WorldWideScience

Sample records for alice honours industries

  1. ALICE honours industries

    CERN Multimedia

    2006-01-01

    The third annual ALICE Awards ceremony recognizes three companies for their contribution to the experiment's detector. The ALICE Awards winners pictured with CERN Secretary-General, Maximilian Metzger, during the ceremony. Three industries were honoured at the ALICE Awards ceremony on 17 March for their exceptional work on the collaboration's detector. Representatives from the companies accepted their awards at the ceremony, which was also attended by CERN Secretary-General Maximilian Metzger and members of the ALICE Collaboration Board. VTT Microelectronics of Finland received an award for the production of the thin bump bonded ladders (detector arrays, each consisting of 40 960 active cells) for the silicon pixel detector (SPD) in the inner tracking system. A number of technical hurdles had to be overcome: complex and expensive equipment was procured or upgraded, and processes underwent a detailed study and careful tuning. The ladders have a high and stable yield and the production will soon be completed...

  2. Industrial collaborators honoured by ALICE

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Picture 01 : the winners gather after the ALICE Award ceremony (from left to right): Yuri Saveliev, Stanislav Burachas and Sergei Beloglovsky of North Crystals; Maximilian Metzger, CERN's secretary-general; Rang Cai of ATM; Jürgen Schukraft, ALICE spokesperson; Erich Pamminger and Daniel Gattinger of FACC; and Tiejun Wang of ATM. The ALICE collaboration has presented its second round of awards to three companies for their novel and remarkable contributions to major detector systems: Advance Technology and Materials (ATM), Fischer Advanced Composite Components (FACC) and North Crystals. The awards presented to these three leaders in advanced, modern materials were beautifully sculpted from one of the oldest materials used by mankind to manufacture tools - Mexican Obsidian

  3. Industry honoured

    CERN Multimedia

    2008-01-01

    CERN has organised a day to thank industry for its exceptional contributions to the LHC project. Lucio Rossi addresses CERN’s industrial partners in the Main Auditorium.The LHC inauguration provided an opportunity for CERN to thank all those who have contributed to transforming this technological dream into reality. Industry has been a major player in this adventure. Over the last decade it has lent its support to CERN’s teams and participating institutes in developing, building and assembling the machine, its experiments and the computing infrastructure. CERN involved its industrial partners in the LHC inauguration by organising a special industry prize-giving day on 20 October. Over 70 firms accepted the invitation. The firms not only made fundamental contributions to the project, but some have also supported LHC events in 2008 and the inauguration ceremony through generous donations, which have been coordinated by Carmen Dell’Erba, who is responsible for secu...

  4. ALICE honours two Italian suppliers

    CERN Multimedia

    2006-01-01

    During the ALICE week held in Bologna from 19 to 23 June, the Collaboration recognized two of its top suppliers. From left to right: Robert Terpin (MIPOT), Pier Luigi Bellutti (ITC), Andrea Zanotti, President of ITC, Luciano Bosisio (Trieste University), Gennady Zinovjev (Kiev), Catherine Decosse (CERN), Lodovico Riccati, ALICE Collaboration Board Chair (INFN Torino), Paolo Giubellino (INFN Torino), Mario Zen, Director of ITC, Maurizio Boscardin (ITC), Paolo Tonella (ITC), Jurgen Schukraft, ALICE Spokesperson (CERN), Giacomo Vito Margagliotti (Trieste University), Nevio Grion (INFN Trieste), Marco Bregant (INFN Trieste). Front row from left to right: Paolo Traverso (ITC), Federico Carminati, ALICE Computing Project Leader (CERN), and Jean-Robert Lutz, ITS-SSD Project leader (IPHC Strasbourg). It is in the picturesque city of Bologna that the ALICE Collaboration has rewarded two Italian suppliers, Istituto Trentino di Cultura ITC-irst (Trento) and MIPOT (Cormons), both involved in the construction of the Sili...

  5. ALICE honours two Italian suppliers

    CERN Document Server

    2006-01-01

    From left to right: Robert Terpin (MIPOT), Pier Luigi Bellutti (ITC), Andrea Zanotti, President of ITC, Luciano Bosisio (Trieste University), Gennady Zinovjev (Kiev), Catherine Decosse (CERN), Lodovico Riccati, ALICE Collaboration Board Chair (INFN Torino), Paolo Giubellino (INFN Torino), Mario Zen, Director of ITC, Maurizio Boscardin (ITC), Paolo Tonella (ITC), Jurgen Schukraft, ALICE Spokesperson (CERN), Giacomo Vito Margagliotti (Trieste University), Nevio Grion (INFN Trieste), Marco Bregant (INFN Trieste) Front row from left to right: Paolo Traverso (ITC), Federico Carminati, ALICE Computing Project Leader (CERN), and Jean-Robert Lutz, ITS-SSD Project leader (IPHC Strasbourg).

  6. ALICE presents its first award to Industry

    CERN Multimedia

    On 19 June, a French company received the first ALICE award to industry. ST Technologies has provided ALICE with a key device for the design of a very sophisticated chip for the readout of the ALICE Time Projection Chamber. Behind from left to right (Derrière de gauche à droite): Bernardo Mota, member of the ALTRO design team, Jurgen Schukraft, ALICE Spokesperson, Luciano Musa, leader of the ALTRO Design Team and Coordinator of the ALICE TPC FEE, Roberto Camapagnolo, member of the ALICE TPC FEE team, Jean-Pierre Coffin, Deputy of the ALICE Collaboration Board Chairman, Hans de Groot ALICE Resource Coordinator, Laurent Degoujon, ST - Data Converter Design Manager, Claude Engster, member of the ALICE TPC FEE team, Alain Delpi, ST - Data Converter Business Unit Manager, Carmen Gonzalez, member of the ALICE TPC FEE team, Yiota Foka, ALICE Outreach Coordinator; Front: Fabio Formenti , EP-ED Group Leader, Juan Antonio Rubio, ETT Division Leader The ALICE experiment is setting new demands on readout electronics i...

  7. NOTE receives the prestigious ALICE Industrial Award

    CERN Multimedia

    2006-01-01

    "NOTE Lund has been given the ALICE Industrial Award due to good co-operation, great capacity for innovation and high quality of work, as a PCB manufacturer in the CERN project ALICE. Only a small number of awards have so far been conferred to a select number of companies."

  8. Round Two for Three ALICE Industrial Awards

    CERN Multimedia

    2004-01-01

    Excellency in industrial collaboration with the LHC experimental teams is one important contribution to the successful development and realization of the experiments. A few weeks ago the ALICE collaboration presented a second round of awards to industrial collaborators for their novel and remarkable contributions to major detector systems.

  9. ALICE doffs hat to two companies

    CERN Multimedia

    2007-01-01

    During the fifth annual ALICE Industrial Awards ceremony, the ALICE Collaboration honoured two companies for their outstanding contributions to the construction of the experiment.For the past five years, the ALICE collaboration has been presenting its industrial partners with awards for meeting demanding or unusual requirements, for excellence in design or execution, for delivery on-time and on-budget and for outstanding cooperation. This year, on 9 March, ALICE presented awards to two companies for their exceptional performance. From left to right: Kees Oskamp (ALICE SSD), Arie de Haas (ALICE SSD), Gert-Jan Nooren (ALICE SSD), Shon Shmuel (FIBERNET), Yehuda Mor-Yosef (FIBERNET), Hans Boggild (ALICE), Jurgen Schukraft (ALICE Spokesperson), Catherine Decosse (ALICE) and Jean-Robert Lutz (ALICE SSD). FIBERNET Ltd., based in Yokneam, Israel, was rewarded for the excellent and timely assembly of the Silicon Strip Detector boards (SSD) of the Inner Tracking System with cable connections. Special low-mass cables, ...

  10. ALICE presents its first award to Industry

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Behind from left to right (Derrière de gauche à droite): Bernardo Mota, member of the ALTRO design team, Jurgen Schukraft, ALICE Spokesperson, Luciano Musa, leader of the ALTRO Design Team and Coordinator of the ALICE TPC FEE, Roberto Camapagnolo, member of the ALICE TPC FEE team, Jean-Pierre Coffin, Deputy of the ALICE Collaboration Board Chairman, Hans de Groot ALICE Resource Coordinator, Laurent Degoujon, ST - Data Converter Design Manager, Claude Engster, member of the ALICE TPC FEE team, Alain Delpi, ST - Data Converter Business Unit Manager, Carmen Gonzalez, member of the ALICE TPC FEE team, Yiota Foka, ALICE Outreach Coordinator; Front: Fabio Formenti , EP-ED Group Leader, Juan Antonio Rubio, ETT Division Leader.

  11. Roll of honour

    Energy Technology Data Exchange (ETDEWEB)

    Moxon, Suzanne

    1999-07-01

    This article gives details of the design and construction of dams selected by members of the dam construction industry for praise as feats of construction. The dams covered in the roll of honour include the dam at the Guri hydroelectric power station in Venezuela on the Caroni river, the Contra dam on the Verzrasca river in Switzerland, and the double curvature arc Ertan dam on the Yalong river in China. (UK)

  12. Honouring indigenous treaty rights for climate justice

    Science.gov (United States)

    Mantyka-Pringle, C. S.; Westman, C. N.; Kythreotis, A. P.; Schindler, D. W.

    2015-09-01

    Expansion of the oil sands industry in Canada has caused land destruction and social friction. Canada could become a leader in climate governance by honouring treaty commitments made with indigenous peoples.

  13. Alice and Alice

    Directory of Open Access Journals (Sweden)

    Maria Augusta Vilalba Nunes

    2012-05-01

    Full Text Available Two Alices. One follows a rabbit and falls into a hole that seems to have no end, enters into another world, a world out of control, out of context, a world never seen before. The other does not fall anywhere, she only exists in the world. In this world. A world under control? Within the context? It would appear so. But Alice is only ten years old, what would she know about the control and the context of the world, besides the reference that those older and supposedly wiser give her? However, for the adults surrounding her, the world is not under control, their own lives are not. Alice, far from being naive knows that, and thus, her world turns confused, or rather, it turns confused by the complexity of adult relationships that she must undergo. The Alices and their small bodies immersed in these uncontrolled worlds turn their problematic situation into a ludic situation, a game, a playing, within the ease of doing this kind of reversal that only children and the so called crazy have. Thus, Alice and Alice makes a crossing between these two distant worlds characters, but close at the same time. One Alice literature, the other film. One Lewis Carroll, the other Wim Wenders. This essay investigates the relation regarding to the similarities and the discrepancies between the two forms of language, but mainly, the relation between the conditions of the two girls. Based on Deleuze's thought on the reversal of Cartesian thought examined on Carroll’s book, this work will ponder the situations experienced by Wenders’ Alice and consider the possibility that real life can be full of paradoxes, games and situations that move away from reasoning.

  14. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  15. Honour, Violence and Heteronormativity

    Directory of Open Access Journals (Sweden)

    Nicole L Asquith

    2015-10-01

    Full Text Available Popular representations of Honour Based Violence (HBV and honour killings construct this violence as an artefact of an uncivilised code of morality. Here ird, sharaf or izzat and shame are adhered to particular moral codes that are more likely to be found in the Quran. This clichéd version of HBV frames Muslim women’s sexual autonomy as exceptionally regulated, most commonly by male family members with the complicity of female relatives. In its most extreme (and publicly known form, HBV is epitomised by the ‘honour’ killings that come to the attention of the criminal justice system and, as a consequence, the media. Yet emerging research shows that HBV unfolds through increasingly punitive systems of social punishment, which is neither unique to Islam, nor religious communities more generally. In this paper, it is argued that the construction of HBV as a matter of deviant and antiquated Muslim honour codes is Islamophobic and that a more productive lens through which to understand collective familial violence may lie in the conceptual framework of heteronormativity.

  16. ALICE rewards one of its suppliers

    CERN Multimedia

    2007-01-01

    On 6 October 2007 the ALICE Collaboration Board awarded one of its prestigious Industrial Awards to Hewlett-Packard for its instrumental role in enabling ALICE physicists to collect and process experimental data on the Grid. From left to right: Jurgen Schukraft, ALICE Spokesperson; Michel Bénard, Hewlett Packard, Director, Technology Programs and University Relations; Federico Carminati, ALICE Computing Project Leader; Lodovico Riccati, ALICE Collaboration Board Chairperson; Arnaud Pierson, Hewlett Packard, E.M.E.A Program Manager, University Relations and HP Labs; Latchezar Betev, ALICE Distributed Computing Coordinator.The ALICE DAQ and Offline groups have been collaborating with HP since 1993 in the yearly Computing and GRID physics data challenges programme. These are high-level exercises of readiness of hardware and software frameworks for data acquisition and processing. HP hosted ALICE experts in their "centre de compétences"...

  17. Stamp in honour of CERN

    CERN Multimedia

    1966-01-01

    21 February 1966. The Swiss post office issued a stamp in CERN's honour. This stamp showed the flags of the thirteen Member States at the time arranged in the geometrical outline of Switzerland against a background of a track photograph.

  18. ALICE physicists receive 2014 Lise Meitner Prize

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On Wednesday, 3 September, four ALICE physicists were presented with the European Physical Society's 2014 Lise Meitner Prize for their outstanding contributions to nuclear physics (see here).   ALICE collaboration members Johanna Stachel (Heidelberg University, Germany), Peter Braun-Munzinger (GSI, Germany), Paolo Giubellino (INFN Turin, Italy, and CERN) and Jürgen Schukraft (CERN) were presented with their awards at a private ceremony held in the Globe of Science and Innovation. In addition to members of the ALICE collaboration, the ceremony was attended by members of the CERN Management including the Director-General, Rolf Heuer, as well as the EPS Nuclear Physics Board Chair, Douglas MacGregor, and the EPS Lise Meitner Prize Committee Chair, Victor Zamfir. For more information, please see "EPS honours CERN's heavy-ion researchers".  From left to right: Douglas MacGregor (EPS); Prize recipients Jürgen Schukraft,&a...

  19. ALICE gives its first thesis awards

    CERN Multimedia

    2008-01-01

    For the first time the ALICE collaboration has given two of its doctoral students awards for their outstanding theses. Winners Christian Holm Christensen and Zaida Conesa del Valle holding their awards.On 29 October the ALICE collaboration honoured two students for their outstanding theses at a ceremony held at CERN. The two awards, one of which was given for a physics thesis and the other for a technical thesis, went to Zaida Conesa Del Valle (Laboratoire de physique subatomique et des technologies associées) and Christian Holm Christensen (Niels Bohr Institute) respectively. "It is very gratifying to see that the collaboration appreciates our work," said Zaida Conesa del Valle, winner of the physics award for her thesis: Performance of the ALICE Muon Spectrometer. Weak Boson Production and Measurement in Heavy Ion Collisions at the LHC. "I also feel specially thankful to all the people who worked with me," she added. "It was pl...

  20. CERN honours Georges Charpak

    CERN Multimedia

    2009-01-01

    CERN pays tribute to the work of Georges Charpak at a colloquium in honour of his 85th birthday. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0753-kbps-480x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-Multirate-200-to-753-kbps-480x360.wmv', 'false', 480, 360, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-posterframe-480x360-at-10-percent.jpg', '1167500', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); Watch the video conference of Georges Charpak.   On 9 March CERN’s Main Auditorium was the venue for a fascinating and moving celebration marking the 85th birthday of Georges Charpak, who was awarded the Nobel Prize for Physics in 1992 for his inven...

  1. CERN honours its guides

    CERN Multimedia

    2004-01-01

    At the end of January, CERN's guides were rewarded for their devotion to the Laboratory. They have a passion for their work, know CERN inside-out and for 40 years have shown people of all ages and nationalities, from all walks of life, around the Laboratory. Who are they? Why, the CERN guides, of course. On 27 January, ten of CERN's 180 guides received special honours for their impressive number of guided tours in 2003. Presenting the awards in the Microcosm hall, CERN's Director-General Robert Aymar congratulated the winners on the key role they play with respect to the general public. "CERN would be nothing without you who show them its activities," he stressed. CERN's Director-General Robert Aymar congratulates Alberto Ribon for his tally of over 40 visits in the course of 2003.One of the prizes was the book «The Particle Odyssey». Here the book's co-author Christine Sutton dedicates it for Sijin Qian. Tzanko Spassoff (PH) and retired staff members Klaus Batzner and Antonio Francano wo...

  2. CERN apprenticeship scheme honoured

    CERN Multimedia

    2008-01-01

    Prestigious awards for two apprentices who did their practical training at CERN. Sylvain Heinzen, apprentice physics lab technician at CERN, receiving his award from Pierre-François UNGER, State Councillor responsible for the Federal Department of the Economy and Health. The other award-winner, Cédric Gerber, is on the right of the photo.Among Geneva’s top apprentices who were honoured by the Fondation sociale de l’Union industrielle genevoise (UIG) on 28 October this year, were two CERN apprentices. Electronics technician Cédric Gerber and physics lab technician Sylvain Heinzen both did their four-year sandwich course at CERN, obtaining their professional qualification, the Certificat fédéral de capacité (CFC), in June. On top of that, Cédric Gerber, who had been a particularly outstanding apprentice, received two further distinctions at the CFC awards ceremony - the State Council prize for achieving one of the top-ten o...

  3. Around ALICE

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ On the occasion of CERN's Golden Jubilee, at the Centre culturel Jean Monnet de Saint-Genis-Pouilly Exposition from Monday 11 October to Sunday 24 October. A presentation of CERN and the ALICE experiment with photos, student-made projects, computer animations, virtual reality demonstrations, and more. Saturday 16 October* Planting of a commemorative tree at 16:00 Public presentation at 16:30, followed by a visit to the subterranean site of the ALICE experiment (Number of places limited, reservations at: Service Culturel de la Marie de Saint-Genis-Pouilly, tél 04. 50. 20. 52. 59, Office de Tourisme Saint-Genis-Pouilly, tél: 04. 50. 42. 29. 37) * for the occasion of the Open Day, with 50 sites at CERN, see: http://intranet.cern.ch/Chronological/2004/CERN50/

  4. Around ALICE

    CERN Multimedia

    2004-01-01

    On the occasion of CERN's Golden Jubilee at Centre Culturel Jean Monnet de Saint-Genis-Pouilly Exposition from Monday 11 October to Sunday 24 October A presentation of CERN and the ALICE experiment with photos, student-made projects, computer animations, virtual reality demonstrations, and more. Saturday 16 October* Planting of a commemorative tree at 16:00 Public presentation at 16:30, followed by a visit to the subterranean site of the ALICE experiment (Number of places limited, reservations at: Service Culturel de la Marie de Saint-Genis-Pouilly, tel 04 50 20 52 59, or the Office de Tourisme Saint-Genis-Pouilly, tel: 04 50 42 29 37) * for the occasion of the Open Day, with 50 sites at CERN, see: http://intranet.cern.ch/Chronological/2004/CERN50/openday/openday_en.html

  5. ALICE Organisation

    CERN Multimedia

    Hadre, J

    2015-01-01

    ALICE is the acronym for A Large Ion Collider Experiment, one of the largest experiments in the world devoted to research in the physics of matter at an infinitely small scale. Hosted at CERN, the European Laboratory for Nuclear Research, this project involves an international collaboration of more than 1400 physicists, engineers and technicians, including around 340 graduate students, from 132 physics institutes in 37 countries across the world.

  6. ALICE Organisation

    CERN Multimedia

    Gouriou, Nathalie

    2016-01-01

    ALICE is the acronym for A Large Ion Collider Experiment, one of the largest experiments in the world devoted to research in the physics of matter at an infinitely small scale. Hosted at CERN, the European Laboratory for Nuclear Research, this project involves an international collaboration of more than 1400 physicists, engineers and technicians, including about 340 graduate students, from 132 physics institutes in 37 countries across the world.

  7. Fitting ALICE

    CERN Document Server

    2004-01-01

    The support structures for the detectors inside the ALICE solenoid magnet (the L3 magnet) were finished in December 2003. After commissioning and testing, over the next year, the structures will be lowered into the cavern and installed in the magnet by spring 2005. At first sight you might mistake them for scaffolding. But a closer look reveals unusual features: Two are made of austenitic (non-magnetic) stainless steel with a cross section that looks like an "H". Another is made of 8 centimetre aluminium square tubes. "Them" are the support structures for the detectors and services inside the ALICE solenoid magnet (the L3 magnet) which were finished in December 2003. «The physicists don't want to have a lot of material close to their detectors; it has to be as few as possible,» says Diego Perini, who is responsible for the common support structures of ALICE. «We therefore had the very difficult task to design something relatively light that i...

  8. CMS Honours Three Russian and Bielorussian companies

    CERN Multimedia

    2003-01-01

    On 7 March, CMS handed out the three latest Gold Awards under its scheme for honouring its best suppliers suppliers (c.f. Bulletin n°10/2003). Three Russian and Bielorussian firms were honoured, on the occasion of a visit by dignitaries from the two countries. CERN played host to Anatoly Sherbak, Head of the Fundamental Research Department of the Russian Federation Ministry of Industry and Science, Ambassador Sergei Aleinik, Permanent Representative of the Republic of Belarus to the Office of the United Nations at Geneva, Andrei Pirogov, Assistant Permanent Representative of the Russian Federation to the Office of the United Nations, and Alexei Sissakian, Vice Director of the JINR (Joint Institute for Nuclear Research) at Dubna in Russia. The directors of the three Russian and Bielorussian firms have received their awards and are seen with the visiting Russian and Bielorussian dignitaries and the CMS leaders in front of the CMS hadron calorimeter, on the spot where the detector is being assembled.These promi...

  9. Alices in a nuclear Wonderland

    Science.gov (United States)

    Brown, Kate

    2014-02-01

    Denise Kiernan's The Girls of Atomic City tells the story of a dozen women who left rural America in the early 1940s and tumbled suddenly, like Alice down the rabbit hole, into the nascent US military-industrial complex, with all its regulations, factory discipline, dangers and surveillance.

  10. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  11. ALICE HMPID Radiator Vessel

    CERN Multimedia

    2003-01-01

    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure. http://alice-hmpid.web.cern.ch/alice-hmpid

  12. ATLAS, CMS, LHCb and ALICE Career Networking Event 2015

    CERN Multimedia

    Marinov, Andrey; Strom, Derek Axel

    2015-01-01

    A networking event for alumni of the ATLAS, CMS, LHCb and ALICE experiments as well as current ATLAS/CMS/LHCb/ALICE postdocs and graduate students. This event offers an insight into career opportunities outside of academia. Various former members of the ATLAS, CMS, LHCb and ALICE collaborations will give presentations and be part of a panel discussion and elaborate on their experience in companies in a diverse range of fields (industry, finance, IT,...). Details at https://indico.cern.ch/event/440616

  13. ALICE - ARC integration

    OpenAIRE

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva; Peters, Andreas; Siaz, Pablo

    2007-01-01

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructur...

  14. ALICE Physics Theoretical Overview

    CERN Document Server

    Alessandro, B; Baier, R; Becattini, F; Botje, M; Carminati, F; Csörgö, T; De Cataldo, G; Foka, P Y; Giovannini, Alberto; Giubellino, P; Guillet, J P; Heinz, Ulrich W; Hencken, K; Iancu, E; Kaidalov, A B; Kajantie, Keijo; Karsch, Frithjof; Koch, V; Kopeliovich, B Z; Kurepin, A B; Laine, Mikko; Lednicky, R; Mangano, Michelangelo L; Monteno, M; Paic, G; Pilon, E; Pshenichnov, I A; Rapp, R; Redlich, Krzysztof; Revol, Jean Pierre Charles; Riggi, F; Safarík, K; Salgado, C A; Schükraft, Jürgen; Sinyukov, Yu M; Tomasik, Boris; Treleani, D; Ugoccioni, R; Venugopalan, R; Vogt, R; Wiedemann, Urs Achim

    2002-01-01

    ALICE is the dedicated heavy-ion experiment at the LHC. This note summarises theoretical developments in the field of hot and dense matter and their relevance for observables accessible to ALICE in nucleus-nucleus, proton-nucleus and proton-proton collisions. In addition, aspects of specific interest for proton-proton, proton-nucleus, ultra-peripheral collisions and cosmic-ray physics, which can be addressed by ALICE, are also discussed.

  15. The Tribute Workshop in Honour of Gunnar Sparr

    CERN Document Server

    Astrom, Karl; Silvestrov, Sergei D; Analysis for Science, Engineering and Beyond

    2012-01-01

    This book project was initiated at The Tribute Workshop in Honour of Gunnar Sparr and the follow-up workshop Inequalities, Interpolation, Non-commutative, Analysis, Non-commutative Geometry and Applications INANGA08, held at the Centre for Mathematical Sciences, Lund University in May and November of 2008. The resulting book is dedicated in celebration of Gunnar Sparr's sixty-fifth anniversary and more than forty years of exceptional service to mathematics and its applications in engineering and technology, mathematics and engineering education, as well as interdisciplinary, industrial and int

  16. ALICE brochure (Norwegian version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  17. "Alice imedemaal" Vanemuises

    Index Scriptorium Estoniae

    2004-01-01

    7. veebr. esietendub Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  18. ALICE brochure (English version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  19. ALICE brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  20. ALICE brochure (English version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE studies the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  1. ALICE brochure (French version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  2. ALICE brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  3. The ALICE Data Challenges

    CERN Document Server

    Baud, J P; Carminati, F; Collignon, M; Collin, F; Divià, R; Durand, J D; Jarp, S; Jouanigot, J M; Panzer, B; Rademakers, F; Saiz, P; Schossmaier, K; Van de Vyvre, P; Vascotto, Alessandro

    2001-01-01

    Since 1998, the ALICE experiment and the CERN/IT division have jointly executed several large-scale high throughput distributed computing exercises: the ALICE data challenges. The goals of these regular exercises are to test hardware and software components of the data acquisition and computing systems in realistic conditions and to execute an early integration of the overall ALICE computing infrastructure. This paper reports on the third ALICE Data Challenge (ADC III) that has been performed at CERN from January to March 2001. The data used during the ADC III are simulated physics raw data of the ALICE TPC, produced with the ALICE simulation program AliRoot. The data acquisition was based on the ALICE online framework called the ALICE Data Acquisition Test Environment (DATE) system. The data after event building were then formatted with the ROOT I/O package and a data catalogue based on MySQL was established. The Mass Storage System used during ADC III is CASTOR. Different software tools have been used to mo...

  4. ALICE chip processor

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This tiny chip provides data processing for the time projection chamber on ALICE. Known as the ALICE TPC Read Out (ALTRO), this device was designed to minimize the size and power consumption of the TPC front end electronics. This single chip contains 16 low-power analogue-to-digital converters with six million transistors of digital processing and 8 kbits of data storage.

  5. ALICE brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  6. The ALICE Data Challenges

    Institute of Scientific and Technical Information of China (English)

    J.P.Baud; W.Carena; 等

    2001-01-01

    Since 1998,the ALICE experiment and the CERN/IT division have jointly executed several large-scale high throughput distributed computing exercises:the ALICE data challenges.The goals of these regular exercises are to test hardware and software components of the data acqusition and computing systems in realistic conditions and to execute an early integration of the overall ALICE computing infrastructure.This paper reports on the third ALICE Data Challenge (ADC III) that has been performed at CERN from January to March 2001.The data used during the ADC Ⅲ are simulated physics raw data of the ALICE TPC,produced with the ALICE simulation program AliRoot.The data acquisition was based on the ALICE online framework called the ALICE Data Acquisition Test Environment (DATE) system.The data after event building,were then formatted with the ROOT I/O package and a data catalogue based on MySQl was established.The Mass Storage System used during ADC III is CASTOR.Different software tools have been used to monitor the performances,DATE has demonstrated performances of more than 500 MByte/s.An aggregate data throughput of 85 MByte/s was sutained in CASTOR over several days.The total collected data amounts to 100 TBytes in 100.00 files.

  7. Overview of ALICE results

    CERN Document Server

    Gagliardi, M

    2014-01-01

    The ALICE experiment at the CERN LHC studies the hot and dense medium formed in ultra-relativistic heavy-ion collisions, and the transition to Quark Gluon Plasma. Several observables are used to characterise the medium. In this contribution we report on the main ALICE results on global properties, particle spectra, anisotropies, heavy flavour and quarkonium production, obtained in Pb-Pb collisions at √ s rmNN =2 . 76 TeV. Measurements performed in p-Pb and pp collisions are also part of the ALICE physics program: selected highlights from such measurements are discussed.

  8. ALICE HMPID RICH

    CERN Multimedia

    2003-01-01

    Particle identification plays a key role in the complete understanding of heavy-ion collisions in ALICE at the LHC. . The CsI Photodetector . The Radiator . The Front-End Electronics . Detector performance

  9. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  10. ALICE Forward Multiplicity Detector

    CERN Multimedia

    Christensen, C

    2013-01-01

    The Forward Multiplicity Detector (FMD) extends the coverage for multiplicity of charge particles into the forward regions - giving ALICE the widest coverage of the 4 LHC experiments for these measurements.

  11. The ALICE absorbers

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m.

  12. The thousandth ALICE member

    CERN Multimedia

    2006-01-01

    From left to right: Lodovico Riccati, Toru Sugitate and Jurgen Schukraft. On Friday 13 October, the ALICE Collaboration Board accepted, as full members, nine new institutes, bringing the number of scientists from 982 to 1015. To celebrate this event, Lodovico Riccati, Chair of the Collaboration Board, and Jurgen Schukraft, Spokesperson of the ALICE Experiment, presented a small award to the thousandth collaborator, Toru Sugitate, from Hiroshima University.

  13. Installing the ALICE detector

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The huge iron yoke in the cavern at Point 2 in the LHC tunnel is prepared for the installation of the ALICE experiment. The yoke is being reused from the previous L3 experiment that was located at the same point during the LEP project from 1989 to 2000. ALICE will be inserted piece by piece into the cradle where it will be used to study collisions between two beams of lead ions.

  14. ATLAS honours two Swiss companies

    CERN Multimedia

    2003-01-01

    On 18 June 2003, ATLAS presented awards to two Swiss companies, Cicorel SA and Isola Composites AG, the suppliers of the electrodes and the composite bars for the electromagnetic calorimeter. "Physicists' dreams could not become reality without industry's active participation and creativity", said Peter Jenni, ATLAS spokesman, congratulating two of the collaboration's suppliers, to which it presented awards on 18 June. Swiss quality was the order of the day, since the two companies, Cicorel SA and Isola Composites AG, which are both involved in the production of components for the electromagnetic calorimeter, are located in Switzerland's Jura region. "You have taken up and met a challenge that bordered on the impossible", added Peter Jenni. The suppliers who received the ATLAS award: Hans Wyss from Cicorel SA (left) and Constant Gentile from Isola Composites (right).Circorel SA produced enough electrodes to cover an entire football pitch. Each electrode, measuring 2 square metres, consists of three layers of...

  15. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data......AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  16. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data......AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  17. GEANT4 in ALICE

    CERN Document Server

    Hrivnacova, I

    1999-01-01

    The smooth way of transition from existing GEANT3 based simulation software to GEANT4 adopted by ALICE will be explained. The AliRoot package as a client of the Monte Carlo interface (pure abstract class) is used in GEANT4 based classes for building GEANT4 objects (geometry physics list, primary generator). We shall also summarise our experience with GEANT4 and give an overview of what parts of GEANT4 are used in the current ALICE GEANT4 simulation prototype, what functionality has been added and what problems have been encountered.

  18. Heavy flavour in ALICE

    CERN Document Server

    Pillot, Philippe

    2008-01-01

    Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels

  19. GRID Activities in ALICE

    Institute of Scientific and Technical Information of China (English)

    P.Cerello; T.Anticic; 等

    2001-01-01

    The challenge of LHC computing,with data rates in the range of several PB/year,requires the development of GRID technologies,to optimize the exploitation of distributed computing power and the authomatic access to distributed data storage.In the framework of the EU-DataGrid project,the ALICE experiment is one of the selected test applications for the early development and implementation of GRID Services.Presently,about 15 ALICE sites are makin use of available GRID tools and a large scale test production involving 9 of them was carried out with our simulation program.Results are discussed in detail,as well as future plans.

  20. ALICE Geometry Database

    CERN Document Server

    Santo, J

    1999-01-01

    The ALICE Geometry Database project consists of the development of a set of data structures to store the geometrical information of the ALICE Detector. This Database will be used in Simulation, Reconstruction and Visualisation and will interface with existing CAD systems and Geometrical Modellers.At the present time, we are able to read a complete GEANT3 geometry, to store it in our database and to visualise it. On disk, we store different geometry files in hierarchical fashion, and all the nodes, materials, shapes, configurations and transformations distributed in this tree structure. The present status of the prototype and its future evolution will be presented.

  1. ALICE High Level Trigger

    CERN Multimedia

    Alt, T

    2013-01-01

    The ALICE High Level Trigger (HLT) is a computing farm designed and build for the real-time, online processing of the raw data produced by the ALICE detectors. Events are fully reconstructed from the raw data, analyzed and compressed. The analysis summary together with the compressed data and a trigger decision is sent to the DAQ. In addition the reconstruction of the events allows for on-line monitoring of physical observables and this information is provided to the Data Quality Monitor (DQM). The HLT can process event rates of up to 2 kHz for proton-proton and 200 Hz for Pb-Pb central collisions.

  2. Huddersfield's roll of honour: 1914-1922

    OpenAIRE

    Stansfield, J. Margaret

    2014-01-01

    Huddersfield’s Roll of Honour 1914-1922 is a detailed account of 3,439 service personnel from Huddersfield who lost their lives during the First World War. In the Preface, HRH The Duke of York KG writes: “This publication represents the lifetime work of Margaret Stansfield who sadly passed away in 2012. Margaret spent 30 years compiling the 3,439 biographical entries giving a poignant insight into the background, working lives and families of those who selflessly left Huddersfield to fi...

  3. The ALICE Electronic Logbook

    CERN Document Server

    Altini, V; Carena, W; Chapeland, S; Chibante Barroso, V; Costa, F; Divia, R; Fuchs, U; Makhlyueva, I; Roukoutakis, F; Schossmaier, K; Soos, C; Vande Vyvre, P; Von Haller, B

    2010-01-01

    All major experiments need tools that provide a way to keep a record of the events and activities, both during commissioning and operations. In ALICE (A Large Ion Collider Experiment) at CERN, this task is performed by the Alice Electronic Logbook (eLogbook), a custom-made application developed and maintained by the Data-Acquisition group (DAQ). Started as a statistics repository, the eLogbook has evolved to become not only a fully functional electronic logbook, but also a massive information repository used to store the conditions and statistics of the several online systems. It's currently used by more than 600 users in 30 different countries and it plays an important role in the daily ALICE collaboration activities. This paper will describe the LAMP (Linux, Apache, MySQL and PHP) based architecture of the eLogbook, the database schema and the relevance of the information stored in the eLogbook to the different ALICE actors, not only for near real time procedures but also for long term data-mining and analy...

  4. ALICE Vzero Detector

    CERN Multimedia

    Cheynis, B

    2013-01-01

    ALICE is the only experiment at CERN specifically designed to study the Quark-Gluon Plasma, the hot and dense matter which is created in ultra relativistic heavy-ion collisions. - VZERO-A (CINVESTAV-UNAM Mexico): 2.8 328 cm away from Interaction Point - VZERO-C (IPN Lyon): -3.6 88 cm away from Interaction Point

  5. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  6. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  7. The ALICE Electronic Logbook

    International Nuclear Information System (INIS)

    All major experiments need tools that provide a way to keep a record of the events and activities, both during commissioning and operations. In ALICE (A Large Ion Collider Experiment) at CERN, this task is performed by the Alice Electronic Logbook (eLogbook), a custom-made application developed and maintained by the Data-Acquisition group (DAQ). Started as a statistics repository, the eLogbook has evolved to become not only a fully functional electronic logbook, but also a massive information repository used to store the conditions and statistics of the several online systems. It's currently used by more than 600 users in 30 different countries and it plays an important role in the daily ALICE collaboration activities. This paper will describe the LAMP (Linux, Apache, MySQL and PHP) based architecture of the eLogbook, the database schema and the relevance of the information stored in the eLogbook to the different ALICE actors, not only for near real time procedures but also for long term data-mining and analysis. It will also present the web interface, including the different used technologies, the implemented security measures and the current main features. Finally it will present the roadmap for the future, including a migration to the web 2.0 paradigm, the handling of the database ever-increasing data volume and the deployment of data-mining tools.

  8. ALICE installs its TPC

    CERN Multimedia

    2007-01-01

    The ALICE time projection chamber has been transported to the experimental cavern. The handling of this extremely fragile detector was a long and delicate process. The lorry transporting the TPC took one hour to travel from the assembly hall to the access shaft...200 metres away.The TPC was lowered into the ALICE experimental cavern with extreme care. The gap between the structure and the shaft wall was only 10 centimetres! For ALICE the year started with a flurry of activity...but at a snail's pace. On 8 January, the day CERN reopened after the end-of-year break, teams from ALICE and the TS Department began the transportation of the experiment's time projection chamber (TPC), the largest ever built. This 5-metre long and 5-m diameter cylinder was transported from the clean room where it had been assembled to the experimental cavern. The 300-metre journey took no less than four days! Since the TPC is an extremely fragile object, the utmost precautions were exercised in its transportation. The TPC, which is d...

  9. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  10. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  11. Honour and Shame in a Church of England Primary School

    Science.gov (United States)

    Wilson, Tom

    2014-01-01

    While students of Islamic societies and cultures are aware of the influence of dynamics of honour and shame on behaviour, these factors are not always recognized by those who engage with Muslims in the UK. This paper will discuss the impact of concerns related to honour and shame on the behaviour of Muslim pupils in a Church of England primary…

  12. Chinese Commission of Science Technology and Industry for National Defense Senior Vice Minister CHEN Qiufa visiting ALICE experiment on 1st November 2007 with CERN Director-General R. Aymar and Adviser J.-P. Revol. Thursday, 1st and Friday, 2nd November 2007

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Chinese Commission of Science Technology and Industry for National Defense Senior Vice Minister CHEN Qiufa visiting ALICE experiment on 1st November 2007 with CERN Director-General R. Aymar and Adviser J.-P. Revol. Thursday, 1st and Friday, 2nd November 2007

  13. CMS and ATLAS honour their suppliers

    CERN Multimedia

    2001-01-01

    In order to motivate the hundreds of companies building their detectors, the CMS and ATLAS collaborations have recently been handing out awards of excellence to their top suppliers. At its second ceremony of this kind, CMS honoured four of its suppliers, while ATLAS for the first time paid tribute to two of its contractors. The atmosphere in the Council Chamber was festive rather than formal at the start of CMS week on Monday 5 March. Before embarking upon a long series of seminars and presentations, the Collaboration held its second awards ceremony to honour its top suppliers. By paying tribute to the exceptional efforts of certain suppliers, the Collaboration's aim is to motivate all the firms, some 500 in total, taking part in the experiment's construction. The CMS Awards panel thus singles out contractors who have not only provided full satisfaction in terms of compliance with specifications, quality and deadlines, but have in addition provided original solutions to delicate problems. Four firms came away...

  14. Honours service-learning & civic responsibility

    Directory of Open Access Journals (Sweden)

    Trae Stewart

    2012-03-01

    Full Text Available 800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Universities have been urged to prepare graduates for successful professional lives and fulfilling lives as civically responsible citizens. Pedagogies of engagement, like service-learning, are touted as one means to achieve these goals. Connections between first-year experience and service-learning programs have been slow to develop. Further, empirical studies on service-learning in university honours education are similarly scarce. This article examines first-semester honours postsecondary students' sense of civic responsibility before and after completing a service-learning program linking a course on the Evolution of Community to direct volunteerism in struggling schools. Based on pre-post-responses (n=119 to the Level III-Civic Responsibility Survey, analysis of variance with repeated measures showed that participants' sense of civic responsibility was significantly increased over time on each of the dependent variables (i.e., community connectedness, civic attitudes, civic efficacy. Community connectedness scores increased significantly at the .005 level, F(1, 118 = 9.703, p = .002. The changes in civic attitudes and civic efficacy scores were extremely significant at the .0005 level, F(1, 118 = 14.498, p < .0005 and F(1, 118 = 23.56, p < .0005, respectively.

  15. Central Diffraction at ALICE

    CERN Document Server

    Lämsä, Jerry W

    2011-01-01

    The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.

  16. Central diffraction at ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Laemsae, J W; Orava, R, E-mail: risto.orava@helsinki.fi [Helsinki Insitute of Physics, and Division of Elementary Particle Physics, Department of Physics, PL 64 (Gustaf Haellstroeminkatu 2a), FI-00014 University of Helsinki (Finland)

    2011-02-01

    The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.

  17. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  18. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  19. ALICE comes to life

    CERN Multimedia

    2002-01-01

    On 26 March, a first major part of the ALICE detector arrived at CERN: one of the four cylinders in composite material for the Time Projection Chamber (TPC). The construction of the TPC 'field cage' (the structure that defines the configuration of the electrical field of the TPC) is the fruit of exceptional collaboration between CERN and the Austrian manufacturer Fischer Advanced Composite Components (Fischer ACC).

  20. Pentaquark searches with ALICE

    CERN Document Server

    Bobulska, Dana

    2016-01-01

    In this report we present the results of the data analysis for searching for possible invariant mass signals from pentaquarks in the ALICE data. Analysis was based on filtered data from real p-Pb events at psNN=5.02 TeV collected in 2013. The motivation for this project was the recent discovery of pentaquark states by the LHCb collaboration (c ¯ cuud resonance P+ c ) [1]. The search for similar not yet observed pentaquarks is an interesting research topic [2]. In this analysis we searched for a s ¯ suud pentaquark resonance P+ s and its possible decay channel to f meson and proton. The ALICE detector is well suited for the search of certain candidates thanks to its low material budget and strong PID capabilities. Additionally we might expect the production of such particles in ALICE as in heavy-ion and proton-ion collisions the thermal models describes well the particle yields and ratios [3]. Therefore it is reasonable to expect other species of hadrons, including also possible pentaquarks, to be produced w...

  1. ALICE-ARC integration

    International Nuclear Information System (INIS)

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  2. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  3. ALICE on the move

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A new management, new modules for its sub-detectors and an increased capacity to probe the properties of the quark-gluon plasma. The new year bodes well for ALICE and ion physics as quarks and gluons prepare to unveil their most profound mysteries.   Installation of one of the new EMCal modules in the detector. Paolo Giubellino, the new ALICE spokesperson, talks with enthusiasm about what has already been done by the ALICE collaboration and what is yet to come. He has recently taken over from Jurgen Schukraft, who led the collaboration from its earliest beginnings. “We had a very exciting first year of operation, with many interesting results coming up in a very short space of time,” says Giubellino, a heavy-ion-physics expert from the Italian National Institute for Nuclear Physics (see box for details). “The Christmas technical stop wasn’t a break for us as we upgraded the detector, completing the installation of the electromagnetic calorimeter (E...

  4. The ALICE cavern and solenoid

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ALICE experiment, one of the four major experiments of CERN's LHC project, will be housed in the cavern that once contained the L3 experiment at the LEP accelerator. The huge solenoid is the only remaining piece of the L3 experiment and will be used by ALICE.

  5. The ALICE Forward Multiplicity Detector

    CERN Document Server

    Christensen, Christian Holm; Gulbrandsen, Kristjan; Nielsen, Borge Svane; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4 < \\eta < 5.1$. It is placed around the beam pipe at small angles to extend the charged particle acceptance of ALICE into the forward regions, not covered by the central barrel detectors.

  6. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten;

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  7. ALICE bags data storage accolades

    CERN Multimedia

    2007-01-01

    ComputerWorld has recognized CERN with an award for the 'Best Practices in Storage' for ALICE's data acquisition system, in the category of 'Systems Implementation'. The award was presented to the ALICE DAQ team on 18 April at a ceremony in San Diego, CA. (Top) ALICE physicist Ulrich Fuchs. (Bottom) Three of the five storage racks for the ALICE Data Acquisition system (Photo Antonio Saba). Between 16 and19 April, one thousand people from data storage networks around the world gathered to attend the biannual Storage Networking World Conference. Twenty-five companies and organizations were celebrated as finalists, and five of those were given honorary awards-among them CERN, which tied for first place in the category of Systems Implementation for the success of the ALICE Data Acquisition System. CERN was one of five finalists in this category, which recognizes the winning facility for 'the successful design, implementation and management of an interoperable environment'. 'Successful' could include documentati...

  8. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  9. Alice Munro: A Bibliography

    OpenAIRE

    Bigot, Corinne

    2014-01-01

    I. Collections of short stories by Alice Munro Dance of the Happy Shades, Toronto, Ryerson Press, 1968, 224 pp; New York, McGraw Hill, 1973, 224 pp; London, Allen Lane, 1974, 224 pp. Lives of Girls and Women, Toronto, McGraw Hill Ryerson, 1971, 254 pp; New York,McGraw Hill, 1972, 250 pp; London, Allen Lane, 1974, 250 pp. Something I’ve Been Meaning To Tell You, Toronto and New York, McGraw-Hill Ryerson, 1974, 246 pp. Who Do You Think You Are?, Toronto, Macmillan, 1974, 206 pp. Printed in the ...

