WorldWideScience

Sample records for alice pixel detector

  1. The ALICE Pixel Detector

    International Nuclear Information System (INIS)

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well

  2. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  3. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  4. The ALICE Silicon Pixel Detector System (SPD)

    CERN Document Server

    Kluge, A; Antinori, Federico; Burns, M; Cali, I A; Campbell, M; Caselle, M; Ceresa, S; Dima, R; Elias, D; Fabris, D; Krivda, Marian; Librizzi, F; Manzari, Vito; Morel, M; Moretto, Sandra; Osmic, F; Pappalardo, G S; Pepato, Adriano; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Stefanini, G; Torcato De Matos, C; Turrisi, R; Tydesjo, H; Viesti, G; PH-EP

    2007-01-01

    The ALICE silicon pixel detector (SPD) comprises the two innermost layers of the ALICE inner tracker system. The SPD includes 120 detector modules (half-staves) each consisting of 10 ALICE pixel chips bump bonded to two silicon sensors and one multi-chip read-out module. Each pixel chip contains 8192 active cells, so that the total number of pixel cells in the SPD is ≈ 107. The on-detector read-out is based on a multi-chip-module containing 4 ASICs and an optical transceiver module. The constraints on material budget and detector module dimensions are very demanding.

  5. The ALICE silicon pixel detector readout electronics

    International Nuclear Information System (INIS)

    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the ALICE inner tracking system (ALICE Collaboration, 1999) . The SPD is built with 120 detector modules (half-staves) and contains about 10 million pixels in total. The half-staves are connected to the off-detector electronics, housed in a control room 100 m away, via bidirectional optical links. The stream of data from the front-end electronics is processed in 20 VME readout modules, called routers, based on FPGAs. Three 2-channel link-receiver daughter cards, also based on FPGAs, are plugged in each router. Each link-receiver card receives data via the optical link from two half-staves, applies the zero suppression and passes them to the router to be processed and sent to the ALICE-DAQ system through the detector data link (DDL). The SPD control, configuration and data monitoring are performed using the VME interface embedded in the router.

  6. The ALICE silicon pixel detector readout electronics

    CERN Document Server

    Krivda, M; Burns, M; Caselle, M; Kluge, A; Manzari, V; Torcato de Matos, C; Morel, M; Riedler, P; Aglieri Rinella, G; Sandor, L; Stefanini, G

    2010-01-01

    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the ALICE inner tracking system (ALICE Collaboration, 1999) [1]. The SPD is built with 120 detector modules (half-staves) and contains about 10 million pixels in total. The half-staves are connected to the off-detector electronics, housed in a control room 100 m away, via bidirectional optical links. The stream of data from the front-end electronics is processed in 20 VME readout modules, called routers, based on FPGAs. Three 2-channel link-receiver daughter cards, also based on FPGAs, are plugged in each router. Each link-receiver card receives data via the optical link from two half-staves, applies the zero suppression and passes them to the router to be processed and sent to the ALICE–DAQ system through the detector data link (DDL). The SPD control, configuration and data monitoring are performed using the VME interface embedded in the router.

  7. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  8. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  9. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  10. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  11. The Level 0 Pixel Trigger System for the ALICE Silicon Pixel Detector: implementation, testing and commissioning

    CERN Document Server

    Aglieri-Rinella, G

    2008-01-01

    The ALICE Silicon Pixel Detector transmits 1200 Fast-OR signals every 100 ns on 120 optical readout channels. They indicate the presence of at least one hit in the pixel matrix of each readout chip. The ALICE Level 0 Pixel Trigger System extracts them, processes them and delivers an input signal to the Central Trigger Processor for the first level trigger decision within a latency of 800 ns. This paper describes tests and measurements made on the system during the qualification and commissioning phases. These included Bit Error Rate tests on the Fast-OR data path, the measurement of the overall process latency and the recording of calibration data with cosmic rays. The first results of the operation of the Pixel Trigger System with the SPD detector in the ALICE experiment are also presented.

  12. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    CERN Document Server

    Snoeys, W; Cantatore, E; Cencelli, V; Dinapoli, R; Heijne, Erik H M; Jarron, Pierre; Lamanna, P; Minervini, D; O'Shea, V; Quiquempoix, V; San Segundo-Bello, D; Van Koningsveld, B; Wyllie, Ken H

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 collaboration provided the basis to obtain radiation tolerance in commercial submicron CMOS through special circuit layout. The new ALICE1LMB chip was developed to serve two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 mu m*435 mu m pixel cells in the 256*32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32*32 array of 400 mu m*425 mu m cells. The circuit is currently being manufactured in a commercial 0.25 mu m CMO...

  13. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    International Nuclear Information System (INIS)

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 collaboration provided the basis to obtain radiation tolerance in commercial submicron CMOS through special circuit layout. The new ALICE1LHB chip was developed to serve two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 μmx425 μm pixel cells in the 256x32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32x32 array of 400 μmx425 μm cells. The circuit is currently being manufactured in a commercial 0.25 μm CMOS technology

  14. Design, production and first operation of the ALICE Silicon Pixel Detector system

    CERN Document Server

    Kluge, A; Antinori, F; Burns, M; Cali, I A; Campbell, M; Caselle, M; Cavicchioli, C; Dima, R; Elia, D; Fabris, D; Krivda, M; Librizzi, F; Manzari, V; Marangio, G; Morel, M; Moretto, S; Osmic, F; Pappalardo, G S; Pepato, Adriano; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Stefanini, G; Torcato Matos, C; Turrisi, R; Tydesjol, H; Viesti, G

    2008-01-01

    The ALICE Silicon Pixel Detector (SPD) constitutes the two innermost barrel layers of the ALICE experiment. The SPD is the detector closest to the interaction point, mounted around the beam pipe with the two layers at r=3.9 cm and 7.6 cm distance from beam axis. In order to reduce multiple scattering the material budget per layer in the active region has been limited to ≈1% X0. The SPD consists of 120 hybrid silicon pixel detectors modules with a total of ~107 cells. The on-detector read-out is based on a multi-chip-module containing 4 ASICs and an optical transceiver module. The readout electronics, located in the control room, is housed in 20 VME boards; it is the interface to the ALICE trigger, data acquisition, control system and detector electronics. In this contribution the SPD detector components design and production are reviewed. First operation results are reported.

  15. Test of prototypes of the ALICE silicon pixel detector in a multi-track environment

    Science.gov (United States)

    Pulvirenti, A.; Anelli, G.; Antinori, F.; Badalà, A.; Bruno, G. E.; Burns, M.; Cali, I. A.; Campbell, M.; Caselle, M.; Ceresa, S.; Chocula, P.; Cinausero, M.; Conrad, J.; Dima, R.; Elia, D.; Fabris, D.; Fini, R. A.; Fioretto, E.; Kapusta, S.; Kluge, A.; Krivda, M.; Lenti, V.; Librizzi, F.; Lunardon, M.; Manzari, V.; Morel, M.; Moretto, S.; Osmic, F.; Pappalardo, G. S.; Paticchio, V.; Pepato, A.; Prete, G.; Riedler, P.; Riggi, F.; Sandor, L.; Santoro, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Stefanini, G.; Torcato de Matos, C.; Turrisi, R.; Vannucci, L.; Viesti, G.; Virgili, T.

    2006-09-01

    The silicon pixel detector (SPD) comprises the two innermost layers of the ALICE Inner Tracking System (ITS). It is instrumented with arrays of hybrid pixels made out of 150 μm thick ASICs, each containing 8192 readout cells, bump bonded to 200 μm thick silicon sensors. The dimensions of the pixel cells are 50 μm ( rϕ)×425 μm ( z). Prototype assemblies have been tested in high-energy particle beams at the CERN SPS. The results of measurements in a multi-track environment, from interactions of an In beam at 158 AGeV on a Pb target, are reported.

  16. Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    CERN Document Server

    Conrad, J; Antinori, F; Badalà, A; Barbera, R; Boccardi, A; Bruno, G E; Burns, M; Cali, I A; Campbell, M; Caselle, M; Ceresa, S; Chochula, P; Cinausero, M; Dima, R; Elia, D; Fabris, D; Fini, R A; Fioretto, E; Kapusta, S; Kluge, A; Krivda, M; Lenti, V; Librizzi, F; Lunardon, M; Manzari, V; Morel, M; Moretto, S; Morsch, A; Nilsson, P; Noriega, M L; Osmic, F; Pappalardo, G S; Paticchio, V; Pepato, Adriano; Prete, G; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Scarlassara, F; Segato, G F; Soramel, F; Stefanini, G; Sándor, L; Torcatode-Matos, C; Turrisi, R; Vannucci, L; Viesti, G; Virgili, T

    2007-01-01

    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.

  17. Microelectronics Radiation Hardness: Test Set-up for the ALICE Pixel Detector

    CERN Document Server

    Meddi, F; CERN. Geneva; Morando, M; Scarlassara, F; Segato, G F; Soramel, F; Vannucci, Luigi; Di Liberto, S

    2000-01-01

    Two different test apparatus were set up to check the radiation hardness of the pixel detector electronic components designed for the ALICE ITS. Motivations and the mainfeatures are described as well as results we reached. Preliminary results on the OMEGA3/LHC1 chip are also presented. List of figures: Figure 1 Expected irradiation dose in ten years for the first layer (r=3.9 cm) of the pixel detectors operating in ALICE Figure 2 a) Chip digital part current (at bias of +3.5V) and b) chip analogue part current (at bias of +1.5V) as function of the cumulated dose for gamma irradiation Figure 3 Pixel efficiency as a function of the strobe delay a) and the annealing elapsed time b) after gamma irradiation Figure 4 a) Chip digital part current (at bias of +3.5V) and b) chip analogue part current (at bias of +1.5V) as function of the cumulated dose for proton irradiation. Pixel efficiency, at different time intervals after proton irradiation, as a function of the strobe delay d) and the threshold scanning c)

  18. A front-end for silicon pixel detectors in ALICE and LHCb

    International Nuclear Information System (INIS)

    A new front-end for a pixel detector readout chip was designed. A non-standard topology was used to achieve low noise and fast return to zero of the preamplifier to be immune to pile-up of subsequent input signals. This front-end has been implemented on a pixel detector readout chip developed in a commercial 0.25 μm CMOS technology for the ALICE and LHCb experiments. This technology proved to be radiation tolerant when special layout techniques are used, and provides sufficient density for these applications. The chip is a matrix of 32 columns each containing 256 readout cells. Each readout cell comprises this front-end and digital readout circuitry, and has a static power consumption of about 60 μW

  19. Development of the digital read-out system for the CERN Alice pixel detector

    CERN Document Server

    Grassi, Tullio

    In order to gain new experimental insight at the TeV energy scale, CERN (Geneva) will build the Large Hadron Collider (LHC), a new collider machine operating at a maximum center-of-mass energy of 14 TeV (in the p+/p+ interactions). The accelerator can operate in a heavy ion collision mode achieving a center-of-mass energy of ~5.5 TeV. The experimental environment at LHC is characterized by a high crossing rate of the particle bunches (one every 25 ns for p+/p+) and high levels of radiation. Therefore stringent requirements are imposed on the performance of detectors at LHC. Such a particle physics environment calls for dedicated hardware/software solutions with specific constraints, such as radiation tolerance, limited amount of material and limited power dissipation. One of the particle physics experiments carried out in LHC is ALICE (A Large Ion Collider Experiment). The ALICE detector will face a very high density of tracks of particles (a multiplicity of 8000 charged particles per unit of rapidity, that i...

  20. ALICE Forward Multiplicity Detector

    CERN Multimedia

    Christensen, C

    2013-01-01

    The Forward Multiplicity Detector (FMD) extends the coverage for multiplicity of charge particles into the forward regions - giving ALICE the widest coverage of the 4 LHC experiments for these measurements.

  1. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  2. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  3. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  4. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  5. Study and Development of a novel Silicon Pixel Detector for the Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    van Hoorn, Jacobus Willem; Riedler, Petra

    ALICE (A Large Ion Collider Experiment) is the heavy-ion experiment at the CERN Large Hadron Collider (LHC). As an important part of its upgrade plans, the ALICE experiment schedules the installation of a new Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC in 2019/20. The new ITS will consist of seven concentric layers, covering about 10m2 with Monolithic Active Pixel Sensors (MAPS). This choice of technology has been guided by the tight requirements on the material budget of 0.3 % x/X0 per layer for the three innermost layers and backed by the significant progress in the field of MAPS in recent years. The pixel chips are manufactured in the TowerJazz 180 nm CMOS process on wafers with a high-resistivity epitaxial layer on top of the substrate. During the R&D phase several chip architectures have been investigated, which take full advantage of a particular process feature, the deep p-well, that allows for full CMOS circuitry within the pixel matrix while retaining full charge colle...

  6. Studies On Monolithic Active Pixel Sensors and Detector Performance for the Inner Tracking System Upgrade of ALICE

    OpenAIRE

    Siddhanta, Sabyasachi

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using Pb-Pb collisions at unprecedented energy densities. During the first three years of operation, it has demonstrated very good capabilities for measurements at high energy Pb-Pb collisions. But there are certain measurements like high precision measurements o...

  7. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten;

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  8. Protecting Detectors in ALICE

    CERN Document Server

    Mateusz Lechman, Mateusz; Chochula, Peter; Di Mauro, Antonio; Jirden, Lennart Stig; Schindler, Heinrich; Rosinsky, Peter; Moreno, Alberto; Kurepin, Alexander; Pinazza, Ombretta; De Cataldo, Giacinto

    2011-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related...

  9. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  10. The ALICE Forward Multiplicity Detector

    CERN Document Server

    Christensen, Christian Holm; Gulbrandsen, Kristjan; Nielsen, Borge Svane; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4 < \\eta < 5.1$. It is placed around the beam pipe at small angles to extend the charged particle acceptance of ALICE into the forward regions, not covered by the central barrel detectors.

  11. Cooling Tests for the Silion Pixel Detectors

    CERN Document Server

    Pepato, Adriano; CERN. Geneva; Giarin, M; Antinori, Federico; Carrer, N; Morando, M; Soramel, F; Segato, G F; Turrisi, R; Scarlassara, F

    2000-01-01

    Abstract Cooling tests have been performed on dummy prototypes of the Silicon Pixel Detector ladders of the Inner Tracking System of ALICE, in order to assess the merits of the proposed cooling schemes. The tests provide insight into the problems of cooling of the pixel detectors and also yield experimental parameters necessary for a numerical simulation.

  12. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  13. Cooling in the ALICE detector

    OpenAIRE

    Almén, Ylva

    2015-01-01

    At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland, a new modern particle accelerator called the LHC, Large Hadron Collider, is being projected. One of the four large detectors of the LHC, ALICE, consists of many sub-detectors. Temperature stability in ALICE is of great importance for the experiments performed here.  In the ALICE sub-detector TPC, Time Projection Chamber, there is a great risk for thermal instability.  This will cause false data in the experiments, a...

  14. Installing the ALICE detector

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The huge iron yoke in the cavern at Point 2 in the LHC tunnel is prepared for the installation of the ALICE experiment. The yoke is being reused from the previous L3 experiment that was located at the same point during the LEP project from 1989 to 2000. ALICE will be inserted piece by piece into the cradle where it will be used to study collisions between two beams of lead ions.

  15. The ALICE forward multiplicity detector

    International Nuclear Information System (INIS)

    The ALICE experiment is designed to study the properties of hadron and nucleus collisions in a new energy regime at the Large Hadron Collider at CERN. A fundamental observable in such collisions is the multiplicity distribution of charged particles. A forward multiplicity detector has been designed to extend the charged particle multiplicity coverage of the ALICE experiment to pseudorapidities of -3.4<η<-1.7 and 1.7<η<5.0. This detector consists of five rings, each containing 10240 Si strips, divided into sectors comprised of Si sensors bonded and glued to hybrid PC boards equipped with radiation hard preamplifiers. The output of these preamplifiers is multiplexed into custom-made fast ADC chips located directly behind the Si sensors on the detector frame. These ADCs are read out, via optical fibers, to a data acquisition farm of commodity PCs. The design and characteristics of the ALICE Forward Multiplicity Detector will be discussed

  16. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  17. ANUSANSKAR: a 16 channel frontend electronics (FEE) ASIC targeted for silicon pixel array detector based prototype Alice FOCAL

    International Nuclear Information System (INIS)

    ANUSANSKAR is a 16 channel pulse processing ASIC with analog multiplexed output designed in 0.7 um standard CMOS technology with each channel consisting of CSA, Semi Gaussian pulse shaper, DC cancellation and pedestal control, track and hold, output buffer blocks. The ASIC's analog multiplexed output can be read serially in daisy-chain topology. Testing, characterization and validation of ANUSANSKAR ASIC as readout for prototype ALICE forward calorimeter (FOCAL) has been carried out in PS beam line at CERN with up to 6 GeV of pion and electron beam. This paper describes the ANUSANSKAR ASIC along with the experimental results. (author)

  18. ALICE Vzero Detector

    CERN Multimedia

    Cheynis, B

    2013-01-01

    ALICE is the only experiment at CERN specifically designed to study the Quark-Gluon Plasma, the hot and dense matter which is created in ultra relativistic heavy-ion collisions. - VZERO-A (CINVESTAV-UNAM Mexico): 2.8 328 cm away from Interaction Point - VZERO-C (IPN Lyon): -3.6 88 cm away from Interaction Point

  19. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  20. Diamond pixel detectors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bognai, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foster, J; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Gobbi, B; Grim, G P; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lander, R; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Pirollo, S; Plano, R; Procario, M; Riester, J L; Roe, S; Rott, C; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Wedenig, R; Weilhammer, Peter; White, C; Zeuner, W; Zöller, M

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles. (3 refs).

  1. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  2. The ALICE detector data link

    CERN Document Server

    Rubin, G; Csató, P; Dénes, E; Kiss, T; Meggyesi, Z; Sulyán, J; Vesztergombi, G; Eged, B; Gerencsér, I; Novák, I; Soós, C; Tarján, D; Telegdy, A; Tóth, N

    1999-01-01

    The ALICE detector data link has been designed to cover all the needs for data transfer between the detector and the data-acquisition system. It is a 1 Gbit/s, full-duplex, multi-purpose fibre optic link that can be used as a medium for the bi-directional transmission of data blocks between the front-end electronics and the data- acquisition system and also for the remote control and test of the front-end electronics, In this paper the concept, the protocol, the specific test tools, the prototypes of the detector data link and the read-out receiver card, their application in the ALICE-TPC test system and the integration with the DATE software are presented. The test results on the performance are also shown. (14 refs).

  3. Layout of the ALICE detector

    CERN Multimedia

    2003-01-01

    The ALICE experiment will study the collisions of beams of lead nuclei in an attempt to produce a new state of matter known as 'quark-gluon plasma'. The barrel of the detector will be housed in the solenoid that once contained the L3 experiment when LEP was in operation at CERN, between 1989 and 2000. Outside of the solenoid, a dipole magnet will bend the path of charged particles called muons, allowing their momenta to be measured.

  4. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  5. SOI monolithic pixel detector

    Science.gov (United States)

    Miyoshi, T.; Ahmed, M. I.; Arai, Y.; Fujita, Y.; Ikemoto, Y.; Takeda, A.; Tauchi, K.

    2014-05-01

    We are developing monolithic pixel detector using fully-depleted (FD) silicon-on-insulator (SOI) pixel process technology. The SOI substrate is high resistivity silicon with p-n junctions and another layer is a low resistivity silicon for SOI-CMOS circuitry. Tungsten vias are used for the connection between two silicons. Since flip-chip bump bonding process is not used, high sensor gain in a small pixel area can be obtained. In 2010 and 2011, high-resolution integration-type SOI pixel sensors, DIPIX and INTPIX5, have been developed. The characterizations by evaluating pixel-to-pixel crosstalk, quantum efficiency (QE), dark noise, and energy resolution were done. A phase-contrast imaging was demonstrated using the INTPIX5 pixel sensor for an X-ray application. The current issues and future prospect are also discussed.

  6. Detection of atmospheric muons with ALICE detectors

    International Nuclear Information System (INIS)

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  7. The ATLAS pixel detector

    OpenAIRE

    Cristinziani, M.

    2007-01-01

    After a ten years planning and construction phase, the ATLAS pixel detector is nearing its completion and is scheduled to be integrated into the ATLAS detector to take data with the first LHC collisions in 2007. An overview of the construction is presented with particular emphasis on some of the major and most recent problems encountered and solved.

  8. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  9. Performance of ALICE silicon tracker detector

    CERN Document Server

    Luparello, G

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is the LHC experiment devoted to the study of the strong interacting matter created in heavy-ion collisions. The ALICE Inner Tracking System (ITS) consists of six layers of silicon detectors exploiting three different technologies: pixel, drift and strip (from inside to outside). It covers the central pseudorapidity range, j h j < 0 : 9, and its distance from the beam line ranges from r = 3 : 9 cm for the innermost pixel layer up to r = 43 cm for the outermost strip layer. The main tasks of the ITS are to reconstruct the primary and secondary vertices, to track and identify charged particles with a low- p T cutoff and to improve the momentum resolution at high p T . During the operations, the ITS has demonstrated its tracking and vertexing capabilities, which are in excellent agreement with the design values. In these proceedings, after a brief description of the features of the system, the performance during the first three years of data taking at LHC will be presen...

  10. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  11. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  12. Gallium arsenide pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R.; DaVia, C.; O`Shea, V.; Raine, C.; Smith, K. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Campbell, M.; Cantatore, E.; Heijne, E.M.; Middelkamp, P.; Ropotar, I.; Scharfetter, L.; Snoeys, W. [CERN, ECP Div., CH-1211 Geneva 23 (Switzerland); D`Auria, S.; Papa, C. del [Department of Physics, University of Udine and INFN Trieste, Via delle Scienze 208, I-33100 Udine (Italy); RD8 Collaboration

    1998-06-01

    GaAs detectors can be fabricated with bidimensional single-sided electrode segmentation. They have been successfully bonded using flip-chip technology to the Omega-3 silicon read-out chip. We present here the design features of the GaAs pixel detectors and results from a test performed at the CERN SpS with a 120 GeV {pi}{sup -} beam. The detection efficiency was 99.2% with a nominal threshold of 5000 e{sup -}. (orig.) 10 refs.

  13. Microstrip detector for the ALICE experiment

    CERN Multimedia

    Laurent Guiraud

    1996-01-01

    This photo shows a close up of one of the silicon microstrip detectors that will be installed on the ALICE experiment at the LHC. 1698 double-sided modules of these silicon microstrips will be installed in the two outermost layers of the ALICE inner tracking system. The microstrips have to be specially designed to withstand the high resolution levels at the heart of the detector.

  14. ... ALICE forges ahead with further detectors

    CERN Multimedia

    2006-01-01

    Following the installation of the HMPID, the project has progressed swiftly with further detectors being lowered into the ALICE cavern. The first supermodule of the ALICE transition radiation detector was successfully installed on 10 October. The TRD collaborators from Germany standing next to the supermodule mounted in a rotating frame (bottom left corner) in the ALICE cavern. In the final configuration, 18 supermodules that make up the transition radiation detector will cylindrically surround the large time projection chamber in the central barrel of the ALICE experiment. Each supermodule is about 7 metre long and consists of 30 drift chambers in six layers. The construction of the modules is a collaboration between five institutes in Germany (Universities of Frankfurt and Heidelberg and Gesellschaft fuer Schwerionenforschung mbH in Darmstadt), Romania (NIPNE Bucharest) and Russia (JINR Dubna) with radiators (See 'Did you know?' section) produced at the University of Muenster, Germany. During the summer, ...

  15. On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC.

    CERN Multimedia

    Manzari, Vito

    2008-01-01

    On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC

  16. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  17. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  18. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  19. First detector installed inside the ALICE solenoid...

    CERN Multimedia

    2006-01-01

    ALICE's emblematic red magnet welcomed its first detector on 23 September, when the array of seven Cherenkov detectors, named HMPID, was successfully installed. ALICE team members standing in front of the completed HMPID detector.The red magnet, viewed from its front opening. The HMPID unit, seen from the back (top right corner of photo) is placed on a frame and lifted onto a platform during the installation. After the installation of the ACORDE scintillator array and the muon trigger and tracking chambers, the ALICE collaboration fitted the first detector inside the solenoid. The HMPID, for High Momentum Particle Identification, was installed at the 2 o'clock position in the central and most external region of the space frame, just below the solenoid yoke. It will be used to extend the hadron identification capability of the ALICE experiment up to 5 GeV/c, thus complementing the reach of the other particle identification systems (ITS, TPC and TOF). The HMPID is a Ring Imaging Cherenkov (RICH) detector in a...

  20. ALICE Detector Status and Commissioning

    OpenAIRE

    Gustafsson, Hans-Ake

    2007-01-01

    The Large Hadron Collider (LHC) will start operation in the end of 2007 colliding proton and lead beams at \\surd S = 14 TeV and \\surd S_{NN} = 5.5 TeV, respectively. The accelerator and the experiments are under construction and detailed studies of the physics program are being prepared. I will in this paper review the current status of the ALICE experiment and the heavy ion physics aspects that are unique at LHC.

  1. Pixel readout chips in deep submicron CMOS for ALICE and LHCb tolerant to 10 mrad and beyond

    CERN Document Server

    Snoeys, W; Campbell, M; Cantatore, E; Cencelli, V; Dinapoli, R; Heijne, Erik H M; Jarron, Pierre; Lamanna, P; Minervini, D; Morel, M; O'Shea, V; Quiquempoix, V; San Segundo-Bello, D; Van Koningsveld, B; Wyllie, Ken H

    2001-01-01

    The ALICE1LHCB chip is a mixed-mode integrated circuit designed to read out silicon pixel detectors for two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 mu m *425 mu m pixel cells in the 256*32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32*32 array of 300 mu m x 425 mu m cells. Radiation tolerance was enhanced through special circuit layout. Sensitivity to coupling of digital signals into the analog front end was minimized. System issues such as testability and uniformity further constrained the design. The circuit is currently being manufactured in a commercial 0.25 mu m CMOS technology. (28 refs).

  2. Characteristics of the ALICE Silicon Drift Detector

    International Nuclear Information System (INIS)

    A Silicon Drift Detector (SDD) with an active area of 7.0x7.5 cm2 has been designed, produced and tested for the ALICE Inner Tracking System. The development of the SDD has been focused on the capability of the detector to work without an external support to the integrated high-voltage divider. Several features have been implemented in the design in order to increase the robustness and the long-term electrical stability of the detector. One of the prototypes has been tested in a pion beam at the CERN SPS. Preliminary results on the position resolution are given

  3. More Than ALICE: Development of an augmented reality mobile application for the ALICE detector

    CERN Document Server

    Ouellette, Jeff

    2016-01-01

    More Than ALICE is a mobile application for iOS and Android built in the Unity Engine. This project concerns the development of the second edition of the application, which is meant to completely succeed the original version built in 2014. The purpose of the application is to describe the various components of the ALICE detector and to overlay live collisions to increase public awareness for the research goals of the ALICE collaboration. The application provides an augmented reality (AR) interface via the Vuforia SDK to track images of the ALICE detector or components of the paper model of ALICE that can be purchased at the ALICE secretariat office. For those without access to either images of the detector or the detector model, the app provides a virtual detector model (VR) that contains the same functionality as the augmented reality.

  4. Silicon pad detectors for ALICE forward calorimeter

    International Nuclear Information System (INIS)

    A newly designed Electromagnetic Calorimeter (EMC) is being proposed as a possible upgrade in the Forward rapidity region, to enhance the physics capabilities of the ALICE experiment at CERN. Each LHC experiment uses a unique approach, in which preference of the designers and the physics requirements has played a decisive role. The requirement of the design of the calorimeter is to have highly granular layers of detectors consisting of 1 mm2 as well as 1 cm2 silicon pad detectors. The high granular layers (1 mm2) yield good position resolution and tracking of incoming particles. Other active layers, composed of pads of 1 cm2 are used for energy measurement

  5. MISTRAL & ASTRAL: two CMOS Pixel Sensor architectures suited to the Inner Tracking System of the ALICE experiment

    Science.gov (United States)

    Morel, F.; Hu-Guo, C.; Bertolone, G.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Fang, X.; Goffe, M.; Himmi, A.; Jaaskelainen, K.; Senyukov, S.; Specht, M.; Szelezniak, M.; Pham, H.; Valin, I.; Wang, T.; Winter, M.

    2014-01-01

    A detector, equipped with 50 μm thin CMOS Pixel Sensors (CPS), is being designed for the upgrade of the Inner Tracking System (ITS) of the ALICE experiment at LHC. Two CPS flavours, MISTRAL and ASTRAL, are being developed at IPHC aiming to meet the requirements of the ITS upgrade. The first is derived from the MIMOSA28 sensor designed for the STAR-PXL detector. The second integrates a discriminator in each pixel to improve the readout speed and power consumption. This paper will describe in details the sensor development and show some preliminary test results.

  6. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    CERN Document Server

    Cavicchioli, C; Giubilato, P; Hillemanns, H; Junique, A; Kugathasan, T; Mager, M; Marin Tobon, C A; Martinengo, P; Mattiazzo, S; Mugnier, H; Musa, L; Pantano, D; Rousset, J; Reidt, F; Riedler, P; Snoeys, W; Van Hoorne, J W; Yang, P

    2014-01-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (~0.3%X0~0.3%X0 in total for each inner layer) and higher granularity (View the MathML source~20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity View the MathML source(ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge c...

  7. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  8. The ALICE silicon strip detector system

    CERN Document Server

    Kuijer, P

    2000-01-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the Large Hadron Collider (LHC) optimized for the study of heavy-ion collisions at a centre-of-mass energy of 5.5 TeV per nucleon. The detector consists essentially of two main components: the central part, composed of detectors mainly devoted to the study of hadronic signals and dielectrons, and the forward muon spectrometer devoted to the study of quarkonia behaviour in dense matter. The central part, which covers +-45 deg. (|eta|<0.9) over the full azimuth, is embedded in a large magnet with a weak solenoidal field. Outside of the Inner Tracking System (ITS), there are a cylindrical TPC and a large area PID array of time-of-flight (TOF) counters. In addition, there are two small-area single-arm detectors: an electromagnetic calorimeter (Photon Spectrometer, PHOS) and an array of RICH counters optimized for high-momentum inclusive particle identification (HMPID). This article describes the silicon strip detector system used in the outer layers o...

  9. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Cavicchioli, C., E-mail: costanza.cavicchioli@cern.ch [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Chalmet, P.L. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Giubilato, P. [Università and INFN, Padova (Italy); Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Marin Tobon, C.A. [Valencia Polytechnic University, Valencia (Spain); Martinengo, P. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Mattiazzo, S. [Università and INFN, Padova (Italy); Mugnier, H. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Musa, L. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Pantano, D. [Università and INFN, Padova (Italy); Rousset, J. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Reidt, F. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg (Germany); Riedler, P.; Snoeys, W. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Van Hoorne, J.W. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Technische Universitaet Wien, Vienna (Austria); Yang, P. [Central China Normal University CCNU, Wuhan (China)

    2014-11-21

    Within the R and D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (∼0.3%X{sub 0} in total for each inner layer) and higher granularity (∼20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a {sup 55}Fe X-ray source and 1–5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.

  10. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    International Nuclear Information System (INIS)

    Within the R and D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (∼0.3%X0 in total for each inner layer) and higher granularity (∼20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55Fe X-ray source and 1–5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented

  11. VHMPID: a new detector for the ALICE experiment at LHC

    Directory of Open Access Journals (Sweden)

    Perini D.

    2011-04-01

    Full Text Available This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  12. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  13. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  14. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  15. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  16. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  17. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  18. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  19. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  20. Test Results of the ALICE-HMPID Detector Commissioning

    CERN Document Server

    Volpe, G

    2008-01-01

    The ALICE High Momentum Particle Identification Detector (HMPID) consists of seven identical proximity focusing RICH counters. It covers in total 11 m2, exploiting large area CsI photocathodes for Cherenkov light imaging. The detector is installed in the ALICE solenoid, ready for the data acquisition. By means of the Detector Control System, the Front-end (FEE) and the Readout (R/O) electronics, the MWPC high voltages, the cooling and the gas system have been tested. The HMPID module gas pressure, temperature, current and voltage trends have been monitored and archived in the ORACLE database. In this paper a comprehensive review on the test results is presented.

  1. Development of SOI pixel detector in Cracow

    OpenAIRE

    Bugiel, Szymon; Dasgupta, Roma; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for t...

  2. TFA pixel sensor technology for vertex detectors

    OpenAIRE

    Jarron, P.; Moraes, D.; Despeisse, M.; Dissertori, G.; Dunand, S.; Kaplon. J.; Miazza, C.; Shah, Arvind; Viertel, G M.; Wyrsch, Nicolas

    2008-01-01

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS)...

  3. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A; Spiriti, E; Baudot, J; Claus, G; Goffe, M; Winter, M

    2016-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  4. Development and characterisation of Monolithic Active Pixel Sensor prototypes for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Collu, Alberto

    ALICE (A Large Ion Collider Experiment) is dedicated to the study and characterisation of the Quark-­‐Gluon Plasma (QGP), exploiting the unique potential of ultrarelativistic heavy-­‐ion collisions at the CERN Large Hadron Collider (LHC). The increase of the LHC luminosity leading up to about 50 kHz Pb-­‐Pb interaction rate after the second long shutdown (in 2018-­‐2019) will offer the possibility to perform high precision measurements of rare probes over a wide range of momenta. These measurements are statistically limited or not even possible with the present experimental set up. For this reason, an upgrade strategy for several ALICE detectors is being pursued. In particular, it is foreseen to replace the Inner Tracking System (ITS) by a new detector which will significantly improve the tracking and vertexing capabilities of ALICE in the upgrade scenario. The new ITS will have a barrel geometry consisting of seven layers of Monolithic Active Pixel Sensors (MAPS) with high granularity, which will...

