Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier

    2014-05-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.

  17. ALICE Diffractive Detector Control System for RUN-II in the ALICE Experiment

    CERN Document Server

    Cabanillas-Noris, Juan-Carlos; Monzon, I Leon

    2016-01-01

    This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.

  18. Uinunud Alice'i toas teeb imesid lavamaagia / Jaanus Kaasik

    Index Scriptorium Estoniae

    Kaasik, Jaanus

    2004-01-01

    7. veebr. esietendus Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  19. Hadronic resonances from ALICE in pp collisions

    Directory of Open Access Journals (Sweden)

    Fragiacomo Enrico

    2012-11-01

    Full Text Available The study of resonances in √s = 7 TeV pp collisions provides a test of QCD in a new energy domain as well as a baseline for heavy-ion collisions. The resonances K*(8920, ϕ(1020, Σ(1385±, Λ(1520, and Ξ(15300 have been reconstructed at midrapidity from their hadronic decay using data collected by the ALICE detector. The comparison of ϕ(1020 and Σ(1385 pT-spectra to QCD-inspired models such as PHOJET and different PYTHIA tunes are shown.

  20. The ALICE Inner Tracking System Upgrade

    International Nuclear Information System (INIS)

    A central component of the ALICE Upgrade will be a completely new Inner Tracking System (ITS). The performance of the new ITS will be a significant improvement over that of the present ITS, in particular in the areas of material budget, granularity, a reduced radial distance from the first layer to the beam and rate capability. This will enable many key measurements of the properties of the quark–gluon plasma to be performed, in particular with rare probes such as low momentum charm and beauty mesons and baryons

  1. MAPS development for the ALICE ITS upgrade

    Science.gov (United States)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-03-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.

  2. AliEn - EDG Interoperability in ALICE

    CERN Document Server

    Bagnasco, S; Buncic, P; Carminati, F; Cerello, P G; Saiz, P

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and...

  3. Particle identification in ALICE: a Bayesian approach

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Benacek, Pavel; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kostarakis, Panagiotis; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shahzad, Muhammed Ikram; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Derradi De Souza, Rafael; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasin, Zafar; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high purity samples of identified particles in the decay channels ${\\rm K}_{\\rm S}^{\\rm 0}\\rightarrow \\pi^+\\pi^-$, $\\phi\\rightarrow {\\rm K}^-{\\rm K}^+$ and $\\Lambda\\rightarrow{\\rm p}\\pi^-$ in p–Pb collisions at $\\sqrt{s_{\\rm NN}}= 5.02$TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected $p_{\\rm T}$ spectra of pions, kaons, protons, and D$^0$ mesons in pp coll...

  4. Quarkonium production in ALICE at the LHC

    CERN Document Server

    Hadjidakis, Cynthia

    2014-01-01

    In heavy-ion collisions at the LHC, the ALICE Collaboration is studying Quantum Chromodynamics (QCD) matter at very high energy density where the formation of a Quark Gluon Plasma (QGP) is expected. Quarkonium production is an important probe to characterize the QGP properties. High precision data in pp collisions provide the baseline of Pb-Pb measurements and p-Pb collisions serve to quantify the amount of initial and/or final state effects, related to cold nuclear matter, that are largely unknown at the LHC energy. Since 2010, the LHC provided Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV, pp collisions at various energies and in 2013 p-Pb collisions at sqrt{s_{NN}} = 5.02 TeV. In ALICE, quarkonia can be reconstructed at forward rapidity in the dimuon channel and at mid-rapidity in the dielectron channel, and, for both channels, down to zero transverse momentum. New measurements on inclusive production of J/psi, psi (2S) and Upsilon performed in p-Pb collisions and on the p_T dependence of inclusive J/psi in ...

  5. Performance of ALICE silicon tracker detector

    CERN Document Server

    Luparello, G

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is the LHC experiment devoted to the study of the strong interacting matter created in heavy-ion collisions. The ALICE Inner Tracking System (ITS) consists of six layers of silicon detectors exploiting three different technologies: pixel, drift and strip (from inside to outside). It covers the central pseudorapidity range, j h j < 0 : 9, and its distance from the beam line ranges from r = 3 : 9 cm for the innermost pixel layer up to r = 43 cm for the outermost strip layer. The main tasks of the ITS are to reconstruct the primary and secondary vertices, to track and identify charged particles with a low- p T cutoff and to improve the momentum resolution at high p T . During the operations, the ITS has demonstrated its tracking and vertexing capabilities, which are in excellent agreement with the design values. In these proceedings, after a brief description of the features of the system, the performance during the first three years of data taking at LHC will be presen...

  6. Detection of atmospheric muons with ALICE detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Cortes Maldonado, I. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Cuautle, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (Mexico); Fernandez Tellez, A. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Gomez Jimenez, R. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Gonzalez Santos, H. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Herrera Corral, G. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Leon, I. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Martinez, M.I.; Munoz Mata, J.L. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Podesta, P. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Ramirez Reyes, A. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Rodriguez Cahuantzi, M., E-mail: mrodrigu@mail.cern.c [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Sitta, M. [Universita Piemonte Orientale, Alessandria (Italy); Subieta, M. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Tejeda Munoz, G.; Vargas, A.; Vergara, S. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico)

    2010-05-21

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  7. Readout of the upgraded ALICE-ITS

    Science.gov (United States)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  8. Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    AUTHOR|(CDS)2079168

    2015-01-01

    {During the Long Shutdown 2 (LS2) of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System (ITS). The upgraded detector will fully replace the current ITS having six layers by seven layers of Monolithic Active Pixel Sensors (MAPS). The upgraded ITS will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity in LHC. The choice of MAPS has been driven by the specific requirements of ALICE as a heavy ion experiment dealing with rare probes at low $p_\\mathrm{T}$. This leads to stringent requirements on the material budget of 0.3$\\%~X/X_{0}$ per layer for the three innermost layers. Furthermore, the detector will see large hit densities of $\\sim 19~\\mathrm{cm}^{-2}/\\mathrm{event}$ on average for minimum-bias events in the inner most layer and has to stand moderate radiation loads of 700 kRad TID and $1\\times 10^{13}$ 1 MeV n$_\\mathrm{eq}/\\mathrm{cm}^{2}$ NIEL at maximum. The MAPS dete...

  9. MAPS development for the ALICE ITS upgrade

    International Nuclear Information System (INIS)

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips

  10. Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Rossegger, Stefan

    2013-01-01

    The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavour production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 $\\mu$m. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and a material budget of 1.1% X0 per layer. %In particular, the properties of the two innermost layers define the ITS performance in measuring the displaced vertex of such short-lived particles. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavour detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last ten years as well as the possibility to install a smaller radius beampipe. The upgraded detec...

  11. Simulation of the ALICE DAQ System with GALSIM

    CERN Document Server

    Yuan, J; Skaali, B

    1997-01-01

    We present some of the simulation results for the DAQ system of the ALICE Abstract:experiment at the Large Hadron Collider (LHC) at CERN. The simulation is performed by the ALICE DAQ Simulation Program GALSIM. Abstract:GALSIM comprises two software packages; 1)the basic ALICE DAQ simulation Abstract:program ALSIM and 2) a graphic user interface which dynamically displays Abstract:the data transport and synchronization messages in the DAQ system. GALSIM Abstract:is written in MODSIM II and has been developed by the ALICE DAQ group at Abstract:the Department of Physics, University of Oslo, Norway. In the paper, we will first introduce the basic ALICE DAQ system and the sAbstract:imulator GALSIM. We will then concentrate on the simulation of the ALICE Abstract:DAQ topology with various parameters. The results we present can be viewed Abstract:as an extension of the DAQ simulation shown in the ALICE Technical Abstract:Proposal. Among the important results, we emphasize on the following issues, 1. The effect of me...

  12. The ALICE Glance Shift Accounting Management System (SAMS)

    Science.gov (United States)

    Martins Silva, H.; Abreu Da Silva, I.; Ronchetti, F.; Telesca, A.; Maidantchik, C.

    2015-12-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the CERN LHC (Large Hadron Collider) studying the physics of strongly interacting matter and the quark-gluon plasma. The experiment operation requires a 24 hours a day and 7 days a week shift crew at the experimental site, composed by the ALICE collaboration members. Shift duties are calculated for each institute according to their correlated members. In order to ensure the full coverage of the experiment operation as well as its good quality, the ALICE Shift Accounting Management System (SAMS) is used to manage the shift bookings as well as the needed training. ALICE SAMS is the result of a joint effort between the Federal University of Rio de Janeiro (UFRJ) and the ALICE Collaboration. The Glance technology, developed by the UFRJ and the ATLAS experiment, sits at the basis of the system as an intermediate layer isolating the particularities of the databases. In this paper, we describe the ALICE SAMS development process and functionalities. The database has been modelled according to the collaboration needs and is fully integrated with the ALICE Collaboration repository to access members information and respectively roles and activities. Run, period and training coordinators can manage their subsystem operation and ensure an efficient personnel management. Members of the ALICE collaboration can book shifts and on-call according to pre-defined rights. ALICE SAMS features a user profile containing all the statistics and user contact information as well as the Institutes profile. Both the user and institute profiles are public (within the scope of the collaboration) and show the credit balance in real time. A shift calendar allows the Run Coordinator to plan data taking periods in terms of which subsystems shifts are enabled or disabled and on-call responsible people and slots. An overview display presents the shift crew present in the control room and allows the Run Coordination team to confirm the presence

  13. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress.

    Science.gov (United States)

    Evans, Matthew J; Choi, Won-Gyu; Gilroy, Simon; Morris, Richard J

    2016-07-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1. PMID:27261066

  14. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress1[OPEN

    Science.gov (United States)

    Evans, Matthew J.; Choi, Won-Gyu

    2016-01-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca2+ traveling throughout the plant. For the Ca2+ wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca2+ wave originating from Ca2+ release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca2+ diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca2+ wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca2+ wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1. These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca2+ release dependent on the vacuolar channel TPC1. PMID:27261066

  15. GEANT Simulation of the Radiation Dose for the Inner Tracking System of the ALICE Detector

    CERN Document Server

    Barbera, R; CERN. Geneva; Palmeri, A; Pappalardo, G S; Riggi, F; Badalà, A

    1999-01-01

    A full GEANT simulation of the radiation dose expected for the Inner Tracking System (ITS) of the ALICE detector at the Large Hadron Collider has been carried out. Heavy-ion collision events at a c.m. energy of 6 TeV/nucleon have been generated through the HIJING 1.35 event generator and injected into the GEANT software replica of the ALICE detector, to simulate the planned scenario for the first ten years of data taking of the detector. Several factors contributing to the evaluation of the absorbed dose, including the different ITS implementation options, the effect of the magnetic field, the presence of the beam pipe, the finite size of the interaction point and the front absorber of the muon spectrometer are discussed.

  16. Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    CERN Document Server

    Conrad, J; Antinori, F; Badalà, A; Barbera, R; Boccardi, A; Bruno, G E; Burns, M; Cali, I A; Campbell, M; Caselle, M; Ceresa, S; Chochula, P; Cinausero, M; Dima, R; Elia, D; Fabris, D; Fini, R A; Fioretto, E; Kapusta, S; Kluge, A; Krivda, M; Lenti, V; Librizzi, F; Lunardon, M; Manzari, V; Morel, M; Moretto, S; Morsch, A; Nilsson, P; Noriega, M L; Osmic, F; Pappalardo, G S; Paticchio, V; Pepato, Adriano; Prete, G; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Scarlassara, F; Segato, G F; Soramel, F; Stefanini, G; Sándor, L; Torcatode-Matos, C; Turrisi, R; Vannucci, L; Viesti, G; Virgili, T

    2007-01-01

    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.

  17. Trigger electronics for the ALICE PHOS detector

    CERN Document Server

    Müller, H; Musa, L; Yin, Z; Röhrich, D; Skaali, B; Sibiryak, Yu; Budnikov, D L

    2004-01-01

    The Photon Spectrometer of ALICE consists of 5 identical modules of 56 multiplied by 64 PWO crystals with a total of 100 degree azimuthal coverage of the barrel. The electronics required for implementing both the L0 trigger for high luminosity p-p physics and the L1 trigger for high p//T Pb+Pb physics has been studied. A full integration of the trigger logic into the detector's enclosure is based on analog transmission of fast trigger sums between stacks of front-end boards and trigger-router units. The latter contain 112 digitizer channels of 10bit, which are mapped into a single FPGA per trigger unit, covering areas of 24 multiplied by 16 crystals. The running modes allow for Level-0 trigger at 800ns and Level-1 at 6200ns trigger latencies. The design and status of the PHOS trigger electronics are outlined.

  18. ALICE & LHCb: refinements for the restart

    CERN Document Server

    2009-01-01

    Following the previous issue, the Bulletin continues its series to find out what the six LHC experiments have been up to since last September, and how they are preparing for the restart. Previously we looked at CMS and ATLAS; this issue we will round up the past 10 months of activity at ALICE and LHCb. LHCb The cavern of the LHCb experiment. This year has given LHCb the chance to install the 5th and final plane of muon chambers, which will improve the triggering at nominal luminosity. This is the final piece of the experiment to be installed. "Now the detector looks exactly as it does in the technical design report," confirms Andrei Golutvin, LHCb Spokesperson. "We also took advantage of this shutdown to make several improvements. For example, we modified the high voltage system of the electromagnetic calorimeter to reduce noise further to a negligible level. We also took some measures to improve ...

  19. Alice Amsden's impact on Latin America

    Directory of Open Access Journals (Sweden)

    Helen Shapiro

    2014-06-01

    Full Text Available On March 15 2012, we lost Professor Alice Amsden, a great intellectual power in development economics. Her work was systematically marked by creativity, originality, relevance and her fearless commitment to always speak truth to power both in academic as well as in policy-making arenas. This In Memoriam concentrates on just one part of her great intellectual legacy: her impact to better understanding Latin America's development challenges, obstacles and policy options. Our paper focuses on three broad areas of her main influence in the region: the role of transnational corporations, the importance of manufactured exports for development, and industrial policy. As we here argue, in all of them, her work is and continues to be a substantial contribution to knowledge that policy makers will be well advised to take into account if the region is to finally enter a path of structural transformation and sustained economic and social development.

  20. Timing in the ALICE trigger system

    CERN Document Server

    Lietava, Roman; Evans, D; Jones, G T; Jovanovic, P; Jusko, A; Králik, I; Krivda, M; Pastircák, B; Sándor, L; Urbán, J; Villalobos Baillie, O

    2007-01-01

    In this paper we discuss trigger signals synchronisation and trigger input alignment in the ALICE trigger system. The synchronisation procedure adjusts the phase of the input signals with respect to the local Bunch Crossing (BC) clock and, indirectly, with respect to the LHC bunch crossing instant. The synchronisation delays are within one clock period: 0-25 ns. The alignment assures that the trigger signals originating from the same bunch crossing reach the processor logic in the same clock cycle. It is achieved by delaying signals by an appropriate number of full clock periods. We propose a procedure which will allow us to nd alignment delays during the system con guration, and to monitor them during the data taking.

  1. Recent ALICE results on hadronic resonance production

    CERN Document Server

    Badalà, Angela

    2015-01-01

    Hadronic resonances are a valuable tool to study the properties of the medium formed in heavy-ion collisions. In particular, they can provide information on particle-formation mechanisms and on the properties of the medium at chemical freeze-out. Furthermore they contribute to the systematic study of parton energy loss and quark recombination. Measurements of resonances in pp and in p-Pb collisions provide a necessary baseline for heavy-ion data and help to disentangle initial-state effects from medium-induced effects. In this paper the latest ALICE results on mid-rapidity K*(892)^0 and {\\phi}(1020) production in pp, p-Pb and Pb-Pb collisions at LHC energies are presented

  2. First measurements with ARGONTUBE, a 5 m long drift Liquid Argon TPC

    International Nuclear Information System (INIS)

    The Liquid Argon Time Projection Chamber (LAr TPC) technique is a promising technology for future neutrino detectors. At LHEP of the University of Bern (Switzerland), an R and D program towards large detectors are on-going. The main goal is to show the feasibility of long drift paths over many meters. Therefore, a liquid Argon TPC with 5 m of drift distance was constructed. Many other aspects of the liquid Argon TPC technology are also investigated, such as a new device to generate high voltage in liquid Argon (Greinacher circuit), a recirculation filtering system and the multi-photon ionization of liquid Argon with a UV laser. Two detectors are built: a medium size prototype for specific detector technology studies, and ARGONTUBE, a 5 m long device

  3. Construction and testing of the two meter diameter TPC thin superconducting solenoid

    International Nuclear Information System (INIS)

    High energy colliding beam physics often requires large detectors which contain large volumes of magnetic field. The TPC (Time Projection Chamber) experiment at PEP will use a 1.5T magnetic field within a cylindrical volume which is 2.04m in diameter bounded by iron poles which are separated by a gap of 3.25m. The TPC magnet, built in 1979 by the Lawrence Berkeley Laboratory (LBL), is the largest high current density superconducting magnet built to date. It is designed to operate at a current density of 7 x 108Am-2 and a stored energy of 11MJ, and it is protected by shorted secondary windings during a quench. The paper describes the basic parameters of the TPC magnet and the results of the first subassembly tests at LBL

  4. The NEXT experiment: A high pressure xenon gas TPC for neutrinoless double beta decay searches

    CERN Document Server

    Lorca, D; Monrabal, F

    2012-01-01

    Neutrinoless double beta decay is a hypothetical, very slow nuclear transition in which two neutrons undergo beta decay simultaneously and without the emission of neutrinos. The importance of this process goes beyond its intrinsic interest: an unambiguous observation would establish a Majorana nature for the neutrino and prove the violation of lepton number. NEXT is a new experiment to search for neutrinoless double beta decay using a radiopure high-pressure xenon gas TPC, filled with 100 kg of Xe enriched in Xe-136. NEXT will be the first large high-pressure gas TPC to use electroluminescence readout with SOFT (Separated, Optimized FuncTions) technology. The design consists in asymmetric TPC, with photomultipliers behind a transparent cathode and position-sensitive light pixels behind the anode. The experiment is approved to start data taking at the Laboratorio Subterr\\'aneo de Canfranc (LSC), Spain, in 2014.

  5. TPC track distortions: correction maps for magnetic and static electric inhomogeneities

    CERN Document Server

    Dydak, F; Nefedov, Y

    2003-01-01

    Inhomogeneities of the magnetic and electric fields in the active TPC volume lead to displacements of cluster coordinates, and therefore to track distortions. In case of good data taking conditions, the largest effects are expected from the inhomogeneity of the solenoidal magnetic field, and from a distortion of the electric field arising from a high voltage misalignment between the outer and inner field cages. Both effects are stable over the entire HARP data taking. The displacements are large compared to the azimuthal coordinate resolution but can be corrected with sufficient precision, except at small TPC radius. The high voltage misalignment between the outer and inner field cages is identified as the likely primary cause of sagitta distortions of TPC tracks. The position and the length of the target plays an important role. Based on a detailed modelling of the magnetic and static electric field inhomogeneities, precise correction maps for both effects have been calculated. Predictions from the correctio...

  6. Investigations of the long-term stability of a GEM-TPC

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchuk, Oleksiy [DESY, Hamburg (Germany); Collaboration: LCTPC-Deutschland-Collaboration

    2015-07-01

    For the International Large Detector (ILD) at the planned International Linear Collider (ILC), a Time Projection Chamber (TPC) is foreseen as the main tracking detector. The gas amplification will be done by Micro Pattern Gaseous Detectors (MPGD). One option is to use Gas Electron Multipliers (GEM). While the applicability of GEMs for the gas amplification in a TPC readout has been shown, the focus of the current research is to improve the stability and reliability of the readout modules. This is a crucial requirement for the operation in the final ILD TPC. This presentation shows results from precise discharge current measurements and parallel optical investigations. Ways to improve the long-term stability of the amplification system have been studied.