  10. Diffraction studies with ALICE

    CERN Document Server

    Zamora, Pedro González

    2013-01-01

    The measurement of Single and Double Di raction cross-sections in pp collisions by the ALICE Collaboration at p s = 0.9, 2.76 and 7 TeV will be presented. The relevance of di raction to the understanding of inelastic pp interactions will be discussed and the measurement of the inelastic pp cross-section will be presented. A brief status of ALICE’s studies of centrally produced systems, selected with a two-pseudorapidity gap topology, will also be given

  11. Data science in ALICE

    CERN Document Server

    CERN. Geneva

    2015-01-01

    ALICE is the LHC experiment dedicated to the study of Heavy Ion collisions. In particular, the detector features low momentum tracking and vertexing, and comprehensive particle identification capabilities. In a single central heavy ion collision at the LHC, thousands of particles per unit rapidity are produced, making the data volume, track reconstruction and search of rare signals particularly challenging. Data science and machine learning techniques could help to tackle some of the challenges outlined above. In this talk, we will discuss some early attempts to use these techniques for the processing of detector signals and for the physics analysis. We will also highlight the most promising areas for the application of these methods.

  12. The Latest from ALICE

    CERN Multimedia

    2009-01-01

    After intensive installation operations from October 2008 until July 2009 (see Bulletin 31/7/2009), ALICE started a full-detector cosmics run in August, which is scheduled to last until the end of October. In addition to the Silicon Pixel and ACORDE detectors, the latter specially built for triggering on cosmic muons, ALICE is now making extensive use of the trigger provided by the Time Of Flight array. The high granularity and the low noise (0.1 Hz/cm2) of the TOF MRPCs, combined with the large coverage (~150 m2), offers a wide range of trigger combinations. This extended cosmic run serves many purposes: to test the performance of each individual detector; to ensure their integration in the central Data Acquisition; to perform alignment and calibration; to check the reconstruction software; to fine-tune the tracking algorithms; and last but not least, to train the personnel for the long shifts ahead. More than 100 million events h...

  13. ALICE pp physics programme

    CERN Document Server

    Kraus, Ingrid

    2009-01-01

    The physics programme of the ALICE experiment at CERN-LHC comprises besides studies of high-energy heavy-ion collisions measurements of proton-proton interactions at unprecedented energies, too. This paper focuses on the global event characterisation in terms of the multiplicity distribution of charged hadrons and mean transverse momentum. These bulk observables become accessible because the detector features excellent track reconstruction, especially at low transverse momenta. The measurement of strange hadrons is of particular interest since the strange-particle phase-space was found to be suppressed beyond canonical reduction at lower center-of-mass energies and the production mechanism of soft particles is not yet fully understood. Here we benefit in particular from particle identification down to very low transverse momentum, i.e. 100 - 300 MeV/c, giving access to spectra and integrated yields of identified hadrons. Equipped with these features, ALICE will play a complementary role w.r.t. other LHC exper...

  14. ALICE Expert System

    CERN Document Server

    Ionita, C

    2014-01-01

    The ALICE experiment at CERN employs a number of human operators (shifters), who have to make sure that the experiment is always in a state compatible with taking Physics data. Given the complexity of the system and the myriad of errors that can arise, this is not always a trivial task. The aim of this paper is to describe an expert system that is capable of assisting human shifters in the ALICE control room. The system diagnoses potential issues and attempts to make smart recommendations for troubleshooting. At its core, a Prolog engine infers whether a Physics or a technical run can be started based on the current state of the underlying sub-systems. A separate C++ component queries certain SMI objects and stores their state as facts in a Prolog knowledge base. By mining the data stored in dierent system logs, the expert system can also diagnose errors arising during a run. Currently the system is used by the on-call experts for faster response times, but we expect it to be adopted as a standard tool by reg...

  15. Cooling in the ALICE detector

    OpenAIRE

    Almén, Ylva

    2015-01-01

    At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland, a new modern particle accelerator called the LHC, Large Hadron Collider, is being projected. One of the four large detectors of the LHC, ALICE, consists of many sub-detectors. Temperature stability in ALICE is of great importance for the experiments performed here.  In the ALICE sub-detector TPC, Time Projection Chamber, there is a great risk for thermal instability.  This will cause false data in the experiments, a...

  16. CERN Open Days 2013, Point 2 - ALICE: ALICE Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: Visitors will be guided through the ALICE experiment, an extraordinary particle physics detector located at a depth of 80 meters below ground.  ALICE started up in 2008 to study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe. Visitors will also be able to walk inside the LHC tunnel, where superconducting magnets guide the beams of protons at unprecedented energies around the LHC. In addition to the underground visit, several ALICE physicists and engineers will be available to answer visitors' questions. On surface no restricted access  Above ground, scientific  and other kinds of shows will entertain the visitors to ALICE, even the youngest, throughout the day.

  17. ALICE Particle Identification

    CERN Document Server

    Hussein Ezzelarab, Nada

    2014-01-01

    During my stay at CERN, I have attended lectures mornings and worked on my research project under orienting guidance of my supervisors afternoons. The lectures were informative and pedagog- ically well-prepared and presented. Their contents was an excellent combination of theoretical and experimental topics in high-energy physics. Furthermore, I was privileged to visit the ALICE, CMS and LHCb detectors and the LINIAC accelerator. I have participated in workshop on ”MadGraph software”. I was furnished with excellent experiences and cultural exchanges with good colleagues from different countries. I got opportunities to know what the other students have done, in which projects they were involved and how they performed their scientific researches, especially regarding LHC data analysis. For my own project, I have to prove excellent experience with C++ and of course LINUX, ROOT and AliROOT. Tools such as Histograms, Graphs, Fitting, trees and many others were very essential. Furthermore, I am very proud getti...

  18. The ALICE TPC

    CERN Document Server

    Garabatos, C

    2004-01-01

    We describe the ALICE TPC, with emphasis on the design features which are driven by the physics requirements of the detector. In particular, the gas choice and composition, Ne-CO/sub 2/ Ý90-10¿, as well as the unprecedentedly high gain for a TPC (2*10/sup 40/), are direct consequences of the expected performance in the high- multiplicity environment of heavy-ion collisions at the LHC. The characteristics of this mixture are discussed and a viable way of improving the stability of detectors working under these conditions, namely the addition of nitrogen into the mixture, is presented. This results in a more effective Penning transfer of neon excited states onto ionisation of the quencher at no penalty for the charge transport and amplification properties.

  19. First Physics Results from ALICE

    International Nuclear Information System (INIS)

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. The main purpose of ALICE is to investigate the properties of a state of deconfined nuclear matter, the Quark Gluon Plasma. Heavy flavour measurements will play a crucial role in this investigation. The physics programme of ALICE has started by studying proton-proton collisions at unprecedented high energies. We will present the first results on open heavy flavour and quarkonia in proton-proton collisions at √s = 7 TeV measured by the ALICE experiment at both mid- and forward-rapidities. We will conclude with the prospects for heavy flavour and quarkonium measurements in both proton-proton and nucleus-nucleus collisions. Also presented are first results of neutral meson reconstruction and its perspectives, as well as further physics studies. (author)

  20. First Physics Results from ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Peressounko, Dmitri [Russian Research Centre - RRC ' Kurchatov Institute' , Kurchatov sq.1, Moscow, 123182 (Russian Federation); Castillo Castellanos, Javier [service de physique nucleaire - SPhN, IRFU, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Belikov, Iouri [Institut Pluridisciplinaire Hubert Curien - IPHC, 23 rue du loess - BP28, 67037 Strasbourg cedex 2 (France)

    2010-07-01

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. The main purpose of ALICE is to investigate the properties of a state of deconfined nuclear matter, the Quark Gluon Plasma. Heavy flavour measurements will play a crucial role in this investigation. The physics programme of ALICE has started by studying proton-proton collisions at unprecedented high energies. We will present the first results on open heavy flavour and quarkonia in proton-proton collisions at {radical}s = 7 TeV measured by the ALICE experiment at both mid- and forward-rapidities. We will conclude with the prospects for heavy flavour and quarkonium measurements in both proton-proton and nucleus-nucleus collisions. Also presented are first results of neutral meson reconstruction and its perspectives, as well as further physics studies. (author)

  1. That’s a matter for ALICE!

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    ALICE has launched a new online newsletter to report on developments at the detector: ALICE Matters. The fortnightly newsletter will keep members of the collaboration – and a wider readership – up-to-date with the latest news from the detector.   Screenshot of the ALICE Matters website. The new ALICE Matters newsletter highlights the work of ALICE collaborators through news, interviews and feature articles. Published online every fortnight, it will report the latest developments from the experiment, providing information about operation and data taking, installation work during technical stops, and news from ALICE members. The newsletter is aimed at members of the collaboration, but as an online publication it is also open to the general public. “We often receive questions from people who follow our progress and are interested in what's happening at ALICE,” explains Despina Hatzifotiadou, ALICE Outreach Coordinator. “With ALICE Matters, we can n...

  2. Preparing the ALICE DAQ upgrade

    Science.gov (United States)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Kiss, T.; Rauch, W.; Rubin, G.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.

    2012-12-01

    In November 2009, after 15 years of design and installation, the ALICE experiment started to detect and record the first collisions produced by the LHC. It has been collecting hundreds of millions of events ever since with both proton and heavy ion collisions. The future scientific programme of ALICE has been refined following the first year of data taking. The physics targeted beyond 2018 will be the study of rare signals. Several detectors will be upgraded, modified, or replaced to prepare ALICE for future physics challenges. An upgrade of the triggering and readout systems is also required to accommodate the needs of the upgraded ALICE and to better select the data of the rare physics channels. The ALICE upgrade will have major implications in the detector electronics and controls, data acquisition, event triggering and offline computing and storage systems. Moreover, the experience accumulated during more than two years of operation has also lead to new requirements for the control software. We will review all these new needs and the current R&D activities to address them. Several papers of the same conference present in more details some elements of the ALICE online system.

  3. The ALICE time machine

    Directory of Open Access Journals (Sweden)

    Ferretti Alessandro

    2013-09-01

    Full Text Available According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. In such a state the normal nuclear matter could not exist: it is believed that a few microsecond after big-bang the matter underwent a phase transition, from a state called Quark-Gluon Plasma (QGP to a hadron gas. Some of the unexplained features of the Universe could be explained by the QGP properties. One of the aims of the CERN LHC is to recreate (on a smaller scale a QGP state, compressing and heating ordinary nuclear matter by means of ultrarelativistic heavy-ion collisions. The ALICE experiment at CERN is dedicated to the study of the medium produced in these collisions : in particular, the study of the heavy quarkonia suppression pattern can give a measure of the temperature reached in these collisions, helping us to understand how close we are getting to the conditions of the starting point of the Universe.

  4. Alice in Danceland

    Directory of Open Access Journals (Sweden)

    Fabio Ciambella

    2012-12-01

    Full Text Available Lo scopo di questo saggio è quello di presentare un ‘case study’ finora inesplorato nel campo degli studi sugli adattamenti: la danza in Alice’s Adventures in Wonderland (1865 di Lewis Carroll e le sue trasformazioni in sede di transmodalizzazione. In particolar modo si prenderanno in esame i due adattamenti cinematografici più celebri del romanzo dello scrittore vittoriano: il cartone animato prodotto dalla Disney nel 1951 e il film del 2010 diretto dal regista californiano Tim Burton. Se in Alice’s Adventures in Wonderland di Carroll la danza è quella delle aragoste del capitolo (il decimo per l'esattezza che si intitola proprio “The Lobster Quadrille”, nel capolavoro Disney non vi è traccia alcuna né di aragoste, né tanto meno di tartarughe o grifoni. Eppure paradossalmente la danza nel cartone animato è un motivo ricorrente, che fa da sfondo alle peripezie della protagonista dall'inizio alla fine dell'opera. Quel che stupisce ancora di più lo spettatore di Alice di Burton è la presenza della danza in due precisi momenti della pellicola – all'inizio e alla fine – che non sono presenti né nell’ipotesto, né nell'adattamento Disney. In altre parole, sebbene la danza sia presente nelle tre opere, essa non compare mai nello stesso momento o con le stesse modalità.

  5. ALICE tests its digital chain

    CERN Multimedia

    2007-01-01

    During its 7th data challenge, ALICE successfully tested the infrastructure of its data acquisition, transfer and storage system. The ALICE experiment will need a rock-solid data acquisition, selection, transfer, storage and handling system to analyse the billions of bits of data that will be generated every second. The heavy ion collisions at the LHC will generate 10 times more data per second than proton collisions. The ALICE teams have therefore been hard at it for several years designing a cutting-edge informatics system, whose reliability is regularly put to the test in the annual data challenges. Last December, groups from the Collaboration and the IT Department joined forces, or rather cables, in the 7th of these challenges. The teams of ALICE DAQ (data acquisition), ALICE Offline (data handling), IT-CS-IO (network) and IT-FIO (CASTOR and data storage) all took part in testing the various components of the infrastructure, from data acquisition to transfer and storage. Working in close collaboration,...

  6. Karo-kari: a form of honour killing in pakistan.

    Science.gov (United States)

    Patel, Sujay; Gadit, Amin Muhammad

    2008-12-01

    Karo-Kari is a type of premeditated honour killing, which originated in rural and tribal areas of Sindh, Pakistan. The homicidal acts are primarily committed against women who are thought to have brought dishonour to their family by engaging in illicit pre-marital or extra-marital relations. In order to restore this honour, a male family member must kill the female in question. We conducted a systematic review of the published literature other sources on karo-kari and related forms of honour killing or violence against women. Media and non-governmental organization reports were utilized for case studies and analysis. Although legally proscribed, socio-cultural factors and gender role expectations have given legitimacy to karo-kari within some tribal communities. In addition to its persistence in areas of Pakistan, there is evidence that karo-kari may be increasing in incidence in other parts of the world in association with migration. Moreover, perpetrators of ;honour killings' often have motives outside of female adultery. Analysis of the socio-cultural and psycho-pathological factors associated with the practice of karo-kari can guide the development of prevention strategies.

  7. Qualities Honours Students Look for in Faculty and Courses, Revisited

    Science.gov (United States)

    Wolfensberger, Marca V. C.; Offringa, G. Johan

    2012-01-01

    This essay is an updated revision of an essay published by Marca V. C. Wolfensberger in the "Journal of the National Collegiate Honors Council" 5.2 (fall/winter 2004): 55-66. A lot has changed in the Dutch honours landscape since the original version of the study was published. Although the body of knowledge is increasing, the insight…

  8. Managing Information Flow in ALICE

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    ALICE is one of the experiments at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The ALICE detector control system is an integrated system collecting 18 different detectors’ controls and general services. Is implemented using the commercial SCADA package PVSS. Information of general interest, such as beam and condition data, and data related to shared plants or systems, are made available to all the subsystems via the distribution capabilities of PVSS. Great care has been taken to build a modular and hierarchical system, limiting the interdependencies of the various subsystems. Accessing remote resources in a PVSS distributed environment is very simple and can be initiated unilaterally. In order to improve the reliability of distributed data and to avoid unforeseen and unwished dependencies, the ALICE DCS group has enforced the centralization of global data required by the subsystems. A tool has been developed to monitor the level of interdependency and to understand the ...

  9. The ALICE forward multiplicity detector

    International Nuclear Information System (INIS)

    The ALICE experiment is designed to study the properties of hadron and nucleus collisions in a new energy regime at the Large Hadron Collider at CERN. A fundamental observable in such collisions is the multiplicity distribution of charged particles. A forward multiplicity detector has been designed to extend the charged particle multiplicity coverage of the ALICE experiment to pseudorapidities of -3.4<η<-1.7 and 1.7<η<5.0. This detector consists of five rings, each containing 10240 Si strips, divided into sectors comprised of Si sensors bonded and glued to hybrid PC boards equipped with radiation hard preamplifiers. The output of these preamplifiers is multiplexed into custom-made fast ADC chips located directly behind the Si sensors on the detector frame. These ADCs are read out, via optical fibers, to a data acquisition farm of commodity PCs. The design and characteristics of the ALICE Forward Multiplicity Detector will be discussed

  10. ALICE DCS web feed publication

    CERN Document Server

    Verdu Torres, Daniel

    2015-01-01

    The ALICE Detector Control System is a complex hardware and software infrastructure and is running in a protected network environment. Monitoring data, announcements and alarms are made accessible to interested users in several different ways: dedicated panels running on operator nodes, web sites, email and sms. The project aims to aggregate information coming from several different systems, categorize according to its nature, reformat and publish on a dedicated web site. For this purpose, I have used "WinCC_OA" software tool, which is the software used by the ALICE DCS group.

  11. Overview of recent ALICE results

    CERN Document Server

    Gunji, Taku

    2016-01-01

    The ALICE experiment explores the properties of strongly interacting QCD matter at extremely high temperatures created in Pb-Pb collisions at LHC and provides further insight into small-system physics in (high-multiplicity) pp and p-Pb collisions. The ALICE collaboration presented 27 parallel talks, 50 posters, and 1 flash talk at Quark Matter 2015 and covered various topics including collective dynamics, correlations and fluctuations, heavy flavors, quarkonia, jets and high $p_{\\rm T}$ hadrons, electromagnetic probes, small system physics, and the upgrade program. This paper highlights some of the selected results.

  12. Alice Views Jupiter and Io

    Science.gov (United States)

    2007-01-01

    This graphic illustrates the pointing and shows the data from one of many observations made by the New Horizons Alice ultraviolet spectrometer (UVS) instrument during the Pluto-bound spacecraft's recent encounter with Jupiter. The red lines in the graphic show the scale, orientation, and position of the combined 'box and slot' field of view of the Alice UVS during this observation. The positions of Jupiter's volcanic moon, Io, the torus of ionized gas from Io, and Jupiter are shown relative to the Alice field of view. Like a prism, the spectrometer separates light from these targets into its constituent wavelengths. Io's volcanoes produce an extremely tenuous atmosphere made up primarily of sulfur dioxide gas, which, in the harsh plasma environment at Io, breaks down into its component sulfur and oxygen atoms. Alice observed the auroral glow from these atoms in Io's atmosphere and their ionized counterparts in the Io torus. Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

  13. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  14. On the horizon for ALICE

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    ALICE – the LHC experiment specifically designed to study the physics of the Quark Gluon Plasma (QGP) and, more generally, of strongly interacting matter at extreme energy densities – is planning a series of upgrades during the long shutdowns of the accelerator in the coming years. The new ALICE will have enhanced read-out capabilities and improved efficiency when tracking particles and identifying the vertex of the interactions.     Corrado Gargiulo, ALICE's Project Engineer with ITS prototype. The new ITS will consist of 7 layers of silicon sensors supported by a ultra-light carbon fibre structure.  The LHC has been operated with lead ions for only about two months, but this has been sufficient for ALICE and other LHC experiments to produce results that previous accelerators took several years of operation to produce. “Prior to the start-up of the LHC heavy-ion programme, the nature of the QGP as an almost-perfect liquid had already...

  15. ALICE Holds Up to Challenge

    CERN Multimedia

    2006-01-01

    ALICE's main austenitic stainless steel support structure (the Space Frame) has recently gone through many tests that proved quite challenging: insuring the structure is sound and lowering it horizontally into the ALICE cavern. This structure is constructed to hold the large volume detectors, such as the Time Projection Chamber, Transition Radiation Detector and Time of Flight inside the ALICE solenoid magnet. After the final assembly at CERN, two large mobile cranes were needed for the job of lifting and turning the 14 tonne frame onto its side. Once shifted, it was placed in Building SX2, one of the surface assembly areas designated for ALICE. The structure, which is 8 m in diameter and 7 m long, underwent many tests in its new position. Geometric control tests were performed by measuring each of the 18 cells and placing wooden or metal samples constructed to the same dimensions as the real thing inside the structure. The most important check was the movement of the real Time Projection Chamber from its s...

  16. The ALICE Magnetic System Computation.

    CERN Document Server

    Klempt, W; CERN. Geneva; Swoboda, Detlef

    1995-01-01

    In this note we present the first results from the ALICE magnetic system computation performed in the 3-dimensional way with the Vector Fields TOSCA code (version 6.5) [1]. To make the calculations we have used the IBM RISC System 6000-370 and 6000-550 machines combined in the CERN PaRC UNIX cluster.

  17. Jean-Marie Dufour receives the Legion of Honour

    CERN Document Server

    2001-01-01

    French Ambassador Philippe Petit (left) presents the cross of Knight of the Légion d'Honneur to Jean-Marie Dufour. On Friday 22 June, Jean-Marie Dufour, Head of CERN's Legal Service, was made Knight of the Legion of Honour by Ambassador Philippe Petit, at a ceremony held at the Permanent Mission of France in Geneva. Ambassador Petit is Permanent Representative of France at the United Nations and French delegate at CERN. He was awarded the decoration in recognition of his services. He has played an active part in all the great stages of CERN's development, in fact, ranging from its scientific programmes, to its establishment in its Host States, Switzerland and France, and its opening up to the wider world. The ceremony took place in the presence of Professor Luciano Maiani. The award is an honour to CERN, and the Organization takes this opportunity to convey its friendliest congratulations to Jean-Marie Dufour, a committed European.

  18. Alice Amsden's impact on Latin America

    Directory of Open Access Journals (Sweden)

    Helen Shapiro

    2014-06-01

    Full Text Available On March 15 2012, we lost Professor Alice Amsden, a great intellectual power in development economics. Her work was systematically marked by creativity, originality, relevance and her fearless commitment to always speak truth to power both in academic as well as in policy-making arenas. This In Memoriam concentrates on just one part of her great intellectual legacy: her impact to better understanding Latin America's development challenges, obstacles and policy options. Our paper focuses on three broad areas of her main influence in the region: the role of transnational corporations, the importance of manufactured exports for development, and industrial policy. As we here argue, in all of them, her work is and continues to be a substantial contribution to knowledge that policy makers will be well advised to take into account if the region is to finally enter a path of structural transformation and sustained economic and social development.

  19. The double bind : Women, honour and sexuality in contemporary Ireland

    OpenAIRE

    Inglis, Tom; MacKeogh, Carol

    2012-01-01

    Irish women are caught in contradictory sexual discourses which create a cultural double bind. The legacy of Catholic Church teaching, in which the sexual honour of women revolves around their innocence and subservience, still lingers. This is gradually being replaced by media messages and images which portray women as sexually equal and independent. However, the media also portray sexually independent women as a threat to sexual moral order. The double bind reproduces double standards. The c...

  20. ALICE moves into warp drive.

    CERN Document Server

    CERN. Geneva

    2012-01-01

    A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). Since its successful start-up in 2010, the LHC has been performing outstandingly, providing to the experiments long periods of stable collisions and an integrated luminosity that greatly exceeds the planned targets. To fully explore these privileged conditions, we aim at maximizing the experiment's data taking productivity during stable collisions. We present in this paper the evolution of the online systems in order to spot reasons of inefficiency and address new requirements. This paper describes the features added to the ALICE Electronic Logbook (eLogbook) to allow the Run Coordination team to identify, prioritize, fix and follow causes of inefficiency in the experiment. Thorough monitoring of the data taking efficiency provides reports for the collaboration to portray its evolution and evaluate the measures (fix...

  1. Layout of the ALICE detector

    CERN Multimedia

    2003-01-01

    The ALICE experiment will study the collisions of beams of lead nuclei in an attempt to produce a new state of matter known as 'quark-gluon plasma'. The barrel of the detector will be housed in the solenoid that once contained the L3 experiment when LEP was in operation at CERN, between 1989 and 2000. Outside of the solenoid, a dipole magnet will bend the path of charged particles called muons, allowing their momenta to be measured.

  2. ALICE through the phase transition

    CERN Document Server

    CERN. Geneva

    2000-01-01

    While proton-proton collisions will be the principal diet of CERN's LHC machine, heavy-ion collisions will also be on the menu. The ALICE experiment will be ready and waiting. Another of ALICE's TDRs concerns the experiment's inner tracking system (ITS). This is the innermost layer of the detector, responsible for tracking emerging particles where their density will be at its highest. ALICE physicists have been working with colleagues from fellow LHC experiment LHCb to develop silicon pixel chips for the inner two layers of the ITS.The result is a chip with 50 x 425 mu m cells; a prototype detector based on this chip is being tested this year.The ITS has six layers, all using silicon technology, and about 10 million digital and 2 million analogue readout channels to digest the huge number of particles produced in LHC lead-ion collisions. The collaboration has opted for a hybrid ITS structure combining sensors, electronics and mechanical support. Beam tests so far have indicated that the ITS should achieve pos...

  3. ALICE upgrades its powerful eyes

    CERN Multimedia

    Yuri Kharlov, ALICE Collaboration

    2013-01-01

    The ALICE Photon Spectrometer (PHOS) is a high-resolution photon detector that measures the photons coming out of the extremely hot plasma created in the lead-lead collisions at the LHC. Taking advantage of the long accelerator shut-down, the ALICE teams are now repairing and upgrading the existing modules and getting ready to install the brand-new module in time for the next run. The upgraded PHOS detector will be faster and more stable with wider acceptance and improved photon identification.   PHOS crystal matrix during repair. The key feature and the main complexity of the ALICE PHOS detector is that it operates at a temperature of -25°C, which makes it the second-coldest equipment element at the LHC after the cryogenic superconducting magnets. Since 2009 when it was installed, the PHOS detector, with its cold and warm volumes, has been immersed in airtight boxes to avoid condensation in the cold volumes. The 10,752 lead tungstate crystals of the PHOS were completely insulated fr...

  4. ALICE Awards ceremony on 17 March 2006

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The third annual ALICE Awards ceremony recognizes three companies for their contribution to the experiment's detector. Representatives from the companies accepted their awards at the ceremony, which was also attended by CERN Secretary-General Maximilian Metzger and members of the ALICE Collaboration Board.

  5. Essays in theoretical physics in honour of Dirk Ter Haar

    CERN Document Server

    Parry, W E

    2013-01-01

    Essays in Theoretical Physics: In Honour of Dirk ter Haar is devoted to Dirk ter Haar, detailing the breadth of Dirk's interest in physics. The book contains 15 chapters, with some chapters elucidating stellar dynamics with non-classical integrals; a mean-field treatment of charge density waves in a strong magnetic field; electrodynamics of two-dimensional (surface) superconductors; and the Bethe Ansatz and exact solutions of the Kondo and related magnetic impurity models. Other chapters focus on probing the interiors of neutron stars; macroscopic quantum tunneling; unitary transformation meth

  6. ALICE gets its first ‘upgrade’

    CERN Multimedia

    2009-01-01

    The ALICE experiment has reached another milestone with the successful installation of the first two modules of the electromagnetic calorimeter. Preparations for installing the EMCal in the ALICE cavern. On 17 and 19 March the first two sections of the electromagnetic calorimeter (EMCal) were fitted in the ALICE cavern. The full EMCal, a lead-scintillator sampling calorimeter, will be made up of 12 separate modules plus 2 half modules. Weighing 8 tons each, these modules required a whole new support structure to be built and a sophisticated ‘bridge’ device (pictured) to install them in situ. Project Leader, Tom Cormier from Wayne State University, notes that: "The EMCal is a late addition to ALICE, arriving in effect as a first upgrade. Indeed full approval with construction funds occurred only in early 2008." Although ALICE has excellent momentum measurement and identification capabilities for charged hadrons it previously lac...

  7. Studies for dimuon measurement with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, D. [Institut de Physique, Orsay (France)

    1995-07-15

    The idea of measuring dimuon in the ALICE detector is not new, since it already appeared in the Aachen Conference. In the meantime studies were aiming at the use of the two detectors of LHC p-p physics, CMS and ATLAS, already dedicated to dimuon measurement, for these same measurements in heavy ion collisions, whereas the detector dedicated to heavy ions physics at LHC, ALICE, was considering all the other observables. Recently, the interest for dimuon measurements in ALICE was renewed by demands from LHC committee, stiring the activities of a working group in the ALICE collaboration, also associated to a more recent move from new groups. In the following the author briefly describes the interest of measuring dimuons in heavy ion collisions, particularly in ALICE, then the experimental strategy and first estimates of the performances that could be reached with the proposed system.

  8. Test System for Standard ALICE DCS Components

    CERN Document Server

    AUTHOR|(CDS)2160773

    2016-01-01

    Currently, the ALICE DCS project is supervising equipment installed in the ALICE experiment site at CERN. Hence, the aim of this project was to provide a test bench in the DCS lab, where a real equipment and software tools will be deployed. Using this test bench, test procedures which exercise the devices under the test in a configurable way and provide logging and trending of the acquired data were implemented. The setup was devised using the ALICE software framework and Siemens SCADA system WINCC OA, providing the same functionality as the systems installed in ALICE, and will be used for the commissioning of the new software and hardware, burn-in tests of new modules and log-term stability tests of ALICE hardware.

  9. Interview with Jurgen Schukraft, ALICE Spokesperson

    CERN Multimedia

    CERN Video Productions

    2009-01-01

    Questions : 1. How does it feel to be the Spokesperson of a large worldwide collaboration as ALICE at the very moment when the LHC is going to produce the first data? 2. Is ALICE ready for data taking? 3. Did you take advantage of the long shut down? 4. What was ALICE designed for? 5. What can you expect to find at 3.5 TeV per beam and later at 7? 6. Is ALICE going to take data only with the lead iron beams from the LHC? 7. Can you tell us more about the primordial soup of gluons and quarks? 8. What is going to happen in the ALICE control room on collision day?

  10. ALICE moves into warp drive

    Science.gov (United States)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; von Haller, B.

    2012-12-01

    A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). Since its successful start-up in 2010, the LHC has been performing outstandingly, providing to the experiments long periods of stable collisions and an integrated luminosity that greatly exceeds the planned targets. To fully explore these privileged conditions, we aim at maximizing the experiment's data taking productivity during stable collisions. We present in this paper the evolution of the online systems towards helping us understand reasons of inefficiency and address new requirements. This paper describes the features added to the ALICE Electronic Logbook (eLogbook) to allow the Run Coordination team to identify, prioritize, fix and follow causes of inefficiency in the experiment. Thorough monitoring of the data taking efficiency provides reports for the collaboration to portray its evolution and evaluate the measures (fixes and new features) taken to increase it. In particular, the eLogbook helps decision making by providing quantitative input, which can be used to better balance risks of changes in the production environment against potential gains in quantity and quality of physics data. It will also present the evolution of the Experiment Control System (ECS) to allow on-the-fly error recovery actions of the detector apparatus while limiting as much as possible the loss of integrated luminosity. The paper will conclude with a review of the ALICE efficiency so far and the future plans to improve its monitoring.

  11. ALICE moves into warp drive

    International Nuclear Information System (INIS)

    A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). Since its successful start-up in 2010, the LHC has been performing outstandingly, providing to the experiments long periods of stable collisions and an integrated luminosity that greatly exceeds the planned targets. To fully explore these privileged conditions, we aim at maximizing the experiment's data taking productivity during stable collisions. We present in this paper the evolution of the online systems towards helping us understand reasons of inefficiency and address new requirements. This paper describes the features added to the ALICE Electronic Logbook (eLogbook) to allow the Run Coordination team to identify, prioritize, fix and follow causes of inefficiency in the experiment. Thorough monitoring of the data taking efficiency provides reports for the collaboration to portray its evolution and evaluate the measures (fixes and new features) taken to increase it. In particular, the eLogbook helps decision making by providing quantitative input, which can be used to better balance risks of changes in the production environment against potential gains in quantity and quality of physics data. It will also present the evolution of the Experiment Control System (ECS) to allow on-the-fly error recovery actions of the detector apparatus while limiting as much as possible the loss of integrated luminosity. The paper will conclude with a review of the ALICE efficiency so far and the future plans to improve its monitoring.

  12. Soft QGP probes with ALICE

    CERN Document Server

    Graczykowski, Łukasz Kamil

    2016-01-01

    In heavy-ion collisions at the LHC a hot and dense medium of deconfided partons, the Quark-Gluon Plasma (QGP), is created. Its global properties can be characterized by the measurements of particles in the low transverse momentum (or "soft") regime, which represent the majority of created particles. In this report we outline a selection of measurements of the soft probes by the ALICE experiment in pp, p--Pb, and Pb--Pb collisions. The paper focuses on recent flow measurements via angular correlations and femtoscopic studies. The first ever preliminary analysis of $\\mathrm{K}^0_{\\rm S}\\mathrm{K}^{\\pm}$ femtoscopy is also presented.

  13. Culture of honour theory and social anxiety: Cross-regional and sex differences in relationships among honour-concerns, social anxiety and reactive aggression.

    Science.gov (United States)

    Howell, Ashley N; Buckner, Julia D; Weeks, Justin W

    2015-01-01

    Consistent with the "flight or fight" model of anxiety, social anxiety may incite withdrawal or attack; yet, it is unclear why some socially anxious individuals are vulnerable to aggress. It may be that culture impacts tendencies to "fight" or "flee" from social threat. Honour cultures, including the American South, permit or even promote aggression in response to honour-threats. Thus, social anxiety in the South may be more associated with aggression than in non-honour cultures. In the current sample, region moderated the relation between social anxiety and aggression; social anxiety related positively to reactive (but not proactive) aggression among Southerners (n = 285), but not Midwesterners (n = 258). Participant sex further moderated the relationship, such that it was significant only for Southern women. Also, for Southerners, prototypically masculine honour-concerns mediated the relationship between social anxiety and reactive aggression. Cultural factors may play key roles in aggressive behaviour among some socially anxious individuals. PMID:24862880

  14. "Honours" in the United Kingdom: More than a Difference of Spelling in Honors Education

    Science.gov (United States)

    Lamb, Margaret

    2012-01-01

    In this article, Margaret Lamb begins by introducing readers to her interpretation of "honours" and "honours education" and describing the experiences that have formed her perspectives on the topics she discusses. In the remainder of the article, she (1) places some characteristics of Oxford undergraduate education in a wider…

  15. ALICE Upgrades: Plans and Potentials

    CERN Document Server

    Tieulent, Raphael

    2015-01-01

    The ALICE collaboration consolidated and completed the installation of current detectors during LS1 with the aim to accumulate 1 nb$^{-1}$ of Pb-Pb collisions during Run 2 corresponding to about 10 times the Run 1 integrated luminosity. In parallel, the ALICE experiment has a rich detector upgrade programme scheduled during the second LHC long shutdown (LS2, 2018-2019) in order to fully exploit the LHC Runs 3 and 4. The main objectives of this programme are: improving the tracking precision and enabling the read-out of all Pb-Pb interactions at a rate of up to 50 kHz, with the goal to record an integrated luminosity of 10 nb$^{-1}$ after LS2 in minimum-bias trigger mode. This sample would represent an increase by a factor of one hundred with respect to the minimum-bias sample expected during Run 2. The implementation of this upgrade programme, foreseen in LS2, includes: a new low-material Inner Tracking System at central rapidity with a forward rapidity extension to add vertexing capabilities to the current M...

  16. The ALICE analysis train system

    CERN Document Server

    Zimmermann, Markus

    2015-01-01

    In the ALICE experiment hundreds of users are analyzing big datasets on a Grid system. High throughput and short turn-around times are achieved by a centralized system called the LEGO trains. This system combines analysis from different users in so-called analysis trains which are then executed within the same Grid jobs thereby reducing the number of times the data needs to be read from the storage systems. The centralized trains improve the performance, the usability for users and the bookkeeping in comparison to single user analysis. The train system builds upon the already existing ALICE tools, i.e. the analysis framework as well as the Grid submission and monitoring infrastructure. The entry point to the train system is a web interface which is used to configure the analysis and the desired datasets as well as to test and submit the train. Several measures have been implemented to reduce the time a train needs to finish and to increase the CPU efficiency.

  17. Scale model of the ALICE detector arrives from India.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    A 1:10 scale model of the ALICE detector, designed and built in India, has arrived at CERN. Photo 01: Members of the ALICE Technical Board pictured with the detector model in building 40. Photos 02 03: (left to right) Christian Fabjan, ALICE technical coordinator; Yogendra Viyogi, Photon Multiplicity Detector (PMD) project leader and ALICE representative from the Variable Energy Cyclotron Centre (VECC), Calcutta; and Jurgen Schukraft, spokesperson for the ALICE collaboration.

  18. More Than ALICE: Development of an augmented reality mobile application for the ALICE detector

    CERN Document Server

    Ouellette, Jeff

    2016-01-01

    More Than ALICE is a mobile application for iOS and Android built in the Unity Engine. This project concerns the development of the second edition of the application, which is meant to completely succeed the original version built in 2014. The purpose of the application is to describe the various components of the ALICE detector and to overlay live collisions to increase public awareness for the research goals of the ALICE collaboration. The application provides an augmented reality (AR) interface via the Vuforia SDK to track images of the ALICE detector or components of the paper model of ALICE that can be purchased at the ALICE secretariat office. For those without access to either images of the detector or the detector model, the app provides a virtual detector model (VR) that contains the same functionality as the augmented reality.

  19. Proton-Proton Physics with ALICE

    OpenAIRE

    Grosse-Oetringhaus, J. F.

    2008-01-01

    The goal of the ALICE experiment at LHC is to study strongly interacting matter at high energy densities as well as the signatures and properties of the quark-gluon plasma. This goal manifests itself in a rich physics program. Although ALICE will mainly study heavy-ion collisions, a dedicated program will concentrate on proton-proton physics. The first part will introduce the ALICE experiment from a pp measurement's point of view. Two unique properties are its low pT cut-off and the excellent...

  20. Combined tracking in the ALICE detector

    CERN Document Server

    Badalà, A; Lo Re, G; Palmeri, A; Pappalardo, G S; Pulvirenti, A; Riggi, F

    2004-01-01

    A neural network based algorithm to perform track recognition in the ALICE Inner Tracking System (ITS) for high transverse momentum particles (p //t greater than 1 GeV/c) is presented. The model is based on the Denby Peterson scheme, with some original improvements which are necessary to cope with the very high track density expected in ALICE. The application is used in combination with the standard tracking procedure for track reconstruction in ALICE in order to increase the efficiency, especially for rapidly decaying particles. Results are shown for a test performed simulating some central Pb-Pb events at 5.5 ATeV in the center of mass system.

  1. Culture of Honour and Emotional Intelligence: Incompatible or related concepts?

    Directory of Open Access Journals (Sweden)

    Esther López-Zafra

    2013-11-01

    Full Text Available In this study we relate two concepts, Emotional Intelligence and Culture of Honour; in both cases the emotional aspect is very important and we believe they may have a role in couple relations. We propose that both concepts would relate in reverse, so that an individual with a high level of Emotional Intelligence would give less importance to the Culture of Honor and vice versa. A sample of 203 heterosexual couples completed a questionnaire. Our results show that the dimension Attention to emotions is associated with the culture of honor. Among our fi ndings we propose that the two concepts are related in some way and that congruency in the valuation of the Culture of Honor between the two partners will also deal with a level of Emotional Intelligence higher than in couples where there is not this congruence.

  2. Hadron Correlations Measured with ALICE

    CERN Document Server

    Grosse-Oetringhaus, Jan Fiete

    2013-01-01

    Angular particle correlations are a powerful tool to study collective effects and in-medium jet modification as well as their interplay in the hot and dense medium produced in central heavy-ion collisions. We present measurements of two-particle angular correlations of inclusive charged and identified particles performed with the ALICE detector. The near-side peak in the short-range correlation region is quantitatively analyzed: while the rms of the peak in $\\phi$-direction is independent of centrality within uncertainties, we find a significant broadening in $\\eta$-direction from peripheral to central collisions. The particle content of the near-side peak is studied finding that the $p/\\pi$ ratio of particles associated to a trigger particle is much smaller than the one in the bulk of the particles and consistent with fragmentation of a parton in vacuum.

  3. The ALICE data acquisition system

    CERN Document Server

    Carena, F; Chapeland, S; Chibante Barroso, V; Costa, F; Dénes, E; Divià, R; Fuchs, U; Grigore, A; Kiss, T; Simonetti, G; Soós, C; Telesca, A; Vande Vyvre, P; Von Haller, B

    2014-01-01

    In this paper we describe the design, the construction, the commissioning and the operation of the Data Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large Hadron Collider (LHC). The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for the overall control of the experiment. They are two computing systems made of hundreds of PCs and data storage units interconnected via two networks. The collection of experimental data from the detectors is performed by several hundreds of high-speed optical links. We describe in detail the design considerations for these systems handling the extreme data throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting requirements into hardware (custom optical links and commercial computing equipment), infrastructure (racks, cooling, power distribution, control room), and software led to many innovative solutions which are described together with ...

  4. ... ALICE forges ahead with further detectors

    CERN Document Server

    2006-01-01

    Following the installation of the HMPID, the project has progressed swiftly with further detectors being lowered into the ALICE cavern. The first supermodule of the ALICE transition radiation detector was successfully installed on 10 October. The TRD collaborators from Germany standing next to the supermodule mounted in a rotating frame (bottom left corner) in the ALICE cavern. In the final configuration, 18 supermodules that make up the transition radiation detector will cylindrically surround the large time projection chamber in the central barrel of the ALICE experiment. Each supermodule is about 7 metre long and consists of 30 drift chambers in six layers. The construction of the modules is a collaboration between five institutes in Germany (Universities of Frankfurt and Heidelberg and Gesellschaft fuer Schwerionenforschung mbH in Darmstadt), Romania (NIPNE Bucharest) and Russia (JINR Dubna) with radiators (See 'Did you know?' section) produced at the University of Muenster, Germany. During the summer, ...

  5. Alice'i imedemaa Pariisis / Isabel Chiang

    Index Scriptorium Estoniae

    Chiang, Isabel

    2000-01-01

    1998. a. Pariisis Catherine Alice Mamet' poolt asutatud mööblisalongist, seal tegutsevate disainerite (Pucci de Rossi, Satch, Guy Ferrer, Pablo Pares jt.) loomingunäiteid. Pariisis disaini õppiva tudengi Isabel Chiangi eluloolisi andmeid. 15 illustratsiooni

  6. Prototype ALICE front-end card

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This circuit board is a prototype 48-channel front end digitizer card for the ALICE time projection chamber (TPC), which takes electrical signals from the wire sensors in the TPC and shapes the data before converting the analogue signal to digital data. A total of 4356 cards will be required to process the data from the ALICE TPC, the largest of this type of detector in the world.

  7. Proton-proton physics in ALICE

    OpenAIRE

    Nayak, Tapan K.

    2007-01-01

    The ALICE experiment has several unique features which makes it an important contributor to proton-proton physics at the LHC, in addition to its specific design goal of studying the physics of strongly interacting matter in heavy-ion collisions. The unique capabilities include its low transverse momentum (\\pT) acceptance, excellent vertexing, particle identification over a broad \\pT range and jet reconstruction. In this report, a brief review of ALICE capabilities is given for studying bulk p...

  8. The thousandth ALICE member 

    CERN Multimedia

    2006-01-01

    On Friday 13 October, the ALICE Collaboration Board accepted nine new institutes, bringing the number of scientists to 1015. To celebrate this event, the thousandth collaborator, Toru Sugitate, from Hiroshima University, received a small award. From left to right: Lodovico Riccati, Chair of the Collaboration Board, Toru Sugitate and Jurgen Schukraft, Spokesperson of the ALICE Experiment.

  9. ALICE: Simulated lead-lead collision

    CERN Multimedia

    2003-01-01

    This track is an example of simulated data modelled for the ALICE detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. ALICE will focus on the study of collisions between nuclei of lead, a heavy element that produces many different particles when collided. It is hoped that these collisions will produce a new state of matter known as the quark-gluon plasma, which existed billionths of a second after the Big Bang.

  10. Microstrip detector for the ALICE experiment

    CERN Multimedia

    Laurent Guiraud

    1996-01-01

    This photo shows a close up of one of the silicon microstrip detectors that will be installed on the ALICE experiment at the LHC. 1698 double-sided modules of these silicon microstrips will be installed in the two outermost layers of the ALICE inner tracking system. The microstrips have to be specially designed to withstand the high resolution levels at the heart of the detector.

  11. ALICE takes its ITS to heart

    CERN Document Server

    2007-01-01

    In the study of heavy-ion events, the ALICE Inner Tracking System must use the most delicate materials. A hundred physicists and engineers from around the world witnessed its impressive journey to the centre of the ALICE experiment. ALICE's ITS on its way into the TCP. On 15 March, after 15 years of development, construction, commissioning and testing, the Inner Tracking System (ITS) finally reached its ultimate destination at the heart of ALICE. With almost five square meters of double-sided silicon strip detectors and over one square meter of silicon drift detectors, ALICE's ITS is the largest system built for either type of silicon detector. In ALICE's search for heavy-ion events at the LHC, it is necessary for the ITS to be extremely lightweight and delicate. For this reason the ITS was designed and built using the smallest amounts of only the lightest materials, with the design team developing innovative construction and assembly systems. The team prepared in detail for the final transport from the fi...

  12. A Conversation with the Honourable Marilyn Warren, AC Chief Justice of Victoria

    Directory of Open Access Journals (Sweden)

    Marilyn Warren

    2013-12-01

    Full Text Available VULJ Editors Michael Boal and Levi Ainsworth interviewed the Chief Justice of Victoria, the Honourable Marilyn Warren AC, on Thursday 22 August 2013 at the Supreme Court of Victoria.

  13. A Conversation with his Honour Chief Judge Michael Rozenes AO County Court of Victoria

    Directory of Open Access Journals (Sweden)

    Michael Rozenes

    2014-10-01

    Full Text Available VULJ Editors and invited students interviewed the Chief Judge of the County Court of Victoria, His Honour Michael Rozenes AO QC, on Tuesday 19 August 2014 at the College of Law & Justice, Victoria University.