  5. Overview of the BTeV Pixel Detector

    International Nuclear Information System (INIS)

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current RandD on detector components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 (micro)m with the ± 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the Bs meson decay Bs → Ds- K+. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the Bs decay point and the primary proton-antiproton interaction can be measured with an rms

  6. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  7. Development of SOI pixel detector in Cracow

    CERN Document Server

    Bugiel, Szymon; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for time and amplitude measurements. In addition the design of a Successive Approximation Register Analog-to-Digital Converter (SAR ADC) is also presented. A 10-bit SAR ADC is developed for spectroscopic measurements and a lower resolution 6-bit SAR ADC is integrated in the pixel matrix as a column ADC, for tracking applications.

  8. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  9. Hybrid pixel detector development for medical radiography

    International Nuclear Information System (INIS)

    A 7-year project has been initiated to develop hybrid pixel detectors for medical radiography. Crystalline semiconductor will be bonded to a pixellated readout chip where individual integrated circuits process each event, transferring the position, energy and timing information to the data acquisition controller. Chips will be tiled to produce a large area detector, capable of energy dispersive photon counting at moderate spatial resolution. Preliminary results from studies examining the design features and operation of the device are presented

  10. Managing Infrastructure in the ALICE Detector Control System

    CERN Document Server

    Lechman, M; Bond, P M; Chochula, P.Ch; Kurepin, A N; Pinazza, O; Rosinsky, P; Kurepin, A N; Pinazza, O

    2014-01-01

    The main role of the ALICE Detector Control System (DCS) is to ensure safe and efficient operation of one of the large high energy physics experiments at CERN. The DCS design is based on the commercial SCADA software package WinCC Open Architecture.

  11. Overview of the CMS Pixel Detector

    CERN Document Server

    Cerati, Giuseppe B

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2009. It will investigate the proton-proton collisions at $14~TeV$. A robust tracking combined with a precise vertex reconstruction is crucial to address the physics challenge of proton collisions at this energy. To this extent an all-silicon tracking system with very fine granularity has been built and now is in the final commissioning phase. It represents the largest silicon tracking detector ever built. The system is composed by an outer part, made of micro-strip detectors, and an inner one, made of pixel detectors. The pixel detector consists of three pixel barrel layers and two forward disks at each side of the interaction region. Each pixel sensor, both for the barrel and forward detectors, has $100 \\times 150$ $\\mu m^2$ cells for a total of 66 million pixels covering a total area of about $1~m^2$. The pixel detector will play a crucial role in the pattern recognition and the track reconstruction both...

  12. Pixel Hit Reconstruction with the CMS Detector

    CERN Document Server

    Giurgiu, Gavril; Maksimovic, P; Swartz, M

    2008-01-01

    We present a new technique for pixel hit reconstruction with the CMS pixel detector. The technique is based on fitting the pixel cluster projections to templates obtained using a detailed simulation called Pixelav. Pixelav successfully describes the profiles of clusters measured in beam tests of radiation-damaged sensors. Originally developed to optimally estimate the coordinates of hits after the radiation damage, the technique has superior performance before irradiation as well, reducing the resolution tails of reconstructed track parameters and significantly reducing the light quark background of tagged b-quarks. It is the only technique currently available to simulate hits from a radiation-damaged detector.

  13. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  14. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    Science.gov (United States)

    Mager, M.

    2016-07-01

    A new 10 m2 inner tracking system based on seven concentric layers of Monolithic Active Pixel Sensors will be installed in the ALICE experiment during the second long shutdown of LHC in 2019-2020. The monolithic pixel sensors will be fabricated in the 180 nm CMOS Imaging Sensor process of TowerJazz. The ALPIDE design takes full advantage of a particular process feature, the deep p-well, which allows for full CMOS circuitry within the pixel matrix, while at the same time retaining the full charge collection efficiency. Together with the small feature size and the availability of six metal layers, this allowed a continuously active low-power front-end to be placed into each pixel and an in-matrix sparsification circuit to be used that sends only the addresses of hit pixels to the periphery. This approach led to a power consumption of less than 40 mWcm-2, a spatial resolution of around 5 μm, a peaking time of around 2 μs, while being radiation hard to some 1013 1 MeVneq /cm2, fulfilling or exceeding the ALICE requirements. Over the last years of R & D, several prototype circuits have been used to verify radiation hardness, and to optimize pixel geometry and in-pixel front-end circuitry. The positive results led to a submission of full-scale (3 cm×1.5 cm) sensor prototypes in 2014. They are being characterized in a comprehensive campaign that also involves several irradiation and beam tests. A summary of the results obtained and prospects towards the final sensor to instrument the ALICE Inner Tracking System are given.

  15. Computing Architecture of the ALICE Detector Control System

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    The ALICE Detector Control System (DCS) is based on a commercial SCADA product, running on a large Windows computer cluster. It communicates with about 1200 network attached devices to assure safe and stable operation of the experiment. In the presentation we focus on the design of the ALICE DCS computer systems. We describe the management of data flow, mechanisms for handling the large data amounts and information exchange with external systems. One of the key operational requirements is an intuitive, error proof and robust user interface allowing for simple operation of the experiment. At the same time the typical operator task, like trending or routine checks of the devices, must be decoupled from the automated operation in order to prevent overload of critical parts of the system. All these requirements must be implemented in an environment with strict security requirements. In the presentation we explain how these demands affected the architecture of the ALICE DCS.

  16. Computing architecture of the ALICE detector control system

    International Nuclear Information System (INIS)

    The ALICE Detector Control System (DCS) is based on a commercial SCADA product, running on a large Windows computer cluster. It communicates with about 1200 network attached devices to assure safe and stable operation of the experiment. In the presentation we focus on the design of the ALICE DCS computer systems. We describe the management of data flow, mechanisms for handling the large data amounts and information exchange with external systems. One of the key operational requirements is an intuitive, error proof and robust user interface allowing for simple operation of the experiment. At the same time the typical operator task, like trending or routine checks of the devices, must be decoupled from the automated operation in order to prevent overload of critical parts of the system. All these requirements must be implemented in an environment with strict security requirements. In the presentation we explain how these demands affected the architecture of the ALICE DCS. (authors)

  17. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  18. High efficiency pixellated CdTe detector

    International Nuclear Information System (INIS)

    Position sensitive detectors constructed from compound semiconductors (CdTe, CdZnTe, HgI2) are being developed for a variety of applications where high sensitivity and improved energy resolution are significant advantages over scintillator or gas based systems. We have investigated the possibility of using a CdTe detector array in a SPECT gamma camera that would require a high efficiency at 140 keV. The problem of worsening photopeak efficiencies in thick detectors (due to incomplete charge collection) makes it difficult to maintain a high efficiency which, ironically, is the primary reason for choosing a thicker detector. Recent research has shown that following a simple geometrical design criterion can greatly reduce this deleterious effect. This paper reports on the results from a small prototype pixellated array fabricated using this design. We verify the 'small pixel effect' for a detector thickness and pixel size significantly larger than those used in most other work. A 9-element detector (1 x 1 mm pixels, 4 mm thick) has been fabricated and characterized in terms of energy resolution, peak-to-valley ratio and detection efficiency. Testing of the detector in a fast pulse mode to obtain its high count rate response has also been performed. (orig.)

  19. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    International Nuclear Information System (INIS)

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented

  20. Studies on monolithic active pixel sensors for the Inner Tracking System upgrade of ALICE experiment

    OpenAIRE

    Aimo, Ilaria

    2015-01-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC. It is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using nucleus- nucleus collisions at unprecedented energy densities. One of the major goals of the ALICE physics program is the study of rare probes at low transverse momentum. The reconstruction of the rare probes requires a precise determination of the primary an...

  1. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  2. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  3. Development of a CMOS SOI pixel detector

    CERN Document Server

    Ishino, Hirokazu; Hazumi, M; Ikegami, Y; Kohriki, T; Tajima, O; Terada, S; Tsuboyama, T; Unno, Y; Ushiroda, Y; Ikeda, H; Hara, K; Ishino, H; Kawasaki, T; Miyake, H; Martin, E; Varner, G; Tajima, H; Ohno, M; Fukuda, K; Komatsubara, H; Ida, J

    2007-01-01

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 m fullydepleted- SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5mm2 consisting of 20 x 20 um2 pixels have been designed and manufactured. Performance tests with a laser light illumination and a . ray radioactive source indicate successful operation of the detector. We also brie y discuss the back gate effect as well as the simulation study.

  4. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  5. Commissioning the CMS pixel detector with Cosmic Rays

    CERN Document Server

    Heyburn, Bernadette

    2009-01-01

    commissioning activities in the CMS pixel detector. Results from cosmic ray studies will be presented, in addition to results obtained from the integration of the pixel detector within the CMS detector and various calibration and alignment analyses.

  6. Charge sharing in silicon pixel detectors

    CERN Document Server

    Mathieson, K; Seller, P; Prydderch, M L; O'Shea, V; Bates, R L; Smith, K M; Rahman, M

    2002-01-01

    We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13-36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 mu m square, 300 mu m deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 mu m.

  7. Commissioning of the ATLAS Pixel Detector

    OpenAIRE

    Golling, Tobias; ATLAS Collaboration

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and su...

  8. Optical Link of the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2007-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the irradiation studies with 24 GeV protons up to 32 Mrad (1.2 x 10^15 p/cm^2) and the experience from the production.

  9. Electrical characteristics of silicon pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gorelov, I.; Gorfine, G.; Hoeferkamp, M.; Mata-Bruni, V.; Santistevan, G.; Seidel, S.C. E-mail: seidel@dot.phys.unm.edu; Ciocio, A.; Einsweiler, K.; Emes, J.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Marchesini, R.; McCormack, F.; Milgrome, O.; Palaio, N.; Pengg, F.; Richardson, J.; Zizka, G.; Ackers, M.; Comes, G.; Fischer, P.; Keil, M.; Martinez, G.; Peric, I.; Runolfsson, O.; Stockmanns, T.; Treis, J.; Wermes, N.; Goessling, C.; Huegging, F.; Klaiber-Lodewigs, J.; Krasel, O.; Wuestenfeld, J.; Wunstorf, R.; Barberis, D.; Beccherle, R.; Caso, C.; Cervetto, M.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Netchaeva, P.; Osculati, B.; Rossi, L.; Charles, E.; Fasching, D.; Blanquart, L.; Breugnon, P.; Calvet, D.; Clemens, J.-C.; Delpierre, P.; Hallewell, G.; Laugier, D.; Mouthuy, T.; Rozanov, A.; Valin, I.; Andreazza, A.; Caccia, M.; Citterio, M.; Lari, T.; Meroni, C.; Ragusa, F.; Troncon, C.; Vegni, G.; Lutz, G.; Richter, R.H.; Rohe, T.; Boyd, G.R.; Skubic, P.L.; Sicho, P.; Tomasek, L.; Vrba, V.; Holder, M.; Ziolkowski, M.; Cauz, D.; Cobal-Grassmann, M.; D' Auria, S.; De Lotto, B.; Del Papa, C.; Grassmann, H.; Santi, L.; Becks, K.H.; Lenzen, G.; Linder, C

    2002-08-21

    Prototype sensors for the ATLAS silicon pixel detector have been electrically characterized. The current and voltage characteristics, charge-collection efficiencies, and resolutions have been examined. Devices were fabricated on oxygenated and standard detector-grade silicon wafers. Results from prototypes which examine p-stop and standard and moderated p-spray isolation are presented for a variety of geometrical options. Some of the comparisons relate unirradiated sensors with those that have received fluences relevant to LHC operation.

  10. Experiences and evolutions of the ALICE DAQ Detector Algorithms framework

    International Nuclear Information System (INIS)

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The 18 ALICE sub-detectors are regularly calibrated in order to achieve most accurate physics measurements. Some of these procedures are done online in the DAQ (Data Acquisition System) so that calibration results can be directly used for detector electronics configuration before physics data taking, at run time for online event monitoring, and offline for data analysis. A framework was designed to collect statistics and compute calibration parameters, and has been used in production since 2008. This paper focuses on the recent features developed to benefit from the multi-cores architecture of CPUs, and to optimize the processing power available for the calibration tasks. It involves some C++ base classes to effectively implement detector specific code, with independent processing of events in parallel threads and aggregation of partial results. The Detector Algorithm (DA) framework provides utility interfaces for handling of input and output (configuration, monitored physics data, results, logging), and self-documentation of the produced executable. New algorithms are created quickly by inheritance of base functionality and implementation of few ad-hoc virtual members, while the framework features are kept expandable thanks to the isolation of the detector calibration code. The DA control system also handles unexpected processes behaviour, logs execution status, and collects performance statistics.

  11. TFA pixel sensor technology for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jarron, P. [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: Pierre.Jarron@cern.ch; Moraes, D. [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: Danielle.Moraes@cern.ch; Despeisse, M. [CERN, CH-1211 Geneva 23 (Switzerland); Dissertori, G. [ETH-Zurich, CH-8093 Zurich (Switzerland); Dunand, S. [IMT, Rue A.-L. Breguet 2, CH-2000 Neuchatel (Switzerland); Kaplon, J. [CERN, CH-1211 Geneva 23 (Switzerland); Miazza, C. [IMT, Rue A.-L. Breguet 2, CH-2000 Neuchatel (Switzerland); Shah, A. [IMT, Rue A.-L. Breguet 2, CH-2000 Neuchatel (Switzerland); Viertel, G.M. [ETH-Zurich, CH-8093 Zurich (Switzerland); Wyrsch, N. [IMT, Rue A.-L. Breguet 2, CH-2000 Neuchatel (Switzerland)

    2006-05-01

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS) devices. We present results obtained with a-Si:H sensor films deposited on a glass substrate and on ASIC, including the radiation hardness of this material up to a fluence of 3.5x10{sup 15} p/cm{sup 2}.

  12. TFA pixel sensor technology for vertex detectors

    International Nuclear Information System (INIS)

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS) devices. We present results obtained with a-Si:H sensor films deposited on a glass substrate and on ASIC, including the radiation hardness of this material up to a fluence of 3.5x1015 p/cm2

  13. Measurements of quarkonia with the central detectors of ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Wolfgang

    2008-03-26

    The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector. (orig.)

  14. Measurements of quarkonia with the central detectors of ALICE

    International Nuclear Information System (INIS)

    The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector. (orig.)

  15. Development of silicon micropattern pixel detectors

    International Nuclear Information System (INIS)

    Successive versions of high speed, active silicon pixel detectors with integrated readout electronics have been developed for particle physics experiments using monolithic and hybrid technologies. Various matrices with binary output as well as a linear detector with analog output have been made. The hybrid binary matrix with 1024 cells (dimension 75 μmx500 μm) can capture events at similar 5 MHz and a selected event can then be read out in 109Cd source a noise level of 170 e-r.m.s. (1.4 keV fwhm) has been measured with a threshold non-uniformity of 750 e- r.m.s. Objectives of the development work are the increase of the size of detecting area without loss of efficiency, the design of an appropriate readout architecture for collider operation, the reduction of material thickness in the detector, understanding of the threshold non-uniformity, study of the sensitivity of the pixel matrices to light and low energy electrons for scintillating fiber detector readout and last but not least, the optimization of cost and yield of the pixel detectors in production. ((orig.))

  16. SOIKID, SOI pixel detector combined with superconducting detector KID

    CERN Document Server

    Ishino, Hirokazu; Kida, Yosuke; Yamada, Yousuke

    2015-01-01

    We present the development status of the SOIKID, a detector combining the SOI pixel detector and the superconducting detector KID (Kinetic Inductance Detector). The aim of the SOIKID is to measure X-ray photon energy with the resolution better than that of the semiconductor detector. The silicon substrate is used as the X-ray photon absorber. The recoiled electron creates athermal phonons as well as the ionizing electron-hole pairs. The KID formed at one side of the substrate surface detects the phonons to measure the total energy deposited, while the SOI pixel detector formed on the other side of the substrate detects the ionized carries to measure the position. Combining the position and energy measurements, it is in principle possible to have the extremely high energy resolution.

  17. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  18. The Belle II DEPFET pixel detector

    International Nuclear Information System (INIS)

    The Japanese flavour factory (KEKB) accumulated a total integrated luminosity of 1000 fb-1 over more than a decade of operation. Despite this great success, an upgrade of the existing machine is under construction, and is foreseen for commissioning by the end of 2015. This new electron-positron machine (SuperKEKB) will deliver an instantaneous luminosity 40 times higher than the world record set by KEKB. To fully exploit the huge number of events and measure precisely the decay vertex of the B mesons in a large background environment, the SuperKEKB partner, the Belle detector, will be also upgraded. In the Belle II project, a highly granular silicon vertex detector (PXD) based on the DEPFET pixel technology, will be the innermost subsystem, operated very close to the interaction point. The new pixel detector has to have an excellent single point resolution (10 μm) and a fast readout (20 μs), while keeping the material budget under very low levels (0.2% X0). This talk summarizes the Belle II pixel detector concept, from the DEPFET sensor to the laboratory tests results, all the way up the electronics chain, the DAQ system and the cooling concept.

  19. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    Science.gov (United States)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  20. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    International Nuclear Information System (INIS)

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R and D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision

  1. Readout architecture of the CMS pixel detector

    CERN Document Server

    Baur, R

    2001-01-01

    In this paper we describe the readout architecture of the CMS pixel chip. In column drain architecture the complex tasks of data buffering and trigger verification are performed in the circuit periphery. This allows to use a rather simple pixel unit cell which requires only a small number of transistors. The column periphery logic is designed for readout and trigger rates expected for full LHC luminosity. At LHC the high particle flux can create single event upsets in the readout chips. At small radii the upsets of logic cells could severely affect the performance of the pixel detector readout. We have therefore performed a measurement of the upset rate at the PSI pion beam and describe the consequences for the design of the readout chip. (5 refs).

  2. Development of gem based detector for ALICE TPC

    International Nuclear Information System (INIS)

    The goal of A Large Ion Collider Experiment (ALICE) at Large Hadron Collider (LHC) is to study matter at highly extreme condition. The main detector of ALICE experiment is Time Projection Chamber (TPC), which is used for charged particle tracking and identification. The present ALICE TPC readout is based on Multi Wire Proportional Chamber (MWPC). The readout chambers are operated with an active bipolar Gating Grid (GG), which, in the presence of a trigger, switches to transparent mode to allow the ionization electrons to pass into the amplification region. However, operation of the TPC at high interaction rate (50 kHz) cannot be accomplished with an active ion-gating scheme. The back-drifting ions from the amplification region of a MWPC without gate will lead to excessive ion charge densities and drift distortions that render precise space-point measurements impossible. Therefore there is a proposal to replace existing MWPC-based readout chambers by a multi-stage GEM system

  3. Heavy-flavor production in LHC pp interactions using the ALICE detector

    International Nuclear Information System (INIS)

    Measurements of charm and beauty production in pp collisions, using the ALICE detector system, at LHC energies (√(s)=2.76 and 7.0 TeV) can test perturbative QCD down to very low Björken-x. They are also critical as a reference to ALICE's heavy ion program. The ALICE detector system allows measurements not covered by the other LHC experiments in addition to covering complementary regions. A description of the ALICE detector system, in relation to ATLAS and CMS, are presented. Results from both leptonic and hadronic decay channels will be shown along with comparisons to other measurements when available

  4. Radiation Experience with the CMS Pixel Detector

    CERN Document Server

    Veszpremi, Viktor

    2015-01-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3~cm and 30~cm in radius and 46.5~cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC. Leakage current, depletion voltage, pixel read-out thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  5. Radiation experience with the CMS pixel detector

    Science.gov (United States)

    Veszpremi, V.

    2015-04-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3 cm and 30 cm in radius and 46.5 cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC . Leakage current, depletion voltage, pixel readout thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  6. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  7. Electric performance of the ALICE Silicon Drift Detector irradiated with 1 GeV electrons

    CERN Document Server

    Piemonte, C; Rashevsky, A; Vacchi, A; Wheadon, R

    2002-01-01

    The final version of the ALICE Silicon Drift Detector was irradiated with 1 GeV electrons at the LINAC of the Synchrotron 'Elettra' in Trieste. The electron fluence was equivalent to the total particle fluence expected during 10 years of ALICE operation as far as the bulk damage is concerned. The anode current, the voltage distribution on the integrated divider, and the operation of the MOS injectors were tested. The detector was found to be sufficiently radiation hard for the ALICE experiment.

  8. Characterization of the CMS pixel detectors

    OpenAIRE

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors a...

  9. Optical links for the ATLAS Pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  10. optical links for the atlas pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  11. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  12. The upgrade of the ALICE Inner Tracking System - Status of the R&D; on monolithic silicon pixel sensors

    CERN Document Server

    Van Hoorne, Jacobus Willem

    2014-01-01

    s a major part of its upgrade plans, the ALICE experiment schedules the installation of a novel Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC in 2018/19. It will replace the present silicon tracker with seven layers of Monolithic Active Pixel Sensors (MAPS) and significantly improve the detector performance in terms of tracking and rate capabilities. The choice of technology has been guided by the tight requirements on the material budget of 0 : 3 % X = X 0 /layer for the three innermost layers and backed by the significant progress in the field of MAPS in recent years. The pixel chips are manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Within the ongoing R&D; phase, several sensor chip prototypes have been developed and produced on different epitaxial layer thicknesses and resistivities. These chips are being characterized for their performance before and after irradiation using source tests, test beam and measu...

  13. Managing operational documentation in the ALICE Detector Control System

    International Nuclear Information System (INIS)

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneve, Switzerland. The experiment is composed of 18 sub-detectors controlled by an integrated Detector Control System (DCS) that is implemented using the commercial SCADA package PVSSII. The DCS includes over 1200 network devices, over 1,000,000 monitored parameters and numerous custom made software components that are prepared by over 100 developers from all around the world. This complex system is controlled by a single operator via a central user interface. One of his/her main tasks is the recovery of anomalies and errors that may occur during operation. Therefore, clear, complete and easily accessible documentation is essential to guide the shifter through the expert interfaces of different subsystems. This paper describes the idea of the management of the operational documentation in ALICE using a generic repository that is built on a relational database and is integrated with the control system. The experience gained and the conclusions drawn from the project are also presented.

  14. Managing operational documentation in the ALICE Detector Control System

    Science.gov (United States)

    Lechman, M.; Augustinus, A.; Bond, P.; Chochula, P.; Kurepin, A.; Pinazza, O.; Rosinsky, P.

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneve, Switzerland. The experiment is composed of 18 sub-detectors controlled by an integrated Detector Control System (DCS) that is implemented using the commercial SCADA package PVSSII. The DCS includes over 1200 network devices, over 1,000,000 monitored parameters and numerous custom made software components that are prepared by over 100 developers from all around the world. This complex system is controlled by a single operator via a central user interface. One of his/her main tasks is the recovery of anomalies and errors that may occur during operation. Therefore, clear, complete and easily accessible documentation is essential to guide the shifter through the expert interfaces of different subsystems. This paper describes the idea of the management of the operational documentation in ALICE using a generic repository that is built on a relational database and is integrated with the control system. The experience gained and the conclusions drawn from the project are also presented.

  15. ALICE honours industries

    CERN Document Server

    2006-01-01

    The third annual ALICE Awards ceremony recognizes three companies for their contribution to the experiment's detector. The ALICE Awards winners pictured with CERN Secretary-General, Maximilian Metzger, during the ceremony. Three industries were honoured at the ALICE Awards ceremony on 17 March for their exceptional work on the collaboration's detector. Representatives from the companies accepted their awards at the ceremony, which was also attended by CERN Secretary-General Maximilian Metzger and members of the ALICE Collaboration Board. VTT Microelectronics of Finland received an award for the production of the thin bump bonded ladders (detector arrays, each consisting of 40 960 active cells) for the silicon pixel detector (SPD) in the inner tracking system. A number of technical hurdles had to be overcome: complex and expensive equipment was procured or upgraded, and processes underwent a detailed study and careful tuning. The ladders have a high and stable yield and the production will soon be completed...

  16. Pseudorapidity Dependence of Anisotropic Azimuthal Flow with the ALICE Detector

    DEFF Research Database (Denmark)

    Hansen, Alexander Colliander

    In ultra-relativistic heavy-ion collisions a new state of matter known as the strongly interacting quark-gluon plasma (sQGP) is produced. A key observable in the study of the sQGP is anisotropic azimuthal ow. The anisotropies are described by ow harmonics, vn. In this thesis, bias arising from non...... Detector and Silicon Pixel Detector at the CERN Large Hadron Collider (LHC). The results are compared to other LHC experiments andprevious experiments at lower collision energies....

  17. Measurement of the charged-particle multiplicity in proton-proton collisions with the ALICE detector

    International Nuclear Information System (INIS)

    This thesis has introduced the theoretical framework to describe multiple-particle production. The functioning of two event generators, Pythia and Phojet, as well as theoretical descriptions of the charged-particle multiplicity have been discussed. A summary of pseudorapidity-density (dNch/dη) and multiplicity-distribution measurements of charged particles has been presented. Existing results have been shown in an energy range of √(s) = 6GeV to 1.8TeV from bubble chamber experiments and detectors at the ISR, Sp anti pS, and Tevatron. The validity of the introduced models was reviewed and the behavior as function of √(s) was discussed. Analysis procedures for two basic measurements with ALICE, the pseudorapidity density and the multiplicity distribution of charged particles, have been developed. The former allows corrections on a bin-by-bin basis, while the latter requires unfolding of the measured distribution. The procedures have been developed for two independent subdetectors of ALICE, the Silicon Pixel Detector (SPD) and the Time-Projection Chamber (TPC). This allows the comparison of the analysis result in the overlapping regions as an independent cross-check of the measured distribution. Their implementation successfully reproduces different assumed spectra. The procedures have been extensively tested on simulated data using two different event generators, Pythia and Phojet. A comprehensive list of systematic uncertainties was evaluated. Some of these uncertainties still require measured data to verify or extract their magnitude. (orig.)

  18. Measurement of the charged-particle multiplicity in proton-proton collisions with the ALICE detector

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Oetringhaus, Jan Fiete

    2009-04-17

    This thesis has introduced the theoretical framework to describe multiple-particle production. The functioning of two event generators, Pythia and Phojet, as well as theoretical descriptions of the charged-particle multiplicity have been discussed. A summary of pseudorapidity-density (dN{sub ch}/d{eta}) and multiplicity-distribution measurements of charged particles has been presented. Existing results have been shown in an energy range of {radical}(s) = 6GeV to 1.8TeV from bubble chamber experiments and detectors at the ISR, Sp anti pS, and Tevatron. The validity of the introduced models was reviewed and the behavior as function of {radical}(s) was discussed. Analysis procedures for two basic measurements with ALICE, the pseudorapidity density and the multiplicity distribution of charged particles, have been developed. The former allows corrections on a bin-by-bin basis, while the latter requires unfolding of the measured distribution. The procedures have been developed for two independent subdetectors of ALICE, the Silicon Pixel Detector (SPD) and the Time-Projection Chamber (TPC). This allows the comparison of the analysis result in the overlapping regions as an independent cross-check of the measured distribution. Their implementation successfully reproduces different assumed spectra. The procedures have been extensively tested on simulated data using two different event generators, Pythia and Phojet. A comprehensive list of systematic uncertainties was evaluated. Some of these uncertainties still require measured data to verify or extract their magnitude. (orig.)

  19. Survey of the ATLAS Pixel Detector Components

    International Nuclear Information System (INIS)

    This document provides a description of the survey performed on different components of the ATLAS Pixel Detector at different stages of its assembly. During the production of the ATLAS pixel detector great care was put in the geometrical survey of the location of the sensitive area of modules. This had a double purpose: (1) to provide a check of the quality of the assembly procedure and assure tolerances in the geometrical assembly were met; and (2) to provide an initial point for the alignment (the so called 'as-built detector'), better than the ideal geometry. Since direct access to the sensitive area becomes more and more difficult with the progress of the assembly, the survey needed to be performed at different stages: after module loading on the local supports (sectors and staves) and after assembly of the local supports in disks or halfshells. Different techniques were used, including both optical 2D and 3D surveys and mechanical survey. This document summarizes the survey procedures, the analysis done on the collected data and how survey data are stored in case they will need to be accessed in the future

  20. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  1. A Preshower Photon Multiplicity Detector for the ALICE Experiment

    CERN Document Server

    Aggarwal, M M; Baba, P V K S; Badyal, S K; Bharti, A; Bhasin, A; Bhati, A K; Bhatia, V S; Chattopadhyay, S; Dubey, A K; Dutta-Majumdar, M R; Mazumdar, K; Ganti, M S; Ghosh, P; Sen-Gupta, A; Gupta, V K; Mahapatra, D P; Mangotra, L K; Mohanty, B; Nayak, T K; Phatak, S C; Raniwala, R; Raniwala, S; Rao, N K; Sambyal, S S; Singaraju, R N; Sinha, B; Trivedi, M D; Viyogi, Y P

    1999-01-01

    A preshower Photon Multiplicity Detector (PMD) is proposed to be implemented in the ALICE experiment to study event shapes and isospin fluctuations. The PMD, to be mounted on the magnet door at 6m from the vertex, has fine granularity and full azimuthal coverage in the pseudo-rapidity region 1.8detector is based on a cellular honeycomb proportional chamber design for both the PMD and the CPV, and has a total of about 2 x 105 cels of 1 cm2 area. The honeycomb walls form a common cathode, operated at a high negative voltage. The signal is read out from the anode wires at ground potential using gassiplex electronics. The detector employs an inert gas mixture of Ar (70%) and CO2 (30%). Beam test results for a small prototype indicate that about 80% of the central volume of the detector has almost uniform efficiency (about 95%) for MIP detection. The average number of cells fired by a MIP is close to uni...

  2. Commissioning the CMS pixel detector with Cosmic Rays

    CERN Document Server

    Heyburn, Bernadette

    2009-01-01

    The Compact Muon Solenoid (CMS) is one of two general purpose experiments at the Large Hadron Collider. The CMS experiment prides itself on an ambitious, all silicon based, tracking system. After almost 20 years of design and construction the CMS tracker detector has been installed and commissioned. The tracker detector consists of ten layers of silicon microstrip detectors while three layers of pixel detector modules are situated closest to the interaction point. The pixel detector consists of 66 million pixels of 100mm 150mm size, and is designed to use the shape of the actual charge distribution of charged particles to gain hit resolutions down to 12mm. This paper will focus on commissioning activities in the CMS pixel detector. Results from cosmic ray studies will be presented, in addition to results obtained from the integration of the pixel detector within the CMS detector and various calibration and alignment analyses.

  3. Background capabilities of pixel detectors for double beta decay measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cermak, Pavel, E-mail: pavel.cermak@utef.cvut.cz [Institute of Experimental and Applied Physics, CTU in Prague, 12800 Prague (Czech Republic); Stekl, Ivan; Bocarov, Viktor; Jose, Joshy M.; Jakubek, Jan; Pospisil, Stanislav [Institute of Experimental and Applied Physics, CTU in Prague, 12800 Prague (Czech Republic); Fiederle, Michael; Fauler, Alex [Freiburger Materialforschungszentrum, Albert-Ludwigs-Universitaet Freiburg, D-79104 Freiburg (Germany); Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, 01069 Dresden (Germany); Loaiza, Pia [Laboratoire Souterrain de Modane, 73500 Modane (France); Shitov, Yuriy [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-05-15

    We discuss the possible use of a progressive detection technique based on pixel detectors for the study of double beta decay ({beta}{beta}) processes. A series of background measurements in various environments (surface laboratory, underground laboratory, with and without Pb shielding) was performed using the TimePix silicon hybrid pixel device. The pixel detector response to the natural background and intrinsic background properties measured by a low-background HPGe detector are presented.

  4. Operational experience with the ATLAS Pixel Detector at the LHC

    Science.gov (United States)

    Lapoire, C.; Atlas Collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy is sufficiently low and hit efficiency exceed the design specification.

  5. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.7% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  6. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  7. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5\\% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, ...

  8. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.8% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  9. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  10. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification.

  11. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lange, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump- bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, a...

  12. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  13. Optimization of transistor size and operating point for the LVDS driver of the ALICE ITS pixel chip

    CERN Document Server

    Froeen, Solveig Marie

    2015-01-01

    The ALICE Inner Tracker System (ITS) will be upgraded during Long Shutdown 2. The tracker layers will be equipped with monolithic pixel sensors chips. A Low Voltage Differential Signalling (LVDS) driver is required for the off chip data transmission. A current mode 1.2 Gb/s LVDS driver based on H-bridge scheme has already been implemented and tested. Although the present driver meets the specifications, a decrease of its power consumption is beneficial for the reduction of the material required for the detector powering and cooling. This report presents the study of a current mode LVDS driver based on H-bridge scheme where the switches are replaced with current sources that can deliver either ON level or OFF level currents. The ON current is the main static power contributor, and its value is set to 4 mA by specifications to have a differential signal of 400 mV over the 100 Ω termination resistor. The second contributor for the static power is the OFF power, which has to be optimized together with the dynami...

  14. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  15. The story of ALICE: Building the dedicated heavy ion detector at LHC

    OpenAIRE

    Fabjan, C.; J. Schukraft

    2011-01-01

    This article documents the main design choices and the close to 20 years of preparation, detector R&D, construction and installation of ALICE, the dedicated heavy ion experiment at the CERN LHC accelerator.