  7. Measurement of B meson production in pp collisions at √(s) = 2.76 TeV and √(s) = 7 TeV via displaced electrons in ALICE

    International Nuclear Information System (INIS)

    Measurements of the production cross section of B mesons in pp collisions in ALICE are important in two respects. They allow to test perturbative quantum chromodynamics calculations, and they provide an essential reference for comparison with studies in heavy-ion collisions at high energies, in which a hot and dense medium, the quark-gluon plasma (QGP), is created. When passing through this medium, quarks lose energy via the strong interaction. Since the amount of energy loss is expected to depend significantly on the quark mass, beauty as the heaviest observable flavour is of particular interest for the exploration of QGP properties. The measurement of electrons from beauty hadron decays at mid-rapidity is presented for √(s)=2.76 TeV and √(s)=7 TeV. First, the electron identification in the ALICE central barrel, using the Time Projection Chamber (TPC) and Time Of Flight (TOF) detector, is outlined. An explanation of the selection of electrons from beauty hadron decays with a large impact parameter is given. It makes use of the B mesons' larger decay length (∼500 μ m) in comparison to D mesons and other background sources. The remaining electron background in the selected sample is estimated based on calculations using ALICE measured pt spectra. The resulting B meson pt spectra measured in pp collisions at √(s)=7 TeV in 2010 and at √(s)=2.76 TeV in 2011 are shown.

  8. The ALICE DAQ infoLogger

    Science.gov (United States)

    Chapeland, S.; Carena, F.; Carena, W.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Ionita, C.; Delort, C.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.; Alice Collaboration

    2014-04-01

    ALICE (A Large Ion Collider Experiment) is a heavy-ion experiment studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The ALICE DAQ (Data Acquisition System) is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches). The DAQ reads the data transferred from the detectors through 500 dedicated optical links at an aggregated and sustained rate of up to 10 Gigabytes per second and stores at up to 2.5 Gigabytes per second. The infoLogger is the log system which collects centrally the messages issued by the thousands of processes running on the DAQ machines. It allows to report errors on the fly, and to keep a trace of runtime execution for later investigation. More than 500000 messages are stored every day in a MySQL database, in a structured table keeping track for each message of 16 indexing fields (e.g. time, host, user, ...). The total amount of logs for 2012 exceeds 75GB of data and 150 million rows. We present in this paper the architecture and implementation of this distributed logging system, consisting of a client programming API, local data collector processes, a central server, and interactive human interfaces. We review the operational experience during the 2012 run, in particular the actions taken to ensure shifters receive manageable and relevant content from the main log stream. Finally, we present the performance of this log system, and future evolutions.

  9. External access to ALICE controls conditions data

    Science.gov (United States)

    Jadlovský, J.; Jadlovská, A.; Sarnovský, J.; Jajčišin, Š.; Čopík, M.; Jadlovská, S.; Papcun, P.; Bielek, R.; Čerkala, J.; Kopčík, M.; Chochula, P.; Augustinus, A.

    2014-06-01

    ALICE Controls data produced by commercial SCADA system WINCCOA is stored in ORACLE database on the private experiment network. The SCADA system allows for basic access and processing of the historical data. More advanced analysis requires tools like ROOT and needs therefore a separate access method to the archives. The present scenario expects that detector experts create simple WINCCOA scripts, which retrieves and stores data in a form usable for further studies. This relatively simple procedure generates a lot of administrative overhead - users have to request the data, experts needed to run the script, the results have to be exported outside of the experiment network. The new mechanism profits from database replica, which is running on the CERN campus network. Access to this database is not restricted and there is no risk of generating a heavy load affecting the operation of the experiment. The developed tools presented in this paper allow for access to this data. The users can use web-based tools to generate the requests, consisting of the data identifiers and period of time of interest. The administrators maintain full control over the data - an authorization and authentication mechanism helps to assign privileges to selected users and restrict access to certain groups of data. Advanced caching mechanism allows the user to profit from the presence of already processed data sets. This feature significantly reduces the time required for debugging as the retrieval of raw data can last tens of minutes. A highly configurable client allows for information retrieval bypassing the interactive interface. This method is for example used by ALICE Offline to extract operational conditions after a run is completed. Last but not least, the software can be easily adopted to any underlying database structure and is therefore not limited to WINCCOA.

  10. ALICE installs new hardware in preparation for the 2012 run

    CERN Multimedia

    CERN Bulletin and ALICE Matters

    2012-01-01

    2011 was a fantastic year for the heavy-ion run at ALICE despite unprecedented challenges and difficult conditions. The data collected is at least one order of magnitude greater than the 2010 data. Thanks to a planned upgrade to two subdetectors during the 2011/2012 winter shutdown and a reorganisation of ALICE’s Physics Working Groups that should allow them to better deal with the greater challenges imposed by the LHC, the collaboration is confident that the 2011 run will allow ALICE to extend its physics reach and improve its performance.   Photograph of ALICE taken by Antonio Saba during this year's winter shutdown. The annual winter shutdown has been a very intense period for the ALICE collaboration. In conjunction with the general maintenance, modifications and tests of the experiment, two major projects – the installation of 3 supermodules of the Transition Radiation Detector (TRD) and 2 supermodules of the Electromagnetic Calorimeter (EMCal) – hav...

  11. Sampling Lake Alice NWR Fish Populations - 2014, North Dakota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The USFWS and North Dakota Game and Fish Department sampled Northern pike, walleye, yellow perch and white bass within the boundary of Lake Alice NWR in North...

  12. First Proton-Proton Physics with the ALICE detector

    CERN Document Server

    Grosse-Oetringhaus, Jan Fiete

    2008-01-01

    This paper describes the status and plans of first measuremen ts in p+p collisions with ALICE. The first part introduces the ALICE experiment with a focus on the subdetectors that are to be used for first physics. The characteristic features of ALICE, its very low-momentum cut-off, the low material budget and the excellent PID and vertexing capabil ities, that make ALICE an important contributor to LHC physics in the realm of soft QCD, are descr ibed. Subsequently, a selection of measurements that are accessible with data taken in a few d ays to 1–2 weeks are discussed: the pseudorapidity density dN ch / d η , the multiplicity distribution and the transverse momentu m distribution dN ch / d p T of charged particles

  13. Heavy flavour measurements with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Castellanos, Javier [service de physique nucleaire - SPhN, IRFU, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2010-07-01

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. The main purpose of ALICE is to investigate the properties of a state of deconfined nuclear matter, the Quark Gluon Plasma. Heavy flavour measurements will play a crucial role in this investigation. The physics programme of ALICE has started by studying proton-proton collisions at unprecedented high energies. We will present the first results on open heavy flavour and quarkonia in proton-proton collisions at {radical}(s)=7 TeV measured by the ALICE experiment at both mid- and forward-rapidities. We will conclude with the prospects for heavy flavour and quarkonium measurements in both proton-proton and nucleus-nucleus collisions. (author)

  14. Performance of the ALICE Experiment at the CERN LHC

    CERN Document Server

    Abelev, Betty Bezverkhny; Adam, Jaroslav; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Jimenez, Ramon; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Vannucci, Luigi; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vargas Trevino, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.

  15. Slovenian trilogy Alice in crazy country by Evald Flisar

    OpenAIRE

    Blažić, Milena Mileva

    2015-01-01

    Evald Flisar (1945) is contemporary Slovenian editor, play writer and writer. He studied Comparative literature at University of Ljubljana and English language and drama at Chiswick Polytechnic in London. He is cosmopolitan oriented adults author who wrote numerous drama and novel for adults. Lewis Carroll The Alice’s Adventures in Wonderland (1865) influenced to Slovenian author. Evald Flisar wrote Alice in Crazy Country as fantasy (2008), Alice in Crazy Country: Ecological Fa...

  16. ALICE takes root in Saint-Genis-Pouilly

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To celebrate the CERN 50th anniversary and to emphasize the close ties between the community of Saint-Genis-Pouilly, CERN and the ALICE Collaboration, Hubert Bertrand, Mayor of Saint-Genis-Pouilly and Christian Fabjan, Technical Coordinator of the ALICE Experiment, planted a tree on Saturday 16 October 2004 in front of the Jean Monet Culture Center.

  17. ALICE takes root in Saint-Genis-Pouilly

    CERN Multimedia

    2004-01-01

    To celebrate the CERN 50th anniversary and to emphasize the close ties between the community of Saint-Genis-Pouilly, CERN and the ALICE Collaboration, Hubert Bertrand, Mayor of Saint-Genis-Pouilly and Christian Fabjan, Technical Coordinator of the ALICE Experiment, planted a tree on Saturday 16 October 2004 in front of the Jean Monet Culture Center.

  18. A comparison between Alice and Elizabeth chatbot systems

    OpenAIRE

    Shawar, BA; Atwell, E.

    2002-01-01

    This study examines two chatter bots systems called ALICE and Elizabeth, which are adapted from ELIZA program. Joseph Weizenbaum implemented ELIZA in 1966 and it was originally designed to emulate a psychotherapist. This report also provides an introduction to the analysis of ALICE and Elizabeth focusing in the knowledge representation and pattern matching algorithms for each one of them. The report then illustrates the main differences between them and concludes that it will be easier to bui...

  19. VHMPID: a new detector for the ALICE experiment at LHC

    CERN Document Server

    Agócs, A Gu; Barnaföldi, G G; Bellwied, R; Bencze, Gy; Berényi, D; Boldizsár, L; Cuautle, E; De Cataldo, G; Di Bari, D; Di Mauro, A; Dominguez, I; Futó, E; García, E; Hamar, G; Harris, J; Harton, A; Kovács, L; Lévai, P; Lipusz, Cs; Markert, C; Martinengo, P; Martinez, M I; Mastromarco, M; Mayani, D; Molnár, L; Nappi, E; Ortiz, A; Paić, G; Pastore, C; Patino, M E; Perini, D; Perrino, D; Peskov, V; Pinsky, L; Piuz, F; Pochybová, S; Smirnov, N; Song, J; Timmins, A; Varga, D; Vargas, A; Vergara, S; Volpe, G; Yi, J; Yoo, I K

    2011-01-01

    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  20. ALICE's main austenitic stainless steel support structure (the Space Frame)

    CERN Document Server

    Maximilien Brice

    2006-01-01

    This structure is constructed to hold the large volume detectors, such as the Time Projection Chamber, Transition Radiation Detector and Time of Flight inside the ALICE solenoid magnet. After the final assembly at CERN, two large mobile cranes were needed for the job of lifting and turning the 14 tonne frame onto its side. Once shifted, it was placed in Building SX2, one of the surface assembly areas designated for ALICE.

  1. VHMPID: a new detector for the ALICE experiment at LHC

    Directory of Open Access Journals (Sweden)

    Perini D.

    2011-04-01

    Full Text Available This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  2. Pad equalization and dE/dx in the HARP TPC

    CERN Document Server

    Ammosov, V; Chelkov, G; Dedovitch, D; Dydak, F; Elagin, A; Gostkin, M; Guskov, A; Koreshev, V; Krumshtein, Z; Nefedov, Y; Nikolaev, K; Wotschack, J; Zhemchugov, A

    2006-01-01

    In the HARP TPC, the specific ionization dE/dx depends critically on the pad equalization, which in turn depends on the crosstalk correction. We discuss the TPC pad equalization algorithm and its performance in terms of average and resolution of dE/dx of negative pions with an average active track length of 300 mm. The observed dE/dx of pions and protons agrees satisfactorily with the theoretical expectation, the resolution for a minimum-ionizing track length of 300 mm is 16%.

  3. Design of a Radial TPC for Antihydrogen Gravity Measurement with ALPHA-g

    CERN Document Server

    Capra, Andrea; Bishop, Daryl; Fujiwara, Makoto C; Freeman, Skyler; Gill, David; Grant, Matthew; Henderson, Robert; Kurchaninov, Leonid; Lu, Philip; Menary, Scott; Olchanski, Konstantin; Retiere, Fabrice

    2016-01-01

    The gravitational interaction of antimatter and matter has never been directly probed. ALPHA-g is a novel experiment that aims to perform the first measurement of the antihydrogen gravitational mass. A fundamental requirement for this new apparatus is a position sensitive particle detector around the antihydrogen trap which provides information about antihydrogen annihilation location. The proposed detector is a radial Time Projection Chamber, or \\textit{rTPC}, whose concept is being developed at TRIUMF. A simulation of the detector and the development of the reconstruction software, used to determine the antihydrogen annihilation point, is presented alongside with the expected performance of the rTPC.

  4. A TPC [Time Projection Chamber] detector for the study of high multiplicity heavy ion collisions

    International Nuclear Information System (INIS)

    The design of a Time Projection Chamber (TPC) detector with complete pad coverage is presented. The TPC will allow the measurements of high multiplicity (∼ 200 tracks) relativistic nucleus-nucleus collisions initiated with the heaviest, most energetic projectiles available at the LBL BEVALAC accelerator facility. The front end electronics, composed of over 15,000 time sampling channels, will be located on the chamber. The highly integrated, custom designed, electronics and the VME based data acquisition system are described. 10 refs., 8 figs., 1 tab

  5. An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HIγS1

    International Nuclear Information System (INIS)

    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIγS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm3. Ionization electrons drift towards a double parallel-grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche-induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIγS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.

  6. An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HI{gamma}S{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Gai, M; Zimmerman, W R; Kading, T J; Seo, P-N; Young, A H [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097 (United States); Ahmed, M W; Stave, S C; Henshaw, S S; Martel, P P; Weller, H R [TUNL, Dept. of Physics, Duke University, Durham, NC 27708 (United States); Breskin, A; Chechik, R [Dept. of Particle Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Bromberger, B; Dangendorf, V; Tittelmeier, K [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Delbar, Th [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); III, R H France [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); McDonald, J E R, E-mail: moshe.gai@yale.edu [Dept. of Physics, Yale University, New Haven, CT 06520-8124 (United States)

    2010-12-15

    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO{sub 2}(80%) + N{sub 2}(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HI{gamma}S) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm{sup 3}. Ionization electrons drift towards a double parallel-grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche-induced photons from N{sub 2} emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a {sup 148}Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and {sup 12}C particles from the dissociation of {sup 16}O and of three alpha-particles from the dissociation of {sup 12}C have been measured during initial in-beam test experiments performed at the HI{gamma}S facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.

  7. The Alice Project at the IPN, Orsay R and D and software developments 1996-2003

    International Nuclear Information System (INIS)

    This document reviews the theoretical, experimental and technical achievements of the author since the beginning of his scientific career. In 1996 the author became a member of the Alice (A Large heavy Ion Collider Experiment) which was then at the beginning of its research and development phase. The bulk of this report comprises mainly 'snapshots' of the research and development project that was pursued in Orsay for the Alice dimuon arm collaboration. The idea here is to regroup the full set of prototype models, with the technical specifications and their associated test programs. The main results are given for each set of tests, but the details of how data sets were analysed are not included since those details are already available in other, more formal, write-ups. The result is a kind of 'scrapbook' of the research and development phase associated with the Alice dimuon arm station 1 tracker, one of the 5 tracker stations implemented in the dimuon arm spectrometer. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students

  8. Integration of XRootD into the cloud infrastructure for ALICE data analysis

    Science.gov (United States)

    Kompaniets, Mikhail; Shadura, Oksana; Svirin, Pavlo; Yurchenko, Volodymyr; Zarochentsev, Andrey

    2015-12-01

    Cloud technologies allow easy load balancing between different tasks and projects. From the viewpoint of the data analysis in the ALICE experiment, cloud allows to deploy software using Cern Virtual Machine (CernVM) and CernVM File System (CVMFS), to run different (including outdated) versions of software for long term data preservation and to dynamically allocate resources for different computing activities, e.g. grid site, ALICE Analysis Facility (AAF) and possible usage for local projects or other LHC experiments. We present a cloud solution for Tier-3 sites based on OpenStack and Ceph distributed storage with an integrated XRootD based storage element (SE). One of the key features of the solution is based on idea that Ceph has been used as a backend for Cinder Block Storage service for OpenStack, and in the same time as a storage backend for XRootD, with redundancy and availability of data preserved by Ceph settings. For faster and easier OpenStack deployment was applied the Packstack solution, which is based on the Puppet configuration management system. Ceph installation and configuration operations are structured and converted to Puppet manifests describing node configurations and integrated into Packstack. This solution can be easily deployed, maintained and used even in small groups with limited computing resources and small organizations, which usually have lack of IT support. The proposed infrastructure has been tested on two different clouds (SPbSU & BITP) and integrates successfully with the ALICE data analysis model.

  9. The Alice Project at the IPN, Orsay R and D and software developments 1996-2003

    Energy Technology Data Exchange (ETDEWEB)

    MacCormick, M

    2007-03-15

    This document reviews the theoretical, experimental and technical achievements of the author since the beginning of his scientific career. In 1996 the author became a member of the Alice (A Large heavy Ion Collider Experiment) which was then at the beginning of its research and development phase. The bulk of this report comprises mainly 'snapshots' of the research and development project that was pursued in Orsay for the Alice dimuon arm collaboration. The idea here is to regroup the full set of prototype models, with the technical specifications and their associated test programs. The main results are given for each set of tests, but the details of how data sets were analysed are not included since those details are already available in other, more formal, write-ups. The result is a kind of 'scrapbook' of the research and development phase associated with the Alice dimuon arm station 1 tracker, one of the 5 tracker stations implemented in the dimuon arm spectrometer. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students.

  10. Tokamak plasma power balance calculation code (TPC code) outline and operation manual

    International Nuclear Information System (INIS)

    This report is a detailed description on the TPC code, that calculates the power balance of a tokamak plasma according to the ITER guidelines. The TPC code works on a personal computer (Macintosh or J-3100/ IBM-PC). Using input data such as the plasma shape, toroidal magnetic field, plasma current, electron temperature, electron density, impurities and heating power, TPC code can determine the operation point of the fusion reactor (Ion temperature is assumed to be equal to the electron temperature). Supplied flux (Volt · sec) and burn time are also estimated by coil design parameters. Calculated energy confinement time is compared with various L-mode scaling laws and the confinement enhancement factor (H-factor) is evaluated. Divertor heat load is predicted by using simple scaling models (constant-χ, Bohm-type-χ and JT-60U empirical scaling models). Frequently used data can be stored in a 'device file' and used as the default values. TPC code can generate 2-D mesh data and the POPCON plot is drawn by a contour line plotting program (CONPLT). The operation manual about CONPLT code is also described. (author)

  11. Lessons from the operation of the `Penning-Fluorescent' TPC and prospects

    CERN Document Server

    Gonzalez-Diaz, Diego; Castel, J; Cebrian, S; Dafni, T; Garcia, J A; Gomez, H; Herrera, D C; Iguaz, F J; Irastorza, I G; Lagraba, A; Luzon, G; Rodriguez, A; Ruiz-Choliz, E; Ferrer-Ribas, A Tomas E; Giomataris, I

    2015-01-01

    We have recently reported the development of a new type of high-pressure Xenon time projection chamber operated with an ultra-low diffusion mixture and that simultaneously displays Penning effect and fluorescence in the near-visible region (300 nm). The concept, dubbed `Penning-Fluorescent' TPC, allows the simultaneous reconstruction of primary charge and scintillation with high topological and calorimetric fidelity.

  12. Analysis of TPC Single Sextant U-238/U-235 Engineering In-Beam Data

    Energy Technology Data Exchange (ETDEWEB)

    Tony Hill

    2012-09-01

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4p- detector system will provide unrivaled 3-D data about the fission process. This TPC has been shipped and installed at LANSCE and is collecting further engineering data for the full system scale up next year.

  13. Measuring Cross-Section and Estimating Uncertainties with the fissionTPC

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manning, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sangiorgio, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seilhan, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-30

    The purpose of this document is to outline the prescription for measuring fission cross-sections with the NIFFTE fissionTPC and estimating the associated uncertainties. As such it will serve as a work planning guide for NIFFTE collaboration members and facilitate clear communication of the procedures used to the broader community.

  14. Light flavor results in p-Pb collisions with ALICE

    CERN Document Server

    Ortiz, Antonio

    2016-01-01

    Particle ratios provide insight into the hadrochemistry of the event and the mechanisms for particle production. In Pb-Pb collisions the relative multi-strange baryon yields exhibit an enhancement with respect to pp collisions, whereas the short-lived K$^{*0}$ resonance is suppressed in the most central events due to re-scattering of its decay daughter particles. Measurements in p-Pb allow us to investigate the development of these effects as a function of the system size. We report comprehensive results on light-flavor hadron production measured with the ALICE detector in p-Pb collisions at $\\sqrt{s_{\\rm NN}}=5.02$ TeV, covering a wide range of particle species which includes long-lived hadrons, resonances and multi-strange baryons. The measurements include the transverse momentum spectra and the ratios of spectra among different species, and extend over a very large transverse momentum region, from $\\approx$100 MeV/$c$ to $\\approx$20 GeV/$c$, depending on the particle species.