  14. European Researchers Night, Students on Shift at ALICE

    CERN Document Server

    Fons Rademakers

    2010-01-01

    During European Researchers' Night, on Friday 24 September 2010, from 17:00 to 24:00, pupils from French and Swiss schools visited ALICE and took shifts in the control room, helping the ALICE physicists run the experiment.

  15. Heavy ion physics with the ALICE experiment at LHC

    CERN Document Server

    Zampolli, Chiara

    2007-01-01

    ALICE is the experiment at the LHC collider at CERN dedicated to heavy ion physics. In this report, the ALICE detector will be presented, together with its expected performance as far as some selected physics topics are concerned.

  16. The ALICE data acquisition system

    Science.gov (United States)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Kiss, T.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; von Haller, B.

    2014-03-01

    In this paper we describe the design, the construction, the commissioning and the operation of the Data Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large Hadron Collider (LHC). The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for the overall control of the experiment. They are two computing systems made of hundreds of PCs and data storage units interconnected via two networks. The collection of experimental data from the detectors is performed by several hundreds of high-speed optical links. We describe in detail the design considerations for these systems handling the extreme data throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting requirements into hardware (custom optical links and commercial computing equipment), infrastructure (racks, cooling, power distribution, control room), and software led to many innovative solutions which are described together with a presentation of all the major components of the systems, as currently realized. We also report on the performance achieved during the first period of data taking (from 2009 to 2013) often exceeding those specified in the DAQ Technical Design Report.

  17. The ALICE data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Dénes, E. [Research Institute for Particle and Nuclear Physics, Wigner Research Center, Budapest (Hungary); Divià, R.; Fuchs, U. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Grigore, A. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Politehnica Univesity of Bucharest, Bucharest (Romania); Kiss, T. [Cerntech Ltd., Budapest (Hungary); Simonetti, G. [Dipartimento Interateneo di Fisica ‘M. Merlin’, Bari (Italy); Soós, C.; Telesca, A.; Vande Vyvre, P. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Haller, B. von, E-mail: bvonhall@cern.ch [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland)

    2014-03-21

    In this paper we describe the design, the construction, the commissioning and the operation of the Data Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large Hadron Collider (LHC). The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for the overall control of the experiment. They are two computing systems made of hundreds of PCs and data storage units interconnected via two networks. The collection of experimental data from the detectors is performed by several hundreds of high-speed optical links. We describe in detail the design considerations for these systems handling the extreme data throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting requirements into hardware (custom optical links and commercial computing equipment), infrastructure (racks, cooling, power distribution, control room), and software led to many innovative solutions which are described together with a presentation of all the major components of the systems, as currently realized. We also report on the performance achieved during the first period of data taking (from 2009 to 2013) often exceeding those specified in the DAQ Technical Design Report.

  18. ALICE opens its new nerve centre

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    Twenty-nine fully equipped and ergonomic workstations, one meeting area and 11 large format screens in a completely refurbished room: the ALICE Run Control Centre (ARC) implements the best and newest solutions for its shift workers and expert operators, including access for persons with reduced mobility and very soon a magic window for Point 2 visitors.   The ALICE Run Control Centre. “Our initial intention was just to optimise the old layout,” says Federico Ronchetti from Laboratori Nazionali di Frascati (Italy), a CERN scientific associate currently appointed as ALICE Run Coordinator and person in charge of the ALICE Consolidation Task Force. “However, during the review process, we carried out a study of all the existing control rooms at CERN and became aware we needed a radical change. Hence we started planning a complete redesign of the workspace.” Designed and equipped over many years, the old ALICE control room did not have enough space to fit al...

  19. Neutral pion measurement with the ALICE EMCal

    Energy Technology Data Exchange (ETDEWEB)

    Sahlmueller, Baldo [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    The quark-gluon plasma produced in heavy-ion collisions at the LHC can be studied via transverse momentum distributions of identified hadrons that are produced through different mechanisms in these collisions. The neutral pion offers a complimentary measurement to the measurement of charged hadrons with the ALICE tracking system, since it can be measured in calorimeters such as the ALICE EMCal via its two-photon-decay. The measurement in p-p collisions is a necessary baseline for interpreting the heavy-ion results. Furthermore, the π{sup 0} can be regarded as a standard candle in the calibration of calorimeters in heavy-ion collisions. Hence, understanding the π{sup 0} measurement is an important test for the detector. We present the status and first results of ongoing π{sup 0} analyses in the ALICE p-p data with the EMCal and compare them with complimentary measurements with the ALICE PHOS and the ALICE tracking system. We focus on technical aspects of the analysis.

  20. CERN at the Fête in Honour of Voltaire

    CERN Multimedia

    2004-01-01

    Ferney-Voltaire's third annual fête in honour of Voltaire will take place on 26 June. This year it will have a physics theme, namely Newton's role in the scientific revolution, as seen through Voltaire's popularising work of 1738, Elements of Newton's Philosophy, in which the Sage of Ferney recounted the famous story of the apple for the first time. CERN, which is celebrating its fiftieth anniversary this year, will be participating in the fête, whose emblems will be the apple - of course - and components that have played a key role in the Laboratory's history. Two magnets used in the UA1 experiment, which revealed the W and Z particles, will serve as a backdrop for the events. The many stands will include one run by CERN, at which there will be 'Fun with Physics' demonstrations. La fête à Voltaire Saturday, 26 June, from 6.00 p.m. onwards, Ferney, Avenue Voltaire and Grand'Rue In partnership with CERN For further information contact Catherine Canivet: fete@ferney...

  1. The ALICE silicon pixel detector readout electronics

    CERN Document Server

    Krivda, M; Burns, M; Caselle, M; Kluge, A; Manzari, V; Torcato de Matos, C; Morel, M; Riedler, P; Aglieri Rinella, G; Sandor, L; Stefanini, G

    2010-01-01

    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the ALICE inner tracking system (ALICE Collaboration, 1999) [1]. The SPD is built with 120 detector modules (half-staves) and contains about 10 million pixels in total. The half-staves are connected to the off-detector electronics, housed in a control room 100 m away, via bidirectional optical links. The stream of data from the front-end electronics is processed in 20 VME readout modules, called routers, based on FPGAs. Three 2-channel link-receiver daughter cards, also based on FPGAs, are plugged in each router. Each link-receiver card receives data via the optical link from two half-staves, applies the zero suppression and passes them to the router to be processed and sent to the ALICE–DAQ system through the detector data link (DDL). The SPD control, configuration and data monitoring are performed using the VME interface embedded in the router.

  2. Performance of the ALICE VZERO system

    CERN Document Server

    Abbas, E.; Adam, J.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A.G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Masoodi, A.Ahmad; Ahmed, I.; Ahn, S.A.; Ahn, S.U.; Aimo, I.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R.Alfaro; Alici, A.; Alkin, A.; Almaraz Avina, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshauser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bach, M.; Badala, A.; Baek, Y.W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Ban, J.; Baral, R.C.; Barbera, R.; Barile, F.; Barnafoldi, G.G.; Barnby, L.S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P.C.; Baumann, C.; Bearden, I.G.; Beck, H.; Behera, N.K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A.A.E.; Bertens, R.A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bottger, S.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Boldizsar, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossu, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T.A.; Browning, T.A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Casanova Diaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Casula, E.A.R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chung, S.U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M.E.; Contin, G.; Contreras, J.G.; Cormier, T.M.; Corrales Morales, Y.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Alaniz, E.Cruz; Albino, R.Cruz; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, I.; Das, S.; Das, D.; Dash, S.; Dash, A.; De, S.; de Barros, G.O.V.; De Caro, A.; De Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Denes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G.D.; de Rooij, R.; Diaz Corchero, M.A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divia, R.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Donigus, B.; Dordic, O.; Dubey, A.K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H.A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernandez Tellez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M.A.S.; Filchagin, S.; Finogeev, D.; Fionda, F.M.; Fiore, E.M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D.R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glassel, P.; Gomez, R.; Ferreiro, E.G.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L.K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B.H.; Hanratty, L.D.; Hansen, A.; Harmanova-Tothova, Z.; Harris, J.W.; Hartig, M.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S.T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B.A.; Hetland, K.F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Huang, M.; Humanic, T.J.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G.M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, M.; Ivanov, A.; Ivanov, V.; Ivanytskyi, O.; Jacholkowski, A.; Jacobs, P.M.; Jahnke, C.; Jang, H.J.; Janik, M.A.; Jayarathna, P.H.S.Y.; Jena, S.; Jha, D.M.; Jimenez Bustamante, R.T.; Jones, P.G.; Jung, H.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinak, P.; Kalliokoski, T.; Kalweit, A.; Kang, J.H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Ketzer, B.; Khan, M.M.; Khan, P.; Khan, S.A.; Khan, K.H.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, M.; Kim, T.; Kim, B.; Kim, S.; Kim, M.; Kim, D.J.; Kim, J.S.; Kim, J.H.; Kim, D.W.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Kluge, A.; Knichel, M.L.; Knospe, A.G.; Kohler, M.K.; Kollegger, T.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Kralik, I.; Kramer, F.; Kravcakova, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P.G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A.B.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; La Pointe, S.L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, S.C.; Lee, G.R.; Legrand, I.; Lehnert, J.; Lemmon, R.C.; Lenhardt, M.; Lenti, V.; Leon, H.; Leoncino, M.; Leon Monzon, I.; Levai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Ljunggren, H.M.; Lodato, D.F.; Loenne, P.I.; Loggins, V.R.; Loginov, V.; Lohner, D.; Loizides, C.; Loo, K.K.; Lopez, X.; Lopez Torres, E.; Lovhoiden, G.; Lu, X.G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N.A.; Martinengo, P.; Martinez, M.I.; Martinez Garcia, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Perez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A.N.; Miskowiec, D.; Mitu, C.; Mizuno, S.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D.A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Muller, H.; Munhoz, M.G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B.K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T.K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B.S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S.; Oh, S.K.; Oleniacz, J.; Da Silva, A.C. Oliveira; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Passfeld, A.; Patalakha, D.I.; Paticchio, V.; Paul, B.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Perez Lara, C.E.; Perrino, D.; Peryt, W.; Pesci, A.; Pestov, Y.; Petracek, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D.B.; Planinic, M.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P.L.M.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Pospisil, V.; Potukuchi, B.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, S.; Raniwala, R.; Rasanen, S.S.; Rascanu, B.T.; Rathee, D.; Rauch, W.; Rauf, A.W.; Razazi, V.; Read, K.F.; Real, J.S.; Redlich, K.; Reed, R.J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Riccati, L.; Ricci, R.A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Rodriguez Manso, A.; Roed, K.; Rogochaya, E.; Rohr, D.; Rohrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, P.; Roy, C.; Rubio Montero, A.J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Sahu, P.K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C.A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sandor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkamo, J.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schmidt, H.R.; Schmidt, C.; Schuchmann, S.; Schukraft, J.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P.A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, S.; Sharma, N.; Rohni, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B.C.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.J.M.; Sogaard, C.; Soltz, R.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J.H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T.J.M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M.A.; J.Tapia Takaki, D.; Peloni, A.Tarantola; Tarazona Martinez, A.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Ter Minasyan, A.; Terrevoli, C.; Thader, J.; Thomas, D.; Tieulent, R.; Timmins, A.R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Trubnikov, V.; Truesdale, D.; Trzaska, W.H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T.S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urciuoli, G.M.; Usai, G.L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Van Hoorne, J.W.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, Y.; Vinogradov, L.; Vinogradov, A.; Virgili, T.; Viyogi, Y.P.; Vodopyanov, A.; Volkl, M.A.; Voloshin, S.; Voloshin, K.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, Y.; Wang, Y.; Wang, M.; Watanabe, K.; Weber, M.; Wessels, J.P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Williams, M.C.S.; Windelband, B.; Winn, M.; Yaldo, C.G.; Yamaguchi, Y.; Yang, S.; Yang, P.; Yang, H.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.K.; Yoon, J.; Yuan, X.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I.S.; Zhalov, M.; Zhang, Y.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, Y.; Zhou, F.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-01-01

    ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton--proton, proton--nucleus and nucleus--nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus--nucleus collisions. After describing the VZERO system, this publication presents its performance over more than four years of operation at the LHC.

  3. AliEn - EDG Interoperability in ALICE

    OpenAIRE

    Bagnasco, S.; Barbera, R.; Buncic, P.; Carminati, F.; P. Cerello; Saiz, P.

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Stora...

  4. First detector installed inside the ALICE solenoid...

    CERN Multimedia

    2006-01-01

    ALICE's emblematic red magnet welcomed its first detector on 23 September, when the array of seven Cherenkov detectors, named HMPID, was successfully installed. ALICE team members standing in front of the completed HMPID detector.The red magnet, viewed from its front opening. The HMPID unit, seen from the back (top right corner of photo) is placed on a frame and lifted onto a platform during the installation. After the installation of the ACORDE scintillator array and the muon trigger and tracking chambers, the ALICE collaboration fitted the first detector inside the solenoid. The HMPID, for High Momentum Particle Identification, was installed at the 2 o'clock position in the central and most external region of the space frame, just below the solenoid yoke. It will be used to extend the hadron identification capability of the ALICE experiment up to 5 GeV/c, thus complementing the reach of the other particle identification systems (ITS, TPC and TOF). The HMPID is a Ring Imaging Cherenkov (RICH) detector in a...

  5. Fibre optic cables for the ALICE experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    These thin fibres will transmit the signal received in detectors at the ALICE experiment when it starts up with the LHC in 2008. The analogue signals produced in the detectors are first converted into digital pulse, which are transported in light down such fibres. Computers then read this digital signal to produce the final set of data.

  6. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  7. Alice Munro: "Wild Swans" and Things.

    Science.gov (United States)

    Raabe, David

    2001-01-01

    Discusses how to analyze short stories by Alice Munro. Explains importance of metonymy in reading and teaching these stories. Suggests that the endings of Munro's stories should be examined closely. Concludes that teaching Munro's stories in this way brings students to a greater understanding of her stories. (PM)

  8. Strangeness detection in ALICE experiment at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Safarik, K. [European Lab. for Particle Physics, Geneva (Switzerland)

    1995-07-15

    The authors present some parameters of the ALICE detector which concern the detection of strange particles. The results of a simulation for neutral strange particles and cascades, together with estimated rates are presented. They also briefly discuss the detection of charged K-mesons. Finally, they mention the possibility of open charm particle detection.

  9. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  10. ALICE physicists receive 2014 Lise Meitner Prize

    CERN Document Server

    Jeanneret, Guillaume

    2014-01-01

    September 3rd, 2014: ALICE collaboration members Johanna Stachel (Heidelberg University, Germany), Peter Braun-Munzinger (GSI, Germany), Paolo Giubellino (INFN Turin, Italy, and CERN) and Jürgen Schukraft (CERN) were presented the 2014 Lise Meitner Prize at a private ceremony held in the Globe of Science and Innovation.

  11. Alice Sagritsa Imedemaa asus Jaroslavlis / Ants Juske

    Index Scriptorium Estoniae

    Juske, Ants, 1956-

    2009-01-01

    21. ja 22. augustil 2009 Karepal Richard Sagritsa majamuuseumis etendunud monoetendusest "Minu kunstnikud", mille pani Richard Sagritsa naise Alice Sagritsa päevikute põhjal kokku Teet Veispak, lavastaja Üllar Saaremäe, osatäitja Liisa Aibel. Tegevus toimub Jaroslavlis, kuhu 1942. a. hakati koondama eesti kunstirahvast

  12. Alice, Greenfoot, and Scratch--A Discussion

    Science.gov (United States)

    Utting, Ian; Cooper, Stephen; Kolling, Michael; Maloney, John; Resnick, Mitchel

    2010-01-01

    This article distills a discussion about the goals, mechanisms, and effects of three environments which aim to support the acquisition and development of computing concepts (problem solving and programming) in pre-University and non-technical students: Alice, Greenfoot, and Scratch. The conversation started in a special session on the topic at the…

  13. Upgrade Strategy for ALICE at High Rate

    CERN Document Server

    Musa, L

    2012-01-01

    The longterm goal of the ALICE experiment is to provide a precise characterization of the Quark-Gluon Plasma (QGP) state. Such a determination of its properties including initial temperature, degrees of freedom, speed of sound, and in general, transport coefficients would be a major achievement. This would go a long way towards a better understanding of QCD as a genuine multi-particle theory. To achieve this goal, high statistics measurements are required, which will give access also to the very rare physics channels needed to understand the dynamics of this condensed phase of QCD. The general upgrade strategy for the ALICE central barrel is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz, that would provide an accumulated sample of the order of 10 nb^-1 in the period 2019-2023. In this document we sketch the modifications/replacements needed in all ALICE central barrel detectors and online systems (Trigger, DAQ and HLT) for high luminosity running. As the ALICE for...

  14. ALICE: Physics Performance Report, Volume II

    International Nuclear Information System (INIS)

    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dNch/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of

  15. ATLAS rewards industry

    CERN Multimedia

    2006-01-01

    Showing excellence in mechanics, electronics and cryogenics, three industries are honoured for their contributions to the ATLAS experiment. Representatives of the three award-wining companies after the ceremony. For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Close interaction with CERN was a key factor in the selection of each rewarded company, in addition to the high-quality products they delivered to the experiment. Alu Menziken Industrie AG, of Switzerland, was honoured for the production of 380,000 aluminium tubes for the Monitored Drift Tube Chambers (MDT). As Giora Mikenberg, the Muon System Project Leader stressed, the aluminium tubes were delivered on time with an extraordinary quality and precision. Between October 2000 and Jan...

  16. Factors Influencing Students' Perceptions of Graduate Attribute Acquisition in a Multidisciplinary Honours Track in a Dutch University

    Science.gov (United States)

    Jansen, E. P. W. A.; Suhre, C. J. M.

    2015-01-01

    This article studies the relationship between students' perceptions of teaching and learning in a multidisciplinary honours programme and their impact on graduate attributes acquisition. The study, conducted among 73 honours students in a Dutch research university, evaluates perceived improvement in graduate attributes through annually collected…

  17. The scene is set for ALICE

    CERN Multimedia

    2008-01-01

    Now that the electromagnetic calorimeter support and the mini space frame have been installed, practically all ALICE’s infrastructure is in place. The calorimeter support, an austenitic stainless steel shell weighing 30 tonnes, was slid gently inside the detector, in between the face of the magnet and the space frame. With the completion of two major installation projects, the scene is finally set for the ALICE experiment…or at least it nearly is, as a few design studies, minor installation jobs and measurements still need to be carried out before the curtain can finally be raised. The experiment’s chief engineer Diego Perini confirms: "All the heavy infrastructure for ALICE has been in place and ready for the grand opening since December 2007." The next step will be the installation of additional modules on the TOF and TRD detectors between January and March 2008, and physicists have already started testing the equipment with co...

  18. Performance optimisations for distributed analysis in ALICE

    CERN Document Server

    Betev, L; Gheata, M; Grigoras, C; Hristov, P

    2014-01-01

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the framewo rks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available r esources and ranging from fully I/O - bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by a...

  19. Energy Loss Signals in the ALICE TRD

    CERN Document Server

    Xian-Guo, Lu

    2013-01-01

    We present the energy loss measurements with the ALICE TRD in the $\\beta\\gamma$ range 1--10$^{4}$, where $\\beta=v/c$ and $\\gamma=1/\\sqrt{1-\\beta^2}$. The measurements are conducted in three different scenarios: 1) with pions and electrons from testbeams; 2) with protons, pions and electrons in proton-proton collisions at center-of-mass energy 7 TeV; 3) with muons detected in ALICE cosmic runs. In the testbeam and cosmic ray measurements, ionization energy loss (dE/dx) signal as well as ionization energy loss plus transition radiation (dE/dx+TR) signal are measured. With cosmic muons the onset of TR is observed. Signals from TeV cosmic muons are consistent with those from GeV electrons in the other measurements. Numerical descriptions of the signal spectra and the $\\beta\\gamma$-dependence of the most probable signals are also presented.

  20. The Wonderland of Operating the ALICE Experiment

    CERN Document Server

    Augustinus, A; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L; Chochula, P

    2011-01-01

    ALICE is one of the experiments at the Large Hadron Collider (LHC), CERN, Geneva, Switzerland. Composed of 18 sub-detectors each with numerous subsystems that need to be controlled and operated in a safe and efficient way. The Detector Control System (DCS) is the key to this and has been used by detector experts with success during the commissioning of the individual detectors. During the transition from commissioning to operation, more and more tasks were transferred from detector experts to central operators. By the end of the 2010 datataking campaign, the ALICE experiment was run by a small crew of central operators, with only a single controls operator. The transition from expert to non-expert operation constituted a real challenge in terms of tools, documentation and training. A relatively high turnover and diversity in the operator crew that is specific to the HEP experiment environment (as opposed to the more stable operation crews for accelerators) made this challenge even bigger. Thi...

  1. Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Belikov, Iouri

    2016-01-01

    A Large Ion Collider Experiment (ALICE) is built to study the properties of the strongly interacting matter created in heavy-ion collisions at the LHC. With the upgrade of its Inner Tracking System (ITS), the ALICE experiment is going to increase the rate of data taking by almost two orders of magnitude. At the same time, the precision of secondary vertex reconstruction will become by at least a factor 3 better than it currently is. In this talk, we briefly show some selected physics results motivating the upgrade of the ITS, describe the design goals and the layout of the new detector, and highlight a few important measurements that will be realized after the completion of this upgrade.

  2. Performance optimisations for distributed analysis in ALICE

    Science.gov (United States)

    Betev, L.; Gheata, A.; Gheata, M.; Grigoras, C.; Hristov, P.

    2014-06-01

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the frameworks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available resources and ranging from fully I/O-bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by an important factor to satisfy the analysis needs. We have instrumented all analysis jobs with "sensors" collecting comprehensive monitoring information on the job running conditions and performance in order to identify bottlenecks in the data processing flow. This data are collected by the MonALISa-based ALICE Grid monitoring system and are used to steer and improve the job submission and management policy, to identify operational problems in real time and to perform automatic corrective actions. In parallel with an upgrade of our production system we are aiming for low level improvements related to data format, data management and merging of results to allow for a better performing ALICE analysis.

  3. Upgrade of the ALICE Inner Tracking System

    OpenAIRE

    Reidt, Felix; Collaboration, for the ALICE

    2014-01-01

    During the Long Shutdown 2 of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System. It will replace the current six layer detector system with a seven layer detector using Monolithic Active Pixel Sensors. The upgraded Inner Tracking System will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity of the LHC. The choice of Monolithic Active Pixel Sensors has be...

  4. Alice, Greenfoot, and Scratch - A Discussion

    OpenAIRE

    Utting, Ian; Cooper, Stephen; Kölling, Michael; Maloney, John; Resnick, Mitchel

    2010-01-01

    This article distills a discussion about the goals, mechanisms, and effects of three environments which aim to support the acquisition and development of computing concepts (problem solving and programming) in pre-University and non-technical students: Alice, Greenfoot, and Scratch. The conversation started in a special session on the topic at the 2010 ACM SIGCSE Symposium on Computer Science Education and continued during the creation of the resulting Special Issue of the ACM Transactions on...

  5. The ALICE Software Release Validation cluster

    Science.gov (United States)

    Berzano, D.; Krzewicki, M.

    2015-12-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.

  6. One module of the ALICE photon spectrometer

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first module for the ALICE photon spectrometer has been completed. Each of the five modules will contain 3584 lead-tungstate crystals, a material as transparent as ordinary silica glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, allowing the energy of electrons, positrons and photons to be measured through the 17 920 detection channels.

  7. ALICE: Physics Performance Report, Volume I

    International Nuclear Information System (INIS)

    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 900 physicists and senior engineers, from both nuclear and high-energy physics, from about 80 institutions in 28 countries. The experiment was approved in February 1997. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2001 and construction has started for most detectors. Since the last comprehensive information on detector and physics performance was published in the ALICE Technical Proposal in 1996, the detector as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) will give an updated and comprehensive summary of the current status and performance of the various ALICE subsystems, including updates to the Technical Design Reports, where appropriate, as well as a description of systems which have not been published in a Technical Design Report. The PPR will be published in two volumes. The current Volume I contains: 1. a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE,; 2. relevant experimental conditions at the LHC,; 3. a short summary and update of the subsystem designs, and; 4. a description of the offline framework and Monte Carlo generators. Volume II, which will be published separately, will contain detailed simulations of combined detector performance, event reconstruction, and analysis of a representative sample of relevant physics observables from global event characteristics to hard processes

  8. Performance optimisations for distributed analysis in ALICE

    International Nuclear Information System (INIS)

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the frameworks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available resources and ranging from fully I/O-bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by an important factor to satisfy the analysis needs. We have instrumented all analysis jobs with ''sensors'' collecting comprehensive monitoring information on the job running conditions and performance in order to identify bottlenecks in the data processing flow. This data are collected by the MonALISa-based ALICE Grid monitoring system and are used to steer and improve the job submission and management policy, to identify operational problems in real time and to perform automatic corrective actions. In parallel with an upgrade of our production system we are aiming for low level improvements related to data format, data management and merging of results to allow for a better performing ALICE analysis

  9. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  10. ALICE A Large Ion Collider Experiment

    CERN Multimedia

    Klein, J; Hristov, P Z; Mager, M; Miskowiec, D C; Selyuzhenkov, I; Bertelsen, H; Kox, S; Cheynis, B; Cheshkov, C V; Hamar, G; Choudhury, S; Agnello, M; Miake, Y; Inaba, M; Maldonado cervantes, I A; Fernandez tellez, A; Kulibaba, V; Zinovjev, G; Martynov, Y; Usenko, E; Pshenichnov, I; Nikolaev, S; Vasiliev, A; Vinogradov, A; Moukhanova, T; Vasilyev, A; Kozlov, Y; Voloshin, K; Kiselev, S; Kirilko, Y; Lyublev, E; Kondratyeva, N; Yin, Z; Zhu, J; Luo, J; Pikna, M; Hasko, J; Pastircak, B; Donigus, B; Rascanu, B T; Mercado-perez, J; Westerhoff, U; Wilde, M R; Feldkamp, L; Scott, H; Hanratty, L D; Marangio, G; Gianotti, P; Muccifora, V; Morando, M; Di liberto, S; Haque, M R; Langoy, R; Lovhoiden, G; Nilsson, M S; Bartke, J G; Sputowska, I A; Ilkiv, I; Christiansen, P; Dodokhov, V; Yurevich, V; Fedunov, A; Malakhov, A; Efremov, A; Feofilov, G; Vinogradov, L; Asryan, A; Kovalenko, V; Piyarathna, D; Myers, C J; Martashvili, I; Scott, R M; Bombara, M; Oh, H; Cherney, M G; Malagalage, K J; D'erasmo, G; Wagner, V; Smakal, R; Lopez, X B; Batista camejo, A; Sambyal, S S; Sharma, R; Sartorelli, G; Xaplanteris karampatsos, L; Mlynarz, J; Garishvili, I; Murray, C J; Oh, S; Srivastava, B K; Utrobicic, A; Becker, B; Usai, G; Razazi, V; Zbroszczyk, H P; Pappalardo, G; Khlebnikov, A; Basmanov, V; Punin, V; Demanov, V; Gotovac, S; Irfan, M; Felea, D; Zgura, S I; Vernet, R; Son, C; Shtejer diaz, K; Hwang, S; Alfaro molina, J R; Jahnke, C; Garcia-solis, E J; Hitchcock, T M; Franz degenhardt, H; Brun, R; Divia, R; Schukraft, J; Riedler, P; Floris, M; Eulisse, G; Von haller, B; Kouzinopoulos, C; Haake, R; Ivanov, M; Malzacher, P; Schweda, K O; Gaardhoeje, J J; Bearden, I G; Borel, H; Pereira da costa, H D A; Faivre, J; Germain, M; Schutz, Y R; Delagrange, H; Batigne, G; Stocco, D; Estienne, M D; Bergognon, A A E; Zoccarato, Y D; Levai, P; Bencedi, G; Mahapatra, D P; Ghosh, P; Das, T K; Alessandro, B; Cerello, P; De marco, N; Fragiacomo, E; Grion, N; Paic, G; Ovchynnyk, V; Karavicheva, T; Kucheryaeva, M; Skuratovskiy, O; Mal kevich, D; Bogdanov, A; Rasanen, S S; Pereira, L G; Cai, X; Zhu, X; Wang, M; Fan, F; Sitar, B; Zagiba, M; Cerny, V; Renfordt, R A E; Reygers, K J; Zimmermann, M B; Gonzalez zamora, P; Loo, K K; Jones, P G; Bianchi, N; Dainese, A; Giubilato, P; Festanti, A; Mazzoni, A M; Torii, H; Hori, Y; Tsuji, T; Herrera corral, G A; Reicher, M; Lodato, D F; Van der maarel, J; Tveter, T S; Batzing, P C; Kowalski, M; Rybicki, A; Kielbowicz, M M; Deloff, A; Petrovici, A; Nomokonov, P; Parfenov, A; Koshurnikov, E; Shahaliyev, E; Rogochaya, E; Kondratev, V; Oreshkina, N; Tarasov, A; Norenberg, M; Bodnya, E; Bogolyubskiy, M; Symons, T; Blanco, F; Madagodahettige don, D M; Umaka, E N; Rana, D B; Schaefer, B; De pasquale, S; Fusco girard, M; Song, M; Kim, T; Jeon, H; Kushpil, V; Porteboeuf, S J; Nandi, B K; Sarkar - sinha, T; Aggarwal, M M; Jena, D; Arcelli, S; Scapparone, E; Shevel, A; Nikulin, V; Komkov, B; Voloshin, S; Hille, P T; Kannan, S; Simatovic, G; Cicalo, C; De falco, A; Graczykowski, L K; Matynia, R M; Barbera, R; Palmeri, A; Vinogradov, Y; Vikhlyantsev, O; Telnov, A; Tumkin, A; Khan, M M; Erdal, H A; Keidel, R; Yeo, I; Vilakazi, Z; Klay, J L; Boswell, B D; Lindenstruth, V; Goel, A; Breitner, T G; Sahoo, R; Roy, A; Lagana fernandes, C; Musa, L; Perini, D; Vande vyvre, P; Fuchs, U; Aglieri rinella, G; Salgueiro domingues da silva, R M; Kalweit, A P; Martinez pedreira, M; Francescon, A; Bond, P M; Marin, A M; Staley, F M; Castillo castellanos, J E; Furget, C; Real, J; Martino, J F; Sahu, P K; Sahu, S K; Baral, R C; Singaraju, R N; Ahammed, Z; Saini, J; Basu, S; Di bari, D; Bruno, G E; Biasotto, M; Giubellino, P; Esumi, S; Sano, M; Drakin, Y; Manko, V; Nikulin, S; Yushmanov, I; Kozlov, K; Kerbikov, B; Stavinskiy, A; Sultanov, R; Zhu, H; Cajko, F; Meres, M; Kralik, I; Glassel, P; Schicker, R M; Grajcarek, R; Evans, D; Tudor jones, G; Kinson, J; Bhattacharjee, B; Rizzi, V; Orlandi, A; Fabris, D; Viesti, G; Lea, R; Kuijer, P G; Nooren, G; Roehrich, D; Lonne, P; Wikne, J; Figiel, J; Gorlich, L M; Shabratova, G; Lobanov, V; Zaporozhets, S; Pocheptsov, T; Ivanov, A; Iglovikov, V; Ochirov, A; Petrov, V; Jacobs, P M; De gruttola, D; Raniwala, R; Corsi, F; Pajares vales, C; Varma, R; Kumar, J; Parmar, S; Bala, R; Gupta, R; Nania, R; Zalite, A; Samsonov, V; Pruneau, C A; Caines, H L; Aronsson, T; Adare, A M; Zwick, S M; Fearick, R W; Ostrowski, P K; Kulasinski, K; La rocca, P; Ilkaev, R; Ilkaeva, L; Pavlov, V; Mikhaylyukov, K; Rybin, A; Naumov, N; Mudnic, E; Cortese, P; Listratenko, O; Stan, I; Song, J; Krawutschke, T; Kim, S Y; Hwang, D S; Lee, S H; Leon monzon, I; Vorobyev, I; Yan, Y; Mazumder, R; Araujo silva figueredo, M; Shahoyan, R; Kluge, A; Safarik, K; Tauro, A; Caffarri, D; Lakomov, I; Van hoorne, J W; Foka, P; Frankenfeld, U M; Masciocchi, S; Schwarz, K E; Hansen, A; Baldisseri, A; Aphecetche, L B; Berenyi, D; Sahoo, S; Nayak, T K; Muhuri, S; Patra, R N; Adhya, S P; Saavedra san martin, O; Scomparin, E; Arnaldi, R; Rui, R; Mizuno, S; Enyo, H; Cuautle flores, E; Potin, S; Zynovyev, M; Kurepin, A; Belyaev, S; Ryabinkin, E; Kiselev, I; Pestov, Y; Hayrapetyan, A; Manukyan, N; Lutz, J; Belikov, I; Roy, C S; Takahashi, J; Tang, S; Szarka, I; Sandor, L; Vrlakova, J; Antonczyk, D W; Bailhache, R M; Anguelov, V; Wilk, A; Ladron de guevara, P; Acero fernandez, A; Diaz corchero, M A; Platt, R J; Kour, R; Scott, P A; Das, S; Di nezza, P; Turrisi, R; Hayashi, S; Van rijn, A J; Bertens, R A; Altinpinar, S; Fehlker, D; Velure, A; Skaali, B; Richter, M R; Milosevic, J; Qvigstad, H; Dordic, O; Zhao, C; Siemiarczuk, T; Petrovici, M; Petris, M; Stenlund, E A; Otterlund, I; Soegaard, C; Malinina, L; Fateev, O; Kolozhvari, A; Altsybeev, I; Sadovskiy, S; Soloviev, A; Ploskon, M A; Mayes, B W; Sorensen, S P; Awes, T; Virgili, T; Pagano, P; Putis, M; Kim, B; Krus, M; Gonzalez ferreiro, E; Vulpescu, B; Sett, P; Sinha, B; Khan, P; Antonioli, P; Scioli, G; Sakaguchi, H; Volkov, S; Ivanov, V; Khanzadeev, A; Malaev, M; Markert, C; Lisa, M A; Salzwedel, J S N; Loggins, V R; Schuster, T R; Hicks, B R; Scharenberg, R P; Planinic, M; Masoni, A; Incani, E; Debski, P R; Oleniacz, J; Yanovskiy, V; Domrachev, S; Smirnova, Y; Zimmermann, S; Ahmad, N; Shestakov, V; Kileng, B; Seo, J; Lopez torres, E; Ceballos sanchez, C; Jang, H J; Buthelezi, E Z; Steyn, G F; Suleymanov, M K O; Belmont moreno, E; Perales, M; Kobdaj, C; Mishra, A N; Keil, M; Morsch, A; Rademakers, A; Soos, C; Zampolli, C; Grigoras, C; Chibante barroso, V M; Schuchmann, S; Grigoras, A G; Berzano, D; Wegrzynek, A T; Braun-munzinger, P; Andronic, A; Arbor, N; Erazmus, B E; Pichot, P; Pillot, P; Grossiord, J; Boldizsar, L; Costanza, S; Botta, E; Gallio, M; Masera, M; Simonetti, L; Prino, F; Oppedisano, C; Toscano, L; Nappi, G; Rachevski, A; Vargas trevino, A D; Naumov, S; Trubnikov, V; Alkin, A; Ivanytskyi, O; Guber, F; Karavichev, O; Nyanin, A; Sibiryak, Y; Peresunko, D Y; Patarakin, O; Aleksandrov, D; Blau, D; Yasnopolskiy, S; Chumakov, M; Vetlitskiy, I; Nedosekin, A; Selivanov, A; Okorokov, V; Grigoryan, A; Papikyan, V; Kuhn, C C; Wan, R; Zhou, D; Mares, J; Zavada, P; Pitz, N; Zimmermann, A; Lu, X; Bock, F; Wilkinson, J J; Rubio montero, A J; Reolon, A R; Antinori, F; Gunji, T; Snellings, R; Mischke, A; Yang, H; Grelli, A; Nystrand, J I; Ullaland, K; Haaland, O S; Matyja, A T; Klusek-gawenda, M J; Schiaua, C C; Andrei, C; Herghelegiu, A I; Tydesjo, H; Panebrattsev, Y; Penev, V; Efimov, L; Zanevskiy, Y; Vechernin, V; Zarochentsev, A; Kolevatov, R; Agapov, A; Polishchuk, B; Loizides, C; Anwar, R; Anticic, T; Kwon, Y; Kim, M; Moon, T; Bielcikova, J; Kushpil, S; Petran, M; Rosnet, P; Ramillien barret, V; Sahoo, B; Das bose, L; Hatzifotiadou, D; Shigaki, K; Jha, D M; Soltz, R A; Mastroserio, A; Puddu, G; Serci, S; Siddi, E; Siddhanta, S; Petta, C; Badala, A; Putevskoy, S; Shapovalova, E; Ahmad, A; Haiduc, M; Mitu, C M; Hetland, K F; Gago medina, A M; Menchaca-rocha, A A; De cuveland, J; Hutter, D; Langhammer, M; Dahms, T; Watkins, E P; Kumar, L; Riegler, W; Telesca, A; Lazaridis, L; Martin, N A; Nielsen, B S; Chojnacki, M; Espagnon, B; Uras, A; Lemmon, R C; Agocs, A G; Viyogi, Y; Pal, S K; Singhal, V; Khan, S A; Alam, S N; Bagnasco, S; Camerini, P; Rodriguez cahuantzi, M; Maslov, M; Kurepin, A; Ippolitov, M; Lebedev, V; Tsvetkov, A; Klimov, A; Agafonov, G; Martemiyanov, A; Loginov, V; Kononov, S; Grigoryan, S; Jangal, S G; Hnatic, M; Kalinak, P; Appelshaeuser, H; Ulery, J G; Luettig, P J; Heckel, S T; Windelband, B S; Wang, Y; Pachmayer, Y C; Lohner, D; Klein-boesing, C; Schmidt, H R; Hess, B A; Trzaska, W H; Kral, J; Lietava, R; Matthews, Z L; Palaha, A S; Raha, S; Calero diaz, L; Segato, G; Scarlassara, F; Canoa roman, V; Cruz albino, R; Botje, M; Huang, M; Gladysz-dziadus, E; Marszal, T; Dobrowolski, T A; Oskarsson, A N E; Ljunggren, H M; Vodopyanov, A; Akichine, P; Kuznetsov, A; Vedeneyev, V; Naumenko, P; Bilov, N; Rogalev, R; Evdokimov, S; Braidot, E; Bellwied, R; De caro, A; Kang, J H; Gorbunov, Y; Lee, J; Ferencei, J; Kucera, V; Pachr, M; Baldit, A; Manso, F; Crochet, P; Dash, S; Roy, P K; Cifarelli, L; Laurenti, G; Margotti, A; Bellini, F; Sugitate, T; Zhalov, M; Pavlinov, A; Harris, J W; Caballero orduna, D; Pluta, J M; Kisiel, A R; Wrobel, D; Zhitnik, A; Nazarenko, S; Zavyalov, N; Miroshnikov, D; Kuryakin, A; Vyushin, A; Mamonov, A; Vickovic, L; Tariq, M; Niculescu, M; Ahn, S U; Ahn, S; Foertsch, S V; Brown, C R; Munzer, R H; Harton, A V; Khosonthongkee, K; Oliveira da silva, A C; Betev, L; Buncic, P; Carena, F; Di mauro, A; Martinengo, P; Gargiulo, C; Grosse-oetringhaus, J F; Costa, F; Baltasar dos santos pedrosa, F; Laudi, E; Lippmann, C; Schmidt, C J; Christensen, C H; Rakotozafindrabe, A M; Conesa balbastre, G; Martinez-garcia, G; Suire, C P; Ducroux, L; Tieulent, R N; Barnafoldi, G G; Pochybova, S; Dubey, A K; Acharya, S; Ricci, R A; Vercellin, E; Beole, S; Chujo, T; Watanabe, K; Onishi, H; Akiba, Y; Vergara limon, S; Tejeda munoz, G; Svistunov, S; Reshetin, A; Maevskaya, A; Antonenko, V; Mishustin, N; Meleshko, E; Korsheninnikov, A; Balygin, K; Zagreev, B; Akindinov, A; Mikhaylov, K; Gushchin, O; Grigoryev, V; Gulkanyan, H; Sanchez castro, X; Peretti pezzi, R; Siska, M; Vokal, S; Beitlerova, A; Kramer, F; Book, J H; Heide, M A; Passfeld, A; Montes prado, E; Rak, J; Jusko, A; Ghosh, S K; Spiriti, E; Ronchetti, F; Casanova diaz, A O; Lunardon, M; Meddi, F; Van leeuwen, M; De rooij, R S; Djuvsland, O; Lindal, S; Aiftimiei, C; Berceanu, I; Kuzmin, N; Melkumov, G; Zinchenko, A; Shklovskaya, A; Bunzarov, Z I; Chernenko, S; Toulina, T; Kompaniets, M; Titov, A; Kharlov, Y; Dantsevich, G; Stolpovskiy, M; Porter, R J; Datskova, O V; Nattrass, C; Mazer, J A; Harmanova, Z; Seger, J E; Kim, J; Kim, D S; Jung, W W; Kim, H; Adamova, D; Bielcik, J; Pospisil, V; Cepila, J; Dupieux, P; Bastid, N; Das, D; Bhati, A K; Gupta, A; Sharma, S; Williams, C; Pesci, A; Roshchin, E; Grounds, A; Humanic, T; Steinpreis, M D; Yaldo, C G; Abelev, B B; Smirnov, N; Heinz, M T; Connors, M E; Barile, F; Fiore, E M; Orzan, G; Wielanek, D H; Servais, E L J; Patecki, M; Zhelezov, S; Morkin, A; Zabelin, O; Hussain, T; Ramello, L; Rogachevskiy, O; Kim, E J; Coccetti, F; Calvo villar, E; Rauf, A W; Sandoval, A; Berger, M E; Cervantes jr, M; Kebschull, U W; Engel, H; Karasu uysal, A; Alarcon do passo suaide, A; Augustinus, A; Carena, W; Chochula, P; Chapeland, S; Dobrin, A F; Reidt, F; Averbeck, R P; Garabatos cuadrado, J; Boggild, H; Gulbrandsen, K H; Hansen, J C; Charvet, J F; Shabetai, A; Hadjidakis, C M; Vertesi, R; Mitra, J; Altini, V; Riccati, L; Ferretti, A; Gagliardi, M; Bufalino, S; Margagliotti, G V; Sakata, D; Niida, T; Martinez hernandez, M I; Karpechev, E; Veselovskiy, A; Konevskikh, A; Finogeev, D; Fokin, S; Karadzhev, K; Kucheryaev, Y; Plotnikov, V; Ryabinin, M; Golubev, A; Kaplin, V; Ter-minasyan, A; Abramyan, A; Hippolyte, B; Zhou, F; Zhang, H; Strmen, P; Kapusta, S; Krivan, F; Reichelt, P S; Marquard, M; Broker, T A; Zyzak, M; Kulakov, I; Sahlmuller, B; Stachel, J; Wessels, J P; Kalliokoski, T E A; Chang, B; Krivda, M; De cataldo, G; Paticchio, V; Fantoni, A; Soramel, F; Bombonati, C; Gomez jimenez, R; Christakoglou, P; Peitzmann, T; Veldhoen, M; Skjerdal, K; Wagner, B; Yang, S; Cyz, A; Wilk, G A; Kurashvili, P; Pop, A; Arefiev, V; Batyunya, B; Kadyshevskiy, V; Lioubochits, V; Zryuev, V; Sokolov, M; Patalakha, D; Pinsky, L; Timmins, A R; Raniwala, S; Kim, D W; Sumbera, M; Petracek, V; Krelina, M; Vasileiou, M; Spyropoulou-stassinaki, M; Koyithatta meethaleveedu, G; Chattopadhyay, S; Potukuchi, B; Basile, M; Falchieri, D; Miftakhov, N; Berdnikov, Y; Garner, R M; Konyushikhin, M; Joseph, N; Browning, T A; Cleymans, J W A; Dietel, T; Pawlak, T J; Kucinski, M; Janik, M A; Surma, K D; Niedziela, J; Riggi, F; Ivanov, A; Selin, I; Budnikov, D; Filchagin, S; Sitta, M; Gheata, M; Danu, A; Diomkin, V; Helstrup, H; Subasi, M; Murray, S; Mathis, A M; Banerjee, S S; Goyal, D; Rist, J A S; Jena, C; Lara martinez, C E

    2002-01-01

    %title\\\\ \\\\ALICE is a general-purpose heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 750~physicists and $\\sim$70 institutions in 27 countries.\\\\ \\\\The detector is designed to cope with the highest particle multiplicities anticipated for Pb-Pb reactions (dN/dy~$\\approx$~8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and p-nucleus), which provide reference data for the nucleus-nucleus collisions.\\\\ \\\\ALICE consists of a central part, which measures event-by-event hadrons, electrons and photons, and a forward spectrometer to measure muons. The central part, which covers polar angles from 45$^{0} $ to 135$^{0} $ ($\\mid \\eta \\mid $ < 0.9) over the full azimuth, is embedded in the large L3 solenoidal mag...

