WorldWideScience

Sample records for alice au lhc

  1. M. G.-F. Leclerc, Préfet de la Haute-Savoie lors de sa visite dans le tunnel du LHC au Point 2 avec D. Delikaris, Département Technologie; dans la caverne de l'expérience ALICE avec B. Erazmus, Collaboration ALICE et lors de la signature du livre d'or avec F. Bordry, Chef du Département Technologie. P. Fassnacht, Conseiller au Bureau des Relations internationales présent.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    M. G.-F. Leclerc, Préfet de la Haute-Savoie lors de sa visite dans le tunnel du LHC au Point 2 avec D. Delikaris, Département Technologie; dans la caverne de l'expérience ALICE avec B. Erazmus, Collaboration ALICE et lors de la signature du livre d'or avec F. Bordry, Chef du Département Technologie. P. Fassnacht, Conseiller au Bureau des Relations internationales présent.

  2. Trigger system study of the dimuon spectrometer in the ALICE experiment at CERN-LHC; Etude du systeme de declenchement du spectrometre dimuons de l'experience alice au Cern-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Roig, O

    1999-12-01

    This work is a contribution to the study of nucleus-nucleus collisions at the LHC with ALICE. The aim of this experiment is to search for a new phase of matter, the quark-gluon plasma (QGP). The dimuon forward spectrometer should measure one of the most promising probes of the QGP, the production of heavy quark vector mesons (J/{psi}, {gamma}, {gamma}', {gamma}'') through their muonic decays. The dimuon trigger selects the interesting events performing a cut on the transverse momentum of the tracks. The trigger decision is taken by a dedicated electronics using RPC (''Resistive Plate Chambers'') detector information. We have made our own R and D program on the RPC detector with various beam tests. We show the performances obtained during these tests of a low resistivity RPC operating in streamer mode. The ALICE requirements concerning the rate capability, the cluster size and the time resolution are fulfilled. We have optimised the trigger with simulations which include a complete description of the read-out planes and the trigger logic (algorithm). In particular, a technique of clustering is proposed and validated. A method called ''Ds reduction'' is introduced in order to limit the effects of combinatorial background on the trigger rates. The efficiencies and the trigger rates are calculated for Pb-Pb, Ca-Ca, p-p collisions at the LHC. Other more sophisticated cuts, on the invariant mass for example, using again the RPC information have been simulated but have not shown significant improvements of the trigger rates. (author)

  3. Jet physics at the LHC with ALICE

    International Nuclear Information System (INIS)

    Morsch, A.

    2005-01-01

    In central Pb-Pb collisions at the LHC, jet rates are expected to be high at energies at which ALICE can reconstruct jets over the background of the underlying event. This will open the possibility to quantify the effect of partonic energy loss through medium induced gluon radiation, jet quenching, by detailed measurement of the modification of the longitudinal and transverse structure of identified jets. In order to obtain probes sensitive to the properties of the QCD medium, it is mandatory to measure the high-p T parton fragments together with the low-p T particles from the radiated gluons. Hence, the excellent charged particle tracking capabilities of ALICE combined with the proposed electromagnetic calorimeter for ALICE, EMCAL, represent an ideal tool for jet quenching studies at the LHC. (orig.)

  4. The ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Aamodt, K.; de Haas, A.P.; Grebenyuk, O.|info:eu-repo/dai/nl/304848883; Ivan, C.G.|info:eu-repo/dai/nl/304847747; Kamermans, R.|info:eu-repo/dai/nl/073698733; Mischke, A.|info:eu-repo/dai/nl/325781435; Nooren, G.J.L.|info:eu-repo/dai/nl/07051349X; Oskamp, C.J.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Simili, E.; van den Brink, A.; van Eijndhoven, N.J.A.M.|info:eu-repo/dai/nl/072823674; Yuting, B.

    2008-01-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy

  5. The ALICE experiment at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Aamodt, K [Department of Physics, University of Oslo, Oslo (Norway); Abrahantes Quintana, A [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Madrid/Havana, Spain (Cuba); Achenbach, R [Kirchhoff-Institut fuer Physik, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany BMBF (Germany); Acounis, S [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, Nantes (France); Adamova, D [Academy of Sciences of the Czech Republic, Nuclear Physics Institute, Rez/Prague (Czech Republic); Adler, C [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany BMBF (Germany); Aggarwal, M [Physics Department, Panjab University, Chandigarh (India); Agnese, F [IPHC, Universite Louis Pasteur, CNRS/IN2P3, Strasbourg (France); Rinella, G Aglieri [CERN, European Organization for Nuclear Reasearch, Geneva (Switzerland); Ahammed, Z [Variable Energy Cyclotron Centre, Kolkata (India); Ahmad, A; Ahmad, N; Ahmad, S [Department of Physics Aligarh Muslim University, Aligarh (India); Akindinov, A [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Akishin, P [JINR, Joint Institute for Nuclear Research, Dubna, (Russian Federation); Aleksandrov, D [Russian Research Center Kurchatov Institute, Moscow (Russian Federation); Alessandro, B; Alfarone, G [Sezione INFN, Torino (Italy); Alfaro, R [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Alici, A [Dipartimento di Fisica dell' Universita and Sezione INFN, Bologna (Italy)], E-mail: Hans-Ake.Gustafsson@hep.lu.se (and others)

    2008-08-15

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 x 16 x 26 m{sup 3} with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010

  6. Muon pair study at LHC: ALICE experiment

    International Nuclear Information System (INIS)

    Chevallier, M.; Cheynis, B.; Grossiord, J.Y.; Guinet, D.; Guichard, A.; Lautesse, P.; Jacquin, M.; Nikulin, V.

    1998-01-01

    The nuclear matter at very high density, possibly as a quark gluon plasma, will be studied with ALICE at LHC, via the measurement of heavy quark resonances detected through their dimuon decay. The group is participating, since the end of 1996, in the development of the tracking chambers of the dimuon arm. These detectors are wire chambers with segmented cathodes and should measure the position of the tracks with a resolution of ≅ 100 μm in order to get a dimuon mass resolution better than 100 MeV. (authors)

  7. The Alice experiment for the study of ultra relativistic heavy ion collisions; Experience ALICE pour l'etude des collisions d'ions lourds ultra-relativistes au CERN-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Forestier, B

    2003-12-01

    Alice is the detector dedicated to the study of heavy ions at the LHC (large hadron collider). It will allow scientists to investigate all the signatures of quark-gluon plasma (QGP). The spectrometer of the dimuon arm of Alice has been designed to study the production of high mass resonances through their dimuon decay. The first chapter is dedicated to some aspects of the physics of ultra-relativistic heavy ion: confinement and de-confinement of quarks, the absence of heavy resonances as a signature for the presence of QGP. The second chapter presents Alice and its ancillary detectors. The third chapter deals with the trigger system of the dimuon spectrometer, a detailed algorithm of this system is given. A method for the optimization of the trigger response is presented in the fourth chapter. The fifth chapter describes the testing of a prototype of the trigger system, this testing with muons has shown that the efficiency of the track reconstruction of the trigger system and the efficiency of the resistive plate chamber reach 98%.In the sixth chapter the author comments the simulations of the production of heavy resonances from Pb-Pb collisions as a function of centrality. (A.C.)

  8. La Physique des gamma-jets avec le calorimètre EMCal de l'expérience ALICE au LHC

    CERN Document Server

    Bourdaud, Guénolé

    Heavy ion collisions at LHC will produce a new state of matter : the quark-gluon plasma (QGP). Photons are not sensible to the strong interaction which dominates the nuclear medium, and hence are a valuable tool to explore QGP. Gamma-jets are rare hard processes : a photon and a parton are emitted back-to-back. The parton hadronises and produces a jet of particles. These jets are quenched due to the strong interaction of the parton with the QGP. This quenching, or more precisely the re-distribution of the energy in the jet, can be measured by the modification of the distribution of the particle energy in the jet, comparing p-p and Pb-Pb collisions (fragmentation functions or hump-backed plateau distributions). For this porpose, jet energy is needed, and can be provided precisely by gamma-jet measurement. Our goal is to use EMCal to detect a photon correlated with a jet reconstructed in ALICE tracking system. Then, the jet energy distribution are compared for p-p an Pb-Pb collisions. Gamma-jet physics is first...

  9. Production des baryons multi-étranges au LHC dans les collisions proton-proton avec l'expérience ALICE

    CERN Document Server

    Maire, Antonin

         Strange quarks define a valuable probe for the understanding of quantum chromodynamics. The present PhD work falls within this scope; it deals with the study of multi-strange baryons Ξ– (dss) and Ω– (sss) in proton-proton (pp) collisions at the LHC. The analyses make use of the ALICE experiment and are performed at central rapidities (y ≈ 0) and low transverse momentum (pT < 8,5 GeV/c). The production rates per event of these baryons are drawn from the measurement of differential spectra as a function of the hyperon momentum, d²N / dpTdy = f(pT). At √s = 0.9 TeV, the production for ( Ξ– + Ξ+ ) in the inelastic pp interactions is derived from a small statistics of events. At √s = 7 TeV, the large quantity of available data allows the measurement of production rates for each of the four species : Ξ–, Ξ+, Ω– and Ω+. At both energies, experimental data spectra are compared to spectra as produced by different benchmark phenomenological models (Pythia...

  10. VHMPID: a new detector for the ALICE experiment at LHC

    CERN Document Server

    Agócs, A Gu; Barnaföldi, G G; Bellwied, R; Bencze, Gy; Berényi, D; Boldizsár, L; Cuautle, E; De Cataldo, G; Di Bari, D; Di Mauro, A; Dominguez, I; Futó, E; García, E; Hamar, G; Harris, J; Harton, A; Kovács, L; Lévai, P; Lipusz, Cs; Markert, C; Martinengo, P; Martinez, M I; Mastromarco, M; Mayani, D; Molnár, L; Nappi, E; Ortiz, A; Paić, G; Pastore, C; Patino, M E; Perini, D; Perrino, D; Peskov, V; Pinsky, L; Piuz, F; Pochybová, S; Smirnov, N; Song, J; Timmins, A; Varga, D; Vargas, A; Vergara, S; Volpe, G; Yi, J; Yoo, I K

    2011-01-01

    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  11. VHMPID: a new detector for the ALICE experiment at LHC

    Directory of Open Access Journals (Sweden)

    Perini D.

    2011-04-01

    Full Text Available This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  12. Status and perspectives of ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Corral, Gerardo H. [Physics Department, CINVESTAV, P.O. Box 14740, Mexico, D.F (Mexico); Collaboration: ALICE Collaboration

    2013-04-15

    ALICE is one of the four large experiments at the LHC. It focuses on the study of ultra-relativistic heavy ion collisions. Its main goal is to study in great detail the properties of matter under extreme energy densities. We discuss some aspects of the ALICE research program, the experiment future plans as well as some general items of the ALICE upgrade. The present detector allows to study diffractive physics and photon induced processes. A proposal to install detectors in the forward region is presented here. These detectors would allow to study processes with rapidity gaps larger than those presently covered.

  13. Status and perspectives of ALICE at the LHC

    International Nuclear Information System (INIS)

    Corral, Gerardo H.

    2013-01-01

    ALICE is one of the four large experiments at the LHC. It focuses on the study of ultra-relativistic heavy ion collisions. Its main goal is to study in great detail the properties of matter under extreme energy densities. We discuss some aspects of the ALICE research program, the experiment future plans as well as some general items of the ALICE upgrade. The present detector allows to study diffractive physics and photon induced processes. A proposal to install detectors in the forward region is presented here. These detectors would allow to study processes with rapidity gaps larger than those presently covered.

  14. Neutral meson production measurements with the ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Ganoti Paraskevi

    2017-01-01

    Full Text Available Identified hadron spectra are considered to be sensitive to the transport properties of strongly interacting matter produced in high-energy nucleus-nucleus collisions. π0 and η mesons in ALICE are identified via their two-photon decays by using calorimeters and the central tracking system. In the latter, photons are measured via their conversion to electron-positron pairs in the material of the inner ALICE barrel tracking detectors. The measured production spectra in pp, p–Pb and Pb–Pb collisions at mid–rapidity and over a wide pT range will be presented in the available Large Hadron Collider (LHC energies of Run I. The resulting nuclear modification factor RAA at different centrality classes shows a clear pattern of strong suppression in the hot QCD medium with respect to pp collisions. Comparison of the ALICE results on neutral mesons with lower-energy experiments is also discussed.

  15. Will ALICE run in the HL-LHC era?

    International Nuclear Information System (INIS)

    Wessels, J.P.