  16. Construction and performance of the ALICE Transition Radiation Detector

    International Nuclear Information System (INIS)

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-pt e+e- pairs within 6.5 μs after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m2. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  17. Construction and performance of the ALICE Transition Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Emschermann, David

    2010-01-20

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-p{sub t} e{sup +}e{sup -} pairs within 6.5 {mu}s after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m{sup 2}. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  18. Test beam results of Silicon Drift Detector prototypes for the ALICE experiment

    International Nuclear Information System (INIS)

    We report preliminary beam test results of linear Silicon Drift Detector prototypes for the ALICE experiment. Linearity, resolution, charge transport and collection, and efficiency have been studied using a minimum ionizing particle beam for a very large area detector prototype read out with the OLA preamplifier/shaper and for another detector read out using a new transimpedance amplifier with a non linear response

  19. Semiconductor Pixel detectors and their applications in life sciences

    International Nuclear Information System (INIS)

    Recent advances in semiconductor technology allow construction of highly efficient and low noise pixel detectors of ionizing radiation. Steadily improving quality of front end electronics enables fast digital signal processing in each pixel which offers recording of more complete information about each detected quantum (energy, time, number of particles). All these features improve an extend applicability of pixel technology in different fields. Some applications of this technology especially for imaging in life sciences will be shown (energy and phase sensitive X-ray radiography and tomography, radiography with heavy charged particles, neutron radiography, etc). On the other hand a number of obstacles can limit the detector performance if not handled. The pixel detector is in fact an array of individual detectors (pixels), each of them has its own efficiency, energy calibration and also noise. The common effort is to make all these parameters uniform for all pixels. However an ideal uniformity can be never reached. Moreover, it is often seen that the signal in one pixel can affect the neighbouring pixels due to various reasons (e.g. charge sharing). All such effects have to be taken into account during data processing to avoid false data interpretation. A brief view into the future of pixel detectors and their applications including also spectroscopy, tracking and dosimetry is given too. Special attention is paid to the problem of detector segmentation in context of the charge sharing effect.

  20. STAR Vertex Detector Upgrade-HFT Pixel Development

    International Nuclear Information System (INIS)

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  1. STAR Vertex Detector Upgrade—HFT Pixel Development

    Science.gov (United States)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo C.; Matis, Howard S.; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James H.; Vu, Chinh Q.; Wieman, Howard H.

    2009-03-01

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  2. Status of the digital pixel array detector for protein crystallography

    CERN Document Server

    Datte, P; Beuville, E; Endres, N; Druillole, F; Luo, L; Millaud, J E; Xuong, N H

    1999-01-01

    A two-dimensional photon counting digital pixel array detector is being designed for static and time resolved protein crystallography. The room temperature detector will significantly enhance monochromatic and polychromatic protein crystallographic through-put data rates by more than three orders of magnitude. The detector has an almost infinite photon counting dynamic range and exhibits superior spatial resolution when compared to present crystallographic phosphor imaging plates or phosphor coupled CCD detectors. The detector is a high resistivity N-type Si with a pixel pitch of 150x150 mu m, and a thickness of 300 mu m, and is bump bonded to an application specific integrated circuit. The event driven readout of the detector is based on the column architecture and allows an independent pixel hit rate above 1 million photons/s/pixel. The device provides energy discrimination and sparse data readout which yields minimal dead-time. This type of architecture allows a continuous (frameless) data acquisition, a f...

  3. Simulation of signal in irradiated silicon pixel detectors

    CERN Document Server

    Kramberger, G

    2003-01-01

    Induced currents in silicon pixel detectors of different geometries were simulated. The general properties of charge collection in irradiated segmented devices were investigated. A significant difference in charge collection efficiency (CCE) between n**+-n and p **+-n detectors was predicted after irradiation to the LHC fluences. A possible use of silicon detectors for the LHC upgrade was investigated by simulation of thin pixel sensors. The reduced CCE due to charge trapping seems to be the largest obstacle for their use.

  4. Calibration/Survey/Alignment studies of STAR HFT Pixel Detector

    Science.gov (United States)

    Ma, Long

    2013-10-01

    As a critical component of the STAR inner tracking detector - Heavy Flavor Tracker (HFT), the pixel detector consists of 10 sectors with 400 million 20x20-micrometer pixels forming the two innermost layers of the HFT at radii of 2.5 and 8 cm, respectively. In Run-13, a three-sector prototype was installed and successfully integrated into STAR. To achieve physics goals of HFT, the alignment calibration of pixel detector to a high precision of ~10 microns is essential. The precision alignment to map out each pixel position within the sector is carried out via a survey measurement utilizing a Coordinate Measurement Machine with a repeatability of a few micrometers. The global position parameters of the pixel sectors with respect to the STAR TPC will be obtained via a track-based alignment method with beam collisions. Particularly, the sensitive area of the pixel detector is designed to have some overlaps in order to complete the relative alignment between sectors using tracks passing through the overlap region. In this presentation, we will present the alignment calibration procedure for the HFT pixel detector. Status of the alignment calibration for the pixel detector prototype in Run-13 will be discussed. for the STAR Collaboration

  5. Small pixel CZT detector for hard X-ray spectroscopy

    Science.gov (United States)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  6. First Proton-Proton Physics with the ALICE detector

    CERN Document Server

    Grosse-Oetringhaus, Jan Fiete

    2008-01-01

    This paper describes the status and plans of first measuremen ts in p+p collisions with ALICE. The first part introduces the ALICE experiment with a focus on the subdetectors that are to be used for first physics. The characteristic features of ALICE, its very low-momentum cut-off, the low material budget and the excellent PID and vertexing capabil ities, that make ALICE an important contributor to LHC physics in the realm of soft QCD, are descr ibed. Subsequently, a selection of measurements that are accessible with data taken in a few d ays to 1–2 weeks are discussed: the pseudorapidity density dN ch / d η , the multiplicity distribution and the transverse momentu m distribution dN ch / d p T of charged particles

  7. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking regi...

  8. Technical Proposal for the ALICE START Fast Timing Detector Based on Fine-Mesh Phototubes

    CERN Document Server

    Kaplin, V A; CERN. Geneva; Loginov, V A; Strikhanov, M N; Gavrilov, Yu K; Filippov, S N; Kurepin, A B; Mayevskaya, A I

    1997-01-01

    Technical Proposal for the ALICE START Fast Timing Detector Based on Fine-Mesh Phototubes A scintillation detector based on fine-mesh phototubes with good timing proporties ( ~ 50 ps) is proposed as a complementary detector for two existing options of the ALICE Forward Multiplicity Detector. Experimental results show high time resolution (up to 35 ps) and high gain in a magnetic field up to 0.5 T of fine-mesh Russian phototubes FEU-527. The proposed detector consists of two arrays of scintillation (or Cherenkov) counters, 24 counters each. The Monte-Carlo simulations made for the proposed design of the detector for p-p collisions give the average efficiency of the detector about 80%. The physical characteristics of the proposed detector are compared with those expected for the MCP version of the FMD.

  9. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  10. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  11. New pixelized Micromegas detector for the COMPASS experiment

    CERN Document Server

    Neyret, Damien; Bedfer, Yann; Burtin, Etienne; d'Hose, Nicole; Giganon, Arnaud; Ketzer, Bernhard; Konorov, Igor; Kunne, Fabienne; Magnon, Alain; Marchand, Claude; Paul, Bernard; Platchkov, Stéphane; Vandenbroucke, Maxence

    2009-01-01

    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for the present detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Studies were done with the present detectors moved in the beam, and two first pixelized prototypes are being tested with muon and hadron beams in real conditions at COMPASS. We present here this new project and report on two series of tests, with old detectors moved into the beam and with pixelized prototypes operated in real data taking condition with both muon and hadron beams.

  12. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    Spannagel, Simon

    2015-01-01

    This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  13. Monolithic CMOS pixel detector for international linear collider vertex detection

    Indian Academy of Sciences (India)

    J E Brau; O Igonkina; N Sinew; D Strom; C Baltay; W Emmet; H Neal; D Rabinowitz

    2007-12-01

    A monolithic CMS pixel detector is under development for an ILC experiment. This chronopixel array provides a time stamp resolution of one bunch crossing, a critical feature for background suppression. The status of this effort is summarized.

  14. A new CMS pixel detector for the LHC luminosity upgrade

    OpenAIRE

    Favaro, Carlotta; Collaboration, for the CMS

    2011-01-01

    The CMS inner pixel detector system is planned to be replaced during the first phase of the LHC luminosity upgrade. The plans foresee an ultra low mass system with four barrel layers and three disks on either end. With the expected increase in particle rates, the electronic readout chain will be changed for fast digital signals. An overview of the envisaged design options for the upgraded CMS pixel detector is given, as well as estimates of the tracking and vertexing performance.

  15. Readout system of the ALICE Muon tracking detector

    International Nuclear Information System (INIS)

    A Large Ion Collider Experiment (ALICE) will be aimed at studying heavy ion collisions at the extreme energy densities accessible at the CERN's Large Hadron Collider (LHC), where the formation of the Quark Gluon Plasma is expected. The ALICE muon forward spectrometer will identify muons with momentum above 4 GeV/c, allowing the study of quarkonia and heavy flavors in the pseudorapidity range -4.0<η<-2.5 with 2π azimuthal coverage. The muon tracking system consists of 10 Cathode Pad Chambers (CPC) with 1.1 million of pads that represent the total number of acquisition channels to manage. In this article, we will give an overview of the ALICE Muon Spectrometer. Afterward, we will focus on tracking system Front end Electronics (FEE) and readout system. We will show that the Digital Signal Processor (DSP) architecture fulfills all the requirements, including radiation hardness against neutrons. Finally, real-time performances are discussed.

  16. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  17. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  18. Vertex measurement at a hadron collider. The ATLAS pixel detector

    International Nuclear Information System (INIS)

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the Pixel Detector near the interaction point requires excellent radiation hardness, fast read-out, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The new design concepts used to meet the challenging requirements are discussed with their realisation in the Pixel Detector, followed by a description of a refined and extensive set of measurements to assess the detector performance during and after its construction. (orig.)

  19. The Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    Klein, Katja

    2016-01-01

    The CMS experiment features a pixel detector with three barrel layers and two disks per side, corresponding to an active silicon area of 1\\,m$^2$. The detector delivered high-quality data during LHC Run~1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of $1\\cdot 10^{34}\\,$cm$^{-2}$s$^{-1}$. It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to~16\\,\\%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  20. First Results of the Pixel Detector Performance in 2015

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The CMS pixel detector consists of 66 million pixels arranged in three cylindric layers in the barrel region and two end-cap disks on each side of the barrel. It is used for seeding in track reconstruction. It is also the most important tool for vertex reconstruction. This report documents the good fraction of the pixel detector at the start of data-taking in 2015, its efficiency at low luminosity and 50 ns bunch-spacing, and the first measurements of the Lorentz-angle. Details are also given on the timing adjustment in the first collisions, and verification of the full depletion voltage.

  1. Readout system of the ALICE Muon tracking detector

    Science.gov (United States)

    Rousseau, Sylvain

    2010-11-01

    A Large Ion Collider Experiment (ALICE) will be aimed at studying heavy ion collisions at the extreme energy densities accessible at the CERN's Large Hadron Collider (LHC), where the formation of the Quark Gluon Plasma is expected. The ALICE muon forward spectrometer will identify muons with momentum above 4 GeV/c, allowing the study of quarkonia and heavy flavors in the pseudorapidity range -4.0Digital Signal Processor (DSP) architecture fulfills all the requirements, including radiation hardness against neutrons. Finally, real-time performances are discussed.

  2. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  3. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  4. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  5. DAQ hardware and software development for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed readout hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the readout boards. The same boards will be used to upgrade the readout bandwidth for the two outermost barrel layers of the ATLAS Pixel Detector. We present the IBL readout hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel Detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  6. Challenges of small-pixel infrared detectors: a review

    Science.gov (United States)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  7. Micro-pixel accuracy centroid displacement estimation and detector calibration

    CERN Document Server

    Zhai, Chengxing; Goullioud, Renaud; Nemati, Bijan

    2011-01-01

    Precise centroid estimation plays a critical role in accurate astrometry using telescope images. Conventional centroid estimation fits a template point spread function (PSF) to the image data. Because the PSF is typically not known to high accuracy due to wavefront aberrations and uncertainties in optical system, a simple Gaussian function is commonly used. PSF knowledge error leads to systematic errors in the conventional centroid estimation. In this paper, we present an accurate centroid estimation algorithm by reconstructing the PSF from well sampled (above Nyquist frequency) pixelated images. In the limit of an ideal focal plane array whose pixels have identical response function (no inter-pixel variation), this method can estimate centroid displacement between two 32$\\times$32 images to sub-micropixel accuracy. Inter-pixel response variations exist in real detectors, {\\it e.g.}~CCDs, which we can calibrate by measuring the pixel response of each pixel in Fourier space. The Fourier transforms of the inter...

  8. Test of TOF Scintillator Counters for ALICE Detector

    CERN Document Server

    Semenov, P; Malakhov, A; Melkumov, G L

    1996-01-01

    The manufactured counters of the fast response scintillators with the photomultipliers valid for operation in the magnetic field environment is being considered among the options for the time-of-flight (TOF) measurements as a particle identification tool for the ALICE experiment. Here we discuss how the tests of such counters have been implemented on the particle beam in respect to the time resolution.

  9. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  10. Spectroscopic X-ray imaging with photon counting pixel detectors

    CERN Document Server

    Tlustos, L

    2010-01-01

    Single particle counting hybrid pixel detectors simultaneously provide low noise, high granularity and high readout speed and make it possible to build detector systems offering high spatial resolution paired with good energy resolution. A limiting factor for the spectroscopic performance of such detector systems is charge sharing between neighbouring pixels in the sensor part of the detector. The signal spectrum at the collection electrodes of the readout electronics deviates significantly from the photonic spectrum when planar segmented sensor geometries are used. The Medipix3 implements a novel, distributed signal processing architecture linking neighbouring pixels and aims at eliminating the spectral distortion produced in the sensor by charge sharing and at reducing the impact of fluorescence photons generated in the sensor itself. Preliminary results from the very first Medipix3 readouts bump bonded to 300 pm Si sensor are presented. Material reconstruction is a possible future application of spectrosco...

  11. Hybrid Pixel Detectors for gamma/X-ray imaging

    Science.gov (United States)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  12. The CMS pixel detector and challenges for its upgrade

    CERN Document Server

    Bean, A

    2009-01-01

    The CMS pixel detector was installed in July 2008 in the innermost region of CMS. It consists of 66M pixels of 100um*150um size over 3 barrel layers and 2 forward disks. The pixel system has been successfully commissioned. Over 80K muon tracks were taken during the CMS cosmic runs and the detector is ready for the first physics run. The pixel detector, so close to the interaction point, will be exposed to a very high radiation dose. The estimation is that the first barrel layer, located at 4.3 cm from the beam pipe, after 3 years of LHC running at full luminosity, will become inefficient for position resolution reconstruction. For this reason, a substitution of a new pixel detector in 2014 has been already scheduled. At the same time an LHC luminosity upgrade is also planned. While a simple rebuild of the current detector could be done, the expectation is to design a new one, optimized for higher luminosity. This paper describes the present system and its performance as well as possible solutions for the upgr...

  13. Initial Measurements on Pixel Detector Modules for the ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Delicate conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel Detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming Pixel Detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation for silicon planar and 3D pixel sensors, which give a first impression on the charge collection properties of the different sensor technologies, are presented.

  14. Proto-2, an ALICE detector prototype, went to the United States (during transport)

    CERN Multimedia

    2002-01-01

    Proto-2, an ALICE detector prototype, overcame its prototype status to become a real part of the STAR experiment at the US Brookhaven National Laboratory.After more than two years across the ocean, it has just arrived back at CERN

  15. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    OpenAIRE

    Szelezniak, Michal A.

    2008-01-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations of MAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of t...

  16. Studies of characteristics of triple GEM detector for the ALICE-TPC upgrade

    International Nuclear Information System (INIS)

    Gas Electron Multiplier (GEM) is a novel gas detector in the field of radiation detection. GEM detectors have tremendous advantages over other types gas detectors like high rate handling capability with high efficiency and very low ion back flow (IBF). These detectors are most suitable for the use in the future experiments in high-energy proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) at CERN and Facility for Antiproton and Ion Research (FAIR) at GSI. A Large Ion Collider Experiment (ALICE) at the LHC is a dedicated experiment for the study of Quark Gluon Plasma (QGP). In few years, the data taking rate for Pb-Pb collisions will increase by 100 times to 50 KHz. The ALICE Time Projection Chamber (TPC) is the main tracking detector in ALICE. It is planned that by the year 2018, GEM detectors will replace the present readout planes of TPC. The goal of the present study is to characterize the GEM detector to achieve the performance goal of the TPC

  17. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim Farah, Fahim Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  18. Calibration analysis software for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  19. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  20. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  1. Characterization of 36 pixel silicon PAD detectors

    International Nuclear Information System (INIS)

    As silicon detectors offer good energy resolution and high reliability, these are ideally suited for tracking and calorimetric applications in nuclear and particle physics experiments. The band gap of silicon is small enough to produce a good number of charge carriers per unit energy loss of the ionizing particles. Further, the high material density (2.33 g/cm3) leads to a large energy loss per traversed length for ionizing particle (3.8 MeV/cm for a minimum ionizing particle). The semiconductor fabrication technology is now mature enough to produce low leakage and fast response detectors, as the mobility degradation is minimum due to doping

  2. Thick Pixelated CZT Detectors With Isolated Steering Grids

    CERN Document Server

    Jung, I; Perkins, J S; Krawczynski, H; Matteson, J; Skelton, R T; Bürger, A; Groza, M

    2005-01-01

    We explore the possibility to improve the performance of 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with the help of steering grids on the anode side of the detectors. Steering grids can improve the energy resolution of CZT detectors by enhancing the small pixel effect; furthermore, they can increase their detection efficiency by steering electrons to the anode pixels which otherwise would drift to the area between pixels. Previously, the benefit of steering grids had been compromised by additional noise associated with currents between the steering grids and the anode pixels. We use thin film deposition techniques to isolate the steering grid from the CZT substrate by a 150 nm thick layer of the isolator Aluminiumoxide. While the thin layer does not affect the beneficial effect of the steering grid on the weighting potentials and the electric field inside the detector, it suppresses the currents between the steering grid and the anode pixels. In this contribution, we present first results from a 2 x...

  3. The integration of the ALICE trigger system with sub-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krivda, M., E-mail: marian.krivda@cern.c [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Barnby, L.; Bombara, M.; Evans, D.; Jones, P.G.; Jovanovic, P.; Jusko, A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kralik, I. [Institute of Experimental Physics, Kosice (Slovakia); Kour, R.; Lazzeroni, C.; Lietava, R.; Matthews, Z.L.; Navin, S.; Palaha, A.; Petrov, P.R. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Sandor, L. [Institute of Experimental Physics, Kosice (Slovakia); Urban, J. [P.J. Safarik University, Faculty of Science, Kosice (Slovakia); Villalobos Baillie, O. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2010-05-21

    The ALICE Trigger electronics (TRG) has been installed in the experimental cavern and tested with each of the detectors, both individually ('standalone' mode) and in 'global' runs, i.e. those involving other detectors. Global runs were performed with cosmic ray triggers, and also during the LHC startup period in September 2008. In this paper the status of the trigger system will be reviewed, in particular describing recent extensions to the system.

  4. Test of a MICROMEGAS detector for the muon tracking chambers of ALICE

    International Nuclear Information System (INIS)

    An alternative solution for the muon tracking chambers of ALICE, based on the detector MICROMEGAS, is investigated at SUBATECH. Three prototypes have been constructed and tested in the 3 GeV/c pion beam of the CERN PS. The characteristics of these detectors, and the set-up used for the tracking test are described. Results concerning efficiencies and spatial resolutions as a function of gas mixtures, high voltages and the angular incidences of the particles are presented and discussed. (author)

  5. Radiation damage monitoring of the ATLAS pixel detector

    CERN Document Server

    Seidel, Sally; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module record of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  6. A prototype hybrid pixel detector ASIC for the CLIC experiment

    CERN Document Server

    Valerio, P; Arfaoui, S; Ballabriga, R; Benoit, M; Bonacini, S; Campbell, M; Dannheim, D; De Gaspari, M; Felici, D; Kulis, S; Llopart, X; Nascetti, A; Poikela, T; Wong, W S

    2014-01-01

    A prototype hybrid pixel detector ASIC specifically designed to the requirements of the vertex detector for CLIC is described and first electrical measurements are presented. The chip has been designed using a commercial 65 nm CMOS technology and comprises a matrix of 64x64 square pixels with 25 μm pitch. The main features include simultaneous 4-bit measure- ment of Time-over-Threshold (ToT) and Time-of-Arrival (ToA) with 10 ns accuracy, on-chip data compression and power pulsing capability.

  7. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Richard L., E-mail: richard.bates@glasgow.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I. [The University of Liverpool, Liverpool (United Kingdom); Brown, S.; Pater, J. [The Univiersty of Manchester, Manchester (United Kingdom)

    2013-12-11

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 10{sup 16} 1 MeV n{sub eq} cm{sup −2}. The area of the pixel detector system will be over 5 m{sup 2} and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  8. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    Science.gov (United States)

    Bates, Richard L.; Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J.; Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I.; Brown, S.; Pater, J.

    2013-12-01

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm-2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  9. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    International Nuclear Information System (INIS)

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm−2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported

  10. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  11. The trigger of the ALICE dimuon arm architecture and detectors

    CERN Document Server

    Arnaldi, R; Barret, V; Bastid, N; Blanchard, G; Chiavassa, E; Cortese, P; Crochet, Philippe; Dellacasa, G; De Marco, N; Dupieux, P; Espagnon, B; Fargeix, J; Gallio, M; Lamoine, L; Luquin, Lionel; Manso, F; Métivier, V; Musso, A; Piccotti, A; Rahmani, A; Ramillien, V; Royer, L; Roig, O; Scalas, E; Scomparin, E; Vercellin, Ermanno

    1999-01-01

    The trigger system of the ALICE dimuon arm is based on resistive plate chambers (RPC). Besides a short description of the trigger system, the test results of a RPC prototype with electrodes made of low resistivity bakelite ( equivalent to 3.10/sup 9/ Omega .cm) are presented. Rate capability, time resolution and cluster size have been measured for the RPC operated both in streamer and in avalanche mode. Although the rate capability is obviously higher in avalanche mode (few kHz/cm/sup 2/), remarkable results have been achieved even in streamer mode (several hundreds of Hz/cm/sup 2/). (6 refs).

  12. 3D electronics for hybrid pixel detectors – TWEPP-09

    CERN Document Server

    Godiot, S; Chantepie, B; Clémens, J C; Fei, R; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Hemperek, T; Karagounis, M; Krueger, H; Mekkaoui, A; Pangaud, P; Rozanov, A; Wermes, N

    2009-01-01

    Future hybrid pixel detectors are asking for smaller pixels in order to improve spatial resolution and to deal with an increasing counting rate. Facing these requirements is foreseen to be done by microelectronics technology shrinking. However, this straightforward approach presents some disadvantages in term of performances and cost. New 3D technologies offer an alternative way with the advantage of technology mixing. For the upgrade of ATLAS pixel detector, a 3D conception of the read-out chip appeared as an interesting solution. Splitting the pixel functionalities into two separate levels will reduce pixel size and open the opportunity to take benefit of technology's mixing. Based on a previous prototype of the read-out chip FE-I4 (IBM 130nm), this paper presents the design of a hybrid pixel read-out chip using threedimensional Tezzaron-Chartered technology. In order to disentangle effects due to Chartered 130nm technology from effects involved by 3D architecture, a first translation of FEI4 prototype had ...

  13. Leakage current measurements on pixelated CdZnTe detectors

    International Nuclear Information System (INIS)

    In the field of the R and D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9x0.9 mm2) or 256 (0.5x0.5 mm2) pixels, surrounded by a guard ring and operate in the energy ranging from several keV to 1 MeV, at temperatures between -20 and +20 oC. A critical parameter in the characterisation of these detectors is the leakage current per pixel under polarisation (∼50-500 V/mm). In operation mode each pixel will be read-out by an integrated spectroscopy channel of the multi-channel IDeF-X ASIC currently developed in our lab. The design and functionality of the ASIC depends directly on the direction and value of the current. A dedicated and highly insulating electronics circuit is designed to automatically measure the current in each individual pixel, which is in the order of tens of pico-amperes. Leakage current maps of different CdZnTe detectors of 2 and 6 mm thick and at various temperatures are presented and discussed. Defect density diagnostics have been performed by calculation of the activation energy of the material

  14. Readout chip for the CMS pixel detector upgrade

    International Nuclear Information System (INIS)

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper

  15. Readout chip for the CMS pixel detector upgrade

    Science.gov (United States)

    Rossini, Marco

    2014-11-01

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  16. Front-End-Electronics Communication software for multiple detectors in the ALICE experiment

    CERN Document Server

    Bablok, Sebastian; Hartung, G; Keidel, R; Kofler, C; Krawutschke, T; Lindenstruth, V; Röhrich, D

    2006-01-01

    In the ALICE experiment at CERN, the Detector Control System (DCS) employs several interacting software components to accomplish its task of ensuring the correct operation and monitoring of the experiment. This paper describes the Front-End-Electronics Communication (FeeCommunication) software and its role within the DCS. The FeeCommunication software's central task is passing configuration and monitoring data between the top level DCS process control and the field devices of several detectors within ALICE. The lowest level of the FeeCommunication software runs on the DCS boards, specialized embedded systems which are in direct contact with the field devices and are physically located within the detector. The middle and upper layers run on standard PC hardware located in the counting room or other external locations. This paper focuses on the design and implementation of the FeeCommunication software and the steps that were taken to fulfill the imposed reliability and performance requirements, specifically th...

  17. GEANT Simulation of the Radiation Dose for the Inner Tracking System of the ALICE Detector

    CERN Document Server

    Barbera, R; CERN. Geneva; Palmeri, A; Pappalardo, G S; Riggi, F; Badalà, A

    1999-01-01

    A full GEANT simulation of the radiation dose expected for the Inner Tracking System (ITS) of the ALICE detector at the Large Hadron Collider has been carried out. Heavy-ion collision events at a c.m. energy of 6 TeV/nucleon have been generated through the HIJING 1.35 event generator and injected into the GEANT software replica of the ALICE detector, to simulate the planned scenario for the first ten years of data taking of the detector. Several factors contributing to the evaluation of the absorbed dose, including the different ITS implementation options, the effect of the magnetic field, the presence of the beam pipe, the finite size of the interaction point and the front absorber of the muon spectrometer are discussed.

  18. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  19. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  20. KPIX a pixel detector imaging chip

    CERN Document Server

    Cadeddu, S; Caria, M

    2002-01-01

    We present a VLSI custom device, named KPIX, developed in a 0.6 mu m CMOS technology. The circuit is dedicated to readout solid-state detectors covering large areas (on the order of square centimetre) and featuring very small currents. KPIX integrates 1024 channels (current amplifiers) and 8 ADCs on a 15.5x4 mm sup 2 area. Both an analogue and digital readout are allowed, with a 10 bit amplitude resolution. Amplifiers are organized in 8 columns of 128 rows. When choosing the digital or the analogue readout, the complete set of channels can be read out in about 30 ms. The specific design of the amplification cells allows to measure very small input current levels, on the order of fractions of pico-ampere. Power consumption has also been kept at the level of 80 mu W per cell and 150 mW (peak value) in total. The specific chip architecture and geometry allow use of many KPIX circuits together in order to serve a large detector sensitive area. The KPIX structure is presented along with some measurements character...

  1. Initial Measurements On Pixel Detector Modules For The ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Sophisticated conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming pixel detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation, which give a first impression on the charge collection properties of the different sensor technologies are presented.

  2. The first bump-bonded pixel detectors on CVD diamond

    Science.gov (United States)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V. G.; Pan, L. S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G.; RD42 Collaboration

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 μm was observed, consistent with expectations given the detector pitch.

  3. Studies of mono-crystalline CVD diamond pixel detectors

    Science.gov (United States)

    Bugg, W.; Hollingsworth, M.; Spanier, S.; Yang, Z.; Bartz, E.; Doroshenko, J.; Hits, D.; Schnetzer, S.; Stone, R.; Atramentov, O.; Patel, R.; Barker, A.; Hall-Wilton, R.; Ryjov, V.; Farrow, C.; Pernicka, M.; Steininger, H.; Johns, W.; Halyo, V.; Harrop, B.; Hunt, A.; Marlow, D.; Hebda, P.

    2011-09-01

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLT's mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope.

  4. Studies of mono-crystalline CVD diamond pixel detectors

    CERN Document Server

    Bartz, E; Atramentov, O; Yang, Z; Hall-Wilton, R; Schnetzer, S; Patel, R; Bugg, W; Hebda, P; Halyo, V; Hunt, A; Marlow, D; Steininger, H; Ryjov, V; Hits, D; Spanier, S; Pernicka, M; Johns, W; Doroshenko, J; Hollingsworth, M; Harrop, B; Farrow, C; Stone, R

    2011-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLTs mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope. Published by Elsevier B.V.

  5. The first bump-bonded pixel detectors on CVD diamond

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Fried, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Palmieri, V G; Pan, L S; Peitz, A; Pernicka, Manfred; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Steuerer, J; Stone, R; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Turchetta, R; Vittone, E; Wagner, A; Walsh, A M; Wedenig, R; Weilhammer, Peter; Zeuner, W; Ziock, H J; Zöller, M; Charles, E; Ciocio, A; Dao, K; Einsweiler, Kevin F; Fasching, D; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Milgrome, O; Palaio, N; Richardson, J; Sinervo, P K; Zizka, G

    1999-01-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98565544f the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 mu m was observed, consistent with expectations given the detector pitch. (13 refs).

  6. The first bump-bonded pixel detectors on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W. E-mail: william@physics.utoronto.ca; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 {mu}m was observed, consistent with expectations given the detector pitch.

  7. The first bump-bonded pixel detectors on CVD diamond

    International Nuclear Information System (INIS)

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 μm was observed, consistent with expectations given the detector pitch

  8. CMS Technical Design Report for the Pixel Detector Upgrade

    CERN Document Server

    Dominguez, A; Arndt, K; Bacchetta, N; Ball, A; Bartz, E; Bertl, W; Bilei, G M; Bolla, G; Cheung, H W K; Chertok, M; Costa, S; Demaria, N; Dominguez, A; Ecklund, K; Erdmann, W; Gill, K; Hall, G; Harder, K; Hartmann, F; Horisberger, R; Johns, W; Kaestli, H C; Klein, K; Kotlinski, D; Kwan, S; Pesaresi, M; Postema, H; Rohe, T; Schäfer, C; Starodumov, A; Streuli, S; Tricomi, A; Tropea, P; Troska, J; Vasey, F; Zeuner, W

    2012-01-01

    The original design goal of the LHC was to operate at $1 \\times 10^{34}$ cm$^{−2}s^{−1}$ with 25 ns bunch spacing, where approximately 25 simultaneous inelastic collisions per crossing (“pile-up”) occur. With the upgrade of the accelerators, the lumi- nosity and pile-up will more than double. The current pixel detector is crucial to charged particle tracking, but was not designed to perform effectively in such collision conditions and the physics program of CMS would suffer as a result. We propose to replace the current pixel tracker with a new high efficiency and low mass detector with four barrel layers and three forward/backward disks to provide four-hit pixel coverage out to pseudorapidities of ±2.5. This new detector will meet or exceed the original design specifications in these high luminosity environments. In this report, we provide details on the design, construction and installation of the upgraded pixel detector as well as estimates of its expected performance.

  9. Pixelated Single-crystal Diamond Detector for fast neutron measurements

    International Nuclear Information System (INIS)

    Single-crystal Diamond Detectors (SDDs), due to their high radiation hardness, fast response time and small size, are good candidates as fast neutron detectors in those environments where the high neutron flux is an issue, such as spallation neutron sources and the next generation thermonuclear fusion plasmas, i.e. the ITER experiment. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interactions with 12C. Recent measurements have demonstrated the SDD capability of measuring the neutron flux with a good energy resolution and at high rates. In this work a novel detector based on a 12-pixels SDD matrix will be presented. Each pixel is equipped with an independent electronic chain: the fast shaping preamplifier coupled to a digitizer is able to combine the high rate capability and the good energy resolution. Two CAEN digitizers are compared and the possibility of performing good energy resolution measurements (<2%) and at high rates (>1 MHz per channel) is described. Each pixel was characterized and calibrated using an 241Am source: the energy resolution was evaluated and gives a mean value of 1.73% at 5.5 MeV. The good energy resolution achieved and its uniformity between pixels are the demonstration of the capability of this novel detector as a spectrometer. This system will be installed during the next Deuterium-Tritium campaign on a collimated vertical line of sight at JET for 14 MeV neutron measurements

  10. Properties of Neutron Pixel Detector Based on Medipix-2 Device

    Czech Academy of Sciences Publication Activity Database

    Jakůbek, J.; Holý, T.; Lehmann, E.; Pospíšil, S.; Uher, J.; Vacík, J.; Vavřík, Daniel

    Řím : Nuclear & Plasma Sciences Society, 2004, s. 54. [Nuclear Science Symposium IEEE 2003. Řím (IT), 16.10.2004-22.10.2004] Institutional research plan: CEZ:AV0Z2071913 Keywords : neutron radiography * neutron pixel detector * digital radiography Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  11. Spatial Resolution of the Medipix-2 as Neutron Pixel Detector

    Czech Academy of Sciences Publication Activity Database

    Jakůbek, J.; Holý, T.; Lehmann, E.; Pospíšil, S.; Uher, J.; Vacík, J.; Vavřík, Daniel

    Glasgow, Scotland : Glasgow University, 2004, s. 1. [International Workshop on Radiation Imaging Detectors /6./. Glasgow, Scotland (GB), 25.07.2004-29.07.2004] Institutional research plan: CEZ:AV0Z2071913 Keywords : Neutron Radiography * Digital Radiography * Single Photon Counting Pixel Device Subject RIV: BF - Elementary Particles and High Energy Physics

  12. Spatial resolution of Medipix-2 device as neutron pixel detector

    Czech Academy of Sciences Publication Activity Database

    Jakůbek, J.; Holý, T.; Lehmann, E.; Pospíšil, S.; Uher, J.; Vacík, Jiří; Vavřík, D.