  11. Upgrade of the ALICE Inner Tracking System

    Science.gov (United States)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  12. ALICE: The best is yet to come

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The ALICE wonderland is the ion-ion collisions. However, the proton run was intensely used by the collaboration to get to know its detector in detail and to produce its first results in QCD-related matters. This very successful preparatory phase will now allow ALICE to enter the uncharted territory of the quark-gluon plasma at the extreme energies provided by the LHC.   The ALICE detector is optimized to study ion-ion collisions in which quark-gluon plasma may be formed. This type of matter, which existed a few moments after the Big Bang and appears when quarks and gluons are deconfined to form a highly dense and hot soup, has been studied at CERN’s SPS in the 1990s and later, from 2000 onwards, at much higher energy at RHIC in the US. Now it’s ALICE’s turn. “Quark-gluon plasma is created at very high temperatures but starts to cool down very quickly to become normal matter again. The high energy of the LHC puts us much higher above the threshold of its for...

  13. Physics with the ALICE Transition Radiation Detector

    CERN Document Server

    Pachmayer, Yvonne

    2013-01-01

    The ALICE Transition Radiation Detector (TRD) significantly enlarges the scope of physics observables studied in ALICE, because it allows due to its electron identification capability to measure open heavy-flavour production and quarkonium states, which are essential probes to characterize the Quark-Gluon-Plasma created in nucleus-nucleus collisions at LHC. In addition the TRD enables to enhance rare probes due to its trigger contributions. We report on the first results of the electron identification capability of the ALICE Transition Radiation Detector (TRD) in pp collisions at $\\sqrt{s}$ = 7 TeV using a one-dimensional likelihood method on integrated charge measured in each TRD chamber. The analysis of heavy flavour production in pp collisions at $\\sqrt{s}$ = 7 TeV with this particle identification method, which extends the $p_{t}$ range of the existing measurement from $p_{t}$ = 4 GeV/c to 10 GeV/c and reduces the systematic uncertainty due to particle identification, is presented. The performance of the ...

  14. CERN: ALICE in the looking-glass

    International Nuclear Information System (INIS)

    While proton-proton collisions will provide the main research thrust at CERN's planned LHC high energy collider to be built in the LEP tunnel, its 27-kilometre superconducting magnet ring will also be able to handle all the other high energy beams on the CERN menu, opening up the possibility of both heavy ion and electron-proton collisions to augment the LHC research programme. A major new character in the LHC cast - ALICE (A Large Ion Collider Experiment) - has recently published a letter of intent, announcing its intention to appear on the LHC stage. Three letters of intent for major LHC proton-proton experiments were aired last year (January, page 6), and ALICE, if approved, would cohabit with the final solution for the protonproton sector (see box). Only a single major heavy ion experiment is envisaged. The protonproton detectors have some heavy ion capability, but could only look at some very specific signals. (Detailed plans for LHC's electron proton collision option are on hold, awaiting the initial exploration of this field by the new HERA collider which came into operation last year at the DESY Laboratory in Hamburg.) Describing the ALICE detector and its research aims, spokesman Jurgen Schukraft echoes T.D.Lee's observations on the state of particle physics. It is becoming increasingly clear that resolving some of today's particle puzzles require a deeper understanding of the vacuum

  15. Alice Walker’s Womanism in Meridian

    Institute of Scientific and Technical Information of China (English)

    GAN Lin

    2015-01-01

    Meridian is one of Alice Walker’s early work. It tells a story that happened in the American south during the 1960s and early 70s’. It describes the life of the main character, Meridian Hill, a black woman from a southern town, who got out of the oppression of white society, and ends up in participate in Civil Rights Movement. The paper firstly illustrates the soul of womanism—anti-sexism, anti-racism, sisiterhood as well as the maternity love, then analyzes how these theories permeated into the novel—Meridian. The paper paid attention to the function of this novel on the improvement of Alice Walker ’s womanism. In proving that womanism not only permeates into Meridian, but also improved womanism from many perspectives, it comes to the conclusion that Meridian is a novel to improve Alice Walker’s womanism, it serves as the good novel to highlight the African Culture, and made a great contribution for the encouragement of black women to seek for freedom in the society.

  16. ALICE's first vacuum bakeout a success

    CERN Multimedia

    2007-01-01

    At the beginning of April, the ALICE central beryllium beam pipe and absorber beam pipes were successfully conditioned. The installation and bakeout shell surround the beam pipe (lower left), running through the middle of the ITS and TPC. Notice the high-tech cooling system, an additional precaution to avoid overheating the ALICE detection equipment.One end of the vacuum sector during the bakeout and pure gas refill. It is unusual for a vacuum sector to end as it does in the middle of a non-accessible detector and made the installation and cabling of the bakeout equipment a more difficult procedure. Just before Easter, the first bakeout and NEG activation of experimental chambers in the LHC was carried out, followed by ultra pure gas refill. The bakeout consisted of externally heating the chambers under vacuum in order to lower their outgassing. This same heating process also activates the NEG, a coating on the inside surface of the beam vacuum chambers, which pumps the residual gas. ALICE's bakeout was pa...

  17. LS1 Report: ALICE ups the ante

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    SPS up and running... LHC almost cold... CCC Operators back at their desks... all telltale signs of the start of Run 2! For the experiments, that means there are just a few short months left for them to prepare for beams. The CERN Bulletin will be checking in with each of the Big Four to see how they are getting on during these closing months...   It has been a long road for the ALICE LS1 team. From major improvements to the 19 sub-detectors to a full re-cabling and replacement of LEP-era electrical infrastructure, no part of the ALICE cavern has gone untouched.* With the experiment set to close in early December, the teams are making finishing touches before turning their focus towards re-commissioning and calibration. "Earlier this week, we installed the last two modules of the di-jet calorimeter," explains Werner Riegler, ALICE technical coordinator. "These are the final parts of a 60 degree calorimeter extension that is installed opposite the present calorimeter, c...

  18. CERN is guest of honour at the 35th Salon des Inventions

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    In April 2007 Geneva hosted the 35th Salon des Inventions at which CERN was the guest of honour. CERN Director-General, Robert Aymar, is seen touring the exhibition with dignitaries. Various stalls and displays were set up to showcase some of the work developed at CERN over the past few years.

  19. Reasoning about Family Honour among Two Generations of Hindu Indian-Americans

    Science.gov (United States)

    Kay, Adam

    2012-01-01

    To investigate reasoning about family honour, 128 first generation (mean age = 27.2 years) and second generation Hindu Indian-American adults (mean age = 24.7 years) were presented hypothetical scenarios in which male or female protagonists defied common Hindu customs (e.g., arranged marriage, intra-religion marriage and premarital sexual…

  20. Dr Malcolm King Honoured at University of Alberta Annual General Meeting

    Directory of Open Access Journals (Sweden)

    2004-01-01

    Full Text Available On September 25, 2003, Dr Malcolm King, former Canadian Thoracic Society (CTS President and member, was honoured by the University of Alberta (U of A with the University of Alberta Board of Governors Award of Distinction for 2003. The following are highlights of an article written by Ryan Smith for ExpressNews.

  1. AD FINEM IMPERII ROMANI! STUDIES IN HONOUR OF CORIOLAN H. OPREANU

    Directory of Open Access Journals (Sweden)

    Cristian Anton Gazdac

    2015-12-01

    Full Text Available AD FINEM IMPERII ROMANI! Studies in Honour of Coriolan H. Opreanu, editors: Cociș, S./ Lăzărescu, V.-A./ Gui, M./ Deac D.-A., Cluj-Napoca: Mega Publishing House, 2015, 390 pp. ISBN 9786065436008.

  2. ALICE Diffractive Detector Control System for RUN-II in the ALICE Experiment

    CERN Document Server

    Cabanillas-Noris, Juan-Carlos; Monzon, I Leon

    2016-01-01

    This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.

  3. Uinunud Alice'i toas teeb imesid lavamaagia / Jaanus Kaasik

    Index Scriptorium Estoniae

    Kaasik, Jaanus

    2004-01-01

    7. veebr. esietendus Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  4. ALICES: advanced software engineering workshop for real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Noel, A.; Rouault, G. [Tractebel, Brussels (Belgium)

    1997-12-01

    The ALICES software workshop is presently being applied for the development of a multifunctional simulator for Belgium`s Tihange-1 nuclear power unit. This will be the best validation for all the functions included in the tools. It is believed that ALICES will permit the development of quality realtime simulators at a significantly lower price.

  5. Open access for ALICE analysis based on virtualization technology

    CERN Document Server

    Buncic, P; Schutz, Y

    2015-01-01

    Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modi...

  6. Hadronic resonances from ALICE in pp collisions

    Directory of Open Access Journals (Sweden)

    Fragiacomo Enrico

    2012-11-01

    Full Text Available The study of resonances in √s = 7 TeV pp collisions provides a test of QCD in a new energy domain as well as a baseline for heavy-ion collisions. The resonances K*(8920, ϕ(1020, Σ(1385±, Λ(1520, and Ξ(15300 have been reconstructed at midrapidity from their hadronic decay using data collected by the ALICE detector. The comparison of ϕ(1020 and Σ(1385 pT-spectra to QCD-inspired models such as PHOJET and different PYTHIA tunes are shown.

  7. The ALICE Inner Tracking System Upgrade

    International Nuclear Information System (INIS)

    A central component of the ALICE Upgrade will be a completely new Inner Tracking System (ITS). The performance of the new ITS will be a significant improvement over that of the present ITS, in particular in the areas of material budget, granularity, a reduced radial distance from the first layer to the beam and rate capability. This will enable many key measurements of the properties of the quark–gluon plasma to be performed, in particular with rare probes such as low momentum charm and beauty mesons and baryons

  8. Inbetriebnahme und Kalibrierung der ALICE-TPC

    OpenAIRE

    Wiechula, Jens

    2010-01-01

    ALICE (A Large Ion Collider Experiment), is the dedicated heavy-ion experiment at the Large Hadron Collider (LHC) at CERN. It is optimised to reconstruct and identify the particles created in a lead-lead collision with a centre of mass energy of 5.5TeV. The main tracking detector is a large-volume time-projection chamber (TPC). With an active volume of about 88m^3 and a total readout area of 32.5m^2 it is the most challenging TPC ever build. A central electrode divides the 5m long detector in...

  9. The ALICE experiment at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Aamodt, K [Department of Physics, University of Oslo, Oslo (Norway); Abrahantes Quintana, A [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Madrid/Havana, Spain (Cuba); Achenbach, R [Kirchhoff-Institut fuer Physik, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany BMBF (Germany); Acounis, S [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, Nantes (France); Adamova, D [Academy of Sciences of the Czech Republic, Nuclear Physics Institute, Rez/Prague (Czech Republic); Adler, C [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany BMBF (Germany); Aggarwal, M [Physics Department, Panjab University, Chandigarh (India); Agnese, F [IPHC, Universite Louis Pasteur, CNRS/IN2P3, Strasbourg (France); Rinella, G Aglieri [CERN, European Organization for Nuclear Reasearch, Geneva (Switzerland); Ahammed, Z [Variable Energy Cyclotron Centre, Kolkata (India); Ahmad, A; Ahmad, N; Ahmad, S [Department of Physics Aligarh Muslim University, Aligarh (India); Akindinov, A [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Akishin, P [JINR, Joint Institute for Nuclear Research, Dubna, (Russian Federation); Aleksandrov, D [Russian Research Center Kurchatov Institute, Moscow (Russian Federation); Alessandro, B; Alfarone, G [Sezione INFN, Torino (Italy); Alfaro, R [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Alici, A [Dipartimento di Fisica dell' Universita and Sezione INFN, Bologna (Italy)], E-mail: Hans-Ake.Gustafsson@hep.lu.se (and others)

    2008-08-15

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 x 16 x 26 m{sup 3} with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010

  10. MAPS development for the ALICE ITS upgrade

    Science.gov (United States)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-03-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.

  11. AliEn - EDG Interoperability in ALICE

    CERN Document Server

    Bagnasco, S; Buncic, P; Carminati, F; Cerello, P G; Saiz, P

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and...

  12. Particle identification in ALICE: a Bayesian approach

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Benacek, Pavel; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kostarakis, Panagiotis; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shahzad, Muhammed Ikram; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Derradi De Souza, Rafael; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasin, Zafar; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high purity samples of identified particles in the decay channels ${\\rm K}_{\\rm S}^{\\rm 0}\\rightarrow \\pi^+\\pi^-$, $\\phi\\rightarrow {\\rm K}^-{\\rm K}^+$ and $\\Lambda\\rightarrow{\\rm p}\\pi^-$ in p–Pb collisions at $\\sqrt{s_{\\rm NN}}= 5.02$TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected $p_{\\rm T}$ spectra of pions, kaons, protons, and D$^0$ mesons in pp coll...

  13. Quarkonium production in ALICE at the LHC

    CERN Document Server

    Hadjidakis, Cynthia

    2014-01-01

    In heavy-ion collisions at the LHC, the ALICE Collaboration is studying Quantum Chromodynamics (QCD) matter at very high energy density where the formation of a Quark Gluon Plasma (QGP) is expected. Quarkonium production is an important probe to characterize the QGP properties. High precision data in pp collisions provide the baseline of Pb-Pb measurements and p-Pb collisions serve to quantify the amount of initial and/or final state effects, related to cold nuclear matter, that are largely unknown at the LHC energy. Since 2010, the LHC provided Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV, pp collisions at various energies and in 2013 p-Pb collisions at sqrt{s_{NN}} = 5.02 TeV. In ALICE, quarkonia can be reconstructed at forward rapidity in the dimuon channel and at mid-rapidity in the dielectron channel, and, for both channels, down to zero transverse momentum. New measurements on inclusive production of J/psi, psi (2S) and Upsilon performed in p-Pb collisions and on the p_T dependence of inclusive J/psi in ...

  14. Performance of ALICE silicon tracker detector

    CERN Document Server

    Luparello, G

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is the LHC experiment devoted to the study of the strong interacting matter created in heavy-ion collisions. The ALICE Inner Tracking System (ITS) consists of six layers of silicon detectors exploiting three different technologies: pixel, drift and strip (from inside to outside). It covers the central pseudorapidity range, j h j < 0 : 9, and its distance from the beam line ranges from r = 3 : 9 cm for the innermost pixel layer up to r = 43 cm for the outermost strip layer. The main tasks of the ITS are to reconstruct the primary and secondary vertices, to track and identify charged particles with a low- p T cutoff and to improve the momentum resolution at high p T . During the operations, the ITS has demonstrated its tracking and vertexing capabilities, which are in excellent agreement with the design values. In these proceedings, after a brief description of the features of the system, the performance during the first three years of data taking at LHC will be presen...

  15. Detection of atmospheric muons with ALICE detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Cortes Maldonado, I. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Cuautle, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (Mexico); Fernandez Tellez, A. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Gomez Jimenez, R. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Gonzalez Santos, H. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Herrera Corral, G. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Leon, I. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Martinez, M.I.; Munoz Mata, J.L. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Podesta, P. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Ramirez Reyes, A. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Rodriguez Cahuantzi, M., E-mail: mrodrigu@mail.cern.c [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Sitta, M. [Universita Piemonte Orientale, Alessandria (Italy); Subieta, M. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Tejeda Munoz, G.; Vargas, A.; Vergara, S. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico)

    2010-05-21

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  16. Readout of the upgraded ALICE-ITS

    Science.gov (United States)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  17. Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    AUTHOR|(CDS)2079168

    2015-01-01

    {During the Long Shutdown 2 (LS2) of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System (ITS). The upgraded detector will fully replace the current ITS having six layers by seven layers of Monolithic Active Pixel Sensors (MAPS). The upgraded ITS will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity in LHC. The choice of MAPS has been driven by the specific requirements of ALICE as a heavy ion experiment dealing with rare probes at low $p_\\mathrm{T}$. This leads to stringent requirements on the material budget of 0.3$\\%~X/X_{0}$ per layer for the three innermost layers. Furthermore, the detector will see large hit densities of $\\sim 19~\\mathrm{cm}^{-2}/\\mathrm{event}$ on average for minimum-bias events in the inner most layer and has to stand moderate radiation loads of 700 kRad TID and $1\\times 10^{13}$ 1 MeV n$_\\mathrm{eq}/\\mathrm{cm}^{2}$ NIEL at maximum. The MAPS dete...

  18. MAPS development for the ALICE ITS upgrade

    International Nuclear Information System (INIS)

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips

  19. Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Rossegger, Stefan

    2013-01-01

    The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavour production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 $\\mu$m. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and a material budget of 1.1% X0 per layer. %In particular, the properties of the two innermost layers define the ITS performance in measuring the displaced vertex of such short-lived particles. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavour detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last ten years as well as the possibility to install a smaller radius beampipe. The upgraded detec...

  20. Mathematical statistics and limit theorems Festschrift in honour of Paul Deheuvels

    CERN Document Server

    Mason, David; Pfeifer, Dietmar; Steinebach, Josef

    2015-01-01

    This Festschrift in honour of Paul Deheuvels’ 65th birthday compiles recent research results in the area between mathematical statistics and probability theory with a special emphasis on limit theorems. The book brings together contributions from invited international experts to provide an up-to-date survey of the field. Written in textbook style, this collection of original material addresses researchers, PhD and advanced Master students with a solid grasp of mathematical statistics and probability theory.  

  1. Ethnography and the Production of Anthropological Knowledge : Essays in honour of Nicolas Peterson

    OpenAIRE

    Musharbash, Yasmine; Barber, Marcus

    2011-01-01

    Professor Nicolas Peterson is a central figure in the anthropology of Aboriginal Australia. This volume honours his anthropological body of work, his commitment to ethnographic fieldwork as a source of knowledge, his exemplary mentorship of generations of younger scholars and his generosity in facilitating the progress of others. The diverse collection produced by former students, current colleagues and long-term peers provides reflections on his legacy as well as fresh anthropological insigh...

  2. Conflict in Corinth : the appropriateness of honour-shame as the primary social context

    OpenAIRE

    Finney, Mark T.

    2004-01-01

    Many recent studies in contemporary social anthropology have noted the vital import of the concepts of honour and shame and how these are able both to generate ideas of social identity within a community, and, in particular, to elucidate patterns of social behaviour. This has been notably evident amongst the communities of the Mediterranean littoral. At the same time, multi-disciplinary research exploring the communities of the Ancient Near East, especially those undertaken by ...

  3. RCNi award winner among the trailblazing nurses named in the Queen's birthday honours.

    Science.gov (United States)

    2016-07-01

    Nurses were recognised in the birthday honours, with OBEs going to: » Pauline Watts, lead nurse, quality, mental health, learning disability and dementia at Public Health England, for services to nursing and health visiting » Gwen Moulster, co-chair of UK Nurse Consultants in Learning Disability Network and a winner of an RCNi learning disability award in May, for services to nursing and people with learning disabilities. PMID:27369704

  4. Simulation of the ALICE DAQ System with GALSIM

    CERN Document Server

    Yuan, J; Skaali, B

    1997-01-01

    We present some of the simulation results for the DAQ system of the ALICE Abstract:experiment at the Large Hadron Collider (LHC) at CERN. The simulation is performed by the ALICE DAQ Simulation Program GALSIM. Abstract:GALSIM comprises two software packages; 1)the basic ALICE DAQ simulation Abstract:program ALSIM and 2) a graphic user interface which dynamically displays Abstract:the data transport and synchronization messages in the DAQ system. GALSIM Abstract:is written in MODSIM II and has been developed by the ALICE DAQ group at Abstract:the Department of Physics, University of Oslo, Norway. In the paper, we will first introduce the basic ALICE DAQ system and the sAbstract:imulator GALSIM. We will then concentrate on the simulation of the ALICE Abstract:DAQ topology with various parameters. The results we present can be viewed Abstract:as an extension of the DAQ simulation shown in the ALICE Technical Abstract:Proposal. Among the important results, we emphasize on the following issues, 1. The effect of me...

  5. The ALICE Glance Shift Accounting Management System (SAMS)

    Science.gov (United States)

    Martins Silva, H.; Abreu Da Silva, I.; Ronchetti, F.; Telesca, A.; Maidantchik, C.

    2015-12-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the CERN LHC (Large Hadron Collider) studying the physics of strongly interacting matter and the quark-gluon plasma. The experiment operation requires a 24 hours a day and 7 days a week shift crew at the experimental site, composed by the ALICE collaboration members. Shift duties are calculated for each institute according to their correlated members. In order to ensure the full coverage of the experiment operation as well as its good quality, the ALICE Shift Accounting Management System (SAMS) is used to manage the shift bookings as well as the needed training. ALICE SAMS is the result of a joint effort between the Federal University of Rio de Janeiro (UFRJ) and the ALICE Collaboration. The Glance technology, developed by the UFRJ and the ATLAS experiment, sits at the basis of the system as an intermediate layer isolating the particularities of the databases. In this paper, we describe the ALICE SAMS development process and functionalities. The database has been modelled according to the collaboration needs and is fully integrated with the ALICE Collaboration repository to access members information and respectively roles and activities. Run, period and training coordinators can manage their subsystem operation and ensure an efficient personnel management. Members of the ALICE collaboration can book shifts and on-call according to pre-defined rights. ALICE SAMS features a user profile containing all the statistics and user contact information as well as the Institutes profile. Both the user and institute profiles are public (within the scope of the collaboration) and show the credit balance in real time. A shift calendar allows the Run Coordinator to plan data taking periods in terms of which subsystems shifts are enabled or disabled and on-call responsible people and slots. An overview display presents the shift crew present in the control room and allows the Run Coordination team to confirm the presence

  6. Honour Belongs to Cultivator--Turkish Friendship Ambassador Kemal Baytas

    Institute of Scientific and Technical Information of China (English)

    LinYi

    2004-01-01

    In autumn in Beijing the sun shone brightly and the sky was clear. A milky white airplane of the Turkish Airliners slowly landed at the Beijing Capital International Airport. Mr. Kemal Baytas, president of the Turkey-China Friendship Association(TCFA), dressed in a wellpressed dark suit and a red silk shirt, his standard dress for formal occasions, walked out of the passenger compartment in vigorous strides. Although he had visited China many times, this time accompanied by a large delegation with important members including tycoons of Turkish tourist industry, famous TV commentators and columnists of major newspapers, he was radiating with happiness. This visit had a special significance to him for he would be conferred upon the title of Friendship Ambassador by the CPAFFC. For this title he had devoted himself to the cause of friendship between Turkey and China for more than 10 years.

  7. Recent hadronic resonance measurements at ALICE

    CERN Document Server

    Knospe, A G

    2016-01-01

    In heavy-ion physics, measurements of short-lived hadronic resonances allow the properties of the hadronic phase of the collision to be studied. In addition, resonances can be used along with stable hadrons to study parton energy loss in the quark-gluon plasma and the mechanisms that shape hadron pT spectra at intermediate transverse momenta. Resonance measurements in small systems serve as a reference for heavy-ion collisions and contribute to searches for collective effects. An overview of recent results on hadronic resonance production measured in ALICE is presented. These results include the pT spectra and yields of the rho(770)0, K*(892)0, and phi(1020) mesons in pp, p-Pb, and Pb-Pb collisions at different energies as well as the Sigma(1385)+/- and Xi(1530)0 baryons in pp and p-Pb collisions.

  8. Trigger electronics for the ALICE PHOS detector

    CERN Document Server

    Müller, H; Musa, L; Yin, Z; Röhrich, D; Skaali, B; Sibiryak, Yu; Budnikov, D L

    2004-01-01

    The Photon Spectrometer of ALICE consists of 5 identical modules of 56 multiplied by 64 PWO crystals with a total of 100 degree azimuthal coverage of the barrel. The electronics required for implementing both the L0 trigger for high luminosity p-p physics and the L1 trigger for high p//T Pb+Pb physics has been studied. A full integration of the trigger logic into the detector's enclosure is based on analog transmission of fast trigger sums between stacks of front-end boards and trigger-router units. The latter contain 112 digitizer channels of 10bit, which are mapped into a single FPGA per trigger unit, covering areas of 24 multiplied by 16 crystals. The running modes allow for Level-0 trigger at 800ns and Level-1 at 6200ns trigger latencies. The design and status of the PHOS trigger electronics are outlined.

  9. ALICE & LHCb: refinements for the restart

    CERN Document Server

    2009-01-01

    Following the previous issue, the Bulletin continues its series to find out what the six LHC experiments have been up to since last September, and how they are preparing for the restart. Previously we looked at CMS and ATLAS; this issue we will round up the past 10 months of activity at ALICE and LHCb. LHCb The cavern of the LHCb experiment. This year has given LHCb the chance to install the 5th and final plane of muon chambers, which will improve the triggering at nominal luminosity. This is the final piece of the experiment to be installed. "Now the detector looks exactly as it does in the technical design report," confirms Andrei Golutvin, LHCb Spokesperson. "We also took advantage of this shutdown to make several improvements. For example, we modified the high voltage system of the electromagnetic calorimeter to reduce noise further to a negligible level. We also took some measures to improve ...

  10. Timing in the ALICE trigger system

    CERN Document Server

    Lietava, Roman; Evans, D; Jones, G T; Jovanovic, P; Jusko, A; Králik, I; Krivda, M; Pastircák, B; Sándor, L; Urbán, J; Villalobos Baillie, O

    2007-01-01

    In this paper we discuss trigger signals synchronisation and trigger input alignment in the ALICE trigger system. The synchronisation procedure adjusts the phase of the input signals with respect to the local Bunch Crossing (BC) clock and, indirectly, with respect to the LHC bunch crossing instant. The synchronisation delays are within one clock period: 0-25 ns. The alignment assures that the trigger signals originating from the same bunch crossing reach the processor logic in the same clock cycle. It is achieved by delaying signals by an appropriate number of full clock periods. We propose a procedure which will allow us to nd alignment delays during the system con guration, and to monitor them during the data taking.

  11. Recent ALICE results on hadronic resonance production

    CERN Document Server

    Badalà, Angela

    2015-01-01

    Hadronic resonances are a valuable tool to study the properties of the medium formed in heavy-ion collisions. In particular, they can provide information on particle-formation mechanisms and on the properties of the medium at chemical freeze-out. Furthermore they contribute to the systematic study of parton energy loss and quark recombination. Measurements of resonances in pp and in p-Pb collisions provide a necessary baseline for heavy-ion data and help to disentangle initial-state effects from medium-induced effects. In this paper the latest ALICE results on mid-rapidity K*(892)^0 and {\\phi}(1020) production in pp, p-Pb and Pb-Pb collisions at LHC energies are presented

  12. The ALICE DAQ infoLogger

    Science.gov (United States)

    Chapeland, S.; Carena, F.; Carena, W.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Ionita, C.; Delort, C.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.; Alice Collaboration

    2014-04-01

    ALICE (A Large Ion Collider Experiment) is a heavy-ion experiment studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The ALICE DAQ (Data Acquisition System) is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches). The DAQ reads the data transferred from the detectors through 500 dedicated optical links at an aggregated and sustained rate of up to 10 Gigabytes per second and stores at up to 2.5 Gigabytes per second. The infoLogger is the log system which collects centrally the messages issued by the thousands of processes running on the DAQ machines. It allows to report errors on the fly, and to keep a trace of runtime execution for later investigation. More than 500000 messages are stored every day in a MySQL database, in a structured table keeping track for each message of 16 indexing fields (e.g. time, host, user, ...). The total amount of logs for 2012 exceeds 75GB of data and 150 million rows. We present in this paper the architecture and implementation of this distributed logging system, consisting of a client programming API, local data collector processes, a central server, and interactive human interfaces. We review the operational experience during the 2012 run, in particular the actions taken to ensure shifters receive manageable and relevant content from the main log stream. Finally, we present the performance of this log system, and future evolutions.

  13. External access to ALICE controls conditions data

    Science.gov (United States)

    Jadlovský, J.; Jadlovská, A.; Sarnovský, J.; Jajčišin, Š.; Čopík, M.; Jadlovská, S.; Papcun, P.; Bielek, R.; Čerkala, J.; Kopčík, M.; Chochula, P.; Augustinus, A.

    2014-06-01

    ALICE Controls data produced by commercial SCADA system WINCCOA is stored in ORACLE database on the private experiment network. The SCADA system allows for basic access and processing of the historical data. More advanced analysis requires tools like ROOT and needs therefore a separate access method to the archives. The present scenario expects that detector experts create simple WINCCOA scripts, which retrieves and stores data in a form usable for further studies. This relatively simple procedure generates a lot of administrative overhead - users have to request the data, experts needed to run the script, the results have to be exported outside of the experiment network. The new mechanism profits from database replica, which is running on the CERN campus network. Access to this database is not restricted and there is no risk of generating a heavy load affecting the operation of the experiment. The developed tools presented in this paper allow for access to this data. The users can use web-based tools to generate the requests, consisting of the data identifiers and period of time of interest. The administrators maintain full control over the data - an authorization and authentication mechanism helps to assign privileges to selected users and restrict access to certain groups of data. Advanced caching mechanism allows the user to profit from the presence of already processed data sets. This feature significantly reduces the time required for debugging as the retrieval of raw data can last tens of minutes. A highly configurable client allows for information retrieval bypassing the interactive interface. This method is for example used by ALICE Offline to extract operational conditions after a run is completed. Last but not least, the software can be easily adopted to any underlying database structure and is therefore not limited to WINCCOA.

  14. ALICE installs new hardware in preparation for the 2012 run

    CERN Multimedia

    CERN Bulletin and ALICE Matters

    2012-01-01

    2011 was a fantastic year for the heavy-ion run at ALICE despite unprecedented challenges and difficult conditions. The data collected is at least one order of magnitude greater than the 2010 data. Thanks to a planned upgrade to two subdetectors during the 2011/2012 winter shutdown and a reorganisation of ALICE’s Physics Working Groups that should allow them to better deal with the greater challenges imposed by the LHC, the collaboration is confident that the 2011 run will allow ALICE to extend its physics reach and improve its performance.   Photograph of ALICE taken by Antonio Saba during this year's winter shutdown. The annual winter shutdown has been a very intense period for the ALICE collaboration. In conjunction with the general maintenance, modifications and tests of the experiment, two major projects – the installation of 3 supermodules of the Transition Radiation Detector (TRD) and 2 supermodules of the Electromagnetic Calorimeter (EMCal) – hav...

  15. Sampling Lake Alice NWR Fish Populations - 2014, North Dakota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The USFWS and North Dakota Game and Fish Department sampled Northern pike, walleye, yellow perch and white bass within the boundary of Lake Alice NWR in North...

  16. First Proton-Proton Physics with the ALICE detector

    CERN Document Server

    Grosse-Oetringhaus, Jan Fiete

    2008-01-01

    This paper describes the status and plans of first measuremen ts in p+p collisions with ALICE. The first part introduces the ALICE experiment with a focus on the subdetectors that are to be used for first physics. The characteristic features of ALICE, its very low-momentum cut-off, the low material budget and the excellent PID and vertexing capabil ities, that make ALICE an important contributor to LHC physics in the realm of soft QCD, are descr ibed. Subsequently, a selection of measurements that are accessible with data taken in a few d ays to 1–2 weeks are discussed: the pseudorapidity density dN ch / d η , the multiplicity distribution and the transverse momentu m distribution dN ch / d p T of charged particles

  17. Heavy flavour measurements with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Castellanos, Javier [service de physique nucleaire - SPhN, IRFU, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2010-07-01

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. The main purpose of ALICE is to investigate the properties of a state of deconfined nuclear matter, the Quark Gluon Plasma. Heavy flavour measurements will play a crucial role in this investigation. The physics programme of ALICE has started by studying proton-proton collisions at unprecedented high energies. We will present the first results on open heavy flavour and quarkonia in proton-proton collisions at {radical}(s)=7 TeV measured by the ALICE experiment at both mid- and forward-rapidities. We will conclude with the prospects for heavy flavour and quarkonium measurements in both proton-proton and nucleus-nucleus collisions. (author)

  18. Performance of the ALICE Experiment at the CERN LHC

    CERN Document Server

    Abelev, Betty Bezverkhny; Adam, Jaroslav; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Jimenez, Ramon; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Vannucci, Luigi; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vargas Trevino, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.

  19. Slovenian trilogy Alice in crazy country by Evald Flisar

    OpenAIRE

    Blažić, Milena Mileva

    2015-01-01

    Evald Flisar (1945) is contemporary Slovenian editor, play writer and writer. He studied Comparative literature at University of Ljubljana and English language and drama at Chiswick Polytechnic in London. He is cosmopolitan oriented adults author who wrote numerous drama and novel for adults. Lewis Carroll The Alice’s Adventures in Wonderland (1865) influenced to Slovenian author. Evald Flisar wrote Alice in Crazy Country as fantasy (2008), Alice in Crazy Country: Ecological Fa...

  20. ALICE takes root in Saint-Genis-Pouilly

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To celebrate the CERN 50th anniversary and to emphasize the close ties between the community of Saint-Genis-Pouilly, CERN and the ALICE Collaboration, Hubert Bertrand, Mayor of Saint-Genis-Pouilly and Christian Fabjan, Technical Coordinator of the ALICE Experiment, planted a tree on Saturday 16 October 2004 in front of the Jean Monet Culture Center.

  1. ALICE takes root in Saint-Genis-Pouilly

    CERN Multimedia

    2004-01-01

    To celebrate the CERN 50th anniversary and to emphasize the close ties between the community of Saint-Genis-Pouilly, CERN and the ALICE Collaboration, Hubert Bertrand, Mayor of Saint-Genis-Pouilly and Christian Fabjan, Technical Coordinator of the ALICE Experiment, planted a tree on Saturday 16 October 2004 in front of the Jean Monet Culture Center.

  2. A comparison between Alice and Elizabeth chatbot systems

    OpenAIRE

    Shawar, BA; Atwell, E.

    2002-01-01

    This study examines two chatter bots systems called ALICE and Elizabeth, which are adapted from ELIZA program. Joseph Weizenbaum implemented ELIZA in 1966 and it was originally designed to emulate a psychotherapist. This report also provides an introduction to the analysis of ALICE and Elizabeth focusing in the knowledge representation and pattern matching algorithms for each one of them. The report then illustrates the main differences between them and concludes that it will be easier to bui...

  3. VHMPID: a new detector for the ALICE experiment at LHC

    CERN Document Server

    Agócs, A Gu; Barnaföldi, G G; Bellwied, R; Bencze, Gy; Berényi, D; Boldizsár, L; Cuautle, E; De Cataldo, G; Di Bari, D; Di Mauro, A; Dominguez, I; Futó, E; García, E; Hamar, G; Harris, J; Harton, A; Kovács, L; Lévai, P; Lipusz, Cs; Markert, C; Martinengo, P; Martinez, M I; Mastromarco, M; Mayani, D; Molnár, L; Nappi, E; Ortiz, A; Paić, G; Pastore, C; Patino, M E; Perini, D; Perrino, D; Peskov, V; Pinsky, L; Piuz, F; Pochybová, S; Smirnov, N; Song, J; Timmins, A; Varga, D; Vargas, A; Vergara, S; Volpe, G; Yi, J; Yoo, I K

    2011-01-01

    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  4. ALICE91, Particle Spectra from Compound Nucleus Decay

    International Nuclear Information System (INIS)

    1 - Description of program or function: Several types of calculations and combinations can be performed including a standard Weisskopf-Ewing evaporation with multiple particle emission, S-wave approximation to give an upper limit to the enhancement of gamma-ray deexcitation due to momentum effects, and an evaporation calculation that can include fission competition via the Bohr-Wheeler approach. ALICE91 calculates precompound decay via Hybrid and GDH models with multiple precompound decay algorithms, single and double differential spectra, and reaction product cross sections. 2 - Method of solution: ALICE/85/300 and later revisions of the ALICE/LIVERMORE 82 computer code do precompound, compound/ statistical fission calculations in the general framework of the Weisskopf-Ewing evaporation model, the Bohr-Wheeler transition state model for fission, and the hybrid/geometry dependent models for precompound decay. ALICE/85/300 allows a variable energy mesh size, excitation energies up to 300 MeV, and incorporates several other improvements in calculational approaches. ALICE91 includes options for shell dependent level densities, and an option to use systematics for angular distribution. The new version also includes gamma-ray competition with particle decay models. The IBM PC version (B) was converted from mainframe ALICE-87, which is a revision of ALICE/85/300. Input default options were included in this version. Refer to comments in the file ALICE1.FOR for information on modifications. ALISO differs only in that it will do calculations for natural isotopic targets, giving weighted results at the end. 3 - Restrictions on the complexity of the problem: Users must refer to comments in the FORTRAN source files for input instructions and information. If running the PC version on 32-bit word-length machines, remove CXXXXX from double precision statements for POW and GAM

  5. ALICE's main austenitic stainless steel support structure (the Space Frame)

    CERN Document Server

    Maximilien Brice

    2006-01-01

    This structure is constructed to hold the large volume detectors, such as the Time Projection Chamber, Transition Radiation Detector and Time of Flight inside the ALICE solenoid magnet. After the final assembly at CERN, two large mobile cranes were needed for the job of lifting and turning the 14 tonne frame onto its side. Once shifted, it was placed in Building SX2, one of the surface assembly areas designated for ALICE.

  6. VHMPID: a new detector for the ALICE experiment at LHC

    Directory of Open Access Journals (Sweden)

    Perini D.

    2011-04-01

    Full Text Available This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  7. ALICE industrial award ceremony in Bologna at Santa Cristina

    CERN Multimedia

    2006-01-01

    from left to right:Pierluigi Bellutti (ITC); Andrea Zanotti President of ITC; Luciano Bosisio (Trieste University); Mario Zen,Director of ITC ; Maurizio Boscardin (ITC); Jean-Robert Lutz, ITS-SSD Project leader (IPHC Strasbourg).

  8. Open access for ALICE analysis based on virtualization technology

    Science.gov (United States)

    Buncic, P.; Gheata, M.; Schutz, Y.

    2015-12-01

    Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.

  9. Theological Construction in the Offices in Honour of St Knud Lavard

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A discussion of the theology of the late twelfth-century offices in honour of the Danish patron saint Knud Lavard, asking to what extent this theology can be seen to have been underlined in musical representations. The theological tenor is on suffering as a consequence of evil and unprovoked aggr...... aggression, verbally as well as musically. This is underscored by textual as well as musical analysis of central parts of the offices, focusing on the relationship between the responsories and the homiletic readings of the last Nocturns of Matins....

  10. Honour and respect in Danish prisons: Contesting ‘cognitive distortions’ in cognitive-behavioural programmes

    DEFF Research Database (Denmark)

    Laursen, Julie; Laws, Ben

    2016-01-01

    Using empirical data from prison-based cognitive-behavioural programmes, this article considers how prisoners’ subcultural capital shapes their responses to demands for ‘cognitive self-change’. We argue that accounts of ‘respect’ in the prior literature fail to capture how prisoners react...... to create accountable and rational actors, who ‘self-manage’, the therapeutic ethos neglects participants’ life experiences and subcultural capital. Open expressions of moral values by prisoners (such as displays of honour and respect) are considered to be cognitive distortions which are dismissed...

  11. Honour and domestic violence in the Late Roman West, c. 300–600 A.D.

    OpenAIRE

    Hatlen, Jan Frode

    2015-01-01

    Summary of the thesis: The concept of honour is often used to explain domestic violence in cases involving gender and sexuality. The concept is mainly associated with regions in Western Asia, North Africa and South America. The thesis explores whether such violence has also been a part of the history of Europe, by studying views on gender, the relationships between men and women, and domestic violence in the Latin West, c. 300-600 A.D. This was a formative period in the European history o...

  12. Industry

    International Nuclear Information System (INIS)

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO2, NOx, CO2, CO, CH4, N2O, NH3, Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  13. Resource-loaded planning for ALICE

    CERN Document Server

    Gastal, M

    2005-01-01

    The ALICE experimental area management team faces various challenges when it comes to sharing scarce resources, indispensable to any efficient installation in a category one worksite. Space, cranes, jigs, and personnel with key competences have to be carefully allocated to activities so as to avoid slowing down work progress. To this intent, a resource loaded planning has been developed that allows highlighting coactivities and prioritizing critical tasks. It uses the built-in capabilities of Microsoft Project. The use of this scheduling tool leads to a more efficient use of time and a safer work environment. The installation sequence resulting from this schedule is presented in this paper. The first part of the sequence focuses on the revision of the coils in the SX2 building. The dipole has then to be installed in the RB26 side of the UX25 cavern. This complex and resource intensive activity has to be performed in parallel with the services installation inside the L3 magnet. On the RB24 side of the cavern t...

  14. ALICE HLT high speed tracking on GPU

    CERN Document Server

    Gorbunov, Sergey; Aamodt, Kenneth; Alt, Torsten; Appelshauser, Harald; Arend, Andreas; Bach, Matthias; Becker, Bruce; Bottger, Stefan; Breitner, Timo; Busching, Henner; Chattopadhyay, Sukalyan; Cleymans, Jean; Cicalo, Corrado; Das, Indranil; Djuvsland, Oystein; Engel, Heiko; Erdal, Hege Austrheim; Fearick, Roger; Haaland, Oystein Senneset; Hille, Per Thomas; Kalcher, Sebastian; Kanaki, Kalliopi; Kebschull, Udo Wolfgang; Kisel, Ivan; Kretz, Matthias; Lara, Camillo; Lindal, Sven; Lindenstruth, Volker; Masoodi, Arshad Ahmad; Ovrebekk, Gaute; Panse, Ralf; Peschek, Jorg; Ploskon, Mateusz; Pocheptsov, Timur; Ram, Dinesh; Rascanu, Theodor; Richter, Matthias; Rohrich, Dieter; Ronchetti, Federico; Skaali, Bernhard; Smorholm, Olav; Stokkevag, Camilla; Steinbeck, Timm Morten; Szostak, Artur; Thader, Jochen; Tveter, Trine; Ullaland, Kjetil; Vilakazi, Zeblon; Weis, Robert; Yin, Zhong-Bao; Zelnicek, Pierre

    2011-01-01

    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be cri...

  15. Inbetriebnahme und Kalibrierung der ALICE-TPC

    CERN Document Server

    Wiechula, Jens

    2008-01-01

    ALICE (A Large Ion Collider Experiment), is the dedicated heavy-ion experiment at the Large Hadron Collider (LHC) at CERN. It is optimised to reconstruct and identify the particles created in a lead-lead collision with a centre of mass energy of 5.5TeV. The main tracking detector is a large-volume time-projection chamber (TPC). With an active volume of about 88m^3 and a total readout area of 32.5m^2 it is the most challenging TPC ever build. A central electrode divides the 5m long detector into two drift regions. Each readout side is subdivided into 18 inner and 18 outer multi-wire proportional read-out chambers. The readout area is subdivide into 557568 pads, where each pad is read out by and electronics chanin. A complex calibration is needed in order to reach the design position-resolution of the reconstructed particle tracks of about 200um. One part of the calibration lies in understanding the electronic-response. The work at hand presents results of the pedestal and noise behaviour of the front-end elect...

  16. The ALICE silicon strip detector system

    CERN Document Server

    Kuijer, P

    2000-01-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the Large Hadron Collider (LHC) optimized for the study of heavy-ion collisions at a centre-of-mass energy of 5.5 TeV per nucleon. The detector consists essentially of two main components: the central part, composed of detectors mainly devoted to the study of hadronic signals and dielectrons, and the forward muon spectrometer devoted to the study of quarkonia behaviour in dense matter. The central part, which covers +-45 deg. (|eta|<0.9) over the full azimuth, is embedded in a large magnet with a weak solenoidal field. Outside of the Inner Tracking System (ITS), there are a cylindrical TPC and a large area PID array of time-of-flight (TOF) counters. In addition, there are two small-area single-arm detectors: an electromagnetic calorimeter (Photon Spectrometer, PHOS) and an array of RICH counters optimized for high-momentum inclusive particle identification (HMPID). This article describes the silicon strip detector system used in the outer layers o...

  17. Alice-Anne Martin (1926 - 2016)

    CERN Multimedia

    2016-01-01

    Alice-Anne Martin, known as “Schu” from her maiden name Schubert, passed away on 8 January 2016.   (Image: Gérard Bertin) Hired the year CERN was founded, 1954, when the construction of the Laboratory had not even begun, Schu first worked at the Villa de Cointrin (a historic building now within the grounds of Geneva airport) as a secretary. In this role, she typed the convention between CERN and the Swiss Confederation, prepared by Stéphanie Tixier, as well as some of the "Yellow Reports" that have marked key points in the Laboratory’s history. For example, using a special typewriter with two keyboards – Latin and Greek – she typed the Yellow Report on the KAM theorem by Rolf Hagedorn. Schu also worked with Felix Bloch, the first Director-General of CERN, and later became the secretary of Herbert Coblenz, the first CERN librarian. She was head of the team that edited the proceedings of the ...

  18. Federico Antinori elected as the new ALICE Spokesperson

    CERN Multimedia

    Iva Raynova

    2016-01-01

    On 8 April 2016 the ALICE Collaboration Board elected Federico Antinori from INFN Padova (Italy) as the new ALICE Spokesperson.   During his three-year mandate, starting in January 2017, he will lead a collaboration of more than 1500 people from 154 physics institutes across the globe. Antinori has been a member of the collaboration ever since it was created and he has already held many senior leadership positions. Currently he is the experiment’s Physics Coordinator and as such he has the responsibility to overview the whole sector of physics analysis. During his mandate ALICE has produced many of its most prominent results. Before that he was the Coordinator of the Heavy Ion First Physics Task Force, charged with the analysis of the first Pb-Pb data samples. In 2007 and 2008 Federico served as ALICE Deputy Spokesperson. He was also the first ALICE Trigger Coordinator, having a central role in defining the experiment’s trigger menus from the first run in 2009 until the end of...