    2012-01-01

    We will present the perspectives for ion running in the HL-LHC era. In particular, ALICE is preparing a significant upgrade of its rate capabilities and is further extending its particle identification potential. This paves the way for heavy ion physics at unprecedented luminosities, which are expected in the HL-LHC era with the heaviest ions. Here, we outline a scenario, in which ALICE will be taking data at a luminosity of L > 6*10 27 cm -2 *s -1 for Pb-Pb with the aim of collecting at least 10 nb -1 . The potential interest of data-taking during high luminosity proton runs for ATLAS and CMS will also be commented. (author)

  16. Mesure de la production de J/psi en collisions p-Pb au LHC avec le spectromètre à muons d'ALICE

    CERN Document Server

    Lakomov, Igor

    Hard probes represent one of the hottest topics of the modern high energy physics. The production mechanism of quarkonia (mesons composed of a charm or beauty quark and its antiquark) in hadronic collisions is of particular interest. The suppression of J/psi and other charmonium states was predicted as one of the first signatures of the Quark Gluon Plasma (QGP) formation and was seen at RHIC and SPS. It was also studied at the LHC in Pb-Pb collisions. However, other effects can affect the charmonium production in Pb-Pb collisions without the presence of the QGP. These effects are inherent to the use of nuclei and are called “Cold Nuclear Matter” (CNM) effects. They can be studied in p-Pb collisions. This thesis is dedicated to the studies of J/psi production in p-Pb collisions at the LHC at a center of mass energy of 5.02 TeV per nucleon pair. J/psi production is studied as a function of transverse momentum, rapidity and event activity. These results represent a significant step to better understanding of...

  17. Optimisation of the muon spectrometer from the detector ALICE used for the study of the quark and gluon plasma at LHC; Optimisation du spectrometre a muons du detecteur ALICE pour l'etude du plasma de quarks et de gluons au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Guernane, R

    2001-01-01

    The ALICE experiment performed at the LHC will establish and study the phase transition from hadronic matter to a matter to a state of deconfined partons called Quark Gluon Plasma (QGP). The suppression of heavy flavour resonances (J{phi},{gamma}) is the most promising probe for diagnosing the formation and early stages of the QGP in ultrarelativistic heavy ion collisions. The complete spectrum of heavy quarkonia resonances, i.e. J/{phi}, {phi}', {gamma}, {gamma}' and {phi}' will be measured via their muonic decay in a forward spectrometer with a mass resolution sufficient to separate all states. It is composed of five tracking stations, each consisting of two Cathode Pad Chambers (CPC). In this work, we developed a prototype of CPC having the original feature of parallel charge read out from one segmented cathode. The geometry and operating parameters have been optimized for station 3. The expected multi-hit rate and multi-hit deconvolution have been evaluated with a complete detailed simulation and an efficient method to disentangle close hits has been proposed. The magnetic field effect on the intrinsic spatial resolution of the chambers has also been estimated. The simulated performance of the CPC's is confirmed by beam-test results obtained at CERN with prototypes. The measurement of dimuons is expected to be contaminated by beam-related background. The rate of beam-gas interactions is several orders of magnitude larger than the signal rate for p-p collisions which is the reference for further studies of p-A and A-A collisions. The ALICE Collaboration decided to equip the muon spectrometer with a level 0 trigger counter (V0) in order to validate the dimuon trigger signal in p-p mode. The various steps involved in designing the V0 scintillator hodoscope are presented in this thesis. (author)

  18. High-level trigger system for the LHC ALICE experiment

    CERN Document Server

    Bramm, R; Lien, J A; Lindenstruth, V; Loizides, C; Röhrich, D; Skaali, B; Steinbeck, T M; Stock, Reinhard; Ullaland, K; Vestbø, A S; Wiebalck, A

    2003-01-01

    The central detectors of the ALICE experiment at LHC will produce a data size of up to 75 MB/event at an event rate less than approximately equals 200 Hz resulting in a data rate of similar to 15 GB/s. Online processing of the data is necessary in order to select interesting (sub)events ("High Level Trigger"), or to compress data efficiently by modeling techniques. Processing this data requires a massive parallel computing system (High Level Trigger System). The system will consist of a farm of clustered SMP-nodes based on off- the-shelf PCs connected with a high bandwidth low latency network.

  19. Study of jet production in ALICE experiment at LHC collider

    CERN Document Server

    Jangal, Swensy

    The jet is one of the probes allowing testing strong interaction theory predictions, QCD, and to extract physical properties from a particular state of nuclear matter : Quark Gluon Plasma (QGP). This PhD work is aimed to show ALICE capacities to measure jets coming from collisions produced at the Large Hadron Collider (LHC). The detection of particles constituting jets, their association with reconstruction algorithms and the construction of observables such as jet pT spectrum of Hump-Backed Plateau is a hard work. We detail these different steps from simulation allowing to estimate jet rates we could expect for our analysis and to evaluate the impact of experimental measure on final observables. We finally present pT spectrum and Hump-Backed Plateau from first p+p collisions at LHC to whom mean corrections have been applied.

  20. First measurements with the ALICE detector at LHC

    International Nuclear Information System (INIS)

    Elia, D.

    2009-01-01

    The ALICE experiment is designed to measure the properties of strongly interacting matter created in heavy-ion collisions at LHC. The apparatus has several features, such as low p T acceptance and powerful tracking over a broad momentum range, that make ALICE also an important contributor to the first proton-proton physics. In this respect the ALICE physics program aims both at setting the baseline for the understanding of the heavy-ion data and exploring the new energy domain. The charged-particle multiplicity and pseudorapidity density distributions will be the first measurements that ALICE will perform, both in p-p and in Pb-Pb collisions. As those observables correspond to basic properties of the collisions in the new energy domain at LHC, their knowledge will allow to constrain the hadroproduction models and correctly configure the Monte Carlo generators. Moreover, the measurement of the charged-particle pseudorapidity density in the central rapidity region will extend the existing energy dependence pattern and provide an estimate of the energy density attained in the early phase of the collision. Besides these very first measurements, p T spectra of both all charged and identified particles, baryon number transport and strangeness production analyses will also be carried out within the p-p first physics programme. Since it will follow the first p-p run, the early heavy-ion data taking is expected to be carried out with a fully commissioned detector: in particular alignment and calibrations will be available from the previously collected comics and p-p samples. Data quality and statistics should allow, already with this pilot run, to explore quite a rich physics spectrum. The first few 10 4 events (both minimum bias and central collisions) will provide information about global event properties such us multiplicity, pseudorapidity density and elliptical flow. With a statistics of 10 5 to 10 6 events particle spectra, resonances, differential flow and

  1. Etude de la fragmentation des partons par la mesure de corrélations photon-hadron auprès de l'expérience ALICE au LHC

    CERN Document Server

    ARBOR, Nicolas

    The strong interaction theory, Quantum Chromodynamic (QCD), predicts a new phase of nuclear matter at very high temperature and/or very high density. This state, which should have been the state of the Univers some microseconds after the Big Bang, is composed of deconfined quarks and gluons known as the quark-gluon plasma (QGP). The measurement of its composition and properties is a challenge for the nuclear physics of the 21st century and should lead to a better understanding of the fundamental symetries and mechanisms related to the quarks confinement inside hadrons and the strong interaction generally. The Large Hadron Collider (LHC) accelerator at CERN (European Organization for Nuclear Research) allows to reach the thermodynamic conditions required to create the quark-gluon plasma using ultra-relativistic heavy ion collisions (Pb). The ALICE experiment (A Large Ion Collider Experiment) allows to access several probes to characterize the QGP through particles reconstruction and. Among these probes, hi...

  2. The ALICE time projection chamber - a technological challenge in LHC heavy ion physics

    CERN Document Server

    Bächler, J

    2004-01-01

    The Time Projection Chamber is the main tracking detector in the central region of the ALICE experiment. This paper addresses the specific technological challenges for the detector and the solutions adopted to cope with the extreme particle densities in LHC heavy ion collisions. We will present the major components of the detector with an outlook of its expected performance in the LHC heavy ion program, as well as recent results from the comprehensive ALICE TPC test facility. (3 refs).

  3. ALICE measurements of heavy-flavour production at the LHC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The measurement of open charm and beauty production in Pb-Pb collisions at the LHC gives access to the mechanisms of heavy-quark transport and energy loss in hot and dense QCD matter. The ALICE apparatus allows us to measure heavy flavour particles over a wide acceptance, using hadronic and electronic final states at central rapidity and muonic final states at forward rapidity, in both cases with coverage down to low transverse momentum. These measurements, in pp collisions, besides constituting the reference for the heavy-ion studies, provide acceptance-wise unique information on heavy-quark production at LHC energies. After presenting results for pp collisions at centre-of-mass energies of 2.76 and 7 TeV, we focus on the observation of the suppression of heavy-flavour production in central Pb-Pb collisions and of the azimuthal anisotropy of charmed hadrons in semi-central collisions at 2.76 TeV.

  4. Le détecteur VZERO, la physique muons présente et la préparation de son futur dans l'expérience ALICE au LHC

    CERN Document Server

    Tieulent, Raphaël

    La physique des ions lourds a pour objectif ultime d'étendre le domaine d'application du Modèle Standard de la physique des particules à des systèmes de taille finie, complexes et dynamiques. En particulier, elle vise à comprendre comment apparaissent, à partir des lois microscopiques de la physique des particules élémentaires, des phénomènes collectifs et des propriétés macroscopiques mettant en jeu un grand nombre de degrés de liberté. La réalisation de ce programme scientifique passe par une caractérisation du plasma de quarks et de gluons (QGP), l'état déconfiné de la matière nucléaire qui peut être formé à l'aide de collisions d'ions lourds accélérés à des énergies ultra relativistes. L'expérience ALICE exploite les collisions Pb-Pb, proton-Pb et proton-proton du LHC pour mesurer les propriétés fondamentales du QGP comme, par exemple, la température critique du déconfinement ou les coefficients de transport de la matière déconfinée. L'état QGP de la matière aurait �...

  5. Bose-Einstein correlations in pp and PbPb collisions with ALICE at the LHC

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    We report on the results of identical pion femtoscopy at the LHC. The Bose-Einstein correlation analysis was performed on the large-statistics ALICE p+p at sqrt{s}= 0.9 TeV and 7 TeV datasets collected during 2010 LHC running and the first Pb+Pb dataset at sqrt{s_NN}= 2.76 TeV. Detailed pion femtoscopy studies in heavy-ion collisions have shown that emission region sizes ("HBT radii") decrease with increasing pair momentum, which is understood as a manifestation of the collective behavior of matter. 3D radii were also found to universally scale with event multiplicity. In p+p collisions at 7 TeV one measures multiplicities which are comparable with those registered in peripheral AuAu and CuCu collisions at RHIC, so direct comparisons and tests of scaling laws are now possible. We show the results of double-differential 3D pion HBT analysis, as a function of multiplicity and pair momentum. The results for two collision energies are compared to results obtained in the heavy-ion collisions at similar multipl...

  6. arXiv Performance of the ALICE Time-Of-Flight detector at the LHC

    CERN Document Server

    INSPIRE-00531272

    The ALICE Time-Of-Flight (TOF) detector at LHC is based on the Multigap Resistive Plate Chambers (MRPCs). The TOF performance during LHC Run 2 is here reported. Particular attention is given to the improved time resolution reached by TOF detector of $56$ ps, with the consequently improved particle identification capabilities.

  7. Ré-imaginer Alice au pays des merveilles

    Directory of Open Access Journals (Sweden)

    Florence Cheron

    2016-12-01

    Full Text Available Alice’s Adventures in Wonderland fait l’objet d’adaptations cinématographiques dès les débuts du cinéma. De nombreuses analyses soulèvent, et ce dès les années 1990, le lien tacite entre les films de Tim Burton et les aventures d’Alice. Que ce soient les personnages, les univers ou encore l’absurdité des situations, il semblait évident que le cinéaste en viendrait un jour à filmer sa vision des écrits de Lewis Carroll, comme l’aboutissement d’une idée qui serait en germe depuis toujours. Le réalisateur rendant hommage aux premières illustrations mais aussi aux différentes adaptations d’Alice au cinéma, effectue une synthèse visuelle et narrative de l’ensemble de ces œuvres comme si son Alice in Wonderland devait être une transposition-somme.

  8. Determination of the event collision time with the ALICE detector at the LHC

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Iga Buitron, Sergio Arturo; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Duggal, Ashpreet Kaur; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Espagnon, Bruno; Esumi, Shinichi; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Garg, Prakhar; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hladky, Jan; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lazaridis, Lazaros; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Lonne, Per-ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Ohlson, Alice Elisabeth; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Jonghan; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Rana, Dhan Bahadur; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Anjali; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Vigolo, Sonia; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Witt, William Edward; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann

    2017-02-24

    Particle identification is an important feature of the ALICE detector at the LHC. In particular, for particle identification via the time-of-flight technique, the precise determination of the event collision time represents an important ingredient of the quality of the measurement. In this paper, the different methods used for such a measurement in ALICE by means of the T0 and the TOF detectors are reviewed. Efficiencies, resolution and the improvement of the particle identification separation power of the methods used are presented for the different LHC colliding systems (pp , p-Pb and Pb-Pb) during the first period of data taking of LHC (Run 1).