    2005-01-01

    Roč. 546, - (2005), s. 164-169. ISSN 0168-9002 R&D Projects: GA MŠk(CZ) 1P04LA211 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron detection * pixel detectors * neutronography Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.224, year: 2005

  13. A Sealed Gas Pixel Detector for X-ray Astronomy

    OpenAIRE

    Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L; Brez, A.; Latronico, L; Omodei, N.; Razzano, M.; Massai, M. M.; Pinchera, M.; Pesce-Rollins, M.; SGRO, C.; Costa, E; P. Soffitta(a); Sipila, H.

    2006-01-01

    We report on the results of a new, sealed, Gas Pixel Detector. The very compact design and the absence of the gas flow system, make this detector substantially ready for use as focal plane detector for future X-ray space telescopes. The instrument brings high sensitivity to X-ray polarimetry, which is the last unexplored field of X-ray astronomy. It derives the polarization information from the track of the photoelectrons that are imaged by a high gain (>1000), fine pitch GEM that matches the...

  14. CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors

    International Nuclear Information System (INIS)

    This paper reviews the development of CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors. MAPS are developed in a standard CMOS technology. In the imaging field, where the technology found its first applications, they are also known as CMOS Image Sensors. The use of MAPS as a detector for particle physics was first proposed at the end of 1999. Since then, their good performance in terms of spatial resolution, efficiency, radiation hardness have been demonstrated and work is now well under way to deliver the first MAPS-based vertex detectors

  15. CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors

    CERN Document Server

    Turchetta, R

    2006-01-01

    This paper reviews the development of CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors. MAPS are developed in a standard CMOS technology. In the imaging field, where the technology found its first applications, they are also known as CMOS Image Sensors. The use of MAPS as a detector for particle physics was first proposed at the end of 1999. Since then, their good performance in terms of spatial resolution, efficiency, radiation hardness have been demonstrated and work is now well under way to deliver the first MAPS-based vertex detectors.

  16. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  17. Compensation of radiation damages for SOI pixel detector via tunneling

    CERN Document Server

    Yamada, Miho; Kurachi, Ikuo

    2015-01-01

    We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionization damages (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-by transistors due to its positive electric field.Annealing and radiation of ultraviolet are not realistic to remove trapped holes for a fabricated detector due to thermal resistance of components and difficulty of handling. We studied compensation of TID effects by tunneling using a high-voltage. For decrease of trapped holes, applied high-voltage to buried p-well which is under oxide layer to inject the electrons into the oxide layer.In this report, recent progress of this study is shown.

  18. GaAs Medipix2 hybrid pixel detector

    CERN Document Server

    Kostamo, P; Vähänen, S; Tlustos, L; Fröjdh, C; Campbell, M; Zhilyaev, Y; Lipsanen, H

    2008-01-01

    A GaAs Medipix2 hybrid pixel detector based on high purity epitaxial GaAs material was successfully fabricated. The mesa type GaAs sensor with 256×256 pixels and total area of 1.4×1.4 cm2 was made of a 140-μm-thick epitaxial p–i–n structure utilizing reactive ion etching. A final thickness of approximately 110 μm for the all-epitaxial sensor element is achieved by back-thinning procedure. The sensor element is bump bonded to a Medipix2 read-out ASIC. The detector is capable of room temperature spectroscopic operation and it demonstrates the potential of GaAs for high resolution X-ray imaging systems operating at room temperature. This work describes the manufacturing process and electrical properties of the GaAs Medipix2 hybrid detector.

  19. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  20. Development of a counting pixel detector for 'Digitales Roentgen'

    International Nuclear Information System (INIS)

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 μm x 200 μm size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  1. Inclusive charged hadrons production in pp collisions with the ALICE-HMPID detector at the LHC

    CERN Document Server

    Barile, Francesco

    The goal of this thesis is the study of the particles identification provided by a small acceptance detector: the High Momentum Particle IDentification detector. Installed during September 2006 and located at about 5 m from the primary vertex, it can contribute to several ALICE physics items using the Cherenkov radiation. This thesis is made of 5 chapters. An overview of the Heavy Ion collisions, the Quark Gluon Plasma, and the main points of the ALICE physics program are described in the first chapter. Some recent results on particles production and hadron ratios are also presented. Chapter 2 is dedicated to the LHC machine, to the ALICE apparatus and to the High Momentum Particle Detector. The layout, the principle of operation and some recent performance results of this RICH detector will be described. Chapter 3 is dedicated to the evaluation of the HMPID PID efficiency. This study exploit the unique possibility to extract the efficiency directly from data using the V$^{0}$ ’s decay. Also, it provides a ...

  2. Pixel hybrid photon detectors for the ring imaging Cherenkov detectors of LHCb

    CERN Document Server

    Somerville, L

    2005-01-01

    A Pixel Hybrid Photon Detector (pixel HPD) has been developed for the LHCb Ring Imaging Cherenkov (RICH) detectors. The pixel HPD is a vacuum tube with a multi-alkali photocathode, high-voltage cross- focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a CMOS readout chip; the readout chip is thus fully encapsulated in the device. The pixel HPD fulfils the stringent requirements for the RICH detectors of LHCb, combining single photon sensitivity, high signal-to-noise ratio and fast readout with an ~8cm diameter active area and an effective pixel size of 2.5mm 2.5mm at the photocathode. The performance and characteristics of two prototype pixel HPDs have been studied in laboratory measurements and in recent beam tests. The results of all measurements agree with expectations and fulfil the LHCb RICH requirements. In readiness for production of the ~500pixel HPDs for the RICH detectors, a test programme was designed and implemented to ensure component quality control at eac...

  3. Use of silicon pixel detectors in double electron capture experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cermak, P; Stekl, I; Mamedov, F; Rukhadze, E N; Jose, J M; Cermak, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 12800 Prague 2 (Czech Republic); Shitov, Yu A; Rukhadze, N I; Brudanin, V B [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Loaiza, P, E-mail: pavel.cermak@utef.cvut.cz [Laboratoire Souterrain de Modane, 73500 Modane (France)

    2011-01-15

    A novel experimental approach to search for double electron capture (EC/EC) is discussed in this article. R and D for a new generation EC/EC spectrometer based on silicon pixel detectors (SPDs) has been conducted since 2009 for an upgrade of the TGV experiment. SPDs built on Timepix technology with a spectroscopic readout from each individual pixel are an effective tool to detect the 2{nu}EC/EC signature of the two low energy X-rays hitting two separate pixels. The ability of SPDs to indentify {alpha}/{beta}/{gamma} particles and localize them precisely leads to effective background discrimination and thus considerable improvement of the signal-to-background ratio (S/B). A multi-SPD system, called a Silicon Pixel Telescope (SPT), is planned based on the experimental approach of the TGV calorimeter which measures thin foils of enriched EC/EC-isotope sandwiched between HPGe detectors working in coincidence mode. The sources of SPD internal background have been identified by measuring SPD radiopurity with a low-background HPGe detector as well as by long-term SPD background runs in the Modane underground laboratory (LSM, France), and results of these studies are presented.

  4. Use of silicon pixel detectors in double electron capture experiments

    Science.gov (United States)

    Cermak, P.; Stekl, I.; Shitov, Yu A.; Mamedov, F.; Rukhadze, E. N.; Jose, J. M.; Cermak, J.; Rukhadze, N. I.; Brudanin, V. B.; Loaiza, P.

    2011-01-01

    A novel experimental approach to search for double electron capture (EC/EC) is discussed in this article. R&D for a new generation EC/EC spectrometer based on silicon pixel detectors (SPDs) has been conducted since 2009 for an upgrade of the TGV experiment. SPDs built on Timepix technology with a spectroscopic readout from each individual pixel are an effective tool to detect the 2νEC/EC signature of the two low energy X-rays hitting two separate pixels. The ability of SPDs to indentify α/β/γ particles and localize them precisely leads to effective background discrimination and thus considerable improvement of the signal-to-background ratio (S/B). A multi-SPD system, called a Silicon Pixel Telescope (SPT), is planned based on the experimental approach of the TGV calorimeter which measures thin foils of enriched EC/EC-isotope sandwiched between HPGe detectors working in coincidence mode. The sources of SPD internal background have been identified by measuring SPD radiopurity with a low-background HPGe detector as well as by long-term SPD background runs in the Modane underground laboratory (LSM, France), and results of these studies are presented.

  5. Upgrade of the ALICE Inner Tracking System

    OpenAIRE

    Reidt, Felix; Collaboration, for the ALICE

    2014-01-01

    During the Long Shutdown 2 of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System. It will replace the current six layer detector system with a seven layer detector using Monolithic Active Pixel Sensors. The upgraded Inner Tracking System will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity of the LHC. The choice of Monolithic Active Pixel Sensors has be...

  6. High frame rate measurements of semiconductor pixel detector readout IC

    International Nuclear Information System (INIS)

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  7. Hybrid Pixel Detector Development for the Linear Collider Vertex Tracker

    CERN Document Server

    Battaglia, Marco; Campagnolo, R; Caccia, M; Kucewicz, W; Jalocha, P; Palka, J; Zalewska-Bak, A

    2001-01-01

    In order to fully exploit the physics potential of the future high energy e+e- linear collider, a Vertex Tracker able to provide particle track extrapolation with very high resolution is needed. Hybrid Si pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells has been developed to improve the single point resolution. Results of the characterisation of the first processed prototypes by electrostatic measurements and charge collection studies are discussed.

  8. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  9. Silicon sensors for the upgrades of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Centis Vignali, Matteo

    2015-12-15

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.10{sup 34} cm{sup -2}s{sup -1}. A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.10{sup 34} cm{sup -2}s{sup -1}. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.10{sup 34} cm{sup -2}s{sup -1}, twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φ{sub eq}=2.10{sup 16} cm{sup -2} and a dose of ∼10 MGy after an integrated luminosity of 3000 fb{sup -1}. Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip

  10. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.1034 cm-2s-1. A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.1034 cm-2s-1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.1034 cm-2s-1, twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φeq=2.1016 cm-2 and a dose of ∼10 MGy after an integrated luminosity of 3000 fb-1. Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip. The maximum rate experienced by the modules produced in Hamburg will be 120 MHz

  11. Identification of Low Momentum Electrons in The Time Projection Chamber of The ALICE Detector.

    CERN Document Server

    Mwewa, Chilufya

    2013-01-01

    This paper presents results obtained in the study to identify noisy low momentum electrons in the Time Projection Chamber (TPC) of the ALICE detector. To do this, the Circle Hough Transform is employed under the openCV library in python programming. This is tested on simulated tracks in the transverse view of the TPC. It is found that the noisy low momentum electrons can be identified and their exact positions in the transverse plane can be obtained.

  12. Data Compression for the ALICE Silicon Drift Detector

    CERN Document Server

    De Remigis, P; CERN. Geneva; Mazza, G; Werbrouck, A E; Cavagnino, D

    1998-01-01

    The problem faced when transmitting data coming from the ADC is a typical data compression one. The data to compress may be viewed as a bit stream array containing values in the integer range [0, 255]. A large amount of these values (about 95%) should be around 0 [Alice, 1995], even though the noise will make them generally different from 0. The charges may be imagined as isolated hills (with an approximate gaussian shape) on a (approximately) planar surface. The characteristics required for the algorithm are: compression coefficient c03, which means a compression ratio C30 (where c=1/C=n0/ n1 where n0 is the number of bits exciting the algorithm and n1 is the number of bits entering the algorithm), high operating speed, easy hardware implementation, minimal size of the data structures used, low power consumption, simplicity and degree of lossiness of the algorithm tunable with parameters. A compression algorithm is termed lossy if the decompressed data is not the original data, while it is called lossless ...

  13. Particle identification with the ALICE Time-Of-Flight detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Alici, A., E-mail: alici@bo.infn.it [Centro Fermi - Centro Studi e Ricerche e Museo Storico della Fisica “Enrico Fermi”, Rome (Italy); Sezione INFN, Bologna (Italy)

    2014-12-01

    High performance Particle Identification system (PID) is a distinguishing characteristic of the ALICE experiment at the CERN Large Hadron Collider (LHC). Charged particles in the intermediate momentum range are identified in ALICE by the Time-Of-Flight (TOF) detector. The TOF exploits the Multi-gap Resistive Plate Chamber (MRPC) technology, capable of an intrinsic time resolution at the level of few tens of ps with an overall efficiency close to 100% and a large operation plateau. The full system is made of 1593 MRPC chambers with a total area of 141 m{sup 2}, covering the pseudorapidity interval [−0.9,+0.9] and the full azimuthal angle. The ALICE TOF system has shown very stable operation during the first 3 years of collisions at the LHC. In this paper a summary of the system performance as well as main results with data from collisions will be reported. - Highlights: • We report the performance of large area, small granularity ALICE TOF system based on MRPC technology. • Description and performance of PID analysis with the TOF are reported. • A non-exhaustive list of physics analyses, where the TOF PID is used, is given.

  14. Hexagonal pixel detector with time encoded binary readout

    International Nuclear Information System (INIS)

    The University of Hawaii is developing continuous acquisition pixel (CAP) detectors for vertexing applications in lepton colliding experiments such as SuperBelle or ILC. In parallel to the investigation of different technology options such as MAPS or SOI, both analog and binary readout concepts have been tested. First results with a binary readout scheme in which the hit information is time encoded by means of a signal shifting mechanism have recently been published. This paper explains the hit reconstruction for such a binary detector with an emphasis on fake hit reconstruction probabilities in order to evaluate the rate capability in a high background environment such as the planned SuperB factory at KEK. The results show that the binary concept is at least comparable to any analog readout strategy if not better in terms of occupancy. Furthermore, we present a completely new binary readout strategy in which the pixel cells are arranged in a hexagonal grid allowing the use of three independent output directions to reduce reconstruction ambiguities. The new concept uses the same signal shifting mechanism for time encoding, however, in dedicated transfer lines on the periphery of the detector, which enables higher shifting frequencies. Detailed Monte Carlo simulations of full size pixel matrices including hit and BG generation, signal generation, and data reconstruction show that by means of multiple signal transfer lines on the periphery the pixel can be made smaller (higher resolution), the number of output channels and the data volume per triggered event can be reduced dramatically, fake hit reconstruction is lowered to a minimum and the resulting effective occupancies are less than 10-4. A prototype detector has been designed in the AMS 0.35μm Opto process and is currently under fabrication.

  15. From vertex detectors to inner trackers with CMOS pixel sensors

    OpenAIRE

    Besson, A.; Pérez, A. Pérez; Spiriti, E.; Baudot, J.; Claus, G; Goffe, M.; de Winter, M.

    2016-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming ...

  16. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  17. Pixel diamond detectors for excimer laser beam diagnostics

    Science.gov (United States)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  18. The ALICE HMPID on-detector front-end and readout electronics

    CERN Document Server

    Santiard, Jean-Claude

    2004-01-01

    In the ALICE HMPID detector, Cherenkov photons are localised by measuring the charge induction on a MWPC cathode segmented into pads. Two ASICs have been developed: the Gassiplex07-3, which is an analogue 16-channels multiplexed front-end circuit dedicated to the readout of gaseous detector and the Dilogic-3, a sparse data scan digital processor. The combination of multiplexed and parallel- pipelined architecture allows to store several events between two L2 trigger and to transfer the 32-bits data words at a rate of 80 Mbytes per second through an optical data link.

  19. Tools to Monitor the Quality of the ALICE-TOF Detector Data

    CERN Document Server

    Akindinov, A; Antonioli, P; Arcelli, S; Basile, M; Cara Romeo, G; Cifarelli, L; Cindolo, F; De Caro, A; De Gruttola, D; De Pasquale, S; Fusco Girard, M; Guarnaccia, C; Hatzifotiadou, D; Jung, H T; Jung, W W; Kim, D S; Kim, D W; Kim, H N; Kim, J S; Kiselev, S; Laurenti, G; Lee, K; Lee, S C; Luvisetto, M L; Malkevich, D; Margotti, A; Nania, R; Nedosekin, A; Noferini, F; Pagano, P; Pesci, A; Preghenella, R; Russo, G; Ryabinin, M; Scapparone, E; Scioli, G; Silenzi, A; Sun, Y; Tchoumakov, M; Voloshin, K; Williams, M C S; Zagreev, B; Zampolli, C; Zichichi, A

    2008-01-01

    Since the beginning of commissioning of the ALICE-TOF detector, one of the most crucial aspects has been to check the quality of the data produced. Both during last November tests at the CERN PS and in the cosmic-ray test facility, running since more than one year, the data taking of assembled TOF "modules" has been continuously monitored in order to detect as quickly as possible faulty conditions or bad detector configurations. The tools developed for these purposes, which are currently also used for the commissioning of TOF "supermodules", and the new under-development automatic data quality monitor will ensure the highest possible TOF data quality during its operation.

  20. Timing performance of pixellated CdZnTe detectors

    International Nuclear Information System (INIS)

    Recently introduced nuclear medicine cameras in which Positron Emission Tomography (PET) and the traditional Single Photon Emission Computerized Tomography (SPECT), are combined opened new horizon for the nuclear medicine field These systems applying NaI(Tl) scintillation detectors we very well tested and mailable for some time in the medical imaging field However the traditional NaI(Tl) cameras, optimized for low energy radiation imaging, suffer some severe limitations. The relatively low density (3.67 g/cm2) of NaI(Tl) limits the sensitivity. By incarcerating the NaI(Tl) thickness, the spatial resolution decreases. The long decay time (230 nsec) of the light emitted in NaI(Tl) restricts the the use of coincidence technique , as well as the count rate. In recent years CdZn Te (CZT) detectors are studied for the purpose of SPECT nuclear medical radiation imaging in the form of pixellated and microstrip detectors. CZT detector can served as a good candidate for replacing NaI(Tl) for PET and SPECT imaging due to their relatively high stopping power (density = (6.0 g/im3, high Z(48, 30, 52)) and their high count rate capability. Unfortunately there are several difficulties in PET application due to the difficulty in manufacturing thick crystals, registration of the full energy deposited in several pixels and their timing capabilities. The latter is due to large ballistic signal variation induced. This variations caused by the pulse shape, which is composed of two main components, the electron and the hole. The electrons travel about ten times faster than the holes. A photon absorbed clear the cathode plane will cause a large and fast signal induced by the electron and a small and slow signal induced due to the holes. Photons absorbed near the anode plane will induce the opposite signals. The distribution of photon absorption depth in the crystal causes signal splits over a number of pixels, due to the well-known 'small pixel effect'. The different pulses slope

  1. The data acquisition system of the Belle II Pixel Detector

    International Nuclear Information System (INIS)

    At the future Belle II experiment the DEPFET (DEPleted Field Effect Transistor) pixel detector will consist of about 8 million channels and is placed as the innermost detector. Because of its small distance to the interaction region and the high luminosity in Belle II, for a trigger rate of about 30 kHz with an estimated occupancy of about 3 % a data rate of about 22 GB/s is expected. Due to the high data rate, a data reduction factor higher than 30 is needed in order to stay inside the specifications of the event builder. The main hardware to reduce the data rate is a xTCA based Compute Node (CN) developed in cooperation between IHEP Beijing and University Giessen. Each node has as main component a Xilinx Virtex-5 FX70T FPGA and is equipped with 2 × 2 GB RAM , GBit Ethernet and 4 × 6.25 Gb/s optical links. An ATCA carrier board is able to hold up to four CN and supplies high bandwidth connections between the four CNs and to the ATCA backplane. To achieve the required data reduction on the CNs, regions of interest (ROI) are used. These regions are calculated in two independent systems by projecting tracks back to the pixel detector. One is the High Level Trigger (HLT) which uses data from the Silicon Vertex Detector (SVD), a silicon strip detector, and outer detectors. The other is the Data Concentrator (DATCON) which calculates ROIs based on SVD data only, in order to get low momentum tracks. With this information, only PXD data inside these ROIs will be forwarded to the event builder, while data outside of these regions will be discarded. First results of the test beam time in January 2014 at DESY with a Belle II vertex detector prototype and full DAQ chain will be presented

  2. Application of Hybrid Pixel Detectors for Searches of Rare Decays

    Energy Technology Data Exchange (ETDEWEB)

    Durst, J.; Anton, Gisela; Boehnel, Michael; Gleixner, Thomas; Lueck, Ferdinand; Michel, Thilo [Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Schwenke, Maria; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany)

    2011-06-15

    The new generation of hybrid pixel detectors like the Timepix detector provides access to the track information of the energy deposition in the used sensor, which allows better background discrimination in experiments for searches of rare decays. Due to the hybrid design several combinations of an ASIC with a sensor are possible. Assemblies are available with an attached Silicon sensor or CdTe sensor respectively. The detector measures the energy deposition using the time over threshold method. In this contribution we present simulation results of the detector response of the Timepix detector in applications for searches of rare decays. One application would be the search for the neutrinoless double beta decay of {sup 116}Cd using Timepix detectors with enriched CdTe as sensor material. In addition to the simulation results we present first experimental background measurements using a Timepix detector with Silicon sensor in the underground laboratory in Dresden. Using cluster analysis methods it is possible to categorise the single events.

  3. Pixel hybrid photon detector magnetic distortions characterization and compensation

    CERN Document Server

    Aglieri-Rinella, G; D'Ambrosio, Carmelo; Forty, Roger W; Gys, Thierry; Patel, Mitesh; Piedigrossi, Didier; Van Lysebetten, Ann

    2004-01-01

    The LHCb experiment requires positive kaon identification in the momentum range 2-100 GeV/c. This is provided by two ring imaging Cherenkov detectors. The stringent requirements on the photon detectors are fully satisfied by the novel pixel hybrid photon detector, HPD. The HPD is a vacuum tube with a quartz window, S20 photo-cathode, cross-focusing electron optics and a silicon anode encapsulated within the tube. The anode is a 32*256 pixels hybrid detector, with a silicon sensor bump-bonded onto a readout chip containing 8192 channels with analogue front-end and digital read-out circuitry. An external magnetic field influences the trajectory of the photoelectrons and could thereby degrade the inherent excellent space resolution of the HPD. The HPDs must be operational in the fringe magnetic field of the LHCb magnet. This paper reports on an extensive experimental characterization of the distortion effects. The characterization has allowed the development of parameterisations and of a compensation algorithm. ...

  4. Studying discharges in the Gas Electron Multiplies in Alice Detector

    CERN Document Server

    EُlGedawy, Omar

    2016-01-01

    Characterizing discharges is very important in the operation of the GEM detector. Once the discharges happen, a current will go through the GEM, the voltages across the GEM foils sides drop, charge amplification cannot take place anymore, resulting in a loss of signal. So the goal is to understand how the discharges evolve and propagate, in order to find requirements on the voltage settings, which allow to decrease the discharge probability.

  5. Time expansion chambers of the ALICE Transition Radiation Detector (TRD)

    CERN Multimedia

    2003-01-01

    The TRD is segmented into 18 sectors in the azimuthal angle. Each sector consists of 6 layers in the radial direction and is composed of 5 stacks in the longitudinal direction. This amounts to 540 individual detector modules with a total active area of roughly 750 m2 and 1.2 million readout channels. The largest module is 159 cm long and 120 cm wide.

  6. Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

  7. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    A high resolution (σ∼2μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six monolithic active pixel sensor planes (Mimosa26) with a pixel pitch of 18.4 \\mu m and thinned down to 50 \\mu m. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the European detector infrastructure project AIDA the test beam telescope is being further extended in terms of cooling and powering infrastructure, read-out speed, area of acceptance, and precision. In order to provide a system optimized for the different requirements by the user community a combination of various state-of-the-art pixel technologies is foreseen. Furthermore, new central dead-time-free trigger logic unit (TLU) has been developed to provide LHC-speed response with one-trigger-per-particle operating mode and a synchronous clock for all conn...

  8. Characterisation of the Si microstrip detectors for the inner tracking system of ALICE

    International Nuclear Information System (INIS)

    The ALICE (A Large Ion Collider Experiment) is dedicated to the study of heavy ion collisions produced in the LHC. Several concentric detectors around the primary vertex contribute to the determination of the particle tracks. The detector system closest to the interaction spot is the ITS (Inner Tracking System). ITS is composed of 6 layers of concentric cylindrical detectors. The SSD (Silicon Strip Detector) is formed by the 2 external layers of ITS. SSD is composed of 1698 frontal detection modules. The design of SSD is largely influenced by the variety of particles produced in heavy ion collisions. These modules are made of a sensitive part in silicon and of its electronic circuit. As soon as the prototype module was validated, a massive production campaign has been launched. The first 4 modules produced have been tested on the basis of an adequate beam testing procedure. The results concerning the spatial resolution, the energy resolution and the signal/background noise ratio, show that these parameters comply to the constraints imposed by the track reconstruction in Alice

  9. On the basic mechanism of Pixelized Photon Detectors

    CERN Document Server

    Otono, H; Yamashita, S; Yoshioka, T

    2008-01-01

    A Pixelized Photon Detector (PPD) is a generic name for the semiconductor devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and Multi-Pixel Photon Counter, which has high photon counting capability. While the internal mechanisms of the PPD have been intensively studied in recent years, the existing models do not include the avalanche process. We have simulated the multiplication and quenching of the avalanche process and have succeeded in reproducing the output waveform of the PPD. Furthermore our model predicts the existence of dead-time in the PPD which has never been numerically predicted. For serching the dead-time, we also have developed waveform analysis method using deconvolution which has the potential to distinguish neibouring pulses precisely. In this paper, we discuss our improved model and waveform analysis method.

  10. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    Alipour Tehrani, Niloufar; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2015-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  11. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  12. Results of the ALICE time-of-flight detector from the 2009 cosmic-ray data taking

    Energy Technology Data Exchange (ETDEWEB)

    Akindinov, A.; Kiselev, S.; Malkevich, D.; Nedosekin, A.; Ryabinin, M.; Voloshin, K. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Alici, A.; Preghenella, R. [Sezione INFN, Bologna (Italy); Museo Storico della Fisica e Centro Studi e Ricerche ' ' Enrico Fermi' ' , Roma (Italy); Antonioli, P.; Cara Romeo, G.; Cindolo, F.; Hatzifotiadou, D.; Laurenti, G.; Margotti, A.; Nania, R.; Pesci, A.; Pinazza, O.; Scapparone, E.; Williams, M.C.S. [Sezione INFN, Bologna (Italy); Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Guerzoni, B.; Scioli, G.; Silenzi, A. [Dipartimento di Fisica dell' Universita, Bologna (Italy); Sezione INFN, Bologna (Italy); Caffarri, D. [Dipartimento di Fisica dell' Universita, Bologna (Italy); Sezione INFN, Bologna (Italy); INFN, Padova (Italy); University of Padova, Padova (Italy); De Caro, A.; De Gruttola, D.; De Pasquale, S.; Fusco Girard, M.; Pagano, P. [Dipartimento di Fisica dell' Universita Salerno (Italy); INFN, Salerno (Italy); Doroud, K.; Seo, J. [World Laboratory, Geneva (Switzerland); Jung, W.W.; Kim, D.W.; Kim, J.S.; Lee, K.; Lee, S.C. [Gangneung-Wonju National University, Department of Physics, Gangneung (Korea); Noferini, F. [Sezione INFN, Bologna (Italy); INFN-CNAF, Bologna (Italy); Zampolli, C. [INFN-CNAF, Bologna (Italy); CERN, Geneva (Switzerland)

    2010-08-15

    The Time-Of-Flight detector (TOF) of the ALICE experiment at the CERN LHC is based on Multi-gap Resistive Plate Chambers (MRPCs). The TOF detector consists of 152928 readout channels covering a total area of 141 m{sup 2}. In this paper the results of the calibration with cosmic-ray data collected during 2009 are presented. (orig.)

  13. A Sealed Gas Pixel Detector for X-ray Astronomy

    CERN Document Server

    Bellazzini, R; Minuti, M; Baldini, L; Brez, A; Latronico, L; Omodei, N; Razzano, M; Massai, M M; Pinchera, M; Pesce-Rollins, M; Sgro, C; Costa, E; Soffitta, P; Sipilä, H; Lempinen, E

    2006-01-01

    We report on the results of a new, sealed, Gas Pixel Detector. The very compact design and the absence of the gas flow system, make this detector substantially ready for use as focal plane detector for future X-ray space telescopes. The instrument brings high sensitivity to X-ray polarimetry, which is the last unexplored field of X-ray astronomy. It derives the polarization information from the track of the photoelectrons that are imaged by a high gain (>1000), fine pitch GEM that matches the pitch of a pixel ASIC which is the collecting anode of the GPD (105k, 50 micron wide, hexagonal cells). The device is able to simultaneously perform good imaging (50-60 micron), moderate spectroscopy (~15% at 6 keV) as well as fast, high rate timing in the 1-10keV range. Moreover, being truly 2D, it is non dispersive and does not require any rotation. The great improvement of sensitivity, at least two orders of magnitude with respect to traditional polarimeters (based on Bragg crystals or Thomson scattering), will allow ...

  14. Low energy polarization sensitivity of the Gas Pixel Detector

    CERN Document Server

    Muleri, F; Baldini, L; Bellazzini, R; Bregeon, J; Brez, A; Costa, E; Frutti, M; Latronico, L; Minuti, M; Negri, M B; Omodei, N; Pinchera, M; Pesce-Rollins, M; Razzano, M; Rubini, A; Sgro', C; Spandre, G

    2007-01-01

    An X-ray photoelectric polarimeter based on the Gas Pixel Detector has been proposed to be included in many upcoming space missions to fill the gap of about 30 years from the first (and to date only) positive measurement of polarized X-ray emission from an astrophysical source. The estimated sensitivity of the current prototype peaks at an energy of about 3 keV, but the lack of readily available polarized sources in this energy range has prevented the measurement of detector polarimetric performances. In this paper we present the measurement of the Gas Pixel Detector polarimetric sensitivity at energies of a few keV and the new, light, compact and transportable polarized source that was devised and built to this aim. Polarized photons are produced, from unpolarized radiation generated with an X-ray tube, by means of Bragg diffraction at nearly 45 degrees. The employment of mosaic graphite and flat aluminum crystals allow the production of nearly completely polarized photons at 2.6, 3.7 and 5.2 keV from the di...

  15. A photon counting pixel detector for X-ray imaging

    International Nuclear Information System (INIS)

    Hybrid semiconductor pixel detector technology is presented in this thesis as an alternative to current imaging systems in medical imaging and synchrotron radiation applications. The technology has been developed from research performed in High Energy Physics, in particular, for the ATLAS experiment at the LHC, planned for 2005. This thesis describes work done by the author on behalf of the MEDIPIX project, a collaboration between 13 international institutions for the development of hybrid pixel detectors for non-HEP applications. Chapter 1 describes the motivation for these detectors, the origin of the technology, and the current state of the art in imaging devices. A description of the requirements of medical imaging on X-ray sensors is described, and the properties of film and CCDs are discussed. The work of the RD19 collaboration is introduced to show the evolution of these devices. Chapter 2 presents the basic semiconductor theory required to understand the operation of these detectors, and a section on image theory introduces the fundamental parameters which are necessary to define the quality of an imaging device. Chapter 3 presents measurements made by the author on a photon counting detector (PCD1) comprising a PCC1 (MEDIPIX1) readout chip bumpbonded to silicon and gallium arsenide pixel detectors. Tests on the seperate readout chip and the bump-bonded assembly are shown with comparisons between the performance of the two materials. Measurements of signal-to-noise ratio, detection efficiency and noise performance are presented, along with an MTF measurement made by the Freiburg group. The X-ray tube energy spectrum was calibrated by REGAM. The performance of the PCD in a powder diffraction experiment using a synchrotron radiation source is described in chapter 4. This chapter reports the first use of a true 2-D hybrid pixel detector in a synchrotron application, and a comparison with the existing scintillator based technology is made. The measurements made

  16. Status of the CMS Phase I Pixel Detector Upgrade

    OpenAIRE

    Spannagel, Simon

    2015-01-01

    Based on the strong performance of the LHC accelerator, it is anticipated that peak luminosities of two times the design luminosity of L = 2 x10^34 cm^-2s^-1 are likely to be reached before 2018 and probably significantly exceeded in the so-called Phase I period until 2022. At this higher luminosity and increased hit occupancies the current CMS pixel detector would be subject to severe dead time and inefficiencies introduced by limited buffers in the analog read-out chip and effects of radiat...

  17. Radiation damage of pixelated photon detector by neutron irradiation

    Science.gov (United States)

    Nakamura, Isamu

    2009-10-01

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 1012 neutron/cm2. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  18. DAQ Development for Silicon-On-Insulator Pixel detectors

    CERN Document Server

    Nishimura, Ryutaro; Miyoshi, Toshinobu

    2015-01-01

    We are developing DAQ for Si-pixel detectors by using a Slicon-On-Insulator (SOI) technology. This DAQ consists of firmware works on SEABAS (Soi EvAluation BoArd with Sitcp) DAQ board and software works on PC. We have been working on the development of firmware/software. Now we accomplished to speed up the readout (~90Hz) and to add a function for frame rate control. This is the report of our development work for the High Speed DAQ system.

  19. The PreAmplifier ShAper for the ALICE TPC detector

    International Nuclear Information System (INIS)

    In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18–25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e+17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm2 and is implemented in AMS's C35B3C1 0.35μm CMOS technology. Detailed characterization tests were performed on about 48 000 PASA circuits before mounting them on the ALICE TPC front-end cards. After more than two years of operation of the ALICE TPC with p–p and Pb–Pb collisions, the PASA has demonstrated to fulfill all requirements.