  19. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  20. 10'000 ton ALICE gets her UK-built "Brain"

    CERN Multimedia

    Maddock, Julia

    2007-01-01

    For one of the four LEP experiments, called ALICE, the process got a step closer last week when a crucial part of the 10'000-ton detector, the British-built Central Trigger Processor (CTP), was installed in the ALICE cavern, some 150 feet underground. (plus background information about ALICE) (2,5 pages)

  1. AliEn: ALICE Environment on the GRID

    CERN Multimedia

    Bagnasco, S; Buncic, P; Carminati, F; Cirstoiu, C; Grigoras, C; Hayrapetyan, A; Harutyunyan, A; Peters, A J; Saiz, P

    2007-01-01

    Starting from mid-2008, the ALICE detector at CERN LHC will collect data at a rate of 4PB per year. ALICE will use exclusively distributed Grid resources to store, process and analyse this data. The top-level management of the Grid resources is done through the AliEn (ALICE Environment) system, which is in continuous development since year 2000. AliEn presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called Data Challenges. This paper describes the AliEn architecture: Job Management, Data Management and UI. The current status of AliEn will be illustrated, as well as the performance of the system during the data challenges. The paper also describes the future AliEn development roadmap.

  2. Operational Experience and Performance of the Present ALICE ITS

    CERN Document Server

    Senyukov, Serhiy

    2015-01-01

    ALICE (A Large Ion Collider Experiment) is one of four major experiments at the CERN LHC. ALICE studies strongly interacting matter under extreme conditions created in heavy ion colli- sions. The Inner Tracking System (ITS) is an essential part of the ALICE detector. It is used for tracking, reconstruction of primary and secondary vertices and particle identification. ITS is composed of six cylindrical layers of silicon detectors. Three different techologies are used: hybrid pixel, drift and strip detectors. The ITS was fully commisioned in 2009 at the start of LHC Run 1. The detectors showed good performance during this period contributing to several important measurements. During the LHC Long Shutdown 1 (LS1) the ITS underwent general consolidation and is now ready for the next LHC run

  3. Disability Exclusion and Rights: The Life Story of Alice Jamieson

    Directory of Open Access Journals (Sweden)

    Allison Lynch

    2014-06-01

    Full Text Available There is a commonly held belief that fear of disability by society is the reason for segregation of the disabled. Although acknowledging the validity of such a belief, this paper disputes this claim as it pertains to sufferers of mental illness. Specifically it explores one woman’s development of dissociative identity disorder as a result of years of incestuous abuse. Alice Jamieson developed multiple personalities in order to survive her horrendous childhood, which ultimately caused her to live a life of segregation and social exclusion. Alice did however; experience the enabling effects of positive, supportive relationships on rare occasions throughout her childhood (with her grandfather and her adult life (with a work colleague. The telling of her story bought Alice a powerful sense of healing and has helped raise awareness of childhood sexual abuse and its devastating consequences.

  4. ALICE Connex : Mobile Volunteer Computing and Edutainment Platform

    CERN Document Server

    Chalumporn, Gantaphon

    2016-01-01

    Mobile devices are very powerful and trend to be developed. They have functions that are used in everyday life. One of their main tasks is to be an entertainment devices or gaming platform. A lot of technologies are now accepted and adopted to improve the potential of education. Edutainment is a combination of entertainment and education media together to make use of both benefits. In this work, we introduce a design of edutainment platform which is a part of mobile volunteer computing and edutainment platform called ‘ALICE Connex’ for ALICE at CERN. The edutainment platform focuses to deliver enjoyment and education, while promotes ALICE and Volunteer Computing platform to general public. The design in this work describes the functionality to build an effective edutainment with real-time multiplayer interaction on round-based gameplay, while integrates seamless edutainment with basic particle physic content though game mechanism and items design. For the assessment method we will observe the enjoyment o...

  5. Upgrade of the ALICE Experiment: Letter of Intent

    CERN Document Server

    Abelev, B; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agostinelli, A; Agrawal, N; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Anderssen, E C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anticic, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bairathi, V; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastian Van Beelen, J; Bastid, N; Basu, S; Bathen, B; Batigne, G; Battistin, M; Batyunya, B; Batzing, P C; Baudot, J; Baumann, C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Benettoni, M; Benotto, F; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berger, M E; Bertens, R A; Berzano, D; Besson, A; Betev, L; Bhasin, A; Bhati, A K; Bhatti, A; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielcík, J; Bielcíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blau, D; Blume, C; Bock, F; Boehmer, F V; Bogdanov, A; Boggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Borshchov, V N; Bortolin, C; Bossú, F; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Breitner, T; Broker, T A; Browning, T A; Broz, M; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Carena, F; Carena, W; Cariola, P; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Caudron, T; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Claus, G; Cleymans, J; Colamaria, F; Colella, D; Coli, S; Colledani, C; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Da Riva, E; Das, D; Das, I; Das, K; Das, S; Dash, A; Dash, S; De, S; Decosse, C; Delagrange, H; Deloff, A; Dénes, E; D'Erasmo, G; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Robertis, G; De Roo, K; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, o; Dobrin, A; Dobrowolski, T; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Dorheim, S; Dorokhov, A; Doziere, G; Dubey, A K; Dubla, A; Ducroux, L; Dulinski, W; Dupieux, P; Dutta Majumdar, A K; Ehlers III, R J; Elia, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fiorenza, G; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Franco, M; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhoje, J J; Gagliardi, M; Gajanana, D; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Ghosh, S K; Gianotti, P; Giubilato, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gomez Marzoa, M; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Graczykowski, L K; Grajcarek, R; Greiner, L C; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grondin, D; Grosse-Oetringhaus, J F; Grossiord, J -Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; H Khan, K; Haake, R; Haaland, o; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Hennes, E; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hicks, B; Hillemanns, H; Himmi, A; Hippolyte, B; Hladky, J; Hristov, P; Huang, M; Hu-Guo, C; Humanic, T J; Hutter, D; Hwang, D S; Igolkin, S; Ijzermans, P; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jacholkowski, A; Jadlovsky, J; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Junique, A; Jusko, A; Kalcher, S; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kebschull, U; Keidel, R; Keil, M; Ketzer, B; Khan, M Mohisin; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D; Kim, D W; Kim, D J; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravcáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Krymov, E B; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; La Pointe, S L; La Rocca, P; Lea, R; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; Leogrande, E; Leoncino, M; León Monzón, I; Lesenechal, Y; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Listratenko, O M; Ljunggren, H M; Lodato, D F; Loddo, F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Lopez, X; López Torres, E; Lu, X -G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; M Gago, A; M Jacobs, P; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Maltsev, N A; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Mapelli, A; Marchisone, M; Mares, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Marquard, M; Marras, D; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Maslov, M; Masoni, A; Massacrier, L; Mastroserio, A; Mattiazzo, S; Matyja, A; Mayer, C; Mazer, J; Mazumder, R; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miskowiec, D; Mitu, C M; Mlynarz, J; Mohanty, B; Molnar, L; Mongelli, M; Montaño Zetina, L; Montes, E; Morando, M; Moreira De Godoy, D A; Morel, F; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhammad Bhopal, F; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Okatan, A; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paic, G; Painke, F; Pajares, C; Pal, S K; Palmeri, A; Panati, S; Pant, D; Pantano, D; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastore, C; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Peryt, W; Pesci, A; Pestov, Y; Petagna, P; Petrácek, V; Petran, M; Petris, M; Petrovici, M; Petta, C; Pham, H; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Ploskon, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Pohjoisaho, E H O; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Protsenko, M A; Pruneau, C A; Pshenichnov, I; Puddu, G; Puggioni, C; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rasson, J E; Rathee, D; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J -P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Roed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossegger, S; Rossewij, M J; Rossi, A; Roudier, S; Rousset, J; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sacchetti, M; Sadovsky, S; Safarík, K; Sahlmuller, B; Sahoo, R; Sahu, P K; Saini, J; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sánchez Rodríguez, F J; sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schipper, J D; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Seger, J E; Selyuzhenkov, I; Senyukhov, S; Seo, J; Serradilla, E; Sevcenco, A; Sgura, I; Shabetai, A; Shabratova, G; Shahoyan, R; Shangaraev, A; Sharma, N; Sharma, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Snoeys, W; Sogaard, C; Soltz, R; Song, J; Song, M; Sooden, V; Soramel, F; Sorensen, S; Spacek, M; spalek, J; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vasquez, M A; Sugitate, T; Suire, C; Suleymanov, M; suljic, M; Sultanov, R; sumbera, M; Sun, X; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turchetta, R; Turrisi, R; Tveter, T S; Tymchuk, I T; Ulery, J; Ullaland, K; Uras, A; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Valentino, V; Valin, I; Vallero, S; Vande Vyvre, P; Vannucci, L; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vasta, P; Vechernin, V; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Vergara Limón, S; Verlaat, B; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wagner, V; Wang, M; Wang, Y; Watanabe, D; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Winter, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I -K; Yushmanov, I; Zaccolo, V; Zach, C; Zaman, A; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, F; Zhang, H; Zhang, X; Zhang, Y; Zhao, C; Zherebchevsky, V I; Zhou, D; Zhou, F; Zhou, Y; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2014-01-01

    The long term goal of the ALICE experiment is to provide a precise characterization of the high-density, high-temperature phase of strongly interacting matter. To achieve this goal, high-statistics precision measurement are required. The general upgrade strategy for the ALICE detector is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz aiming at an integrated luminosity of the order of 10 nb^-1. With the proposed timeline, starting the high-rate operation progressively after 2018 shutdown, the goals set up in our upgrade plans should be achieved collecting data until mid-2020's. In this document we present the main physics motivations for running the LHC with heavy ions at high luminosities and discuss the modifications and replacements needed in the ALICE detectors, the online systems and offline system. The schedule, cost estimate and organization of the upgrade programme are presented as well.

  6. AliEn: ALICE environment on the GRID

    International Nuclear Information System (INIS)

    Starting from mid-2008, the ALICE detector at CERN LHC will collect data at a rate of 4PB per year. ALICE will use exclusively distributed Grid resources to store, process and analyse this data. The top-level management of the Grid resources is done through the AliEn (ALICE Environment) system, which is in continuous development since year 2000. AliEn presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called Data Challenges. This paper describes the AliEn architecture: Job Management, Data Management and UI. The current status of AliEn will be illustrated, as well as the performance of the system during the data challenges. The paper also describes the future AliEn development roadmap

  7. A Bayesian approach to particle identification in ALICE

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Among the LHC experiments, ALICE has unique particle identification (PID) capabilities exploiting different types of detectors. During Run 1, a Bayesian approach to PID was developed and intensively tested. It facilitates the combination of information from different sub-systems. The adopted methodology and formalism as well as the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE will be reviewed. Results are presented with PID performed via measurements of specific energy loss (dE/dx) and time-of-flight using information from the TPC and TOF detectors, respectively. Methods to extract priors from data and to compare PID efficiencies and misidentification probabilities in data and Monte Carlo using high-purity samples of identified particles will be presented. Bayesian PID results were found consistent with previous measurements published by ALICE. The Bayesian PID approach gives a higher signal-to-background ratio and a similar or larger statist...

  8. The ALICE High Level Trigger: status and plans

    CERN Document Server

    Krzewicki, Mikolaj; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-01-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before t...

  9. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  10. Computing Architecture of the ALICE Detector Control System

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    The ALICE Detector Control System (DCS) is based on a commercial SCADA product, running on a large Windows computer cluster. It communicates with about 1200 network attached devices to assure safe and stable operation of the experiment. In the presentation we focus on the design of the ALICE DCS computer systems. We describe the management of data flow, mechanisms for handling the large data amounts and information exchange with external systems. One of the key operational requirements is an intuitive, error proof and robust user interface allowing for simple operation of the experiment. At the same time the typical operator task, like trending or routine checks of the devices, must be decoupled from the automated operation in order to prevent overload of critical parts of the system. All these requirements must be implemented in an environment with strict security requirements. In the presentation we explain how these demands affected the architecture of the ALICE DCS.

  11. Industrialization

    International Nuclear Information System (INIS)

    This chapter discusses the role-plays by nuclear technology to enhance productivity in industry. Some of the techniques, Non-Destructive Testing (NDT) - x, gamma, electron and neutron radiography, nuclear gauges, materials characterization are discussed thoroughly

  12. Test Results of the ALICE-HMPID Detector Commissioning

    CERN Document Server

    Volpe, G

    2008-01-01

    The ALICE High Momentum Particle Identification Detector (HMPID) consists of seven identical proximity focusing RICH counters. It covers in total 11 m2, exploiting large area CsI photocathodes for Cherenkov light imaging. The detector is installed in the ALICE solenoid, ready for the data acquisition. By means of the Detector Control System, the Front-end (FEE) and the Readout (R/O) electronics, the MWPC high voltages, the cooling and the gas system have been tested. The HMPID module gas pressure, temperature, current and voltage trends have been monitored and archived in the ORACLE database. In this paper a comprehensive review on the test results is presented.

  13. Evénements ALICE - French version only

    CERN Multimedia

    2004-01-01

    Le 29 septembre 2004 à 15h00, programme « A la rencontre d'ALICE », à la Médiathèque municipale de Saint-Genis-Pouilly, France. Histoire pour des enfants (à partir de 8 ans), extraite de la bande dessinée: « ALICE et la soupe de quarks et de gluons ». Le 2 octobre 2004 à 11h00, programme « A la rencontre d'ALICE », à la Médiathèque municipale de Saint-Genis-Pouilly, France. Présentation ALICE pour les adolescents (à partir de 14 ans).

  14. ALICE Muon Arm Dipole Magnet - Conceptual Design Report

    CERN Document Server

    Swoboda, D; CERN. Geneva

    1998-01-01

    A large Dipole Magnet is required for the Muon Arm spectrometer of the ALICE experiment 1,2[Figure 1]. The main parameters and basic design options of the dipole magnet have been described in 3. The absence of criteria for the necessary symmetry and homogeneity of the magnetic field has lead to a design dominated by economical and feasibility considerations. List of Figures: Figure 1 ALICE Experiment. Figure 2 Dipole Magnet Assembly. Figure 3 Dipole Magnet Yoke. Figure 4 Dipole Magnet Coil System. Figure 5 Schematic of Heat Screen. Figure 6 Dipole Magnet Moving Base.

  15. Alice, Benzene, and Coffee: The ABCs of Ecopharmacognosy.

    Science.gov (United States)

    Cordell, Geoffrey A

    2015-12-01

    The sesquicentennial celebrations of the publication of "Alice's Adventures in Wonderland" and the structure of benzene offer a unique opportunity to develop a contemporary interpretation of aspects of Alice's adventures, illuminate the symbolism of benzene, and contextualize both with the globalization of coffee, transitioning to how the philosophy and sustainable practices of ecopharmacognosy may be applied to modulating approaches to the quality, safety, efficacy, and consistency (QSEC) of traditional medicines and dietary supplements through technology integration, thereby improving patient-centered health care. PMID:26882696

  16. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  17. Conference on Statistical Science Honouring the Bicentennial of Stefano Franscini's Birth

    CERN Document Server

    Morgenthaler, Stephan; Ronchetti, Elvezio

    1997-01-01

    The Conference on "Statistical Science", held in Monte Verita (Switzerland) on 18/20 November 1996, was intended to honour the memory of Stefano Franscini at the occasion of the bicentennial of his birth (1796-1996). It was jointly organized by the Swiss Federal Institute of Technology in Lausanne, the Swiss Federal Statistical Office and the University of Geneva. These proceedings gather a selected collection of contributions presented by statisticians from universities, research institutes and national statistical services of Europe, North America and Asia. Part I focuses on a historical appreciation of Stefano Franscini's life and work. Authors develop a deep analysis of the historical context, the political action, the scientific achievement and the intellectual legacy of the founding father of Swiss official statistics. The reader thus has an opportunity to appreciate the various facets of this exceptional man who not only drew the first comprehensive statistical portrait of Switzerland but also establis...

  18. Society News: Queen honours Fellows; The Society and legacies; Thesis prizes; Lectures on laptops; Stonehenge story

    Science.gov (United States)

    2007-08-01

    The Queen's Birthday Honours list announced on 16 June contained some familiar names from astronomy. Prof. Mark Bailey (1) of Armagh Observatory, currently a Vice-President of the RAS, was awarded an MBE and Dr Heather Couper (2), former President of the British Astronomical Association, a CBE. Prof. Nigel Mason (3) of the Open University and inaugural Director of the Milton Keynes Science Festival received an OBE. Prof. Jocelyn Bell-Burnell (4), President of the RAS from 2002-2004, was awarded a DBE - and an Honorary Doctorate from Harvard University. In addition, Prof. Lord Rees (5), Astronomer Royal, president of the Royal Society and President of the RAS from 1992-1994, was appointed to the Order of Merit.

  19. Commissioning and Prospects for Early Physics with ALICE

    OpenAIRE

    Kuijer, P G

    2009-01-01

    The ALICE detector has been commissioned and is ready for taking data at the Large Hadron Collider. The first proton-proton collisions are expected in 2009. This contribution describes the current status of the detector, the results of the commissioning phase and its capabilities to contribute to the understanding of both pp and PbPb collisions

  20. Measurement of Forward-Backward Charged Particle Correlations with ALICE

    DEFF Research Database (Denmark)

    Søgaard, Carsten

    Part I of the defence covers experimental development carried out in the ALICE experiment at the Large Hadron Collider at the European Organisation for Nuclear Research - CERN. For the Time Projection Chamber a sophisticated laser calibration system has been developed by the Niels Bohr Institute...

  1. Overview of recent azimuthal correlation measurements from ALICE

    CERN Document Server

    ,

    2016-01-01

    Azimuthal correlations are a powerful tool to probe the properties and the evolution of the collision system. In this proceedings, we will review the recent azimuthal correlation measurements from ALICE at the LHC. The comparison to other experimental measurements and various theoretical calculations will be discussed as well.

  2. Performance of the ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mis̈kowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Twinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Rd, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Sándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, C. B.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Saard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, P. Y.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling proced

  3. Romanian Physicists at CERN work for the Alice Program

    CERN Multimedia

    2007-01-01

    "For the past six years a team of Romanian scientists from the Institute of Nuclear Physics in Magurele, Romania, work as part of an international team of CERN to recreate the very first moments of the Universe, right after the Big Bang. The experiment was called Alice."(2 pages)

  4. ALICE Time Projection Chamber (TPC) Readout Sector in Lab

    CERN Multimedia

    2003-01-01

    The Time Projection Chamber (TPC) is the main particle tracking detector in ALICE. Charged particles crossing the gas of the TPC knock electrons out of their atoms, which drift in the eletric field. By measuring the arrival of electrons at the end of the chamber, at segments such as the one shown here, the TPC will reconstruct the paths of the original charged particles.

  5. Correlations in proton-proton collisions with ALICE

    OpenAIRE

    Giovannini, Alberto; Ugoccioni, Roberto

    2002-01-01

    Particle correlations and particle multiplicity distributions cannot be approached independently: a unified description of correlations and multiplicity distributions is always needed in order to understand the underlying dynamics in high energy collisions. In this light, we review the most recent and interesting results on rapidity and momentum correlations, emphasising the possibilities of measurements with the ALICE detector.

  6. Managing Infrastructure in the ALICE Detector Control System

    CERN Document Server

    Lechman, M; Bond, P M; Chochula, P.Ch; Kurepin, A N; Pinazza, O; Rosinsky, P; Kurepin, A N; Pinazza, O

    2014-01-01

    The main role of the ALICE Detector Control System (DCS) is to ensure safe and efficient operation of one of the large high energy physics experiments at CERN. The DCS design is based on the commercial SCADA software package WinCC Open Architecture.

  7. The “24 hours” of the ALICE magnet

    CERN Multimedia

    2005-01-01

    The ALICE dipole magnet, now in its final location in the cavern at Point 2 , has run at full current for 24 hours. The dipole of the ALICE muon spectrometer has successfully completed new tests in its final position. The ALICE detector is based on two large magnets - the big solenoid magnet formerly used by L3 on LEP, and a new dipole magnet, built through a strong and successful collaboration with a team from JINR in Russia, under the direction of Detlef Swoboda from TS-LEA at CERN. By October 2004, the dipole had been assembled in a preliminary position in the ALICE cavern, and in November it successfully passed extensive testing (CERN Bulletin 04/05). Now it has been transferred to its final position on the far side of the L3 solenoid, and has passed tests with flying colours. The first â€ワpre-assembly” was necessary to perform all the remaining machining operations for fixing the coils and to verify the assembly tooling, as the available space in the final location is very limited and does no...

  8. Study of b-jet tagging performance in ALICE

    CERN Document Server

    Feldkamp, Linus

    2014-01-01

    We present the current status and Monte Carlo study based performance estimates of b-jet tagging using ALICE, as obtained using both impact parameter as well as secondary vertex methods. We also address the prospects of the identification of electrons from heavy-flavour hadron decays to obtain b-jet enhanced jet samples.

  9. Commissioning and prospects for early physics with ALICE

    NARCIS (Netherlands)

    Kuijer, P.G.

    2009-01-01

    The ALICE detector has been commissioned and is ready for taking data at the Large Hadron Collider. The first proton-proton collisions are expected in 2009. This contribution describes the current status of the detector, the results of the commissioning phase and its capabilities to contribute to th

  10. Study of the photon identification efficiency with ALICE photon spectrometer

    Institute of Scientific and Technical Information of China (English)

    MAO Ya-Xian; ZHOU Dai-Cui; XU Chun-Cheng; YIN Zhong-Bao

    2008-01-01

    The efficiency for the detection and identification of photons with the ALICE PHOton Spectrometer PHOS has been studied with the Monte-Carlo generated data. In particular, the influence on the efficiency of the PHOS-module edge-effect and of the material in front of PHOS have been examined.

  11. ALICE breaks through the one Gigabyte/sec barrier

    CERN Multimedia

    2003-01-01

    The test phases of the ALICE data acquisition system, known as the Data Challenges, are celebrating their fourth anniversary. The fruit of collaboration between several of the experiment's groups and IT Division, the 2002 tests concentrated on the system's performance and stability.

  12. Test of TOF Scintillator Counters for ALICE Detector

    CERN Document Server

    Semenov, P; Malakhov, A; Melkumov, G L

    1996-01-01

    The manufactured counters of the fast response scintillators with the photomultipliers valid for operation in the magnetic field environment is being considered among the options for the time-of-flight (TOF) measurements as a particle identification tool for the ALICE experiment. Here we discuss how the tests of such counters have been implemented on the particle beam in respect to the time resolution.

  13. Alice Walker's Womanism Colored in The Color Purple

    Institute of Scientific and Technical Information of China (English)

    蒋慧慧

    2009-01-01

    In her famous novel The Color Purple,Alice Walker's womanism is colored by four kinds of conseiousness-female consciousness,racial consciousness,root-seeking consciousness,and universal consciousness.It is owing to the womanism that the heroine celie grown from an abused woman to an independent selfhood.

  14. AliEn - GRID application for ALICE Collaboration

    International Nuclear Information System (INIS)

    AliEn (ALICE Environment) is a GRID framework built on top of the latest Internet standards for information exchange and authentication (SOAP, PKI) and common Open Source components. AliEn provides a virtual file catalogue that allows transparent access to distributed data-sets and a number of collaborating Web services which implement the authentication, job execution, file transport, performance monitor and event logging.The ALICE experiment has developed AliEn as an implementation of distributed computing infrastructure needed to simulate, reconstruct and analyze data from the experiment. The sites that belong to the ALICE Virtual Organisation can be seen and used as a single entity - any available node executes jobs and access to logical and datasets is transparent to the user. In developing AliEn common standards and solutions in the form of Open Source components were used. Only 1% (25k physical lines of code in Perl) is native AliEn code while 99% of the code has been imported in form of Open Sources packages and Perl modules. Currently ALICE is using the system for distributed production of Monte Carlo data at over 30 sites on four continents. During the last twelve months more than 30,000 jobs have been successfully run under AliEn control worldwide, totalling 25 CPU years and producing 20 TB of data. The user interface is compatible to EU DataGrid at the level of authentication and job description language. In perspective AliEn will be interfaced to the mainstream Grid infrastructure in HEP and it will remain to serve as interface between ALICE Offline framework and external Grid infrastructure. (authors)

  15. The ALICE experiment at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo Gameiro [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: ALICE (A Large Ion Collider Experiment) is the only experiment form the Large Hadron Collider (LHC) at CERN (European Organization for Nuclear Research) dedicated mainly to study relativistic heavy ion collisions. The experiment was optimized to measure a great variety of observables that allow us to study the properties of the Quark Gluon Plasma, a new state of nuclear matter where quarks and gluons are deconfined from hadrons. The enlightenment of such properties will provide great insight in the understanding of the strong interaction described by QCD. In this talk, I will present the ALICE experiment, the latest results obtained by the collaboration in the last 2 years and discuss the Brazilian participation in this very interesting and important international project. (author)

  16. Upgrade of the ALICE-TPC read-out electronics

    Energy Technology Data Exchange (ETDEWEB)

    Junique, A; Mager, M; Musa, L; Rehman, A Ur, E-mail: Magnus.Mager@cern.ch [CERN, Geneva (Switzerland)

    2010-12-15

    The ALICE experiment at CERN LHC employs a large volume time projection chamber (TPC) as its main tracking device. Instigated by analyses indicating that the high level trigger is capable of sifting events with rare physics probes, it is endeavoured to read out the TPC an order of magnitude faster then was reckoned during the design of its read-out electronics. Based on an analysis of the read-out performance of the current system, an upgrade of the front-end read-out network is proposed. The performance of the foreseen architecture is simulated with raw data from real 7 TeV pp collisions. Events are superimposed in order to emulate the future ALICE running conditions: high multiplicity events generated either by PbPb collisions or by the superposition (pile-up) of a large number of pp collisions. The first prototype of the main building block has been produced and characterised, demonstrating the feasibility of the approach.

  17. Measurements of heavy-flavour decay leptons with ALICE

    Directory of Open Access Journals (Sweden)

    Sakai Shingo

    2015-01-01

    Full Text Available We present measurements of electrons and muons from heavy-flavour hadron decays at central and forward rapidity performed by the ALICE Collaboration in p–Pb (√sNN = 5.02 TeV and Pb–Pb collisions (√sNN = 2.76 TeV. Electrons are reconstructed using several detectors of the ALICE central barrel. Muons are reconstructed using the muon spectrometer at forward rapidity (2.5 < y < 4. The nuclear modification factors in Pb–Pb (RAA and in p–Pb (RpPb collisions, and the azimuthal anisotropy (v2 in Pb– Pb collisions will be discussed. Theoretical predictions are compared with the data. In addition, the measurement of the azimuthal correlation between electrons from heavyflavour hadron decays and charged hadrons in p–Pb collisions will be shown.

  18. Experience report: System management at the ALICE HLT cluster

    International Nuclear Information System (INIS)

    The ALICE HLT cluster is responsible for the first analysis and compression of the data from the ALICE experiment at CERN. The processing is performed using hardware accelerators like FPGAs, GPUs and computer nodes with commodity hardware. The mixture of hardware accelerators and several types of nodes causes an increased configuration and system management effort. To handle this effort, we are using a combination of three tools: Chef for the configuration management, Ganglia for the real time monitoring and SysMES for unattended system management, i.e. automatic problem recognition and solution. The tools help to minimize the manpower needed to administrate the cluster by reducing the time needed to recognize and identify problems or even by solving problems automatically. In this talk, we give an insight into our setup and report on the experience we have gained with the heterogeneous, on-line processing cluster during the last four years.

  19. A security architecture for the ALICE grid services

    CERN Document Server

    Schreiner, Steffen; Buchmann, Johannes; Betev, Latchezar; Grigoras, Alina

    2012-01-01

    Globally distributed research cyberinfrastructures, like the ALICE Grid Services, need to provide traceability and accountability of operations and internal interactions. This document presents a new security architecture for the ALICE Grid Services, allowing to establish non-repudiation with respect to creatorship and ownership of Grid files and jobs. It is based on mutually authenticated and encrypted communication using X.509 Public Key Infrastructure and the Transport Layer Security (TLS) protocol. Introducing certified Grid file entries and signed Grid jobs by implementing a model of Mediated Definite Delegation it allows to establish long-term accountability concerning Grid jobs and files. Initial submissions as well as any alteration of Grid jobs are becoming verifiable and can be traced back to the originator. The architecture has been implemented as a prototype along with the development of a new central Grid middleware, called jAliEn.

  20. Members of the ALICE collaboration greet the arrival of the experiment's first 500 lead tungstate crystals

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    L. to r: Vladislav Manko (Kurchatov Institute, Moscow, PHOS project leader), Arne Klovning (University of Bergen, PHOS technical coordinator), Vyacheslav Demanov (VNIIEF, Sarov), Bjorn Pommeresche (University of Bergen), Hans de Groot (CERN, ALICE resource coordinator), Dimitri Alexandrov (Kurchatov Institute, Moscow), Mikhail Ippolitov (Kurchatov Institute, Moscow), Yuri Vinogradov (VNIIEF, Sarov), Chris Fabjan (CERN, ALICE technical coordinator), Yuri Sibiriak (Kurchatov Institute, Moscow), Sergei Sadovsky (IHEP, Protvino), Jurgen Schukraft (CERN, ALICE spokesperson).

  1. Electric performance of the ALICE Silicon Drift Detector irradiated with 1 GeV electrons

    CERN Document Server

    Piemonte, C; Rashevsky, A; Vacchi, A; Wheadon, R

    2002-01-01

    The final version of the ALICE Silicon Drift Detector was irradiated with 1 GeV electrons at the LINAC of the Synchrotron 'Elettra' in Trieste. The electron fluence was equivalent to the total particle fluence expected during 10 years of ALICE operation as far as the bulk damage is concerned. The anode current, the voltage distribution on the integrated divider, and the operation of the MOS injectors were tested. The detector was found to be sufficiently radiation hard for the ALICE experiment.

  2. First CMS awards ceremony of 2003 to honour its top suppliers

    CERN Document Server

    2003-01-01

    Each year CMS holds an awards ceremony to honour its top suppliers. This year 12 companies are receiving awards for their outstanding performances, eight the Gold Award and four the most prestigious award, the Crystal Award. The main ceremony will take place on 24 February during CMS week at CERN. However, one of the recipients of the Gold Award, the Snezhinsk All-Russian Institute of Scientific Research for Technical Physics (VNIITF) of the Russian Federal Nuclear Centre (RFNC) has already received its award. Felicitas Pauss, Vice-Chairman of the CMS Collaboration Board, hands a Gold Award for best CMS supplier to Professor Georgy Rykovanov, Director of Russia's RFNC-VNIITF Institute.The CMS Collaboration took the opportunity of the visit to CERN of the Director of the VNIITF and his deputy to make the award. which the Institute has received for its exceptional performance in the assembly of steel plates for the CMS's forward hadronic calorimeter. This calorimeter consists of two sets of 18 wedge-shape modul...

  3. Albert Hofmann and Steve Myers honoured by the University of Geneva

    CERN Multimedia

    2001-01-01

    Albert Hofmann (top) and Steve Myers (bottom) receive the title of Doctor Honoris Causa from the hands of Maurice Bourquin, Rector of the University of Geneva and President of CERN Council.   In front of Geneva University's crowded auditorium, Albert Hofmann and Steve Myers received title of Doctor Honoris Causa last Friday 8 June. The two members of CERN thereby received the University's highest distinction. This honour comes in recognition of their careers in the service of accelerator physics and their essential contribution to the success of LEP. Steve Myers joined CERN in August 1972 to work as engineer-in charge of the Intersecting Storage Rings collider (ISR). He was responsible for the acceleration by phase displacement of the high intensity beams to 31 GeV/c. He also worked on many other topics, notably the beam-beam effect in the ISR. Albert Hofmann arrived at CERN from the Cambridge Electron Accelerator (CEA) near Boston, USA, in 1973 - already with an excellent reputation as accelerato...

  4. The Universe of Digital Sky Surveys : Meeting to Honour the 70th Birthday of Massimo Capaccioli

    CERN Document Server

    Longo, Giuseppe; Marconi, Marcella; Paolillo, Maurizio; Iodice, Enrichetta

    2016-01-01

    These are the proceedings of a meeting in honour of Massimo Capaccioli at the occasion of his 70th birthday. The conference aimed at summarizing the results from the main current and past digital sky survey projects and at discussing how these can be used to inspire ongoing projects and better plan the future ones. Over the last decades, digital sky surveys performed with dedicated telescopes and finely-tuned wide-field cameras, have revolutionized astronomy. They have become the main tool to investigate the nearby and far away universe, thus providing new insights in the understanding of the galaxy structure and assembly across time, the dark components of the universe, as well as the history of our own galaxy. They have also opened the time domain leading to a new understanding of the transient phenomena in the universe. By providing public access to top quality data, digital surveys have also changed the everyday practice of astronomers who have become less dependent on direct access to large observing ...

  5. Hadronic Resonances in Heavy-Ion Collisions at ALICE

    Directory of Open Access Journals (Sweden)

    Knospea A. G.

    2012-11-01

    Full Text Available Modifications to the masses and widths of hadronic resonances in heavy-ion collisions could be a sign of chiral symmetry restoration. Uncorrected spectra, masses, and widths of the ϕ(1020 and K*(8920 resonances have been measured in Pb–Pb collisions at √sNN = 2.76 TeV using the ALICE detector. These measurements are presented and compared to resonances in other collision systems.

  6. An Android application for monitoring the problems in ALICE Grid

    CERN Document Server

    Ilievski, Vladimir

    2014-01-01

    This project is developing an Android application, which will help in monitoring of the ALICE Grid of computers. It uses a lot of Android related technologies, Cloud solutions and server side programming. It is supposed all users to get notifications for the events that are from their interest. This application will contribute to notify the users in real time, in which way the existing problems will be solved faster.

  7. AliEn - ALICE environment on the GRID

    International Nuclear Information System (INIS)

    AliEn (http://alien.cern.ch) (ALICE Environment) is a Grid framework built on top of the latest Internet standards for information exchange and authentication (SOAP, PKI) and common Open Source components. AliEn provides a virtual file catalogue that allows transparent access to distributed datasets and a number of collaborating Web services which implement the authentication, job execution, file transport, performance monitor and event logging. In the paper we will present the architecture and components of the system

  8. Charmonium production in pp collisions with ALICE at the LHC

    CERN Document Server

    Hugo, Pereira Da Costa

    2016-01-01

    We report on forward-rapidity charmonium production in pp collisions at a center of mass energy $\\sqrt{s} = 13$ TeV, as measured by ALICE at the LHC. Differential cross sections for both J/{\\psi} and {\\psi}(2S) are presented as a function of the charmonium transverse momentum and rapidity. Results are compared to similar measurements performed by LHCb, to lower energy measurements and to state of the art model calculations.

  9. Lead tungstate crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A consignment of 500 lead tungstate crystals arrived at CERN from the northern Russian town of Apatity in May. Destined for the ALICE heavy-ion experiment in preparation for the Large Hadron Collider, each crystal is an 18 cm long rod with a 2.2 cm square section, and weighs some 750 g. A total of 17 000 crystals will make up the experiment's photon spectrometer.

  10. Permanent exhibition of the ALICE experiment at Point 2 : collisions

    CERN Multimedia

    2004-01-01

    Mini Big Bangs in ALICE Why? To study the nature of primordial matter, the quark–gluon plasma, and to discover how matter, as we know it today, was created. Where? 50 m underground in the path of the beams of the Large Hadron Collider (LHC). How? by colliding atomic nuclei at a speed close to that of light (300 000 km/s).

  11. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  12. Hadronic Resonances in Heavy-Ion Collisions at ALICE

    CERN Document Server

    Knospe, A G

    2012-01-01

    Modifications to the masses and widths of hadronic resonances in heavy-ion collisions could be a sign of chiral symmetry restoration. Uncorrected spectra, masses, and widths of the phi(1020) and K*(892)0 resonances have been measured in Pb-Pb collisions at 2.76 TeV using the ALICE detector. These measurements are presented and compared to resonances in other collision systems.

  13. Heavy-flavor production in LHC pp interactions using the ALICE detector

    International Nuclear Information System (INIS)

    Measurements of charm and beauty production in pp collisions, using the ALICE detector system, at LHC energies (√(s)=2.76 and 7.0 TeV) can test perturbative QCD down to very low Björken-x. They are also critical as a reference to ALICE's heavy ion program. The ALICE detector system allows measurements not covered by the other LHC experiments in addition to covering complementary regions. A description of the ALICE detector system, in relation to ATLAS and CMS, are presented. Results from both leptonic and hadronic decay channels will be shown along with comparisons to other measurements when available

  14. The C-RORC PCIe Card and its Application in the ALICE and ATLAS Experiments

    CERN Document Server

    Engel, H; Costa, F; Crone, G J; Eschweiler, D; Francis, D; Green, B; Joos, M; Kebschull, U; Kiss, T; Kugel, A; Panduro Vasquez, J G; Soos, C; Teixeira-Dias, P; Tremblet, L; Vande Vyvre, P; Vandelli, W; Vermeulen, J C; Werner, P; Wickens, F J

    2015-01-01

    The ALICE and ATLAS DAQ systems read out detector data via point-to-point serial links into custom hardware modules, the ALICE RORC and ATLAS ROBIN. To meet the increase in operational requirements both experiments are replacing their respective modules with a new common module, the C-RORC. This card, developed by ALICE, implements a PCIe Gen 2 x8 interface and interfaces to twelve optical links via three QSFP transceivers. This paper presents the design of the C-RORC, its performance and its application in the ALICE and ATLAS experiments.

  15. The C-RORC PCIe card and its application in the ALICE and ATLAS experiments

    CERN Document Server

    Borga, A; The ATLAS collaboration; Crone, G; Engel, H; Eschweiler, D; Francis, D; Green, B; Joos, M; Kebschull, U; Kiss, T; Kugel, A; Panduro Vazquez, W; Soos, C; Teixeira-Dias, P; Tremblet, L; Vande Vyvre, P; Vandelli, W; Vermeulen, J; Werner, P; Wickens, F

    2014-01-01

    The ALICE and ATLAS DAQ systems read out detector data via point-to-point serial links into custom hardware modules, the ALICE RORC and ATLAS ROBIN. To meet the increase in operational requirements both experiments are replacing their respective modules with a new common module, the C-RORC. This card, developed by ALICE, implements a PCIe Gen 2 x8 interface and supports twelve optical links via three QSFP transceivers. This paper presents the design of the C-RORC, its performance and its applications in the ALICE and ATLAS experiments.

  16. Pattern recognition and PID procedure with the ALICE-HMPID

    CERN Document Server

    Volpe, Giacomo

    2014-01-01

    The ALICE apparatus is dedicated to the study of pp, p–Pb and Pb–Pb collisions provided by LHC. ALICE has unique particle identification (PID) capabilities among the LHC experiments exploiting different PID techniques, i.e., energy loss, time-of-flight measurements, Cherenkov and transition radiation detection, calorimetry and topological ID. The ALICE-HMPID is devoted to the identification of charged hadrons. It consists of seven identical RICH counters, with liquid C6F14 as Cherenkov radiator (n ≈1.299 at λ ph=175 nm). Photons and charged particles detection is performed by a proportional chamber, coupled with a pad segmented CsI coated photo-cathode. In pp and p–Pb events HMPID provides 3 sigmas separation for pions and kaons up to View the MathML sourcepT=3GeV/c and for protons up to View the MathML sourcepT=5GeV/c. PID is performed by means of photon emission angle measurement, a challenging task in the high multiplicity environment of the most central Pb–Pb collisions. A dedicated algorithm h...

  17. Latest work in the ALICE Experiment - July 2009

    CERN Multimedia

    CERN Video Productions

    2009-01-01

    Having already performed a lengthy cosmic ray test run, ALICE decided to immediately start consolidation work after the shutdown last autumn. “We wanted to use the additional time for improvements and upgrades," explains Paul Kuijer, ALICE Deputy Spokesperson, “for example, we realised that the access to the main tracking device, the TPC, was rather difficult, which could lead to unreasonably long service and repair times in the future, so we spent a lot of time moving all the cabling of the inner tracking system to give more space and better access.” This was a major operation, running from October 2008 until July 2009. All cables and services have been re-tested and the inner tracking system is again on-line. Future maintenance was pre-empted in other areas too, such as replacing a number of capacitors on the time projection chamber (TPC), which were suspected to have a reduced lifetime. The shutdown also gave ALICE the chance to install several new detector systems that were originally scheduled for ...

  18. Alice Munro's "Runaway" in the Mirror of Sigmund Freud

    Directory of Open Access Journals (Sweden)

    Raheleh Bahador

    2015-03-01

    Full Text Available Mirroring the complexities of the human psyche, literature has received new comprehension through a psychoanalytic lens.  Alice Munro's "Runaway" (2003 is character-based and has the psychological analysis potential but it had never received such kind of study. The objective of the present paper is to read Munro's "Runaway" in the mirror of Sigmund Freud to detect the psychological aspects of its fictional characters. The characters are driven by the Freudian mental agencies and undergo phases of psychic disorder.  In the present paper, Munro's short fiction has been discussed based on Sigmund Freud's theory of the Unconscious and its connection with the interpretation of dreams as well as the symbolization of three main characters based on tripartite agencies of the id, ego and superego. Clarifying the latent and manifest levels of characters and the world of dreams indicates the artistic creation of Alice Munro in handling complex characterization. The unconscious and its connection with the female character's dreams have been discussed. The unconscious of the female character is reflected in her dreams in result of repression and asocial drives and desires. Unconscious through dreams is the mirror of the repressed psyche of the female character. Scrutinizing the three main characters in terms of Freudian psychic trilogy, they prove to fit their psychological Freudian terms.  Keywords: Alice Munro, Runaway, Sigmund Freud, Unconscious, Psychology, Id and Ego, Superego

  19. Minimum Bias Measurements with ALICE at the LHC

    CERN Document Server

    Sicking, Eva

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the seven experiments at the the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland. ALICE is especially designed for heavy-ion collisions but it also operates a rich proton-proton (pp) program. ALICE has collected pp collision data at $\\sqrt{s}=$ 0.9, 2.36, 2.76, and 7 TeV and lead-lead (Pb--Pb) collision data at $\\sqrt{s_{\\mathrm{NN}}}=$2.76 TeV. Here, we report minimum bias measurements obtained until the end of 2010: the results include measurements of charged-particle pseudorapidity, multiplicity and transverse momentum distributions. Also, the two-pion Bose-Einstein correlation and the measurement of antiproton-to-proton ratio will be discussed. Furthermore, results on the production of identified particles including strange particles will be shown as well as first results from the first Pb--Pb run at the LHC.

  20. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  1. The ALICE High Level Trigger: status and plans

    Science.gov (United States)

    Krzewicki, Mikolaj; Rohr, David; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-12-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before the upgrade, during Run 2. For opportunistic use as a Grid computing site during periods of inactivity of the experiment a virtualisation based setup is deployed.

  2. The Readout Control Unit of the ALICE TPC

    CERN Document Server

    Lien, J A; Musa, L

    2004-01-01

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of the central barrel of the ALICE (A Large Ion Collider) Experiment at the Large Hadron Collider (LHC), being constructed at CERN, Geneva. It is a 88 m$^{3}$ cylinder filled with gas and divided into two drift regions by the central electrode located at its axial center. The readout chambers of the TPC are multi-wire proportional chambers with cathode pad readout. About 570 000 pads are read-out by an electronics chain of amplification, digitalization and pre-processing. One of the challenges in designing the TPC for ALICE is the design of Front End Electronics (FEE) to cope with the data rates and the channel occupancy. The Readout Control Unit (RCU), which is presented in this work, is designed to control and monitor the Front End Electronics, and to collect and ship data to the High Level Trigger and the Data Acquisition System, via the Detector Data Link (DDL - optical fibre). The RCU must be capable of reading out up to 200 Mbytes/s f...

  3. 17 September 2013 - Polish Members of Parliament visiting the Tunnel at Point 2 with Senior Engineer, Technology Department A. Siemko and visiting the ALICE cavern with ALICE Collaboration, B. Erazmus

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    17 September 2013 - Polish Members of Parliament visiting the Tunnel at Point 2 with Senior Engineer, Technology Department A. Siemko and visiting the ALICE cavern with ALICE Collaboration, B. Erazmus

  4. The team from ALICE DAQ (Data acquisition) involved in the 7th ALICE data challenge. First row: Sylvain Chapeland, Ulrich Fuchs, Pierre Vande Vyvre, Franco Carena Second row: Wisla Carena, Irina MAKHLYUEVA , Roberto Divia

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    The team from ALICE DAQ (Data acquisition) involved in the 7th ALICE data challenge. First row: Sylvain Chapeland, Ulrich Fuchs, Pierre Vande Vyvre, Franco Carena Second row: Wisla Carena, Irina MAKHLYUEVA , Roberto Divia

  5. Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

  6. "Alice imedemaal" reaalsust tõsiselt ei võta / Margit Tõnson

    Index Scriptorium Estoniae

    Tõnson, Margit, 1978-

    2004-01-01

    7. veebr. esietendus Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  7. Kaspar Jancis kujundas "Alice'i" arvuti abil / Kaspar Jancis ; interv. Raimu Hanson

    Index Scriptorium Estoniae

    Jancis, Kaspar

    2004-01-01

    7. veebr. esietendub Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  8. Technical design report for the upgrade of the ALICE inner tracking system

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; Delagrange, H.; Delo, A.; Dénes, E.; D'Erasmo, G.; De Barros, G. O V; De Caro, A.; De Cataldo, G.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; De Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, I.M.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jacho lkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron De Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X. G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; M. Gago, A.; M. Jacobs, P.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhammad Bhopal, F.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Poskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Sooden, V.; Soramel, F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerho, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zherebchevsky, V. I.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is pre

  9. ALICE event displays in pp collisions at 7 TeV

    CERN Multimedia

    Kalweit, Alexander Philipp

    2015-01-01

    Events with low, medium and high multiplicities in pp collisions at 7 TeV, recorded at the LHC by ALICE in June 2010. The big cylinder is the Time Projection Chamber of ALICE, with a diameter of 5 m and a length of 5 m, the inner red-green-blue cylinders are the Inner Tracking System.