  9. Open-charm production measurements with ALICE at the LHC

    International Nuclear Information System (INIS)

    Pagano, P.

    2016-01-01

    The LHC heavy-ion physics program aims at investigating the properties of strongly-interacting matter under extreme conditions of temperature and energy density where the formation of the Quark-Gluon Plasma (QGP) is expected. Heavy-flavour hadrons, containing charm and beauty quarks, are considered efficient probes to investigate the properties of the QGP produced in heavy-ion collisions. Heavy quarks are produced in hard partonic scattering processes in the initial stage of hadronic collisions and propagate through the hot and dense medium created in the collision losing energy interacting with the medium via radiative and collisional processes. The high precision tracking, good vertexing capabilities and excellent particle identification offered by the ALICE experiment allow us to measure particles containing heavy quarks in a wide transversemomentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on prompt D-mesons production, reconstructed via their hadronic decays at mid-rapidity, in pp collisions at √s = 7 TeV, p-Pb collisions at √s_N_N = 5.02 TeV and Pb-Pb collisions at √s_N_N = 2.76 TeV will be shown

  10. Strangeness Production in Jets with ALICE at the LHC

    Science.gov (United States)

    Smith, Chrismond; Harton, Austin; Garcia, Edmundo; Alice Collaboration

    2016-03-01

    The study of strange particle production is an important tool for understanding the properties of the hot and dense QCD medium created in heavy-ion collisions at ultra-relativistic energies. The study of strange particles in these collisions provides information on parton fragmentation, a fundamental QCD process. While measurements at low and intermediate pT, are already in progress at the LHC, the study of high momentum observables is equally important for a complete understanding of the QCD matter, this can be achieved by studying jet interactions. We propose the measurement of the characteristics of the jets containing strange particles. Starting with proton-proton collisions, we have calculated the inclusive pTJet spectra and the spectra for jets containing strange particles (K-short or lambda), and we are extending this analysis to lead-lead collisions. In this talk the ALICE experiment will be described, the methodology used for the data analysis and the available results will be discussed. This material is based upon work supported by the National Science Foundation under Grants PHY-1305280 and PHY-1407051.

  11. Performance of the ALICE Experiment at the CERN LHC

    CERN Document Server

    Abelev, Betty Bezverkhny; Adam, Jaroslav; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Jimenez, Ramon; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Vannucci, Luigi; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.

  12. The ALICE Experiment at the LHC and the Mexican Contribution

    International Nuclear Information System (INIS)

    Herrera Corral, G.

    2007-01-01

    The final installation of the detectors that form ALICE has started on year 2005. The first device of ALICE that was completed and set up to work was the Cosmic Ray Detector. The V0A detector will be installed and commissioned on the summer of 2007. These two detectors were designed and built in Mexico. Here we give a very general description of these two devices

  13. Online calibration of the ALICE-TPC in LHC-Run 2

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyev, Ivan [Technische Universitaet Muenchen, Excellence Cluster Universe (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The Time Projection Chamber (TPC) is the main tracking detector at the ALICE Experiment at the LHC. Its performance and calibration directly influence the calibration of other detectors in the ALICE central barrel. To address this issue during the first LHC running period, a two-step offline calibration was employed, in which first the TPC and then the other detectors were calibrated. However, such a scheme will not be feasible for the Run 3 period, because the TPC will run in a continuous readout mode, producing a vast amount of data that needs to be significantly compressed on the fly for data storage. This will require the calibration step to run online within the High Level Trigger environment. In this talk, the online calibration concept and the implementation for the ALICE-TPC already in Run 2 are discussed.

  14. Silicon drift detectors in alice experiment at lhc, performance tests and simulations

    International Nuclear Information System (INIS)

    ALICE collaboration

    2001-01-01

    A brief introduction to the silicon drift detector (SDD) in ALICE experiment at LHC CERN. Excellent agreement are found between the results from the simulation code (Ali Root) and the results of the test beam data for SDD s. A study of SDD performance and double track separation capability are shown

  15. Determination of the event collision time with the ALICE detector at the LHC

    NARCIS (Netherlands)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Janssen, M M; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Iga Buitron, S. A.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.; Keil, M.; Mohisin Khan, M.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.-S.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal’Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, J.-W.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H.P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Windelband, B.; Winn, M.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.

    2017-01-01

    Particle identification is an important feature of the ALICE detector at the LHC. In particular, for particle identification via the time-of-flight technique, the precise determination of the event collision time represents an important ingredient of the quality of the measurement. In this paper,

  16. La Physique au LHC - Partie I

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    Le LHC devrait permettre l'observation du boson de Higgs et pouvoir lever le voile sur l'un des scénarios de nouvelle physique présentés dans la cours précédent. Ce cours détaillera les perspectives de physique au LHC (découvertes possibles et mesures de précision) ainsi que les méthodes et difficultés expérimentales. L'accent sera mis sur les problèmes liés à la brisure de la symétrie electrofaible. Les possibilités de développement futur à plus haute luminosité et/ou énergie seront également discutées.

  17. Performance of the ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mis̈kowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Twinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Rd, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Sándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, C. B.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Saard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, P. Y.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling

  18. Virtual reality visualization algorithms for the ALICE high energy physics experiment on the LHC at CERN

    Science.gov (United States)

    Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław

    2017-08-01

    Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.

  19. Determination of the event collision time with the ALICE detector at the LHC

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Čepila, J.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Hladký, Jan; Horák, D.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Šumbera, Michal; Vaňát, Tomáš; Závada, Petr

    2017-01-01

    Roč. 132, č. 2 (2017), č. článku 99. ISSN 2190-5444 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * LHC * performance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) OBOR OECD: Nuclear physics; Particles and field physics (FZU-D) Impact factor: 1.753, year: 2016

  20. Very high momentum particle identification in ALICE at the LHC

    CERN Document Server

    Agocs, A; Barnafoldi, G G; Boldizsar, L; Cuautle, E; De Cataldo, G; Di Bari, D; Di Mauro, A; Dominguez, I; Fodor, Z; Futo, E; Garcia, E; Hamar, G; Harris, J W; Levai, P; Martinengo, P; Mayani, D; Molnar, L; Nappi, E; Ortiz, A; Paic, G; Perini, D; Perrino, D; Peskov, V; Piuz, F; Smirnov, N; Varga, D; Volpe, G

    2010-01-01

    We propose to construct and install a limited acceptance detector to identify hadrons (pions, K, p) up to 30 GeV/c on a track-by-track basis in space available in ALICE. Details and PID performance simulation results will be presented for two possible options, including a high transverse momentum (pT) trigger for this detector. The first option is a RICH design with a C4F10 gas UV-photon radiator, UV-mirror, quartz window and pad-readout. This design requires additional tracking detectors to enable high pT triggering. A second option is a combination of three detectors: a RICH with CF4 gas both as a UV-photon radiator and as a gas amplification medium (a windowless approach); and a threshold Cherenkov detector (C4F10) with a quartz window and pad readout. The response for minimum ionizing particles (MIP) and UV-photons in these detectors can be well separated. With an additional tracking detector this design will also provide high pT triggering. The simulation includes UV-photon production due to CF4 scintill...

  1. Open heavy–flavour and quarkonium measurements with ALICE at the LHC

    CERN Document Server

    INSPIRE-00249244

    2013-01-01

    The ALICE detector provides excellent capabilities to study heavy quark (i.e. charm and beauty) production in proton{proton (pp) and heavy{ion collisions (AA) at the Large Hadron Collider (LHC). In ALICE, open heavy{ avour hadron production is studied through the hadronic decays of D mesons at central rapidity ( j y j < 0 : 9), and in the semi{leptonic decays of charm and beauty hadrons both at mid{rapidity and at forward rapidity (2 : 5 < y < 4). Quarkonia are measured in their di{electron and di{muon decay channels in the central barrel and in the muon spectrometer respectively, reaching in both cases zero transverse momentum. The latest results on open heavy{ avour and quarkonium production in pp ( p s = 2.76 TeV and p s = 7 TeV) and PbPb ( p s NN = 2.76 TeV) collisions are presented

  2. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC

    International Nuclear Information System (INIS)

    Vernet, R.

    2006-02-01

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H 0 in the Λpπ - decay mode was calculated thanks to a dedicated simulation. The search for the H 0 , and for the Ξ - p resonance as well, was performed in the STAR Au+Au data at √(s NN ) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons Λ, Ξ and Ω, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H 0 and (Ξ 0 p) b and to the ΛΛ resonance were calculated as well. (author)

  3. Two-particle angular correlations in pp collisions recorded with the ALICE detector at the LHC

    CERN Document Server

    Janik, Małgorzata

    2014-01-01

    We report on the studies of two-particle angular correlations measured in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV recorded by ALICE at the LHC. Two-particle correlations in relative azimuth ({\\Delta}{\\phi}) and pseudorapidity ({\\Delta}{\\eta}) are expected to exhibit several structures which arise from different physics mechanisms and allow us to study the wide landscape of correlations. The results include the dependence of the correlation function on the event multiplicity, the charge combination and species (pions, kaons or protons) of particles in the pair.

  4. JACoW Challenges of the ALICE Detector Control System for the LHC RUN3

    CERN Document Server

    Chochula, Peter; Bond, Peter; Kurepin, Alexander; Lechman, Mateusz; Lang, John; Pinazza, Ombretta

    2018-01-01

    The ALICE Detector Control System (DCS) has provided its services to the experiment since 10 years. During this period it ensured uninterrupted operation of the experiment and guaranteed stable conditions for the data taking. The DCS has been designed to cope with the detector requirements compatible with the LHC operation during its RUN1 and RUN2 phases. The decision to extend the lifetime of the experiment beyond this horizon requires the redesign of the DCS data flow and represents a major challenge. The major challenges of the system upgrade are presented in this paper.

  5. Study of New FNAL-NICADD Extruded Scintillator as Active Media of Large EMCal of ALICE at LHC

    CERN Document Server

    Grachov, Oleg A.; Pla-Dalmau, A.; Bross, A.; Rykalin, V.

    2006-01-01

    The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.

  6. Recent photon physics results from the ALICE experiment at the LHC

    CERN Document Server

    Arbor, Nicolas

    2013-01-01

    We present an overview of the photon analysis in pp and Pb-Pb collisions with data taken by the ALICE experiment at the LHC. The ALICE detectors reconstruct photons by using the two electromagnetic calorimeters (photon spectrometer, sampling calorimeter) and central tracking systems for photon converted e + e pairs in the material of the inner ALICE layers. In Pb-Pb collisions the direct photon calculations under- predict the data below 4 GeV / c where it is expected to have a contribution from thermal radiations. The direct photon measurement also shows evidence for a non-zero elliptic flow for 1 < p T < 3 GeV / c. The nuclear modi- fication factor of the 0 production at di erent collision centralities shows a clear pattern of strong suppression in a hot QCD medium with respect to pp collisions. Finally, parton fragmentation following hard collisions is investigated by correlating high momentum direct photons and charged hadrons with the goal of revealing new insights into medium effects in the QGP.

  7. Inclusive charged hadrons production in pp collisions with the ALICE-HMPID detector at the LHC

    CERN Document Server

    Barile, Francesco

    The goal of this thesis is the study of the particles identification provided by a small acceptance detector: the High Momentum Particle IDentification detector. Installed during September 2006 and located at about 5 m from the primary vertex, it can contribute to several ALICE physics items using the Cherenkov radiation. This thesis is made of 5 chapters. An overview of the Heavy Ion collisions, the Quark Gluon Plasma, and the main points of the ALICE physics program are described in the first chapter. Some recent results on particles production and hadron ratios are also presented. Chapter 2 is dedicated to the LHC machine, to the ALICE apparatus and to the High Momentum Particle Detector. The layout, the principle of operation and some recent performance results of this RICH detector will be described. Chapter 3 is dedicated to the evaluation of the HMPID PID efficiency. This study exploit the unique possibility to extract the efficiency directly from data using the V$^{0}$ ’s decay. Also, it provides a ...