  15. Resource-loaded planning for ALICE

    CERN Document Server

    Gastal, M

    2005-01-01

    The ALICE experimental area management team faces various challenges when it comes to sharing scarce resources, indispensable to any efficient installation in a category one worksite. Space, cranes, jigs, and personnel with key competences have to be carefully allocated to activities so as to avoid slowing down work progress. To this intent, a resource loaded planning has been developed that allows highlighting coactivities and prioritizing critical tasks. It uses the built-in capabilities of Microsoft Project. The use of this scheduling tool leads to a more efficient use of time and a safer work environment. The installation sequence resulting from this schedule is presented in this paper. The first part of the sequence focuses on the revision of the coils in the SX2 building. The dipole has then to be installed in the RB26 side of the UX25 cavern. This complex and resource intensive activity has to be performed in parallel with the services installation inside the L3 magnet. On the RB24 side of the cavern t...

  16. ALICE HLT high speed tracking on GPU

    CERN Document Server

    Gorbunov, Sergey; Aamodt, Kenneth; Alt, Torsten; Appelshauser, Harald; Arend, Andreas; Bach, Matthias; Becker, Bruce; Bottger, Stefan; Breitner, Timo; Busching, Henner; Chattopadhyay, Sukalyan; Cleymans, Jean; Cicalo, Corrado; Das, Indranil; Djuvsland, Oystein; Engel, Heiko; Erdal, Hege Austrheim; Fearick, Roger; Haaland, Oystein Senneset; Hille, Per Thomas; Kalcher, Sebastian; Kanaki, Kalliopi; Kebschull, Udo Wolfgang; Kisel, Ivan; Kretz, Matthias; Lara, Camillo; Lindal, Sven; Lindenstruth, Volker; Masoodi, Arshad Ahmad; Ovrebekk, Gaute; Panse, Ralf; Peschek, Jorg; Ploskon, Mateusz; Pocheptsov, Timur; Ram, Dinesh; Rascanu, Theodor; Richter, Matthias; Rohrich, Dieter; Ronchetti, Federico; Skaali, Bernhard; Smorholm, Olav; Stokkevag, Camilla; Steinbeck, Timm Morten; Szostak, Artur; Thader, Jochen; Tveter, Trine; Ullaland, Kjetil; Vilakazi, Zeblon; Weis, Robert; Yin, Zhong-Bao; Zelnicek, Pierre

    2011-01-01

    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be cri...

  17. Alice-Anne Martin (1926 - 2016)

    CERN Multimedia

    2016-01-01

    Alice-Anne Martin, known as “Schu” from her maiden name Schubert, passed away on 8 January 2016.   (Image: Gérard Bertin) Hired the year CERN was founded, 1954, when the construction of the Laboratory had not even begun, Schu first worked at the Villa de Cointrin (a historic building now within the grounds of Geneva airport) as a secretary. In this role, she typed the convention between CERN and the Swiss Confederation, prepared by Stéphanie Tixier, as well as some of the "Yellow Reports" that have marked key points in the Laboratory’s history. For example, using a special typewriter with two keyboards – Latin and Greek – she typed the Yellow Report on the KAM theorem by Rolf Hagedorn. Schu also worked with Felix Bloch, the first Director-General of CERN, and later became the secretary of Herbert Coblenz, the first CERN librarian. She was head of the team that edited the proceedings of the ...

  18. Federico Antinori elected as the new ALICE Spokesperson

    CERN Multimedia

    Iva Raynova

    2016-01-01

    On 8 April 2016 the ALICE Collaboration Board elected Federico Antinori from INFN Padova (Italy) as the new ALICE Spokesperson.   During his three-year mandate, starting in January 2017, he will lead a collaboration of more than 1500 people from 154 physics institutes across the globe. Antinori has been a member of the collaboration ever since it was created and he has already held many senior leadership positions. Currently he is the experiment’s Physics Coordinator and as such he has the responsibility to overview the whole sector of physics analysis. During his mandate ALICE has produced many of its most prominent results. Before that he was the Coordinator of the Heavy Ion First Physics Task Force, charged with the analysis of the first Pb-Pb data samples. In 2007 and 2008 Federico served as ALICE Deputy Spokesperson. He was also the first ALICE Trigger Coordinator, having a central role in defining the experiment’s trigger menus from the first run in 2009 until the end of...

  19. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  20. No more escape for particle jets in ALICE

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    Particle jets are key tools for physicists to probe the quark-gluon plasma, a state of matter that existed a few moments after the Big Bang and that is reproduced in heavy-ion collisions at the LHC. The ALICE experiment is being upgraded to include a new calorimeter arm designed to extend significantly its capabilities to detect and measure jets of particles.   DCal and PHOS new support beams and support cradle are assembled and ready for installation. The new calorimeter, called the “DCal”, is a large lead-scintillator detector with photo-diode readout placed in the opposite azimuth to the existing electromagnetic calorimeter (EMCal). This is the optimal configuration for the measurements of back-to-back jets, which originate in the interactions of ultra-high-energy quarks and gluons. The Dcal has been built by the same international team from institutes in France, Italy and the US that built the EMCal, with additional new contributions from institutes in Japan and Chin...

  1. Low-mass dilepton production with ALICE at the LHC

    International Nuclear Information System (INIS)

    The production of low-mass dileptons, including those from ρ, ω and ϕ light vector meson decays, provides key information on the hot and dense state of strongly interacting matter produced in high-energy heavy-ion collisions. In particular, strangeness production can be studied through ϕ meson measurements, while the detailed description of the full dilepton mass spectra down to the kinematic threshold can be used to reveal in-medium modifications of hadron properties and the thermal emission arising from the medium. Measurements in pp and p–A, respectively, provide a reference for the observations in heavy-ion collisions and give insight on soft particle production in cold nuclear matter. Dilepton production is studied with the ALICE apparatus at the LHC both at central (|y|<0.9) and forward (2.5

  2. 10'000 ton ALICE gets her UK-built "Brain"

    CERN Multimedia

    Maddock, Julia

    2007-01-01

    For one of the four LEP experiments, called ALICE, the process got a step closer last week when a crucial part of the 10'000-ton detector, the British-built Central Trigger Processor (CTP), was installed in the ALICE cavern, some 150 feet underground. (plus background information about ALICE) (2,5 pages)

  3. AliEn: ALICE Environment on the GRID

    CERN Multimedia

    Bagnasco, S; Buncic, P; Carminati, F; Cirstoiu, C; Grigoras, C; Hayrapetyan, A; Harutyunyan, A; Peters, A J; Saiz, P

    2007-01-01

    Starting from mid-2008, the ALICE detector at CERN LHC will collect data at a rate of 4PB per year. ALICE will use exclusively distributed Grid resources to store, process and analyse this data. The top-level management of the Grid resources is done through the AliEn (ALICE Environment) system, which is in continuous development since year 2000. AliEn presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called Data Challenges. This paper describes the AliEn architecture: Job Management, Data Management and UI. The current status of AliEn will be illustrated, as well as the performance of the system during the data challenges. The paper also describes the future AliEn development roadmap.

  4. Operational Experience and Performance of the Present ALICE ITS

    CERN Document Server

    Senyukov, Serhiy

    2015-01-01

    ALICE (A Large Ion Collider Experiment) is one of four major experiments at the CERN LHC. ALICE studies strongly interacting matter under extreme conditions created in heavy ion colli- sions. The Inner Tracking System (ITS) is an essential part of the ALICE detector. It is used for tracking, reconstruction of primary and secondary vertices and particle identification. ITS is composed of six cylindrical layers of silicon detectors. Three different techologies are used: hybrid pixel, drift and strip detectors. The ITS was fully commisioned in 2009 at the start of LHC Run 1. The detectors showed good performance during this period contributing to several important measurements. During the LHC Long Shutdown 1 (LS1) the ITS underwent general consolidation and is now ready for the next LHC run

  5. Disability Exclusion and Rights: The Life Story of Alice Jamieson

    Directory of Open Access Journals (Sweden)

    Allison Lynch

    2014-06-01

    Full Text Available There is a commonly held belief that fear of disability by society is the reason for segregation of the disabled. Although acknowledging the validity of such a belief, this paper disputes this claim as it pertains to sufferers of mental illness. Specifically it explores one woman’s development of dissociative identity disorder as a result of years of incestuous abuse. Alice Jamieson developed multiple personalities in order to survive her horrendous childhood, which ultimately caused her to live a life of segregation and social exclusion. Alice did however; experience the enabling effects of positive, supportive relationships on rare occasions throughout her childhood (with her grandfather and her adult life (with a work colleague. The telling of her story bought Alice a powerful sense of healing and has helped raise awareness of childhood sexual abuse and its devastating consequences.

  6. ALICE Connex : Mobile Volunteer Computing and Edutainment Platform

    CERN Document Server

    Chalumporn, Gantaphon

    2016-01-01

    Mobile devices are very powerful and trend to be developed. They have functions that are used in everyday life. One of their main tasks is to be an entertainment devices or gaming platform. A lot of technologies are now accepted and adopted to improve the potential of education. Edutainment is a combination of entertainment and education media together to make use of both benefits. In this work, we introduce a design of edutainment platform which is a part of mobile volunteer computing and edutainment platform called ‘ALICE Connex’ for ALICE at CERN. The edutainment platform focuses to deliver enjoyment and education, while promotes ALICE and Volunteer Computing platform to general public. The design in this work describes the functionality to build an effective edutainment with real-time multiplayer interaction on round-based gameplay, while integrates seamless edutainment with basic particle physic content though game mechanism and items design. For the assessment method we will observe the enjoyment o...

  7. Upgrade of the ALICE Experiment: Letter of Intent

    CERN Document Server

    Abelev, B; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agostinelli, A; Agrawal, N; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Anderssen, E C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anticic, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bairathi, V; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastian Van Beelen, J; Bastid, N; Basu, S; Bathen, B; Batigne, G; Battistin, M; Batyunya, B; Batzing, P C; Baudot, J; Baumann, C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Benettoni, M; Benotto, F; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berger, M E; Bertens, R A; Berzano, D; Besson, A; Betev, L; Bhasin, A; Bhati, A K; Bhatti, A; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielcík, J; Bielcíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blau, D; Blume, C; Bock, F; Boehmer, F V; Bogdanov, A; Boggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Borshchov, V N; Bortolin, C; Bossú, F; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Breitner, T; Broker, T A; Browning, T A; Broz, M; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Carena, F; Carena, W; Cariola, P; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Caudron, T; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Claus, G; Cleymans, J; Colamaria, F; Colella, D; Coli, S; Colledani, C; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Da Riva, E; Das, D; Das, I; Das, K; Das, S; Dash, A; Dash, S; De, S; Decosse, C; Delagrange, H; Deloff, A; Dénes, E; D'Erasmo, G; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Robertis, G; De Roo, K; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, o; Dobrin, A; Dobrowolski, T; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Dorheim, S; Dorokhov, A; Doziere, G; Dubey, A K; Dubla, A; Ducroux, L; Dulinski, W; Dupieux, P; Dutta Majumdar, A K; Ehlers III, R J; Elia, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fiorenza, G; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Franco, M; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhoje, J J; Gagliardi, M; Gajanana, D; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Ghosh, S K; Gianotti, P; Giubilato, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gomez Marzoa, M; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Graczykowski, L K; Grajcarek, R; Greiner, L C; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grondin, D; Grosse-Oetringhaus, J F; Grossiord, J -Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; H Khan, K; Haake, R; Haaland, o; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Hennes, E; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hicks, B; Hillemanns, H; Himmi, A; Hippolyte, B; Hladky, J; Hristov, P; Huang, M; Hu-Guo, C; Humanic, T J; Hutter, D; Hwang, D S; Igolkin, S; Ijzermans, P; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jacholkowski, A; Jadlovsky, J; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Junique, A; Jusko, A; Kalcher, S; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kebschull, U; Keidel, R; Keil, M; Ketzer, B; Khan, M Mohisin; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D; Kim, D W; Kim, D J; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravcáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Krymov, E B; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; La Pointe, S L; La Rocca, P; Lea, R; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; Leogrande, E; Leoncino, M; León Monzón, I; Lesenechal, Y; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Listratenko, O M; Ljunggren, H M; Lodato, D F; Loddo, F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Lopez, X; López Torres, E; Lu, X -G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; M Gago, A; M Jacobs, P; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Maltsev, N A; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Mapelli, A; Marchisone, M; Mares, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Marquard, M; Marras, D; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Maslov, M; Masoni, A; Massacrier, L; Mastroserio, A; Mattiazzo, S; Matyja, A; Mayer, C; Mazer, J; Mazumder, R; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miskowiec, D; Mitu, C M; Mlynarz, J; Mohanty, B; Molnar, L; Mongelli, M; Montaño Zetina, L; Montes, E; Morando, M; Moreira De Godoy, D A; Morel, F; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhammad Bhopal, F; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Okatan, A; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paic, G; Painke, F; Pajares, C; Pal, S K; Palmeri, A; Panati, S; Pant, D; Pantano, D; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastore, C; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Peryt, W; Pesci, A; Pestov, Y; Petagna, P; Petrácek, V; Petran, M; Petris, M; Petrovici, M; Petta, C; Pham, H; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Ploskon, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Pohjoisaho, E H O; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Protsenko, M A; Pruneau, C A; Pshenichnov, I; Puddu, G; Puggioni, C; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rasson, J E; Rathee, D; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J -P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Roed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossegger, S; Rossewij, M J; Rossi, A; Roudier, S; Rousset, J; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sacchetti, M; Sadovsky, S; Safarík, K; Sahlmuller, B; Sahoo, R; Sahu, P K; Saini, J; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sánchez Rodríguez, F J; sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schipper, J D; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Seger, J E; Selyuzhenkov, I; Senyukhov, S; Seo, J; Serradilla, E; Sevcenco, A; Sgura, I; Shabetai, A; Shabratova, G; Shahoyan, R; Shangaraev, A; Sharma, N; Sharma, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Snoeys, W; Sogaard, C; Soltz, R; Song, J; Song, M; Sooden, V; Soramel, F; Sorensen, S; Spacek, M; spalek, J; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vasquez, M A; Sugitate, T; Suire, C; Suleymanov, M; suljic, M; Sultanov, R; sumbera, M; Sun, X; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turchetta, R; Turrisi, R; Tveter, T S; Tymchuk, I T; Ulery, J; Ullaland, K; Uras, A; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Valentino, V; Valin, I; Vallero, S; Vande Vyvre, P; Vannucci, L; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vasta, P; Vechernin, V; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Vergara Limón, S; Verlaat, B; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wagner, V; Wang, M; Wang, Y; Watanabe, D; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Winter, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I -K; Yushmanov, I; Zaccolo, V; Zach, C; Zaman, A; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, F; Zhang, H; Zhang, X; Zhang, Y; Zhao, C; Zherebchevsky, V I; Zhou, D; Zhou, F; Zhou, Y; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2014-01-01

    The long term goal of the ALICE experiment is to provide a precise characterization of the high-density, high-temperature phase of strongly interacting matter. To achieve this goal, high-statistics precision measurement are required. The general upgrade strategy for the ALICE detector is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz aiming at an integrated luminosity of the order of 10 nb^-1. With the proposed timeline, starting the high-rate operation progressively after 2018 shutdown, the goals set up in our upgrade plans should be achieved collecting data until mid-2020's. In this document we present the main physics motivations for running the LHC with heavy ions at high luminosities and discuss the modifications and replacements needed in the ALICE detectors, the online systems and offline system. The schedule, cost estimate and organization of the upgrade programme are presented as well.

  8. AliEn: ALICE environment on the GRID

    International Nuclear Information System (INIS)

    Starting from mid-2008, the ALICE detector at CERN LHC will collect data at a rate of 4PB per year. ALICE will use exclusively distributed Grid resources to store, process and analyse this data. The top-level management of the Grid resources is done through the AliEn (ALICE Environment) system, which is in continuous development since year 2000. AliEn presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called Data Challenges. This paper describes the AliEn architecture: Job Management, Data Management and UI. The current status of AliEn will be illustrated, as well as the performance of the system during the data challenges. The paper also describes the future AliEn development roadmap

  9. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  10. Computing Architecture of the ALICE Detector Control System

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    The ALICE Detector Control System (DCS) is based on a commercial SCADA product, running on a large Windows computer cluster. It communicates with about 1200 network attached devices to assure safe and stable operation of the experiment. In the presentation we focus on the design of the ALICE DCS computer systems. We describe the management of data flow, mechanisms for handling the large data amounts and information exchange with external systems. One of the key operational requirements is an intuitive, error proof and robust user interface allowing for simple operation of the experiment. At the same time the typical operator task, like trending or routine checks of the devices, must be decoupled from the automated operation in order to prevent overload of critical parts of the system. All these requirements must be implemented in an environment with strict security requirements. In the presentation we explain how these demands affected the architecture of the ALICE DCS.

  11. Integrated plan for LArTPC neutrino detectors in the US

    Energy Technology Data Exchange (ETDEWEB)

    Baller, B.; Fleming, B.; /Fermilab

    2009-11-01

    We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in

  12. Test Results of the ALICE-HMPID Detector Commissioning

    CERN Document Server

    Volpe, G

    2008-01-01

    The ALICE High Momentum Particle Identification Detector (HMPID) consists of seven identical proximity focusing RICH counters. It covers in total 11 m2, exploiting large area CsI photocathodes for Cherenkov light imaging. The detector is installed in the ALICE solenoid, ready for the data acquisition. By means of the Detector Control System, the Front-end (FEE) and the Readout (R/O) electronics, the MWPC high voltages, the cooling and the gas system have been tested. The HMPID module gas pressure, temperature, current and voltage trends have been monitored and archived in the ORACLE database. In this paper a comprehensive review on the test results is presented.

  13. Evénements ALICE - French version only

    CERN Multimedia

    2004-01-01

    Le 29 septembre 2004 à 15h00, programme « A la rencontre d'ALICE », à la Médiathèque municipale de Saint-Genis-Pouilly, France. Histoire pour des enfants (à partir de 8 ans), extraite de la bande dessinée: « ALICE et la soupe de quarks et de gluons ». Le 2 octobre 2004 à 11h00, programme « A la rencontre d'ALICE », à la Médiathèque municipale de Saint-Genis-Pouilly, France. Présentation ALICE pour les adolescents (à partir de 14 ans).

  14. ALICE Muon Arm Dipole Magnet - Conceptual Design Report

    CERN Document Server

    Swoboda, D; CERN. Geneva

    1998-01-01

    A large Dipole Magnet is required for the Muon Arm spectrometer of the ALICE experiment 1,2[Figure 1]. The main parameters and basic design options of the dipole magnet have been described in 3. The absence of criteria for the necessary symmetry and homogeneity of the magnetic field has lead to a design dominated by economical and feasibility considerations. List of Figures: Figure 1 ALICE Experiment. Figure 2 Dipole Magnet Assembly. Figure 3 Dipole Magnet Yoke. Figure 4 Dipole Magnet Coil System. Figure 5 Schematic of Heat Screen. Figure 6 Dipole Magnet Moving Base.

  15. Alice, Benzene, and Coffee: The ABCs of Ecopharmacognosy.

    Science.gov (United States)

    Cordell, Geoffrey A

    2015-12-01

    The sesquicentennial celebrations of the publication of "Alice's Adventures in Wonderland" and the structure of benzene offer a unique opportunity to develop a contemporary interpretation of aspects of Alice's adventures, illuminate the symbolism of benzene, and contextualize both with the globalization of coffee, transitioning to how the philosophy and sustainable practices of ecopharmacognosy may be applied to modulating approaches to the quality, safety, efficacy, and consistency (QSEC) of traditional medicines and dietary supplements through technology integration, thereby improving patient-centered health care. PMID:26882696

  16. Magnetic Field Requirements for a Detector at the Linear Collider Using a TPC as Main Tracking Device

    CERN Document Server

    Klempt, W

    2010-01-01

    This note describes the requirements to the magnetic field which occur in an ILD like detector at ILC or CLIC. In particular we describe requirements introduced by choosing a TPC as main tracking detector.

  17. On distortions of TPC coordinates: inhomogeneities of electric and magnetic field

    CERN Document Server

    Dydak, F

    2003-01-01

    After a general discussion of electron drift in a gas volume with electric and magnetic fields, distortions in the r and r phi coordinates arising from inhomogeneities of the electric and magnetic fields in the HARP TPC are calculated. Inhomogeneities of the electric field arise from i) positive ions released by cosmic rays, ii) positive ions released by interaction secondaries, iii) positive ions released by beam muons, iv) positive ions released from beam particles downstream of the inner field cage, and v) a high voltage misalignment between the outer and inner field cages. Also, distortions arising from the inhomogeneity of the magnetic field are calculated. These effects resolve the controversy on unphysical numbers of 'wrong-charge' TPC tracks. The bad news are that effects are too big to be neglected. The good news are that, with enough sweat and tears, they can be adequately corrected.