  10. JPL stories: story on the story (series) Careering through JPL, presented by Alice M. Fairhurst

    Science.gov (United States)

    Hendrickson, S.

    2002-01-01

    Alice Fairhurst, co-author of Effective Teaching, Effective Learning, presented an enthusiastic overview of her tenure as a JPL career development and mentoring coordinator (1991-2001). Among other things, Alice is an expert in Keirseyian Temperament and Myers-Briggs typology.

  11. Men’s Experiences of Family, Domestic and Honour-Related Violence in Gujarat and Uttar Pradesh, India

    OpenAIRE

    Alex Broom; David Sibbritt; Nayar, K.R.; Assa Doron; Pamela Nilan

    2012-01-01

    Background: Violence is a major problem in India with family, domestic and honour-related violence having significant impacts on the wellbeing of Indian families and communities. There has been little attention paid to men’s experiences, particularly in the Indian State’s of Gujarat and Uttar Pradesh. The objective of this study was to provide baseline data on Indian men’s experiences of violence and the key predictors such as age, income, education and religion.Methods: A cross-sectional sur...

  12. Measurements of quarkonia with the central detectors of ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Wolfgang

    2008-03-26

    The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector. (orig.)

  13. Alice and Bob: Reconciling Formal Models and Implementation

    DEFF Research Database (Denmark)

    Almousa, Omar; Mödersheim, Sebastian Alexander; Viganò, Luca

    2015-01-01

    This paper defines the “ultimate” formal semantics for Alice and Bob notation, i.e., what actions the honest agents have to perform, in the presence of an arbitrary set of cryptographic operators and their algebraic theory. Despite its generality, this semantics is mathematically simpler than any...... previous attempt. For practical applicability, we introduce the language SPS and an automatic translation to robust real-world implementations and corresponding formal models, and we prove this translation correct with respect to the semantics....

  14. Baryon number transport at LHC energies with the ALICE experiment

    OpenAIRE

    Christakoglou, P.(Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands); Botje, M.A.J.; Mischke, A.; Van Leeuwen, M

    2009-01-01

    Particle yields along with the ratios of particle production in hadronic interactions are important indicators of the collision dynamics. In particular, the detailed analysis of the baryon spectra as well as that of p¯/p and L¯ /L ratios are of great importance since they allow to determine the carrier of the baryon number (BN). In this paper, the expected performance of the ALICE detector setup regarding the baryon spectra, the rapidity and transversemomentum dependence of the ¯ p/p and L¯ /...

  15. The trigger of the ALICE dimuon arm architecture and detectors

    CERN Document Server

    Arnaldi, R; Barret, V; Bastid, N; Blanchard, G; Chiavassa, E; Cortese, P; Crochet, Philippe; Dellacasa, G; De Marco, N; Dupieux, P; Espagnon, B; Fargeix, J; Gallio, M; Lamoine, L; Luquin, Lionel; Manso, F; Métivier, V; Musso, A; Piccotti, A; Rahmani, A; Ramillien, V; Royer, L; Roig, O; Scalas, E; Scomparin, E; Vercellin, Ermanno

    1999-01-01

    The trigger system of the ALICE dimuon arm is based on resistive plate chambers (RPC). Besides a short description of the trigger system, the test results of a RPC prototype with electrodes made of low resistivity bakelite ( equivalent to 3.10/sup 9/ Omega .cm) are presented. Rate capability, time resolution and cluster size have been measured for the RPC operated both in streamer and in avalanche mode. Although the rate capability is obviously higher in avalanche mode (few kHz/cm/sup 2/), remarkable results have been achieved even in streamer mode (several hundreds of Hz/cm/sup 2/). (6 refs).

  16. The tracking system of the ALICE dimuon spectrometer

    CERN Document Server

    Basciu, S; Atanassov, I; Cicalò, C; De Falco, A; Floris, M; La Delfa, L; Marras, D; Masoni, A; Puddu, G; Serci, S; Siddi, E; Tuven, M; Usai, G L; Boudjemline, M K; Carduner, H; Charrier, D; Cussonneau, J P; Dialinas, M; Finck, C; Fresneau, S; Lautridou, P; Luquin, Lionel; Pichot, P; Thers, D; Baldisseri, Alberto; Borel, H; Dumonteil, E; Gosset, J; Jourde, Didier; Lugol, J C; Orsini, F; Penichot, Y; Robert, J P; Staley, F; Comets, M P; Courtat, P; Diarra, C; Espagnon, B; Guez, D; Le Bornec, Y; MacCormick, M; Martin, J M; Rousseau, S; Sinha, T; Willis, N; Nikulin, V V

    2004-01-01

    The ALICE Muon Spectrometer is mainly dedicated to the measurement of the production of the J/ psi , and Y families through their decay into muon pairs, in Pb-Pb collisions. In this paper we give a description of the dimuon tracking system, mainly concentrating on the modular CSC chambers which occupy the last three stations. The R&D phase is now almost over and the production of the final modules started. A description of the main performances of the detectors based on test beam results on prototypes will be given. (8 refs).

  17. Alice Krieg-Planque, Analyser les discours institutionnels

    OpenAIRE

    Simon, Justine

    2012-01-01

    Comment amener des étudiants d’origines disciplinaires diverses à pratiquer l’analyse de discours et à s’en approprier les notions et concepts principaux, au service de l’analyse des productions discursives institutionnelles ? Telle est l’ambition centrale de l’ouvrage d’Alice Krieg-Planque, récemment paru chez Armand Colin. A la fois « guide pour l’analyse » et manuel visant à tisser un ensemble de compétences en matière d’approches discursives pour des étudiants au sein de formations plurid...

  18. Narrative Time in Alice Munro’s Short Stories

    Institute of Scientific and Technical Information of China (English)

    薛舒

    2013-01-01

    Alice Munro is a well-known contemporary Canadian writer. She departs from the traditional linear development but employs a seemingly random narrative line as a structural device in her story-telling. In the five short stories,“Material”,“Walk-er Brothers Cowboy”,“The Moons of Jupiter”,“Miles City, Montana”and“Something I’ve Been Meaning to Tell you”, Mun-ro manipulates the use of disconnected narrative time to deal with rites of passage. Free from the conventional time schemes, she expresses her vision in multiple themes and leaves the story open for readers.

  19. Alice Kask : Maalid ja joonistused = Paintings and drawings / Anu Allas

    Index Scriptorium Estoniae

    Allas, Anu, 1977-

    2007-01-01

    Maalikunstnik Alice Kase loomingust, mis on pälvinud usalduse tänu oma suveräänsusele, süvenemisele ja tõsidusele. Tema tööde jõud seisneb teose ja füüsilise objekti lahutamatuses, iga nüanss maali pinnal sünnib kuju võtnud materjalist enesest. Tema maalid on väga avatud, kohati isegi ohtlikult avatud kõikvõimalikele tõlgendusviisidele, neis on tasakaalustatud segu ilust, täiuselubadusest, hirmutavusest ning kaosest

  20. A low-resistivity RPC for the ALICE dimuon arm

    International Nuclear Information System (INIS)

    In view of ALICE, the dedicated Heavy-Ion Experiment at LHC, a Resistive Plate Chamber (RPC) with electrodes made of low-resistivity bakelite (ρ≅3.5x109 Ω cm) has been tested at the CERN SPS both in streamer and in avalanche mode. The chamber has shown a stable behaviour and excellent rate capability: its efficiency is better than 95% for local particle fluxes of about 1 and 10 kHz/cm2 for operation in streamer and in avalanche mode, respectively. The cluster size and the time resolution have also been measured for both modes of operation

  1. Analysis of cosmic-ray events with ALICE at LHC

    Directory of Open Access Journals (Sweden)

    Rodríguez Cahuantzi M.

    2015-01-01

    Full Text Available ALICE is one of the four main experiments of the LHC at CERN. Located 40 meters underground, with 30 m of overburden rock, it can also operate to detect muons produced by cosmic-ray interactions in the atmosphere. An analysis of the data collected with cosmic-ray triggers from 2010 to 2013, corresponding to about 31 days of live time, is presented. Making use of the ability of the Time Projection Chamber (TPC to track large numbers of charged particles, a special emphasis is given to the study of muon bundles, and in particular to events with high-muon density.

  2. Radiation hard analog circuits for ALICE ITS upgrade

    Science.gov (United States)

    Gajanana, D.; Gromov, V.; Kuijer, P.; Kugathasan, T.; Snoeys, W.

    2016-03-01

    The ALICE experiment is planning to upgrade the ITS (Inner Tracking System) [1] detector during the LS2 shutdown. The present ITS will be fully replaced with a new one entirely based on CMOS monolithic pixel sensor chips fabricated in TowerJazz CMOS 0.18 μ m imaging technology. The large (3 cm × 1.5 cm = 4.5 cm2) ALPIDE (ALICE PIxel DEtector) sensor chip contains about 500 Kpixels, and will be used to cover a 10 m2 area with 12.5 Gpixels distributed over seven cylindrical layers. The ALPOSE chip was designed as a test chip for the various building blocks foreseen in the ALPIDE [2] pixel chip from CERN. The building blocks include: bandgap and Temperature sensor in four different flavours, and LDOs for powering schemes. One flavour of bandgap and temperature sensor will be included in the ALPIDE chip. Power consumption numbers have dropped very significantly making the use of LDOs less interesting, but in this paper all blocks are presented including measurement results before and after irradiation with neutrons to characterize robustness against displacement damage.

  3. Studies on the upgrade of the ALICE central tracker

    CERN Document Server

    Mager, Magnus; Musa, Luciano

    2012-11-14

    When two high-energy lead ions collide, as they currently do inside the “Large Hadron Collider” (LHC) of the “European Organization for Nuclear Research” (CERN), energy densities similar to those shortly (some 1ps to 10μs) after the Big Bang are created. At these energies quarks are loosing their confinement into hadrons and may move around freely, the “quark-gluon plasma” (QGP) is created. Such a picture deserves of course a thorough check and a precise measurement. There are however intrinsic difficulties to overcome: the macroscopic free energy (about 1 mJ) of these collision allow for an infinite number of processes to happen and finally—-due to mass-energy equivalence--a significant number (order of 10,000) of particles is created. The ALICE experiment was designed to be able to cope with this large number of particles, it can measure the properties (species and momentum) of the big majority. This requires a very fine segmentation of the detector. The central part of ALICE is made of a 90 ...

  4. Conceptual Design Report for the Upgrade of the ALICE ITS

    CERN Document Server

    Musa, L

    2012-01-01

    The present document addresses the question of how to improve the ALICE performance for heavy-flavour detection. It will be shown that it is possible to built a new silicon tracker with greatly improved features in terms of determination of the distance of closest approach (dca) to the primary vertex, standalone tracking efficiency at low pt , momentum resolution and readout rate capabilities. This is a consequence of the spectacular progress made in the field of imaging sensors over the last ten years and also the possibility to install a smaller radius beampipe. Moreover, a tracker with the above features creates an opportunity to develop a topological trigger, which can be used in combination with the TRD and TOF detectors for the selection of events containing rare probes. Such a new silicon tracker will allow ALICE to measure charm and beauty production in Pb-Pb collisions with sufficient statistical accuracy down to very low transverse momentum, measure charm baryons and perform precise measurements of ...

  5. ALFA: The new ALICE-FAIR software framework

    Science.gov (United States)

    Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; Vande Vyvre, P.; Winckler, N.

    2015-12-01

    The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of large parts of a common software framework in an experiment independent way. The FairRoot project has already shown the feasibility of such an approach for the FAIR experiments and extending it beyond FAIR to experiments at other facilities[1, 2]. The ALFA framework is a joint development between ALICE Online- Offline (O2) and FairRoot teams. ALFA is designed as a flexible, elastic system, which balances reliability and ease of development with performance using multi-processing and multithreading. A message- based approach has been adopted; such an approach will support the use of the software on different hardware platforms, including heterogeneous systems. Each process in ALFA assumes limited communication and reliance on other processes. Such a design will add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to meet computing and throughput demands. ALFA does not dictate any application protocols. Potentially, any content-based processor or any source can change the application protocol. The framework supports different serialization standards for data exchange between different hardware and software languages.

  6. Dynamic parallel ROOT facility clusters on the Alice Environment

    International Nuclear Information System (INIS)

    The ALICE collaboration has developed a production environment (AliEn) that implements the full set of the Grid tools enabling the full offline computational work-flow of the experiment, simulation, reconstruction and data analysis, in a distributed and heterogeneous computing environment. In addition to the analysis on the Grid, ALICE uses a set of local interactive analysis facilities installed with the Parallel ROOT Facility (PROOF). PROOF enables physicists to analyze medium-sized (order of 200-300 TB) data sets on a short time scale. The default installation of PROOF is on a static dedicated cluster, typically 200-300 cores. This well-proven approach, has its limitations, more specifically for analysis of larger datasets or when the installation of a dedicated cluster is not possible. Using a new framework called PoD (Proof on Demand), PROOF can be used directly on Grid-enabled clusters, by dynamically assigning interactive nodes on user request. The integration of Proof on Demand in the AliEn framework provides private dynamic PROOF clusters as a Grid service. This functionality is transparent to the user who will submit interactive jobs to the AliEn system.

  7. TAB Bonded SSD Module for the STAR and ALICE Trackers

    CERN Document Server

    Lutz, Jean Robert; Baudot, J; Bonnet, D; Coffin, J P; Germain, M; Gojak, C; Jundt, F; Kühn, C E; Suire, C; Tarchini, A; Berst, D; Clauss, G; Colledani, C; Dulinski, W; Boucham, A; Bouvier, S; Castillo, J; Drancourt, C; Erazmus, B; Guilloux, G; Martin, L; Roy, C

    1999-01-01

    Presentation made at LEB99, 20-24 September 1999A novel compact detector module has been produced by the "IReS"-"Subatech"-"Thomson-CSF-Detexis" collaboration. It includes a Double-Sided (DS) Silicon Strip Detector (SSD) and the related Front End Electronics (FEE) located on two hybrids, one for the N side and one for the P side. Bumpless Tape Automated Bonding (TAB) is used to connect the detector to the hybrids by means of microcables with neither wirebonding nor pitch adapter. Each of the six dedicated ALICE128C FE chip [1], located on the hybrid, is TABed on identical single layer microcables, which connect its inputs to the DS SSD and its outputs to the hybrid [2]. These microcables are bent in order to fold over the two hybrids on the DS SSD. This module meets the specifications of two experiments, ALICE (A Large Ion Collider Experiment) on the LHC accelerator at CERN [3] and STAR (Solenoid Tracker At Rhic) on the RHIC accelerator at BNL (Brookhaven National Laboratory)[4]. It can be used with air cooli...

  8. Upgrade of the Inner Tracking System of ALICE

    CERN Document Server

    Kofarago, Monika

    2015-01-01

    The upgrade of the Inner Tracking System (ITS) of ALICE is planned for the second long shutdown of the LHC in 2019-2020. The ALICE physics program after the shutdown requires the ITS to have improved tracking capabilities and improved impact parameter resolution at very low transverse momentum, as well as a substantial increase in the readout rate. To fulfill these requirements the current ITS will be replaced by seven layers of Monolithic Active Pixel Sensors. The new detector will be moved as close as 23 mm to the interaction point and will have a significantly reduced material budget. Several prototypes of the sensor have been developed to test different aspects of the sensor design including prototypes with analog and digital readout, as well as small and final-size sensors. These prototypes have been thoroughly characterized both in laboratory tests and at test beam facilities including studies on the radiation hardness of the sensors. This contribution gives an overview of the current status of the rese...

  9. Physics performance studies for the ALICE inner tracker upgrade

    International Nuclear Information System (INIS)

    During the second long shutdown of the LHC in 2018, the ALICE Collaboration plans to install an upgrade of the ALICE Inner Tracking System (ITS) in the central barrel with seven layers of silicon detectors starting at 2.2 cm radial distance from the interaction region and a material budget as low as 0.3 % radiation length per layer. A single-hit resolution of 4 μm and a readout rate capability of up to 50 kHz in Pb–Pb collisions will allow new and unique measurements in the heavy-quark sector, i.e. charm and beauty. Using detailed Monte Carlo simulations of pp and Pb–Pb collisions we study the performance for heavy-flavor detection with an upgraded ITS in the following benchmark analyses: Charm meson and baryon production, i.e. D0 → K−π+ and Λ+c → pK−p+, and beauty meson and baryon production, i.e. displaced vertices of B+ → D-bar 0π+ and Λb → Λ+cπ−

  10. Alice G. Brandfonbrener, MD-A personal remembrance.

    Science.gov (United States)

    Lederman, Richard J

    2014-09-01

    Alice Brandfonbrener died peacefully at home on May 31, 2014, after a protracted illness. For all of us involved in performing arts medicine, she was the inspiration and guiding spirit. She will be missed. [Alice Brandfonbrener was one of the founding members of the field of performing arts medicine, perhaps the most critical founding member. In 1983, she organized the first "Conference on the Medical Problems of Musicians" in Aspen, Colorado, and co-directed these for the next 20 years. These symposia led to the formation of the Performing Arts Medicine Association, of which Dr. Brandfonbrener was the first president, and in 1986, establishment of the first journal in the field--this journal, Medical Problems of Performing Artists--for which she served as Editor for 20 years. At her performing arts clinic in Chicago, she saw and treated thousands of musicians, from young students to world-renowned professionals, and mentored many students and professionals who would extend research and practice in performing arts medicine.].

  11. ALICE makes a clean sweep at Point 2

    CERN Multimedia

    2001-01-01

    Since the middle of June the ALICE collaboration has taken up residence at Point 2, previously occupied by L3, and is now preparing the cavern for the arrival of its detector. The last muon chambers of the L3 experiment were removed at the beginning of July. Anyone who knew L3 when it was in operation will be in for a shock if they go down to the cavern at Point 2, which looks as if it's been emptied of all its contents. The members of the ALICE collaboration would not quite share that point of view, however, as some components still have to be dismantled before the cavern can receive its new detector. The collaboration, which has inherited L3's huge red magnet, took over at Point 2 in the middle of June and is now getting down to work. This is the first major stage in the installation of the future detector, which has to be ready to observe its first LHC collisions on 1 April 2006. The first difficulty is to remove the support tube running through the magnet. This huge 32-metre long, 4.5-m diameter, 300-t...

  12. Inclusive jet spectra in p–Pb collisions at ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Connors, Megan

    2014-11-15

    Jet suppression has been observed in central heavy ion collisions. This suppression is attributed to partonic energy loss in the Quark Gluon Plasma (QGP) formed in such collisions. However, this measurement is influenced by all stages of the collision. It is expected that in p–Pb collisions similar initial conditions occur as in Pb–Pb collisions without creating a QGP, allowing modification to the jet spectra due to cold nuclear matter effects to be quantified. Inclusive jet spectra in p–Pb collisions at √(s{sub NN})=5.02 TeV measured by ALICE are presented. Jets are reconstructed via the anti-k{sub T} algorithm with different resolution parameters by combining charged tracks measured in the ALICE tracking system with the neutral energy deposited in the electromagnetic calorimeter. The jet spectra can be used to determine a nuclear modification factor R{sub pPb} while the jet profile in p–Pb is studied by dividing spectra measured with different resolution parameters and comparing to the same ratio measured in pp collisions.

  13. Description and Optimisation of the ALICE dimuon trigger

    CERN Document Server

    Roig, O

    1998-01-01

    The main considerations about the ALICE dimuon trigger can be found in the Addendum to the ALICE Technical Proposal (T.P. in this note), concerning the forward muon spectrometer. The main task of the trigger is to select the dimuon signals, mainly from J/Psi and Upsilon resonances, amongst the huge background of muons from pions, kaons, charm decays and soft background in order to keep the acquisition rates at a satisfactory level. This is achieved with a cut on the muon transverse momentum performed by the trigger electronics and processors. A dimuon mass cut can also be done (not treated in this note). This note presents a detailed simulation which goal is to optimize the dimuon trigger. It includes the description of the set-up geometry and segmentation as well as the trigger electronics functions. Many improvements are suggested by the results of this simulation, as compared to the T.P. An update of the trigger rates and efficiency is given. Even though we describe the main elements of the dimuon trigge...

  14. Fourth Data Challenge for the ALICE data acquisition system

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ALICE experiment will study quark-gluon plasma using beams of heavy ions, such as those of lead. The particles in the beams will collide thousands of times per second in the detector and each collision will generate an event containing thousands of charged particles. Every second, the characteristics of tens of thousands of particles will have to be recorded. Thus, to be effective, the data acquisition system (DAQ) must meet extremely strict performance criteria. To this end, the ALICE Data Challenges entail step-by-step testing of the DAQ with existing equipment that is sufficiently close to the final equipment to provide a reliable indication of performance. During the fourth challenge, in 2002, a data acquisition rate of 1800 megabytes per second was achieved by using some thirty parallel-linked PCs running the specially developed DATE software. During the final week of tests in December 2002, the team also tested the Storage Tek linear magnetic tape drives. Their bandwidth is 30 megabytes per second a...

  15. Physics performance studies for the ALICE inner tracker upgrade

    CERN Document Server

    Stiller, Johannes

    2013-01-01

    During the second long shutdown of the LHC in 2018, the ALICE Collaboration plans to install an upgrade of the ALICE Inner Tracking System (ITS) in the central barrel with seven layers of silicon detectors starting at 2.2 cm radial distance from the interaction region and a material budget as low as 0.3% radiation length per layer. A single-hit resolution of $\\mathrm{4 \\mu m}$ and a readout rate capability of up to 50 kHz in Pb--Pb collisions will allow new and unique measurements in the heavy-quark sector, i.e. charm and beauty. Using detailed Monte Carlo simulations of pp and Pb--Pb collisions we study the performance for heavy-flavor detection with an upgraded ITS in the following benchmark analyses: Charm meson and baryon production, i.e. $\\mathrm{D^{0} \\rightarrow K^{-}\\pi^{+}}$ and $\\mathrm{\\Lambda_{c}^{+} \\rightarrow pK^{-}\\pi^{+}}$, and beauty meson and baryon production, i.e. displaced vertices of $\\mathrm{B^{+} \\rightarrow \\bar{D}^{0}\\pi^{+}}$ and $\\mathrm{\\Lambda_{b} \\rightarrow \\Lambda_{c}^{+}\\pi^...

  16. Commissioning of the ALICE muon spectrometer trigger at LHC

    International Nuclear Information System (INIS)

    ALICE (a large ion collider experiment) is the LHC experiment dedicated to the study of ultra-relativistic heavy ion collisions. The ALICE muon spectrometer covers a large range in pseudo-rapidity and is designed to study quarkonia and heavy flavours decaying into (di-)muons. The high particle multiplicities environment in such collisions require a specific, fast and efficient trigger system, the muon trigger. It consists of four planes of RPC detectors, covering an area of 36 m2 each, 21k front-end channels and a fast-decision electronics. The muon trigger is designed to reconstruct (muon) tracks and deliver a trigger signal each 25 ns (40 MHz) with a total latency of 800 ns. The hit position on the RPC is measured in two orthogonal directions with an accuracy of about 1 cm. The performance measured with the first p-p collisions at √(()s)=900 GeV carried out in December 2009 is reported.

  17. The ALICE Heavy-Ion Experiment at the CERN LHC

    CERN Document Server

    CERN. Geneva

    1993-01-01

    ALICE (A Large Ion Collider Experiment) is a dedicated heavy-ion detector designed to exploit the physics potential of nucleus-nucleus interactions at the LHC. As a general-purpose experiment, it will allow a comprehensive study of hadrons, electrons and photons produced in the collision of heavy nuclei, up to the highest particle multiplicities anticipated at the LHC. The central part of ALICE, which covers (90±45)¡ (<0.9) over the full azimuth, is embedded in a large magnet with a weak solenoidal field. The base-line design consists (from inside out) of a high-resolution inner tracking system, a cylindrical TPC, a particle identification array (TOF or RICH detectors), and a single-arm electromagnetic calorimeter. Possible upgrades under study include large-acceptance electromagnetic calorimeters and a muon identification system. We will trigger on central collisions with a zero degree calorimeter and measure multiplicity distributions over a large fraction of the available phase space.

  18. Studies for the ALICE Inner Tracking System Upgrade

    CERN Document Server

    AUTHOR|(CDS)2079168; Musa, Luciano

    The ALICE experiment at the CERN LHC identifies D0 mesons via secondary-vertex reconstruction and topological cuts to reduce the corresponding combinatorial background in heavy-ion collisions. The D0 meson is produced promptly in initial, hard scatterings via the strong interaction or as feed-down from weakly decaying B hadrons. Within this thesis, a novel method for the separation of prompt and feed-down D0 mesons using cut variations was implemented and applied to data from p–Pb collisions at $\\sqrt(s_\\mathrm{NN})=5.02$ TeV. The effectiveness of the secondary-vertex reconstruction strongly depends on the performance and in particular the pointing resolution of the Inner Tracking System. The upgrade of the ALICE Inner Tracking System for the Long Shutdown 2 of the LHC in 2019/2020 will significantly improve its vertex-reconstruction and tracking capabilities. It will be equipped with Monolithic Active Pixel Sensors manufactured using the TowerJazz 180nm CMOS process on wafers with a high-resistivity epitax...

  19. Light flavour hadron production in the ALICE experiment at LHC

    Directory of Open Access Journals (Sweden)

    Badalà Angela

    2016-01-01

    Full Text Available Unique among the LHC experiments, ALICE has excellent particle identification capabilities for the measurement of light-flavour hadrons. A large number of hadron species from pions to multi-strange baryons and light nuclei have been measured over a large transverse momentum region. The measurement of the production of these particles is a valuable tool to study the properties of the medium formed in heavy-ion collisions. In particular they give information on the collective phenomena of the fireball, on the parton energy loss in the hot QCD medium and on the hadronization mechanisms such as recombination and statistical hadronization. The measurements in pp and in p-nucleus collisions provide the necessary baseline for heavy-ion data and help to investigate the effects of the ordinary nuclear matter. In this paper some of the main ALICE results on identified light-flavour hadron production in Pb–Pb collisions at √sNN = 2.76 TeV and p–Pb collisions at √sNN = 5.02 TeV will be presented.

  20. Light flavour hadron production in the ALICE experiment at LHC

    Science.gov (United States)

    Badalà, Angela

    2016-05-01

    Unique among the LHC experiments, ALICE has excellent particle identification capabilities for the measurement of light-flavour hadrons. A large number of hadron species from pions to multi-strange baryons and light nuclei have been measured over a large transverse momentum region. The measurement of the production of these particles is a valuable tool to study the properties of the medium formed in heavy-ion collisions. In particular they give information on the collective phenomena of the fireball, on the parton energy loss in the hot QCD medium and on the hadronization mechanisms such as recombination and statistical hadronization. The measurements in pp and in p-nucleus collisions provide the necessary baseline for heavy-ion data and help to investigate the effects of the ordinary nuclear matter. In this paper some of the main ALICE results on identified light-flavour hadron production in Pb-Pb collisions at √sNN = 2.76 TeV and p-Pb collisions at √sNN = 5.02 TeV will be presented.

  1. Pion femtoscopy measurements in ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Kamil Graczykowski Łukasz

    2014-04-01

    Full Text Available We present the results of two-pion Bose-Einstein correlations measured in Pb–Pb collisions at a center-of-mass energy √sNN = 2:76 TeV recorded by ALICE at the Large Hadron Collider. These types of correlations allow to extract, using the technique of femtoscopy (also known as Hanburry-Brown Twiss interferometry, or shortly HBT, the space-time characteristics of the source from the correlation calculated as a function of the pair momentum difference. The femtoscopic analysis was performed using both the Spherical Harmonics decomposition and the standard 3D Cartesian representation of the correlation function. The source sizes in three dimensions, the HBT radii, were extracted by fitting the experimental correlation functions. The resulting dependencies of the radii as a function of centrality and pair transverse momentum are shown. The results indicate the existence of a flowing medium and provide constraints on existing dynamical models. The ALICE Pb–Pb HBT radii are also compared to the pp analysis and other heavy-ion experiments in order to test the multiplicity scaling between different systems.

  2. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    OpenAIRE

    Collaboration, ALICE; Chang, BeomSu; Kim, Dong Jo; Kral, Jiri; Morreale, Astrid; Rak, Jan; Räsänen, Sami; Trzaska, Wladyslaw; Viinikainen, Jussi

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a ne...

  3. DDL, the ALICE data transmission protocol and its evolution from 2 to 6 Gb/s

    International Nuclear Information System (INIS)

    ALICE (A Large Ion Collider Experiment) is the detector system at the LHC (Large Hadron Collider) that studies the behaviour of strongly interacting matter and the quark gluon plasma. The information sent by the sub-detectors composing ALICE are read out by DATE (Data Acquisition and Test Environment), the ALICE data acquisition software, using hundreds of multi-mode optical links called DDL (Detector Data Link). To cope with the higher luminosity of the LHC, the bandwidth of the DDL links will be upgraded in 2015. This paper will describe the evolution of the DDL protocol from 2 to 6 Gbit/s

  4. DDL, the ALICE data transmission protocol and its evolution from 2 to 6 Gb/s

    Science.gov (United States)

    Carena, F.; Carena, W.; Chibante Barroso, V.; Costa, F.; Chapeland, S.; Delort, C.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Ionita, C.; Kiss, T.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.

    2015-04-01

    ALICE (A Large Ion Collider Experiment) is the detector system at the LHC (Large Hadron Collider) that studies the behaviour of strongly interacting matter and the quark gluon plasma. The information sent by the sub-detectors composing ALICE are read out by DATE (Data Acquisition and Test Environment), the ALICE data acquisition software, using hundreds of multi-mode optical links called DDL (Detector Data Link). To cope with the higher luminosity of the LHC, the bandwidth of the DDL links will be upgraded in 2015. This paper will describe the evolution of the DDL protocol from 2 to 6 Gbit/s.

  5. Prospects for heavy flavour measurements with the ALICE inner tracker upgrade

    CERN Document Server

    Terrevoli, Cristina

    2014-01-01

    ALICE is the general purpose heavy-ion detector at the CERN LHC. Its goal is to investigate the properties of the strongly interacting matter under the extreme conditions of density and temperature reached in Pb{Pb collisions, with the aim to characterize the Quark-Gluon Plasma (QGP). In this scenario, the upgrade of the ALICE inner tracker targets physics topics in which ALICE can bring a unique contribution to the QGP characterization via the heavy avour probes. We present an overview of the inner tracker upgrade and the expected physics performance for heavy avour measurements.

  6. Physical aspects of arc welding: proceedings of seminar in honour of J.F. Lancaster, 1 September 1993, Glasgow (U.K.)

    NARCIS (Netherlands)

    Den Ouden, G.

    1994-01-01

    This volume contains the papers presented at a seminar held in honour of Prof. J.F. Lancaster on 1 September 1993 in order to mark the occasion of his retirement as Chairman of Study Group 212 (Physics of Welding) of the International Institute of Welding. Prof. Lancaster was Chairman of Study Group

  7. High Level Trigger System for the ALICE Experiment

    Institute of Scientific and Technical Information of China (English)

    U.Frankenfeld; H.Helstrup; 等

    2001-01-01

    The ALICE experiment [1] at the Large Hadron Collider(LHC) at CERN will detect up to 20,000 particles in a single Pb-Pb event resulting in a data rate of -75 MByte/event,The event rate is limited by the bandwidth of the data storage system.Higher rates are possible by selecting interesting events and subevents (High Level trigger) or compressing the data efficiently with modeling techniques.Both require a fast parallel pattern recognition.One possible solution to process the detector data at such rates is a farm of clustered SMP nodes,based on off-the-shelf PCs,and connected by a high bandwidt,low latency network.

  8. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  9. Upgrade of the ALICE TPC FEE online radiation monitoring system

    International Nuclear Information System (INIS)

    This paper presents the radiation monitoring system on the Readout Control Unit (RCU) of the the ALICE TPC Front End Electronics. In Run 1, Single Event Upsets (SEUs) in the configuration memory of an SRAM based FPGA were counted, and the results from different run periods with stable beam conditions are presented. For Run 2, a new RCU, the RCU2, has been designed in order to achieve higher data readout rates and increase radiation tolerance. The RCU2 also includes a new radiation monitor solution with increased sensitivity, which is based on counting the number of SEUs in dedicated SRAM memories. The paper presents this new solution together with the results from the targeted irradiation campaigns

  10. Performance of the ALICE secondary vertex b-tagging algorithm

    CERN Document Server

    Eyyubova, Gyulnara

    2016-01-01

    The identification of jets originating from beauty quarks in heavy-ion collisions is important to study the properties of the hot and dense matter produced in such collisions. A variety of algorithms for b-jet tagging was elaborated at the LHC experiments. They rely on the properties of B hadrons, i.e. their long lifetime, large mass and large multiplicity of decay products. In this work, the b-tagging algorithm based on displaced secondary-vertex topologies is described. We present Monte Carlo based performance studies of the algorithm for charged jets reconstructed with the ALICE tracking system in p-Pb collisions at $\\sqrt{s_\\text{NN}}$ = 5.02 TeV. The tagging efficiency, rejection rate and the correction of the smearing effects of non-ideal detector response are presented.

  11. AliEn: ALICE Environment on the GRID

    CERN Document Server

    CERN. Geneva

    2012-01-01

    AliEn is the GRID middleware used by the ALICE collaboration. It provides all the components that are needed to manage the distributed resources. AliEn is used for all the computing workflows of the experiment: Montecarlo production, data replication and reconstruction and organixed or chaotic user analysis. Moreover, AliEn is also being used by other experiments like PANDA and CBM. The main components of AliEn are a centralized file and metadata catalogue, a job execution model and file replication model. These three components have been evolving over the last 10 years to make sure that the satisfy the computing requirements of the experiment, which keep increasing every year.

  12. Very low mass microcables for the ALICE silicon strip detector

    CERN Document Server

    De Haas, A P; Van den Brink, A; Kuijer, P G; Borshchov, V N; Kiprich, S K; Ruzhitsky, V M

    1999-01-01

    Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999The ALICE Inner Tracker (ITS) silicon strip layers will use kapton/aluminium microcables (12/14 um thickness) exclusively for all interconnections to and from the front-end chips and hybrids, completely eliminating traditional wirebonding. Benefits are increased robustness and an extra degree of dimensional freedom. Utilising a low-power, low temperature and low-force (10-15 grams) single-point TAB bonding process, aluminium traces are directly bonded through bonding windows in the kapton foil to bond pads on the chips and the hybrid. The same technique is also used to interconnect these microcables to create multi-layer bus structures with "bonded via's". A double-sided strip detector using prototype cables has been installed in the NA57 experiment in 1998.

  13. Specification and Simulation of the ALICE Trigger and DAQ System

    Institute of Scientific and Technical Information of China (English)

    T.Anticic; G.DiMarzoSerugendo; 等

    2001-01-01

    The ALICE Trigger and Data Acquisition (TRG/DAQ) System is required to support an aggregate event building bandwidth of up to 4 GByte/s and a storage capability of up to 1.25 GByte/s to mass storage.The system has been decomposed in a set of hardware and software components and prototypes of these components are being developed.It is necessary to verity the system design,its capability to reach the expected behavior and the target performances,discover possible bottlenecks and ways to correct for them,and explore alternative algorithms and new architectures.To achieve this the complete TRG/DAQ system has been formally specified.and the verification of the expected behavior has been performed through the execution of the specification,Two tools were used for this.Foresight,and Ptolemy.

  14. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    CERN Document Server

    Gomez, Andres; Kebschull, Udo

    2015-01-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machin...

  15. Baryon femtoscopy in heavy-ion collisions at ALICE

    Directory of Open Access Journals (Sweden)

    Szymański Maciej Paweł

    2014-04-01

    Full Text Available In this report, femtoscopic measurements with pp, p¯p¯${\\rm{\\bar p\\bar p}}$, pp¯${\\rm{p\\bar p}}$, pΛ¯${\\rm{p}}\\bar \\Lambda $, p¯Λ${\\rm{\\bar p}}\\Lambda $ and ΛΛ¯$\\Lambda \\bar \\Lambda $ pairs in Pb–Pb collisions at √sNN = 2:76 TeV registered by ALICE at the LHC are presented. Emission source sizes extracted from the correlation analysis with (antiprotons grow with the event multiplicity, as expected. A method to extract the interaction potentials (e.g. for pΛ¯${\\rm{p}}\\bar \\Lambda $ and p¯Λ${\\rm{\\bar p}}\\Lambda $ pairs based on femtoscopy analysis is discussed. The importance of taking into account the so-called residual correlations induced by pairs contaminated by secondary particles is emphasized for all analyses mentioned above.

  16. Archival Legacy Investigation of Circumstellar Environments (ALICE). Survey results

    Science.gov (United States)

    Soummer, Remi; Choquet, Elodie; Pueyo, Laurent; Brendan Hagan, J.; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John H.; Golimowski, David A.; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian

    2016-01-01

    We report on the status of the ALICE project (Archival Legacy Investigation of Circumstellar Environments. HST/AR-12652), which consists in a consistent reanalysis of the entire HST-NICMOS coronagraphic archive with advanced post-processing techniques. Over the last two years, we have developed a sophisticated pipeline able to handle the data of the 400 stars of the archive. We present the results of the overall reduction campaign and discuss the first statistical analysis of the candidate detections. As we will deliver high-level science products to the STScI MAST archive, we are defining a new standard format for high-contrast science products, which will be compatible with every new high-contrast imaging instrument and used by the JWST coronagraphs. We present here an update and overview of the specifications of this standard.

  17. FLUKA Simulation of Particle Fluences to ALICE due to LHC Injection Kicker Failures

    CERN Document Server

    Shetty, N V; Di Mauro, A; Lechner, A; Leogrande, E; Uythoven, J

    2014-01-01

    The counter-rotating beams of the LHC are injected in insertion regions which also accommodate the ALICE and LHCb experiments. An assembly of beam absorbers ensures the protection of machine elements in case of injection kicker failures, which can affect either the injected or the stored beam. In the first years of LHC operation, secondary particle showers due to beam impact on the injection beam stopper caused damage to the MOS injectors of the ALICE silicon drift detector as well as high-voltage trips in other ALICE subdetectors. In this study, we present FLUKA [1,2] simulations of particle fluences to the ALICE cavern for injection failures encountered during operation. Two different cases are reported, one where the miskicked beam is fully intercepted and one where the beam grazes the beam stopper.

  18. The story of ALICE: Building the dedicated heavy ion detector at LHC

    OpenAIRE

    Fabjan, C.; J. Schukraft

    2011-01-01

    This article documents the main design choices and the close to 20 years of preparation, detector R&D, construction and installation of ALICE, the dedicated heavy ion experiment at the CERN LHC accelerator.

  19. Alice Walker: "The Diary of an African Nun" and Dubois Double Consciousness

    Science.gov (United States)

    Fontenot, Chester J.

    1977-01-01

    Analyzes Alice Walker's novel and notes that the plight of the African nun is that of the black intellectual or middle-class who find themselves caught between two worlds which are at once complementary and contradictory. (Author)

  20. Topological selections for V0 (K0s, Lambda) and Cascade (Xi, Omega) reconstruction in ALICE

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The figures are illustrations of topological selections used by ALICE to reconstruct ϕ(1020), V0 particles (K°s and Λ, single-strange particles) and cascades (Ξ- and Ω-, charged multi-strange baryons).

  1. Study of the influence of design parameters of MAPS for the ALICE ITS Upgrade: Project Report

    CERN Document Server

    Munteanu, Laura-Iuliana

    2016-01-01

    This report illustrates the results of measurements performed on various MAPS chips used during the R&D phase for the ALICE ITS Upgrade. It lists the influence that pixel design parameters have on the performance of the chips.

  2. Animation 7 TeV pp collisions from ALICE- 30 March 2010

    CERN Multimedia

    ALICE Outreach

    2010-01-01

    Run 114783. To show what happens during a proton proton collision. Animation from 7 TeV proton proton collisions in the ALICE experiment. Collisions recorded on the first day of the 7 TeV run, 30 March 2010.

  3. The Incidence of Plastic Debris along Tyume River in Alice, South Africa

    OpenAIRE

    2012-01-01

    The article is premised on the Zero Waste theory and it addresses the environmental impact of unscientific disposal of plastic debris along Tyume River in Alice Town, South Africa. The researchers confirmed that Alice community lacks awareness on plastic waste management as evidenced by inappropriate disposal of plastic waste along the river causing environmental pollution. Behavioral action is lacking and can be enhanced through environment education and economic enterprise initiatives at th...

  4. Developing Website in Microsoft SharePoint for the “ALICE RPE Survey”

    CERN Document Server

    Baibus, Dmitri

    2013-01-01

    The goal of my project was to create and develop a website for ALICE RPE Survey Team that would help them to fulfill their tasks in a more comfortable way. The may tasks of the ALICE RPEs is to perform radiological measurements underground after 2 beam period, evaluate the risk for workers from the radiation point of view and classify the different areas according to this level of risk.

  5. The ALICE Workload Management System: Status before the real data taking

    International Nuclear Information System (INIS)

    With the startup of LHC, the ALICE detector will collect data at a rate that, after two years, will reach 4PB per year. To process such a large amount of data, ALICE has developed AliEn, a distributed computing environment, integrated with the WLCG environment. The ALICE environment presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called ALICE Data Challenges. Within the ALICE distributed computing environment, the AliEn Workload Management Structure was created to submit to the WLCG infrastructure, and has played a crucial role to achieve the mentioned results. ALICE has more than 80 sites distributed all over the world and this WMS together with the operations management structure defined by the experiment has demonstrated a reliability and performance level ready to begin the data taking at the end of the year. In this talk we will focus on the description and current status of the AliEn WMS, emphasizing the last functionalities that have been included to handle from a single entry point the different matchmaking services of WLCG (lcg-RB, gLite WMS) and also the CREAM Computing Element; the latter has been extensively tested by the experiment during summer 2008.

  6. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  7. Dielectron production in proton-proton collisions with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Markus Konrad

    2015-10-01

    Ultrarelativistic hadron collisions, such as delivered since a couple of years at the Large Hadron Collider (LHC), provide new insights into the properties of strongly interacting matter at high temperatures and densities, which is expected to have existed a few of a millionth seconds after the big bang. Electromagnetic probes, such as leptons and photons, are emitted during the entire collision. Since they do not undergo strong interactions, they reflect the entire evolution of the collision. Pairs of leptons, so called dileptons, have the advantage compared to real photons, that they do not only carry momentum, but also have a non-zero invariant mass. The invariant mass spectrum of dileptons is a superposition of several components and allows to address different characteristics of the medium. To understand dielectron production in heavy-ion collisions, reference measurements in proton-proton (pp) collisions are necessary. pp collisions reflect the vacuum contribution of the particles produced in heavy-ion collisions. The analysis of pp collisions is an essential step towards the extraction of medium influences on the vector meson spectral functions and the thermal radiation in heavy-ion collisions. In this thesis, the production of electron-positron pairs (dielectrons) in pp collisions at a collision energy of 7 TeV in the ALICE central barrel is analysed. ALICE has unique particle identification capabilities at low momentum. Electrons and positrons are identified with a high purity and combined to pairs. The invariant mass distribution of dielectrons is corrected for detector effects and the selection criteria in the analysis with Monte Carlo simulations. The dielectron invariant mass spectrum of known hadronic sources is calculated based on the cross sections measured in other decay channels using the known decay kinematics. This so called hadronic cocktail represents the dielectron spectrum at the moment of kinematic freeze-out and can be compared to the

  8. 17 May 2013 - Honourable Minister of Communications, Science and Technology of the Kingdom of Lesotho T. Mokhosi visiting the ATLAS experimental area with CERN International Adviser for Turkey R. Voss.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    17 May 2013 - Honourable Minister of Communications, Science and Technology of the Kingdom of Lesotho T. Mokhosi visiting the ATLAS experimental area with CERN International Adviser for Turkey R. Voss.

  9. El papel de la cultura del honor, del sexismo y de los celos en la respuesta a la infidelidad de la pareja (The role of culture of honour, sexism and jealousy in response to partner infidelity

    Directory of Open Access Journals (Sweden)

    Jesús María Canto Ortiz

    2012-04-01

    Full Text Available The aim of this study was to investigate whether a culture of honour, sexism and jealousy influenced the type of infidelity (sexual or emotional experienced by the participants. A total of 170 university students (80 men and 90 women participated. They responded to six dilemmas indicating which type of infidelity most affected them (sexual or emotional using a culture of honour scale, a sexism inventory and a jealousy scale. There were differences between men and women only in two dilemmas. The influence of a culture of honour, hostile sexism, benevolent sexism and jealousy on sexual and emotional infidelity was analyzed. Women who scored high on a culture of honour, benevolent sexism and jealousy were those who felt most affected by sexual infidelity.