  8. Identifying Charged Hadrons on the Relativistic Rise Using the ALICE TPC at LHC

    CERN Document Server

    Gros, Philippe

    2011-01-01

    The chain from hadron collisions to the physics results requires several important links. First the outcome of the collision is measured by the detectors. Then, the signal from the detector is processed and transformed into information relevant for the study of the physics processes. The data is made available to physicists to be analysed and used to improve theories. This thesis presents work done on no most of these steps for the ALICE experiment at LHC. First a study of the main processes in the TPC detector for ALICE was done using simulation and test beam data. The results are shown in paper I. The study was deepened with the analysis of test beam data from a TPC prototype for the ILC, as shown in paper III. Concurrently, a study on the Grid – computing framework for distributed computing and storage resources – was performed. This involved the development of an interface module between the ALICE software AliEn and the ARC software developped in the Nordic countries. This work is presented in paper I...

  9. Results from cosmics and first LHC beam with the ALICE HMPID detector

    CERN Document Server

    Volpe, Giacomo

    2009-01-01

    The ALICE HMPID (High Momentum Particle IDentification) detector has been designed to identify charged pions and kaons in the range 1 < p < 3 GeV/c and protons in the range 1.5 < p < 5 GeV/c. It consists of seven identical proximity focusing RICH (Ring Imaging Cherenkov) counters, covering in total 11 m2, which exploit large area MWPC equipped with CsI photocathodes for Cherenkov light imaging emitted in a liquid C6F14 radiator. The ALICE detector has been widely commissioned using cosmics and LHC beam from December 2007 until October 2008. During the cosmics data taking the HMPID detector collected a large set of data, using mainly the trigger provided by the TOF detector. We present here preliminary results of detector alignment using TPC tracking. The HMPID could be operated in a stable way, at a safe HV setting, also during LHC beam injection and circulation tests, when a very large occupancy (up to 50%) was achieved. Resulting gain mapping and overall detector performance will also be discuss...

  10. Light hypernuclei production in Pb-Pb collisions with ALICE at LHC

    CERN Document Server

    Lea, Ramona; Piano, Stefano

    The subject of the present PhD thesis is the study of the production of light hypernuclei in ultra-relativistic Pb-Pb collisions with ALICE (A Large Ion Collider Experiment), one of the four major experiments at the LHC (Large Hadron Collider). The main physics goal of the ALICE experiment is the investigation of the properties of the strongly interacting matter at high energy density ($>$ 10 GeV/fm$^3$) and high temperature ($\\approx$ 0.2 GeV) conditions. According to the lattice Quantum Chromo Dynamics (QCD) calculations, under these conditions (i.e. high temperature and large energy density) hadronic matter undergoes a phase transition to a ``plasma'' of deconfined quarks and gluons (Quark Gluon Plasma, QGP). In the first chapter of the thesis a general introduction to the heavy-ion physics will be given. Then the main quantities related to QGP formation (i.e. \\textit{probes}) will be described. Finally the most important results obtained at SPS, RHIC and LHC experiments will be shown and discussed. In...

  11. Non prompt D-meson measurements with ALICE at the LHC

    International Nuclear Information System (INIS)

    Mazzilli, Marianna

    2016-01-01

    The production of hadrons with open heavy flavour (charm and beauty) in high-energy nucleus-nucleus collisions is a powerful tool to study the properties of the deconfined phase of strongly interacting matter known as the Quark-Gluon Plasma (QGP). The production of charm and beauty quarks occurs in hard partonic scattering processes in the early stage of the collisions. ALICE is the LHC experiment devoted to the study of heavy-ion physics. It is able to reconstruct charmed mesons in exclusive decays (e.g. D"0→K"−π"+) and beauty hadrons in semi-inclusive decays (e.g. B→eX, B→J/ψ X) . At LHC energies a significant component of the inclusive D-meson yield originates from the decay of beauty-flavoured hadrons, whose knowledge is essential to determine the production of prompt D mesons coming from charm quarks. A precise determination of the non-prompt fraction combined with the determination of the inclusive D-meson yield would allow a measurement of beauty production. A data-driven method that exploits the different shapes of the distributions of the transverse-plane impact parameter to the primary vertex of prompt and feed-down D mesons in p-Pb collisions is used in ALICE. An alternative approach based on the D-meson decay length for Pb–Pb collisions is under study.

  12. Improvements of the ALICE high level trigger for LHC Run 2 to facilitate online reconstruction, QA, and calibration

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, David [Frankfurt Institute for Advanced Studies, Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    ALICE is one of the four major experiments at the Large Hadron Collider (LHC) at CERN. Its main goal is the study of matter under extreme pressure and temperature as produced in heavy ion collisions at LHC. The ALICE High Level Trigger (HLT) is an online compute farm of around 200 nodes that performs a real time event reconstruction of the data delivered by the ALICE detectors. The HLT employs a fast FPGA based cluster finder algorithm as well as a GPU based track reconstruction algorithm and it is designed to process the maximum data rate expected from the ALICE detectors in real time. We present new features of the HLT for LHC Run 2 that started in 2015. A new fast standalone track reconstruction algorithm for the Inner Tracking System (ITS) enables the HLT to compute and report to LHC the luminous region of the interactions in real time. We employ a new dynamically reconfigurable histogram component that allows the visualization of characteristics of the online reconstruction using the full set of events measured by the detectors. This improves our monitoring and QA capabilities. During Run 2, we plan to deploy online calibration, starting with the calibration of the TPC (Time Projection Chamber) detector's drift time. First proof of concept tests were successfully performed using data-replay on our development cluster and during the heavy ion period at the end of 2015.

  13. Investigation of baryons with strangeness and search for weakly decaying exotics with ALICE at the LHC

    CERN Document Server

    Dönigus, Benjamin; Braun-Munzinger, P

    Within this work data are analysed which have been taken with the ALICE apparatus (A Large Ion Collider Experiment) at the Large Hadron Collider (LHC). The unique properties and the excellent performance of the LHC made it possible to take data for proton-proton collisions (pp) in the last three years at several center-of-mass energies (0.9 TeV, 2.36 TeV, 2.76 TeV, 7 TeV and 8 TeV). It was further possible to aquire data in two of the three years of lead–lead collisions (Pb–Pb) at sqrt(s_NN) = 2.76TeV and recently a short pilot run of proton–lead collisions (pPb) at sqrt(s_NN) = 5.01TeV was recorded. It will be continued as a full run in January/February this year. The high energies and at the same time low baryo-chemical potential (mu_B around 0) in Pb–Pb collisions at the LHC allow the production of strangeness, charm and bottom quarks in up to now unseen quantities. The particles created, either in the initial hard collision (charm and bottom) or in the quark-gluon plasma, end up in hadrons or ligh...

  14. Vector meson production in the dimuon channel in the ALICE experiment at the LHC

    CERN Document Server

    Massacrier, L.

    2011-01-01

    The purpose of the ALICE experiment at the LHC is the study of the Quark Gluon Plasma (QGP) formed in ultra-relativistic heavy-ion collisions, a state of matter in which quarks and gluons are deconfined. The properties of this state of strongly-interacting matter can be accessed through the study of light vector mesons ($\\rho$, $\\omega$ and $\\phi$). Indeed, the strange quark content ($s\\bar{s}$) of the $\\phi$ meson makes its study interesting in connection with the strangeness enhancement observed in heavy-ion collisions. Moreover, $\\rho$ and $\\omega$ spectral function studies give information on chiral symmetry restoration. Vector meson production in pp collisions is important as a baseline for heavy-ion studies and for constraining hadronic models. We present results on light vector meson production obtained with the muon spectrometer of the ALICE experiment in pp collisions at $\\sqrt{s}$=7 TeV. Production ratios, integrated and differential cross sections for $\\phi$ and $\\omega$ are presented. Those result...

  15. (Anti-)deuteron production at the LHC with the ALICE-HMPID detector

    International Nuclear Information System (INIS)

    Barile, F.

    2015-01-01

    The high center-of-mass energies delivered by the LHC during the last three years of operation led to accumulate a significant statistics of light (hyper-)nuclei in pp, p-Pb and Pb-Pb collisions. The ALICE apparatus allows for the detection of these rarely produced particles over a wide momentum range thanks to its excellent vertexing, tracking and particle identification capabilities. The last is based on the specific energy loss in the Time Projection Chamber and the velocity measurement with the Time-Of-Flight detector. The Cherenkov technique, exploited by a small acceptance detector (HMPID), has been also recently used for the most central Pb-Pb collisions to extend the identification range of the (anti-)deuteron at intermediate transverse momentum. An overview of the recent results on the (anti-)deuteron production in pp, p-Pb and Pb-Pb collisions measured with ALICE experiment are presented, giving a particular emphasis to the description of the Cherenkov technique.

  16. (Anti-)deuteron production at the LHC with the ALICE-HMPID detector

    CERN Document Server

    Barile, F

    2015-01-01

    The high center-of-mass energies delivered by the LHC during the last three years of operation led to accumulate a significant statistics of light (hyper-)nuclei in pp, p-Pb and Pb-Pb collisions. The ALICE apparatus allows for the detection of these rarely produced particles over a wide momentum range thanks to its excellent vertexing, tracking and particle identification capabilities. The last is based on the specific energy loss in the Time Projection Chamber and the velocity measurement with the Time-Of-Flight detector. The Cherenkov tech- nique, exploited by a small acceptance detector (HMPID), has been also recently used for the most central Pb-Pb collisions to extend the identification range of the (anti-)deuteron at intermediate transverse momentum. An overview of the recent results on the (anti-)deuteron production in pp, p-Pb and Pb-Pb collisions mea- sured with ALICE experiment are presented, giving a particular emphasis to the description of the Cherenkov technique

  17. Gamma-jet physics with the electro-magnetic calorimeter in the ALICE experiment at LHC

    Science.gov (United States)

    Bourdaud, G.

    2008-05-01

    The Electro-Magnetic Calorimeter (EMCal) will be fully installed for the first LHC heavy ion beam in order to improve the ALICE experiment performances in detection of high transverse momentum particles and in particular in reconstruction of γ-jet events. These events appear to be very interesting to probe the strongly interacting matter created in ultra-relativistic heavy ion collisions and the eventual Quark Gluon Plasma (QGP) state. Indeed, they may give information on the degree of medium opacity which induces the jet-quenching phenomenon: measuring the energy of the γ and comparing it to that of the associated jet may provide a unique way to quantify the jet energy loss in the dense matter. The interest of γ-jet studies in the framework of the quark gluon plasma physics will be discussed. A particular highlight will be stressed on the EMCal calorimeter. The detection of the γ-jet events will be then presented using this new ALICE detector.

  18. Strangeness production in Pb-Pb collisions at LHC energies with ALICE

    Directory of Open Access Journals (Sweden)

    Šefčík Michal

    2018-01-01

    Full Text Available The results on the production of strange and multi-strange hadrons (K0S, Λ, Ξ and Ω measured with ALICE in Pb-Pb collisions at the top LHC energy of SNN = 5.02 TeV are reported. Thanks to its excellent tracking and particle identification capabilities, ALICE is able to measure weakly decaying particles through the topological reconstruction of the identified hadronic decay products. Results are presented as a function of centrality and include transverse momentum spectra measured at central rapidity, pT-dependent Λ/K0S ratios and integrated yields. A systematic study of strangeness production is of fundamental importance for determining the thermal properties of the system created in ultrarelativistic heavy ion collisions. In order to study strangeness enhancement, the yields of studied particles are normalised to the corresponding measurement of pion production in the various centrality classes. The results are compared to measurements performed at lower energies, as well as to different systems and to predictions from statistical hadronization models.

  19. Study of multi-strange baryon production with ALICE at the LHC energies

    CERN Document Server

    Colella, Domenico

    This thesis reports on the measurement of the multi-strange baryon production in lead-lead (Pb-Pb) and proton-proton (pp) collisions at the centre-of-mass energy of 2.76 TeV per nucleon pair using the ALICE detector. The cascade identification technique, based on the topological reconstruction of weak decays into charged particles only is very effective thanks to the excellent particle identification and tracking capability of the ALICE central barrel detectors. The comparison of the transverse momentum (p$_T$) spectra for the $\\Xi^{-}$ and $\\Omega^{-}$ (and corresponding anti-particle) in Pb-Pb collisions with expectations from recent hydro models confirms the importance of an hydrodynamical approach in the description of the created system evolution. In addition, recent PYTHIA tunes results to underestimate the yields for the cascades in pp collisions. The measurements of the strangeness enhancement, one of the predicted signatures of the QGP formation, for the $\\Xi$ and $\\Omega$ at the LHC energy have been...