  18. An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    CERN Document Server

    Gai, M; Stave, S C; Zimmerman, W R; Breskin, A; Bromberger, B; Chechik, R; Dangendorf, V; Delbar, Th; France, R H; Henshaw, S S; Kading, T J; Martel, P P; McDonald, J E R; Seo, P -N; Tittelmeier, K; Weller, H R; Young, A H; 10.1088/1748-0221/5/12/P12004

    2011-01-01

    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultip...

  19. Do regions of ALICE matter? Social relationships and data exchanges in the Grid

    International Nuclear Information System (INIS)

    Following a previous publication, this study aims at investigating the impact of regional affiliations of centres on the organisation of collaboration within the Distributed Computing ALICE infrastructure, based on social networks methods. A self-administered questionnaire was sent to all centre managers about support, email interactions and wished collaborations in the infrastructure. Several additional measures, stemming from technical observations were produced, such as bandwidth, data transfers and Internet Round Trip Time (RTT) were also included. Information for 50 centres were considered (60% response rate). Empirical analysis shows that despite the centralisation on CERN, the network is highly organised by regions. The results are discussed in the light of policy and efficiency issues.

  20. TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Ignarra, C M

    2013-01-01

    Light detection systems in Liquid Argon Time Projection Chambers (LArTPCs) require the detection of the 128 nm light produced during argon scintillation. Most detectors use Tetraphenyl Butadiene (TPB) to shift the wavelength of the light into a range visible to Photomultiplier Tubes (PMTs). These proceedings summarize characterizations of light-guides coated with a matrix of TPB in UV transmitting acrylic which are more compact than existing LArTPC light collection systems.

  1. TPB-coated light guides for liquid argon TPC light detection systems

    Science.gov (United States)

    Ignarra, C. M.

    2013-10-01

    Light detection systems in Liquid Argon Time Projection Chambers (LArTPCs) require the detection of the 128 nm light produced during argon scintillation. Most detectors use Tetraphenyl Butadiene (TPB) to shift the wavelength of the light into a range visible to Photomultiplier Tubes (PMTs). These proceedings summarize characterizations of light-guides coated with a matrix of TPB in UV transmitting acrylic which are more compact than existing LArTPC light collection systems.

  2. Particle ID with dE/dx at the TESLA-TPC

    CERN Document Server

    Hauschild, M

    2000-01-01

    The dE/dx resolution of the TESLA-TPC has been studied using a toy Monte Carlo simulation based on measured cluster size distributions. Various parameters like sampling length, electronics noise, crosstalk etc. have been investigated. An optimum number of 240 samples has been found (5 mm sampling length) with a simulated dE/dx resolution of 4.1%. The particle separation power has been estimated. (11 refs).

  3. MeV Gamma-Ray Imaging Detector with micro-TPC

    CERN Document Server

    Tanimori, T; Miuchi, K; Nagayoshi, T; Orito, R; Takada, A; Takeda, A; Ueno, M; Tanimori, Toru; Kubo, Hidetoshi; Miuchi, Kentaro; Nagayoshi, Tsutomu; Orito, Reiko; Takada, Atsushi; Takeda, Atsushi; Ueno, Masaru

    2004-01-01

    We propose a new imaging gamma-ray detector in the MeV region. By measuring the directions and energies of not only a scattered gamma ray but also a recoil electron, the direction of an incident gamma ray would be essentially reconstructed event by event. Furthermore, one of two measured (zenith and azimuth) angles of a recoil electron gives us an additional redundancy which enables us to reject the background events by kinematic constraints. In order to measure the track of a recoil electron, the micro Time Projection Chamber($\\mu$-TPC) has been developed, which can measure the successive positions of the track of charged particles in a few hundred micron meter pitch. The $\\mu$-TPC consists of the new type of a gas proportional chamber: micro PIxel gas Chamber ($\\mu$-PIC) which is one of wireless gas chambers and expected to be robust and stable. Using this $\\mu$-TPC and the Anger camera for the detection of a scattered gamma ray, we have obtained the first gamma-ray image by the full reconstruction of the d...

  4. Search for H-dibaryon at J-PARC with a Large Acceptance TPC

    Directory of Open Access Journals (Sweden)

    Sako H.

    2014-03-01

    Full Text Available H-dibaryon has been predicted as a stable 6-quark color-singlet state. It has been searched for by many experiments but has never been discovered. Recent lattice QCD calculations predict H-dibaryon as a weakly bound or a resonant state close to the LL threshold. E224 and E522 experiments at KEK observed peaks in LL invariant mass spectra near the threshold in (K-, K+ reactions, which were statistically not significant. Therefore, we proposed a new experiment E42 at J-PARC. It will measure decay products of ΛΛ and Λπ-p in a (K-, K+ reaction. We design a large acceptance spectrometer based on a Time Projection Chamber (TPC immersed in a dipole magnetic field. The TPC surrounds a target to cover nearly 4π acceptance, and accepts K- beams up to 106 counts per second. To suppress drift field distortion at high beam rates, we adopt Gas Electron Multipliers (GEMs for electron amplification and a gating grid. We show an overview of the experiment, the design of the spectrometer, and the R&D status of the TPC prototype.

  5. Optical Readout of a Two Phase Liquid Argon TPC using CCD Camera and TGEMs

    CERN Document Server

    Mavrokoridis, K; Carroll, J; Lazos, M; McCormick, K J; Smith, N A; Touramanis, C; Walker, J

    2014-01-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by Thick Gas Electron Multipliers (TGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double TGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the TGEM gain was approximately 1000 and using a 1 msec...

  6. Alpha-lipoic acid induces sodium iodide symporter expression in TPC-1 thyroid cancer cell line

    International Nuclear Information System (INIS)

    Introduction: Patients with metastatic thyroid cancers that do not uptake iodine need effective therapeutic option. Differentiation-inducing agents have been tried to restore functional expression of sodium iodide symporter (NIS) without success. Our objective was to assess the effect of alpha-lipoic acid (ALA), known as potential antioxidant, on expression of sodium iodide symporter in thyroid cancer cells. Methods: Human thyroid cancer-derived cell lines, TPC-1, were treated with ALA, and changes in NIS mRNA and protein expression were measured. ALA's effect on NIS gene promoter was evaluated, and functional NIS expression was assessed by iodide uptake assay. Results: Treatment with ALA increased NIS mRNA expression up to ten folds of control dose-dependently after 24 h of exposure. ALA increased NIS promoter activity, and increased iodide uptake by 1.6 fold. ALA induced expression of NIS protein, but had no significant effect on the plasma membrane trafficking. ALA increased phosphorylation of CREB and nuclear translocation of pCREB, and co-treatment of ALA and trichostatin A increased iodide uptake by three folds in TPC-1 cells. Conclusions: ALA is a potential agent to increase NIS transcription in TPC-1. It could be used as an adjunctive agent to increase efficacy of radioiodine therapy if combined with a strategy to increase NIS protein trafficking to cell membrane.

  7. Commissioning and Prospects for Early Physics with ALICE

    OpenAIRE

    Kuijer, P G

    2009-01-01

    The ALICE detector has been commissioned and is ready for taking data at the Large Hadron Collider. The first proton-proton collisions are expected in 2009. This contribution describes the current status of the detector, the results of the commissioning phase and its capabilities to contribute to the understanding of both pp and PbPb collisions

  8. Measurement of Forward-Backward Charged Particle Correlations with ALICE

    DEFF Research Database (Denmark)

    Søgaard, Carsten

    Part I of the defence covers experimental development carried out in the ALICE experiment at the Large Hadron Collider at the European Organisation for Nuclear Research - CERN. For the Time Projection Chamber a sophisticated laser calibration system has been developed by the Niels Bohr Institute...

  9. Overview of recent azimuthal correlation measurements from ALICE

    CERN Document Server

    ,

    2016-01-01

    Azimuthal correlations are a powerful tool to probe the properties and the evolution of the collision system. In this proceedings, we will review the recent azimuthal correlation measurements from ALICE at the LHC. The comparison to other experimental measurements and various theoretical calculations will be discussed as well.

  10. Performance of the ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mis̈kowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Twinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Rd, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Sándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, C. B.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Saard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, P. Y.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling proced

  11. Romanian Physicists at CERN work for the Alice Program

    CERN Multimedia

    2007-01-01

    "For the past six years a team of Romanian scientists from the Institute of Nuclear Physics in Magurele, Romania, work as part of an international team of CERN to recreate the very first moments of the Universe, right after the Big Bang. The experiment was called Alice."(2 pages)

  12. Correlations in proton-proton collisions with ALICE

    OpenAIRE

    Giovannini, Alberto; Ugoccioni, Roberto

    2002-01-01

    Particle correlations and particle multiplicity distributions cannot be approached independently: a unified description of correlations and multiplicity distributions is always needed in order to understand the underlying dynamics in high energy collisions. In this light, we review the most recent and interesting results on rapidity and momentum correlations, emphasising the possibilities of measurements with the ALICE detector.

  13. Managing Infrastructure in the ALICE Detector Control System

    CERN Document Server

    Lechman, M; Bond, P M; Chochula, P.Ch; Kurepin, A N; Pinazza, O; Rosinsky, P; Kurepin, A N; Pinazza, O

    2014-01-01

    The main role of the ALICE Detector Control System (DCS) is to ensure safe and efficient operation of one of the large high energy physics experiments at CERN. The DCS design is based on the commercial SCADA software package WinCC Open Architecture.

  14. The “24 hours” of the ALICE magnet

    CERN Multimedia

    2005-01-01

    The ALICE dipole magnet, now in its final location in the cavern at Point 2 , has run at full current for 24 hours. The dipole of the ALICE muon spectrometer has successfully completed new tests in its final position. The ALICE detector is based on two large magnets - the big solenoid magnet formerly used by L3 on LEP, and a new dipole magnet, built through a strong and successful collaboration with a team from JINR in Russia, under the direction of Detlef Swoboda from TS-LEA at CERN. By October 2004, the dipole had been assembled in a preliminary position in the ALICE cavern, and in November it successfully passed extensive testing (CERN Bulletin 04/05). Now it has been transferred to its final position on the far side of the L3 solenoid, and has passed tests with flying colours. The first â€ワpre-assembly” was necessary to perform all the remaining machining operations for fixing the coils and to verify the assembly tooling, as the available space in the final location is very limited and does no...

  15. Study of b-jet tagging performance in ALICE

    CERN Document Server

    Feldkamp, Linus

    2014-01-01

    We present the current status and Monte Carlo study based performance estimates of b-jet tagging using ALICE, as obtained using both impact parameter as well as secondary vertex methods. We also address the prospects of the identification of electrons from heavy-flavour hadron decays to obtain b-jet enhanced jet samples.

  16. Commissioning and prospects for early physics with ALICE

    NARCIS (Netherlands)

    Kuijer, P.G.

    2009-01-01

    The ALICE detector has been commissioned and is ready for taking data at the Large Hadron Collider. The first proton-proton collisions are expected in 2009. This contribution describes the current status of the detector, the results of the commissioning phase and its capabilities to contribute to th

  17. Study of the photon identification efficiency with ALICE photon spectrometer

    Institute of Scientific and Technical Information of China (English)

    MAO Ya-Xian; ZHOU Dai-Cui; XU Chun-Cheng; YIN Zhong-Bao

    2008-01-01

    The efficiency for the detection and identification of photons with the ALICE PHOton Spectrometer PHOS has been studied with the Monte-Carlo generated data. In particular, the influence on the efficiency of the PHOS-module edge-effect and of the material in front of PHOS have been examined.

  18. ALICE breaks through the one Gigabyte/sec barrier

    CERN Multimedia

    2003-01-01

    The test phases of the ALICE data acquisition system, known as the Data Challenges, are celebrating their fourth anniversary. The fruit of collaboration between several of the experiment's groups and IT Division, the 2002 tests concentrated on the system's performance and stability.

  19. Test of TOF Scintillator Counters for ALICE Detector

    CERN Document Server

    Semenov, P; Malakhov, A; Melkumov, G L

    1996-01-01

    The manufactured counters of the fast response scintillators with the photomultipliers valid for operation in the magnetic field environment is being considered among the options for the time-of-flight (TOF) measurements as a particle identification tool for the ALICE experiment. Here we discuss how the tests of such counters have been implemented on the particle beam in respect to the time resolution.

  20. Alice Walker's Womanism Colored in The Color Purple

    Institute of Scientific and Technical Information of China (English)

    蒋慧慧

    2009-01-01

    In her famous novel The Color Purple,Alice Walker's womanism is colored by four kinds of conseiousness-female consciousness,racial consciousness,root-seeking consciousness,and universal consciousness.It is owing to the womanism that the heroine celie grown from an abused woman to an independent selfhood.

  1. Review of recent results on heavy-ion physics and astroparticle physics in ALICE at the LHC

    CERN Document Server

    Bello, Héctor; Ortiz, Antonio

    2016-01-01

    In this work we present a summary of the most relevant results on heavy-ion and astroparticle physics in ALICE. The summary includes a brief overview of the current status on the characterization of the hot and dense QCD medium created in the heavy-ion collisions produced at the LHC, as well as the intriguing finding of collective-like phenomena in small collision systems.

  2. AliEn - GRID application for ALICE Collaboration

    International Nuclear Information System (INIS)

    AliEn (ALICE Environment) is a GRID framework built on top of the latest Internet standards for information exchange and authentication (SOAP, PKI) and common Open Source components. AliEn provides a virtual file catalogue that allows transparent access to distributed data-sets and a number of collaborating Web services which implement the authentication, job execution, file transport, performance monitor and event logging.The ALICE experiment has developed AliEn as an implementation of distributed computing infrastructure needed to simulate, reconstruct and analyze data from the experiment. The sites that belong to the ALICE Virtual Organisation can be seen and used as a single entity - any available node executes jobs and access to logical and datasets is transparent to the user. In developing AliEn common standards and solutions in the form of Open Source components were used. Only 1% (25k physical lines of code in Perl) is native AliEn code while 99% of the code has been imported in form of Open Sources packages and Perl modules. Currently ALICE is using the system for distributed production of Monte Carlo data at over 30 sites on four continents. During the last twelve months more than 30,000 jobs have been successfully run under AliEn control worldwide, totalling 25 CPU years and producing 20 TB of data. The user interface is compatible to EU DataGrid at the level of authentication and job description language. In perspective AliEn will be interfaced to the mainstream Grid infrastructure in HEP and it will remain to serve as interface between ALICE Offline framework and external Grid infrastructure. (authors)

  3. Conceptual design of an ALICE Tier-2 centre. Integrated into a multi-purpose computing facility

    International Nuclear Information System (INIS)

    This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

  4. Conceptual design of an ALICE Tier-2 centre. Integrated into a multi-purpose computing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zynovyev, Mykhaylo

    2012-06-29

    This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

  5. A close-up of the ALEPH Time Projection Chamber (TPC) after the detector was dismantled, with a slice removed for the exhibition at the Musée International d'Horlogerie.

    CERN Multimedia

    2004-01-01

    On the occasion of CERN's 50th anniversary, starting 2 December at the Musée International d'Horlogerie in La Chaux-de-Fonds, Switzerland, a new exhibition will pay tribute to physics, from the cosmic to the subatomic scales. The exhibition, which run for several years, includes a slice of the Time Projection Chamber (TPC) from ALEPH, one of the LEP detectors, which CERN donated to the museum when the detector was dismantled.

  6. The Inner Tracking System of the ALICE Experiment at the CERN LHC

    CERN Document Server

    Riggi, F

    1998-01-01

    The ALICE (A Large Ion Collider Experiment) set-up is the most advanced detection facility for the study of heavy-ion collisions at ultrarelativistic energies, such as those envisaged for the Large Hadron Collider (LHC) at CERN in the near future. Its main goal is the study of the behaviour of matter at high energy densities to search for the transition from the hadronic to the quark-gluon-plasma phase. The ALICE detector is mainly made by a central part, (including the Inner Tracking System, the Time-Projection-Chamber, and a large area particle identification array), which is devoted to the detection of hadronic signals, and a forward part with the muon spectrometer, forward multiplicity detectors and zero-degree calorimeter. Two small areas, single arm detectors (an electromagnetic calorimeter and an array for the identification of high-momentum particles) are also included in the set-up. This contribution is mainly devoted to a report on the present status of development of the Inner Tracking System (ITS)...

  7. Dedicated Supernova Detection by a Network of Neutral Current Spherical TPC's

    CERN Document Server

    Vergados, J D

    2005-01-01

    Supernova neutrinos can easily be detected by a spherical gaseous TPC detector measuring very low energy nuclear recoils. The expected rates are quite large for a neutron rich target since the neutrino nucleus neutral current interaction yields a coherent contribution of all neutrons. As a matter of fact for a typical supernova at 10 kpc, about 1000 events are expected using a spherical detector of radius 4 m with Xe gas at a pressure of 10 Atm. A world wide network of several such simple, stable and low cost supernova detectors with a running time of a few centuries is quite feasible.

  8. Performance of MPGD-based TPC prototypes for the linear collider experiment

    International Nuclear Information System (INIS)

    We conducted a series of beam tests of prototype TPCs for the International Linear Collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype operated successfully in a test beam at KEK under an axial magnetic field of up to 1 T. The analysis of data is now in progress and some of the preliminary results obtained with GEMs and MicroMEGAS are presented along with our interpretation. Also given is the extrapolation of the obtained spatial resolution to that of a large TPC expected as the central tracker of the ILC experiment

  9. Study in a beam test of the resolution of a Micromegas TPC with standard readout pads

    International Nuclear Information System (INIS)

    The results of a beam test performed at the KEK PS in June 2005 are presented. Drift properties of an argon-isobutane mixture have been accurately measured and compared with predictions at magnetic fields between 0 and 1 T. The r.m.s. point resolution of a padrow is compared with simulation and with an analytical calculation. The fundamental limitations due to detector geometry and gas properties are reviewed and the measured performances of the detector are found to be close to this limit. A numerical application to the case of a linear collider Time Projection Chamber (TPC) is presented.

  10. Test and Evaluation Station (TESt) - A Control System for the ALICE-HMPID Liquid Distribution Prototype

    CERN Document Server

    Maatta, E; CERN. Geneva; Swoboda, Detlef; Lecoeur, G

    1999-01-01

    The sub-detectors and systems in the ALICE experiment [1] are of various types. However, during physics runs, all devices necessary for the operation of the detector must be accessible and controllable through a common computer interface. Throughout all other periods each sub-detector requires maintenance, upgrading or test operation. To this end, an access independant of other sub-detectors must be guaranteed. These basic requirements impose a fair number of constraints on the architecture and components of the Detector Control System (DCS). The purpose of the TESt project consisted in the construction of a stand alone unit for a specific sub-system of an ALICE detector in order to gain first experience with commercial products for detector control. Although the control system includes only a small number of devices and is designed for a particular application, it covers nevertheless all layers of a complete system and can be extended or used in different applications. The control system prototype has been...