  10. Strangeness Production in Jets with ALICE at the LHC

    Science.gov (United States)

    Smith, Chrismond; Harton, Austin; Garcia, Edmundo; Alice Collaboration

    2016-03-01

    The study of strange particle production is an important tool for understanding the properties of the hot and dense QCD medium created in heavy-ion collisions at ultra-relativistic energies. The study of strange particles in these collisions provides information on parton fragmentation, a fundamental QCD process. While measurements at low and intermediate pT, are already in progress at the LHC, the study of high momentum observables is equally important for a complete understanding of the QCD matter, this can be achieved by studying jet interactions. We propose the measurement of the characteristics of the jets containing strange particles. Starting with proton-proton collisions, we have calculated the inclusive pTJet spectra and the spectra for jets containing strange particles (K-short or lambda), and we are extending this analysis to lead-lead collisions. In this talk the ALICE experiment will be described, the methodology used for the data analysis and the available results will be discussed. This material is based upon work supported by the National Science Foundation under Grants PHY-1305280 and PHY-1407051.

  11. D+ meson analysis at the LHC with ALICE

    CERN Document Server

    Ortona, Giacomo

    2012-01-01

    This thesis describes the analysis of the D+ meson in its purely hadronic decay channel D+ → K− π+ π+ performed at the Large Hadron Collider with A Large Ion Collider Experiment (ALICE) in proton-proton collisions at √s = 2.76 TeV and √s = 7 TeV and in Pb-Pb collision at √sNN = 2.76 TeV. The study of open charm meson (mesons made by one light quark and one charm quark) are an interesting tool to probe pQCD and the Quark-Gluon-Plasma properties. In this thesis I present the details of the measurement of the D+ and charm production cross section in proton-proton collisions at √s = 7 TeV and of the measurements of the D+ meson nuclear modification factor and elliptic flow from the 2010 data sample of Pb-Pb collision at √sNN = 2.76 TeV per nucleon pair.

  12. ALICE: structures weighing several tonnes are moved with millimetric precision

    CERN Multimedia

    2005-01-01

    The ALICE collaboration has just conducted one of its most spectacular transport operations to date in lifting the dipole of the muon spectrometer and reassembling it on the other side of the huge solenoid magnet. This incredible feat involved lifting no fewer than 900 tonnes of equipment over the red octagonal yoke inherited from the L3 experiment at a height of 18 metres. Following initial assembly and successful testing at the end of last year (see Bulletin No. 4/2005), the dipole was completely dismantled and moved to the other end of the cavern. The yoke was transported as 28 modules, each weighing 30 tonnes. The most spectacular feat of all, though, was undoubtedly the removal of the two 32-tonne coils. The first of these was moved on 18 April, as recorded in the following photos: A special lifting gantry weighing 5 tonnes had to be developed to move and install the coils. Huge clamps, which can be seen at the front, were used to rotate these enormous 32-tonne components. The whole assembly was raised ...

  13. No more escape for particle jets in ALICE

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    Particle jets are key tools for physicists to probe the quark-gluon plasma, a state of matter that existed a few moments after the Big Bang and that is reproduced in heavy-ion collisions at the LHC. The ALICE experiment is being upgraded to include a new calorimeter arm designed to extend significantly its capabilities to detect and measure jets of particles.   DCal and PHOS new support beams and support cradle are assembled and ready for installation. The new calorimeter, called the “DCal”, is a large lead-scintillator detector with photo-diode readout placed in the opposite azimuth to the existing electromagnetic calorimeter (EMCal). This is the optimal configuration for the measurements of back-to-back jets, which originate in the interactions of ultra-high-energy quarks and gluons. The Dcal has been built by the same international team from institutes in France, Italy and the US that built the EMCal, with additional new contributions from institutes in Japan and Chin...

  14. Orthos, an alarm system for the ALICE DAQ operations

    Science.gov (United States)

    Chapeland, Sylvain; Carena, Franco; Carena, Wisla; Chibante Barroso, Vasco; Costa, Filippo; Denes, Ervin; Divia, Roberto; Fuchs, Ulrich; Grigore, Alexandru; Simonetti, Giuseppe; Soos, Csaba; Telesca, Adriana; Vande Vyvre, Pierre; von Haller, Barthelemy

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The DAQ (Data Acquisition System) facilities handle the data flow from the detectors electronics up to the mass storage. The DAQ system is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches), and controls hundreds of distributed hardware and software components interacting together. This paper presents Orthos, the alarm system used to detect, log, report, and follow-up abnormal situations on the DAQ machines at the experimental area. The main objective of this package is to integrate alarm detection and notification mechanisms with a full-featured issues tracker, in order to prioritize, assign, and fix system failures optimally. This tool relies on a database repository with a logic engine, SQL interfaces to inject or query metrics, and dynamic web pages for user interaction. We describe the system architecture, the technologies used for the implementation, and the integration with existing monitoring tools.

  15. First ALICE results on quarkonium production at Run 2 energies

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Quarkonium production in hadronic collisions (either proton-proton or heavy ions) has been extensively studied in both fixed target and collider experiments. It is understood as the production of a heavy quark pair (ccbar or bbar depending on the quarkonium state) in a hard scattering process which occurs early in the collision, followed by the evolution of this quark pair into a colorless bound state. While the production of the quark pair is reasonably well described by perturbative QCD calculations, its evolution into the bound state is inherently non-perturbative and is studied experimentally in pp collisions. In heavy ion collisions on the other hand, quarkonia are used to probe the properties of the medium formed in the collision and in particular that of the quark-gluon plasma, via competing mechanisms such as color screening, thermal dissociation or recombination, as well as so-called cold nuclear matter effects such as shadowing, gluon saturation or energy loss. The first ALICE results on quarkonium...

  16. A continuous read-out TPC for the ALICE upgrade

    Science.gov (United States)

    Lippmann, C.

    2016-07-01

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb-Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  17. ALICE TPC upgrade for High-Rate operations

    CERN Document Server

    ,

    2015-01-01

    A new type of Time Projection Chamber (TPC) has been proposed for the upgrade of the ALICE (A Large Ion Collider Experiment at CERN) so as to cater to the high luminosity environment expected at the Large Hadron Collider (LHC) facility in future. This device will rely on the intrinsic ion back flow (IBF) suppression of Micro-Pattern Gas Detectors (MPGD) based technology in particular the Gas Electron Multiplier (GEM). GEM is to minimise the space charge effect in the main drift volume and thus will not require the standard gating grid and the resulting intrinsic dead time. It will thus be possible to read all minimum bias Pb--Pb events that the Large Hadron Collider (LHC) will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era in Run 3. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1~TByte/s. The new read-out chambers will consist of stacks of 4 GEM foils combining different hole pitches. In addition to a low ion...

  18. Recent results on anisotropic flow and related phenomena in ALICE

    CERN Document Server

    Bilandzic, Ante

    2016-01-01

    The exploration of properties of an extreme state of matter, the Quark--Gluon Plasma, has broken new ground with the recent Run 2 operation of the Large Hadron Collider with heavy-ion collisions at the highest energy to date. With the heavy-ion data taken at the end of 2015, the ALICE Collaboration has made the first observation of anisotropic flow of charged particles and related phenomena in lead--lead collisions at the record breaking energy of 5.02 TeV per nucleon pair. The Run 2 results come after the proton-lead collisions, which provided a lot of unexpected results obtained with two- and multi-particle correlation techniques. In these proceedings, a brief overview of these results will be shown. We will discuss how they further enlighten the properties of matter produced in ultrarelativistic nuclear collisions. We indicate the possibility that, to leading order, the striking universality of flow results obtained with correlation techniques in pp, p--A and A--A collisions might have purely mathematical ...

  19. A Preshower Photon Multiplicity Detector for the ALICE Experiment

    CERN Document Server

    Aggarwal, M M; Baba, P V K S; Badyal, S K; Bharti, A; Bhasin, A; Bhati, A K; Bhatia, V S; Chattopadhyay, S; Dubey, A K; Dutta-Majumdar, M R; Mazumdar, K; Ganti, M S; Ghosh, P; Sen-Gupta, A; Gupta, V K; Mahapatra, D P; Mangotra, L K; Mohanty, B; Nayak, T K; Phatak, S C; Raniwala, R; Raniwala, S; Rao, N K; Sambyal, S S; Singaraju, R N; Sinha, B; Trivedi, M D; Viyogi, Y P

    1999-01-01

    A preshower Photon Multiplicity Detector (PMD) is proposed to be implemented in the ALICE experiment to study event shapes and isospin fluctuations. The PMD, to be mounted on the magnet door at 6m from the vertex, has fine granularity and full azimuthal coverage in the pseudo-rapidity region 1.8

  20. Light flavor results in p-Pb collisions with ALICE

    CERN Document Server

    Ortiz, Antonio

    2016-01-01

    Particle ratios provide insight into the hadrochemistry of the event and the mechanisms for particle production. In Pb-Pb collisions the relative multi-strange baryon yields exhibit an enhancement with respect to pp collisions, whereas the short-lived K$^{*0}$ resonance is suppressed in the most central events due to re-scattering of its decay daughter particles. Measurements in p-Pb allow us to investigate the development of these effects as a function of the system size. We report comprehensive results on light-flavor hadron production measured with the ALICE detector in p-Pb collisions at $\\sqrt{s_{\\rm NN}}=5.02$ TeV, covering a wide range of particle species which includes long-lived hadrons, resonances and multi-strange baryons. The measurements include the transverse momentum spectra and the ratios of spectra among different species, and extend over a very large transverse momentum region, from $\\approx$100 MeV/$c$ to $\\approx$20 GeV/$c$, depending on the particle species.

  1. Low-mass dilepton production with ALICE at the LHC

    International Nuclear Information System (INIS)

    The production of low-mass dileptons, including those from ρ, ω and ϕ light vector meson decays, provides key information on the hot and dense state of strongly interacting matter produced in high-energy heavy-ion collisions. In particular, strangeness production can be studied through ϕ meson measurements, while the detailed description of the full dilepton mass spectra down to the kinematic threshold can be used to reveal in-medium modifications of hadron properties and the thermal emission arising from the medium. Measurements in pp and p–A, respectively, provide a reference for the observations in heavy-ion collisions and give insight on soft particle production in cold nuclear matter. Dilepton production is studied with the ALICE apparatus at the LHC both at central (|y|<0.9) and forward (2.5

  2. Development of high $\\beta^*$-optics for ALICE

    CERN Document Server

    Hermes, Pascal Dominik; Wessels, Johannes Peter

    This thesis describes a feasibility study for a special optical configuration in Insertion Region 2 (IR2) of the Large Hadron Collider (LHC), which is host of the ALICE detector. This configuration allows the study of elastic and diffractive scattering during LHC high-intensity proton operation, in parallel to the nominal physics studies in all LHC experiments at the design energy of 7 TeV per beam. Such measurements require the instal- lation of additional Roman Pot (RP) detectors in the very forward region, at longitudinal distances of 150 m to 220 m from the Interaction Point (IP). Apart from being adjusted for a specific betatron phase advance between the IP and the RP detectors, such a configuration must be optimized for the largest possible $\\beta^*$ -value, to be sensitive for the smallest possible four-momentum transfer $|t|$. A value of $\\beta^*$ = 18 m is compatible with a bunch spacing of 25 ns, considering the LHC design emittance of N = 3.75 μm rad, and a required bunch-bunch separation of $12 \\...

  3. El papel de la cultura del honor, del sexismo y de los celos en la respuesta a la infidelidad de la pareja (The role of culture of honour, sexism and jealousy in response to partner infidelity)

    OpenAIRE

    Jesús María Canto Ortiz; Pilar Moreno Jiménez; Fabiola Perles Novas; Jesús San Martín García

    2012-01-01

    The aim of this study was to investigate whether a culture of honour, sexism and jealousy influenced the type of infidelity (sexual or emotional) experienced by the participants. A total of 170 university students (80 men and 90 women) participated. They responded to six dilemmas indicating which type of infidelity most affected them (sexual or emotional) using a culture of honour scale, a sexism inventory and a jealousy scale. There were differences between men and women only in two dilemmas...

  4. The McGraw Hill Honourable Mention for Paper in Entrepreneurship Finance, Profitability & Growth

    OpenAIRE

    Vanhoutte, Christine; Martens, David; De Winne, Sophie; Sels, Luc; Baesens, Bart

    2010-01-01

    We investigate the intitial resource-performance relationship in start-ups from a configurational perspective. We rely on resource-based and industrial organization literature to develop an integrated vieuw on determinants of competitive advantage. We subsequently identify ideal configurations of initial resources, strategy and environment by means of a decision tree analysis on a sample of 218 start-ups. Results show that (1) competitive advantage is determined by resource bundles rather tha...

  5. Grid Computing at GSI for ALICE and FAIR - present and future

    Science.gov (United States)

    Schwarz, Kilian; Uhlig, Florian; Karabowicz, Radoslaw; Montiel-Gonzalez, Almudena; Zynovyev, Mykhaylo; Preuss, Carsten

    2012-12-01

    The future FAIR experiments CBM and PANDA have computing requirements that fall in a category that could currently not be satisfied by one single computing centre. One needs a larger, distributed computing infrastructure to cope with the amount of data to be simulated and analysed. Since 2002, GSI operates a tier2 center for ALICE@CERN. The central component of the GSI computing facility and hence the core of the ALICE tier2 centre is a LSF/SGE batch farm, currently split into three subclusters with a total of 15000 CPU cores shared by the participating experiments, and accessible both locally and soon also completely via Grid. In terms of data storage, a 5.5 PB Lustre file system, directly accessible from all worker nodes is maintained, as well as a 300 TB xrootd-based Grid storage element. Based on this existing expertise, and utilising ALICE's middleware ‘AliEn’, the Grid infrastructure for PANDA and CBM is being built. Besides a tier0 centre at GSI, the computing Grids of the two FAIR collaborations encompass now more than 17 sites in 11 countries and are constantly expanding. The operation of the distributed FAIR computing infrastructure benefits significantly from the experience gained with the ALICE tier2 centre. A close collaboration between ALICE Offline and FAIR provides mutual advantages. The employment of a common Grid middleware as well as compatible simulation and analysis software frameworks ensure significant synergy effects.

  6. The GridKa Tier-1 Computing center within the ALICE grid framework

    International Nuclear Information System (INIS)

    The GridKa computing center, hosted by Steinbuch Centre for Computing at the Karlsruhe Institute for Technology (KIT) in Germany, is serving as the largest Tier-1 center used by the ALICE collaboration at the LHC. In 2013, GridKa provides 30k HEPSPEC06, 2.7 PB of disk space, and 5.25 PB of tape storage to ALICE. The 10 Gbit/s network connections from GridKa to CERN, several Tier-1 centers and the general purpose network are used by ALICE intensively. In 2012 a total amount of ∼1 PB was transferred to and from GridKa. As Grid framework, AliEn (ALICE Environment) is being used to access the resources, and various monitoring tools including the MonALISA (MONitoring Agent using a Large Integrated Services Architecture) are always running to alert in case of any problem. GridKa on-call engineers provide 24/7 support to guarantee minimal loss of availability of computing and storage resources in case of hardware or software problems. We introduce the GridKa Tier-1 center from the viewpoint of ALICE services.

  7. The GridKa Tier-1 Computing Center within the ALICE Grid Framework

    Science.gov (United States)

    Park, WooJin J.; Christopher, Jung; Heiss, Andreas; Petzold, Andreas; Schwarz, Kilian

    2014-06-01

    The GridKa computing center, hosted by Steinbuch Centre for Computing at the Karlsruhe Institute for Technology (KIT) in Germany, is serving as the largest Tier-1 center used by the ALICE collaboration at the LHC. In 2013, GridKa provides 30k HEPSPEC06, 2.7 PB of disk space, and 5.25 PB of tape storage to ALICE. The 10Gbit/s network connections from GridKa to CERN, several Tier-1 centers and the general purpose network are used by ALICE intensively. In 2012 a total amount of ~1 PB was transferred to and from GridKa. As Grid framework, AliEn (ALICE Environment) is being used to access the resources, and various monitoring tools including the MonALISA (MONitoring Agent using a Large Integrated Services Architecture) are always running to alert in case of any problem. GridKa on-call engineers provide 24/7 support to guarantee minimal loss of availability of computing and storage resources in case of hardware or software problems. We introduce the GridKa Tier-1 center from the viewpoint of ALICE services.

  8. Pixel readout chips in deep submicron CMOS for ALICE and LHCb tolerant to 10 Mrad and beyond

    NARCIS (Netherlands)

    Snoeys, W.; Burns, M.; Campbell, M.; Cantatore, E.; Cencelli, V.; Dinapoli, R.; Heijne, E.; Jarron, P.; Lamanna, P.; Minervini, D.; Morel, M.; O'Shea, V.; Quiquempoix, V.; San Segundo Bello, D.; Koningsveld, van B.; Wyllie, K.

    2001-01-01

    The ALICE1LHCB chip is a mixed-mode integrated circuit designed to read out silicon pixel detectors for two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these

  9. Design, production and first operation of the ALICE Silicon Pixel Detector system

    CERN Document Server

    Kluge, A; Antinori, F; Burns, M; Cali, I A; Campbell, M; Caselle, M; Cavicchioli, C; Dima, R; Elia, D; Fabris, D; Krivda, M; Librizzi, F; Manzari, V; Marangio, G; Morel, M; Moretto, S; Osmic, F; Pappalardo, G S; Pepato, Adriano; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Stefanini, G; Torcato Matos, C; Turrisi, R; Tydesjol, H; Viesti, G

    2008-01-01

    The ALICE Silicon Pixel Detector (SPD) constitutes the two innermost barrel layers of the ALICE experiment. The SPD is the detector closest to the interaction point, mounted around the beam pipe with the two layers at r=3.9 cm and 7.6 cm distance from beam axis. In order to reduce multiple scattering the material budget per layer in the active region has been limited to ≈1% X0. The SPD consists of 120 hybrid silicon pixel detectors modules with a total of ~107 cells. The on-detector read-out is based on a multi-chip-module containing 4 ASICs and an optical transceiver module. The readout electronics, located in the control room, is housed in 20 VME boards; it is the interface to the ALICE trigger, data acquisition, control system and detector electronics. In this contribution the SPD detector components design and production are reviewed. First operation results are reported.

  10. Atmospheric Lithosphere-Ionosphere Charge Exchange (ALICE) for coupling between earthquake regions, clouds and the ionosphere

    Science.gov (United States)

    Harrison, Giles; Aplin, Karen; Rycroft, Michael

    2014-05-01

    Atmospheric Lithosphere-Ionosphere Charge Exchange (ALICE) has been proposed as a mechanism to link seismic activity and ionospheric changes detected overhead, which has been observed in data obtained by the DEMETER spacecraft. The ALICE mechanism can explain changes in the natural extremely low frequency (ELF) radio noise observed by DEMETER nocturnally before major earthquakes. ALICE operates through the vertical fair weather current density of global atmospheric electricity, through the modification of surface layer ionisation rates and the associated current flow to the ionosphere. These ideas are extended here to include possible effects on layer clouds through which the current density passes. Specifically, we estimate possible layer cloud changes for changes in surface layer ionisation known in some earthquakes.

  11. Model Simulations of Charged Particles Multiplicity Distributions in the Forward Region for ALICE at LHC

    CERN Document Server

    Braun, M A; Kondratev, V P; Vechernin, V V

    1999-01-01

    We present results of Monte Carlo simulations of charged particles multiplicity distributions and ALICE background conditions in forward region for PbPb collisions at LHC.HIJING event generator [1] results are compared with predictions of Coloured String Fusion Model [2,3].Requirements to the Forward Multiplicity Detector for ALICE arising from these simulations are discussed (multiplicity range, resolution in multiplicity, granularity, timing resolution).References: [1] N.van Eijndhoven et al., ALICE/CERN 95-32, Internal Note 1996[2] M.Braun and C.Pajares, PHys. Rev. D47 (1993) 114-122[2] M.Braun and C.Pajares, PHys. Rev. C51 (1995) 879-889

  12. Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, Y M; Buckley, R K; Buckley, S R; Clarke, J A; Corlett, P A; Dunning, D J; Goulden, A R; Hill, S F; Jackson, F; Jamison, S P; Jones, J K; Jones, L B; Leonard, S; McIntosh, P A; McKenzie, J W; Middleman, K J; Militsyn, B L; Moss, A J; Muratori, B D; Orrett, J F; Pattalwar, S M; Phillips, P J; Scott, D J; Seddon, E A; Shepherd, B.J.A.; Smith, S L; Thompson, N; Wheelhouse, A E; Williams, P H; Harrison, P; Holder, D J; Holder, G M; Schofield, A L; Weightman, P; Williams, R L; Laundry, D; Powers, T; Priebe, G

    2010-05-01

    Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

  13. Profiles in Performing Arts Medicine Courage--A Tribute to Dr. Alice Brandfonbrener.

    Science.gov (United States)

    Manchester, Ralph A

    2015-09-01

    I was honored and privileged to join Dr. Robert Sataloff in delivering a tribute to Dr. Alice Brandfonbrener at the 2015 Symposium on the Medical Problems of Performing Artists in Snowmass, Colorado. As virtually everyone who reads this journal knows, Dr. Brandfonbrener organized the first symposium (then focused on the medical problems of musicians), was the founding editor of Medical Problems of Performing Artists, and was the first president of the Performing Arts Medicine Association. She died in 2014, just prior to last year's symposium. This year, after Dr. Sataloff presented a very engaging overview of Alice's career and impressive accomplishments, I gave a short address that was based on some of the editorials Alice wrote in this journal during her 20 year tenure as editor. I have chosen a few examples of how the courage that she demonstrated in launching an international medical conference, a peer-reviewed medical journal, and a professional association continued to present itself in her writing.

  14. ALICE Grid Computing at the GridKa Tier-1 Center

    Science.gov (United States)

    Jung, C.; Petzold, A.; Pfeiler, C.-E.; Schwarz, K.

    2012-12-01

    The GridKa center at the Karlsruhe Institute of Technology is the largest ALICE Tier-1 center. It hosts 40,000 HEPSEPC'06, approximately 2.75 PB of disk space, and 5.25 PB of tape space for the ‘A Large Ion Collider Experiment’ (ALICE), at the CERN Large Hadron Collider (LHC). These resources are accessed via the AliEn (ALICE Environment) middleware. The storage is divided into two instances, both using the storage middleware xrootd. We will focus on the set-up of these resources and on the topic of monitoring. The latter serves a vast number of purposes, ranging from efficiency statistics for process and procedure optimization to alerts for on-call duty engineers.

  15. Online drift velocity calibration with the laser system of the ALICE-TPC

    International Nuclear Information System (INIS)

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of ALICE which was designed to perform well at multiplicities of up to 20000 charged primary and secondary tracks emerging from Pb-Pb collisions. For a precise reconstruction of particle tracks in the TPC, the calibration of the drift velocity, which provides time information and thus the z position of the traversing particles, is essential. In this presentation an online method for the calibration of the drift velocity is presented, using the TPC laser system. The resulting time dependent drift velocity correction parameters are entered into a database and provide start values for the offline reconstruction process of ALICE. Even though no tracking information is used, the online drift velocity calibration is in agreement with the full offline calibration including tracking on the level of 2 x 10-4.

  16. The Level 0 Pixel Trigger System for the ALICE Silicon Pixel Detector: implementation, testing and commissioning

    CERN Document Server

    Aglieri-Rinella, G

    2008-01-01

    The ALICE Silicon Pixel Detector transmits 1200 Fast-OR signals every 100 ns on 120 optical readout channels. They indicate the presence of at least one hit in the pixel matrix of each readout chip. The ALICE Level 0 Pixel Trigger System extracts them, processes them and delivers an input signal to the Central Trigger Processor for the first level trigger decision within a latency of 800 ns. This paper describes tests and measurements made on the system during the qualification and commissioning phases. These included Bit Error Rate tests on the Fast-OR data path, the measurement of the overall process latency and the recording of calibration data with cosmic rays. The first results of the operation of the Pixel Trigger System with the SPD detector in the ALICE experiment are also presented.

  17. Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory

    International Nuclear Information System (INIS)

    Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

  18. Construction and performance of the ALICE Transition Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Emschermann, David

    2010-01-20

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-p{sub t} e{sup +}e{sup -} pairs within 6.5 {mu}s after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m{sup 2}. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  19. Determination of the event collision time with the ALICE detector at the LHC

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Iga Buitron, Sergio Arturo; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Duggal, Ashpreet Kaur; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Espagnon, Bruno; Esumi, Shinichi; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Garg, Prakhar; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hladky, Jan; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lazaridis, Lazaros; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Lonne, Per-ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Ohlson, Alice Elisabeth; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Jonghan; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Rana, Dhan Bahadur; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Anjali; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Vigolo, Sonia; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Witt, William Edward; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann

    2016-01-01

    Particle identification is an important feature of the ALICE detector at the LHC. In particular, for particle identification via the time-of-flight technique, the precise determination of the event collision time represents an important ingredient of the quality of the measurement. In this paper, the different methods used for such a measurement in ALICE by means of the T0 and the TOF detectors are reviewed. Efficiencies, resolution and the improvement of the particle identification separation power of the methods used are presented for the different LHC colliding systems (pp , p-Pb and Pb-Pb) during the first period of data taking of LHC (Run 1).

  20. RCU2-The ALICE TPC readout electronics consolidation for Run2

    CERN Document Server

    Alme, J; Christiansen, P; Yang, S; Lien, J; Velure, A; Rehman, A Ur; Torgersen, C; David, E; Gunji, T; Osterman, L; Ullaland, K; Roed, K; Tarantola, A; Langoy, R; Appelshaeuser, H; Oskarsson, A; Alt, T; Costa, F; Bratrud, L; Zhao, C; Lippmann, C; Torsvik, I Nikolai; Kiss, T

    2013-01-01

    This paper presents the solution for optimization of the ALICE TPC readout for running at full energy in the Run2 period after 2014. For the data taking with heavy ion beams an event readout rate of 400 Hz with a low dead time is envisaged for the ALICE central barrel detectors during these three years. A new component, the Readout Control Unit 2 (RCU2), is being designed to increase the present readout rate by a factor of up to 2.6. The immunity to radiation induced errors will also be significantly improved by the new design.

  1. Determination of the event collision time with the ALICE detector at the LHC

    CERN Document Server

    ALICE, CERN; The ALICE collaboration

    2016-01-01

    Particle identification is an important feature of the ALICE detector at the LHC. In particular, for particle identification via the time-of-flight technique, the precise determination of the event collision time represents an important ingredient of the quality of the measurement. In this paper, the different methods used for such a measurement in ALICE by means of the T0 and the TOF detectors are reviewed. Efficiencies, resolution and the improvement of the particle identification separation power of the methods used are presented for the different LHC colliding systems (pp, p–Pb and Pb–Pb) during the first period of data taking of LHC (R UN 1).

  2. PREFACE: Celebrating 20 years of Journal of Physics: Condensed Matter—in honour of Richard Palmer Celebrating 20 years of Journal of Physics: Condensed Matter—in honour of Richard Palmer

    Science.gov (United States)

    Ferry, David; Dowben, Peter; Inglesfield, John

    2009-11-01

    we go into the future. The Executive Board decided to do this special issue, both to commemorate the 20th year of Journal of Physics: Condensed Matter and to honour Richard for his long years of service to IOP Publishing and Journal of Physics: Condensed Matter. This issue is dedicated to Richard for his many years of work and friendship with the journal board that has seen a great many changes over the years. This issue covers a very wide range of topics, since we approached all current and past members of the various boards of Journal of Physics: Condensed Matter in seeking papers for this special issue. The response has been very positive and this will be one of our larger special issues. The desire to honour Richard is widespread among these various boards, so that we have been almost overwhelmed with submissions, although many who wished to contribute could not because of other obligations. We hope that you, the readership, will enjoy these articles.

  3. 2nd February 2011-Vice-Chancellor of Jammu University-Prof. Varun Sahni-India visiting ALICE cavern and LHC Tunnel

    CERN Multimedia

    Sylvain Chapeland

    2011-01-01

    Photo 1-2,4-8:The delegation visiting the ATLAS cavern Photo 3:ALICE Collaboration Spokesperson P. Giubellino+ALICE Collaboration University of Jammu S. Mahajan+ALICE Collaboration University of Jammu A. Bhasin+ALICE Collaboration Universita degli Studi di Torino R. Bala+V. Sahni+Adviser for India R.Voss+S. Arriaga+ALICE Collaboration University of Jammu A. Gupta Photo 9-13:The delegation visiting the LHC tunnel at Point 2 Photo 14-22: Signature of the Guest Book with R. Voss

  4. A Proposal for an Integrated TDC for the ALICE TOF System

    CERN Document Server

    Earle, W E; CERN. Geneva; Hazen, E; Miller, J P

    1994-01-01

    An architecture for an integrated Time-to-Digital (TDC) converter is proposed in this note for a Time-of-Flight (TOF) system, used as the Particle Identification Device (PID) of the ALICE experiment. The proposed 16-channel, 25 ps resolution ASIC chip-set is described, suitable for high-density, on-detector mounting of the required Å 169 k channels.

  5. $J/\\psi$ production in proton-proton collisions at ALICE LHC

    CERN Document Server

    Kour, Ravjeet

    A Large Ion Collider Experiment (ALICE) studies the strong interaction part (Quantum Chromo Dynamics) of the Standard Model at the CERN Large Hadron Collider. ALICE has been designed as a general-purpose heavy-ion detector in order to explore phenomena of strong interacting matter and the quark-gluon plasma (QGP) at extreme values of energy density and temperature in nucleus-nucleus collisions. Results are presented here on the study of J/\\psiproduction in pp collisions at ALICE. In particular, a measurement of J/\\psi cross-section at \\sqrt{s} = 7 TeV energy has been performed, together with a study of a possible algorithm to separate primary J/\\psi from those coming from decays of B hadrons. The validity of this algorithm in ALICE has been demonstrated using Monte-Carlo samples. The J/\\psi particles have been searched exclusively in the decay channel J/\\psi -> e+e−. The study focused on what would be achievable in a period of early running, with integrated luminosity of L=1.25 nb-1, at a proton-proton cen...

  6. Effects of Using Alice and Scratch in an Introductory Programming Course for Corrective Instruction

    Science.gov (United States)

    Chang, Chih-Kai

    2014-01-01

    Scratch, a visual programming language, was used in many studies in computer science education. Most of them reported positive results by integrating Scratch into K-12 computer courses. However, the object-oriented concept, one of the important computational thinking skills, is not represented well in Scratch. Alice, another visual programming…

  7. Layout of the ALICE detector (A Large Ion Collision Experiment), an experiment of the LHC

    CERN Document Server

    2004-01-01

    The ALICE Set-up : 1. ITS 2. FMD 3. TPC 4. TRD 5. TOF 6. HMPID 7. PHOS CPV 8. L3magnet 9. Absorber 10. Tracking Chambers 11. Muon Filter 12. Trigger Chambers 13. Dipole Magnet 14. PMD 15. Compensator Magnet

  8. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    NARCIS (Netherlands)

    Snoeys, W.; Campbell, M.; Cantatore, E.; Cencelli, V.; Dinapoli, R.; Heijne, E.; Jarron, P.; Lamanna, P.; Minervini, D.; O'Shea, V.; Quiquempoix, V.; San Segundo Bello, D.; Koningsveld, van B.; Wyllie, K.

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 coll

  9. Real-time TPC Analysis with the ALICE High-Level Trigger

    CERN Document Server

    Lindenstruth, V; Röhrich, D; Skaali, B; Steinbeck, T M; Stock, R; Tilsner, H; Ullaland, K; Vestbø, A S; Vik, T

    2004-01-01

    The ALICE High-Level Trigger processes data online, to either select interesting (sub-) events, or to compress data efficiently by modeling techniques. Focusing on the main data source, the Time Projection Chamber, the architecure of the system and the current state of the tracking and compression methods are outlined.

  10. Particle identification with the ALICE Time-Of-Flight detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Alici, A., E-mail: alici@bo.infn.it [Centro Fermi - Centro Studi e Ricerche e Museo Storico della Fisica “Enrico Fermi”, Rome (Italy); Sezione INFN, Bologna (Italy)

    2014-12-01

    High performance Particle Identification system (PID) is a distinguishing characteristic of the ALICE experiment at the CERN Large Hadron Collider (LHC). Charged particles in the intermediate momentum range are identified in ALICE by the Time-Of-Flight (TOF) detector. The TOF exploits the Multi-gap Resistive Plate Chamber (MRPC) technology, capable of an intrinsic time resolution at the level of few tens of ps with an overall efficiency close to 100% and a large operation plateau. The full system is made of 1593 MRPC chambers with a total area of 141 m{sup 2}, covering the pseudorapidity interval [−0.9,+0.9] and the full azimuthal angle. The ALICE TOF system has shown very stable operation during the first 3 years of collisions at the LHC. In this paper a summary of the system performance as well as main results with data from collisions will be reported. - Highlights: • We report the performance of large area, small granularity ALICE TOF system based on MRPC technology. • Description and performance of PID analysis with the TOF are reported. • A non-exhaustive list of physics analyses, where the TOF PID is used, is given.

  11. Influence of Alice 3: Reducing the Hurdles to Success in a CS1 Programming Course

    Science.gov (United States)

    Daly, Tebring

    2013-01-01

    Learning the syntax, semantics, and concepts behind software engineering can be a challenging task for many individuals. This paper examines the Alice 3 software, a three-dimensional visual environment for teaching programming concepts, to determine if it is an effective tool for improving student achievement, raising self-efficacy, and engaging…

  12. Status of the ALICE experiment and first results on heavy flavour production

    International Nuclear Information System (INIS)

    The ALICE experiment is the LHC detector mainly dedicated to the study of the Quark Gluon Plasma (QGP) in Pb-Pb collisions. The detector has started the data taking less than one year ago, delivering immediately relevant results. An overview of the first physics results obtained in the first six month of running of the experiment will be summarized, giving special emphasis to heavy flavour measurements. Heavy flavours are ideal probes to explore both the formation and properties of the QGP, since they experience the full collision history and are expected to be copiously produced at LHC, much more than at any other collider. With ALICE we will measure heavy flavours down to small transverse momentum, combining hadronic and leptonic channels, both at central and forward rapidity. In particular, in the central rapidity region, it is possible to exclusively reconstruct open charm mesons and baryons via hadronic decay channels. Furthermore, the good identification of electrons allows to measure the production both of charmonium and open beauty. First results from p-p collisions at 7 TeV will be shown, including the clear signals of open and hidden charm hadrons reconstructed at ALICE. These data provide interesting insight into QCD processes in a new energy regime, are important as a baseline for the Pb-Pb program and demonstrate the potential for heavy flavour cross section measurements with the ALICE detector.

  13. p-Pb Results from ALICE with an Emphasis on Centrality Determination

    CERN Document Server

    Morsch, Andreas

    2014-01-01

    New ALICE results concerning particle production at low and intermediate transverse momenta in p-Pb collisions at a centre of mass energy of 5.02 TeV per nucleon pair are briefly discussed. Emphasis is given to the determination of centrality in p-Pb and their implications for binary scaling of hard processes.

  14. Proto-2, an ALICE detector prototype, went to the United States (during transport)

    CERN Multimedia

    2002-01-01

    Proto-2, an ALICE detector prototype, overcame its prototype status to become a real part of the STAR experiment at the US Brookhaven National Laboratory.After more than two years across the ocean, it has just arrived back at CERN

  15. How to create Alice string (half-quantum vortex) in a vector Bose-Einstein condensate

    OpenAIRE

    Leonhardt, U.; Volovik, G. E.

    2000-01-01

    We suggest a procedure how to prepare the vortex with N=1/2 winding number -- the counterpart of the Alice string -- in a Bose--Einstein condensate with hyperfine spin F=1. Other possible vortices in Bose-condensates are also discussed.

  16. (r) Mass Resolution versus Chamber Resolution in ALICE Dimuon Forward Spectrometer

    Institute of Scientific and Technical Information of China (English)

    WU Tao

    2007-01-01

    The precisions and its sources of spatial resolutions of tracking chambers and mass resolutions of dimuon signals in ALICE Dimuon Forward Spectrometer are explored by tracking and reconstruction of AliRoot software. The dependences of (r) mass resolution on spatial resolution of tracking chambers are presented with and without background events through simulations.

  17. Response to Intervention: Alice Birney Middle School's Model, Experience, and Results

    Science.gov (United States)

    Brundage, Amber; Beckmann-Bartlett, Carol; Burns, Matthew K.

    2010-01-01

    In January 2008, the school-wide data for Alice Birney Middle School in North Charleston, South Carolina were concerning. According to the Measures of Academic Progress (MAP) Reading data, 40% to 48% of the students fell below the 25th percentile at each grade level. The authors realized that these students were not all undiagnosed special…

  18. Alice in Wonderland” Syndrome: A Manifestation of Infectious Mononucleosis in Children

    Directory of Open Access Journals (Sweden)

    Eliezer Lahat

    1991-01-01

    Full Text Available The association between “Alice in Wonderland” Syndrome (AWS and infectious mononucleosis (IM has been previously described in three patients. We describe two additional cases in children, where in one case, the visual symptoms of AWS appeared during the course of active IM and in the second, 2 weeks following a clinically mild, but serologically proven attack.

  19. The ALICE muon spectrometer: trigger detectors and quarkonia detection in p-p collisions

    CERN Document Server

    Gagliardi, Martino

    This work was carried out in the context of the optimisation of the performances of the muon spectrometer of the forthcoming ALICE experiment at the Large Hadron Collider (LHC, CERN). The aim of ALICE is the study of nuclear matter at the highest energy densities ever accessed experimentally. More in detail, the focus is on the expected phase transition to a deconfined phase of matter where the degrees of freedom are those of quarks and gluons: the Quark-Gluon Plasma. The conditions for QGP formation are expected to be achieved in highly relativistic heavy ion collisions. The energy in the centre of mass of Pb-Pb collisions at the LHC will be 5.5 TeV per nucleon pair. The ALICE physics program also includes data-taking in p-p collisions at the centre-of-mass-energy of 14 TeV. The ALICE muon spectrometer has been designed for the detection of heavy quarkonia through their muon decay: both theoretical predictions and experimental data obtained at SPS and RHIC indicate that the production of these resonances sho...

  20. Track reconstruction principle in ALICE for LHC run I and run II

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    Principles of tracking for an ALICE event, showing the three successive paths allowing to build a track and refine its parameters. Numbers ranging from 1 to 10 mention the bits that are activated in case of success during the propgation of the Kalman filter at the considered stage.

  1. Black Matrilineage: The Case of Alice Walker and Zora Neale Hurston.

    Science.gov (United States)

    Sadoff, Diane F.

    1985-01-01

    Discusses the relationship of the Black contemporary author, Alice Walker, to folklorist Zora Neale Hurston and presents a clarification of the relationship of gender and race in a revised theory of literary influence. Argues that Black women authors sometimes misread literary forbears in order to discover and express a positive matrilineage…

  2. Assembly and validation of the SSD silicon microstrip detector of ALICE

    NARCIS (Netherlands)

    de Haas, A.P.; Kuijer, P.G.; Nooren, G.J.L.; Oskamp, C.J.; Sokolov, A.N.; van den Brink, A.

    2006-01-01

    The Silicon Strip Detector (SSD) forms the two outermost layers of the Inner Tracking System (ITS) of ALICE. The SSD detector consists of 1698 double-sided silicon microstrip modules. The electrical connection between silicon sensor and front-end electronics is made via TAB-bonded aluminium–polyimid

  3. Conceptual design of the warm dipole magnet for the ALICE forward muon spectrometer

    CERN Document Server

    Arkhipov, E V; CERN. Geneva; Datskov, V I; Puzynin, I V; Shabunov, A V; Shelaev, I A; Shishov, Yu A; Tsvineva, G P; Vodopyanov, A S; Yuldasheva, M B; Yuldashev, O I

    1996-01-01

    A conceptual design study of a conventional dipole magnet for the forward arm muon spectrometer for ALICE experiment was performed. The aluminium conductor coil of the saddle shape was proposed. The 3D magnetic field calculations were performed. The reasonable field quality is obtained. The power consumption is 3.5MW.

  4. Proton-proton collisions at the Large Hadron Collider's ALICE Experiment: diffraction and high multiplicity

    CERN Document Server

    Matthews, Zoe Louise

    Diffraction in pp collisions contributes approximately 30 % of the inelastic cross section. Its influence on the pseudorapidity density is not well constrained at high energy. A method to estimate the contributing fractions of diffractive events to the inelastic cross section has been developed, and the fractions are measured in the ALICE detector at 900 GeV (7 TeV) to be f_D=0.278\\pm0.055 (f_D=0.28\\pm0.054) respectively. These results are compatible with recent ATLAS and ALICE measurements. Bjorken’s energy density relation suggests that, in high multiplicity pp collisions at the LHC, an environment comparable to A-A collisions at RHIC could be produced. Such events are of great interest to the ALICE Collaboration. Constraints on the running conditions have been established for obtaining a high multiplicity pp data sample using the ALICE detector’s multiplicity trigger. A model independent method to separate a multiplicity distribution from ‘pile-up’ contributions has been developed, and used in conn...

  5. Skinheads White Power na América do Sul: a internacionalização do discurso nacional-socialista da Blood & Honour

    Directory of Open Access Journals (Sweden)

    Samoel Ramos de Alcantara

    2015-12-01

    Full Text Available O presente trabalho trata-se de uma investigação sobre manifestações políticas de extremismo de direita na América do Sul contemporânea, em específico, a atuação da organização skinhead internacional denominada Blood and Honour. Privilegiasse, nessa analise, o debate da categoria nacional-socialismo através de fundamentos da Ciência Política a das Relações Internacionais.No entanto nem todo skinhead é uma apoiador do nazismo, assim como nem todo entusiasta da suástica é um skinhead; existem grupos que se autodenominam enquanto skinheads que apoiam e militam em prol de uma organização social racialista baseada em uma suposta supremacia branca, esses ficaram conhecidos como skinheads White Power.Através dessa pesquisa buscou-se estudar o pensamento e atuação política disseminada e empreendida pela Blood and Honour, apontando, mais especificamente, para sua articulação na América do Sul. Foram analisadas as características constitutivas do pensamento nacional socialista difundido pela organização principalmente através de sites na internet, buscando-se compreender como o nacional socialismo foi, enquanto categoria analítica, modificado para melhor servir os objetivos da Blood and Honour, com enfoque maior nas concepções de internacionalização do movimento.Observou-se que a internacionalização presente no pensamento nacional socialista da Blood and Honour, está pautada em uma organização racial supra estatal baseada na união de indivíduos ou grupo de indivíduos supostamente herdeiros de uma ancestralidade ariana; diferentemente da concepção nacional socialista alemã das décadas de 1920 e 1930 que buscava uma internacionalização através da expansão do domínio nazista, sendo essa altamente pautada na ação estatal e em uma concepção de nacionalidade cívica.

  6. ALICE distributed analysis of the K*(892)0 signal in pp events with the AliEn package

    International Nuclear Information System (INIS)

    A simulation study concerning the K*(892)0 resonance was carried out within the ALICE Collaboration, in order to evaluate the capability of the detector in the reconstruction of this signal in pp collisions at the Large Hadron Collider (LHC) energy. A description of the analysis procedure which makes use of AliEn, the ALICE package for distributed computing, is given together with the obtained results

  7. Stochastic Processes and their Applications : Symposium held in honour of Professor S.K. Srinivasan at the Indian Institute of Technology

    CERN Document Server

    Gopalan, M; Subramanian, R

    1991-01-01

    A volume of this nature containing a collection of papers has been brought out to honour a gentleman - a friend and a colleague - whose work has, to a large extent, advanced and popularized the use of stochastic point processes. Professor Srinivasan celebrated his sixt~ first 1:!irth d~ on December 16,1990 and will be retiring as Professor of Applied Mathematics from the Indian Institute of Technolo~, Madras on June 30,1991. In view of his outstanding contributions to the theor~ and applications of stochastic processes over a time span of thirt~ ~ears, it seemed appropriate not to let his birth d~ and retirement pass unnoticed. A s~posium in his honour and the publication of the proceedings appeared to us to be the most natural and sui table ~ to mark the occasion. The Indian Societ~ for ProbabU it~ and Statistics volunteered to organize the S~posium as part of their XII Annual conference in Bomba~. We requested a number of long-time friends, colleagues and former students of Professor Srinivasan to contribut...

  8. Awards and honours

    CERN Multimedia

    2009-01-01

    President of the Italian Republic, Giorgio Napolitano, presenting Fabiola Gianotti with her award on 7 March.On the occasion of International Woman’s Day on 7 March, Fabiola Gianotti, ATLAS spokesperson, was awarded "Commendatore della Repubblica Italiana" by the Italian President for her "scientific knowledge and her excellent management skills demonstrated in guiding the ATLAS project". Gianotti received the honorary title also for "her contribution to the prestige of the Italian scientific community in the field of nuclear physics." Further reading (in Italian only): http://www.quirinale.it/Comunicati/Comunicato.asp?id=38192 An article about the beginning of Gianotti’s term of office as ATLAS spokesperson is available from the latest issue of the CERN Courier: http://cerncourier.com/cws/article/cern/38709

  9. Awards and honours

    CERN Multimedia

    ATLAS

    2009-01-01

    On the occasion of the international woman day, on 7 March, Fabiola Gianotti, ATLAS spokesperson, was awarded “Commendatore della Repubblica Italiana” by the Italian President for her “scientific knowledge and her excellent management skills demonstrated in guiding the ATLAS project”.