  20. Recent Developments on the Silicon Drift Detector readout scheme for the ALICE Inner Tracking System

    CERN Document Server

    Mazza, G; Bonazzola, G C; Bonvicini, V; Cavagnino, D; Cerello, P G; De Remigis, P; Falchieri, D; Gabrielli, A; Gandolfi, E; Giubellino, P; Hernández, R; Masetti, M; Montaño-Zetina, L M; Nouais, D; Rashevsky, A; Rivetti, A; Tosello, F

    1999-01-01

    Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999Recent developments of the Silicon Drift Detector (SDD) readout system for the ALICE Experiment are presented. The foreseen readout system is based on 2 main units. The first unit consists of a low noise preamplifier, an analog memory which continuously samples the amplifier output, an A/D converter and a digital memory. When the trigger signal validates the analog data, the ADCs convert the samples into a digital form and store them into the digital memory. The second unit performs the zero suppression/data compression operations. In this paper the status of the design is presented, together with the test results of the A/D converter, the multi-event buffer and the compression unit prototype.Summary:In the Inner Tracker System (ITS) of the ALICE experiment the third and the fourth layer of the detectors are SDDs. These detectors provide the measurement of both the energy deposition and the bi-dimensional position of the track. In terms o...

  1. Development of Large Area CsI Photocathodes for the ALICE/HMPID RICH Detector

    CERN Document Server

    Hoedlmoser, H; Schyns, E

    2005-01-01

    The work carried out within the framework of this PhD deals with the measurement of the photoelectric properties of large area thin film Cesium Iodide (CsI) photocathodes (PCs) which are to be used as a photon converter in a proximity focusing RICH detector for High Momentum Particle Identification (HMPID) in the ALICE experiment at the LHC. The objective was to commission a VUV-scanner setup for in-situ measurements of the photoelectric response of the CsI PCs immediately after the thin film coating process and the use of this system to investigate the properties of these photon detectors. Prior to this work and prior to the finalization of the ALICE/HMPID detector design, R&D work investigating the properties of CsI PCs had been performed at CERN and at other laboratories in order to determine possible substrates and optimized thin film coating procedures. These R&D studies were usually carried out with small samples on different substrates and with various procedures with sometimes ambiguous result...

  2. Front end electronics and first results of the ALICE V0 detector

    International Nuclear Information System (INIS)

    This paper gives a detailed description of the acquisition and trigger electronics especially designed for the V0 detector of ALICE at LHC. A short presentation of the detector itself is given before the description of the Front End Electronics (FEE) system, which is completely embedded within the LHC environment as far as acquisition (DAQ), trigger (CTP), and detector control (DCS) are concerned. It is able to detect on-line coincident events and to achieve charge (with a precision of 0.6 pC) and time measurements (with a precision of 100 ps). It deploys quite a simple architecture. It is however totally programmable and fully non-standard in discriminating events coming from Beam-Beam interaction and Beam-Gas background. Finally, raw data collected from the first LHC colliding beams illustrate the performance of the system.

  3. The multigap RPC detector and the ALICE time-of-flight

    CERN Document Server

    Zichichi, A

    2003-01-01

    One of the new detectors invented within the LAA project is the Multigap Resistive Plate Chamber (MRPC). The MRPC has been selected as the Time-of-Flight detector of choice for the ALICE experiment. The R and D program to optimise the MRPC for this application has now been completed, resulting in a device with 10 gas gaps of 250 mu m in width; a summary is given in this paper. Concerning the front-end electronics, there is an on-going development of an ASIC using 0.25 micron CMOS; the excellent performance of the ASIC is evident from the initial tests; some results will be shown here. Finally the timing properties of this detector open up other applications such as for Positron Electron Tomography. (author)

  4. The MRPC-based ALICE Time-Of-Flight detector: Commissioning and first performance

    Energy Technology Data Exchange (ETDEWEB)

    Akindinov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Alici, A., E-mail: Andrea.Alici@cern.ch [Sezione INFN, Bologna (Italy); Museo Storico della Fisica e Centro Studi e Ricerche & #x27; Enrico Fermi& #x27; , Roma (Italy); CERN, Geneva (Switzerland); Antonioli, P. [Sezione INFN, Bologna (Italy); Arcelli, S.; Basile, M. [Sezione INFN, Bologna (Italy); Dipartimento di Fisica dell& #x27; Universita, Bologna (Italy); Bellini, F. [Sezione INFN, Bologna (Italy); Caffarri, D. [Sezione INFN, Bologna (Italy); Dipartimento di Fisica dell& #x27; Universita, Bologna (Italy); INFN and University of Padova (Italy); Cara Romeo, G. [Sezione INFN, Bologna (Italy); Cifarelli, L. [Sezione INFN, Bologna (Italy); Dipartimento di Fisica dell& #x27; Universita, Bologna (Italy); Cindolo, F. [Sezione INFN, Bologna (Italy); De Caro, A.; De Gruttola, D.; De Pasquale, S. [Dipartimento di Fisica dell& #x27; Universita and INFN, Salerno (Italy); Doroud, K. [World Laboratory, Geneva (Switzerland); Fusco Girard, M. [Dipartimento di Fisica dell& #x27; Universita and INFN, Salerno (Italy); Guerzoni, B. [Sezione INFN, Bologna (Italy); Dipartimento di Fisica dell& #x27; Universita, Bologna (Italy); Hatzifotiadou, D. [Sezione INFN, Bologna (Italy); Jung, W.W.; Kim, D.W.; Kim, J.S. [Department of Physics, Gangneung-Wonju National University, Gangneung (Korea, Republic of); and others

    2012-01-01

    The ALICE Time-Of-Flight (TOF) detector is a cylindrical array with a total area of about 150 m{sup 2} and more than 153,000 readout channels; it will allow charged hadron separation for momentum up to a few GeV/c. The very good performance required for such a system has been achieved by means of the Multigap Resistive Plate Chamber (MRPC) whose time resolution is better than 50 ps with an overall efficiency close to 100%. The TOF detector is fully installed since April 2008; it has successfully been operated during cosmic ray data taking. The very good stability, noise level and time performance are reported here. The status of the calibration and the first physics results with the TOF detector are given.

  5. The pixel detector for the CMS phase-II upgrade

    International Nuclear Information System (INIS)

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R and D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb−1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R and D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R and D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R and D effort are presented and discussed in this article

  6. The pixel detector for the CMS phase-II upgrade

    CERN Document Server

    Dinardo, Mauro

    2015-01-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R\\&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000~fb$^{-1}$, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of $2\\times10^{16}$~1MeV~eq.n.~/~cm$^2$, or equivalently 10~MGy of radiation dose in silicon, at about 3~cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R\\&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R\\&D effort for the development of the readout chip in the 65~nm CMOS technology. Status, progresses, and prospects of the CMS R\\&D effort are presented and discussed in this article.

  7. The pixel detector for the CMS phase-II upgrade

    Science.gov (United States)

    Dinardo, M. E.

    2015-04-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb-1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R&D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R&D effort are presented and discussed in this article.

  8. (Anti-)deuteron production at the LHC with the ALICE-HMPID detector

    CERN Document Server

    Barile, F

    2015-01-01

    The high center-of-mass energies delivered by the LHC during the last three years of operation led to accumulate a significant statistics of light (hyper-)nuclei in pp, p-Pb and Pb-Pb collisions. The ALICE apparatus allows for the detection of these rarely produced particles over a wide momentum range thanks to its excellent vertexing, tracking and particle identification capabilities. The last is based on the specific energy loss in the Time Projection Chamber and the velocity measurement with the Time-Of-Flight detector. The Cherenkov tech- nique, exploited by a small acceptance detector (HMPID), has been also recently used for the most central Pb-Pb collisions to extend the identification range of the (anti-)deuteron at intermediate transverse momentum. An overview of the recent results on the (anti-)deuteron production in pp, p-Pb and Pb-Pb collisions mea- sured with ALICE experiment are presented, giving a particular emphasis to the description of the Cherenkov technique

  9. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    International Nuclear Information System (INIS)

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 1016 particles per cm2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 μm2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  10. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  11. Simulation of gas mixture drift properties for GasPixel detector for modernization of ATLAS

    International Nuclear Information System (INIS)

    Results of simulation of gas mixture drift properties for GasPixel detector are presented. The properties of gaseous mixtures for the GasPixel detector have been studied in view of its use in high luminosity tracking applications for the ATLAS Inner Detector in a future super-LHC collider

  12. A sealed Gas Pixel Detector for X-ray astronomy

    International Nuclear Information System (INIS)

    We report on the results of a new, sealed Gas Pixel Detector. The very compact design and the absence of the gas flow system make this detector substantially ready for use as focal plane detector for future X-ray space telescopes. The instrument brings high sensitivity to X-ray polarimetry, which is the last unexplored field of X-ray astronomy. It derives the polarization information from the track of the photoelectrons that are imaged by a high-gain (>1000), fine pitch GEM that matches the pitch of a pixel ASIC which is the collecting anode of the GPD (105k, 50 μm wide, hexagonal cells). The device is able to simultaneously perform good imaging (50-60 μm), moderate spectroscopy (∼15% at 6 keV) as well as fast, high-rate timing in the 1-10 keV range. Moreover, being truly 2D, it is non-dispersive and does not require any rotation. The great improvement of sensitivity, at least two orders of magnitude with respect to traditional polarimeters (based on Bragg crystals or Thomson scattering), will allow the direct exploration of the most dramatic objects of the X-ray sky. At the focus of the large mirror area of the XEUS telescope it will be decisive in reaching many of the scientific goals of the mission. With integration times of the order of 1 day, polarimetry of Active Galactic Nuclei at the percent level will be possible, making for a real breakthrough in high-energy astrophysics

  13. A sealed Gas Pixel Detector for X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R. [INFN sez.Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)], E-mail: ronaldo.bellazzini@pi.infn.it; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Latronico, L.; Omodei, N. [INFN sez.Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Razzano, M.; Massai, M.M. [INFN sez.Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Pesce-Rollins, M.; Sgro, C. [INFN sez.Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Costa, Enrico; Soffitta, Paolo [Istituto di Astrofisica Spaziale e Fisica Cosmica, Via del Fosso del Cavaliere 100, I-00133, Roma (Italy); Sipila, H.; Lempinen, E. [Oxford Instruments Analytical Oy, Nihtisillankuja 5, FI-02631 Espoo (Finland)

    2007-09-01

    We report on the results of a new, sealed Gas Pixel Detector. The very compact design and the absence of the gas flow system make this detector substantially ready for use as focal plane detector for future X-ray space telescopes. The instrument brings high sensitivity to X-ray polarimetry, which is the last unexplored field of X-ray astronomy. It derives the polarization information from the track of the photoelectrons that are imaged by a high-gain (>1000), fine pitch GEM that matches the pitch of a pixel ASIC which is the collecting anode of the GPD (105k, 50 {mu}m wide, hexagonal cells). The device is able to simultaneously perform good imaging (50-60 {mu}m), moderate spectroscopy ({approx}15% at 6 keV) as well as fast, high-rate timing in the 1-10 keV range. Moreover, being truly 2D, it is non-dispersive and does not require any rotation. The great improvement of sensitivity, at least two orders of magnitude with respect to traditional polarimeters (based on Bragg crystals or Thomson scattering), will allow the direct exploration of the most dramatic objects of the X-ray sky. At the focus of the large mirror area of the XEUS telescope it will be decisive in reaching many of the scientific goals of the mission. With integration times of the order of 1 day, polarimetry of Active Galactic Nuclei at the percent level will be possible, making for a real breakthrough in high-energy astroph0011ysi.

  14. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    Science.gov (United States)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  15. Pixel Detector Trial Assembly Test in the SR1 building

    CERN Multimedia

    D. Giugni

    2004-01-01

    During the last two months the Pixel group [LBL, Milan and Wuppertal] made a successful integration test on the mechanics of the barrel. The scope of the test was to qualify the integration procedures and the various assembling tools. The test took place in the clean room of the SR1 building at CERN, where the detector has been assembled around a dummy beam pipe made of Stainless Steel. The process is rather complex: the shells come in two parts and they have to be clamped together to get the full shell. This operation is carried out by a dedicated tool which is shown to the right in the picture below. The layer 1 shell is clamped around a "service" pipe that will be used for moving the full layer to the integration tool [ITT] which is visible on the left. View of the tools devoted to the Pixel barrel integration in the SR1 building Also visible in the picture is the global frame that is actually held by the tool. It will engage the layers sliding onto the rails. The first two layers are sequentially...

  16. Towards a new generation of pixel detector readout chips

    International Nuclear Information System (INIS)

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile-ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed

  17. ATLAS pixel detector timing optimisation with the back of crate card of the optical pixel readout system

    Energy Technology Data Exchange (ETDEWEB)

    Flick, T; Gerlach, P; Reeves, K; Maettig, P [Department of Physics, Bergische Universitaet Wuppertal (Germany)

    2007-04-15

    As with all detector systems at the Large Hadron Collider (LHC), the assignment of data to the correct bunch crossing, where bunch crossings will be separated in time by 25 ns, is one of the challenges for the ATLAS pixel detector. This document explains how the detector system will accomplish this by describing the general strategy, its implementation, the optimisation of the parameters, and the results obtained during a combined testbeam of all ATLAS subdetectors.

  18. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    CERN Document Server

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bond...

  19. Dimuon production in p-p and Pb-Pb reactions with Alice: V0 detector and low mass resonances

    International Nuclear Information System (INIS)

    Ultra-relativistic heavy ion collisions will create, by highly compressing nuclei, a new state of matter in which quarks are not bound any more but freed from their confining within nucleons. This form of matter called quark-gluon plasma or QGP will be studied with the ALICE experiment at the CERN LHC. This work describes the V0 detector which is composed of two scintillator hodoscopes located in either sides of the beam collision point in the center of the ALICE detector. The V0 detector plays a major role in ALICE. It provides the level 0 trigger of the experiment, it eliminates most of the instrumental background. It measures the luminosity in proton-proton collisions. The detector design and performance are detailed. Dimuon physics is then investigated by studying low-mass resonances. Indeed the invariant mass region below 3 GeV/c2 provides important information about the hot and dense matter created in ultrarelativistic heavy ion collisions. The features of the low-mass resonance ρ0, ω and φ0 and their possible modifications might be a consequence of restoring chiral symmetry and therefore be interpreted as a signature for the formation of the new state of matter, the Quark Gluon Plasma. The capability of observing these resonances in p-p and Pb-Pb modes using the ALICE dimuon spectrometer, via their muon pair decays, is estimated. (author)

  20. The PreAmplifier ShAper for the ALICE TPC-Detector

    CERN Document Server

    Soltveit, H K; Braun-Munzinger, P; Musa, L; Gustafsson, H A; Bonnes, U; Oeschler, H; Osterman, L; Lang, S

    2012-01-01

    In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18-25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e + 17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm$^2$ and is implemented in AMS's C35B3C1 0.35 micron CMOS technology. Detailed characterization test were performed on about 48000 PASA circuits before m...

  1. Development of CMOS Monolithic Active Pixel Sensors for the ALICE-ITS Outer Barrel and for the CBM-MVD

    CERN Document Server

    Deveaux, Michael

    2015-01-01

    After more than a decade of R&D;, CMOS Monolithic Active Pixel Sensors (MAPS or CPS) have proven to offer concrete answers to the demanding requirements of subatomic physics experi- ments. Their main advantages result from their low material budget, their very high granularity and their integrated signal processing circuitry, which allows coping with high particle rates. Moreover, they offer a valuable radiation tolerance and may be produced at low cost. Sensors of the MIMOSA series have offered an opportunity for nuclear and particle physics exper- iments to address with improved sensitivity physics studies requiring an accurate reconstruction of short living and soft particles. One of their major applications is the STAR-PXL detector, which is the first vertex detector based on MAPS. While this experiment is successfully taking data since two years, it was found that the 0.35 m CMOS technology used for this purpose is not suited for upcoming applications like the CBM micro-vertex detector (MVD) and the ...

  2. Study of the tracking chambers of the ALICE detector dimuons arm at LHC; Etude des chambers de trajectographie du bras dimuons du detecteur ALICE au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bimbot, L.; Courtat, P.; Crane, B. [Services Techniques, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others

    1999-11-01

    An important R and D program for the tracking chambers of the ALICE dimuon arm is currently being carried out at the IPN. The aim is to determine the optimum detector type and geometry. Numerous simulations have been carried out for pad chamber configurations to determine the multi-hit separation as a function of pad geometry. The signal processing has also been studied in detail. Two small prototypes have been constructed and studied during in-beam tests. (authors) 7 refs., 3 figs.

  3. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  4. Data Concentrator for the BELLE II DEPFET pixel detector

    International Nuclear Information System (INIS)

    The innermost two layers of the BELLE II detector located at the KEK facility in Tsukuba, Japan, will be covered by high granularity DEPFET pixel (PXD) sensors. This leads to a high data rate of around 60 Gbps, which has to be significantly reduced by the Data Acquisition System. To perform the data reduction the hit information of the surrounding silicon strip detector (SVD) is used to define so-called Regions of Interest (ROI) and only hits inside these ROIs are saved. The ROIs are computed by reconstructing track segments from SVD data. A data reduction of up to a factor of 10 can be achieved this way. All the necessary processing stages, the receiving and multiplexing of the data on many optical links from the SVD, the track reconstruction and the definition of the ROIs, are performed by the Data Concentrator. The planned hardware design is based on a distributed set of Advanced Mezzanine Cards (AMC) each equipped with a Field Programmable Gate Array (FPGA) chip. In this talk, the firmware development of the algorithms and the hardware implementation of the Data Concentrator are discussed. In addition, preliminary studies of track reconstruction algorithms, that could be used for FPGA-based tracking, are presented.

  5. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts

  6. Charge Sharing Effect on 600 {\\mu}m Pitch Pixelated CZT Detector for Imaging Applications

    CERN Document Server

    Yin, Yongzhi; Xu, Dapeng; Chen, Ximeng

    2013-01-01

    We are currently investigating the spatial resolution of highly pixelated Cadmium Zinc Telluride (CZT) detector for imaging applications. A 20 mm {\\times} 20 mm {\\times} 5 mm CZT substrate was fabricated with 600 {\\mu}m pitch pixels (500 {\\mu}m anode pixels with 100 {\\mu}m gap) and coplanar cathode. Charge sharing between two pixels was studied using collimated 122 keV gamma ray source. Experiments show a resolution of 125 {\\mu}m FWHM for double-pixel charge sharing events when the 600 {\\mu}m pixelated and 5 mm thick CZT detector biased at -1000 V. In addition, we analyzed the energy response of the 600 {\\mu}m pitch pixelated CZT detector.

  7. X-ray imaging using single photon processing with semiconductor pixel detectors

    International Nuclear Information System (INIS)

    More than 10 years experience with semiconductor pixel detectors for vertex detection in high-energy physics experiments together with the steady progress in CMOS technology opened the way for the development of single photon processing pixel detectors for various applications including medical X-ray imaging. The state of the art of such pixel devices consists of pixel dimensions as small as 55x55 μm2, electronic noise per pixel 100 e- rms, signal-to-noise discrimination levels around 1000 e- with a spread 50 e- and a dynamic range up to 32 bits/pixel. Moreover, the high granularity of hybrid pixel detectors makes it possible to probe inhomogeneities of the attached semiconductor sensor

  8. X-ray imaging using single photon processing with semiconductor pixel detectors

    CERN Document Server

    Mikulec, Bettina; Heijne, Erik H M; Llopart-Cudie, Xavier; Tlustos, Lukas

    2003-01-01

    More than 10 years experience with semiconductor pixel detectors for vertex detection in high energy physics experiments together with the steady progress in CMOS technology opened the way for the development of single photon processing pixel detectors for various applications including medical X-ray imaging. The state of the art of such pixel devices consists of pixel dimensions as small as 55x55 um2, electronic noise per pixel <100 e- rms, signal-to-noise discrimination levels around 1000 e- with a spread <50 e- and a dynamic range up to 32 bits per pixel. Moreover, the high granularity of hybrid pixel detectors makes it possible to probe inhomogeneities of the attached semiconductor sensor.

  9. First tests of high resolution silicon pad detectors for the ALICE forward calorimeter

    International Nuclear Information System (INIS)

    To enrich the physics program of the ALICE experiment at CERN, a newly designed Electromagnetic Calorimeter is being proposed as a possible upgrade in the Forward pseudo rapidity region. The calorimeter will be installed at a distance of about 3.5 meters from the vertex and cover a region of 2.5 to 4.8 in pseudo rapidity. The detector will be a novel silicon-tungsten design, which will be used for the first time in any high-energy physics experiment. For full containment of photon energy up to 200 GeV it has been found that 24 radiation lengths (layers) of material is sufficient. For this purpose a sampling type calorimeter with tungsten (absorber) and silicon (active material) has been considered

  10. Characterization of M-π-n CdTe pixel detectors coupled to HEXITEC readout chip

    Science.gov (United States)

    Veale, M. C.; Kalliopuska, J.; Pohjonen, H.; Andersson, H.; Nenonen, S.; Seller, P.; Wilson, M. D.

    2012-01-01

    Segmentation of the anode-side of an M-π-n CdTe diode, where the pn-junction is diffused into the detector bulk, produces large improvements in the spatial and energy resolution of CdTe pixel detectors. It has been shown that this fabrication technique produces very high inter-pixel resistance and low leakage currents are obtained by physical isolation of the pixels of M-π-n CdTe detectors. In this paper the results from M-π-n CdTe detectors stud bonded to a spectroscopic readout ASIC are reported. The CdTe pixel detectors have 250 μm pitch and an area of 5 × 5 mm2 with thicknesses of 1 and 2 mm. The polarization and energy resolution dependence of the M-π-n CdTe detectors as a function of detector thickness are discussed.

  11. Display of cosmic ray event going through the pixel detector taken on October 18th 2008

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Shown are the XY view (of SCT and pixels and of pixels alone) and an RZ view. The track has a hit in each of the layers in both the upper and the lower hemisphere. In the bottom of L0 there are even two hits due to a module overlap. Apart from the signal hits there is only one other hit in the pixel detector demonstrating the very low noise level in the detector.

  12. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Abstract: Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge c...

  13. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  14. Status and future of the ATLAS Pixel Detector at the LHC

    International Nuclear Information System (INIS)

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of disks in each forward end-cap. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-on-n silicon substrates. Intensive calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. The record breaking instantaneous luminosities of 7.7×1033cm−2s−1 recently surpassed at the LHC generated a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulated, the first effects of radiation damage became observable in the silicon sensors as an increase in the silicon leakage current and the change of the voltage required to fully deplete the sensor. A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014) together with the replacement of pixel services. A letter of intent was submitted for a completely new Pixel Detector after 2023, capable to take data with extremely high leveled luminosities of 5×1034cm−2s−1 at the high luminosity LHC. -- Highlights: •The ATLAS Pixel Detector provides hermetic coverage with three layers with 80 million pixels. •Calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. •First effects of radiation damage became observable in the silicon sensors. •A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014). •Replacement of pixel services in 2013–2014. •A letter of intent was submitted for new Pixel Detector after 2023 for high luminosity LHC

  15. Sector Multipad Prototype of the FMD-MCP Detector for ALICE (1997)

    CERN Document Server

    Antropov, A E; Feofilov, G A; Izrailov, E K; Kasatkin, V A; Klempt, W; Kolojvari, A A; Larin, M P; Lazarev, V A; Novikov, I A; Potapov, S V; Stolyarov, O I; Tsimbal, F A; Tulina, T A; Valiev, F F; Vinogradov, L I

    1997-01-01

    We present results of the technology, manufacturing andfirst tests of a novel MCP-based sector prototypefor the Forward Multiplicity Detector for the ALICE experiment at the LHC. The detector is to provide better than sqrt(M)/Mresolution for high multiplicity events, and about 50 pstiming resolution. Two Sector MCPs are mounted on a 200 ceramics board with the multipad readout integrated with a passive summator. This microelectronics UHF device provides isochronous analogue summation of the fast 1ns signal components from 8 pads, along with the individual readout of charges. The setup is baked under 300C and then sealedinto a singular thin wall (200 ) stainlesssteel vacuum sector chamber with Ti getter keeping a vacuum of 10-5Torr.The separation of the fast and slow componentsallows us to use this detector as the zero level trigger,in pile up and beam-gas interaction diagnostics and for thedetermination of the collision vertex along the beam axis. The results of the first and future lab and in-beam tests are ...

  16. The ALICE Transition Radiation Detector: status and perspectives for Run II

    CERN Document Server

    Klein, Jochen

    2016-01-01

    The ALICE Transition Radiation Detector contributes to the tracking, particle identification, and triggering capabilities of the experiment. It is composed of six layers of multi-wire proportional chambers, each of which is preceded by a radiator and a Xe/CO$_2$-filled drift volume. The signal is sampled in timebins of 100~ns over the drift length which allows for the reconstruction of chamber-wise track segments, both online and offline. The particle identification is based on the specific energy loss of charged particles and additional transition radiation photons, the latter being a signature for electrons. The detector is segmented into 18 sectors, of which 13 were installed in Run I. The TRD was included in data taking since the LHC start-up and was successfully used for electron identification and triggering. During the Long Shutdown 1, the detector was completed and now covers the full azimuthal acceptance. Furthermore, the readout and trigger components were upgraded. When data taking was started for ...

  17. The Time-Of-Flight detector of ALICE at LHC: construction, test and commissioning with cosmic rays

    CERN Document Server

    Preghenella, Roberto

    2009-01-01

    After several years of research and development the Time-Of-Flight detector of ALICE (A Large Ion Collider Experiment) has been constructed and is presently fully installed and operative in the experimental area located at the interaction point n.2 of the LHC (Large Hadron Collider) at CERN. Particle identification in ALICE is essential, as many observables are either mass or flavour dependent, therefore many different techniques are used to cover the largest possible momentum range. As said, the TOF (Time- Of-Flight) detector, of which a comprehensive review is given in Chapter 2, is dedicated to hadron identification at medium momenta. The detector exploits the novel technology based on the Multigap Resistive Plate Chamber (MRPC) which guarantees the excellent performance required for a very large time-of-flight array. The construction of the ALICE TOF detector has required the assembly of a large number of MRPC detectors which has been successfully carried out thanks to a careful mass production controlled...

  18. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  19. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    Energy Technology Data Exchange (ETDEWEB)

    Zumbiehl, A. E-mail: zumbiehl@phase.c-strasbourg.fr; Hage-Ali, M.; Fougeres, P.; Koebel, J.M.; Regal, R.; Rit, C.; Ayoub, M.; Siffert, P

    2001-08-11

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: after showing our approach for the weighting potential calculation, we present our results performed by a 'pseudo-Monte Carlo' simulation. Results are supported by a few experimental comparisons. We argue about the optimum sizes with clarifying the problems caused by too small and too large pixel sizes. The study field is chosen to be vast, i.e. pixel size to detector thickness ratios (W/L) of 1/8-1, and detector thickness of 1.0-8.0 mm. In addition, several electrical transport properties are used. Since efficiency is often of primary interest, thick detectors could be very attractive, which are shown to be really feasible even on CdTe.

  20. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    Science.gov (United States)

    Zumbiehl, A.; Hage-Ali, M.; Fougeres, P.; Koebel, J. M.; Regal, R.; Rit, C.; Ayoub, M.; Siffert, P.

    2001-08-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: after showing our approach for the weighting potential calculation, we present our results performed by a "pseudo-Monte Carlo" simulation. Results are supported by a few experimental comparisons. We argue about the optimum sizes with clarifying the problems caused by too small and too large pixel sizes. The study field is chosen to be vast, i.e. pixel size to detector thickness ratios ( W/ L) of 1/8-1, and detector thickness of 1.0-8.0 mm. In addition, several electrical transport properties are used. Since efficiency is often of primary interest, thick detectors could be very attractive, which are shown to be really feasible even on CdTe.

  1. Performance of common-grid pixelated CZT detector with different array geometries

    International Nuclear Information System (INIS)

    A 4 × 4 common-grid pixelated CZT detector with four different array geometries has been designed and fabricated. The impact of small pixel effect, guide effect of the steering grid and edge effect on detector performance has been investigated. Both the weighting potential and the real electric field distributions have been calculated for better understanding the charge induction and collection. Results show that with constant pixel pitch, smaller anode pixel suffers from serious charge loss in volume and surface layer between anode pixels and steering grid. The small pixel effect is not strong enough to remove hole trailing for lager anode pixel. A relative high potential difference between anode pixels and steering grid leads to sufficient charge collection resulting in a better detector performance, especially for smaller anode pixels. In addition to edge and corner effects due to faulty or imperfect fabrication of the detector, the weighting potential distribution difference is an inherent physical effect that alter the profile of the induced signals in edge and corner pixels

  2. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  3. The Latest from ALICE

    CERN Multimedia

    2009-01-01

    After intensive installation operations from October 2008 until July 2009 (see Bulletin 31/7/2009), ALICE started a full-detector cosmics run in August, which is scheduled to last until the end of October. In addition to the Silicon Pixel and ACORDE detectors, the latter specially built for triggering on cosmic muons, ALICE is now making extensive use of the trigger provided by the Time Of Flight array. The high granularity and the low noise (0.1 Hz/cm2) of the TOF MRPCs, combined with the large coverage (~150 m2), offers a wide range of trigger combinations. This extended cosmic run serves many purposes: to test the performance of each individual detector; to ensure their integration in the central Data Acquisition; to perform alignment and calibration; to check the reconstruction software; to fine-tune the tracking algorithms; and last but not least, to train the personnel for the long shifts ahead. More than 100 million events h...

  4. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  5. Performance studies of pixel hybrid photon detectors for the LHCb RICH counters

    CERN Document Server

    Aglieri-Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2006-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  6. L0/L1 trigger generation by the ALICE PHOS detector

    CERN Document Server

    Lijiao, Liu

    Quark-Gluon Plasma (QGP) is a phase that exists above a critical temperature and corresponding energy density according to the theory of Quantum Chromo-Dynamics (QCD). The studies of the QGP help us to understand the early evolution of our universe and the Standard Model. A large Ion Collider Experiment (ALICE) aims to study the properties of the QGP. A QGP can not be observed directly because it is a short lived state. Signatures such as jet quenching, flow pattern and high pT suppression indicate the existence of a QGP. Various sub-detectors are designed for detecting these signatures. The PHOton Spectrometer (PHOS), one of the sub-detectors, is a high-resolution electromagnetic calorimeter dedicated to the precise measurement of direct photon and neutral meson yields in a pT range up to 100 GeV/c. Four online systems are developed to monitor, control and read out the different subdetectors. The trigger system is one of them. The task of the trigger system is to select events of interest and to reduce the o...

  7. Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor

    CERN Document Server

    Hillert, S; Müller, U C; Roth, S; Hansen, K; Holl, P; Karstensen, S; Kemmer, J; Klanner, Robert; Lechner, P; Leenen, M; Ng, J S T; Schmüser, P; Strüder, L

    2001-01-01

    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free electron laser of the TESLA test facility are presented. To determine the electronic noise of detector and read-out and to calibrate the signal amplitude of different pixels the 6 keV photons of the manganese K line are used. Two different methods determine the spatial accuracy of the detector: In one setup a laser beam is focused to a straight line and moved across the pixel structure. In the other the detector is scanned using a low-intensity electron beam of an electron microscope. Both methods show that the symmetry axis of the detector defines a straight line within 0.4 microns. The sensitivity of the detector to low energy X-rays is measured using a vacuum ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the electron microscope is used to study the radiation hardness of the detector.

  8. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    Science.gov (United States)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Kato, Koji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2013-12-01

    An uncooled infrared (IR) focal plane array (FPA) with 23.5 μm pixel pitch has been successfully demonstrated and has found wide commercial applications in the areas of thermography, security cameras, and other applications. One of the key issues for uncooled IRFPA technology is to shrink the pixel pitch because the size of the pixel pitch determines the overall size of the FPA, which, in turn, determines the cost of the IR camera products. This paper proposes an innovative pixel structure with a diaphragm and beams placed in different levels to realize an uncooled IRFPA with smaller pixel pitch (≦17 μm). The upper level consists of a diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to be placed on the adjacent pixels. The test devices of this pixel design with 12, 15, and 17 μm pitch have been fabricated on the Si read-out integrated circuit (ROIC) of quarter video graphics array (QVGA) (320×240) with 23.5 μm pitch. Their performances are nearly equal to those of the IRFPA with 23.5 μm pitch. For example, a noise equivalent temperature difference of 12 μm pixel is 63.1 mK for F/1 optics with the thermal time constant of 14.5 ms. Then, the proposed structure is shown to be effective for the existing IRFPA with 23.5 μm pitch because of the improvements in IR sensitivity. Furthermore, the advanced pixel structure that has the beams composed of two levels are demonstrated to be realizable.

  9. Commissioning and Operation of the ATLAS Pixel Detector at the CERN LHC Collider

    CERN Document Server

    Djama, F; The ATLAS collaboration

    2010-01-01

    Physics program at the CERN LHC collider started in autumn 2009. Since then, LHC daily delivers collisions between its two proton beams. This talk was devoted to the commissioning and early operation of the ATLAS Pixel Detector. The Pixel Detector is working nicely and all the required performances like efficiency, resolution and low noise were met. The fraction of working modules is as high as 97.4 %. The Pixel Detector fully participates in the reconstruction of charged particles trajectories, and is a key element in finding primary and secondary verticies and in tagging of short-lived particles.

  10. Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor

    OpenAIRE

    Hillert, S.; Ischebeck, R.; Müller, U. C.; Roth, S.; Hansen, K.; Holl, P.; Karstensen, S.; Kemmer, J.; Klanner, R.; Lechner, P.; Leenen, M; Ng, J. S. T.; Schmüser, P.; Strüder, L.

    2000-01-01

    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free electron laser of the TESLA test facility are presented. To determine the electronic noise of detector and read-out and to calibrate the signal amplitude of different pixels the 6 keV photons of the manganese K line are used. Two different methods determine the spatial accuracy of the detector: In one setup a laser beam is focused to a straight line and moved across the pixel structure. In the other th...