  11. Final results of the tests on the resistive plate chambers for the ALICE muon arm

    Energy Technology Data Exchange (ETDEWEB)

    Arnaldi, R. [INFN, Sezione di Torino (Italy); Baldit, A.; Barret, V.; Bastid, N.; Blanc, A.; Blanchard, G. [LPC Clermont Ferrand, IN2P3/CNRS, Universite Blaise Pascal (France); Chiavassa, E. [INFN, Sezione di Torino (Italy); Dipartimento di Fisica Sperimentale dell' Universita di Torino (Italy); Cortese, P. [INFN, Sezione di Torino (Italy); Dipartimento di Scienze e Tecnologie, Avanzate dell' Universita del Piemonte Orientale (Italy); Crochet, P. [LPC Clermont Ferrand, IN2P3/CNRS, Universite Blaise Pascal (France); Dellacasa, G. [INFN, Sezione di Torino (Italy); Dipartimento di Scienze e Tecnologie, Avanzate dell' Universita del Piemonte Orientale (Italy); De Marco, N. [INFN, Sezione di Torino (Italy); Devaux, A.; Dupieux, P. [LPC Clermont Ferrand, IN2P3/CNRS, Universite Blaise Pascal (France); Ferretti, A.; Gallio, M. [INFN, Sezione di Torino (Italy); Dipartimento di Fisica Sperimentale dell' Universita di Torino (Italy); Gemme, R. [INFN, Sezione di Torino (Italy); Dipartimento di Scienze e Tecnologie, Avanzate dell' Universita del Piemonte Orientale (Italy); Grygorian, S.; Insa, C.; Jouve, F.; Lopez, X. [LPC Clermont Ferrand, IN2P3/CNRS, Universite Blaise Pascal (France)] (and others)

    2009-05-01

    The trigger for the ALICE muon spectrometer will be issued by single-gap, low resistivity bakelite resistive plate chambers (RPCs). The trigger system consists of four 5.5x6.5m{sup 2} RPC planes arranged in two stations, for a total of 72 detectors. One hundred and sixteen detectors have been assembled and tested in Torino. The tests have been performed with the streamer mixture developed for heavy ion data-taking. The tests include: the detection of gas leaks and parasitic currents; the measurement of the efficiency with cosmic rays, with particular regard to the uniformity of the efficiency throughout the whole active surface, with a granularity of about 2x2cm{sup 2}; the measurement of the dark current and of the mean and localised noise rate. All the RPCs produced have been characterised. Among them, the detectors to be finally installed in ALICE and some spare have been selected; 17% of all the produced detectors have been discarded. A short description of the test set-up is given. The results of the tests are presented, with particular regard to the performance of the selected detectors.

  12. Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    CERN Document Server

    Aamodt, K; Abeysekara, U; Abrahantes Quintana, A; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Aguilar Salazar, S; Ahammed, Z; Ahmad, A; Ahmad, N; Ahn, S U; Akimoto, R; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Almaráz Aviña, E; Alme, J; Altini, V; Altinpinar, S; Alt, T; Andrei, C; Andronic, A; Anelli, G; Angelov, V; Anson, C; Anticic, T; Antinori, F; Antinori, S; Antipin, K; Antonczyk, D; Antonioli, P; Anzo, A; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arceo, R; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bablok, S; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baldit, A; Bán, J; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L; Barret, V; Bartke, J; Basile, M; Basmanov, V; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Becker, B; Belikov, I; Bellwied, R; Belmont-Moreno, E; Belogianni, A; Benhabib, L; Beolé, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchin, C; Bianchi, N; Bielcík, J; Bielcíková, J; Bilandzic, A; Bimbot, L; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Bohm, J; Boldizsár, L; Bombara, M; Bombonati, C; Bondila, M; Borel, H; Borshchov, V; Bortolin, C; Bose, S; Bosisio, L; Bossú, F; Botje, M; Böttger, S; Bourdaud, G; Boyer, B; Braun, M; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Bruckner, G; Bruna, E; Bruno, G E; Brun, R; Budnikov, D; Buesching, H; Bugaev, K; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Caines, H; Cai, X; Camacho, E; Camerini, P; Campbell, M; Canoa Roman, V; Capitani, G P; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Caselle, M; Castillo Castellanos, J; Castillo Hernandez, J F; Catanescu, V; Cattaruzza, E; Cavicchioli, C; Cerello, P; Chambert, V; Chang, B; Chapeland, S; Charpy, A; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Choi, K; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chuman, F; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Cobanoglu, O; Coffin, J P; Coli, S; Colla, A; Conesa Balbastre, G; Conesa del Valle, Z; Conner, E S; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; Cussonneau, J; Dainese, A; Dalsgaard, H H; Danu, A; Dash, A; Dash, S; Das, I; Das, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gaspari, M; de Groot, J; De Gruttola, D; de Haas, A P; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; de Vaux, G; Delagrange, H; Dellacasa, G; Deloff, A; Demanov, V; Dénes, E; Deppman, A; D'Erasmo, G; Derkach, D; Devaux, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dialinas, M; Díaz, L; Díaz, R; Dietel, T; Ding, H; Divià, R; Djuvsland, Ø; do Amaral Valdiviesso, G; Dobretsov, V; Dobrin, A; Dobrowolski, T; Dönigus, B; Domínguez, I; Don, D M M; Dordic, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Enokizono, A; Espagnon, B; Estienne, M; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Ferretti, R; Figueredo, M A S; Filchagin, S; Fini, R; Fionda, F M; Fiore, E M; Floris, M; Fodor, Z; Foertsch, S; Foka, P; Fokin, S; Formenti, F; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Frolov, A; Fuchs, U; Furano, F; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Ganoti, P; Ganti, M S; Garabatos, C; García Trapaga, C; Gebelein, J; Gemme, R; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glasow, R; Glässel, P; Glenn, A; Gomez, R; González Santos, H; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Gorbunov, Y; Gotovac, S; Gottschlag, H; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J Y; Grosso, R; Guarnaccia, C; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Gustafsson, H A; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamblen, J; Han, B H; Harris, J W; Hartig, M; Harutyunyan, A; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernández, C; Herrera Corral, G; Herrmann, N; Hetland, K F; Hicks, B; Hiei, A; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hrivnácová, I; Huber, S; Humanic, T J; Hu, S; Hutter, D; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Iwasaki, T; Jachokowski, A; Jacobs, P; Jancurová, L; Jangal, S; Janik, R; Jayananda, K; Jena, C; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanovic, P; Jung, H; Jung, W; Jusko, A; Kaidalov, A B; Kalcher, S; Kalinák, P; Kalliokoski, T; Kalweit, A; Kamal, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kapitan, J; Kaplin, V; Kapusta, S; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kikola, D; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J H; Kim, J; Kim, J S; Kim, M; Kim, M; Kim, S H; Kim, S; Kim, Y; Kirsch, S; Kiselev, S; Kisel, I; Kisiel, A; Klay, J L; Klein-Bösing, C; Klein, J; Kliemant, M; Klovning, A; Kluge, A; Kniege, S; Koch, K; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornas, E; Kour, R; Kowalski, M; Kox, S; Kozlov, K; Králik, I; Kral, J; Kramer, F; Kraus, I; Kravcáková, A; Krawutschke, T; Krivda, M; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kumar, L; Kumar, N; Kupczak, R; Kurashvili, P; Kurepin, A; Kurepin, A N; Kuryakin, A; Kushpil, S; Kushpil, V; Kutouski, M; Kvaerno, H; Kweon, M J; Kwon, Y; Lackner, F; Ladrón de Guevara, P; Lafage, V; Lal, C; Lara, C; La Rocca, P; Larsen, D T; Laurenti, G; Lazzeroni, C; Le Bornec, Y; Le Bris, N; Lee, H; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; León Monzón, I; León Vargas, H; Lévai, P; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Listratenko, O; Liu, L; Li, Y; Loginov, V; Lohn, S; López Noriega, M; López-Ramírez, R; López Torres, E; Lopez, X; Løvhøiden, G; Lozea Feijo Soares, A; Lunardon, M; Luparello, G; Luquin, L; Lu, S; Lutz, J R; Luvisetto, M; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahajan, A; Mahapatra, D P; Maire, A; Makhlyueva, I; Ma, K; Malaev, M; Maldonado Cervantes, I; Malek, M; Mal'Kevich, D; Malkiewicz, T; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mares, J; Margagliotti, G V; Margotti, A; Marín, A; Martashvili, I; Martinengo, P; Martínez Davalos, A; Martínez García, G; Martínez, M I; Maruyama, Y; Ma, R; Marzari Chiesa, A; Masciocchi, S; Masera, M; Masetti, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Mattos Tavares, B; Matyja, A; Mayani, D; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mendez Lorenzo, P; Meoni, M; Mercado Pérez, J; Mereu, P; Miake, Y; Michalon, A; Miftakhov, N; Milosevic, J; Minafra, F; Mischke, A; Miskowiec, D; Mitu, C; Mizoguchi, K; Mlynarz, J; Mohanty, B; Molnar, L; Mondal, M M; Montaño Zetina, L; Monteno, M; Montes, E; Morando, M; Moretto, S; Morsch, A; Moukhanova, T; Muccifora, V; Mudnic, E; Muhuri, S; Müller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nianine, A; Nicassio, M; Nielsen, B S; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyatha, A; Nygaard, C; Nyiri, A; Nystrand, J; Ochirov, A; Odyniec, G; Oeschler, H; Oinonen, M; Okada, K; Okada, Y; Oldenburg, M; Oleniacz, J; Oppedisano, C; Orsini, F; Ortíz Velázquez, A; Ortona, G; Oskamp, C; Oskarsson, A; Osmic, F; Österman, L; Ostrowski, P; Otterlund, I; Otwinowski, J; Øvrebekk, G; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paic, G; Painke, F; Pajares, C; Palaha, A; Palmeri, A; Pal, S K; Pal, S; Panse, R; Pappalardo, G S; Park, W J; Pastircák, B; Pastore, C; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pepato, A; Pereira, H; Peressounko, D; Pérez, C; Perini, D; Perrino, D; Peryt, W; Peschek, J; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petrácek, V; Petridis, A; Petris, M; Petrovici, M; Petrov, P; Petta, C; Peyré, J; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinsky, L; Pitz, N; Piuz, F; Platt, R; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta Lerma, P L M; Poggio, F; Poghosyan, M G; Poghosyan, T; Polák, K; Polichtchouk, B; Polozov, P; Polyakov, V; Pommeresch, B; Pop, A; Posa, F; Poskon, M; Pospisil, V; Potukuchi, B; Pouthas, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pujahari, P; Pulvirenti, A; Punin, A; Punin, V; Putis, M; Putschke, J; Quercigh, E; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Rammler, M; Raniwala, R; Raniwala, S; Räsänen, S; Rashevskaya, I; Rath, S; Read, K F; Real, J; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodriguez Cahuantzi, M; Røed, K; Röhrich, D; Román López, S; Romita, R; Ronchetti, F; Rosinský, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Rubio-Montero, A J; Rui, R; Rusanov, I; Russo, G; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safarík, K; Sahoo, R; Saini, J; Saiz, P; Sakata, D; Salgado, C A; Salgueiro Dominques da Silva, R; Salur, S; Samanta, T; Sambyal, S; Samsonov, V; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schindler, H; Schmidt, C; Schmidt, H R; Schossmaier, K; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Segato, G; Semenov, D; Senyukov, S; Seo, J; Serci, S; Serkin, L; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharkov, G; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddi, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simili, E; Simonetti, G; Singaraju, R; Singhal, V; Singh, R; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Snow, H; Søgaard, C; Sokolov, O; Soloviev, A; Soltveit, H K; Soltz, R; Sommer, W; Son, C W; Song, M; Son, H S; Soos, C; Soramel, F; Soyk, D; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Staley, F; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stolpovsky, P; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sumbera, M; Susa, T; Swoboda, D; Symons, J; Szanto de Toledo, A; Szarka, I; Szostak, A; Szuba, M; Tadel, M; Tagridis, C; Takahara, A; Takahashi, J; Tanabe, R; Tapia Takaki, J D; Taureg, H; Tauro, A; Tavlet, M; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Tieulent, R; Tlusty, D; Toia, A; Tolyhy, T; Torcato de Matos, C; Torii, H; Torralba, G; Toscano, L; Tosello, F; Tournaire, A; Traczyk, T; Tribedy, P; Tröger, G; Truesdale, D; Trzaska, W H; Tsiledakis, G; Tsilis, E; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A; Tveter, T S; Tydesjö, H; Tywoniuk, K; Ulery, J; Ullaland, K; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vala, M; Valencia Palomo, L; Vallero, S; van den Brink, A; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasiliev, A; Vassiliev, I; Vassiliou, M; Vechernin, V; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vetlitskiy, I; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopianov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, V; Wallet, L; Wan, R; Wang, D; Wang, Y; Watanabe, K; Wen, Q; Wessels, J; Wiechula, J; Wikne, J; Wilk, A; Wilk, G; Williams, M C S; Willis, N; Windelband, B; Xu, C; Yang, C; Yang, H; Yasnopolsky, A; Yermia, F; Yi, J; Yin, Z; Yokoyama, H; Yoo, I-K; Yuan, X; Yushmanov, I; Zabrodin, E; Zagreev, B; Zalite, A; Zampolli, C; Zanevsky, Yu; Zaporozhets, Y; Zarochentsev, A; Závada, P; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zepeda, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zhou, S; Zhu, J; Zichichi, A; Zinchenko, A; Zinovjev, G; Zinovjev, M; Zoccarato, Y; Zychácek, V

    2010-01-01

    ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that h...

  13. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    Science.gov (United States)

    Mitra, J.; Khan, S. A.; Mukherjee, S.; Paul, R.

    2016-03-01

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board.

  14. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    International Nuclear Information System (INIS)

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board

  15. Integration of XRootD into the cloud infrastructure for ALICE data analysis

    CERN Document Server

    Kompaniets, Mikhail; Svirin, Pavlo; Yurchenko, Volodymyr; Zarochentsev, Andrey

    2015-01-01

    Cloud technologies allow easy load balancing between different tasks and projects. From the viewpoint of the data analysis in the ALICE experiment, cloud allows to deploy software using Cern Virtual Machine (CernVM) and CernVM File System (CVMFS), to run different (including outdated) versions of software for long term data preservation and to dynamically allocate resources for different computing activities, e.g. grid site, ALICE Analysis Facility (AAF) and possible usage for local projects or other LHC experiments.We present a cloud solution for Tier-3 sites based on OpenStack and Ceph distributed storage with an integrated XRootD based storage element (SE). One of the key features of the solution is based on idea that Ceph has been used as a backend for Cinder Block Storage service for OpenStack, and in the same time as a storage backend for XRootD, with redundancy and availability of data preserved by Ceph settings. For faster and easier OpenStack deployment was applied the Packstack solution, which is ba...

  16. The ALICE experiment at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo Gameiro [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: ALICE (A Large Ion Collider Experiment) is the only experiment form the Large Hadron Collider (LHC) at CERN (European Organization for Nuclear Research) dedicated mainly to study relativistic heavy ion collisions. The experiment was optimized to measure a great variety of observables that allow us to study the properties of the Quark Gluon Plasma, a new state of nuclear matter where quarks and gluons are deconfined from hadrons. The enlightenment of such properties will provide great insight in the understanding of the strong interaction described by QCD. In this talk, I will present the ALICE experiment, the latest results obtained by the collaboration in the last 2 years and discuss the Brazilian participation in this very interesting and important international project. (author)

  17. Measurements of heavy-flavour decay leptons with ALICE

    Directory of Open Access Journals (Sweden)

    Sakai Shingo

    2015-01-01

    Full Text Available We present measurements of electrons and muons from heavy-flavour hadron decays at central and forward rapidity performed by the ALICE Collaboration in p–Pb (√sNN = 5.02 TeV and Pb–Pb collisions (√sNN = 2.76 TeV. Electrons are reconstructed using several detectors of the ALICE central barrel. Muons are reconstructed using the muon spectrometer at forward rapidity (2.5 < y < 4. The nuclear modification factors in Pb–Pb (RAA and in p–Pb (RpPb collisions, and the azimuthal anisotropy (v2 in Pb– Pb collisions will be discussed. Theoretical predictions are compared with the data. In addition, the measurement of the azimuthal correlation between electrons from heavyflavour hadron decays and charged hadrons in p–Pb collisions will be shown.

  18. Experience report: System management at the ALICE HLT cluster

    International Nuclear Information System (INIS)

    The ALICE HLT cluster is responsible for the first analysis and compression of the data from the ALICE experiment at CERN. The processing is performed using hardware accelerators like FPGAs, GPUs and computer nodes with commodity hardware. The mixture of hardware accelerators and several types of nodes causes an increased configuration and system management effort. To handle this effort, we are using a combination of three tools: Chef for the configuration management, Ganglia for the real time monitoring and SysMES for unattended system management, i.e. automatic problem recognition and solution. The tools help to minimize the manpower needed to administrate the cluster by reducing the time needed to recognize and identify problems or even by solving problems automatically. In this talk, we give an insight into our setup and report on the experience we have gained with the heterogeneous, on-line processing cluster during the last four years.

  19. A security architecture for the ALICE grid services

    CERN Document Server

    Schreiner, Steffen; Buchmann, Johannes; Betev, Latchezar; Grigoras, Alina

    2012-01-01

    Globally distributed research cyberinfrastructures, like the ALICE Grid Services, need to provide traceability and accountability of operations and internal interactions. This document presents a new security architecture for the ALICE Grid Services, allowing to establish non-repudiation with respect to creatorship and ownership of Grid files and jobs. It is based on mutually authenticated and encrypted communication using X.509 Public Key Infrastructure and the Transport Layer Security (TLS) protocol. Introducing certified Grid file entries and signed Grid jobs by implementing a model of Mediated Definite Delegation it allows to establish long-term accountability concerning Grid jobs and files. Initial submissions as well as any alteration of Grid jobs are becoming verifiable and can be traced back to the originator. The architecture has been implemented as a prototype along with the development of a new central Grid middleware, called jAliEn.

  20. Members of the ALICE collaboration greet the arrival of the experiment's first 500 lead tungstate crystals

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    L. to r: Vladislav Manko (Kurchatov Institute, Moscow, PHOS project leader), Arne Klovning (University of Bergen, PHOS technical coordinator), Vyacheslav Demanov (VNIIEF, Sarov), Bjorn Pommeresche (University of Bergen), Hans de Groot (CERN, ALICE resource coordinator), Dimitri Alexandrov (Kurchatov Institute, Moscow), Mikhail Ippolitov (Kurchatov Institute, Moscow), Yuri Vinogradov (VNIIEF, Sarov), Chris Fabjan (CERN, ALICE technical coordinator), Yuri Sibiriak (Kurchatov Institute, Moscow), Sergei Sadovsky (IHEP, Protvino), Jurgen Schukraft (CERN, ALICE spokesperson).

  1. Electric performance of the ALICE Silicon Drift Detector irradiated with 1 GeV electrons

    CERN Document Server

    Piemonte, C; Rashevsky, A; Vacchi, A; Wheadon, R

    2002-01-01

    The final version of the ALICE Silicon Drift Detector was irradiated with 1 GeV electrons at the LINAC of the Synchrotron 'Elettra' in Trieste. The electron fluence was equivalent to the total particle fluence expected during 10 years of ALICE operation as far as the bulk damage is concerned. The anode current, the voltage distribution on the integrated divider, and the operation of the MOS injectors were tested. The detector was found to be sufficiently radiation hard for the ALICE experiment.

  2. Hadronic Resonances in Heavy-Ion Collisions at ALICE

    Directory of Open Access Journals (Sweden)

    Knospea A. G.

    2012-11-01

    Full Text Available Modifications to the masses and widths of hadronic resonances in heavy-ion collisions could be a sign of chiral symmetry restoration. Uncorrected spectra, masses, and widths of the ϕ(1020 and K*(8920 resonances have been measured in Pb–Pb collisions at √sNN = 2.76 TeV using the ALICE detector. These measurements are presented and compared to resonances in other collision systems.

  3. An Android application for monitoring the problems in ALICE Grid

    CERN Document Server

    Ilievski, Vladimir

    2014-01-01

    This project is developing an Android application, which will help in monitoring of the ALICE Grid of computers. It uses a lot of Android related technologies, Cloud solutions and server side programming. It is supposed all users to get notifications for the events that are from their interest. This application will contribute to notify the users in real time, in which way the existing problems will be solved faster.

  4. AliEn - ALICE environment on the GRID

    International Nuclear Information System (INIS)

    AliEn (http://alien.cern.ch) (ALICE Environment) is a Grid framework built on top of the latest Internet standards for information exchange and authentication (SOAP, PKI) and common Open Source components. AliEn provides a virtual file catalogue that allows transparent access to distributed datasets and a number of collaborating Web services which implement the authentication, job execution, file transport, performance monitor and event logging. In the paper we will present the architecture and components of the system

  5. Charmonium production in pp collisions with ALICE at the LHC

    CERN Document Server

    Hugo, Pereira Da Costa

    2016-01-01

    We report on forward-rapidity charmonium production in pp collisions at a center of mass energy $\\sqrt{s} = 13$ TeV, as measured by ALICE at the LHC. Differential cross sections for both J/{\\psi} and {\\psi}(2S) are presented as a function of the charmonium transverse momentum and rapidity. Results are compared to similar measurements performed by LHCb, to lower energy measurements and to state of the art model calculations.