  20. Strangeness production in p-Pb and Pb-Pb collisions with ALICE at LHC

    CERN Document Server

    Colella, Domenico

    2017-01-01

    The main goal of the ALICE experiment is to study the properties of the hot and dense medium created in ultra-relativistic heavy-ion collisions. The measurement of the (multi-)strange particles is an important tool to understand particle production mechanisms and the dynamics of the quark-gluon plasma (QGP). We report on the production of K$^{0}_{S}$, $\\Lambda$($\\overline{\\Lambda}$), $\\Xi^{-}$($\\overline{\\Xi}^{+}$) and $\\Omega^{-}$($\\overline{\\Omega}^{+}$) in proton-lead (p-Pb) collisions at $\\sqrt{s_{\\rm NN}}$ = 5.02 TeV and lead-lead (Pb-Pb) collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV measured by ALICE at the LHC. The comparison of the hyperon-to-pion ratios in the two colliding systems may provide insight into strangeness production mechanisms, while the comparison of the nuclear modification factors helps to determine the contribution of initial state effects and the suppression from strange quark energy loss in nuclear matter.

  1. Detección de muones atmosféricos en el experimento ALICE-LHC

    CERN Document Server

    Rodríguez Cahuantzi, Mario; Cuautle Flores, Eleazar

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2010, 2011, 2012 and 2013. Two main triggers were implemented to collect the atmospheric muons crossing the experiment. The first trigger, called “ACORDE trigger”, is generated by 60 scintillators located on the top three sides of the L3 magnet surrounding the central detectors, and selects single muons and bundles of atmospheric muons.
 The second trigger, called “TOF trigger”, is obtained by requiring a simultaneous signal on some pads of the Time of Flight (TOF) detector. The analysis of multi-muon events triggered by ACORDE and TOF and reconstructed using the ALICE Time Projection Chamber (TPC) is presented. A special emphasis in the study of muon bundles, with a particular attention on high muon density events is discussed. In particular the muon multiplicity distribution, that gives information on the primary cosmic ...

  2. A Multivariate Approach to Dilepton Analyses in the Upgraded ALICE Detector at CERN-LHC

    CERN Document Server

    AUTHOR|(CDS)2242451; Weber, Michael

    ALICE, the dedicated heavy-ion experiment at CERN-LHC, will undergo a major upgrade in 2019/20. This work aims to assess the feasibility of conventional and multivariate analysis techniques for low-mass dielectron measurements in Pb-Pb collisions in a scenario involving the upgraded ALICE detector with a low magnetic field ($B=0.2~\\text{T}$). These electron-positron pairs are promising probes for the hot and dense medium, which is created in collisions of ultra-relativistic heavy nuclei, as they traverse the medium without significant final-state modifications. Due to their small signal-to-background ratio, high-purity dielectron samples are required. They can be provided by conventional analysis methods, which are based on sequential cuts, however at the price of low signal efficiency. This work shows that existing methods can be improved by employing multivariate approaches to reject different background sources of the dielectron invariant mass spectrum. The major background components are dielectrons from ...

  3. Measurement of heavy-flavor production in Pb-Pb collisions at the LHC with ALICE

    CERN Document Server

    INSPIRE-00249089

    2013-01-01

    A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) has been built in order to study the Quark-Gluon Plasma (QGP) created in high-energy nuclear collisions. As heavy-flavor quarks are produced at the early stage of the collision, they serve as sensitive probes for the QGP. The ALICE detector with its capabilities such as particle identification, secondary vertexing and tracking in a high multiplicity environment can address, among other measurements, the heavy-flavor sector in heavy-ion collisions. We present latest results on the measurement of the nuclear modification factor of open heavy-flavors as well as on the measurement of open heavy-flavor azimuthal anisotropy v2 in Pb-Pb collisions at sqrt(s) = 2.76 TeV. Open charmed hadrons are reconstructed in the hadronic decay channels D0->Kpi, D+->Kpipi, and D*+->D0pi applying a secondary decay-vertex topology. Complementary measurements are performed by detecting electrons (muons) from semi-leptonic decays of open heavy-flavor hadrons in...

  4. Light vector meson production at the LHC with the ALICE detector

    CERN Document Server

    Incani, Elisa

    2013-01-01

    The measurement of light vector meson production (\\rho, \\omega, \\phi) in pp collisions provides insight into soft Quantum Chromodynamics (QCD) processes in the LHC energy range. Calculations in this regime are based on QCD inspired phenomenological models that must be tuned to the data. Moreover, light vector meson production provides a reference for high-energy heavy-ion collisions. A measurement of the \\phi and \\omega differential cross sections as performed by the ALICE experiment in pp collisions at 7 TeV and of the \\phi cross section in pp collisions at 2.76 TeV through their decay to muon pairs and in the rapidity interval 2.5 < y < 4.

  5. ALICE : the LHC experiment devoted to heavy ions Conference MT17

    CERN Multimedia

    2001-01-01

    The object of High Energy Heavy Ion Physics is the study of strongly interacting matter at extreme energy densities and large volumes. QCD predicts that, under such conditions (high densities and large volume), hadronic matter turns into a plasma of deconfined quarks and gluons [Quark Gluon Plasma: (QGP)]. Physicists believe that matter in the Universe existed in this state up to the time when hadronization occurred i.e.10 ms after the Big Bang. Today QGP might exist in the core of neutron stars. The study of the phase diagram of matter is a new approach to investigate QCD at its natural scale, L QCD, and to address the fundamental question of confinement and chiral-symmetry breaking. The ALICE Collaboration will study QGP by observing lead nuclei colliding in the LHC at energies 30 times larger than presently available at RHIC, as well as proton-proton collisions.

  6. Trigger system study of the dimuon spectrometer in the ALICE experiment at CERN-LHC

    International Nuclear Information System (INIS)

    Roig, O.

    1999-12-01

    This work is a contribution to the study of nucleus-nucleus collisions at the LHC with ALICE. The aim of this experiment is to search for a new phase of matter, the quark-gluon plasma (QGP). The dimuon forward spectrometer should measure one of the most promising probes of the QGP, the production of heavy quark vector mesons (J/ψ, γ, γ', γ'') through their muonic decays. The dimuon trigger selects the interesting events performing a cut on the transverse momentum of the tracks. The trigger decision is taken by a dedicated electronics using RPC (''Resistive Plate Chambers'') detector information. We have made our own R and D program on the RPC detector with various beam tests. We show the performances obtained during these tests of a low resistivity RPC operating in streamer mode. The ALICE requirements concerning the rate capability, the cluster size and the time resolution are fulfilled. We have optimised the trigger with simulations which include a complete description of the read-out planes and the trigger logic (algorithm). In particular, a technique of clustering is proposed and validated. A method called ''Ds reduction'' is introduced in order to limit the effects of combinatorial background on the trigger rates. The efficiencies and the trigger rates are calculated for Pb-Pb, Ca-Ca, p-p collisions at the LHC. Other more sophisticated cuts, on the invariant mass for example, using again the RPC information have been simulated but have not shown significant improvements of the trigger rates. (author)

  7. γ-jets physics with the EMCal calorimeter in ALICE experiment at LHC

    International Nuclear Information System (INIS)

    Bourdaud, G.

    2008-11-01

    Heavy ion collisions at LHC will produce a new state of matter: the quark-gluon plasma (QGP). Photons are not sensible to the strong interaction which dominates the nuclear medium, and hence are a valuable tool to explore QGP. Gamma-jets are rare hard processes: a photon and a parton are emitted back-to-back. The parton hadronises and produces a jet of particles. These jets are quenched due to the strong interaction of the parton with the QGP. This quenching, or more precisely the re-distribution of the energy in the jet, can be measured by the modification of the distribution of the particle energy in the jet, comparing p-p and Pb-Pb collisions (fragmentation functions or hump-backed plateau distributions). For this purpose, jet energy is needed, and can be provided precisely by gamma-jet measurement. Our goal is to use EMCal to detect a photon correlated with a jet reconstructed in ALICE tracking system. Then, the jet energy distribution are compared for p-p an Pb-Pb collisions. Gamma-jet physics is first addressed, the particle identification with EMCal is introduced to isolate the direct photon, i.e. a photon and a jet emitted back-to-back. Methods of jet identification and reconstruction are developed to determine hump-backed plateau distributions. Finally, these methods are tested to evaluate ALICE and particularly EMCal capabilities for gamma-jet study at LHC and to quantify the sensibility of this probe to explore the QGP. (author)

  8. Two particle correlations with photon triggers to study hot QCD medium in ALICE at LHC

    CERN Document Server

    Yaxian, Mao; Shou, Daicui; Schutz, Yves

    2011-01-01

    With the advent of the Large Hadron Collider (LHC)at the end of 2009, the new accelerator at CERN collides protons and heavy-ions at unprecedented high energies. ALICE , one of the major experiment installed at LHC, is dedicated to the study of nuclear matter under extreme conditions of energy density with the opportunity of creating a partonic medium called the Quark- Gluon-Plasma (QGP). This new experimental facility opens new avenues for the understanding of fundamental properties of the strong interaction and its vacuum. To reach the objectives of this scientific program, it is required to select a set of appropriate probes carrying relevant information on the properties of the medium created in ultra-relativistic heavy-ion collisions. Based on the information delivered by all the observables and guided by modelization of the fundamental principles in action, a coherent picture will emerge to interpret the observed phenomena. In the first part of the present document I describe the context of the scientif...

  9. Etude de la densité de particules chargées et des mésons vecteurs de basses masses en collisions Pb-Pb à sqrt(s)NN = 2.76 TeV dans ALICE au LHC

    CERN Document Server

    Guilbaud, M.

    The matter is composed of hadrons of which quarks and gluons are the elementary components. These do not exist in a free state in ordinary matter and are therefore permanently confined in hadrons. However, according to theoretical predictions, a few microseconds after the Big Bang, the temperature was high enough to create a deconfined state of quarks and hadrons : the Quark and Gluon Plasma (QGP). The Large Hadron Collider (LHC) at CERN (Geneva) is a particle accelerator which accelerates, among others, ions and produces collisions with energies per nucleons in the center of mass up to several TeraelectronVolts. It is thus possible to achieve temperatures to recreate the QGP phase to study its properties. The experiment ALICE (A Large Ion Collider Experiment) is dedicated to the study of such ultra-relativistic heavy-ion collisions. The lifetime of the QGP being too low, it is not possible to study it directly. It is then necessary to use indirect observables. This PhD work is directly related to the study o...

  10. Very high Momentum Particle Identification detector for ALICE at the LHC

    International Nuclear Information System (INIS)

    Garcia, Edmundo

    2009-01-01

    The anomalies observed at RHIC for the baryon-meson ratios have prompted a number of theoretical works on the nature of the hadrochemistry in the hadronisation stage of the pp collisions and in the evolution of the dense system formed in heavy ion collisions. Although the predictions differ in the theoretical approach, generally a substantial increase in the baryon production is predicted in the range 10-30 GeV/c. This raises the problem of baryon identification to much higher momenta than originally planned in the LHC experiments. After a review of the present status of theoretical predictions we will present the possibilities of a gas ring imaging Cherenkov detector of limited acceptance which would be able to identify track-by-track protons until 26 GeV/c. The physics capabilities of such a detector in conjunction with the ALICE experiment will be contemplated as well as the triggering options to enrich the sample of interesting events with a dedicated trigger or/and using the ALICE Electromagnetic Calorimeter. The use of the electromagnetic calorimeter opens interesting possibility to distinguish quark and gluon jets in gamma--jet events and subsequently the study of the probability of fragmentation in proton, kaon and pion or triggering on jets in the EMCAL. Such a detector would be identify pions until 14 GeV/c kaons from 9 till 14 GeV/c and protons from 18 till 24/GeV/c in a positive way and by absence of signal from 9-18 GeV/c.

  11. Production of (anti-)(hyper-)nuclei at LHC energies with ALICE

    Science.gov (United States)

    Puccio, Maximiliano

    2018-02-01

    The ALICE experiment at the LHC has measured a variety of (anti-)(hyper-)nuclei produced in Pb-Pb collisions at = 5.02 TeV and at 2.76 TeV. In addition, a large sample of high quality data was collected in pp collisions at √s = 7 TeV and 13 TeV and in p-Pb collisions at = 5.02 TeV. These data are used to study the production of different (anti-)(hyper-)nuclei in the collisions, namely (anti-)deuteron, (anti-)3He, (anti-)alpha and (anti-)3ΛH. The identification of these (anti-)(hyper-)nuclei is based on the energy loss measurement in the Time Projection Chamber and the velocity measurement in the Time-Of-Flight detector. In addition, the Inner Tracking System is used to distinguish secondary vertices originating from weak decays from the primary vertex. New results on deuteron production as a function of multiplicity in pp, p-Pb and Pb-Pb collisions will be presented, as well as the measurement of 3He in p-Pb and Pb- Pb collisions. Special emphasis will be given to the new results of the (anti-)3ΛH in its charged-two-body decay mode. The large variety of measurements at different energies and system sizes constrains the production models of light flavour baryon clusters, in particular those based on coalescence and the statistical hadronisation approaches.