  10. CERN honours Carlo Rubbia

    CERN Multimedia

    2009-01-01

    On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency and Professor at the IUSS School for Advanced Studies in Pavia will speak about his work with Carlo Rubbia. Finally, Hans Joachim Sch...

  11. CERN honours Carlo Rubbia

    CERN Multimedia

    2009-01-01

    On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency, will speak about his work with Carlo Rubbia. Finally, Hans Joachim Schellnhuber of the Potsdam Institute for Climate Research and Sven Kul...

  12. In honour of Charpak

    CERN Multimedia

    2009-01-01

    More than 40 years ago, Georges Charpak invented the multi-wire proportional chamber, which revolutionized the detection of particles and found applications in medicine. On 9 March, there will be a conference here at CERN to celebrate Georges Charpak’s 85th birthday and to pay tribute to his groundbreaking work. After an introduction by Rolf Heuer, CERN Director-General, Georges Charpak will give a short speech by videoconference. This will be followed by a talk on the invention of the multi-wire proportional chamber by Ioanis Giomataris of CEA-Saclay. You are invited to attend this special conference in the Main Auditorium, from 4.00 pm to 6.00 pm: http://indico.cern.ch/conferenceDisplay.py?confId=53188

  13. Awards and Honours

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    On 8 December 2010, Phillippe Lebrun was named Engineer of the Year by L’Usine Nouvelle and the Engineers and Scientists of France for his work on the LHC’s superconducting magnets and cryogenic cooling systems.

  14. Awards and Honours

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    Graphene collects the Nobel prize   Nobel Prize winners Andre Geim (left) and Konstantin Novoselov (right). © Sergeom, Wikimedia Commons, and University of Manchester, UK. The Nobel Prize in Physics for 2010 has been awarded to Andre Geim and Konstantin Novoselov, both from the University of Manchester, for their “groundbreaking experiments regarding the two-dimensional material graphene”. Graphene has exceptional properties that have made it a micro-laboratory for quantum physics. Not only is graphene the thinnest material ever made, it is also the strongest, as well as being an excellent conductor and almost completely transparent. At a time when many researchers believed that it was impossible for such thin materials to be stable, Geim and Novoselov extracted graphene from a piece of graphite using only normal adhesive tape. Novoselov, 36, first worked with Andre Geim, 51, as a PhD student in the Netherlands. He subsequentl...

  15. CERN honours Carlo Rubbia

    CERN Document Server

    2009-01-01

    Carlo Rubbia turned 75 on March 31, and CERN held a symposium to mark his birthday and pay tribute to his impressive contribution to both CERN and science. Carlo Rubbia, 4th from right, together with the speakers at the symposium.On 7 April CERN hosted a celebration marking Carlo Rubbia’s 75th birthday and 25 years since he was awarded the Nobel Prize for Physics. "Today we will celebrate 100 years of Carlo Rubbia" joked CERN’s Director-General, Rolf Heuer in his opening speech, "75 years of his age and 25 years of the Nobel Prize." Rubbia received the Nobel Prize along with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. During the symposium, which was held in the Main Auditorium, several eminent speakers gave lectures on areas of science to which Carlo Rubbia made decisive contributions. Among those who spoke were Michel Spiro, Director of the French National Insti...

  16. Canadian institute honours Hawking

    Science.gov (United States)

    Durrani, Matin

    2009-11-01

    The Perimeter Institute for Theoretical Physics in Waterloo, Canada, has announced that a major new extension to its campus will be known as the Stephen Hawking Centre. The extension, which is currently being built, is due to open in 2011 and will double the size of the institute. It will also provide a home for the institute's Masters students, the first of whom joined the Perimeter Institute this autumn as part of its Perimeter Scholars international programme.

  17. Honour Thy Neighbour

    DEFF Research Database (Denmark)

    Ottosen, Thorsten Jørgen; Vomlel, Jiri

    2010-01-01

    Whenever objects and their interaction is modelled via undirected graphs, it is often of great interest to know the cliques of the graph. For several problems the graph changes frequently over time, and we therefore seek methods for updating the information about the cliques in a dynamic fashion ...... Bron-Kerbosch. The applications include fuzzy clustering and optimal triangulation of Bayesian networks....

  18. Two ATLAS suppliers honoured

    CERN Multimedia

    2007-01-01

    The ATLAS experiment has recognised the outstanding contribution of two firms to the pixel detector. Recipients of the supplier award with Peter Jenni, ATLAS spokesperson, and Maximilian Metzger, CERN Secretary-General.At a ceremony held at CERN on 28 November, the ATLAS collaboration presented awards to two of its suppliers that had produced sensor wafers for the pixel detector. The CiS Institut für Mikrosensorik of Erfurt in Germany has supplied 655 sensor wafers containing a total of 1652 sensor tiles and the firm ON Semiconductor has supplied 515 sensor wafers (1177 sensor tiles) from its foundry at Roznov in the Czech Republic. Both firms have successfully met the very demanding requirements. ATLAS’s huge pixel detector is very complicated, requiring expertise in highly specialised integrated microelectronics and precision mechanics. Pixel detector project leader Kevin Einsweiler admits that when the project was first propo...

  19. ABB honoured in Estonia

    Index Scriptorium Estoniae

    2008-01-01

    Energeetikafirma ABB pälvis Ettevõtluse Arendamise Sihtasutuse poolt Eesti parimale ettevõttele antava "Ettevõtluse Auhinna 2008" ja Aasta Välisinvestori tiitli. 18. septembril 2008 toimunud pidulikul tseremoonial autasustas president Toomas Hendrik Ilves ABB Balti riikide juhti Bo Henrikssoni

  20. Analysis of complex vessel experiments using the Hybrid Lagrangian-Eulerian containment code ALICE-II

    International Nuclear Information System (INIS)

    This paper describes the ALICE-II analysis of and comparison with complex vessel experiments. Tests SM-2 through SM-5 were performed by SRI International in 1978 in studying the structural response of 1/20 scale models of the Clinch River Breeder Reactor to a simulated hypothetical core-disruptive accident. These experiments provided quality data for validating treatments of the nonlinear fluid-structure interactions and many complex excursion phenomena, such as flow through perforated structures, large material distortions, multi-dimensional sliding interfaces, flow around sharp corners, and highly contorted fluid boundaries. Correlations of the predicted pressures with the test results of all gauges are made. Wave characteristics and arrival times are also compared. Results show that the ALICE-II code predicts the pressure profile well. Despite the complexity, the code gave good results for the SM-5 test

  1. (Multi-)strange hadron and light (anti-)nuclei production with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Lea, Ramona [Dipartimento di Fisica dell’Universita and Sezione INFN, Trieste (Italy)

    2016-01-22

    Thanks to its excellent tracking performance and particle identification capabilities, the ALICE detector allows for the identification of light (anti-)(hyper)nuclei and for the measurement of (multi-)strange particles over a wide range of transverse momentum. Deuterons, {sup 3}He and {sup 4}He and their corresponding anti-nuclei are identified via their specific energy loss in the Time Projection Chamber and the velocity measurement provided by the Time-Of-Flight detector. Strange and multi-strange baryons and mesons as well as (anti-)hypertritons are reconstructed via their topological decays. Detailed measurements of (multi-)strange hadron production in pp, p–Pb and Pb–Pb collision and of light (anti-)nuclei and (anti-)hypertritons in Pb–Pb collisions with ALICE at the LHC are presented. The experimental results will be compared with the predictions of both statistical hadronization and coalescence models.

  2. Front-End-Electronics Communication software for multiple detectors in the ALICE experiment

    CERN Document Server

    Bablok, Sebastian; Hartung, G; Keidel, R; Kofler, C; Krawutschke, T; Lindenstruth, V; Röhrich, D

    2006-01-01

    In the ALICE experiment at CERN, the Detector Control System (DCS) employs several interacting software components to accomplish its task of ensuring the correct operation and monitoring of the experiment. This paper describes the Front-End-Electronics Communication (FeeCommunication) software and its role within the DCS. The FeeCommunication software's central task is passing configuration and monitoring data between the top level DCS process control and the field devices of several detectors within ALICE. The lowest level of the FeeCommunication software runs on the DCS boards, specialized embedded systems which are in direct contact with the field devices and are physically located within the detector. The middle and upper layers run on standard PC hardware located in the counting room or other external locations. This paper focuses on the design and implementation of the FeeCommunication software and the steps that were taken to fulfill the imposed reliability and performance requirements, specifically th...

  3. Technical Proposal for the ALICE START Fast Timing Detector Based on Fine-Mesh Phototubes

    CERN Document Server

    Kaplin, V A; CERN. Geneva; Loginov, V A; Strikhanov, M N; Gavrilov, Yu K; Filippov, S N; Kurepin, A B; Mayevskaya, A I

    1997-01-01

    Technical Proposal for the ALICE START Fast Timing Detector Based on Fine-Mesh Phototubes A scintillation detector based on fine-mesh phototubes with good timing proporties ( ~ 50 ps) is proposed as a complementary detector for two existing options of the ALICE Forward Multiplicity Detector. Experimental results show high time resolution (up to 35 ps) and high gain in a magnetic field up to 0.5 T of fine-mesh Russian phototubes FEU-527. The proposed detector consists of two arrays of scintillation (or Cherenkov) counters, 24 counters each. The Monte-Carlo simulations made for the proposed design of the detector for p-p collisions give the average efficiency of the detector about 80%. The physical characteristics of the proposed detector are compared with those expected for the MCP version of the FMD.

  4. Heavy­flavour measurements in Pb­Pb collisions with ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Bianchin Chiara

    2013-11-01

    Full Text Available The ALICE experiment studies the properties of the strongly-interacting matter created in high energy heavy-ion collisions, called Quark-Gluon Plasma (QGP. Heavy quarks are a powerful probe for investigating such a state of matter, since they are predominantly produced in the first hard scattering processes and they bring to the final state information on the deconfined phase. Heavy-flavour particles are reconstructed via hadronic and semi-leptonic decays in the ALICE detector. The measurements of the modification of the heavyflavour hadrons transverse momentum distribution in Pb–Pb collisions with respect to pp and of their azimuthal anisotropy show that heavy quarks have a sizeable interaction with the medium constituents.

  5. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  6. A low-voltage DCS-board power-control-system for the ALICE TRD

    International Nuclear Information System (INIS)

    The Transition Radiation Detector for ALICE consists of 540 drift chambers arranged in 18 supermodules. The readout electronics of each chamber is controlled by a detector control system (DCS) board. A power distribution box provides DCS-power to all 30 chambers in a supermodule, whereby 4 doubly redundant power control units independently switch power for each of the 18 distribution boxes. Control and monitoring of the hardware is fully implemented as a detector oriented hierarchy of objects behaving as finite state machines. PVSS II is used in the supervisory layer. Communication to the hardware is realized by a distribution information management server. We report on the completed production of 18 power distribution boxes for the full TRD and focus on its finalized control system. Applications at the supermodule construction site at University of Muenster, a recent test beam at the CERN Proton Synchrotron and during a data run with cosmic events with the ALICE detector are presented

  7. ALICE luminosity determination for pp collisions at $\\sqrt{s}=13$ TeV

    CERN Document Server

    2016-01-01

    Luminosity determination in ALICE is based on visible cross sections measured in van der Meer scans. In 2015, the Large Hadron Collider provided proton-proton collisions at a centre-of-mass energy of $\\sqrt{s}=13$ TeV. A van der Meer scan was performed in August 2015, where the cross section was measured for two classes of visible interactions, based on particle detection in the ALICE luminometers: the T0 detector with pseudorapidity coverage $4.6<\\eta< 4.9$, $-3.3<\\eta<-3.0$ and the V0 detector with pseudorapidity coverage $2.8<\\eta< 5.1$, $-3.7<\\eta<-1.7$. This document describes the experimental set-up and the analysis procedure used for such a measurement. In addition, the long-term stability and consistency of the vdM-based calibration of the luminometers is discussed.

  8. Physics of ultra-peripheral collisions with ALICE at the LHC

    CERN Document Server

    De Gruttola, D

    2015-01-01

    The photoproduction of vector mesons in ultra-peripheral colli- sions (UPC) is a powerful tool to probe the nuclear gluon distribution (Pb-Pb collisions) and the gluon structure function in the proton (p-Pb collisions). The first measurements of coherent photoproduced J /ψ and ψ (2S) in Pb-Pb collisions at √ s NN =2 . 76 TeV, performed with the ALICE detector, are reported and compared to STARLIGHT and QCD based models, in order to investigate nuclear gluon shad- owing. The first results of the measurement of exclusive J /ψ photoproduction off protons in p-Pb collisions at √ s NN =5 . 02 TeV performed by the ALICE Collabora- tion are also mentioned

  9. DYNAMIC CONFIGURATION OF THE COMPUTING NODES OF THE ALICE O2 SYSTEM

    CERN Document Server

    Pugdeethosapol, Krittaphat

    2015-01-01

    The ALICE (A Large Ion Collider Experiment) Collaboration is preparing major upgrades for the detectors in 2020 in order to take advantage of the increase of collision rate at up to 50 KHz in the LHC for Pb-Pb beams. Together with these upgrades, the ALICE Online and Offline computing systems are being redesigned and upgraded to a new common system called O2. The O2 system is made of a software framework and a computing facility. The concept of the framework consists of implementing an online reconstruction and archiving of the data of all reconstructed collisions to permanent data storage. The main objective is to achieve a high-throughput system on heterogeneous computing platforms. Our KMUTT team has taken the responsibility of designing of accomplishing the design of the Control, Configuration, and Monitoring (CCM) of the computing infrastructure. This thesis is focusing on Configuration. The configuration module should allow dynamic configuration of processes and environment parameters during runtime. ...

  10. African-American’s Awareness of Cultural Heritage:Alice Walker's Everyday Use

    Institute of Scientific and Technical Information of China (English)

    YOU Jia

    2015-01-01

    Alice Walker’s famous short story Everyday Use reveals African American’s awareness of cultural heritage, which is deeply affected by the“double consciousness”as well as their racial identification in the Civil Rights Movement. Through the ex⁃ploration of the cultural conflict reflected in Everyday Use by relating to the influence on black people produced by the African-American Civil Rights Movement, and the discussion of the different attitudes of the mother and her daughters towards their cul⁃tural heritage, the essay aims to reinforce Alice Walker’s claim that any attempt to lay too much emphasis on the ideas of utilitari⁃an return to black people’s traditional culture is shallow and superficial.

  11. ALICE luminosity determination for pp collisions at $\\sqrt{s}=5$ TeV

    CERN Document Server

    2016-01-01

    Luminosity determination in ALICE is based on visible cross sections measured in van der Meer scans. In November 2015, the Large Hadron Collider provided proton-proton collisions at a centre-of-mass energy of $\\sqrt{s}=5$ TeV. A van der Meer scan was performed, where the cross section was measured for two classes of visible interactions, based on particle detection in the ALICE luminometers: the T0 detector with pseudorapidity coverage $4.6<\\eta< 4.9$, $-3.3<\\eta<-3.0$ and the V0 detector with pseudorapidity coverage $2.8<\\eta< 5.1$, $-3.7<\\eta<-1.7$. This document describes the experimental setup for such a measurement and reports its results. The analysis procedure used was described in a previous publication dedicated to the 13 TeV luminosity determination.

  12. The ALICE Silicon Strip Detector performance during the first LHC data taking

    CERN Document Server

    Contin, Giacomo

    2011-01-01

    The Silicon Strip Detector (SSD) is a fundamental part of the Inner Tracking System (ITS) for the ALICE experiment. Since the early phase of proton-proton collisions at LHC, the SSD is fully operational and participating in the charged particle detection and identification carried out by ALICE. The performance of the SSD during the 900 GeV and 7 TeV collision data taking is presented here. The stability of the system is monitored through the time evolution of its calibration parameters and their correlation with the environmental conditions. The intrinsic noise of the 2.6 million channels composing the SSD is used to assess the detector efficiency. Finally the performance in terms of hit reconstruction and energy-loss measurement is discussed with reference to the global tracking and the ITS-standalone particle identification carried out in the first collision events.

  13. GEANT Simulation of the Radiation Dose for the Inner Tracking System of the ALICE Detector

    CERN Document Server

    Barbera, R; CERN. Geneva; Palmeri, A; Pappalardo, G S; Riggi, F; Badalà, A

    1999-01-01

    A full GEANT simulation of the radiation dose expected for the Inner Tracking System (ITS) of the ALICE detector at the Large Hadron Collider has been carried out. Heavy-ion collision events at a c.m. energy of 6 TeV/nucleon have been generated through the HIJING 1.35 event generator and injected into the GEANT software replica of the ALICE detector, to simulate the planned scenario for the first ten years of data taking of the detector. Several factors contributing to the evaluation of the absorbed dose, including the different ITS implementation options, the effect of the magnetic field, the presence of the beam pipe, the finite size of the interaction point and the front absorber of the muon spectrometer are discussed.

  14. Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    CERN Document Server

    Conrad, J; Antinori, F; Badalà, A; Barbera, R; Boccardi, A; Bruno, G E; Burns, M; Cali, I A; Campbell, M; Caselle, M; Ceresa, S; Chochula, P; Cinausero, M; Dima, R; Elia, D; Fabris, D; Fini, R A; Fioretto, E; Kapusta, S; Kluge, A; Krivda, M; Lenti, V; Librizzi, F; Lunardon, M; Manzari, V; Morel, M; Moretto, S; Morsch, A; Nilsson, P; Noriega, M L; Osmic, F; Pappalardo, G S; Paticchio, V; Pepato, Adriano; Prete, G; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Scarlassara, F; Segato, G F; Soramel, F; Stefanini, G; Sándor, L; Torcatode-Matos, C; Turrisi, R; Vannucci, L; Viesti, G; Virgili, T

    2007-01-01

    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.

  15. Measurements of open heavy-flavour production with ALICE at the LHC

    CERN Document Server

    De, Sudipan

    2016-01-01

    In ALICE, open heavy-flavour production is studied through the measurements of the leptons (electrons and muons) from heavy-flavour hadron decays at central and forward rapidity and via the reconstruction of D-meson hadronic decays at mid-rapidity. An overview of the open heavy-flavour production with ALICE in pp ($\\sqrt{s}$ = 2.76 TeV and 7 TeV), p--Pb ($\\sqrt {s_{\\rm NN}}$ = 5.02 TeV) and Pb--Pb ($\\sqrt {s_{\\rm NN}}$ = 2.76 TeV) collisions will be presented. We will discuss the production cross sections, modifications of the transverse momentum distributions, azimuthal anisotropic emissions and correlations with hadrons in comparison with various theoretical predictions.

  16. Politics, aesthetics and diverse sexualities in the work of James Baldwin, Alice Walker and Toni Morrison

    OpenAIRE

    Sussman, Kathryn Judith

    2011-01-01

    The thesis investigates the ways in which James Baldwin, Alice Walker and Toni Morrison’s fictional portrayals of forms of love, eroticism and sexuality that are excluded or prohibited by social norms, destabilise heteronormativity as the only legitimate option for non-harmful and pleasurable sensual and sexual expression. It aims to situate Baldwin, Walker and Morrison in a continuum of African American authors, beginning with Harlem Renaissance writer Bruce Nugent – the first African Americ...

  17. The barrel sector assembly system of the ALICE silicon pixel detector

    CERN Document Server

    Antinori, F; Cinausero, M; Dima, R; Fabris, D; Fioretto, E; Lunardon, M; Moretto, S; Pepato, Adriano; Prete, G; Scarlassara, F; Segato, G F; Soramel, F; Turrisi, R; Vannucci, L; Viesti, G

    2004-01-01

    The Silicon Pixel Detector is the inner part of the ITS tracking system of the ALICE experiment at LHC. The 240 silicon modules, hosting almost 10 million pixel cells with dimension 50 . 425 mu m /sup 2/, have to be assembled on a carbon fiber support with micrometric precision. To reach this result, a dedicated high- precision computer-controlled tooling system has been developed at the INFN Padova. The assembly system and the mounting procedures are presented. (10 refs).

  18. The PreAmplifier ShAper for the ALICE TPC detector

    International Nuclear Information System (INIS)

    In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18–25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e+17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm2 and is implemented in AMS's C35B3C1 0.35μm CMOS technology. Detailed characterization tests were performed on about 48 000 PASA circuits before mounting them on the ALICE TPC front-end cards. After more than two years of operation of the ALICE TPC with p–p and Pb–Pb collisions, the PASA has demonstrated to fulfill all requirements.

  19. J/ψ photoproduction in ultra-peripheral heavy ion collisions with the ALICE experiment

    Directory of Open Access Journals (Sweden)

    Rodríguez Cahuantzi M.

    2014-04-01

    Full Text Available During the 2011 Pb-Pb run, dedicated triggers were used by the ALICE Collaboration to enrich ultra-peripheral collisions (UPC to measure the J/ψ production cross section and its rapidity dependence at a centre of mass energy of 2.76 TeV per nucleon pair. In this article, the ongoing studies on J/ψ photoproduction in UPC events are presented.

  20. Identification of Low Momentum Electrons in The Time Projection Chamber of The ALICE Detector.

    CERN Document Server

    Mwewa, Chilufya

    2013-01-01

    This paper presents results obtained in the study to identify noisy low momentum electrons in the Time Projection Chamber (TPC) of the ALICE detector. To do this, the Circle Hough Transform is employed under the openCV library in python programming. This is tested on simulated tracks in the transverse view of the TPC. It is found that the noisy low momentum electrons can be identified and their exact positions in the transverse plane can be obtained.

  1. "What do you want me to tell?" The inferential texture of Alice Munro's 'Postcard'

    OpenAIRE

    Clark, Billy

    2015-01-01

    This paper considers some of the ways in which ideas from pragmatic stylistics (based here on relevance theory) can be applied in exploring aspects of the production and interpretation of Alice Munro’s story ‘Postcard’. It identifies some features of the story, considers the role of inferential processes in reading, writing and evaluating texts in general, and considers how focusing on inference can help in understanding specific effects of the story on readers. Finally, it considers how focu...

  2. Superconducting Magnetic Shield of the Beam Vacuum Chamber for ALICE Muon Spectrometer

    CERN Document Server

    Shishov, Yu A; CERN. Geneva; Tsvineva, A G

    1997-01-01

    The operation of the dipole magnet of the ALICE muon spectrometer will require the ramping of the magnetic field in it according to the acceleration of the LHC beam. For the superconducting dipole magnet the ramping of the field will complicate the design of the magnet. To avoid the ramping of the magnetic field in the dipole magnet we propose to shield the LHC vacuum chamber inside of the dipole by the superconducting magnetic shield.

  3. Applications of the probability table method to practical problems. [Suitability of ALICE code

    Energy Technology Data Exchange (ETDEWEB)

    Plechaty, E.F.; Cullen, D.E.; Levitt, L.

    1977-07-01

    The objective of using the probability table method (PTM) was to use a continuous-energy Monte Carlo code in which the cross sections are given as multigroup constants and yet to account for self-shielding within each group. In order to achieve this objective, the PTM was extended to deterministic methods. The ALICE Monte Carle Neutron Transport Code uses the PTM for all 175 energy groups which span the energy range from thermal to 20 MeV. The TART, ALICE, and MCN codes were used to determine the critical radius of a sphere of UH/sub 3/, where the U/sup 235/ enrichment varied from 20 to 100%. The PTM was used to calculate the transmission through a 30 cm iron plate. The source was normal to the slab and distributed as 1.0/E from 20.0 MeV to 1 keV. For the problems investigated the ALICE code can calculate both shielding and criticality problems as accurately as the pointwise code MCN. 1 figure, 1 table. (RWR)

  4. Recent results from the ALICE experiment on open heavy flavours in hadronic collisions at the LHC

    CERN Document Server

    Porteboeuf-Houssais, Sarah

    2014-01-01

    ALICE is the LHC experiment devoted to the study of the Quark-Gluon Plasma (QGP). To probe this high energy density state of strongly interacting matter expected to be produced in heavy-ion collisions at high energies, measurements performed in various systems (pp, p--Pb and Pb--Pb) are compared to each other. Heavy quarks are produced in initial hard partonic scatterings on a short time scale and participate in the subsequent evolution of the medium. This makes them sensitive probes of the QGP. With ALICE, open heavy flavours are studied using D mesons (D$^0$, D$^+$, D$^{*+}$) reconstructed via their hadronic decay channels in the mid-rapidity region ($|y|<0.5$) and with heavy-flavour decay leptons reconstructed in the electronic (muonic) channel in the central rapidity region $|y|<0.9$ (forward rapidity region $2.5ALICE measurements of the nuclear modification factor $R_{\\rm{AA}}$ and the elliptic flow $v_2$ for D mesons and heavy-flavour decay leptons in Pb--Pb collisions at ...

  5. The ALICE TPC Readout Electronics Design, performance optimization and verification of the DAQ circuit

    CERN Document Server

    Attiq, urRehman; Dieter, Røhrich

    2012-12-03

    ALICE (A Large Ion Collider Experiment) is a dedicated heavy-ion experiment at CERN’s LHC (Large Hadron Collider). It is designed to study the physics of strongly interacting matter and the quark-gluon plasma in heavy-ion collisions. It contains a large volume Time Projection Chamber (TPC) as its main tracking device. The ALICE TPC is the largest ever built gaseous TPC, both in terms of dimensions and number of read-out channels (557,578). A total number of 128 channels are packed in one TPC Front End Card (FEC) and 4,356 FECs are distributed over 216 independent readout partitions. Each readout partition steered by a single Readout Control Unit (RCU) functions as an independent unit in the data acquisition system of the TPC. The RCU functions as an interface between the FECs, Data AcQuisition system (DAQ), the Trigger and Timing Circuit (TTC) and the Detector Control System (DCS). The ALICE TPC readout electronics is in operation since the start of the LHC in November 2009. The primary objectives of the wo...

  6. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Abelev, B; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agostinelli, A; Agrawal, N; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Anderssen, E C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anticic, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bairathi, V; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastian Van Beelen, J; Bastid, N; Basu, S; Bathen, B; Batigne, G; Battistin, M; Batyunya, B; Batzing, P C; Baudot, J; Baumann, C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Benettoni, M; Benotto, F; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berger, M E; Bertens, R A; Berzano, D; Besson, A; Betev, L; Bhasin, A; Bhati, A K; Bhatti, A; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielcík, J; Bielcíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blau, D; Blume, C; Bock, F; Boehmer, F V; Bogdanov, A; Boggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Borshchov, V N; Bortolin, C; Bossú, F; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Breitner, T; Broker, T A; Browning, T A; Broz, M; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Carena, F; Carena, W; Cariola, P; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Caudron, T; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Claus, G; Cleymans, J; Colamaria, F; Colella, D; Coli, S; Colledani, C; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Da Riva, E; Das, D; Das, I; Das, K; Das, S; Dash, A; Dash, S; De, S; Decosse, C; Delagrange, H; Deloff, A; Dénes, E; D'Erasmo, G; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Robertis, G; De Roo, K; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, o; Dobrin, A; Dobrowolski, T; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Dorheim, S; Dorokhov, A; Doziere, G; Dubey, A K; Dubla, A; Ducroux, L; Dulinski, W; Dupieux, P; Dutta Majumdar, A K; Ehlers III, R J; Elia, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fiorenza, G; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Franco, M; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhoje, J J; Gagliardi, M; Gajanana, D; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Ghosh, S K; Gianotti, P; Giubilato, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gomez Marzoa, M; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Graczykowski, L K; Grajcarek, R; Greiner, L C; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grondin, D; Grosse-Oetringhaus, J F; Grossiord, J -Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; H Khan, K; Haake, R; Haaland, o; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Hennes, E; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hicks, B; Hillemanns, H; Himmi, A; Hippolyte, B; Hladky, J; Hristov, P; Huang, M; Hu-Guo, C; Humanic, T J; Hutter, D; Hwang, D S; Igolkin, S; Ijzermans, P; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jacholkowski, A; Jadlovsky, J; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Junique, A; Jusko, A; Kalcher, S; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kebschull, U; Keidel, R; Keil, M; Ketzer, B; Khan, M Mohisin; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D; Kim, D W; Kim, D J; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravcáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Krymov, E B; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; La Pointe, S L; La Rocca, P; Lea, R; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; Leogrande, E; Leoncino, M; León Monzón, I; Lesenechal, Y; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Listratenko, O M; Ljunggren, H M; Lodato, D F; Loddo, F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Lopez, X; López Torres, E; Lu, X -G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; M Gago, A; M Jacobs, P; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Maltsev, N A; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Mapelli, A; Marchisone, M; Mares, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Marquard, M; Marras, D; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Maslov, M; Masoni, A; Massacrier, L; Mastroserio, A; Mattiazzo, S; Matyja, A; Mayer, C; Mazer, J; Mazumder, R; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miskowiec, D; Mitu, C M; Mlynarz, J; Mohanty, B; Molnar, L; Mongelli, M; Montaño Zetina, L; Montes, E; Morando, M; Moreira De Godoy, D A; Morel, F; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhammad Bhopal, F; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Okatan, A; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paic, G; Painke, F; Pajares, C; Pal, S K; Palmeri, A; Panati, S; Pant, D; Pantano, D; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastore, C; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Peryt, W; Pesci, A; Pestov, Y; Petagna, P; Petrácek, V; Petran, M; Petris, M; Petrovici, M; Petta, C; Pham, H; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Ploskon, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Pohjoisaho, E H O; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Protsenko, M A; Pruneau, C A; Pshenichnov, I; Puddu, G; Puggioni, C; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rasson, J E; Rathee, D; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J -P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Roed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossegger, S; Rossewij, M J; Rossi, A; Roudier, S; Rousset, J; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sacchetti, M; Sadovsky, S; Safarík, K; Sahlmuller, B; Sahoo, R; Sahu, P K; Saini, J; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sánchez Rodríguez, F J; sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schipper, J D; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Seger, J E; Selyuzhenkov, I; Senyukhov, S; Seo, J; Serradilla, E; Sevcenco, A; Sgura, I; Shabetai, A; Shabratova, G; Shahoyan, R; Shangaraev, A; Sharma, N; Sharma, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Snoeys, W; Sogaard, C; Soltz, R; Song, J; Song, M; Sooden, V; Soramel, F; Sorensen, S; Spacek, M; spalek, J; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vasquez, M A; Sugitate, T; Suire, C; Suleymanov, M; suljic, M; Sultanov, R; sumbera, M; Sun, X; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turchetta, R; Turrisi, R; Tveter, T S; Tymchuk, I T; Ulery, J; Ullaland, K; Uras, A; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Valentino, V; Valin, I; Vallero, S; Vande Vyvre, P; Vannucci, L; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vasta, P; Vechernin, V; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Vergara Limón, S; Verlaat, B; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wagner, V; Wang, M; Wang, Y; Watanabe, D; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Winter, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I -K; Yushmanov, I; Zaccolo, V; Zach, C; Zaman, A; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, F; Zhang, H; Zhang, X; Zhang, Y; Zhao, C; Zherebchevsky, V I; Zhou, D; Zhou, F; Zhou, Y; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is preparing a major upgrade of its experimental apparatus, planned for installation in the second long LHC shutdown (LS2) in the years 2018-2019. These plans are presented in the ALICE Upgrade Letter of Intent submitted to the LHCC in September 2012. A key element of the upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System based on monolithic pixel detectors. This Technical Design Report is an update of the Conceptual Design Report for the Upgrade of the ALICE Inner Tracking System, which was presented to the LHCC in September 2012. The primary focus of the ITS upgrade is on the improved performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. The Conceptual Design Report demonstrated that it is possible to build a new silicon tracker with greatly improved features in terms of determination of the distance of closest approach to the primary vertex, tracking efficiency a...

  7. Intrinsic Transverse Momentum Distribution of Jet Constituents in p-Pb Collisions at ALICE

    CERN Document Server

    Kral, Jiri

    2014-08-01

    The integral part of the URHIC program is also to study the pp and p–A collision in order to understand the “reference” (unmodified) particle production (in pp) and the “cold” nuclear phenomena in p–A. The main focus of this thesis is to study the parton shower evolution in p–Pb collisions in ALICE by analyzing jet fragmentation transverse momentum (j_{T} ). The analysis of j_{T} in p–Pb collisions, for which ALICE has a high quality data set, lays bases for later extension to pp and Pb–Pb data in order to study the induced gluon radiation. Additionally, the yields of \\pi^0 meson were studied in Pb–Pb sqrt(s_{NN}) = 2.76 GeV collision. The \\pi^0 analysis was followed for continuity of work with EMCal detector and as a complement to already progressing \\pi^0 yield analysis in pp. The thesis also focuses on ALICE Electromagnetic Calorimeter (EMCal) and the single-photon Level-0 trigger. Development of the Level-0 trigger system was an important part of this work. From the data analysis poi...

  8. Fast front-end L0 trigger electronics for ALICE FMD-MCP tests and performance

    CERN Document Server

    Efimov, L G; Kasatkan, V; Klempt, W; Kuts, V; Lenti, V; Platanov, V; Rudge, A; Stolyarov, O I; Tsimbal, F A; Valiev, F F; Villalobos Baillie, O; Vinogradov, L I; Zhigunov, O

    1997-01-01

    We present design details and new measurements of the performance of fast electronics for the Forward Multiplicity Detector for ALICE. These detectors based on sector type Microchannel Plates (MCP) forming several disks gave the very first trigger decision in the experiment (L0). Fast passive summators integrated with the detectors are used for linear summation of up to eight isochronous signal channels from MCP pads belonging to one sector. Two types of microelectronics design thin film summators were produced. We present test results for these summators, working in the frequency range up to 1 Ghz. New low noise preamplifiers have been built to work with these summators. The new design shows a good performance with the usable frequency range extended up to 1 Ghz. An upgrade of the functional scheme for the L0 ALICE pre-trigger design is also presented.Abstract:List of figures Figure 1: ALICE L0 Trigger Front-End Electronics Functional Scheme. Figure 2: UHF design for a fast passive summator based on direct...

  9. The Alice Project at the IPN, Orsay R and D and software developments 1996-2003

    International Nuclear Information System (INIS)

    This document reviews the theoretical, experimental and technical achievements of the author since the beginning of his scientific career. In 1996 the author became a member of the Alice (A Large heavy Ion Collider Experiment) which was then at the beginning of its research and development phase. The bulk of this report comprises mainly 'snapshots' of the research and development project that was pursued in Orsay for the Alice dimuon arm collaboration. The idea here is to regroup the full set of prototype models, with the technical specifications and their associated test programs. The main results are given for each set of tests, but the details of how data sets were analysed are not included since those details are already available in other, more formal, write-ups. The result is a kind of 'scrapbook' of the research and development phase associated with the Alice dimuon arm station 1 tracker, one of the 5 tracker stations implemented in the dimuon arm spectrometer. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students

  10. Flexible event reconstruction software chains with the ALICE High-Level Trigger

    Science.gov (United States)

    Ram, D.; Breitner, T.; Szostak, A.

    2012-12-01

    The ALICE High-Level Trigger (HLT) has a large high-performance computing cluster at CERN whose main objective is to perform real-time analysis on the data generated by the ALICE experiment and scale it down to at-most 4GB/sec - which is the current maximum mass-storage bandwidth available. Data-flow in this cluster is controlled by a custom designed software framework. It consists of a set of components which can communicate with each other via a common control interface. The software framework also supports the creation of different configurations based on the detectors participating in the HLT. These configurations define a logical data processing “chain” of detector data-analysis components. Data flows through this software chain in a pipelined fashion so that several events can be processed at the same time. An instance of such a chain can run and manage a few thousand physics analysis and data-flow components. The HLT software and the configuration scheme used in the 2011 heavy-ion runs of ALICE, has been discussed in this contribution.

  11. Production of W-bosons in p-Pb collisions measured with ALICE at the LHC

    CERN Document Server

    AUTHOR|(CDS)2073400

    2015-01-01

    W bosons are produced in hard scattering processes of partons in collisions of hadrons and they do not interact strongly with the medium produced in high-energy heavy-ion collisions. Therefore, in p-Pb collisions the measurement of W-boson yields represents a standard candle to check the validity of binary-collision scaling and can provide important constraints on the parton distribution functions, which can be modified in nuclei with respect to protons or neutrons. At the LHC, ALICE (A Large Ion Collider Experiment) is dedicated to the study of ultrarelativistic heavy-ion collisions, in which a hot and dense strongly-interacting medium is formed. At forward rapidities ALICE is equipped with a muon spectrometer that allows measurements of dimuon decays of quarkonia, muons from heavy-flavour hadron decays and also W bosons via their single-muon decay. In ALICE W-boson cross sections were measured in p-Pb collisions at $\\sqrt{s_{NN}}$ = 5.02 TeV via the contribution of their muonic decays to the inclusive $p_\\m...

  12. Online Performance Monitoring of the Third ALICE Data Challenge (ADC III)

    CERN Document Server

    Carena, W; Saiz, P; Schossmaier, K; Vascotto, Alessandro; Van de Vyvre, P

    2001-01-01

    The ALICE data acquisition system has been designed for a maximum bandwidth of 2.5 GB/s for event building and of 1.25 GB/s for mass storage. In order to attain a gradual integration of the overall computing infrastructure, the present hardware components and software prototypes are tested during regular ALICE data challenges. The third one (ADC III) took place from January to March 2001 as a joint effort between the ALICE online/offine team and the CERN IT division. The main goal of this data challenge was to achieve a stable 300 MB/s throughput in the event building network and a 100 MB/s throughput to CASTOR over periods of a few days. Performance monitoring was another goal of this exercise, where a prototype (dateStat ) was developed to collect and display statistics. In this paper we will introduce this online monitoring system and report on some of the obtained results. It is structured in three parts: (1) An overview will be given on the testbed hardware, the software running on it, and the data flow....

  13. Studies of characteristics of triple GEM detector for the ALICE-TPC upgrade

    International Nuclear Information System (INIS)

    Gas Electron Multiplier (GEM) is a novel gas detector in the field of radiation detection. GEM detectors have tremendous advantages over other types gas detectors like high rate handling capability with high efficiency and very low ion back flow (IBF). These detectors are most suitable for the use in the future experiments in high-energy proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) at CERN and Facility for Antiproton and Ion Research (FAIR) at GSI. A Large Ion Collider Experiment (ALICE) at the LHC is a dedicated experiment for the study of Quark Gluon Plasma (QGP). In few years, the data taking rate for Pb-Pb collisions will increase by 100 times to 50 KHz. The ALICE Time Projection Chamber (TPC) is the main tracking detector in ALICE. It is planned that by the year 2018, GEM detectors will replace the present readout planes of TPC. The goal of the present study is to characterize the GEM detector to achieve the performance goal of the TPC

  14. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    Science.gov (United States)

    Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Giubilato, P.; Hillemanns, H.; Junique, A.; Keil, M.; Kim, D.; Kim, J.; Kugathasan, T.; Lattuca, A.; Mager, M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mattiazzo, S.; Mazza, G.; Mugnier, H.; Musa, L.; Pantano, D.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Siddhanta, S.; Snoeys, W.; Usai, G.; van Hoorne, J. W.; Yang, P.; Yi, J.

    2013-12-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified.

  15. Integration of XRootD into the cloud infrastructure for ALICE data analysis

    Science.gov (United States)

    Kompaniets, Mikhail; Shadura, Oksana; Svirin, Pavlo; Yurchenko, Volodymyr; Zarochentsev, Andrey

    2015-12-01

    Cloud technologies allow easy load balancing between different tasks and projects. From the viewpoint of the data analysis in the ALICE experiment, cloud allows to deploy software using Cern Virtual Machine (CernVM) and CernVM File System (CVMFS), to run different (including outdated) versions of software for long term data preservation and to dynamically allocate resources for different computing activities, e.g. grid site, ALICE Analysis Facility (AAF) and possible usage for local projects or other LHC experiments. We present a cloud solution for Tier-3 sites based on OpenStack and Ceph distributed storage with an integrated XRootD based storage element (SE). One of the key features of the solution is based on idea that Ceph has been used as a backend for Cinder Block Storage service for OpenStack, and in the same time as a storage backend for XRootD, with redundancy and availability of data preserved by Ceph settings. For faster and easier OpenStack deployment was applied the Packstack solution, which is based on the Puppet configuration management system. Ceph installation and configuration operations are structured and converted to Puppet manifests describing node configurations and integrated into Packstack. This solution can be easily deployed, maintained and used even in small groups with limited computing resources and small organizations, which usually have lack of IT support. The proposed infrastructure has been tested on two different clouds (SPbSU & BITP) and integrates successfully with the ALICE data analysis model.

  16. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    CERN Document Server

    Snoeys, W; Cantatore, E; Cencelli, V; Dinapoli, R; Heijne, Erik H M; Jarron, Pierre; Lamanna, P; Minervini, D; O'Shea, V; Quiquempoix, V; San Segundo-Bello, D; Van Koningsveld, B; Wyllie, Ken H

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 collaboration provided the basis to obtain radiation tolerance in commercial submicron CMOS through special circuit layout. The new ALICE1LMB chip was developed to serve two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 mu m*435 mu m pixel cells in the 256*32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32*32 array of 400 mu m*425 mu m cells. The circuit is currently being manufactured in a commercial 0.25 mu m CMO...

  17. Study of muon bundles from extensive air showers with the ALICE detector at CERN LHC

    Science.gov (United States)

    Shtejer, K.

    2016-05-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic-ray interactions in the upper atmosphere. The large size and excellent tracking capability of the ALICE Time Projection Chamber are exploited to study the muonic component of extensive air showers. We present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. The latest version of the QGSJET hadronic interaction model was used to simulate the development of the resulting air showers. High multiplicity events containing more than 100 reconstructed muons were also studied. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP without satisfactory explanations for the frequency of the highest multiplicity events. We demonstrate that the high muon-multiplicity events observed in ALICE stem from primary cosmic rays with energies above 1016 eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range.

  18. Muon probe and connected instrumentation for the study of quark-gluon plasma in ALICE experiment

    International Nuclear Information System (INIS)

    ALICE (A Large Ion Collider Experiment) is the LHC detector dedicated to the study of ultra-relativistic heavy ion collisions. The main goal of ALICE is the study of a new phase of the nuclear matter predicted by the Quantum Chromodynamics theory (QCD): the Quark-Gluon Plasma (QGP). One of the possible signatures is a suppression of quarkonia yields by color screening in the heavy ion collisions, in which the formation of the QGP is expected. The muon spectrometer will allow measuring of the quarkonia yields (J/ψ, Υ) in heavy ion collisions via their dimuon decay. A fast trigger, associated to muon spectrometer, has to select events with at least one muon or one dimuon by using a track search algorithm. The study of muon trigger performance will be presented with emphasis on the trigger efficiency and rates in Ar-Ar and Pb-Pb collisions. We will also present the reconstruction of unlike-sign dimuon mass spectrum with the ALICE muon spectrometer. The expected yields of Upsilon states will be extracted from a simulation based on a fit of this spectrum for one month running for Pb-Pb collisions and for different collision centralities. (author)

  19. Inclusive charged hadrons production in pp collisions with the ALICE-HMPID detector at the LHC

    CERN Document Server

    Barile, Francesco

    The goal of this thesis is the study of the particles identification provided by a small acceptance detector: the High Momentum Particle IDentification detector. Installed during September 2006 and located at about 5 m from the primary vertex, it can contribute to several ALICE physics items using the Cherenkov radiation. This thesis is made of 5 chapters. An overview of the Heavy Ion collisions, the Quark Gluon Plasma, and the main points of the ALICE physics program are described in the first chapter. Some recent results on particles production and hadron ratios are also presented. Chapter 2 is dedicated to the LHC machine, to the ALICE apparatus and to the High Momentum Particle Detector. The layout, the principle of operation and some recent performance results of this RICH detector will be described. Chapter 3 is dedicated to the evaluation of the HMPID PID efficiency. This study exploit the unique possibility to extract the efficiency directly from data using the V$^{0}$ ’s decay. Also, it provides a ...

  20. The Present Development of CsI Rich Detectors for the ALICE Experiment at CERN

    CERN Document Server

    Nappi, E; Colonna, N; Di Mauro, A; Elia, D; Galantucci, L; Ghidini, B; Grimaldi, A; Goret, B; Monno, E; Paic, G; Piuz, François; Posa, F; Raynaud, J; Santiard, Jean-Claude; Tomasicchio, G; Williams, T D; Ljubicic, A; Tustonic, T; Stucchi, S

    1999-01-01

    The ALICE Collaboration plans to implement a 12m^2 array consisting of 7 proximity focussed C6F^14 liquid radiator RICH modules devoted to the particle identification in the momentum range: 1 GeV/c - 3.5 GeV/c for pions and kaons. A large area CSI-RICH prototype has been designed and built with the aim to validate the detector parameter assumptions made to predict the performance of the High Momentum Particle Identification System (HMPID) of the ALICE Experiment. The main elements of the prototype will be described with emphasis on the engineering solutions adopted. First results from the analysis of multitrack events recorded with this prototype exposed to hadron beams at the CERN SPS will be discussedList of FiguresFigure 1 General view of the ALICE lay-outFigure 2 Schematic layout of the fast CsI-RICHFigure 3 Perspective view of the HMPID layout with the seven RICH modules tilted according to their position with respect to the interaction vertex. The frame that supports the detectors is also shownFigure 4 ...