  6. Lead tungstate crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A consignment of 500 lead tungstate crystals arrived at CERN from the northern Russian town of Apatity in May. Destined for the ALICE heavy-ion experiment in preparation for the Large Hadron Collider, each crystal is an 18 cm long rod with a 2.2 cm square section, and weighs some 750 g. A total of 17 000 crystals will make up the experiment's photon spectrometer.

  7. Permanent exhibition of the ALICE experiment at Point 2 : collisions

    CERN Multimedia

    2004-01-01

    Mini Big Bangs in ALICE Why? To study the nature of primordial matter, the quark–gluon plasma, and to discover how matter, as we know it today, was created. Where? 50 m underground in the path of the beams of the Large Hadron Collider (LHC). How? by colliding atomic nuclei at a speed close to that of light (300 000 km/s).

  8. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  9. Hadronic Resonances in Heavy-Ion Collisions at ALICE

    CERN Document Server

    Knospe, A G

    2012-01-01

    Modifications to the masses and widths of hadronic resonances in heavy-ion collisions could be a sign of chiral symmetry restoration. Uncorrected spectra, masses, and widths of the phi(1020) and K*(892)0 resonances have been measured in Pb-Pb collisions at 2.76 TeV using the ALICE detector. These measurements are presented and compared to resonances in other collision systems.

  10. Heavy-flavor production in LHC pp interactions using the ALICE detector

    International Nuclear Information System (INIS)

    Measurements of charm and beauty production in pp collisions, using the ALICE detector system, at LHC energies (√(s)=2.76 and 7.0 TeV) can test perturbative QCD down to very low Björken-x. They are also critical as a reference to ALICE's heavy ion program. The ALICE detector system allows measurements not covered by the other LHC experiments in addition to covering complementary regions. A description of the ALICE detector system, in relation to ATLAS and CMS, are presented. Results from both leptonic and hadronic decay channels will be shown along with comparisons to other measurements when available

  11. The C-RORC PCIe Card and its Application in the ALICE and ATLAS Experiments

    CERN Document Server

    Engel, H; Costa, F; Crone, G J; Eschweiler, D; Francis, D; Green, B; Joos, M; Kebschull, U; Kiss, T; Kugel, A; Panduro Vasquez, J G; Soos, C; Teixeira-Dias, P; Tremblet, L; Vande Vyvre, P; Vandelli, W; Vermeulen, J C; Werner, P; Wickens, F J

    2015-01-01

    The ALICE and ATLAS DAQ systems read out detector data via point-to-point serial links into custom hardware modules, the ALICE RORC and ATLAS ROBIN. To meet the increase in operational requirements both experiments are replacing their respective modules with a new common module, the C-RORC. This card, developed by ALICE, implements a PCIe Gen 2 x8 interface and interfaces to twelve optical links via three QSFP transceivers. This paper presents the design of the C-RORC, its performance and its application in the ALICE and ATLAS experiments.

  12. The C-RORC PCIe card and its application in the ALICE and ATLAS experiments

    CERN Document Server

    Borga, A; The ATLAS collaboration; Crone, G; Engel, H; Eschweiler, D; Francis, D; Green, B; Joos, M; Kebschull, U; Kiss, T; Kugel, A; Panduro Vazquez, W; Soos, C; Teixeira-Dias, P; Tremblet, L; Vande Vyvre, P; Vandelli, W; Vermeulen, J; Werner, P; Wickens, F

    2014-01-01

    The ALICE and ATLAS DAQ systems read out detector data via point-to-point serial links into custom hardware modules, the ALICE RORC and ATLAS ROBIN. To meet the increase in operational requirements both experiments are replacing their respective modules with a new common module, the C-RORC. This card, developed by ALICE, implements a PCIe Gen 2 x8 interface and supports twelve optical links via three QSFP transceivers. This paper presents the design of the C-RORC, its performance and its applications in the ALICE and ATLAS experiments.

  13. 20 January 2011 - Hessischer Minister für Bundesangelegenheiten und Bevollmächtigter des Landes beim Bund, Hessen, Germany M. Boddenberg signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ALICE surafce exhibition and underground experimental area with P. Braun-Munzinger, V.Lindenstruth and Adviser R. Voss.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Michael Boddenberg, Hessian Minister for Federal Affairs and Representative of Hessen in the Federal Government, visited CERN on 20 January. His tour included the ALICE experiment, the LHC tunnel, the CERN Computer Centre and CERN Control Centre.

  14. Pattern recognition and PID procedure with the ALICE-HMPID

    CERN Document Server

    Volpe, Giacomo

    2014-01-01

    The ALICE apparatus is dedicated to the study of pp, p–Pb and Pb–Pb collisions provided by LHC. ALICE has unique particle identification (PID) capabilities among the LHC experiments exploiting different PID techniques, i.e., energy loss, time-of-flight measurements, Cherenkov and transition radiation detection, calorimetry and topological ID. The ALICE-HMPID is devoted to the identification of charged hadrons. It consists of seven identical RICH counters, with liquid C6F14 as Cherenkov radiator (n ≈1.299 at λ ph=175 nm). Photons and charged particles detection is performed by a proportional chamber, coupled with a pad segmented CsI coated photo-cathode. In pp and p–Pb events HMPID provides 3 sigmas separation for pions and kaons up to View the MathML sourcepT=3GeV/c and for protons up to View the MathML sourcepT=5GeV/c. PID is performed by means of photon emission angle measurement, a challenging task in the high multiplicity environment of the most central Pb–Pb collisions. A dedicated algorithm h...

  15. Alice Munro's "Runaway" in the Mirror of Sigmund Freud

    Directory of Open Access Journals (Sweden)

    Raheleh Bahador

    2015-03-01

    Full Text Available Mirroring the complexities of the human psyche, literature has received new comprehension through a psychoanalytic lens.  Alice Munro's "Runaway" (2003 is character-based and has the psychological analysis potential but it had never received such kind of study. The objective of the present paper is to read Munro's "Runaway" in the mirror of Sigmund Freud to detect the psychological aspects of its fictional characters. The characters are driven by the Freudian mental agencies and undergo phases of psychic disorder.  In the present paper, Munro's short fiction has been discussed based on Sigmund Freud's theory of the Unconscious and its connection with the interpretation of dreams as well as the symbolization of three main characters based on tripartite agencies of the id, ego and superego. Clarifying the latent and manifest levels of characters and the world of dreams indicates the artistic creation of Alice Munro in handling complex characterization. The unconscious and its connection with the female character's dreams have been discussed. The unconscious of the female character is reflected in her dreams in result of repression and asocial drives and desires. Unconscious through dreams is the mirror of the repressed psyche of the female character. Scrutinizing the three main characters in terms of Freudian psychic trilogy, they prove to fit their psychological Freudian terms.  Keywords: Alice Munro, Runaway, Sigmund Freud, Unconscious, Psychology, Id and Ego, Superego

  16. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  17. Gas Gain Measurements from a Negative Ion TPC X-ray Polarimeter

    CERN Document Server

    Prieskorn, Z; Kaaret, P E; Black, J K; Jahoda, K

    2011-01-01

    Gas-based time projection chambers (TPCs) have been shown to be highly sensitive X-ray polarimeters having excellent quantum efficiency while at the same time achieving large modulation factors. To observe polarization of the prompt X-ray emission of a Gamma-ray burst (GRB), a large area detector is needed. Diffusion of the electron cloud in a standard TPC could be prohibitive to measuring good modulation when the drift distance is large. Therefore, we propose using a negative ion TPC (NITPC) with Nitromethane (CH3NO2) as the electron capture agent. The diffusion of negative ions is reduced over that of electrons due to the thermal coupling of the negative ions to the surrounding gas. This allows for larger area detectors as the drift distance can be increased without degrading polarimeter modulation. Negative ions also travel ~200 times slower than electrons, allowing the readout electronics to operate slower, resulting in a reduction of instrument power. To optimize the NITPC design, we have measured gas ga...

  18. Characterization of UV-enhanced SiPMs for Imaging in High Pressure Xenon Electroluminescent TPC

    International Nuclear Information System (INIS)

    The possibility of recording charged particle tracks in an electro-luminescent xenon gas TPC is investigated using a SiPM-based tracking system, operated in the demonstrator prototype of the NEXT-100 ββ decay experiment. The tracks of the ββ0ν events from the decay of the 136Xe isotope have a distinctive topology, which allows their discrimination against single-electron events from the natural radioactivity that populates the region of interest of the neutrinoless decay in the ββ energy spectrum. Combined to the near-intrinsic energy resolution of the gaseous detector, this tracking capability provides a powerful background rejection tool for the search of the neutrinoless ββ decay aimed by the experiment. The NEXT-100 detector concepts and sensitivity and the first results of its demonstrator prototype are presented. The characterization studies relevant for the operation of UV-enhanced SiPMs used for imaging in an electro-luminescent TPC are reviewed. (authors)

  19. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement.

    Science.gov (United States)

    Peiter, Edgar; Maathuis, Frans J M; Mills, Lewis N; Knight, Heather; Pelloux, Jérôme; Hetherington, Alistair M; Sanders, Dale

    2005-03-17

    Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the cytosol from extracellular or intracellular stores. Many classes of Ca2+ current have been characterized electrophysiologically in plant membranes. However, the identity of the ion channels that underlie these currents has until now remained obscure. Here we show that the TPC1 ('two-pore channel 1') gene of Arabidopsis thaliana encodes a class of Ca2+-dependent Ca2+-release channel that is known from numerous electrophysiological studies as the slow vacuolar channel. Slow vacuolar channels are ubiquitous in plant vacuoles, where they form the dominant conductance at micromolar [Ca2+]cyt. We show that a tpc1 knockout mutant lacks functional slow vacuolar channel activity and is defective in both abscisic acid-induced repression of germination and in the response of stomata to extracellular calcium. These studies unequivocally demonstrate a critical role of intracellular Ca2+-release channels in the physiological processes of plants. PMID:15772667

  20. NEXT: Searching for the neutrinoless double beta decay with a gas-xenon TPC

    Energy Technology Data Exchange (ETDEWEB)

    Novella, P, E-mail: pau.novella@ciemat.e [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain)

    2010-01-01

    Although different techniques are used to search for the neutrinoless double beta decay, the common challenges for all the existing or planned experiments are to achieve a good energy resolution and large background rejection factors. The NEXT collaboration addresses these two challenges with a high-pressure gas-Xenon TPC. Natural Xenon consists of almost 9% of {sup 136}Xe, a {beta}{beta}{sup 0{nu}} candidate emitter, and can be easily enriched. When used as a calorimeter, {sup 136}Xe yields an excellent energy resolution. This fact, combined with the expected long life of the {beta}{beta}{sup 2{nu}} mode, accounts for negligible intrinsic backgrounds up to masses of 1 ton. Furthermore, external backgrounds can be rejected with high efficiency by means of the electron tracking capabilities of the TPC. A detector containing about 100 kg of enriched Xenon is expected to be installed at Canfranc Underground Laboratory (LSC) within the next 5 years, with the twofold aim of exploring the degenerated hierarchy of the neutrino mass and providing deep understanding of the experimental techniques which allow extrapolation to larger detectors.

  1. 17 September 2013 - Polish Members of Parliament visiting the Tunnel at Point 2 with Senior Engineer, Technology Department A. Siemko and visiting the ALICE cavern with ALICE Collaboration, B. Erazmus

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    17 September 2013 - Polish Members of Parliament visiting the Tunnel at Point 2 with Senior Engineer, Technology Department A. Siemko and visiting the ALICE cavern with ALICE Collaboration, B. Erazmus

  2. The team from ALICE DAQ (Data acquisition) involved in the 7th ALICE data challenge. First row: Sylvain Chapeland, Ulrich Fuchs, Pierre Vande Vyvre, Franco Carena Second row: Wisla Carena, Irina MAKHLYUEVA , Roberto Divia

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    The team from ALICE DAQ (Data acquisition) involved in the 7th ALICE data challenge. First row: Sylvain Chapeland, Ulrich Fuchs, Pierre Vande Vyvre, Franco Carena Second row: Wisla Carena, Irina MAKHLYUEVA , Roberto Divia

  3. Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

  4. Fast ALICE L0 Trigger - 2nd Workshop on Electronics for LHC Experiments

    CERN Document Server

    Feofilov, G; CERN. Geneva; Kolojvari, A A; Lenti, V; Novikov, I; Potapov, S; Tsimbal, F A; Villalobos Baillie, O; Vinogradov, L I; Valiev, F F; Stolyarov, O I

    1996-01-01

    The extremely good timing resolution and counting rate properties of the Forward Multiplicity MCP-based detector (FMD-MCP) proposed for ALICE implies the possibility to obtain the first fast indication of a central event even within two neighbouring 25 ns bunch crossings. The L0 decision is based on the multiplicity for a given rapidity range criterion, primary vertex Z-location within the interaction region and also accounts for the suppression of possible beam-gas collisions and pile-ups. The general LHC TTC distribution is included as the most efficient and independent way of TOF measurements for each of FMD-MCP detectors. We also propose here the fast TOF arrangement that includes time-to-amplitude converters (TACs) for real-time to analogue signal conversion followed by a comparison with a presetted threshold(s) in a comparator. Thus a real-time analogue TOF decision can be produced within 40 Mhz rate of LHC bunches.

  5. "Alice imedemaal" reaalsust tõsiselt ei võta / Margit Tõnson

    Index Scriptorium Estoniae

    Tõnson, Margit, 1978-

    2004-01-01

    7. veebr. esietendus Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  6. Kaspar Jancis kujundas "Alice'i" arvuti abil / Kaspar Jancis ; interv. Raimu Hanson

    Index Scriptorium Estoniae

    Jancis, Kaspar

    2004-01-01

    7. veebr. esietendub Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  7. Technical design report for the upgrade of the ALICE inner tracking system

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; Delagrange, H.; Delo, A.; Dénes, E.; D'Erasmo, G.; De Barros, G. O V; De Caro, A.; De Cataldo, G.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; De Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, I.M.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jacho lkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron De Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X. G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; M. Gago, A.; M. Jacobs, P.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhammad Bhopal, F.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Poskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Sooden, V.; Soramel, F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerho, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zherebchevsky, V. I.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is pre

  8. ALICE event displays in pp collisions at 7 TeV

    CERN Multimedia

    Kalweit, Alexander Philipp

    2015-01-01

    Events with low, medium and high multiplicities in pp collisions at 7 TeV, recorded at the LHC by ALICE in June 2010. The big cylinder is the Time Projection Chamber of ALICE, with a diameter of 5 m and a length of 5 m, the inner red-green-blue cylinders are the Inner Tracking System.

  9. JPL stories: story on the story (series) Careering through JPL, presented by Alice M. Fairhurst

    Science.gov (United States)

    Hendrickson, S.

    2002-01-01

    Alice Fairhurst, co-author of Effective Teaching, Effective Learning, presented an enthusiastic overview of her tenure as a JPL career development and mentoring coordinator (1991-2001). Among other things, Alice is an expert in Keirseyian Temperament and Myers-Briggs typology.

  10. Measurements of quarkonia with the central detectors of ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Wolfgang

    2008-03-26

    The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector. (orig.)

  11. Alice and Bob: Reconciling Formal Models and Implementation

    DEFF Research Database (Denmark)

    Almousa, Omar; Mödersheim, Sebastian Alexander; Viganò, Luca

    2015-01-01

    This paper defines the “ultimate” formal semantics for Alice and Bob notation, i.e., what actions the honest agents have to perform, in the presence of an arbitrary set of cryptographic operators and their algebraic theory. Despite its generality, this semantics is mathematically simpler than any...... previous attempt. For practical applicability, we introduce the language SPS and an automatic translation to robust real-world implementations and corresponding formal models, and we prove this translation correct with respect to the semantics....

  12. Baryon number transport at LHC energies with the ALICE experiment

    OpenAIRE

    Christakoglou, P.(Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands); Botje, M.A.J.; Mischke, A.; Van Leeuwen, M

    2009-01-01

    Particle yields along with the ratios of particle production in hadronic interactions are important indicators of the collision dynamics. In particular, the detailed analysis of the baryon spectra as well as that of p¯/p and L¯ /L ratios are of great importance since they allow to determine the carrier of the baryon number (BN). In this paper, the expected performance of the ALICE detector setup regarding the baryon spectra, the rapidity and transversemomentum dependence of the ¯ p/p and L¯ /...

  13. The trigger of the ALICE dimuon arm architecture and detectors

    CERN Document Server

    Arnaldi, R; Barret, V; Bastid, N; Blanchard, G; Chiavassa, E; Cortese, P; Crochet, Philippe; Dellacasa, G; De Marco, N; Dupieux, P; Espagnon, B; Fargeix, J; Gallio, M; Lamoine, L; Luquin, Lionel; Manso, F; Métivier, V; Musso, A; Piccotti, A; Rahmani, A; Ramillien, V; Royer, L; Roig, O; Scalas, E; Scomparin, E; Vercellin, Ermanno

    1999-01-01

    The trigger system of the ALICE dimuon arm is based on resistive plate chambers (RPC). Besides a short description of the trigger system, the test results of a RPC prototype with electrodes made of low resistivity bakelite ( equivalent to 3.10/sup 9/ Omega .cm) are presented. Rate capability, time resolution and cluster size have been measured for the RPC operated both in streamer and in avalanche mode. Although the rate capability is obviously higher in avalanche mode (few kHz/cm/sup 2/), remarkable results have been achieved even in streamer mode (several hundreds of Hz/cm/sup 2/). (6 refs).

  14. The tracking system of the ALICE dimuon spectrometer

    CERN Document Server

    Basciu, S; Atanassov, I; Cicalò, C; De Falco, A; Floris, M; La Delfa, L; Marras, D; Masoni, A; Puddu, G; Serci, S; Siddi, E; Tuven, M; Usai, G L; Boudjemline, M K; Carduner, H; Charrier, D; Cussonneau, J P; Dialinas, M; Finck, C; Fresneau, S; Lautridou, P; Luquin, Lionel; Pichot, P; Thers, D; Baldisseri, Alberto; Borel, H; Dumonteil, E; Gosset, J; Jourde, Didier; Lugol, J C; Orsini, F; Penichot, Y; Robert, J P; Staley, F; Comets, M P; Courtat, P; Diarra, C; Espagnon, B; Guez, D; Le Bornec, Y; MacCormick, M; Martin, J M; Rousseau, S; Sinha, T; Willis, N; Nikulin, V V

    2004-01-01

    The ALICE Muon Spectrometer is mainly dedicated to the measurement of the production of the J/ psi , and Y families through their decay into muon pairs, in Pb-Pb collisions. In this paper we give a description of the dimuon tracking system, mainly concentrating on the modular CSC chambers which occupy the last three stations. The R&D phase is now almost over and the production of the final modules started. A description of the main performances of the detectors based on test beam results on prototypes will be given. (8 refs).

  15. Alice Krieg-Planque, Analyser les discours institutionnels

    OpenAIRE

    Simon, Justine

    2012-01-01

    Comment amener des étudiants d’origines disciplinaires diverses à pratiquer l’analyse de discours et à s’en approprier les notions et concepts principaux, au service de l’analyse des productions discursives institutionnelles ? Telle est l’ambition centrale de l’ouvrage d’Alice Krieg-Planque, récemment paru chez Armand Colin. A la fois « guide pour l’analyse » et manuel visant à tisser un ensemble de compétences en matière d’approches discursives pour des étudiants au sein de formations plurid...

  16. Narrative Time in Alice Munro’s Short Stories

    Institute of Scientific and Technical Information of China (English)

    薛舒

    2013-01-01

    Alice Munro is a well-known contemporary Canadian writer. She departs from the traditional linear development but employs a seemingly random narrative line as a structural device in her story-telling. In the five short stories,“Material”,“Walk-er Brothers Cowboy”,“The Moons of Jupiter”,“Miles City, Montana”and“Something I’ve Been Meaning to Tell you”, Mun-ro manipulates the use of disconnected narrative time to deal with rites of passage. Free from the conventional time schemes, she expresses her vision in multiple themes and leaves the story open for readers.