  11. Modeling Inter-Pixel Crosstalk in Teledyne Imaging Sensors H4RG Detectors

    CERN Document Server

    Dudik, R P; Dorland, B N; Veillette, D; Waczynski, A; Lane, B; Loose, M; Kan, E; Waterman, J; Pravdo, S

    2012-01-01

    CMOS-hybrid arrays have recently surfaced as competitive optical detectors for use in ground- and space-based astronomy. One source of error in these detectors that does not appear in more traditional CCD arrays is the inter-pixel capacitance component of crosstalk. In this paper we use a single pixel reset method to model inter-pixel capacitance (IPC). We combine this IPC model with a model for charge diffusion to estimate the total crosstalk on H4RG arrays. Finally, we compare our model results to Fe55 data obtained using an astrometric camera built to test the H4RG-B0 generation detectors.

  12. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Čepila, J.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Vaňát, Tomáš; Závada, Petr

    2016-01-01

    Roč. 2016, č. 1 (2016), s. 032. ISSN 1475-7516 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * cosmic ray experiments * cosmic rays detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 5.810, year: 2014

  13. X-CSIT: a toolkit for simulating 2D pixel detectors

    International Nuclear Information System (INIS)

    A new, modular toolkit for creating simulations of 2D X-ray pixel detectors, X-CSIT (X-ray Camera SImulation Toolkit), is being developed. The toolkit uses three sequential simulations of detector processes which model photon interactions, electron charge cloud spreading with a high charge density plasma model and common electronic components used in detector readout. In addition, because of the wide variety in pixel detector design, X-CSIT has been designed as a modular platform so that existing functions can be modified or additional functionality added if the specific design of a detector demands it. X-CSIT will be used to create simulations of the detectors at the European XFEL, including three bespoke 2D detectors: the Adaptive Gain Integrating Pixel Detector (AGIPD), Large Pixel Detector (LPD) and DePFET Sensor with Signal Compression (DSSC). These simulations will be used by the detector group at the European XFEL for detector characterisation and calibration. For this purpose, X-CSIT has been integrated into the European XFEL's software framework, Karabo. This will further make it available to users to aid with the planning of experiments and analysis of data. In addition, X-CSIT will be released as a standalone, open source version for other users, collaborations and groups intending to create simulations of their own detectors

  14. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  15. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  16. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Manolopoulos, S.; Bates, R.; Campbell, M.; Snoeys, W.; Heijne, E.; Pernigotti, E.; Raine, C.; Smith, K. E-mail: k.smith@physics.gla.ac.uk; Watt, J.; O' Shea, V.; Ludwig, J.; Schwarz, C

    1999-09-11

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the {omega}3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  17. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    International Nuclear Information System (INIS)

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases

  18. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  19. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao, E-mail: hao.yang@materials.ox.ac.uk [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); Pennycook, Timothy J.; Nellist, Peter D. [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); EPSRC SuperSTEM Facility, Daresbury Laboratory, WA4 4AD (United Kingdom)

    2015-04-15

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases.

  20. X-CSIT: a toolkit for simulating 2D pixel detectors

    CERN Document Server

    Joy, Ashley; Hauf, Steffen; Kuster, Markus; Rüter, Tonn

    2015-01-01

    A new, modular toolkit for creating simulations of 2D X-ray pixel detectors, X-CSIT (X-ray Camera SImulation Toolkit), is being developed. The toolkit uses three sequential simulations of detector processes which model photon interactions, electron charge cloud spreading with a high charge density plasma model and common electronic components used in detector readout. In addition, because of the wide variety in pixel detector design, X-CSIT has been designed as a modular platform so that existing functions can be modified or additional functionality added if the specific design of a detector demands it. X-CSIT will be used to create simulations of the detectors at the European XFEL, including three bespoke 2D detectors: the Adaptive Gain Integrating Pixel Detector (AGIPD), Large Pixel Detector (LPD) and DePFET Sensor with Signal Compression (DSSC). These simulations will be used by the detector group at the European XFEL for detector characterisation and calibration. For this purpose, X-CSIT has been integrat...

  1. Exploration of Pixelated detectors for double beta decay searches within the COBRA experiment

    International Nuclear Information System (INIS)

    The aim of the COBRA experiment is the search for neutrinoless double beta decay events in Cadmium Zinc Telluride (CdZnTe) room temperature semiconductor detectors. The development of pixelated detectors provides the potential for clear event identification and thus major background reduction. The tracking option of a semiconductor is a unique approach in this field. For initial studies, several possible detector systems are considered with a special regard for low background applications: the large volume system Polaris with a pixelated CdZnTe sensor, Timepix detectors with Si and enriched CdTe sensor material and a CdZnTe pixel system developed at the Washington University in St. Louis, USA. For all detector systems first experimental background measurements taken at underground laboratories (Gran Sasso Underground Laboratory in Italy, LNGS and the Niederniveau Messlabor Felsenkeller in Dresden, Germany) and additionally for the Timepix detectors simulation results are presented.

  2. Si and CdTe pixel detector developments at SPring-8

    International Nuclear Information System (INIS)

    Single X-ray photon counting pixel detectors have become the most advanced detector technology in synchrotron radiation experiments recently. In particular, the PILATUS detector based on a silicon sensor has reached a very mature state and represents the world's largest detector in this field. This paper first reports on threshold energy calibrations and the capability of applying an energy-resolved X-ray imaging with PILATUS. Second the design of a cadmium telluride (CdTe) pixel detector is described. A high density and high-atomic number sensor material is required in high energy X-ray applications available at SPring-8. For this purpose we are developing a CdTe pixel detector with the SP8-01 readout ASIC covering a wide dynamic range between 10 and 100 keV and containing lower and upper discriminators.

  3. Exploration of Pixelated detectors for double beta decay searches within the COBRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schwenke, M., E-mail: schwenke@asp.tu-dresden.de [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany); Zuber, K.; Janutta, B. [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany); He, Z.; Zeng, F. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Anton, G.; Michel, T.; Durst, J.; Lueck, F.; Gleixner, T. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Goessling, C.; Schulz, O.; Koettig, T. [Technische Universitaet Dortmund, Physik E IV, 44221 Dortmund (Germany); Krawczynski, H.; Martin, J. [Department of Physics, Washington University in St. Louis, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130-4899 (United States); Stekl, I.; Cermak, P. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague (Czech Republic)

    2011-09-11

    The aim of the COBRA experiment is the search for neutrinoless double beta decay events in Cadmium Zinc Telluride (CdZnTe) room temperature semiconductor detectors. The development of pixelated detectors provides the potential for clear event identification and thus major background reduction. The tracking option of a semiconductor is a unique approach in this field. For initial studies, several possible detector systems are considered with a special regard for low background applications: the large volume system Polaris with a pixelated CdZnTe sensor, Timepix detectors with Si and enriched CdTe sensor material and a CdZnTe pixel system developed at the Washington University in St. Louis, USA. For all detector systems first experimental background measurements taken at underground laboratories (Gran Sasso Underground Laboratory in Italy, LNGS and the Niederniveau Messlabor Felsenkeller in Dresden, Germany) and additionally for the Timepix detectors simulation results are presented.

  4. Operational Experience and Performance of the Present ALICE ITS

    CERN Document Server

    Senyukov, Serhiy

    2015-01-01

    ALICE (A Large Ion Collider Experiment) is one of four major experiments at the CERN LHC. ALICE studies strongly interacting matter under extreme conditions created in heavy ion colli- sions. The Inner Tracking System (ITS) is an essential part of the ALICE detector. It is used for tracking, reconstruction of primary and secondary vertices and particle identification. ITS is composed of six cylindrical layers of silicon detectors. Three different techologies are used: hybrid pixel, drift and strip detectors. The ITS was fully commisioned in 2009 at the start of LHC Run 1. The detectors showed good performance during this period contributing to several important measurements. During the LHC Long Shutdown 1 (LS1) the ITS underwent general consolidation and is now ready for the next LHC run

  5. The 025 mum front-end for the CMS pixel detector

    CERN Document Server

    Erdmann, W

    2005-01-01

    The front-end for the CMS pixel detector has been translated from the radiation hard DMILL process to a commercial 0.25 mum technology. The smaller feature size of this technology permitted a reduction of the pixel size and other improvements. First results obtained with the translated chip are discussed.

  6. Optimization of CZT Detectors with Sub-mm Pixel Pitches Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and optimize 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with very small pixel pitches, i.e. 350 micron and 600 micron. The proposed...

  7. Performance study of new pixel hybrid photon detector prototypes for the LHCb RICH counters

    CERN Document Server

    Moritz, M; Allebone, L; Campbell, M; Gys, Thierry; Newby, C; Pickford, A; Piedigrossi, D; Wyllie, K

    2004-01-01

    A pixel Hybrid Photon Detector was developed according to the specific requirements of the LHCb ring imaging Cerenkov counters. This detector comprises a silicon pixel detector bump-bonded to a binary readout chip to achieve a 25 ns fast readout and a high signal-to-noise ratio. The detector performance was characterized by varying the pixel threshold, the tube high voltage, the silicon bias voltage and by the determination of the photoelectron detection efficiency. Furthermore accelerated aging and high pixel occupancy tests were performed to verify the long term stability. The results were obtained using Cerenkov light and a fast pulsed light emitting diode. All measurements results are within the expectations and fulfill the design goals. (8 refs).

  8. 320x240 GaAs pixel detectors with improved X-ray imaging quality

    Energy Technology Data Exchange (ETDEWEB)

    Irsigler, R.; Andersson, J.; Alverbro, J.; Fakoor-Biniaz, Z.; Froejdh, C.; Helander, P.; Martijn, H.; Meikle, D.; Oestlund, M.; O' Shea, V.; Smith, K

    2001-03-11

    We report on gain and offset corrections for GaAs X-ray pixel detectors, which were hybridised to silicon CMOS readout integrated circuits (ROICs). The whole detector array contains 320x240 square-shaped pixels with a pitch of 38 {mu}m. The GaAs pixel detectors are based on semi-insulating and VPE grown substrates. The ROIC operates in the charge integration mode and provides snapshot as well as real time video images. Previously we have reported that the image quality of semi-insulating GaAs pixel detectors suffer from local variations in X-ray sensitivity. We have now developed a method to compensate for the sensitivity variations by applying suitable offset and gain corrections. The improvement in image quality is demonstrated in the measured signal-to-noise ratio of flood exposure images.

  9. 320x240 GaAs pixel detectors with improved X-ray imaging quality

    International Nuclear Information System (INIS)

    We report on gain and offset corrections for GaAs X-ray pixel detectors, which were hybridised to silicon CMOS readout integrated circuits (ROICs). The whole detector array contains 320x240 square-shaped pixels with a pitch of 38 μm. The GaAs pixel detectors are based on semi-insulating and VPE grown substrates. The ROIC operates in the charge integration mode and provides snapshot as well as real time video images. Previously we have reported that the image quality of semi-insulating GaAs pixel detectors suffer from local variations in X-ray sensitivity. We have now developed a method to compensate for the sensitivity variations by applying suitable offset and gain corrections. The improvement in image quality is demonstrated in the measured signal-to-noise ratio of flood exposure images

  10. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  11. Modular pixelated detector system with the spectroscopic capability and fast parallel read-out

    OpenAIRE

    Vavřík, D. (Daniel); Holík, M.; Jakůbek, J; Jakůbek, M.; Kraus, V.; Krejčí, F.; Soukup, P. (Pavel); Tureček, D.; Vacík, J. (Jiří); Žemlička, J.

    2014-01-01

    A modular pixelated detector system was developed for imaging applications, where spectroscopic analysis of detected particles is advantageous e.g. for energy sensitive X-ray radiography, fluorescent and high resolution neutron imaging etc. The presented system consists of an arbitrary number of independent versatile modules. Each module is equipped with pixelated edgeless detector with spectroscopic ability and has its own fast read-out electronics. Design of the modules allows assembly of v...

  12. Low-noise analog front-end signal processing channel integration for pixelated semiconductor radiation detector

    OpenAIRE

    Lin, Ming-Cheng

    2012-01-01

    In the research development of the medical nuclear imaging, the low noise performance has always been a mandatory requirement in the design of the semiconductor pixelated radiation detector system in order to achieve the high detectability of the charge signal. The noise-optimized analog front-end signal processing channel composed of the charge sensitive amplifier and the pulse shaper is used extensively in processing the radiation charge signals from the pixelated semiconductor detector. Th...

  13. Accessing photon bunching with photon number resolving multi-pixel detector

    OpenAIRE

    Kalashnikov, Dmitry A.; Tan, Si-Hui; Chekhova, Maria V.; Krivitsky, Leonid A.

    2010-01-01

    In quantum optics and its applications, there is an urgent demand for photon-number resolving detectors. Recently, there appeared multi-pixel detectors (MPPC) that are able to distinguish between 1,2,..10 photons. At the same time, strong coupling between different pixels (cross-talk) hinders their photon-number resolution. In this work, we suggest a method for `filtering out' the cross-talk effect in the measurement of intensity correlation functions.

  14. Characterization of edgeless pixel detectors coupled to Medipix2 readout chip

    Science.gov (United States)

    Kalliopuska, Juha; Tlustos, Lukas; Eränen, Simo; Virolainen, Tuula

    2011-08-01

    VTT has developed a straightforward and fast process to fabricate four-side buttable (edgeless) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process relies on advanced ion implantation to activate the edges of the detector instead of using polysilicon. The article characterizes 150 μm thick n-on-n edgeless pixel detector prototypes with a dead layer at the edge below 1 μm. Electrical and radiation response characterization of 1.4×1.4 cm2 n-on-n edgeless detectors has been done by coupling them to the Medipix2 readout chips. The distance of the detector's physical edge from the pixels was either 20 or 50 μm. The leakage current of flip-chip bonded edgeless Medipix2 detector assembles were measured to be ˜90 nA/cm2 and no breakdown was observed below 110 V. Radiation response characterization includes X-ray tube and radiation source responses. The characterization results show that the detector's response at the pixels close to the physical edge of the detector depend dramatically on the pixel-to-edge distance.

  15. Screen printing and chip flipping techniques for large area hybrid pixel detectors bonding

    International Nuclear Information System (INIS)

    In the last few years hybrid silicon pixel detectors came to use in high energy physics. One of the most serious problems is the realization of detectors and read out electronics interconnection at high density and low cost. For the upgrade in the forward direction of the DELPHI silicon vertex detector, it has been successfully carried out the bonding of pixel detectors to VLSI read out chips by means of conductive glue screen printing followed by a precise chip flipping procedure. The measured missing contact rate is (0.05±0.03)%. (orig.)

  16. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  17. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    International Nuclear Information System (INIS)

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 μm. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  18. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    International Nuclear Information System (INIS)

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra

  19. Physics performance with the ALICE silicon tracker

    International Nuclear Information System (INIS)

    The detailed characterization of the quark gluon plasma (QGP) produced in heavy-ion collisions is the main goal of the ALICE experiment at the CERN LHC . The analysis of heavy quarks via the decays of the corresponding short-lived hadrons is among the prominent measurements to address the properties of QGP . To efficiently reconstruct these decays, the ALICE apparatus comprises a precise Inner Tracking System (ITS) made out of six layers of silicon detectors based on three different technologies, namely two layers of pixels, two of drifts and two of double-sided microstrip, listed in the order they are crossed by particles produced in the beam collision. In this paper, the contribution of the ITS to some of the main physics measurements that have been accomplished with proton and lead beams by the ALICE experiment will be discussed

  20. Radiationhard components for the control system of a future ATLAS pixel detector

    CERN Document Server

    Becker, K; Kersten, S; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2015-01-01

    will include a new pixel detector. A completely new detector control system (DCS) for this pixel detector will be required in order to cope with the substantial increase in radiation at the HL-LHC. The DCS has to have a very high reliability and all components installed within the detector volume have to be radiationhard. This will ensure a safe operation of the pixel detector and the experiment. A further design constraint is the minimization of the used material and cables in order to limit the impact on the tracking performance to a minimum. To meet these requirements we propose a DCS network which consists of a DCS chip and a DCS controller. In the following we present the development of the first prototypes for the DCS chip and the DCS controller with a special focus on the communication interface, radiation hardness and robustness against single event upsets.

  1. Beam test results of the BTeV silicon pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Gabriele Chiodini et al.

    2000-09-28

    The authors have described the results of the BTeV silicon pixel detector beam test. The pixel detectors under test used samples of the first two generations of Fermilab pixel readout chips, FPIX0 and FPIX1, (indium bump-bonded to ATLAS sensor prototypes). The spatial resolution achieved using analog charge information is excellent for a large range of track inclination. The resolution is still very good using only 2-bit charge information. A relatively small dependence of the resolution on bias voltage is observed. The resolution is observed to depend dramatically on the discriminator threshold, and it deteriorates rapidly for threshold above 4000e{sup {minus}}.

  2. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  3. Simulation on the Charged Particle Response of the STAR Heavy Flavor Tracker Pixel Detector

    Science.gov (United States)

    Cimaroli, Alex; Li, Xin

    2009-10-01

    The main task of the STAR experiment, located at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, is to study the quark-gluon plasma (QGP), which is believed to have been created a few microseconds after the ``Big Bang.'' Heavy quarks are ideal tools for studying the properties of QGP. The Heavy Flavor Tracker (HFT) is the central part of the STAR future heavy flavor physics program and will enable STAR to directly measure heavy flavor mesons. The core of HFT is a pixel detector (PIXEL) using CMOS Active PIXEL Sensor. This poster will describe the development of a detailed simulation of the pixel detector response to charged particles and the corresponding fast simulation that dramatically enhances the simulation speed with little sacrifice in accuracy. The full simulation randomly generates ionized electrons along an incoming track and diffuses the electrons inside the pixel array until they are collected by the electronics or recombined inside a pixel. With the same result, the fast simulation, which quickens processing time from one hour to 5 seconds, generates a grid inside a single pixel and create a map of probability distribution functions for a single ionized electron generated from a grid point. We will also discuss the study of pixel detector position resolution using a simple clustering algorithm.

  4. Fabrication of pixelated CdTe and CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) are compound semiconductor characterized by wide semiconducting band gap and high photon stopping power due to its high atomic number and density. The mobility-life time product (μ t product) for holes in the materials is smaller than that for electrons. Hence, the effect of trapping losses is more pronounced on holes than on electrons. The trapping losses for holes limit achievable energy resolutions for planar detectors. In this study, pixelated CdTe detectors and pixelated CdZnTe detectors were fabricated and tested by 662 KeV gamma-rays of 137Cs at room temperature. Electrodes were formed on both sides of CdTe crystals and CdZnTe crystals by vacuum evaporation of gold. For purpose of comparison, a planar CdTe detector and a planar CdZnTe detector were evaluated. Since the pixelated CdTe detectors and the pixelated CdZnTe detectors operated as a single-polarity charge sensing device, the obtained energy resolutions were significantly higher than those for the planar detectors. Further improvement of energy resolutions of the detectors will be achieved by optimizing electrode structures. (M. Suetake)

  5. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    International Nuclear Information System (INIS)

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 μm pitch) or to the Medipix2 chip (256x256 pixel, 55 μm pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-μm thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 μm circular holes with 170 μm pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order to investigate the general feasibility of this imaging probe and its resolving power. Measurements show the high resolution but low efficiency performance of the detector-collimator set, which is able to image the 122 keV source with <1 mm FWHM resolution

  6. Results on 0.7% X0 thick pixel modules for the ATLAS detector

    CERN Document Server

    Netchaeva, P; Darbo, G; Einsweiler, Kevin F; Gagliardi, G; Gemme, C; Gilchriese, M G D; Oppizzi, P; Richardson, J; Rossi, L; Ruscino, E; Vernocchi, F; Znizka, G

    2001-01-01

    Modules are the basic building blocks of the ATLAS pixel detector system, they are made of a silicon sensor tile containing ~46000 pixel cells of 50 mu m*400 mu m, 16 front-end chips connected to the sensor through bump bonding, a kapton flex circuit and the module controller chip. The pixel detector is the first to encounter particles emerging from LHC interactions, minimization of radiation length of pixel modules is therefore very important. We report here on the construction techniques and on the operation of the first ATLAS pixel modules of 0.7% radiation length thickness. We have operated these modules with threshold of 3700*10+or-300*10, mean noise value of 225*10 and 0.3% dead channels. (3 refs).

  7. Results on 0.7% X0 thick pixel modules for the ATLAS detector

    International Nuclear Information System (INIS)

    Modules are the basic building blocks of the ATLAS pixel detector system, they are made of a silicon sensor tile containing ∼46 000 pixel cells of 50 μmx400 μm, 16 front-end chips connected to the sensor through bump bonding, a kapton flex circuit and the module controller chip. The Pixel detector is the first to encounter particles emerging from LHC interactions, minimization of radiation length of pixel modules is therefore very important. We report here on the construction techniques and on the operation of the first ATLAS pixel modules of 0.7% radiation length thickness. We have operated these modules with threshold of 3700x10±300x10, mean noise value of 225x10 and 0.3% dead channels

  8. A study on the shielding mechanisms of SOI pixel detector

    CERN Document Server

    Lu, Yunpeng; Wu, Zhigang; Ouyang, Qun; Arai, Yasuo

    2015-01-01

    In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measurement results proved that using shielding layer is indispensable for counting type pixel and Double-SOI is superior to Nested-well in terms of shielding effectiveness and design flexibility.

  9. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    CERN Document Server

    Koerner, Lucas J

    2010-01-01

    Dynamic x-ray studies may reach temporal resolutions limited by only the x-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source (CHESS) at levels of up to 3.7x10^3 x-rays/pixel/train. When applied to turn-by-turn x-ray beam characterization single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. This device is appropriate for time-resolved Bragg spot single crystal experiments.

  10. 4.3 μm quantum cascade detector in pixel configuration.

    Science.gov (United States)

    Harrer, A; Schwarz, B; Schuler, S; Reininger, P; Wirthmüller, A; Detz, H; MacFarland, D; Zederbauer, T; Andrews, A M; Rothermund, M; Oppermann, H; Schrenk, W; Strasser, G

    2016-07-25

    We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated. The device operates in the 4.3μm CO2 absorption region and consists of 64 pixels. The detector is designed fully compatible to standard processing and material growth methods for scalability to large pixel counts. The detector design is optimized for a high device resistance at elevated temperatures. A QCD simulation model was enhanced for resistance and responsivity optimization. The substrate illuminated pixels utilize a two dimensional Au diffraction grating to couple the light to the active region. A single pixel responsivity of 16mA/W at room temperature with a specific detectivity D* of 5⋅107 cmHz/W was measured. PMID:27464155

  11. Module Production and Qualification for the Phase I Upgrade of the CMS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2086689

    2015-01-01

    After consolidation of the LHC in 2013/14 its centre-of-mass energy will increase to 13TeV and the luminosity will reach $2 \\cdot 10^{34}\\, \\textnormal{cm}^{-2} \\textnormal{s}^{-1}$, which is twice the design luminosity. The latter will result in more simultaneous particle collisions, which would significantly increase the dead time of the current readout chip of the CMS pixel detector. Therefore the entire CMS pixel detector is replaced in 2016/17 and a new digital readout with larger buffers will be used to handle increasing pixel hit rates. An additional fourth barrel-layer provides more space points to improve track reconstruction. Half of the required modules for layer four is being produced at Karlsruhe Institute of Technology (KIT). This poster deals with the smallest discrete subunit of the pixel detector, the module and its assembly process. Moreover first production experience will be shown.

  12. Progress in the use of pixel detectors in double beta decay experiment TGV

    International Nuclear Information System (INIS)

    The TGV collaboration has been investigating two neutrino double electron capture (2νEC/EC) in 106Cd since 2000. The double beta experiments would answer some of the puzzling problems about neutrinos (e.g. nature and mass) but one of the main challenges is the background events. The collaboration is investigating the use of pixel detectors in such rare decay experiments. Pixel detector gives spatial information along with energy of the particle, thus provides useful information to reduce the background. The collaboration has proposed a Silicon Pixel Telescope (SPT) for the next generation experiment; where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. A prototype unit of SPT has been constructed and results of preliminary background measurements performed on the surface and in the underground laboratories are presented

  13. Progress in the use of pixel detectors in double beta decay experiment TGV

    Science.gov (United States)

    Jose, J. M.; TGV Collaboration

    2013-12-01

    The TGV collaboration has been investigating two neutrino double electron capture (2νEC/EC) in 106Cd since 2000. The double beta experiments would answer some of the puzzling problems about neutrinos (e.g. nature and mass) but one of the main challenges is the background events. The collaboration is investigating the use of pixel detectors in such rare decay experiments. Pixel detector gives spatial information along with energy of the particle, thus provides useful information to reduce the background. The collaboration has proposed a Silicon Pixel Telescope (SPT) for the next generation experiment; where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. A prototype unit of SPT has been constructed and results of preliminary background measurements performed on the surface and in the underground laboratories are presented.

  14. Progress in the use of pixel detectors in double beta decay experiment TGV

    Energy Technology Data Exchange (ETDEWEB)

    Jose, J. M. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 12800 Prague 2 (Czech Republic); Collaboration: TGV Collaboration

    2013-12-30

    The TGV collaboration has been investigating two neutrino double electron capture (2νEC/EC) in {sup 106}Cd since 2000. The double beta experiments would answer some of the puzzling problems about neutrinos (e.g. nature and mass) but one of the main challenges is the background events. The collaboration is investigating the use of pixel detectors in such rare decay experiments. Pixel detector gives spatial information along with energy of the particle, thus provides useful information to reduce the background. The collaboration has proposed a Silicon Pixel Telescope (SPT) for the next generation experiment; where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. A prototype unit of SPT has been constructed and results of preliminary background measurements performed on the surface and in the underground laboratories are presented.

  15. Si pixel detectors in the detection of EC/EC decay

    International Nuclear Information System (INIS)

    The SPT collaboration has been investigating the applicability of pixel detectors in the detection of two neutrino double electron capture (2νEC/EC) in106Cd. The collaboration has proposed a Silicon Pixel Telescope (SPT) where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. The Pixel detector gives spatial information along with energy of the particle, thus helps to identify and remove the background signals. Four units of SPT prototype (using 0.5 and 1 mm Si sensors) were fabricated and installed in the LSM underground laboratory, France. Recent progress in the SPT experiment and preliminary results from background measurements are presented

  16. Pixellated CdZnTe detector for emission/transmission computed tomography

    International Nuclear Information System (INIS)

    A small pixellated CdZnTe array is tested for suitability in a prototype SPECT system designed to acquire both emission and transmission data. Determining the optimum contact design and obtaining performance estimates of single photon acquisition are the primary focus. Flood field and collimated 57Co sources irradiated the 16 pixel array (5 mm thick and 1.5 mm pixels) to determine photopeak efficiencies and detector response with different event collection techniques. Intrinsic full energy peak efficiency averaged 72% for an 18 keV acceptance window. A small irradiation spot scanned an array region, revealing detector response from nearby pixels. Post processing spectra compare coincident and anti-coincident acquisition. Additionally, current mode tests compare linearity with a CdWO4/Si p-i-n detector

  17. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams. PMID:26750260

  18. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  19. The ATLAS Pixel Detector for Run II at the Large Hadron Collider

    CERN Document Server

    Marx, Marilyn; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  20. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    Run-2 of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed as well as a new read-out chip within CMOS 130nm technology and with larger area, smaller pixel size and faster readout capability. The new detector is the first large scale application of of 3D detectors and CMOS 130nm technology. An overview of the lessons learned during the IBL project will be presented, focusing on the challenges and highlighting the issues met during the productio...

  1. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  2. X-ray characterization of a multichannel smart-pixel array detector.

    Science.gov (United States)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements. PMID:26698064

  3. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  4. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Y; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair the modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using light weight staves and CO$_{2}$ based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and the IBL pr...

  5. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    ATLAS Pixel Collaboration; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  6. Fitting ALICE

    CERN Multimedia

    2004-01-01

    The support structures for the detectors inside the ALICE solenoid magnet (the L3 magnet) were finished in December 2003. After commissioning and testing, over the next year, the structures will be lowered into the cavern and installed in the magnet by spring 2005. At first sight you might mistake them for scaffolding. But a closer look reveals unusual features: Two are made of austenitic (non-magnetic) stainless steel with a cross section that looks like an "H". Another is made of 8 centimetre aluminium square tubes. "Them" are the support structures for the detectors and services inside the ALICE solenoid magnet (the L3 magnet) which were finished in December 2003. «The physicists don't want to have a lot of material close to their detectors; it has to be as few as possible,» says Diego Perini, who is responsible for the common support structures of ALICE. «We therefore had the very difficult task to design something relatively light that i...

  7. Pixel detectors for diffraction-limited storage rings

    OpenAIRE

    Denes, Peter; Schmitt, Bernd

    2014-01-01

    Dramatic advances in synchrotron radiation sources produce ever-brighter beams of X-rays, but those advances can only be used if there is a corresponding improvement in X-ray detectors. With the advent of storage ring sources capable of being diffraction-limited (down to a certain wavelength), advances in detector speed, dynamic range and functionality is required. While many of these improvements in detector capabilities are being pursued now, the orders-of-magnitude increases in brightness ...

  8. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Montesi, M C; Russo, P

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 mu m pitch) or to the Medipix2 chip (256x256 pixel, 55 mu m pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-mu m thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 mu m circular holes with 170 mu m pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order ...

  9. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    CERN Document Server

    Zumbiehl, A; Fougeres, P; Koebel, J M; Regal, R; Rit, C; Ayoub, M; Siffert, P

    2001-01-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: af...

  10. A radiation tolerant pixel detector system for the ALICE and LHCb experiments at CERN

    CERN Document Server

    Dinapoli, Roberto

    2004-01-01

    Le travail présenté dans cette thèse a été effectué au sein du groupe Microélectronique du CERN, le laboratoire européen pour la physique des particules. Il s’agit d’un laboratoire situé près de Genève en Suisse, il a été créé dans les années 50 pour donner aux scientifiques européens les moyens d'étudier la physique des hautes énergies (HEP, High Energy Physics). Grâce aux accélérateurs de particules conçus et réalisés au CERN (en particulier le LEP, Large Electron Positron) il a été possible de développer le « Modèle Standard », une théorie qui essaye d'expliquer la matière en termes de forces et de particules. Ce modèle a été testé avec succès par les expériences de physique des particules, cependant il est incomplet, car il ne prend pas en compte la masse des particules fondamentales. L'idée la plus simple pour inclure cette dernière s'appelle le mécanisme de Higgs. Ce mécanisme implique l’existence de une particule additionnelle, appelée le boson de Higgs...

  11. Pixel array detector for X-ray free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Hromalik, Marianne [Electrical and Computer Engineering, SUNY Oswego, Oswego, NY 13126 (United States); Tate, Mark; Koerner, Lucas [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Wilson Laboratory, Cornell University, CHESS, Ithaca, NY 14853 (United States)

    2011-09-01

    X-ray free electron lasers (XFELs) promise to revolutionize X-ray science with extremely high peak brilliances and femtosecond X-ray pulses. This will require novel detectors to fully realize the potential of these new sources. There are many current detector development projects aimed at the many challenges of meeting the XFEL requirements . This paper describes a pixel array detector (PAD) that has been developed for the Coherent X-ray Imaging experiment at the Linac Coherent Light Source (LCLS) at the SLAC National Laboratory . The detector features 14-bit in-pixel digitization; a 2-level in-pixel gain setting that can be used to make an arbitrary 2-D gain pattern that is adaptable to a particular experiment; the ability to handle instantaneous X-ray flux rates of 10{sup 17} photons per second; and continuous frames rates in excess of 120 Hz. The detector uses direct detection of X-rays in a silicon diode. The charge produced by the diode is integrated in a pixilated application specific integrated circuit (ASIC) which digitizes collected holes with single X-ray photon capability. Each ASIC is 194x185 pixels, each pixel is 110{mu}mx110{mu}m on a side. Each pixel can detect up to 2500 X-rays per frame in low-gain mode, yet easily detects single photons at high-gain. Cooled, single-chip detectors have been built and meet all the required specifications. SLAC National Laboratory is engaged in constructing a tiled, multi-chip 1516x1516 pixel detector.

  12. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    International Nuclear Information System (INIS)

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects

  13. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  14. Simulation of guard ring influence on the performance of ATLAS pixel detectors for inner layer replacement

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, M; Lounis, A; Dinu, N [Laboratoire de l' accelerateur lineaire, Orsay (France)], E-mail: Benoit@lal.in2p3.fr

    2009-03-15

    Electric field magnitude and depletion in the bulk of silicon pixel detectors, which influence its breakdown behaviour, was studied using finite-element method to solve the drift-diffusion equation coupled to Poisson's equation in a simplified two dimensional model of the ATLAS pixel sensor. Based on this model, the number of guard rings and dead edges width were modified to investigate their influence on the detector's depletion at the edge and on its internal electrical field distribution. Finally, the 3 level model was implemented into the simulation to study the behaviour of such detector under different level of irradiation.

  15. ALICE through the phase transition

    CERN Document Server

    CERN. Geneva

    2000-01-01

    While proton-proton collisions will be the principal diet of CERN's LHC machine, heavy-ion collisions will also be on the menu. The ALICE experiment will be ready and waiting. Another of ALICE's TDRs concerns the experiment's inner tracking system (ITS). This is the innermost layer of the detector, responsible for tracking emerging particles where their density will be at its highest. ALICE physicists have been working with colleagues from fellow LHC experiment LHCb to develop silicon pixel chips for the inner two layers of the ITS.The result is a chip with 50 x 425 mu m cells; a prototype detector based on this chip is being tested this year.The ITS has six layers, all using silicon technology, and about 10 million digital and 2 million analogue readout channels to digest the huge number of particles produced in LHC lead-ion collisions. The collaboration has opted for a hybrid ITS structure combining sensors, electronics and mechanical support. Beam tests so far have indicated that the ITS should achieve pos...