  12. Charm production in proton-proton collisions at the LHC with the ALICE detector

    CERN Document Server

    Rossi, Andrea

    The ALICE experiment at CERN will study the medium formed in very high energy lead-lead collisions at the LHC. According to the Quantum Chromo Dynamics theory of the strong interaction, a phase transition to a state where quarks and gluons are not confined into hadrons (Quark-Gluon Plasma) can occur in these collisions. Heavy quarks (charm and beauty) are produced in hard scattering processes in the first stages of the collisions. While travelling through the medium they can lose energy by means of gluon radiation. This affects the momentum spectra of the hadrons produced in the subsequent hadronization. To study the energy loss mechanism and its dependence on the parton nature (quark/gluon) and mass (light/heavy quark), hadron momentum spectra observed in heavy-ion collisions are compared to the same spectra observed in proton-proton collisions, where the formation of a thermalized medium is not expected. In this thesis, the measurement of charm production in proton-proton collisions via the exclusive recons...

  13. Light hyper- and anti-nuclei production at the LHC measured with ALICE

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The high collision energies reached at the LHC lead to significant production yields of light (anti-) and hyper-nuclei in proton-proton, proton-lead and, in particular, lead-lead collisions. The excellent particle identification capabilities of the ALICE apparatus, based on the specific energy loss in the Time Projection Chamber and the velocity information obtained with the Time-Of-Flight detector, allow for the detection of these rarely produced particles. Furthermore, the Inner Tracking System gives the possibility to separate primary nuclei from those originating from the decay of hyper-nuclei. One example is the hypertriton which is reconstructed in the decay channel 3LambdaH -> 3H + pi. We present results on the production of stable nuclei and anti-nuclei in Pb--Pb and lighter collision systems. Hypernuclei production rates in Pb--Pb will also be shown. All results are compared with predictions for the production in thermal (statistical) models and alternatives which are based on coalescence mech...

  14. Study of the multi-strange resonance $\\Xi(1530)^{0}$ production with ALICE at the LHC energies

    CERN Document Server

    AUTHOR|(CDS)2080748

    The primary goal of the relativistic heavy-ion physics program at Large Hadron Collider (LHC) at CERN, Geneva, Switzerland is to study the nuclear matter under extreme conditions. The measurement of resonances in ultra-relativistic heavy-ion collisions allows one to study the properties of the hadronic medium. Resonances with short lifetimes compared to the duration of the time span between chemical and kinetic freeze-out are good candidates to prove the interplay of particle re-scattering and regeneration in the hadronic phase, which result in a modification of their measured yields. The ALICE detector and its subsystem used for the analysis presented in this thesis are explained. Particle identification method and a coordinate system of ALICE are provided. Measurements of multi-strange resonance $\\Xi(1530)^{0}$ were performed with the ALICE detector in pp, p-Pb and Pb-Pb collisions at the LHC energies. The ${p_{\\mathrm{T}}}$-spectra of $\\Xi(1530)^{0}$ are obtained and compared with model predictions. The y...

  15. Measurement of K(892)*0 resonance production in Pb-Pb collisions with the ALICE experiment at the LHC

    CERN Document Server

    Bellini, Francesca

    The analysis of the K(892)*0 resonance production in Pb–Pb collisions at √sNN = 2.76 TeV with the ALICE detector at the LHC is presented. The analysis is motivated by the interest in the measurement of short-lived resonances production that can provide insights on the properties of the medium produced in heavy-ion collisions both during its partonic (Quark-Gluon Plasma) and hadronic phase. This particular analysis exploits particle identification of the ALICE Time-Of-Flight detector. The ALICE experiment is presented, with focus on the performance of the Time-Of-Flight system. The aspects of calibration and data quality controls are discussed in detail, while illustrating the excellent and very stable performance of the system in different collision environments at the LHC. A full analysis of the K*0 resonance production is presented: from the resonance reconstruction to the determination of the efficiency and the systematic uncertainty. The results show that the analysis strategy discussed is a valid too...

  16. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC; Recherche de matiere etrange (exotique) dans les experiences STAR et ALICE aupres des collisionneurs d'ions lourds ultra-relativistes RHIC et LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, R

    2006-02-15

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H{sup 0} in the {lambda}p{pi}{sup -} decay mode was calculated thanks to a dedicated simulation. The search for the H{sup 0}, and for the {xi}{sup -}p resonance as well, was performed in the STAR Au+Au data at {radical}(s{sub NN}) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons {lambda}, {xi} and {omega}, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H{sup 0} and ({xi}{sup 0}p){sub b} and to the {lambda}{lambda} resonance were calculated as well. (author)

  17. Precision measurement of the mass difference between light nuclei and anti-nuclei with ALICE at the LHC

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    is produced in the central pseudorapidity region allowing for a precise investigation of their properties. Mass and binding energy are expected to be the same in nuclei and anti-nuclei as long as the CPT invariance holds for the nuclear force, a remnant of the underlying strong interaction between quarks and gluons. The measurements of the difference in mass-to-charge ratio between deuteron and anti-deuteron, and 3He and 3\\bar{He} nuclei performed with the ALICE detector at the LHC is presented. The ALICE measurements improve by one to two orders of magnitude previous analogous direct measurements. Given the equivalence between mass and energy, the results improve by a factor two the constraints on CPT invariance inferred from measurements in the (anti-)deuteron system. The binding energy difference has been determined for the first time in the case of (anti-)3He, with a precision comparable to the one obtained in the...

  18. Jet-hadron correlations relative to the event plane at the LHC with ALICE

    Science.gov (United States)

    Mazer, Joel; Alice Collaboration

    2017-11-01

    In ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC), conditions are met to produce a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP). Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. The outgoing partons scatter and interact with the medium, leading to a manifestation of medium modifications of jets in the final state, known as jet quenching. Within the framework of perturbative QCD, jet production is well understood in pp collisions. We use jets measured in pp interactions as a baseline reference for comparing to heavy-ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of jets with charged hadrons and is examined in transverse momentum (pT) bins of the jets, pT bins of the associated hadrons, and as a function of collision centrality. A robust and precise background subtraction method is used in this analysis to remove the complex, flow dominated, heavy-ion background. The analysis of angular correlations for different orientations of the jet relative to the event plane allows for the study of the path-length dependence of medium modifications to jets. The event plane dependence of azimuthal angular correlations of charged hadrons with respect to the axis of an R = 0.2 reconstructed full (charged + neutral) jet in Pb-Pb collisions at √{sNN} = 2.76 TeV in ALICE is presented. Results are compared for three angular bins of the jet relative to the event plane in mid-peripheral events. The yields relative to the event plane are presented and then quantified through yield ratio calculations. The results show no significant path-length dependence on the medium modifications.

  19. A study of parton fragmentation using photon-hadron correlation with the ALICE experiment at LHC

    International Nuclear Information System (INIS)

    Arbor, N.

    2013-01-01

    The strong interaction theory, Quantum Chromodynamic (QCD), predicts a new phase of nuclear matter at very high temperature and/or very high density. This state is composed of deconfined quarks and gluons known as the quark-gluon plasma (QGP). The measurement of its composition and properties is a challenge for the nuclear physics of the 21. century and should lead to a better understanding of the fundamental symmetries and mechanisms related to the quarks confinement inside hadrons and the strong interaction generally.The Large Hadron Collider (LHC) accelerator at CERN (European Organization for Nuclear Research) allows to reach the thermodynamic conditions required to create the quark-gluon plasma using ultra-relativistic heavy ion collisions (Pb). The ALICE experiment (A Large Ion Collider Experiment) allows to access several probes to characterize the QGP through particles reconstruction and. Among these probes, high energy parton energy loss is used to access medium characteristics such as density or temperature. Parton energy loss is estimated from the modification of the energy distribution of hadrons produced by fragmentation.This thesis is dedicated to the photon-hadron correlations analysis in order to study the modification of the parton fragmentation due to the quark-gluon plasma. First part of this thesis is devoted to the characterization of the electromagnetic calorimeter (EMCal), the central detector for energy measurement and photon identification. The second part is dedicated to the photon-hadron correlation measurement, for the 7 TeV proton-proton collisions and 2.76 TeV Lead-Lead collisions. An important work has been done to improve the prompt photon identification, one of the key point of this analysis. (author) [fr

  20. A study of parton fragmentation using photon-hadron correlation with the ALICE experiment at LHC

    International Nuclear Information System (INIS)

    Arbor, Nicolas

    2013-01-01

    The strong interaction theory, Quantum Chromodynamic (QCD), predicts a new phase of nuclear matter at very high temperature and/or very high density. This state is composed of deconfined quarks and gluons known as the quark-gluon plasma (QGP). The measurement of its composition and properties is a challenge for the nuclear physics of the 21. century and should lead to a better understanding of the fundamental symmetries and mechanisms related to the quarks confinement inside hadrons and the strong interaction generally. The Large Hadron Collider (LHC) accelerator at CERN (European Organization for Nuclear Research) allows to reach the thermodynamic conditions required to create the quark-gluon plasma using ultra-relativistic heavy ion collisions (Pb). The ALICE experiment (A Large Ion Collider Experiment) allows to access several probes to characterize the QGP through particles reconstruction and. Among these probes, high energy parton energy loss is used to access medium characteristics such as density or temperature. Parton energy loss is estimated from the modification of the energy distribution of hadrons produced by fragmentation. This thesis is dedicated to the photon-hadron correlations analysis in order to study the modification of the parton fragmentation due to the quark-gluon plasma. First part of this thesis is devoted to the characterization of the electromagnetic calorimeter (EMCal), the central detector for energy measurement and photon identification. The second part is dedicated to the photon-hadron correlation measurement, for the 7 TeV proton-proton collisions and 2.76 TeV Lead-Lead collisions. An important work has been done to improve the prompt photon identification, one of the key point of this analysis. (author) [fr

  1. The VZERO detector, the present muon physics and its future with the ALICE experiment at the LHC

    International Nuclear Information System (INIS)

    Tieulent, R.

    2013-01-01

    The ALICE experiment studies the Pb-Pb or proton-Pb or proton-proton collisions at the LHC to assess the fundamental features of the quark-gluon plasma (QGP). A brief introduction to QGP and physics of heavy ions is given in the first chapter. A detector named VZERO composed of 2 hodoscopes made up of organic scintillators located on either side of the collision point has been designed. The main purpose of VZERO is to provide the triggering signal for the ALICE experiment and to provide a second triggering signal sensitive to the energy density released in the collision. VZERO is described in the second chapter. QGP can be studied through various observables. The muons is one of the most promising as the production of muons appears at any stage of the QGP evolution and the muons can be detected easily as they do interact weakly with the plasma. The muon spectrometer and its alignment system are described in the chapter 3. The vector mesons of low mass like for instance the ρ meson are sensitive to the medium effect and to the restoration of the Chiral symmetry. The Chiral symmetry is spontaneously broken in QCD at normal energy and density ranges but the restoration of the Chiral symmetry is predicted by QCD calculus at the temperatures reached by LHC. The study of low mass vector mesons is described in the fourth chapter. A new step forward for the ALICE experiment is being prepared in order to benefit fully with the increase of both luminosity and energy of the LHC in 2018. A new detector based on silicon pixels: the Muon Forward Tracker (MFT) is being designed. The experimental data of the muon spectrometer combined with those of the MFT will open a new road for muon physics. The last chapter is dedicated to the MFT

  2. Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

    CERN Document Server

    Wanzenberg, Rainer; CERN. Geneva. ATS Department

    2016-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) project was started with the goal to extend the discovery potential of the Large Hadron Collider (LHC). The HL-LHC study implies also an upgraded dimensions of the ALICE beam pipe. The trapped monopole and dipole Higher Order Modes (HOMs) and the short range wakefields for the new design of the ALICE vacuum chamber were calculated with help of the computer codes MAFIA and ECHO2D. The results of the short range wakefields calculations and the HOMs calculations for the ALICE vacuum chamber with new dimensions are presented in this report. The short range wakefields are presented in terms of longitudinal and transverse wake potentials and also in terms of loss and kick parameters. The frequency, the loss parameter, the R/Q and the Qvalues and also power loss parameters are presented as result of the HOMs calculations and can be converted into impedance values.

  3. Open charm analysis with the ALICE detector in pp collisions at LHC

    NARCIS (Netherlands)

    Ivan, C.G.|info:eu-repo/dai/nl/304847747

    2009-01-01

    The upcoming ALICE experiment, at the Large Hadron Collider located at CERN, is designed to investigate the physics of strongly interacting matter at very high energy densities. In this thesis we present an analysis strategy for the feasibility of reconstructing open charm mesons with ALICE via the

  4. ALICE TPC gas system is the first of the LHC experiments to be put on line

    CERN Document Server

    Maximilien Brice

    2006-01-01

    Picture 01 : the Physics Department's DT1 gas systems team in their laboratory. Picture 02 : Chilo Garabatos (ALICE) and Stefan Haider (PH-DT1-GS) in front of the gas system for the ALICE TPC which has just been put on line.