  17. Alice Kask : Maalid ja joonistused = Paintings and drawings / Anu Allas

    Index Scriptorium Estoniae

    Allas, Anu, 1977-

    2007-01-01

    Maalikunstnik Alice Kase loomingust, mis on pälvinud usalduse tänu oma suveräänsusele, süvenemisele ja tõsidusele. Tema tööde jõud seisneb teose ja füüsilise objekti lahutamatuses, iga nüanss maali pinnal sünnib kuju võtnud materjalist enesest. Tema maalid on väga avatud, kohati isegi ohtlikult avatud kõikvõimalikele tõlgendusviisidele, neis on tasakaalustatud segu ilust, täiuselubadusest, hirmutavusest ning kaosest

  18. A low-resistivity RPC for the ALICE dimuon arm

    International Nuclear Information System (INIS)

    In view of ALICE, the dedicated Heavy-Ion Experiment at LHC, a Resistive Plate Chamber (RPC) with electrodes made of low-resistivity bakelite (ρ≅3.5x109 Ω cm) has been tested at the CERN SPS both in streamer and in avalanche mode. The chamber has shown a stable behaviour and excellent rate capability: its efficiency is better than 95% for local particle fluxes of about 1 and 10 kHz/cm2 for operation in streamer and in avalanche mode, respectively. The cluster size and the time resolution have also been measured for both modes of operation

  19. A common read-out receiver card for ALICE DAQ and HLT

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Heiko; Kebschull, Udo [IRI, Goethe-Universitaet Frankfurt am Main (Germany); Collaboration: ALICE-Collaboration

    2012-07-01

    In the ALICE read-out chain, both Data Acquisition (DAQ) and High Level Trigger (HLT) use FPGA-based Read-Out Receiver Cards (RORCs) as interface between the optical Detector Data Link (DDL) and the DAQ and HLT cluster machines. A new version of these cards is currently being developed as a common project of both groups. This new RORC will have a fast PCIe interface, high density parallel optical DDL connections and will combine several of the old cards into one new device. Due to the increased link density and the changed interface to the host machine a completely new read-out architecture has to be connected to the existing software framework. This work includes a custom linux device driver, a scatter-gather based DMA firmware and a software library to interface the new hardware to the existing software framework. All layers can be verified with a custom hardware/software co-simulation environment.

  20. The $\\mu$TPC Method: Improving the Position Resolution of Neutron Detectors Based on MPGDs

    CERN Document Server

    Pfeiffer, Dorothea; Birch, Jens; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Iakovidis, George; Oliveri, Eraldo; Oksanen, Esko; Ropelewski, Leszek; Thuiner, Patrik

    2015-01-01

    Due to the Helium-3 crisis, alternatives to the standard neutron detection techniques are becoming urgent. In addition, the instruments of the European Spallation Source (ESS) require advances in the state of the art of neutron detection. The instruments need detectors with excellent neutron detection efficiency, high-rate capabilities and unprecedented spatial resolution. The Macromolecular Crystallography instrument (NMX) requires a position resolution in the order of 200 um over a wide angular range of incoming neutrons. Solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are proposed to meet the new requirements. Charged particles rising from the neutron capture have usually ranges larger than several millimetres in gas. This is apparently in contrast with the requirements for the position resolution. In this paper, we present an analysis technique, new in the field of neutron detection, based on the Time Projection Chamber (TPC) concept. Using a standard Single-GEM with the catho...

  1. MIMAC: A micro-tpc matrix project for directional detection of dark matter

    CERN Document Server

    Santos, D; Bosson, G; Bouly, J L; Bourrion, O; Fourel, Ch; Guillaudin, O; Mayet, F; Richer, J P; Delbart, A; Ferrer, E; Giomataris, I; Iguaz, F J; Mols, J P; Golabek, C; Lebreton, L

    2011-01-01

    Directional detection of non-baryonic DarkMatter is a promising search strategy for discriminating WIMP events from background ones. This strategy requires both a measurement of the recoil energy down to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC project, based on a micro-TPC matrix, filled with CF4 and CHF3 is being developed. The first results of a chamber prototype of this matrix, on low energy nuclear recoils (1H and 19F) obtained with mono-energetic neutron fields are presented. The discovery potential of this search strategy is illustrated by a realistic case accessible to MIMAC.

  2. Improved TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Moss, Z; Collin, G; Conrad, J M; Jones, B J P; Moon, J; Toups, M; Wongjirad, T

    2014-01-01

    Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetra phenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we report on light guides with improved attenuation lengths above 100 cm when measured in air. This is an important step in the development of meter-scale light guides for future LArTPCs. Improvements come from using a new acrylic-based coating, diamond-polished cast UV transmitting acrylic bars, and a hand-dipping technique to coat the bars.

  3. Neutral Current Coherent Cross Sections -- Implications on Gaseous Spherical TPC's for detecting SN and Earth neutrinos

    CERN Document Server

    Giomataris, Y

    2016-01-01

    The detection of galactic supernova (SN) neutrinos represents one of the future frontiers of low-energy neutrino physics and astrophysics. The neutron coherence of neutral currents (NC) allows quite large cross sections in the case of neutron rich targets, which can be exploited in detecting earth and sky neutrinos by measuring nuclear recoils. They are relatively cheap and easy to maintain. The relevant NC cross sections are not dependent on flavor conversions and, thus, their measurement will provide useful information about the neutrino source. In particular they will yield information about the primary neutrino fluxes and perhaps about the spectrum after flavor conversions in neutrino sphere.They might also provide some clues about the neutrino mass hierarchy. The advantages of large gaseous low threshold and high resolution detectors with time projection counters (TPC) are discussed.

  4. TPC in gamma-ray astronomy above pair-creation threshold

    CERN Document Server

    Bernard, Denis

    2012-01-01

    We examine the performance of a TPC as a gamma-ray telescope above the pair-creation threshold. The contributions to the photon angular resolution are studied and their dependence on energy is obtained. The effective area per detector unit mass for such a thin detector is the conversion mass attenuation coefficient. The differential sensitivity for the detection of a point-like source is then derived. Finally, the measurement of track momentum from deflections due to multiple scattering is optimized. These analytical results are exemplified numerically for a few sets of detector parameters. TPCs show an impressive improvement in sensitivity with respect to existing pair-creation-based telescopes in the [MeV - GeV] energy range, even with the modest detector parameters of this study. In addition, gas TPCs allow an improvement in angular resolution of about one order of magnitude.

  5. TPC-like readout for thermal neutron detection using a GEM-detector

    CERN Document Server

    Flierl, Bernhard; Hertenberger, Ralf; Zeitelhack, Karl

    2015-01-01

    Spatial resolution of less than 200 um is challenging for thermal neutron detection. A novel readout scheme based on the time-projection-chamber (TPC) concept is used in a gaseous electron multiplier (GEM) detector. Thermal neutrons are captured in a single 2 um thick Boron-10 converter cathode and secondary Helium and Lithium ions are produced with a combined energy of 2.8 MeV. These ions have sufficient energy to form straight tracks of several mm length. With a time resolving 2-dimensional readout of 400 um pitch in both directions, based on APV25 chips, the ions are tracked and their respective origin in the cathode converter foil is reconstructed. Using an Ar-CO2 93:7% gas mixture, a resolution of 100 um (FWHM 235 um) has been observed with a triple GEM-detector setup at the Garching neutron source (FRMII) for neutrons of 4.7 Angstrom.

  6. Directional detection of Dark Matter with the MIcro-tpc MAtrix of Chambers

    CERN Document Server

    Couturier, C; Naraghi, F; Riffard, Q; Santos, D; Sauzet, N; Colas, P; Ribas, E Ferrer; Giomataris, I; Busto, J; Fouchez, D; Tao, C; Zhou, N

    2016-01-01

    Particles weakly interacting with ordinary matter, with an associated mass of the order of an atomic nucleus (WIMPs), are plausible candidates for Dark Matter. The direct detection of an elastic collision of a target nuclei induced by one of these WIMPs has to be discriminated from the signal produced by the neutrons, which leaves the same signal in a detector. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed an original prototype detector which combines a large pixelated Micromegas coupled with a fast, self-triggering, electronics. Aspects of the two-chamber module in operation in the Modane Underground Laboratory are presented: calibration, characterization of the $^{222}$Rn progeny. A new test bench combining a MIMAC chamber with the COMIMAC portable quenching line has been set up to characterize the 3D tracks of low energy ions in the MIMAC gas mixture: the preliminary results thereof are presented. Future steps are briefly discussed.

  7. GEM-based TPC with CCD imaging for directional dark matter detection

    Science.gov (United States)

    Phan, N. S.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Matthews, J. A. J.; Miller, E. H.

    2016-11-01

    The most mature directional dark matter experiments at present all utilize low-pressure gas Time Projection Chamber (TPC) technologies. We discuss some of the challenges for this technology, for which balancing the goal of achieving the best sensitivity with that of cost effective scale-up requires optimization over a large parameter space. Critical for this are the precision measurements of the fundamental properties of both electron and nuclear recoil tracks down to the lowest detectable energies. Such measurements are necessary to provide a benchmark for background discrimination and directional sensitivity that could be used for future optimization studies for directional dark matter experiments. In this paper we describe a small, high resolution, high signal-to-noise GEM-based TPC with a 2D CCD readout designed for this goal. The performance of the detector was characterized using alpha particles, X-rays, gamma-rays, and neutrons, enabling detailed measurements of electron and nuclear recoil tracks. Stable effective gas gains of greater than 1 × 105 were obtained in 100 Torr of pure CF4 by a cascade of three standard CERN GEMs each with a 140 μm pitch. The high signal-to-noise and sub-millimeter spatial resolution of the GEM amplification and CCD readout, together with low diffusion, allow for excellent background discrimination between electron and nuclear recoils down below ∼10 keVee (∼23 keVr fluorine recoil). Even lower thresholds, necessary for the detection of low mass WIMPs for example, might be achieved by lowering the pressure and utilizing full 3D track reconstruction. These and other paths for improvements are discussed, as are possible fundamental limitations imposed by the physics of energy loss.

  8. 内存数据库在TPC-H负载下的处理器性能%Main Memory Database TPC-H Workload Characterization on Modern Processor

    Institute of Scientific and Technical Information of China (English)

    刘大为; 栾华; 王珊; 覃飙

    2008-01-01

    Ailamaki等人1999年研究了数据库管理系统(database management system,简称DBMS)在处理器上的时间开销分解.此后,相关研究集中在分析DBMS在处理器上的瓶颈.但这些研究工作均是在磁盘数据库DRDBs(disk resident databases)上开展的,而且都是分析DBMS上的TPC-C类负载.然而,随着硬件技术的进步,现代计算机的多级缓存结构(memory hierarchy)在逐渐地"上移".例如,容量越来越大的芯片内缓存(on-chip caches)和芯片外缓存(off-chip caches),容量越来越大的RAM,Flash Memory等等.为此,处理器负载分析的研究工作也应随之"上移".研究内存数据MMDBs(main memory resident databases)在计算密集型负载下的处理器行为特性.由于磁盘数据库的主要性能瓶颈是磁盘I/O,因而可以用索引、压缩等技术进行优化;然而,内存数据库的性能瓶颈却在于处理器和内存之间的数据交换.针对这一问题,首先分析了磁盘数据库和内存数据库在TPC-H负载下处理器性能瓶颈的差异,并给出了一些优化建议,提出了通过预取的优化方法.其次,通过实验比较了不同存储体系结构(行存储与列存储)对处理器利用率的差异,并探索了下一代内存数据库体系结构方面的解决方案.此外,还研究了索引结构对处理器多级缓存的影响,并给出了索引的优化建议.最后,提出一个微测试集用于评估内存数据库在DSS(decision support system)负载下处理器的性能及行为特性.研究结果会对运行于下一代处理器上的内存数据库体系结构设计和性能优化提供一定的实验依据.

  9. Measurement of semi-electronic beauty-hadron decays via their impact parameter in pp collisions in ALICE

    International Nuclear Information System (INIS)

    The measurement of beauty-hadron decays via the detection of electron tracks that are displaced from the primary vertex can be performed with ALICE, whose capabilities of electron identification and tracking fulfil all requirements for this task. While the large corresponding branching ratios guarantee sufficient yields of beauty-decay electrons at LHC energies, the wide electron impact parameter distribution due to the long lifetime and the decay kinematics of beauty hadrons allows for a separation of electrons from beauty-hadron decays from background electrons on a statistical basis. This thesis presents the analysis of electrons from beauty-hadron decays in protonproton collisions at centre-of-mass energies of 7 TeV and 2.76 TeV. Using the ALICE central-barrel detectors ITS, TPC, and TOF, pT-differential electron spectra are measured at mid-rapidity (vertical stroke y vertical stroke <0.8) for transverse momenta between 1 and 8 GeV/c. Information from the TPC and TOF signal is combined to select pure electron samples, whose signal-to-background ratio is subsequently enhanced via the requirement of a minimal impact parameter of the tracks towards the primary vertex in the x - y plane. Tracks from photon conversions occurring outside the innermost ITS layer, which have a wide impact parameter distribution, are rejected via the requirement of hits in both SPD layers of the ITS. The remaining hadron contamination in the selected electron track samples is determined on a statistical basis from the distributions of their energy deposition per unit of length in the TPC. A crucial challenge of this analysis is the subtraction of the electron background originating from charm decays, photon conversions, and light-meson decays from the measured inclusive electron spectrum. The corresponding electron yields are determined using spectra from PYTHIA simulations that are reweighted based on previous measurements of charmed hadrons, π0, and η. Minor contributions from other

  10. Measurement of semi-electronic beauty-hadron decays via their impact parameter in pp collisions in ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Markus Ansgar

    2014-03-19

    The measurement of beauty-hadron decays via the detection of electron tracks that are displaced from the primary vertex can be performed with ALICE, whose capabilities of electron identification and tracking fulfil all requirements for this task. While the large corresponding branching ratios guarantee sufficient yields of beauty-decay electrons at LHC energies, the wide electron impact parameter distribution due to the long lifetime and the decay kinematics of beauty hadrons allows for a separation of electrons from beauty-hadron decays from background electrons on a statistical basis. This thesis presents the analysis of electrons from beauty-hadron decays in protonproton collisions at centre-of-mass energies of 7 TeV and 2.76 TeV. Using the ALICE central-barrel detectors ITS, TPC, and TOF, p{sub T}-differential electron spectra are measured at mid-rapidity (vertical stroke y vertical stroke <0.8) for transverse momenta between 1 and 8 GeV/c. Information from the TPC and TOF signal is combined to select pure electron samples, whose signal-to-background ratio is subsequently enhanced via the requirement of a minimal impact parameter of the tracks towards the primary vertex in the x - y plane. Tracks from photon conversions occurring outside the innermost ITS layer, which have a wide impact parameter distribution, are rejected via the requirement of hits in both SPD layers of the ITS. The remaining hadron contamination in the selected electron track samples is determined on a statistical basis from the distributions of their energy deposition per unit of length in the TPC. A crucial challenge of this analysis is the subtraction of the electron background originating from charm decays, photon conversions, and light-meson decays from the measured inclusive electron spectrum. The corresponding electron yields are determined using spectra from PYTHIA simulations that are reweighted based on previous measurements of charmed hadrons, π{sup 0}, and η. Minor

  11. Measurement of semi-electronic beauty-hadron decays via their impact parameter in pp collisions in ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Markus Ansgar

    2014-03-19

    The measurement of beauty-hadron decays via the detection of electron tracks that are displaced from the primary vertex can be performed with ALICE, whose capabilities of electron identification and tracking fulfil all requirements for this task. While the large corresponding branching ratios guarantee sufficient yields of beauty-decay electrons at LHC energies, the wide electron impact parameter distribution due to the long lifetime and the decay kinematics of beauty hadrons allows for a separation of electrons from beauty-hadron decays from background electrons on a statistical basis. This thesis presents the analysis of electrons from beauty-hadron decays in protonproton collisions at centre-of-mass energies of 7 TeV and 2.76 TeV. Using the ALICE central-barrel detectors ITS, TPC, and TOF, p{sub T}-differential electron spectra are measured at mid-rapidity (vertical stroke y vertical stroke <0.8) for transverse momenta between 1 and 8 GeV/c. Information from the TPC and TOF signal is combined to select pure electron samples, whose signal-to-background ratio is subsequently enhanced via the requirement of a minimal impact parameter of the tracks towards the primary vertex in the x - y plane. Tracks from photon conversions occurring outside the innermost ITS layer, which have a wide impact parameter distribution, are rejected via the requirement of hits in both SPD layers of the ITS. The remaining hadron contamination in the selected electron track samples is determined on a statistical basis from the distributions of their energy deposition per unit of length in the TPC. A crucial challenge of this analysis is the subtraction of the electron background originating from charm decays, photon conversions, and light-meson decays from the measured inclusive electron spectrum. The corresponding electron yields are determined using spectra from PYTHIA simulations that are reweighted based on previous measurements of charmed hadrons, π{sup 0}, and η. Minor

  12. Studies on the upgrade of the ALICE central tracker

    CERN Document Server

    Mager, Magnus; Musa, Luciano

    2012-11-14

    When two high-energy lead ions collide, as they currently do inside the “Large Hadron Collider” (LHC) of the “European Organization for Nuclear Research” (CERN), energy densities similar to those shortly (some 1ps to 10μs) after the Big Bang are created. At these energies quarks are loosing their confinement into hadrons and may move around freely, the “quark-gluon plasma” (QGP) is created. Such a picture deserves of course a thorough check and a precise measurement. There are however intrinsic difficulties to overcome: the macroscopic free energy (about 1 mJ) of these collision allow for an infinite number of processes to happen and finally—-due to mass-energy equivalence--a significant number (order of 10,000) of particles is created. The ALICE experiment was designed to be able to cope with this large number of particles, it can measure the properties (species and momentum) of the big majority. This requires a very fine segmentation of the detector. The central part of ALICE is made of a 90 ...

  13. Conceptual Design Report for the Upgrade of the ALICE ITS

    CERN Document Server

    Musa, L

    2012-01-01

    The present document addresses the question of how to improve the ALICE performance for heavy-flavour detection. It will be shown that it is possible to built a new silicon tracker with greatly improved features in terms of determination of the distance of closest approach (dca) to the primary vertex, standalone tracking efficiency at low pt , momentum resolution and readout rate capabilities. This is a consequence of the spectacular progress made in the field of imaging sensors over the last ten years and also the possibility to install a smaller radius beampipe. Moreover, a tracker with the above features creates an opportunity to develop a topological trigger, which can be used in combination with the TRD and TOF detectors for the selection of events containing rare probes. Such a new silicon tracker will allow ALICE to measure charm and beauty production in Pb-Pb collisions with sufficient statistical accuracy down to very low transverse momentum, measure charm baryons and perform precise measurements of ...

  14. Dynamic parallel ROOT facility clusters on the Alice Environment

    International Nuclear Information System (INIS)

    The ALICE collaboration has developed a production environment (AliEn) that implements the full set of the Grid tools enabling the full offline computational work-flow of the experiment, simulation, reconstruction and data analysis, in a distributed and heterogeneous computing environment. In addition to the analysis on the Grid, ALICE uses a set of local interactive analysis facilities installed with the Parallel ROOT Facility (PROOF). PROOF enables physicists to analyze medium-sized (order of 200-300 TB) data sets on a short time scale. The default installation of PROOF is on a static dedicated cluster, typically 200-300 cores. This well-proven approach, has its limitations, more specifically for analysis of larger datasets or when the installation of a dedicated cluster is not possible. Using a new framework called PoD (Proof on Demand), PROOF can be used directly on Grid-enabled clusters, by dynamically assigning interactive nodes on user request. The integration of Proof on Demand in the AliEn framework provides private dynamic PROOF clusters as a Grid service. This functionality is transparent to the user who will submit interactive jobs to the AliEn system.

  15. Physics performance studies for the ALICE inner tracker upgrade

    International Nuclear Information System (INIS)

    During the second long shutdown of the LHC in 2018, the ALICE Collaboration plans to install an upgrade of the ALICE Inner Tracking System (ITS) in the central barrel with seven layers of silicon detectors starting at 2.2 cm radial distance from the interaction region and a material budget as low as 0.3 % radiation length per layer. A single-hit resolution of 4 μm and a readout rate capability of up to 50 kHz in Pb–Pb collisions will allow new and unique measurements in the heavy-quark sector, i.e. charm and beauty. Using detailed Monte Carlo simulations of pp and Pb–Pb collisions we study the performance for heavy-flavor detection with an upgraded ITS in the following benchmark analyses: Charm meson and baryon production, i.e. D0 → K−π+ and Λ+c → pK−p+, and beauty meson and baryon production, i.e. displaced vertices of B+ → D-bar 0π+ and Λb → Λ+cπ−

  16. Alice G. Brandfonbrener, MD-A personal remembrance.

    Science.gov (United States)

    Lederman, Richard J

    2014-09-01

    Alice Brandfonbrener died peacefully at home on May 31, 2014, after a protracted illness. For all of us involved in performing arts medicine, she was the inspiration and guiding spirit. She will be missed. [Alice Brandfonbrener was one of the founding members of the field of performing arts medicine, perhaps the most critical founding member. In 1983, she organized the first "Conference on the Medical Problems of Musicians" in Aspen, Colorado, and co-directed these for the next 20 years. These symposia led to the formation of the Performing Arts Medicine Association, of which Dr. Brandfonbrener was the first president, and in 1986, establishment of the first journal in the field--this journal, Medical Problems of Performing Artists--for which she served as Editor for 20 years. At her performing arts clinic in Chicago, she saw and treated thousands of musicians, from young students to world-renowned professionals, and mentored many students and professionals who would extend research and practice in performing arts medicine.].