  16. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  17. The pixel hybrid photon detectors for the LHCb-RICH project

    CERN Document Server

    Gys, Thierry

    2001-01-01

    This paper describes a hybrid photon detector with integrated silicon pixel readout to be used in the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The paper starts with the general specification of the baseline option. Followed by a summary of the main results achieved so far during the R&D phase. It concludes with a description of the remaining work towards the final photon detector. (17 refs).

  18. Upgrade of the ALICE Inner Tracking System

    Science.gov (United States)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  19. DEPFET Active Pixel Detectors for a Future Linear e(+}e({-)) Collider

    Science.gov (United States)

    Alonso, O.; Casanova, R.; Dieguez, A.; Dingfelder, J.; Hemperek, T.; Kishishita, T.; Kleinohl, T.; Koch, M.; Kruger, H.; Lemarenko, M.; Lutticke, F.; Marinas, C.; Schnell, M.; Wermes, N.; Campbell, A.; Ferber, T.; Kleinwort, C.; Niebuhr, C.; Soloviev, Y.; Steder, M.; Volkenborn, R.; Yaschenko, S.; Fischer, P.; Kreidl, C.; Peric, I.; Knopf, J.; Ritzert, M.; Curras, E.; Lopez-Virto, A.; Moya, D.; Vila, I.; Boronat, M.; Esperante, D.; Fuster, J.; Garcia, I. Garcia; Lacasta, C.; Oyanguren, A.; Ruiz, P.; Timon, G.; Vos, M.; Gessler, T.; Kuhn, W.; Lange, S.; Munchow, D.; Spruck, B.; Frey, A.; Geisler, C.; Schwenker, B.; Wilk, F.; Barvich, T.; Heck, M.; Heindl, S.; Lutz, O.; Muller, Th.; Pulvermacher, C.; Simonis, H. J.; Weiler, T.; Krausser, T.; Lipsky, O.; Rummel, S.; Schieck, J.; Schluter, T.; Ackermann, K.; Andricek, L.; Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Koffmane, C.; Gioi, L. Li; Moll, A.; Moser, H. G.; Muller, F.; Nedelkovska, E.; Ninkovic, J.; Petrovics, S.; Prothmann, K.; Richter, R.; Ritter, A.; Ritter, M.; Simon, F.; Vanhoefer, P.; Wassatsch, A.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Scheirich, J.

    2013-04-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

  20. DEPFET active pixel detectors for a future linear e+e− collider

    CERN Document Server

    Vos, M

    2010-01-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 µm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e^+e^− collider.

  1. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2015-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  2. Physics performance and upgrade for Run II of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The ATLAS pixel detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle trajectories in the high radiation environment close to the collision region. The operation and performance of the pixel detector during the first years of LHC running are described. More than 96% of the detector modules were operational during this period, with an average intrinsic hit efficiency larger than 99%. The alignment of the detector was found to be stable at the few-micron level over long periods of time. Detector material description, tracking performances in Run I and expectations for the upcoming Run II are presented

  3. Simulation and laboratory test results of 3D CMS pixel detectors for HL-LHC

    Science.gov (United States)

    Alagoz, E.; Bubna, M.; Krzywda, A.; Dalla Betta, G. F.; Povoli, M.; Obertino, M. M.; Solano, A.; Vilela Pereira, A.; Arndt, K.; Bolla, G.; Bortoletto, D.; Boscardin, M.; Kwan, S.; Rivera, R.; Shipsey, I.; Uplegger, L.

    2012-08-01

    The CMS pixel detector is the innermost tracking device at the LHC, reconstructing interaction vertices and charged particle trajectories. The current planar sensors located in the innermost layer of the pixel detector will be exposed to very high fluences which will degrade their performances. As a possible replacement for planar pixel sensors in the High Luminosity-LHC (HL-LHC), 3D silicon technology is under consideration due to its expected good performance in harsh radiation environments. Studies are also in progress for using 3D silicon pixel detectors in near-beam proton spectrometers at the LHC. Deep Reactive Ion Etching (DRIE) plays a key role in fabricating 3D silicon detectors in which readout and ohmic electrodes are processed through the silicon substrate instead of being implanted on the silicon surface. 3D pixel devices considered in this study were processed at FBK (Trento, Italy), bump bonded to the CMS pixel readout chip, and characterized in the laboratory. Numerical simulations were also carried out. We report on selected results from laboratory measurements and TCAD simulations.

  4. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Yosuke

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detect or and of the IBL project as...

  5. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC) . Taking advantage of Long Shutdown 1 (LS1) during 2014/2015, the Pixel Detector was brought to surface to equip it with new service panels and to repair modules. The Insertable B-Layer (IBL), a fourth layer of pixel sensors, was installed in-between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) were used and a new readout chip has been designed with CMOS 130 nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performance. An overview of the lessons learned during the IBL project is presented, focusing on the challenges and highlighting the issues met during the production, integration, installation and commissioning phases of the detector. Early performance tests using cosmic and beam data are also presented

  6. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

    CERN Document Server

    Tate, Mark W; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert M; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2015-01-01

    We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel detector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as loc...

  7. A study on the shielding mechanisms of SOI pixel detector

    OpenAIRE

    Lu, Yunpeng; Liu, Yi; Wu, Zhigang; Ouyang, Qun; Arai, Yasuo

    2015-01-01

    In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measuremen...

  8. Energy loss and online directional track visualization of fast electrons with the pixel detector Timepix

    Czech Academy of Sciences Publication Activity Database

    Granja, C.; Krist, Pavel; Chvátil, David; Šolc, J.; Pospíšil, S.; Jakubek, J.; Opalka, L.

    2013-01-01

    Roč. 59, DEC (2013), s. 245-261. ISSN 1350-4487 Grant ostatní: GA MŠk(CZ) MSM6840770029 Institutional support: RVO:61389005 Keywords : interaction of radiation with matter * dE/dx detector s * particle tracking detector s * hybrid pixel detector s * active nuclear emulsion * energy loss Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.140, year: 2013

  9. Interconnect and bonding techniques for pixelated X-ray and gamma-ray detectors

    International Nuclear Information System (INIS)

    In the last decade, the Detector Development Group at the Technology Department of the Science and Technology Facilities Council (STFC), U.K., established a variety of fabrication and bonding techniques to build pixelated X-ray and γ-ray detector systems such as the spectroscopic X-ray imaging detector HEXITEC [1]. The fabrication and bonding of such devices comprises a range of processes including material surface preparation, photolithography, stencil printing, flip-chip and wire bonding of detectors to application-specific integrated circuits (ASIC). This paper presents interconnect and bonding techniques used in the fabrication chain for pixelated detectors assembled at STFC. For this purpose, detector dies (∼ 20× 20 mm2) of high quality, single crystal semiconductors, such as cadmium zinc telluride (CZT) are cut to the required thickness (up to 5mm). The die surfaces are lapped and polished to a mirror-finish and then individually processed by electroless gold deposition combined with photolithography to form 74× 74 arrays of 200 μ m ×  200 μ m pixels with 250 μ m pitch. Owing to a lack of availability of CZT wafers, lithography is commonly carried out on individual detector dies which represents a significant technical challenge as the edge of the pixel array and the surrounding guard band lies close to the physical edge of the crystal. Further, such detector dies are flip-chip bonded to readout ASIC using low-temperature curing silver-loaded epoxy so that the stress between the bonded detector die and the ASIC is minimized. In addition, this reduces crystalline modifications of the detector die that occur at temperature greater than 150/r{ }C and have adverse effects on the detector performance. To allow smaller pitch detectors to be bonded, STFC has also developed a compression cold-weld indium bump bonding technique utilising bumps formed by a photolithographic lift-off technique

  10. ATLAS SemiConductor Tracker and Pixel Detector: Status and Performance

    CERN Document Server

    Reeves, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In the talk the current status of the SCT and Pixel Detector will be reviewed. We will report on the operation of the detectors including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk ...

  11. Development of CMOS Pixel Sensors with digital pixel dedicated to future particle physics experiments

    Science.gov (United States)

    Zhao, W.; Wang, T.; Pham, H.; Hu-Guo, C.; Dorokhov, A.; Hu, Y.

    2014-02-01

    Two prototypes of CMOS pixel sensor with in-pixel analog to digital conversion have been developed in a 0.18 μm CIS process. The first design integrates a discriminator into each pixel within an area of 22 × 33 μm2 in order to meet the requirements of the ALICE inner tracking system (ALICE-ITS) upgrade. The second design features 3-bit charge encoding inside a 35 × 35 μm2 pixel which is motivated by the specifications of the outer layers of the ILD vertex detector (ILD-VXD). This work aims to validate the concept of in-pixel digitization which offers higher readout speed, lower power consumption and less dead zone compared with the column-level charge encoding.

  12. Track parameter resolution study of a pixel only detector for LHC geometry and future high rate experiments

    International Nuclear Information System (INIS)

    Recent progress in pixel detector technology in general and in the HV-MAPS technology in particular make it feasible to construct an all-silicon pixel detector for large scale particle experiments like ATLAS or CMS. Previous studies have indicated that six to nine layers of pixel sensors, in comparison to the 14 detector layers planned for Inner Tracker ATLAS upgrade, are sufficient to reliably reconstruct particle trajectories. The performance of an all-pixel detector and the minimum number of required pixel layers is studied based on a full GEANT simulation for high luminosity conditions at the upgraded LHC. Furthermore, the ability of an all-pixel detector to form trigger decisions using a special triplet pixel layer design is studied. Such a design could be used to reconstruct all tracks originating from the proton-proton interaction at the first hardware level at 40 MHz collision frequency.

  13. Track parameter resolution study of a pixel only detector for LHC geometry and future high rate experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blago, Michele Piero; Schoening, Andre [Physikalisches Institut, Heidelberg Univ. (Germany)

    2015-07-01

    Recent progress in pixel detector technology in general and in the HV-MAPS technology in particular make it feasible to construct an all-silicon pixel detector for large scale particle experiments like ATLAS or CMS. Previous studies have indicated that six to nine layers of pixel sensors, in comparison to the 14 detector layers planned for Inner Tracker ATLAS upgrade, are sufficient to reliably reconstruct particle trajectories. The performance of an all-pixel detector and the minimum number of required pixel layers is studied based on a full GEANT simulation for high luminosity conditions at the upgraded LHC. Furthermore, the ability of an all-pixel detector to form trigger decisions using a special triplet pixel layer design is studied. Such a design could be used to reconstruct all tracks originating from the proton-proton interaction at the first hardware level at 40 MHz collision frequency.

  14. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, Heinz; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as we...

  15. A new generation of small pixel pitch/SWaP cooled infrared detectors

    Science.gov (United States)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  16. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  17. ALICE TPC Upgrade Activities for LHC Run 3 and Beyond: "SAMPA ASIC Tests with GEM Detector Prototype"

    OpenAIRE

    Engeseth, Kristian Philip

    2015-01-01

    The Time Projection Chamber (TPC) signal readout of the ALICE detector is being upgraded to accommodate the higher collision rates and -energies during LHC Run 3 in 2018. Due to the increased collision rates, the TPC drift time of about 100 μs will be 5 times longer than the average time between interactions, rendering the presently employed gating of the TPC wire-chambers insufficient. Therefore, a Gas Electron Multiplier (GEM) based system will be replacing the wire-chambers. In addition, t...

  18. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    Energy Technology Data Exchange (ETDEWEB)

    Krzywda, A., E-mail: akrzywda@purdue.edu [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Alagoz, E.; Bubna, M. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Obertino, M. [Università del Piemonte Orientale, Novara (Italy); INFN, Sezione di Torino, Torino (Italy); Solano, A. [Università di Torino, Torino (Italy); INFN, Sezione di Torino, Torino (Italy); Arndt, K. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Uplegger, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Betta, G.F. Dalla [TIFPA INFN and Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, I-38123 Povo di Trento, TN (Italy); Boscardin, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Trento, Via Sommarive 18, I-38123 Povo di Trento, TN (Italy); Ngadiuba, J. [Università di Milano-Bicocca, Milan (Italy); Rivera, R. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Menasce, D.; Moroni, L.; Terzo, S. [Università di Milano-Bicocca, Milan (Italy); Bortoletto, D. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Prosser, A.; Adreson, J.; Kwan, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Osipenkov, I. [Texas A and M University, Department of Physics, College Station, TX 77843 (United States); Bolla, G. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); and others

    2014-11-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10{sup 15} n {sub eq}/cm{sup 2}.

  19. NIRSpec detectors: noise properties and the effect of signal dependent inter-pixel crosstalk

    Science.gov (United States)

    Giardino, Giovanna; Sirianni, Marco; Birkmann, Stephan M.; Rauscher, Bernard J.; Lindler, Don; Boeker, Torsten; Ferruit, Pierre; De Marchi, Guido; Stuhlinger, Martin; Jensen, Peter; Strada, Paolo

    2012-07-01

    NIRSpec (Near Infrared Spectrograph) is one of the four science instruments of the James Webb Space Telescope (JWST) and its focal plane consists of two HAWAII-2RG sensors operating in the wavelength range 0.6-5.0μm. As part of characterizing NIRSpec, we studied the noise properties of these detectors under dark and illuminated conditions. Under dark conditions, and as already known, 1/f noise in the detector system produces somewhat more noise than can be accounted for by a simple model that includes white read noise and shot noise on integrated charge. More surprisingly, at high flux, we observe significantly lower total noise levels than expected. We show this effect to be due to pixel-to-pixel correlations introduced by signal dependent inter-pixel crosstalk, with an inter-pixel coupling factor, α, that ranges from ~ 0.01 for zero signal to ~ 0.03 close to saturation.

  20. Evaluation of a Wobbling Method Applied to Correcting Defective Pixels of CZT Detectors in SPECT Imaging.

    Science.gov (United States)

    Xie, Zhaoheng; Li, Suying; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2016-01-01

    In this paper, we propose a wobbling method to correct bad pixels in cadmium zinc telluride (CZT) detectors, using information of related images. We build up an automated device that realizes the wobbling correction for small animal Single Photon Emission Computed Tomography (SPECT) imaging. The wobbling correction method is applied to various constellations of defective pixels. The corrected images are compared with the results of conventional interpolation method, and the correction effectiveness is evaluated quantitatively using the factor of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In summary, the proposed wobbling method, equipped with the automatic mechanical system, provides a better image quality for correcting defective pixels, which could be used for all pixelated detectors for molecular imaging. PMID:27240368

  1. Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance

    International Nuclear Information System (INIS)

    Medipix3 is a 256x256 channel hybrid pixel detector readout chip working in a single photon counting mode with a new inter-pixel architecture, which aims to improve the energy resolution in pixelated detectors by mitigating the effects of charge sharing between channels. Charges are summed in all 2x2 pixel clusters on the chip and a given hit is allocated locally to the pixel summing circuit with the biggest total charge on an event-by-event basis. Each pixel contains also two 12-bit binary counters with programmable depth and overflow control. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are four times greater in area than the readout pixels. In the latter case, event-by-event summing is still possible between the larger pixels. Each pixel has around 1600 transistors and the analog static power consumption is below 15 μW in the charge summing mode and 9 μW in the single pixel mode. The chip has been built in an 8-metal 0.13 μm CMOS technology. This paper describes the chip from the pixel to the periphery and first electrical results are summarized.

  2. Low-cost bump-bonding processes for high energy physics pixel detectors

    Science.gov (United States)

    Caselle, M.; Blank, T.; Colombo, F.; Dierlamm, A.; Husemann, U.; Kudella, S.; Weber, M.

    2016-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15 μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30 μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The short setup time for the bumping process makes gold-stud bump-bonding highly attractive (and affordable) for the flip-chipping of single prototype ICs, which is the main limitation of the current photolithography processes.

  3. \\title{Low-Cost Bump-Bonding Processes for High Energy Physics Pixel Detectors}

    CERN Document Server

    Caselle, Michele; Colombo, Fabio; Dierlamm, Alexander Hermann; Husemann, Ulrich; Kudella, Simon; Weber, M

    2015-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area at reasonable costs are required. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of the production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin ($15\\,\\rm{\\mu m}$) gold wire is presented. This technique allows producing metal bumps with diameters down to $30\\,\\rm{\\mu m}$ without using photolithography processes, which are typically required to provide suitable under bu...

  4. Low-cost bump-bonding processes for high energy physics pixel detectors

    International Nuclear Information System (INIS)

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The short setup time for the bumping process makes gold-stud bump-bonding highly attractive (and affordable) for the flip-chipping of single prototype ICs, which is the main limitation of the current photolithography processes

  5. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    International Nuclear Information System (INIS)

    In the context of the LHC upgrade to the HL-LHC the inner detector of the ATLAS experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  6. Status and Plan for The Upgrade of The CMS Pixel Detector

    CERN Document Server

    Lu, Rong-Shyang

    2014-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system and plays a crucial role in the all-silicon CMS tracker. While the current pixel tracker is designed for and performing well at an instantaneous luminosity of up to $\\rm 1\\times 10^{34}cm^{-2}s^{-1}$, it can no longer be operated efficiently at significantly higher values. Based on the strong performance of the LHC accelerator, it is anticipated that peak luminosities of two times the design luminosity are likely to be reached before 2018 and perhaps significantly exceeded in the running period until 2022, referred to as LHC Run 3. Therefore, an upgraded pixel detector, referred to as the phase 1 upgrade, is planned for the year-end technical stop in 2016. With a new pixel readout chip (ROC), an additional fourth layer, two additional endcap disks, and a significantly reduced material budget the upgraded pixel detector will be able to sustain the efficiency of the pixel tracker at the increased requirements imposed by high lumin...

  7. Accumulated-carrier screening effect based investigation for pixellated CdZnTe radiation detector

    International Nuclear Information System (INIS)

    Using the pixellated CdZnTe detector,the radiation imaging experiment for the Rh target X-ray source was accomplished. The experimental results indicate that the response signals of the anode pixels, which distribute over the center irradiated area,are completely shut-off when the tube Jantage is 45 kV and the tube current increases to 20 μA. Moreover, the non-response pixel area expands with the increase of the tube current, and the total event count of the CdZnTe detector reduces obviously. Furthermore, the inner electric potential and electric field distributions of the pixellated CdZnTe detector were simulated based on the Poisson equation. The simulation results reveal that the accumulation of the hole carriers, which results from the extremely low drift ability of the hole carrier, leads to a relatively high space-charge-density area in the CdZnTe bulk when the irradiated photon flux increases to 5 x 105 mm-2·s-1. And thus, the induced signal screen effect of the anode pixels in the center irradiated area is mainly attributed to the distorted electric field which makes electron carriers drift toward the high potential area in the CdZnTe crystal instead of the pixel anodes. (authors)

  8. Novel module production methods for the CMS pixel detector, upgrade phase I

    Science.gov (United States)

    Blank, T.; Caselle, M.; Weber, M.; Kudella, S.; Colombo, F.; Hansen, K.; Arab, S.

    2015-02-01

    For the High-Luminosity upgrade of the LHC (HL-LHC), phase I, the CMS pixel detector needs to be replaced. In order to improve the tracking resolution even at high luminosity the pixel detector is upgraded by a fourth barrel layer. This paper describes the production process and results for the fourth barrel layer for the CMS silicon pixel detector, upgrade phase I. The additional barrel layer will be produced by KIT and DESY. Both research centers have commonly developed and investigated new production processes, including SAC solder bump jetting, gold stud bumping and "Precoat by Powder Processes" (PPS) to bump the sensor tiles and prepare them for the flip-chip process. First bare modules have been produced with the new digital ROC.

  9. Operating characteristics of radiation-hardened silicon pixel detectors for the CMS experiment

    CERN Document Server

    Hyosung, Cho

    2002-01-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will have forward silicon pixel detectors as its innermost tracking device. The pixel devices will be exposed to the harsh radiation environment of the LHC. Prototype silicon pixel detectors have been designed to meet the specification of the CMS experiment. No guard ring is required on the n/sup +/ side, and guard rings on the p/sup +/ side are always kept active before and after type inversion. The whole n/sup +/ side is grounded and connected to readout chips, which greatly simplifies detector assembling and improves the stability of bump-bonded readout chips on the n/sup +/ side. Operating characteristics such as the leakage current, the full depletion voltage, and the potential distributions over guard rings were tested using standard techniques. The tests are discussed in this paper. (9 refs).

  10. Study of the internal mechanisms of Pixelized Photon Detectors operated in Geiger-mode

    OpenAIRE

    Otono, H.(Department of Physics, Kyushu University, Fukuoka, Japan); Oide, H.; Yamashita, S.; Yoshioka, T.; Yamamoto, K; Yamamura, K; Sato, K.

    2008-01-01

    In the 1990s, a novel semiconductor photon-sensor operated in Geiger-mode was invented in Russia (Silicon PhotoMultiplier), which consists of many tiny pixels and has a single photon level sensitivity. Since then, various types of the sensor with this scheme, Pixelized Photon Detectors (PPD), have been developed in many places in the world. For instance, Hamamatsu Photonics K.K. in Japan produces the PPD as a Multi-Pixel Photon Counter. While the internal mechanisms of the PPD have been inten...

  11. 14C autoradiography with an energy-sensitive silicon pixel detector

    International Nuclear Information System (INIS)

    The first performance tests are presented of a carbon-14 (14C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 μm thick silicon detector with 256 x 256 pixels of 55 μm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) x 10-3 cps mm-2 kBq-1 g, background level, (3.59 ± 0.01) x 10-5 cps mm-2, and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 μm full-width at half-maximum. These figures are compared with several digital imaging detectors for 14C beta-particle digital autoradiography.

  12. Performance of the Insertable B-Layer for the ATLAS Pixel Detector during Quality Assurance and a Novel Pixel Detector Readout Concept based on PCIe

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268; Pernegger, Heinz

    2016-07-27

    During the first long shutdown of the LHC the Pixel detector has been upgraded with a new 4th innermost layer, the Insertable B-Layer (IBL). The IBL will increase the tracking performance and help with higher than nominal luminosity the LHC will produce. The IBL is made up of 14 staves and in total 20 staves have been produced for the IBL. This thesis presents the results of the final quality tests performed on these staves in an detector-like environment, in order to select the 14 best of the 20 staves for integration onto the detector. The test setup as well as the testing procedure is introduced and typical results of each testing stage are shown and discussed. The overall performance of all staves is presented in regards to: tuning performance, radioactive source measurements, and number of failing pixels. Other measurement, which did not directly impact the selection of staves, but will be important for the operation of the detector or production of a future detector, are included. Based on the experienc...

  13. High resolution radiography of ambers with pixel detectors

    Czech Academy of Sciences Publication Activity Database

    Dammer, J.; Weyda, F.; Beneš, J.; Sopko, V.; Jandejsek, I.; Pflegerová, Jitka

    2013-01-01

    Roč. 8, č. 3 (2013), C03024. ISSN 1748-0221. [Conference: International Workshop on Radiation Imaging Detector s /14./. Figueira da Foz, 01.07.2012-05.07.2012] Grant ostatní: GA ČR(CZ) GA103/09/2101; GA Mšk(CZ) LA08032 Institutional support: RVO:60077344 Keywords : X-ray detector s * Inspection with x-rays * X-ray radiography and digital radiography (DR) Subject RIV: EA - Cell Biology Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/03/C03024/

  14. Performance and applications of a high rate imaging pixel detector

    CERN Document Server

    Pavel, N A; Menk, R; Sarvestani, A; Sauer, N; Stiehler, R; Walenta, Albert H

    2002-01-01

    In the past years a large variety of gas filled micro pattern detectors have been developed for applications in high energy physics as well as for X-ray imaging in synchrotron light experiments. Here, we present the most recent developments on the MicroCAT detector with resistive position encodeing readout, which has been demonstrated to meet even the strong requirements in high resolution protein crystallography and time resolved small angle scattering at synchrotron light sources of the third generation. Recent test measurements with the prototype under the working conditions of a synchrotron light source as well as high time resolved measurements in the laboratory are presented.

  15. The ONSEN Data Reduction System for the Belle II Pixel Detector

    CERN Document Server

    Geßler, Thomas; Lange, Jens Sören; Liu, Zhen'An; Münchow, David; Spruck, Björn; Zhao, Jingzhou

    2015-01-01

    We present an FPGA-based online data reduction system for the pixel detector of the future Belle II experiment. The occupancy of the pixel detector is estimated at 3 %. This corresponds to a data output rate of more than 20 GB/s after zero suppression, dominated by background. The Online Selection Nodes (ONSEN) system aims at reducing the background data by a factor of 30. It consists of 33 MicroTCA cards, each equipped with a Xilinx Virtex-5 FPGA and 4 GiB DDR2 RAM. These cards are hosted by 9 AdvancedTCA carrier boards. The ONSEN system buffers the entire output data from the pixel detector for up to 5 seconds. During this time, the Belle II high-level trigger PC farm performs an online event reconstruction, using data from the other Belle II subdetectors. It extrapolates reconstructed tracks to the layers of the pixel detector and defines regions of interest around the intercepts. Based on this information, the ONSEN system discards all pixels not inside a region of interest before sending the remaining hi...

  16. Beam test characterization of CMS silicon pixel detectors for the phase-1 upgrade

    International Nuclear Information System (INIS)

    The Silicon Pixel Detector forms the innermost part of the CMS tracking system and is critical to track and vertex reconstruction. Being in close proximity to the beam interaction point, it is exposed to the highest radiation levels in the silicon tracker. In order to preserve the tracking performance with the LHC luminosity increase which is foreseen for the next years, the CMS collaboration has decided to build a new pixel detector with four barrel layers mounted around a reduced diameter beam pipe, as compared to the present three layer pixel detector in the central region. A new digital version of the front-end readout chip has been designed and tested; it has increased data buffering and readout link speed to maintain high efficiency at increasing occupancy. In addition, it offers lower charge thresholds that will improve the tracking efficiency and position resolution. Single chip modules have been evaluated in the DESY electron test beam in terms of charge collection, noise, tracking efficiency and position resolution before and after irradiation with 24 GeV protons from the CERN Proton Synchroton equivalent to the fluence expected after 500 fb−1 of integrated luminosity in the fourth layer of the pixel tracker. High efficiency and an excellent position resolution have been observed which are well maintained even after the proton irradiation. The results are well described by the CMS pixel detector simulation

  17. The Pixel Detector of the ATLAS Experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO$_2$ based cooling system have been adopted. The IBL construction and installation in the ATLAS Experiment has been completed very successfu...

  18. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  19. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  20. The Pixel Detector of the ATLAS experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is the fourth layer of the Run 2 Pixel Detector, and it was installed in May 2014 between the existing Pixel Detector and the new smaller-radius beam pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project...

  1. Effects of bulk and surface conductivity on the performance of CdZnTe pixel detectors

    DEFF Research Database (Denmark)

    Bolotnikov, A.E.; Chen, C.M.H.; Cook, W.R.;

    2002-01-01

    We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their different temperature behaviors. In addition, the exis......We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their different temperature behaviors. In addition......, the existence of a thin (10-100 A) oxide layer on the surface of CZT, formed during the fabrication process, affects both bulk and surface leakage currents. We demonstrate that the measured I-V dependencies of bulk current can be explained by considering the CZT detector as a metal-semiconductor-metal system...... between the pixel contacts. When the grid is negatively biased, the strong electric field in the gaps between the pixels forces the electrons landing on the surface to move toward the contacts, preventing the charge loss. We have investigated these effects by using CZT pixel detectors indium bump...

  2. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey Andre; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed. A new readout chip has been developed within CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performan...

  3. Geneva University: Pixel Detectors – trends and options for the future

    CERN Multimedia

    Geneva University

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 25 April 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE Science III, Auditoire 1S081 30Science III, Auditoire 1S081 30 Pixel Detectors – trends and options for the future Prof. Norbert Wermes - University of Bonn  Pixel detectors have been invented in the early 90s with the advancement of micro technologies. With the advent of the LHC, big vertex detectors have demonstrated that the pixel detector type is holding many of the promises it had made before. Meanwhile new, different or just improved variants of the pixel technology are being studied for their suitability for future experiments or experiment upgrades. The talk will address the various pro's and con's comparing hybrid and monolithic pixel technologies and their su...

  4. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit ...

  5. Simulation of active-edge pixelated CdTe radiation detectors

    OpenAIRE

    Duarte, DD; Lipp, JD; Schneider, A.; Seller, P; Veale, MC; Wilson, MD; Baker, MA; Sellin, PJ

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper sh...

  6. A Leakage Current-based Measurement of the Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Gorelov, Igor; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module measurement of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  7. Scintillator detectors with long WLS fibers and multi-pixel photodiodes

    CERN Document Server

    Mineev, O; Musienko, Yu; Polyansky, I; Yershov, N

    2011-01-01

    We have studied the possibility of using Geiger mode multi-pixel photodiodes to read out long scintillator bars with a single wavelength-shifting fiber embedded along the bar. This detector configuration can be used in large volume detectors in future long baseline neutrino oscillation experiments. Prototype bars of 0.7 cm thickness and different widths have been produced and tested using two types of multi-pixel photodiodes: MRS APD (CPTA, Moscow) and MPPC (Hamamatsu). A minimum light yield of 7.2 p.e./MeV was obtained for a 4 cm wide bar.

  8. A history of hybrid pixel detectors, from high energy physics to medical imaging

    Science.gov (United States)

    Delpierre, P.

    2014-05-01

    The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.

  9. Gamma spectroscopic measurements using the PID350 pixelated CdTe radiation detector

    CERN Document Server

    Karafasoulis, K; Seferlis, S; Papadakis, I; Loukas, D; Lambropoulos, C; Potiriadis, C

    2010-01-01

    Spectroscopic measurements are presented using the PID350 pixelated gamma radiation detectors. A high-speed data acquisition system has been developed in order to reduce the data loss during the data reading in case of a high flux of photons. A data analysis framework has been developed in order to improve the resolution of the acquired energy spectra, using specific calibration parameters for each PID350's pixel. Three PID350 detectors have been used to construct a stacked prototype system and spectroscopic measurements have been performed in order to test the ability of the prototype to localize radioactive sources.

  10. Design Optimization of Pixel Structure for α-Si based Uncooled Infrared Detector

    Directory of Open Access Journals (Sweden)

    Sudha Gupta

    2013-11-01

    Full Text Available In this paper authors present the design and simulation results achieved for pixel structure of amorphous Si (α-Si based bolometer array. Most uncooled IR detectors in the world are based on VOx material. But this is not a standard material in IC technology and has many inherent disadvantages. The α-Si, an alternative material with high TCR is becoming as popular. However, large TCR values, in this material are achieved only in films of high resistivity. To achieve TCR value more than 2.5%/K, α-Si film resistivity is ~ 80 ohms-cm. This gives rise to very large pixel resistance of the order of 100 Mega ohms depending upon the design of the leg structure. This high pixel resistance causes very large noise and hence lower sensitivity. If leg width or membrane thickness is increased in order to reduce the pixel resistance, then this results in higher thermal conductance which also decreases sensitivity. To overcome this problem, pixel structure is so designed that within a pixel, only part of the electrical conduction is through α-Si and rest is through metal. Simulation using Coventorware software has been done to optimize pixel resistance as well as thermal conductance through legs so that maximum sensitivity could be obtained. Optimization is also carried out in order to reduce sensitivity of pixel resistance to variation in material resistivity.

  11. Development of Micromegas-like gaseous detectors using a pixel readout chip as collecting anode

    International Nuclear Information System (INIS)

    This thesis reports on the fabrication and test of a new gaseous detector with a very large number of readout channels. This detector is intended for measuring the tracks of charged particles with an unprecedented sensitivity to single electrons of almost 100 %. It combines a metal grid for signal amplification called the Micromegas with a pixel readout chip as signal collecting anode and is dubbed GridPix. GridPix is a potential candidate for a sub-detector at a future electron linear collider (ILC) foreseen to work in parallel with the LHC around 2020--2030. The tracking capability of GridPix is best exploited if the Micromegas is integrated on the pixel chip. This integrated grid is called InGrid and is precisely fabricated by wafer post-processing. The various steps of the fabrication process and the measurements of its gain, energy resolution and ion back-flow property are reported in this document. Studies of the response of the complete detector formed by an InGrid and a TimePix pixel chip to X-rays and cosmic particles are also presented. In particular, the efficiency for detecting single electrons and the point resolution in the pixel plane are measured. Implications for a GridPix detector at ILC are discussed. (author)

  12. Test results on the silicon pixel detector for the TTF-FEL beam trajectory monitor

    Science.gov (United States)

    Hillert, S.; Ischebeck, R.; Müller, U. C.; Roth, S.; Hansen, K.; Holl, P.; Karstensen, S.; Kemmer, J.; Klanner, R.; Lechner, P.; Leenen, M.; Ng, J. S. T.; Schmüser, P.; Strüder, L.

    2001-02-01

    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free-electron laser of the TESLA test facility are presented. To determine the electronic noise of the detector and the read-out electronics and to calibrate the signal amplitude of different pixels, the 6 keV photons of the manganese K α/K β line are used. Two different methods determine the spatial accuracy of the detector: in one setup a laser beam is focused to a straight line and moves across the pixel structure. In the other, the detector is scanned using a low-intensity electron beam of an electron microscope. Both methods show that the symmetry axis of the detector defines a straight line within 0.4 μm. The sensitivity of the detector to low-energy X-rays is measured using a vacuum ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the electron microscope is used to study the radiation hardness of the detector.

  13. Silicon pixel detectors of a double-sided guard ring structure for radiation hardness

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo Sung [Yonsei Univ., Wonju (Korea, Republic of); Chien, Chih Yung [Johns Hopkins Univ., Baltimore (United States)

    2003-08-01

    The lifetime of silicon detectors in a severe radiation environment at CERN LHC depends strongly upon careful detector design and material selection due to the anticipated radiation -induced damage. We recently fabricated more radiation-tolerant silicon pixel detectors of a double-sided guard ring structure. The electrical characterization of such detectors was performed before and after irradiation to neutron fluence (1Mev equivalent ) up to 6 x 10{sup 14} n/cm{sup 2} by measuring the leakage current, the full depletion voltage, and the potential distribution over the guard rings.