  5. The Time-Of-Flight detector of ALICE at LHC: construction, test and commissioning with cosmic rays

    CERN Document Server

    Preghenella, Roberto

    2009-01-01

    After several years of research and development the Time-Of-Flight detector of ALICE (A Large Ion Collider Experiment) has been constructed and is presently fully installed and operative in the experimental area located at the interaction point n.2 of the LHC (Large Hadron Collider) at CERN. Particle identification in ALICE is essential, as many observables are either mass or flavour dependent, therefore many different techniques are used to cover the largest possible momentum range. As said, the TOF (Time- Of-Flight) detector, of which a comprehensive review is given in Chapter 2, is dedicated to hadron identification at medium momenta. The detector exploits the novel technology based on the Multigap Resistive Plate Chamber (MRPC) which guarantees the excellent performance required for a very large time-of-flight array. The construction of the ALICE TOF detector has required the assembly of a large number of MRPC detectors which has been successfully carried out thanks to a careful mass production controlled...

  6. Commissioning of the ALICE-LHC online data quality monitoring framework

    International Nuclear Information System (INIS)

    Roukoutakis, Filimon; Haller, Barthelemy von

    2009-01-01

    ALICE is one of the experiments installed at CERN Large Hadron Collider, dedicated to the study of heavy-ion collisions. The final ALICE data acquisition system has been installed and is being used for the testing and commissioning of detectors. Data Quality Monitoring (DQM) is an important aspect of the online procedures for a HEP experiment. In this presentation we overview the commissioning and the integration of ALICE's AMORE (Automatic MOnitoRing Environment), a custom-written distributed application aimed at providing DQM services in a large, experiment-wide scale.

  7. Production of pions, kaons and protons in pp collisions at √ s = 900 GeV with ALICE at the LHC

    Czech Academy of Sciences Publication Activity Database

    Aamodt, K.; Abel, N.; Abeysekara, U.; Quintana, A.A.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Kushpil, Svetlana; Kushpil, Vasilij; Mareš, Jiří A.; Polák, Karel; Šumbera, Michal; Tlustý, D.; Wagner, V.; Závada, Petr

    2011-01-01

    Roč. 71, č. 6 (2011), 1-22 ISSN 1434-6044 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10480505 Keywords : CERN * ALICE * LHC * pp collisions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.631, year: 2011

  8. Open heavy-flavour measurements in Pb-Pb collisions with ALICE at the LHC

    CERN Document Server

    Mischke, André

    2017-01-01

    The ALICE experiment has measured charm and beauty production in Pb–Pb collisions at $\\sqrt{S_{\\rm{NN}}}= 2.76 \\text{ TeV}$ and $5.02 \\text{ TeV}$, via the reconstruction of hadronic D-meson decays and semi-leptonic Dand B-meson decays. In this contribution, an overview is given on current open heavy-flavour results from ALICE ranging from the nuclear modification factor to elliptic flow measurements and on the interpretation of the data by comparing with different model calculations of in-medium energy loss.

  9. Track reconstruction principle in ALICE for LHC run I and run II

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    Principles of tracking for an ALICE event, showing the three successive paths allowing to build a track and refine its parameters. Numbers ranging from 1 to 10 mention the bits that are activated in case of success during the propgation of the Kalman filter at the considered stage.

  10. Onia, open heavy flavours, meson decays and combinatorial effects in muon pairs measurements, in ALICE at LHC

    International Nuclear Information System (INIS)

    Zhou, D.C.; Jouan, D.

    1996-01-01

    The ALICE collaboration has proposed to build a detector dedicated to nucleus-nucleus collisions at LHC. The aim is to study strongly interacting matter at extreme energy densities and particularly to search for evidence of the predicted QCD phase transition to quark-gluon plasma (QGP). The suppression of heavy quark resonances, J/ψ and υ, is one of the most promising signatures of the quark-gluon plasma. This work gives out results of a simulation of signals and backgrounds in muon pairs measurements with a forward spectrometer, including the dimuon production from resonances, open charm, open beauty and meson decay in Pb-Pb, Ca-Ca and P-P collisions. The effect of the nature of the absorber on the mass resolution is discussed, and a comparison with measurement in the central region is also made. (author)

  11. Multi-strange baryon production in pp, p-Pb and Pb-Pb collisions at LHC measured with ALICE

    CERN Document Server

    Colella, Domenico

    2015-01-01

    Transverse momentum spectra and yields of charged $\\Xi$ and $\\Omega$ at mid-rapidity in pp, p-Pb and Pb-Pb collisions at the LHC have been measured by the ALICE Collaboration. These baryons are identified by reconstruction of their weak decay topology, in modes with only charged decay products, using the excellent tracking and particle identification capabilities of the detector. The recent measurements of the multi-strange baryon production relative to non-strange particles in p-Pb collisions are presented: this would help to understand the change in relative strangeness production from pp collisions to Pb-Pb collisions. Results on the nuclear modification factors for the charged $\\Xi$ and $\\Omega$ particles, compared with those for other light particles, are also reported.

  12. Probing the quark-gluon plasma from bottomonium production at forward rapidity with ALICE at the LHC

    International Nuclear Information System (INIS)

    Marchisone, M.

    2013-01-01

    The main goal of ultrarelativistic heavy-ion collisions is the study of the properties of the matter at very high temperatures and energy densities. Quantum chromodynamics (QCD) predicts in these conditions the existence of a new phase of the matter whose components are deconfined in a Quark- Gluon Plasma (QGP). Heavy quarks are produced in the first stages of the collisions, before interacting with the medium. Therefore, the measurement of the quarkonia (cc-bar and bb-bar mesons) is of particular interest for the study of the QGP: their dissociation mainly due to the colour screening is sensible to the initial temperature of the medium. Previous measurements at the SPS and RHIC allowed to understand some characteristics of the system produced, but they also opened many questions. With an energy 14 times higher than RHIC, the LHC (Large Hadron Collider) at CERN opened a new era for the study of the QGP properties. ALICE (A Large Ion Collider Experiment) is the LHC experiment fully dedicated to the study of the Quark-Gluon Plasma produced in Pb-Pb collisions at an energy of 2.76 TeV per nucleon. The experiment also participates to the proton-proton data taking in order to obtain the fundamental reference for the study of ion-ion and proton-ion collisions and for testing the predictions at very small Bjorken-x values of the perturbative QCD. Quarkonia, D and B mesons and light vector mesons are measured at forward rapidity by a Muon Spectrometer exploiting their (di)muonic decay. This detector is composed of a front absorber, a dipole magnet, five stations for tracking (Muon Tracking) and two stations for triggering (Muon Trigger). The work presented in this thesis has been carried out from 2011 to 2013 during the first period of data collecting of ALICE. After a detailed introduction of the heavy-ion physics and a description of the experimental setup, the performance of the Muon Trigger in Pb-Pb collisions are shown. A particular attention is devoted to the

  13. Heavy­flavour measurements in Pb­Pb collisions with ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Bianchin Chiara

    2013-11-01

    Full Text Available The ALICE experiment studies the properties of the strongly-interacting matter created in high energy heavy-ion collisions, called Quark-Gluon Plasma (QGP. Heavy quarks are a powerful probe for investigating such a state of matter, since they are predominantly produced in the first hard scattering processes and they bring to the final state information on the deconfined phase. Heavy-flavour particles are reconstructed via hadronic and semi-leptonic decays in the ALICE detector. The measurements of the modification of the heavyflavour hadrons transverse momentum distribution in Pb–Pb collisions with respect to pp and of their azimuthal anisotropy show that heavy quarks have a sizeable interaction with the medium constituents.

  14. 29 November 2013 - U. Humphrey Orjiako Nigerian Ambassador Extraordinary and Plenipotentiary Permanent Mission to the United Nations Office and other international organisations in Geneva signing the Guest Book with Head of International Relations R. Voss, visiting the LHC tunnel at Point 2 and the ALICE cavern with ALICE Collaboration Deputy Spokesperson Y. Schutz.

    CERN Multimedia

    Noemi Caraban

    2013-01-01

    29 November 2013 - U. Humphrey Orjiako Nigerian Ambassador Extraordinary and Plenipotentiary Permanent Mission to the United Nations Office and other international organisations in Geneva signing the Guest Book with Head of International Relations R. Voss, visiting the LHC tunnel at Point 2 and the ALICE cavern with ALICE Collaboration Deputy Spokesperson Y. Schutz.

  15. 14 November 2013 - Director of Indian Institute of Technology Indore P. Mathur with members of the Indian community working at CERN; visiting the LHC tunnel at Point 2, the ALICE experimental area and SM18 with ALICE Collaboration Spokesperson, Istituto Nazionale Fisica Nucleare P. Giubellino and Technology Department, Accelerator Beam Transfer Group Leader V. Mertens

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    14 November 2013 - Director of Indian Institute of Technology Indore P. Mathur with members of the Indian community working at CERN; visiting the LHC tunnel at Point 2, the ALICE experimental area and SM18 with ALICE Collaboration Spokesperson, Istituto Nazionale Fisica Nucleare P. Giubellino and Technology Department, Accelerator Beam Transfer Group Leader V. Mertens

  16. Light vector meson production at forward rapidity in pp collisions at the LHC with the ALICE detector

    CERN Document Server

    Incani, Elisa; Usai, Gianluca

    Low-mass vector mesons ($\\rho$, $\\omega$ and $\\phi$) give us information on the hot and dense state of strongly interacting matter produced in heavy ion collisions. In fact, in the QGP an enhancement of the strange particle production should be present (strangeness enhancement), which means a N$\\phi$ /N$\\rho+\\omega$ ratio increasing in A-A collisions with respect to pp collisions; pp collisions provide a reference for these studies. Vector meson production in pp collisions is also useful by itself, to study soft Quantum ChromoDynamics (QCD) in the LHC energy range, since calculations in this regime are based on QCD inspired phenomenological models that must be tuned to the data. The ALICE experiment at the LHC can access vector mesons produced at forward rapidity through their decays in muon pairs. We will show the ratio $N\\phi$ /N$\\rho+\\omega$ vs pT, the ratios $\\sigma_\\rho/\\sigma_\\omega$ and $\\sigma_\\phi/\\sigma_\\omega$, and the $\\phi$ and $\\omega$ pT and rapidity differential cross sections for the data sam...

  17. Study of the production of nuclei and anti-nuclei at the LHC with the ALICE experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00508690; Bufalino, Stefania

    In the ultra-relativistic lead-lead collisions at the CERN Large Hadron Collider (LHC), a state of matter called Quark Gluon Plasma (QGP) is created. A typical signature of a heavy ion collision (HIC) correlated to the production of the QGP is the large number of particles produced ($\\mathrm{d} N_{\\mathrm{ch}}/\\mathrm{d}\\eta$ up to 2000 in Pb-Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV). This high multiplicity environment poses a tremendous experimental challenge on the experiments that have to cope with the high density of signals in their sensitive volume. A Large Ion Collider Experiment (ALICE) has been designed to deal with the harsh environment of a HIC and to study in details the characteristics of the QGP. Among the particles produced in a HIC, light nuclei and their anti-matter companions are of special interest since the production mechanism of such loosely bound states is not clear in high energy collisions. The production rate at the LHC for the lightest of these objects, the deuteron, is a...

  18. Probing the Quark-Gluon Plasma from bottomonium production at forward rapidity with ALICE at the LHC

    CERN Document Server

    Marchisone, Massimiliano

    The main goal of ultrarelativistic heavy-ion collisions is the study of the properties of the matter at very high temperatures and energy densities. Quantum chromodynamics (QCD) predicts in these conditions the existence of a new phase of the matter whose components are deconfined in a Quark-Gluon Plasma (QGP). Heavy quarks (charm e bottom) are produced in the first stages of the collisions, before to interact with the medium. Therefore, the measurement of the quarkonia (cc and bb mesons) is of particular interest for the study of the QGP: their dissociation mainly due to the colour screening is sensible to the initial temperature of the medium. Previous measurements at the SPS and RHIC allowed to understand some characteristics of the system produced, but they also opened many questions. With an energy 14 times higher than RHIC, the LHC (Large Hadron Collider) at CERN opened a new era for the study of the QGP properties. ALICE (A Large Ion Collider Experiment) is the LHC experiment fully dedicated to the stu...