  17. ALICE makes a clean sweep at Point 2

    CERN Multimedia

    2001-01-01

    Since the middle of June the ALICE collaboration has taken up residence at Point 2, previously occupied by L3, and is now preparing the cavern for the arrival of its detector. The last muon chambers of the L3 experiment were removed at the beginning of July. Anyone who knew L3 when it was in operation will be in for a shock if they go down to the cavern at Point 2, which looks as if it's been emptied of all its contents. The members of the ALICE collaboration would not quite share that point of view, however, as some components still have to be dismantled before the cavern can receive its new detector. The collaboration, which has inherited L3's huge red magnet, took over at Point 2 in the middle of June and is now getting down to work. This is the first major stage in the installation of the future detector, which has to be ready to observe its first LHC collisions on 1 April 2006. The first difficulty is to remove the support tube running through the magnet. This huge 32-metre long, 4.5-m diameter, 300-t...

  18. Inclusive jet spectra in p–Pb collisions at ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Connors, Megan

    2014-11-15

    Jet suppression has been observed in central heavy ion collisions. This suppression is attributed to partonic energy loss in the Quark Gluon Plasma (QGP) formed in such collisions. However, this measurement is influenced by all stages of the collision. It is expected that in p–Pb collisions similar initial conditions occur as in Pb–Pb collisions without creating a QGP, allowing modification to the jet spectra due to cold nuclear matter effects to be quantified. Inclusive jet spectra in p–Pb collisions at √(s{sub NN})=5.02 TeV measured by ALICE are presented. Jets are reconstructed via the anti-k{sub T} algorithm with different resolution parameters by combining charged tracks measured in the ALICE tracking system with the neutral energy deposited in the electromagnetic calorimeter. The jet spectra can be used to determine a nuclear modification factor R{sub pPb} while the jet profile in p–Pb is studied by dividing spectra measured with different resolution parameters and comparing to the same ratio measured in pp collisions.

  19. Fourth Data Challenge for the ALICE data acquisition system

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ALICE experiment will study quark-gluon plasma using beams of heavy ions, such as those of lead. The particles in the beams will collide thousands of times per second in the detector and each collision will generate an event containing thousands of charged particles. Every second, the characteristics of tens of thousands of particles will have to be recorded. Thus, to be effective, the data acquisition system (DAQ) must meet extremely strict performance criteria. To this end, the ALICE Data Challenges entail step-by-step testing of the DAQ with existing equipment that is sufficiently close to the final equipment to provide a reliable indication of performance. During the fourth challenge, in 2002, a data acquisition rate of 1800 megabytes per second was achieved by using some thirty parallel-linked PCs running the specially developed DATE software. During the final week of tests in December 2002, the team also tested the Storage Tek linear magnetic tape drives. Their bandwidth is 30 megabytes per second a...

  20. Physics performance studies for the ALICE inner tracker upgrade

    CERN Document Server

    Stiller, Johannes

    2013-01-01

    During the second long shutdown of the LHC in 2018, the ALICE Collaboration plans to install an upgrade of the ALICE Inner Tracking System (ITS) in the central barrel with seven layers of silicon detectors starting at 2.2 cm radial distance from the interaction region and a material budget as low as 0.3% radiation length per layer. A single-hit resolution of $\\mathrm{4 \\mu m}$ and a readout rate capability of up to 50 kHz in Pb--Pb collisions will allow new and unique measurements in the heavy-quark sector, i.e. charm and beauty. Using detailed Monte Carlo simulations of pp and Pb--Pb collisions we study the performance for heavy-flavor detection with an upgraded ITS in the following benchmark analyses: Charm meson and baryon production, i.e. $\\mathrm{D^{0} \\rightarrow K^{-}\\pi^{+}}$ and $\\mathrm{\\Lambda_{c}^{+} \\rightarrow pK^{-}\\pi^{+}}$, and beauty meson and baryon production, i.e. displaced vertices of $\\mathrm{B^{+} \\rightarrow \\bar{D}^{0}\\pi^{+}}$ and $\\mathrm{\\Lambda_{b} \\rightarrow \\Lambda_{c}^{+}\\pi^...

  1. Commissioning of the ALICE muon spectrometer trigger at LHC

    International Nuclear Information System (INIS)

    ALICE (a large ion collider experiment) is the LHC experiment dedicated to the study of ultra-relativistic heavy ion collisions. The ALICE muon spectrometer covers a large range in pseudo-rapidity and is designed to study quarkonia and heavy flavours decaying into (di-)muons. The high particle multiplicities environment in such collisions require a specific, fast and efficient trigger system, the muon trigger. It consists of four planes of RPC detectors, covering an area of 36 m2 each, 21k front-end channels and a fast-decision electronics. The muon trigger is designed to reconstruct (muon) tracks and deliver a trigger signal each 25 ns (40 MHz) with a total latency of 800 ns. The hit position on the RPC is measured in two orthogonal directions with an accuracy of about 1 cm. The performance measured with the first p-p collisions at √(()s)=900 GeV carried out in December 2009 is reported.

  2. Studies for the ALICE Inner Tracking System Upgrade

    CERN Document Server

    AUTHOR|(CDS)2079168; Musa, Luciano

    The ALICE experiment at the CERN LHC identifies D0 mesons via secondary-vertex reconstruction and topological cuts to reduce the corresponding combinatorial background in heavy-ion collisions. The D0 meson is produced promptly in initial, hard scatterings via the strong interaction or as feed-down from weakly decaying B hadrons. Within this thesis, a novel method for the separation of prompt and feed-down D0 mesons using cut variations was implemented and applied to data from p–Pb collisions at $\\sqrt(s_\\mathrm{NN})=5.02$ TeV. The effectiveness of the secondary-vertex reconstruction strongly depends on the performance and in particular the pointing resolution of the Inner Tracking System. The upgrade of the ALICE Inner Tracking System for the Long Shutdown 2 of the LHC in 2019/2020 will significantly improve its vertex-reconstruction and tracking capabilities. It will be equipped with Monolithic Active Pixel Sensors manufactured using the TowerJazz 180nm CMOS process on wafers with a high-resistivity epitax...

  3. Light flavour hadron production in the ALICE experiment at LHC

    Directory of Open Access Journals (Sweden)

    Badalà Angela

    2016-01-01

    Full Text Available Unique among the LHC experiments, ALICE has excellent particle identification capabilities for the measurement of light-flavour hadrons. A large number of hadron species from pions to multi-strange baryons and light nuclei have been measured over a large transverse momentum region. The measurement of the production of these particles is a valuable tool to study the properties of the medium formed in heavy-ion collisions. In particular they give information on the collective phenomena of the fireball, on the parton energy loss in the hot QCD medium and on the hadronization mechanisms such as recombination and statistical hadronization. The measurements in pp and in p-nucleus collisions provide the necessary baseline for heavy-ion data and help to investigate the effects of the ordinary nuclear matter. In this paper some of the main ALICE results on identified light-flavour hadron production in Pb–Pb collisions at √sNN = 2.76 TeV and p–Pb collisions at √sNN = 5.02 TeV will be presented.

  4. Light flavour hadron production in the ALICE experiment at LHC

    Science.gov (United States)

    Badalà, Angela

    2016-05-01

    Unique among the LHC experiments, ALICE has excellent particle identification capabilities for the measurement of light-flavour hadrons. A large number of hadron species from pions to multi-strange baryons and light nuclei have been measured over a large transverse momentum region. The measurement of the production of these particles is a valuable tool to study the properties of the medium formed in heavy-ion collisions. In particular they give information on the collective phenomena of the fireball, on the parton energy loss in the hot QCD medium and on the hadronization mechanisms such as recombination and statistical hadronization. The measurements in pp and in p-nucleus collisions provide the necessary baseline for heavy-ion data and help to investigate the effects of the ordinary nuclear matter. In this paper some of the main ALICE results on identified light-flavour hadron production in Pb-Pb collisions at √sNN = 2.76 TeV and p-Pb collisions at √sNN = 5.02 TeV will be presented.

  5. Pion femtoscopy measurements in ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Kamil Graczykowski Łukasz

    2014-04-01

    Full Text Available We present the results of two-pion Bose-Einstein correlations measured in Pb–Pb collisions at a center-of-mass energy √sNN = 2:76 TeV recorded by ALICE at the Large Hadron Collider. These types of correlations allow to extract, using the technique of femtoscopy (also known as Hanburry-Brown Twiss interferometry, or shortly HBT, the space-time characteristics of the source from the correlation calculated as a function of the pair momentum difference. The femtoscopic analysis was performed using both the Spherical Harmonics decomposition and the standard 3D Cartesian representation of the correlation function. The source sizes in three dimensions, the HBT radii, were extracted by fitting the experimental correlation functions. The resulting dependencies of the radii as a function of centrality and pair transverse momentum are shown. The results indicate the existence of a flowing medium and provide constraints on existing dynamical models. The ALICE Pb–Pb HBT radii are also compared to the pp analysis and other heavy-ion experiments in order to test the multiplicity scaling between different systems.

  6. Proactive Recovery Algorithm in Byzantine Fault Tolerance%基于 TPC-App 的拜占庭容错性能测试

    Institute of Scientific and Technical Information of China (English)

    周伟; 陈柳

    2015-01-01

    性能测试是拜占庭容错研究中的关键问题之一。针对现有拜占庭容错设计中的性能测试的标准不一致的问题,提出了基于 TPC-App 的拜占庭容错性能测试方法。 TPC-App 是事务性能委员会(TPC)提出的最新的关于 Web 服务的测试基准。基于 TPC-App 标准的的测试结果具有通用性,便于跟其它研究进行对比。使用 TPC-App 基准设计实验床,对设计的拜占庭容错服务的性能进行了测试,结果表明设计具有可行性。%The performance evaluation is one of the key problems in Byzantine fault tolerance .To solve the problem of inconsistency in performance evaluation ,a Byzantine fault tolerant performance testing method based on TPC-App bench-mark is proposed in this paper .TPC-App is one of the newest application server and web services benchmark proposed by Transaction Processing Performance Council(TPC) .The evaluation results based on TPC-App is compatible and easy to be compared with the related researches .The testbeds according to the TPC-App benchmark is designed to test the performance of Byzantine fault tolerant service .The results show the availability of the service .

  7. Trigger system study of the dimuon spectrometer in the ALICE experiment at CERN-LHC

    International Nuclear Information System (INIS)

    This work is a contribution to the study of nucleus-nucleus collisions at the LHC with ALICE. The aim of this experiment is to search for a new phase of matter, the quark-gluon plasma (QGP). The dimuon forward spectrometer should measure one of the most promising probes of the QGP, the production of heavy quark vector mesons (J/ψ, γ, γ', γ'') through their muonic decays. The dimuon trigger selects the interesting events performing a cut on the transverse momentum of the tracks. The trigger decision is taken by a dedicated electronics using RPC (''Resistive Plate Chambers'') detector information. We have made our own R and D program on the RPC detector with various beam tests. We show the performances obtained during these tests of a low resistivity RPC operating in streamer mode. The ALICE requirements concerning the rate capability, the cluster size and the time resolution are fulfilled. We have optimised the trigger with simulations which include a complete description of the read-out planes and the trigger logic (algorithm). In particular, a technique of clustering is proposed and validated. A method called ''Ds reduction'' is introduced in order to limit the effects of combinatorial background on the trigger rates. The efficiencies and the trigger rates are calculated for Pb-Pb, Ca-Ca, p-p collisions at the LHC. Other more sophisticated cuts, on the invariant mass for example, using again the RPC information have been simulated but have not shown significant improvements of the trigger rates. (author)

  8. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    OpenAIRE

    Collaboration, ALICE; Chang, BeomSu; Kim, Dong Jo; Kral, Jiri; Morreale, Astrid; Rak, Jan; Räsänen, Sami; Trzaska, Wladyslaw; Viinikainen, Jussi

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a ne...

  9. DDL, the ALICE data transmission protocol and its evolution from 2 to 6 Gb/s

    International Nuclear Information System (INIS)

    ALICE (A Large Ion Collider Experiment) is the detector system at the LHC (Large Hadron Collider) that studies the behaviour of strongly interacting matter and the quark gluon plasma. The information sent by the sub-detectors composing ALICE are read out by DATE (Data Acquisition and Test Environment), the ALICE data acquisition software, using hundreds of multi-mode optical links called DDL (Detector Data Link). To cope with the higher luminosity of the LHC, the bandwidth of the DDL links will be upgraded in 2015. This paper will describe the evolution of the DDL protocol from 2 to 6 Gbit/s

  10. DDL, the ALICE data transmission protocol and its evolution from 2 to 6 Gb/s

    Science.gov (United States)

    Carena, F.; Carena, W.; Chibante Barroso, V.; Costa, F.; Chapeland, S.; Delort, C.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Ionita, C.; Kiss, T.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.

    2015-04-01

    ALICE (A Large Ion Collider Experiment) is the detector system at the LHC (Large Hadron Collider) that studies the behaviour of strongly interacting matter and the quark gluon plasma. The information sent by the sub-detectors composing ALICE are read out by DATE (Data Acquisition and Test Environment), the ALICE data acquisition software, using hundreds of multi-mode optical links called DDL (Detector Data Link). To cope with the higher luminosity of the LHC, the bandwidth of the DDL links will be upgraded in 2015. This paper will describe the evolution of the DDL protocol from 2 to 6 Gbit/s.

  11. Prospects for heavy flavour measurements with the ALICE inner tracker upgrade

    CERN Document Server

    Terrevoli, Cristina

    2014-01-01

    ALICE is the general purpose heavy-ion detector at the CERN LHC. Its goal is to investigate the properties of the strongly interacting matter under the extreme conditions of density and temperature reached in Pb{Pb collisions, with the aim to characterize the Quark-Gluon Plasma (QGP). In this scenario, the upgrade of the ALICE inner tracker targets physics topics in which ALICE can bring a unique contribution to the QGP characterization via the heavy avour probes. We present an overview of the inner tracker upgrade and the expected physics performance for heavy avour measurements.

  12. A hardware implementation of Region-of-Interest selection in LAr-TPC for data reduction and triggering

    International Nuclear Information System (INIS)

    Large Liquid Argon TPC detectors in the range of multi-kton mass for neutrino and astroparticle physics require the extraction and treatment of signals from some 105 wires. In order to increase the throughput of the DAQ system an on-line lossless data compression has been realized reducing by almost a factor 4 the data flow. Moreover a new efficient on-line identification algorithm of wire hits was studied, implemented on the ICARUS digital read-out boards and fully tested on the ICARINO LAr-TPC facility operated at LNL INFN Laboratory with cosmic-rays. This system permits the extraction of the event Region-of-Interest maximizing the global throughput of the DAQ and the realization of a trigger based on charge deposition on the wires. Capability to trigger isolated low energy events down to few MeV visible energy was also demonstrated.

  13. High Level Trigger System for the ALICE Experiment

    Institute of Scientific and Technical Information of China (English)

    U.Frankenfeld; H.Helstrup; 等

    2001-01-01

    The ALICE experiment [1] at the Large Hadron Collider(LHC) at CERN will detect up to 20,000 particles in a single Pb-Pb event resulting in a data rate of -75 MByte/event,The event rate is limited by the bandwidth of the data storage system.Higher rates are possible by selecting interesting events and subevents (High Level trigger) or compressing the data efficiently with modeling techniques.Both require a fast parallel pattern recognition.One possible solution to process the detector data at such rates is a farm of clustered SMP nodes,based on off-the-shelf PCs,and connected by a high bandwidt,low latency network.

  14. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  15. Performance of the ALICE secondary vertex b-tagging algorithm

    CERN Document Server

    Eyyubova, Gyulnara

    2016-01-01

    The identification of jets originating from beauty quarks in heavy-ion collisions is important to study the properties of the hot and dense matter produced in such collisions. A variety of algorithms for b-jet tagging was elaborated at the LHC experiments. They rely on the properties of B hadrons, i.e. their long lifetime, large mass and large multiplicity of decay products. In this work, the b-tagging algorithm based on displaced secondary-vertex topologies is described. We present Monte Carlo based performance studies of the algorithm for charged jets reconstructed with the ALICE tracking system in p-Pb collisions at $\\sqrt{s_\\text{NN}}$ = 5.02 TeV. The tagging efficiency, rejection rate and the correction of the smearing effects of non-ideal detector response are presented.

  16. AliEn: ALICE Environment on the GRID

    CERN Document Server

    CERN. Geneva

    2012-01-01

    AliEn is the GRID middleware used by the ALICE collaboration. It provides all the components that are needed to manage the distributed resources. AliEn is used for all the computing workflows of the experiment: Montecarlo production, data replication and reconstruction and organixed or chaotic user analysis. Moreover, AliEn is also being used by other experiments like PANDA and CBM. The main components of AliEn are a centralized file and metadata catalogue, a job execution model and file replication model. These three components have been evolving over the last 10 years to make sure that the satisfy the computing requirements of the experiment, which keep increasing every year.

  17. Very low mass microcables for the ALICE silicon strip detector

    CERN Document Server

    De Haas, A P; Van den Brink, A; Kuijer, P G; Borshchov, V N; Kiprich, S K; Ruzhitsky, V M

    1999-01-01

    Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999The ALICE Inner Tracker (ITS) silicon strip layers will use kapton/aluminium microcables (12/14 um thickness) exclusively for all interconnections to and from the front-end chips and hybrids, completely eliminating traditional wirebonding. Benefits are increased robustness and an extra degree of dimensional freedom. Utilising a low-power, low temperature and low-force (10-15 grams) single-point TAB bonding process, aluminium traces are directly bonded through bonding windows in the kapton foil to bond pads on the chips and the hybrid. The same technique is also used to interconnect these microcables to create multi-layer bus structures with "bonded via's". A double-sided strip detector using prototype cables has been installed in the NA57 experiment in 1998.

  18. Specification and Simulation of the ALICE Trigger and DAQ System

    Institute of Scientific and Technical Information of China (English)

    T.Anticic; G.DiMarzoSerugendo; 等

    2001-01-01

    The ALICE Trigger and Data Acquisition (TRG/DAQ) System is required to support an aggregate event building bandwidth of up to 4 GByte/s and a storage capability of up to 1.25 GByte/s to mass storage.The system has been decomposed in a set of hardware and software components and prototypes of these components are being developed.It is necessary to verity the system design,its capability to reach the expected behavior and the target performances,discover possible bottlenecks and ways to correct for them,and explore alternative algorithms and new architectures.To achieve this the complete TRG/DAQ system has been formally specified.and the verification of the expected behavior has been performed through the execution of the specification,Two tools were used for this.Foresight,and Ptolemy.

  19. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    CERN Document Server

    Gomez, Andres; Kebschull, Udo

    2015-01-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machin...

  20. Baryon femtoscopy in heavy-ion collisions at ALICE

    Directory of Open Access Journals (Sweden)

    Szymański Maciej Paweł

    2014-04-01

    Full Text Available In this report, femtoscopic measurements with pp, p¯p¯${\\rm{\\bar p\\bar p}}$, pp¯${\\rm{p\\bar p}}$, pΛ¯${\\rm{p}}\\bar \\Lambda $, p¯Λ${\\rm{\\bar p}}\\Lambda $ and ΛΛ¯$\\Lambda \\bar \\Lambda $ pairs in Pb–Pb collisions at √sNN = 2:76 TeV registered by ALICE at the LHC are presented. Emission source sizes extracted from the correlation analysis with (antiprotons grow with the event multiplicity, as expected. A method to extract the interaction potentials (e.g. for pΛ¯${\\rm{p}}\\bar \\Lambda $ and p¯Λ${\\rm{\\bar p}}\\Lambda $ pairs based on femtoscopy analysis is discussed. The importance of taking into account the so-called residual correlations induced by pairs contaminated by secondary particles is emphasized for all analyses mentioned above.