  14. Layout of the ALICE detector (A Large Ion Collision Experiment), an experiment of the LHC

    CERN Document Server

    2004-01-01

    The ALICE Set-up : 1. ITS 2. FMD 3. TPC 4. TRD 5. TOF 6. HMPID 7. PHOS CPV 8. L3magnet 9. Absorber 10. Tracking Chambers 11. Muon Filter 12. Trigger Chambers 13. Dipole Magnet 14. PMD 15. Compensator Magnet

  15. Pixel detectors for use in retina neurophysiology studies

    CERN Document Server

    Cunningham, W; Chichilnisky, E J; Horn, M; Litke, A M; Mathieson, K; McEwan, F A; Melone, J; O'Shea, V; Rahman, M; Smith, K M

    2003-01-01

    One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed similar to 500 electrode arrays with feature sizes down to below 2 mum. The neural signals from significant areas of the retina may thus be captured.

  16. Upgrade of the ALICE Inner Tracking System

    International Nuclear Information System (INIS)

    ALICE (A Large Ion Collider Experiment) is studying heavy-ion collisions at the CERN LHC, with the aim of forming, under extreme conditions of temperature and energy density, a Quark-Gluon Plasma (QGP) and studying its properties. The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) . The primary focus of the new ITS is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP . With respect to the current detector, the new ITS will significantly enhance the determination of the distance of closest approach of a track to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be achieved by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30× 30 μm2. A key feature of the new ITS, which is optimized for high tracking accuracy at low transverse momenta, is the very low mass of the three innermost layers, which feature a material thickness of 0.3% X0 per layer. This contribution describes the design goals and layout of the new ALICE ITS, a summary of the R and D activities, with focus on the technical implementation of the main detector components, and the projected detector performance

  17. Modular pixelated detector system with the spectroscopic capability and fast parallel read-out

    International Nuclear Information System (INIS)

    A modular pixelated detector system was developed for imaging applications, where spectroscopic analysis of detected particles is advantageous e.g. for energy sensitive X-ray radiography, fluorescent and high resolution neutron imaging etc. The presented system consists of an arbitrary number of independent versatile modules. Each module is equipped with pixelated edgeless detector with spectroscopic ability and has its own fast read-out electronics. Design of the modules allows assembly of various planar and stacked detector configurations, to enlarge active area or/and to improve detection efficiency, while each detector is read-out separately. Consequently read-out speed is almost the same as that for a single module (up to 850 fps). The system performance and application examples are presented

  18. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  19. Test of a fine pitch SOI pixel detector with laser beam

    CERN Document Server

    Liu, Yi; Ju, Xudong; Ouyang, Qun

    2015-01-01

    A fine pitch pixel detector, developed on SOI (Silicon on Insulator) technology, has been tested under the illumination of infrared laser pulses. As an alternative way beside particel beam test, the laser pulses are tuned to very short duration and small transverse profile to simulate tracks of MIPs (Minimum Ionization Particles) in silicon. Hit cluster size and substrate depletion characteristics of this SOI detector are obtained. When focused laser pulses propagate through SOI detector perpendicularly to its surface, the hit cluster is measured, and most of signal charges are collected directly by the seed pixel. The signal amplitude as a function of applied bias voltage has been measured on this SOI detector for the first time, which helps us better understand of depletion characteristics.

  20. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    CERN Document Server

    Püllen, L; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  1. Pixel array detector for time-resolved x-ray scattering

    International Nuclear Information System (INIS)

    This paper describes the development of a large area hybrid pixel detector designed for time-resolved synchrotron x-ray scattering experiments in which limited frames, with a high framing rate, are required. The final design parameters call for a 1024x1024 pixel array device with 150-micron pixels that is 100% quantum efficient for x-rays with energy up to 20 keV, with a framing rate in the microsecond range. The device will consist of a fully depleted diode array bump bonded to a CMOS electronic storage capacitor array with eight frames per pixel. The two devices may be separated by a x-ray blocking layer that protects the radiation-sensitive electronics layer from damage. The signal is integrated in the electronics layer and stored in one of eight CMOS capacitors. After eight frames are taken, the data are then read out, using clocking electronics external to the detector, and stored in a RAM disk. Results will be presented on the development of a prototype 4x4 pixel electronics layer that is capable of storing at least 10,000 12-keV x-ray photons for a capacity of over 50 million electrons with a noise corresponding to 2 x-ray photons per pixel. The diode detective layer and electronics storage layer along with the radiation damage and blocking layers will be discussed. copyright 1996 American Institute of Physics

  2. Testbeam and laboratory test results of irradiated 3D CMS pixel detectors

    Science.gov (United States)

    Bubna, Mayur; Alagoz, Enver; Cervantes, Mayra; Krzywda, Alex; Arndt, Kirk; Obertino, Margherita; Solano, Ada; Dalla Betta, Gian-Franco; Menace, Dario; Moroni, Luigi; Uplegger, Lorenzo; Rivera, Ryan; Osipenkov, Ilya; Andresen, Jeff; Bolla, Gino; Bortoletto, Daniela; Boscardin, Maurizio; Marie Brom, Jean; Brosius, Richard; Chramowicz, John; Cumalat, John; Dinardo, Mauro; Dini, Paolo; Jensen, Frank; Kumar, Ashish; Kwan, Simon; Lei, C. M.; Povoli, Marco; Prosser, Alan; Ngadiuba, Jennifer; Perera, Lalith; Shipsey, Ian; Tan, Ping; Tentindo, Silvia; Terzo, Stefano; Tran, Nhan; Wagner, Stephen R.

    2013-12-01

    The CMS silicon pixel detector is the tracking device closest to the LHC p-p collisions, which precisely reconstructs the charged particle trajectories. The planar technology used in the current innermost layer of the pixel detector will reach the design limit for radiation hardness at the end of Phase I upgrade and will need to be replaced before the Phase II upgrade in 2020. Due to its unprecedented performance in harsh radiation environments, 3D silicon technology is under consideration as a possible replacement of planar technology for the High Luminosity-LHC or HL-LHC. 3D silicon detectors are fabricated by the Deep Reactive-Ion-Etching (DRIE) technique which allows p- and n-type electrodes to be processed through the silicon substrate as opposed to being implanted through the silicon surface. The 3D CMS pixel devices presented in this paper were processed at FBK. They were bump bonded to the current CMS pixel readout chip, tested in the laboratory, and testbeams carried out at FNAL with the proton beam of 120 GeV/c. In this paper we present the laboratory and beam test results for the irradiated 3D CMS pixel devices.

  3. Neural network based cluster reconstruction in the ATLAS silicon Pixel Detector

    International Nuclear Information System (INIS)

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The spatial resolution of the pixel detector can be improved significantly using the information from the cluster of adjacent pixels. Such analogue cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, it is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A clusterization algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to standard interpolation techniques, by the use of the 2-dimensional charge distribution information. The reconstruction using the neural network reduces strongly the number of hits shared by more than one track and improves the resolution of the impact parameter by about 15%.

  4. Radiation-Hard Opto-Link for the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2004-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the opto-boards and from irradiation studies with 24 GeV protons up to 33 Mrad (1.2 x 10^15 p/cm^2).

  5. Low-flux measurements with Cornell's LCLS integrating pixel array detector

    International Nuclear Information System (INIS)

    Next generation light sources are revolutionizing x-ray science by delivering ultra-intense, hard x-ray pulses many orders of magnitude brighter and shorter in duration than previously achievable. Maximizing the scientific potential of these light sources requires the development of suitable detectors. Experiments such as coherent x-ray imaging of single particles require detectors that can record extremely high instantaneous flux rates produced by femtosecond x-ray pulses (i.e. thousands of photons incident on a single pixel of an area detector in a few femtoseconds) while also being able to accurately distinguish single photon events so that many thousands of frames of data can be used to reconstruct extremely low flux information (e.g. less than 1/1000 photons per pixel per frame). This paper presents data from an integrating pixel array detector (PAD) possessing the ability to record high- and low-flux x-ray data at an X-ray Free Electron Laser (XFEL). Methods are presented to process extremely low-flux data (less than 1/10000 8-keV x-rays per pixel per frame) to accurately recover diffraction patterns from thousands of frames. The data were collected using a detector developed by Cornell for the Linac Coherent Light Source (LCLS) at SLAC National Lab. A copy of this detector was delivered to SLAC in the middle of 2008. The ASIC developed for this detector was used by SLAC as the basis for the CS-PAD (Cornell SLAC-PAD) being used on the Coherent X-ray Imaging beamline at the LCLS. These methods extend beyond XFEL applications because they allow for the suppression of dark accumulation noise which typically limits the low-flux capability of integrating detectors on conventional x-ray sources.

  6. Novel Multi-pixel Silicon Photon Detectors and Applications in T2K

    OpenAIRE

    Beznosko, Dmitriy

    2009-01-01

    Nowadays, numerous fields such as High Energy Physics (HEP), medical imaging devices, portable radiation detectors etc., require a robust, miniature, reliable and readily available photon detector that is stable in a variety of environments, such as the presence of strong magnetic fields. The recently available $\\sim$1mm$^{\\textrm{2}}$ active area Multi-pixel Photon Counter (MPPC) sensors, produced by Hamamatsu Photonics, have been found to be reliable and an attractive choice for the HEP app...

  7. Test of pixel detectors for laser-driven accelerated particle beams

    International Nuclear Information System (INIS)

    Laser-driven accelerated (LDA) particle beams have due to the unique acceleration process very special properties. In particular they are created in ultra-short bunches of high intensity exceeding more than 107 (particles)/cm2·ns per bunch. Characterization of these beams is very limited with conventional particle detectors. Non-electronic detectors such as imaging plates or nuclear track detectors are, therefore, conventionally used at present. Moreover, all these detectors give only offline information about the particle pulse position and intensity as they require minutes to hours to be processed, calling for a new highly sensitive online device. Here, we present tests of different pixel detectors for real time detection of LDA ion pulses. Experiments have been performed at the Munich 14MV Tandem accelerator with 8–20 MeV protons in dc and pulsed beam, the latter producing comparable flux as a LDA ion pulse. For detection tests we chose the position-sensitive quantum-counting semiconductor pixel detector Timepix which also provides per-pixel energy- or time-sensitivity. Additionally other types of commercially available pixel detectors are being evaluated such as the RadEye™1, a large area (25 x 50 mm2) CMOS image sensor. All of these devices are able to resolve individual ions with high spatial- and energy-resolution down to the level of μm and tens of keV, respectively. Various beam delivering parameters of the accelerator were thus evaluated and verified. The different readout modes of the Timepix detector which is operated with an integrated USB-based readout interface allow online visualization of single and time-integrated events. Therefore Timepix offers the greatest potential in analyzing the beam parameters.

  8. 3 mega-pixel InSb detector with 10μm pitch

    Science.gov (United States)

    Gershon, G.; Albo, A.; Eylon, M.; Cohen, O.; Calahorra, Z.; Brumer, M.; Nitzani, M.; Avnon, E.; Aghion, Y.; Kogan, I.; Ilan, E.; Shkedy, L.

    2013-06-01

    SCD has developed a new 1920x1536 / 10 μm digital Infrared detector for the MWIR window named Blackbird. The Blackbird detector features a Focal Plane Array (FPA) that incorporates two technological building blocks developed over the past few years. The first one is a 10 μm InSb pixel based on the matured planar technology. The second building block is an innovative 10 μm ReadOut Integrated Circuit (ROIC) pixel. The InSb and the ROIC arrays are connected using Flip-Chip technology by means of indium bumps. The digital ROIC consists a matrix of 1920x1536 pixels and has an analog to digital (A/D) converter per-channel (total of 1920x2 A/Ds). It allows for full frame readout at a high frame rate of up to 120 Hz. Such an on-chip A/D conversion eliminates the need for several A/D converters with fairly high power consumption at the system level. The ROIC power consumption at maximum bandwidth is less than 400 mW. It features a wide range of pixel-level functionality such as several conversion gain options and a 2x2 pixel binning. The ROIC design makes use of the advanced and matured CMOS technology, 0.18 μm, which allows for high functionality and relatively low power consumption. The FPA is mounted on a Cold-Finger by a specially designed ceramic substrate. The whole assembly is housed in a stiffened Dewar that withstands harsh environmental conditions while minimizing the environment heat load contribution to the heat load of the detector. The design enables a 3-megapixel detector with overall low size, weight, and power (SWaP) with respect to comparable large format detectors. In this work we present in detail the characteristic performance of the new Blackbird detector.

  9. Alice and Alice

    Directory of Open Access Journals (Sweden)

    Maria Augusta Vilalba Nunes

    2012-05-01

    Full Text Available Two Alices. One follows a rabbit and falls into a hole that seems to have no end, enters into another world, a world out of control, out of context, a world never seen before. The other does not fall anywhere, she only exists in the world. In this world. A world under control? Within the context? It would appear so. But Alice is only ten years old, what would she know about the control and the context of the world, besides the reference that those older and supposedly wiser give her? However, for the adults surrounding her, the world is not under control, their own lives are not. Alice, far from being naive knows that, and thus, her world turns confused, or rather, it turns confused by the complexity of adult relationships that she must undergo. The Alices and their small bodies immersed in these uncontrolled worlds turn their problematic situation into a ludic situation, a game, a playing, within the ease of doing this kind of reversal that only children and the so called crazy have. Thus, Alice and Alice makes a crossing between these two distant worlds characters, but close at the same time. One Alice literature, the other film. One Lewis Carroll, the other Wim Wenders. This essay investigates the relation regarding to the similarities and the discrepancies between the two forms of language, but mainly, the relation between the conditions of the two girls. Based on Deleuze's thought on the reversal of Cartesian thought examined on Carroll’s book, this work will ponder the situations experienced by Wenders’ Alice and consider the possibility that real life can be full of paradoxes, games and situations that move away from reasoning.

  10. Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography.

    Science.gov (United States)

    Elbakri, I A; McIntosh, B J; Rickey, D W

    2009-03-21

    We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result. PMID:19242050

  11. X-ray imaging using a hybrid photon counting GaAs pixel detector

    International Nuclear Information System (INIS)

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 μm thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 μm x 170 μm) and covers a total area of 1.2 cm2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-characteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (NDT). Because of the separation of detector and readout chip, different materials can be investigated and compared

  12. ALICE doffs hat to two companies

    CERN Multimedia

    2007-01-01

    During the fifth annual ALICE Industrial Awards ceremony, the ALICE Collaboration honoured two companies for their outstanding contributions to the construction of the experiment.For the past five years, the ALICE collaboration has been presenting its industrial partners with awards for meeting demanding or unusual requirements, for excellence in design or execution, for delivery on-time and on-budget and for outstanding cooperation. This year, on 9 March, ALICE presented awards to two companies for their exceptional performance. From left to right: Kees Oskamp (ALICE SSD), Arie de Haas (ALICE SSD), Gert-Jan Nooren (ALICE SSD), Shon Shmuel (FIBERNET), Yehuda Mor-Yosef (FIBERNET), Hans Boggild (ALICE), Jurgen Schukraft (ALICE Spokesperson), Catherine Decosse (ALICE) and Jean-Robert Lutz (ALICE SSD). FIBERNET Ltd., based in Yokneam, Israel, was rewarded for the excellent and timely assembly of the Silicon Strip Detector boards (SSD) of the Inner Tracking System with cable connections. Special low-mass cables, ...

  13. Robustness of the Artificial Neural Networks Used for Clustering in the ATLAS Pixel Detector

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    A study of the robustness of the ATLAS pixel neural network clustering algorithm is presented. The sensitivity to variations to its input is evaluated. These variations are motivated by potential discrepancies between data and simulation due to uncertainties in the modelling of pixel clusters in simulation, as well as uncertainties from the detector calibration. Within reasonable variation magnitudes, the neural networks prove to be robust to most variations. The neural network used to identify pixel clusters created by multiple charged particles, is most sensitive to variations affecting the total amount of charge collected in the cluster. Modifying the read-out threshold has the biggest effect on the clustering's ability to estimate the position of the particle's intersection with the detector.

  14. Simulation of active-edge pixelated CdTe radiation detectors

    Science.gov (United States)

    Duarte, D. D.; Lipp, J. D.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  15. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  16. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  17. TSV last for hybrid pixel detectors: Application to particle physics and imaging experiments

    CERN Document Server

    Henry, D; Berthelot, A; Cuchet, R; Chantre, C; Campbell, M

    Hybrid pixel detectors are now widely used in particle physics experiments and at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly [1]. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the a...

  18. Performance of a chip for hybrid pixel detectors with two counters for X-ray imaging

    International Nuclear Information System (INIS)

    A semiconductor hybrid pixel detector for dynamic X-ray imaging is developed. The detector, called DIXI, consists of a semiconductor sensor mounted onto a readout chip. A detector module with a 500 μm silicon sensor is currently being assembled with the use of anisotropic conductive film as interconnection between the sensor and the readout chip. The basic building block of the detector is 1 cm2 in size and consists of 992 square pixel cells arranged in 31 columns and 32 rows. The pixels have a side of 270 μm. The readout chip is capable of performing photon counting and has an externally adjustable threshold. The readout chip has been characterised by charge injection in the absence of a sensor. The threshold dispersion is measured to 365 e- for hole collection. Even if the chip was not originally designed for electron collection a threshold dispersion of 1650 e- has been achieved. Two counters are implemented in every single pixel cell and the threshold can be changed from one image to the next in order to select different parts of the X-ray spectrum

  19. The Pixel Detector of the ATLAS Experiment for the Run-2 at the Large Hadron Collider

    CERN Document Server

    Guescini, F; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radial distance of 3.3 cm from the beam axis. The realization of the IBL required the development of several new technologies and solutions in order to overcome the challenges introduced by the extreme environment and working conditions, such as the high radiation levels, the high pixel occupancy and the need of an exceptionally low material budget. Two silicon sensor technologies have been adopted for the IBL modules: planar n-in-n and 3D. Both of these are connected via bump bonding to the new generation 130 nm IBM CMOS FE-I4 ...

  20. Design and TCAD simulation of double-sided pixelated low gain avalanche detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: gianfranco.dallabetta@unitn.it [Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Pancheri, Lucio [Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Paternoster, Giovanni [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Cartiglia, Nicolo; Cenna, Francesca [INFN Sezione di Torino, Via P. Giuria 2, 10125 Torino (Italy); Bruzzi, Mara [Dipartimento di FIsica e Astronomia, Università di Firenze, and INFN Sezione di Firenze, Via Giovanni Sansone 1, 50019 Sesto Fiorentino (Italy)

    2015-10-01

    We introduce a double-sided variant of low gain avalanche detector, suitable for pixel arrays without dead-area in between the different read-out elements. TCAD simulations were used to validate the device concept and predict its performance. Different design options and selected simulation results are presented, along with the proposed fabrication process.

  1. Near video-rate linear Stokes imaging with single-pixel detectors

    Science.gov (United States)

    Welsh, Stephen S.; Edgar, Matthew P.; Bowman, Richard; Sun, Baoqing; Padgett, Miles J.

    2015-02-01

    In this work we demonstrate a polarization sensitive computational imaging system based on a digital micro-mirror device (DMD) and several single-pixel photodetectors. By taking advantage of computational imaging techniques, the light measured by each single-pixel detector can reconstruct a 2D image for a specific linear polarization state. Using the rapid 22 kHz frame-rate of the DMD to continuously project a series of spatially orthogonal illumination patterns, near video-rate reconstructions can be achieved. In addition we extend this approach to provide full-colour images through a process of sequential colour selection (RGB). Taking the difference between photodetector signals from orthogonal linear polarization states, we obtain images corresponding to the linear Stokes parameters. We apply this rapid polarization sensitive imaging system to inert and biological material. Since the spatial information in the images reconstructed by this approach are determined by the projection system, rather than the detectors, the approach provides perfect pixel registration between the various polarization selective images and associated Stokes parameters. Furthermore, the use of single-pixel detectors and the large operational bandwidth afforded by DMD's means that the approach can readily be extended for imaging at wavelengths where detector arrays are unavailable or limited.

  2. Near video-rate linear Stokes imaging with single-pixel detectors

    International Nuclear Information System (INIS)

    In this work we demonstrate a polarization sensitive computational imaging system based on a digital micro-mirror device (DMD) and several single-pixel photodetectors. By taking advantage of computational imaging techniques, the light measured by each single-pixel detector can reconstruct a 2D image for a specific linear polarization state. Using the rapid 22 kHz frame-rate of the DMD to continuously project a series of spatially orthogonal illumination patterns, near video-rate reconstructions can be achieved. In addition we extend this approach to provide full-colour images through a process of sequential colour selection (RGB). Taking the difference between photodetector signals from orthogonal linear polarization states, we obtain images corresponding to the linear Stokes parameters. We apply this rapid polarization sensitive imaging system to inert and biological material. Since the spatial information in the images reconstructed by this approach are determined by the projection system, rather than the detectors, the approach provides perfect pixel registration between the various polarization selective images and associated Stokes parameters. Furthermore, the use of single-pixel detectors and the large operational bandwidth afforded by DMD's means that the approach can readily be extended for imaging at wavelengths where detector arrays are unavailable or limited. (paper)

  3. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  4. 640 x 480 pixel uncooled infrared FPA with SOI diode detectors

    Science.gov (United States)

    Ueno, Masashi; Kosasayama, Yasuhiro; Sugino, Takaki; Nakaki, Yoshiyuki; Fujii, Yoshio; Inoue, Hiromoto; Kama, Keisuke; Seto, Toshiki; Takeda, Munehisa; Kimata, Masafumi

    2005-05-01

    This paper describes the structure and performance of a 25-micron pitch 640 x 480 pixel uncooled infrared focal plane array (IR FPA) with silicon-on-insulator (SOI) diode detectors. The uncooled IR FPA is a thermal type FPA that has a temperature sensor of single crystal PN junction diodes formed in an SOI layer. In the conventional pixel structure, the temperature sensor and two support legs for thermal isolation are made in the lower level of the pixel, and an IR absorbing structure is made in the upper pixel level to cover almost the entire pixel area. The IR absorption utilizes IR reflections from the lower level. Since the reflection from the support leg portions is not perfect due to the slits in the metal reflector, the reflection becomes smaller as the support leg section increases in reduced pixel pitches. In order to achieve high thermal isolation and high IR absorption simultaneously, we have developed a new pixel structure that has an independent IR reflector between the lower and upper levels. The structure assures perfect IR reflection and thus improves IR absorption. The FPA shows a noise equivalent temperature difference (NETD) of 40 mK (f/1.0) and a responsivity non-uniformity of less than 0.9%. The good uniformity is due to the high uniformity of the electrical characteristics of SOI diodes made of single crystal silicon (Si). We have confirmed that the SOI diodes architecture is suitable for large format uncooled IR FPAs.

  5. Simultaneous real-time visible and infrared video with single-pixel detectors.

    Science.gov (United States)

    Edgar, Matthew P; Gibson, Graham M; Bowman, Richard W; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J; Welsh, Stephen S; Padgett, Miles J

    2015-01-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a 'single-pixel camera' to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics. PMID:26001092

  6. 18k Channels single photon counting readout circuit for hybrid pixel detector

    International Nuclear Information System (INIS)

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e− and the equivalent noise charge is 168 e− rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  7. Uncooled infrared detector with 12μm pixel pitch video graphics array

    Science.gov (United States)

    Endoh, Tsutomu; Tohyama, Shigeru; Yamazaki, Takao; Tanaka, Yutaka; Okuyama, Kuniyuki; Kurashina, Seiji; Miyoshi, Masaru; Katoh, Kouji; Yamamoto, Takashi; Okuda, Yuuhi; Sasaki, Tokuhito; Ishizaki, Haruo; Nakajima, Tomohiko; Shinoda, Kentaro; Tsuchiya, Tetsuo

    2013-06-01

    Uncooled infrared detectors with 12μm pixel pitch video graphics array (VGA) have been developed. To improve the signal to noise ratio (SNR) for 12μm pixel pitch, a highly sensitive bolometer material, an advanced pixel structure for thermal isolation and a newly designed read-out IC (ROIC) have been also developed. The bolometer material has been improved by using vanadium niobate. Over a wide range of temperature, temperature coefficient of resistance (TCR) is achieved higher level than -3.6%/K, which is 2 times higher than that for the conventional bolometer material. For thermal isolation, thermal conductance (Gth) value for the new pixel structure, fabricated by using triple level sacrificial layer process, is estimated to be 5nW/K, which is 1/5 times lower than that for the conventional pixel structure. On the other hand, since the imaging area is reduced by the pixel pitch, the uniformity of pixel can be improved. This enables to remove the non-uniformity correction (NUC) circuit in the ROIC. Removal of this circuit is effective for low power and low noise. This 12μm pixel pitch VGA detector is packaged in a compact (24 × 24 × 6.5 mm) and lightweight (11g) ceramic package. In addition, it has been incorporated in a newly developed prototype miniature imager. The miniature imager has dimension of 25(H) ×25(W) ×28(L) mm and weight of 30g. This imager is compact and small enough to fit in your hand. Hereafter, this imager is greatly expected to be applied to mobile systems.

  8. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  9. Measurement of the charged particle multiplicity in proton–proton collisions with the ALICE detector

    OpenAIRE

    Große-Oetringhaus, J.F. (Jan)

    2009-01-01

    Die Dissertation befasst sich mit der Pseudorapiditätsdichte dNch/deta sowie der Multiplizitätsverteilung geladener Teilchen in hochenergetischen Proton-Proton-Kollisionen am ALICE Experiment am CERN Large Hadron Collider (LHC). Theoretische Grundlagen zur Beschreibung der Mehrteilchenproduktion werden erklärt und Messergebnisse von anderen Experimenten bei Schwerpunktenergien von 6 GeV bis 1.8 TeV vorgestellt. Analysen für die beiden Messungen mit zwei unterschiedlichen Detektorsystemen (Sil...

  10. Optimal fine ϕ-slicing for single-photon-counting pixel detectors

    International Nuclear Information System (INIS)

    Fine ϕ-slicing substantially improves scaling statistics and anomalous signal for diffraction data collection with hybrid pixel detectors. The data-collection parameters used in a macromolecular diffraction experiment have a strong impact on data quality. A careful choice of parameters leads to better data and can make the difference between success and failure in phasing attempts, and will also result in a more accurate atomic model. The selection of parameters has to account for the application of the data in various phasing methods or high-resolution refinement. Furthermore, experimental factors such as crystal characteristics, available experiment time and the properties of the X-ray source and detector have to be considered. For many years, CCD detectors have been the prevalent type of detectors used in macromolecular crystallography. Recently, hybrid pixel X-ray detectors that operate in single-photon-counting mode have become available. These detectors have fundamentally different characteristics compared with CCD detectors and different data-collection strategies should be applied. Fine ϕ-slicing is a strategy that is particularly well suited to hybrid pixel detectors because of the fast readout time and the absence of readout noise. A large number of data sets were systematically collected from crystals of four different proteins in order to investigate the benefit of fine ϕ-slicing on data quality with a noise-free detector. The results show that fine ϕ-slicing can substantially improve scaling statistics and anomalous signal provided that the rotation angle is comparable to half the crystal mosaicity

  11. Study of muon bundles from extensive air showers with the ALICE detector at CERN LHC

    Science.gov (United States)

    Shtejer, K.

    2016-05-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic-ray interactions in the upper atmosphere. The large size and excellent tracking capability of the ALICE Time Projection Chamber are exploited to study the muonic component of extensive air showers. We present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. The latest version of the QGSJET hadronic interaction model was used to simulate the development of the resulting air showers. High multiplicity events containing more than 100 reconstructed muons were also studied. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP without satisfactory explanations for the frequency of the highest multiplicity events. We demonstrate that the high muon-multiplicity events observed in ALICE stem from primary cosmic rays with energies above 1016 eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range.

  12. Fixed pattern deviations in Si pixel detectors measured using the Medipix 1 readout chip

    CERN Document Server

    Tlustos, L; Davidson, D; Heijne, Erik H M; Mikulec, B

    2003-01-01

    Dopant fluctuations and other defects in silicon wafers can lead to systematic errors in several parameters in particle or single-photon detection. In imaging applications non-uniformities in sensors or readout give rise to fixed pattern image noise and degradation of achievable spatial resolution for a given flux. High granularity pixel detectors offer the possibility to investigate local properties of the detector material on a microscopic scale. In this paper, we study fixed pattern detection fluctuations and detector inhomogeneities using the Medipix 1 readout chip. Low-frequency fixed pattern signal deviations due to dopant inhomogeneities can be separated from high-frequency deviations.

  13. X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector

    CERN Document Server

    Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J

    1999-01-01

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...

  14. Boundary scan test of Belle II pixel detector electronics

    International Nuclear Information System (INIS)

    For the upgrade of the Vertex Detector at the Belle II experiment, DEPFET sensors will be used. These sensors need Application-Specific Integrated Circuits (ASICs) for control, readout and data processing. Because of high demands for a low material budget in the sensitive area, there is only little space left for these ASICs. Using state-of-the-art technologies like Ball Grid Array (BGA) chips, which are flip-chip mounted, the requirement of 14 ASICs on each of the 40 half ladders can be fulfilled. However, this highly integrated on-sensor ASIC solution results in a lack of physical access to the electrical connections, which is a problem for traditional testing methods. To overcome these limitations, the JTAG standard IEEE 1149.1 is used to check if the circuit is in working condition. This method provides electrical access to the boundary scan cells implemented in the ASICs. Therefore it is possible to perform connectivity tests and verify if the production of the circuit was successful.

  15. Test results of the Data Handling Processor for the DEPFET Pixel Vertex Detector

    Science.gov (United States)

    Lemarenko, M.; Hemperek, T.; Krüger, H.; Koch, M.; Lütticke, F.; Marinas, C.; Wermes, N.

    2013-01-01

    In the new Belle II detector, which is currently under construction at the SuperKEKB accelerator, a two layer pixel detector will be introduced to improve the vertex reconstruction in a ultra high luminosity environment. The pixel detector will be produced using the DEPFET technology. A new ASIC (Data Handling Processor or DHP) designed to steer the readout process, pre-process and compress the raw data has been developed. The DHP will be directly bump bonded to the balcony of the all-silicon DEPFET module. The current chip prototype has been produced in CMOS 90 nm. Its test results, including the data processing quality, the signal integrity of the gigabit transmission lines will be presented here. For the final chip, which will be produced using CMOS 65 nm, single event upset (SEU) cross sections were measured. An additional chip, containing memory blocks to be tested, was submitted and produced using this technology.

  16. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  17. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    CERN Document Server

    Gonella, Laura; Desch, Klaus

    2013-11-11

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are dis...

  18. Development of the Pixelated Photon Detector Using Silicon on Insulator Technology for TOF-PET

    CERN Document Server

    Koyama, Akihiro; Takahashi, Hiroyuki; Orita, Tadashi; Arai, Yasuo; Kurachi, Ikuo; Miyoshi, Toshinobu; Nio, Daisuke; Hamasaki, Ryutaro

    2015-01-01

    To measure light emission pattern in scintillator, higher sensitivity and faster response are required to photo detector. Such as single photon avalanche diode (SPAD), conventional pixelated photo detector is operated at Geiger avalanche multiplication. However higher gain of SPAD seems very attractive, photon detection efficiency per unit area is low. This weak point is mainly caused by Geiger avalanche mechanism. To overcome these difficulties, we designed Pixelated Linear Avalanche Integration Detector using Silicon on Insulator technology (SOI-Plaid). To avoid dark count noise and dead time comes from quench circuit, we are planning to use APD in linear multiplication mode. SOI technology enables laminating readout circuit and APD layer, and high-speed and low-noise signal reading regardless smaller gain of linear APD. This study shows design of linear APD by using SOI fabrication process. We designed test element group (TEG) of linear APD and inspected optimal structure of linear APD.

  19. Test of a fine pitch SOI pixel detector with laser beam

    Science.gov (United States)

    Yi, Liu; Yunpeng, Lu; Xudong, Ju; Qun, Ou-Yang

    2016-01-01

    A silicon pixel detector with fine pitch size of 19 μm × 19 μm, developed based on SOI (silicon-on-insulator) technology, was tested under the illumination of infrared laser pulses. As an alternative method for particle beam tests, the laser pulses were tuned to very short duration and small transverse profile to simulate the tracks of MIPs (minimum ionization particles) in silicon. Hit cluster sizes were measured with focused laser pulses propagating through the SOI detector perpendicular to its surface and most of the induced charge was found to be collected inside the seed pixel. For the first time, the signal amplitude as a function of the applied bias voltage was measured for this SOI detector, deepening understanding of its depletion characteristics. Supported by National Natural Science Foundation of China (11375226)

  20. TCAD simulations of High-Voltage-CMOS Pixel structures for the CLIC vertex detector

    CERN Document Server

    Buckland, Matthew Daniel

    2016-01-01

    The requirements for precision physics and the experimental conditions at CLIC result in stringent constraints for the vertex detector. Capacitively coupled active pixel sensors with 25 μm pitch implemented in a commercial 180 nm High-Voltage CMOS (HV-CMOS) process are currently under study as a candidate technology for the CLIC vertex detector. Laboratory calibration measurements and beam tests with prototypes are complemented by detailed TCAD and electronic circuit simulations, aiming for a comprehensive understanding of the signal formation in the HV-CMOS sensors and subsequent readout stages. In this note 2D and 3D TCAD simulation results of the prototype sensor, the Capacitively Coupled Pixel Detector version three (CCPDv3), will be presented. These include the electric field distribution, leakage current, well capacitance, transient response to minimum ionising particles and charge-collection.