  19. Identified charged hadron production in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE experiment at the LHC

    CERN Document Server

    Milano, Leonardo; Prino, Francesco; Wessels, Johannes

    Quark Gluon Plasma (QGP) is an unavoidable consequence of Quantum Chromodynamics (QCD). High-energy heavy-ion collisions offer the unique possibility to reproduce in the laboratory the conditions expected during the very first stages of the evolution of the universe. The ALICE (A Large Ion Collider Experiment) experiment at the Large Hadron Collider (LHC) allows the study of the dense nuclear environment created in nucleus-nucleus collisions. Particle Identification (PID) is one of the point of strength of the ALICE experiment. Identified particle spectra represent a crucial tool to understand the behaviour of the matter created in high-energy heavy-ion collisions. The transverse momentum $p_{ m T}$ distributions of identified hadrons contain informations about the transverse expansion of the system and constrain the freeze-out properties of the system. The ALICE Inner Tracking System (ITS) can be used as a standalone tracker with a dedicated tracking algorithm. This allows the reconstruction of particles tha...

  20. Feasibility study for the detection of D0 → K-π+ decays in Pb-Pb collisions at LHC with ALICE

    International Nuclear Information System (INIS)

    Carrer, N; Dainese, A; Turrisi, R

    2003-01-01

    The ALICE experiment at the CERN LHC collider is devoted to the study of heavy-ion collisions at a centre of mass energy of 5.5 TeV per nucleon. The study of open charm production in nucleus-nucleus collisions at the LHC allows investigation of the mechanisms of heavy quark production and energy loss in the hot and dense medium formed in the early stage of the collision. In addition, the open charm production cross section is the natural normalization for the study of J/ψ production. The reconstruction of exclusive hadronic decays of charm particles is the only way to obtain a direct measurement of their transverse momentum distribution. We present the results of a feasibility study for the detection of D 0 → K - π + decays in Pb-Pb collisions with ALICE. (research notes from collaborations)

  1. Improvements of the ALICE HLT data transport framework for LHC Run 2

    Science.gov (United States)

    Rohr, David; Krzwicki, Mikolaj; Engel, Heiko; Lehrbach, Johannes; Lindenstruth, Volker; ALICE Collaboration

    2017-10-01

    The ALICE HLT uses a data transport framework based on the publisher- subscriber message principle, which transparently handles the communication between processing components over the network and between processing components on the same node via shared memory with a zero copy approach. We present an analysis of the performance in terms of maximum achievable data rates and event rates as well as processing capabilities during Run 1 and Run 2. Based on this analysis, we present new optimizations we have developed for ALICE in Run 2. These include support for asynchronous transport via Zero-MQ which enables loops in the reconstruction chain graph and which is used to ship QA histograms to DQM. We have added asynchronous processing capabilities in order to support long-running tasks besides the event-synchronous reconstruction tasks in normal HLT operation. These asynchronous components run in an isolated process such that the HLT as a whole is resilient even to fatal errors in these asynchronous components. In this way, we can ensure that new developments cannot break data taking. On top of that, we have tuned the processing chain to cope with the higher event and data rates expected from the new TPC readout electronics (RCU2) and we have improved the configuration procedure and the startup time in order to increase the time where ALICE can take physics data. We analyze the maximum achievable data processing rates taking into account processing capabilities of CPUs and GPUs, buffer sizes, network bandwidth, the incoming links from the detectors, and the outgoing links to data acquisition.

  2. Production of light (anti-)nuclei and (anti-)hypernuclei with ALICE at the LHC

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The measurements in smaller collision systems may also provide an input to cosmological searches for segregated primordial anti-matter and dark matter, since anti-nuclei produced in pp and p--A collisions in interstellar space represent a background source in these measurements. Thanks to its excellent particle identification and tracking capabilities, the ALICE detector allows for the measurement of deuterons, tritons, 3He, 4He and their corresponding anti-nuclei. Moreover, the secondary vertices from the mesonic decays of (anti-)hypernuclei can ...

  3. High $p_T$ particle correlations in pp collisions at LHC/ALICE

    CERN Document Server

    Mao, Yaxian

    2011-01-01

    Two-particle correlation triggered by high-\\pt{} particles allows us to study hard scattering phenomena when full jet reconstruction is challenging. An analysis of the first ALICE pp data where charged and neutral particles isolated or not are used as trigger particles is presented. The two-particle correlation between the trigger ($t$) and the associate ($a$) particles is studied as a function of the imbalance parameter \\xe=-$\\vec{p}_{T_{a}} \\cdot \\vec{p}_{T_{t}}/\\mid \\vec{p}_{T_{t}}\\mid ^{2}$ and interpreted in terms of jet fragmentation function.

  4. Neutral meson production in pp and Pb-Pb collisions at the LHC with ALICE

    International Nuclear Information System (INIS)

    Borissov, Alexander

    2013-01-01

    The first measurements of the invariant differential cross sections of inclusive π 0 and η meson production with ALICE are presented for pp collisions at √(s) = 0.9 and 7 TeV. Next-to-Leading Order perturbative QCD calculations overestimate the data at √(s) = 7TeV, but are consistent with the π 0 spectrum at √(s) = 0.9TeV and with the measured π 0 /η cross section ratio at √(s) = 7TeV. The nuclear modification factors (R AA ) of π 0 production at different centralities show a strong suppression with respect to pp collisions.

  5. La physique des (di)muons dans ALICE au LHC : analyse en collisions pp $\\sqrt{s}$ = 7 TeV) et Pb-Pb ($\\sqrt{s_NN}$ = 2.76 TeV) des résonances de basses masses ($\\rho, \\omega, \\phi$) et étude d'un trajectographe en pixels de Silicium dans l'ouverture du spectromètre

    CERN Document Server

    Massacrier, Laure; Tieulent, Raphaël

    ALICE experiment at LHC studies the Quark Gluon Plasma (QGP), a particular state of matter where quarks and gluons are deconfined. A probe to explore this state is the study of several resonances ($\\rho$, $\\omega$, $\\phi$, J/$\\psi$ and $\\Upsilon$) through their dimuon decay channel, with a muon spectrometer covering pseudo-rapidity -4 < $\\eta$ < -2.5. In the first part of this thesis, the focus is on light vector mesons ($\\rho$, $\\omega$ and $\\phi$) and their analysis in the 2010 data, in pp collisions at $\\sqrt{s}$ = 7 TeV and Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV. Light vector mesons are powerful tools to probe the QGP due to their short lifetime and their dimuon decay channel. Indeed, leptons have negligible final state interactions. Production rates and spectral functions of those mesons are modified by the hot hadronic and QGP medium. Chiral symmetry restoration study is done thanks to the study of $\\rho$ spectral function. Strangeness enhancement is accessed via the ratio of $\\phi$ over $...

  6. Gamma-hadrons and hadrons-hadrons correlation measurements in p-p collisions at 7 TeV to study jet fragmentation with ALICE at LHC

    International Nuclear Information System (INIS)

    Mao, Y.

    2011-06-01

    The ALICE experiment, which uses the ultra-relativistic heavy-ions collisions produced by the LHC at CERN, is dedicated to the study of a new state of nuclear matter, which could be composed of a Quark-Gluon Plasma (QGP). Among the probes sharing information on the medium properties, those relative to the production of high transverse momentum jets are very interesting. The analysis presented in this thesis is focused on photon-jet events, which contain one photon of high transverse momentum and one jet emitted in the opposite direction. The jet comes from the fragmentation of the initial parton, after passing through the medium. The thesis includes a simulation study of the relevant observables for the photon-hadron correlation measurement and an analysis of first data from LHC in proton-proton collisions. Preliminary results on the transverse momentum of incident partons and on the correlation function have been obtained. The layout of the thesis is as follows. In chapter 2 the author reviews the scientific background of heavy ion physics, where the experimental observables exploited so far in different experiments are listed. Jets and 2-particle correlations are described in chapter 3. The experimental apparatus of the ALICE experiment at LHC is introduced in chapter 4. In chapter 5 the approach for a feasibility study with ALICE detectors from Monte-Carlo data is fully validated, then the 2 particle correlations with γ/π 0 triggers measured by ALICE within the data collected in 2010 at the first year LHC run is presented in chapter 6. (author)

  7. Performance of the Alice muon spectrometer. Weak boson production and measurement in heavy-ion collisions at LHC

    International Nuclear Information System (INIS)

    Conesa del valle, Z.

    2007-07-01

    Lattice QCD predicts a transition from a hadronic phase to a Quark Gluon Plasma phase, QGP, for temperatures above 10 13 K. Heavy-ion collisions are proposed to recreate it in laboratory. With such a purpose, the LHC (Large Hadron Collider) will provide Pb-Pb collisions at 5.5 TeV/u, and the ALICE experiment will permit to explore them. In particular, the ALICE muon spectrometer will permit to investigate the muon related probes (quarkonia, open beauty,...). The expected apparatus performances to measure muons and dimuons are discussed. A factorization technique is employed to unravel the different contributions to the global efficiency. Results indicate that the detector should be able to measure muons up to pT ∼ 100 GeV/c with a resolution of about 10 per cent. We show that weak bosons production could be measured for the first time in heavy-ion collisions. Single muon p T and dimuons invariant mass distributions will probe W and Z production. As mainly muons from b- and c-quarks decays will populate the intermediate-p T of 5 - 25 GeV/c, heavy quark in-medium energy loss calculations indicate that the single muon spectra would be suppressed by a factor 2-4 in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. However, for p T > 35 GeV/c the weak boson decays are predominant, and no suppression is expected. Estimations indicate that the b- and W-muons crossing point shifts down in transverse momenta by 5 to 7 GeV/c in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. (author)

  8. Study of heavy flavours from muons measured with the ALICE detector in proton-proton and heavy-ion collisions at the CERN-LHC

    International Nuclear Information System (INIS)

    Zhang, X.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is the experiment dedicated to the study of heavy-ion collisions at the LHC. ALICE also takes part in the LHC proton- proton program which is of great interest for testing perturbative QCD calculations at unprecedented low Bjorken-x values and for providing the necessary baseline for nucleus-nucleus and proton-nucleus collisions. ALICE will also collect, in the beginning of 2013, p-Pb/Pb-p collisions in order to investigate cold nuclear matter effects. ALICE measures quarkonia and open heavy flavours with (di)-electrons, (di)-muons and through the hadronic channels. This thesis work is devoted to the study of open heavy flavours in proton-proton and Pb-Pb collisions via single muons with the ALICE forward muon spectrometer. The document is organized as follows. The first chapter consists in a general introduction on heavy-ion collisions and QCD phase transitions. Chapter 2 summarizes the motivations for the study of open heavy flavours in nucleon-nucleon, nucleon-nucleus and nucleus-nucleus collisions. Chapter 3 gives an overview of the ALICE experiment with a detailed description of the forward muon spectrometer. Chapter 4 gives a short summary of the ALICE online and offline systems. Then the analysis framework (for data and simulations) and in particular the software developed for the study of open heavy flavours is detailed. Chapter 5 summarizes the performance of the ALICE muon spectrometer for the study of the production of open heavy flavours in pp collisions via single muons and dimuons. Chapters 6 to 9 are dedicated to data analysis. Chapter 6 deals with the analysis of first pp collisions at 900 GeV. The main aim was the understanding of the response of the apparatus. Chapter 7 presents the measurement of the production of heavy flavour decay muons in pp collisions at √(s) = 7 TeV. The analysis strategy is described: event and track selection, background subtraction (mainly the contribution of muons from primary

  9. Study of dimuon spectrometer tracking chambers of the ALICE experiment at LHC; Etude des chambres de trajectoire du spectrometre dimuons de l'experience ALICE aupres du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kharmandarian, Liliane [Institut de Physique Nucleaire, CNRS - IN2P3, Universite Paris - Sud, 91406 Orsay Cedex (France)

    1999-12-16

    The ALICE (A Large Ion Collider Experiment) experiment will study ultrarelativistic heavy ion collisions at the Large Hadron Collider (LHC) in CERN as of 2005. An extensive R and D programme has been carried out on the dimuon spectrometer tracking chambers at the Nuclear Physics Institute in Orsay. Three multiwire proportional chamber prototypes with segmented cathodes, including a full-scale 1 m{sup 2} version, were constructed. In this thesis, the experimental tests are presented along with the simulations used to understand and optimize the detectors' performances. The prototypes were tested several times at the PS and SPS accelerators. The aims were to validate the choices made in terms of mechanical construction, geometrical parameters, gas mixture and read-out electronics. Analysis of the large amount of data collected has shown that the performances of this type of detector fulfill the required specifications. The results concerning the detectors' characteristics, spatial resolution efficiency, gain and homogeneity are given. Spatial resolutions of less than thirty microns were obtained. In parallel with the in-beam tests, several simulations have been developed in order to gain a better understanding of the detectors' response. They allowed, in particular, to define the segmentation of the cathode plane, to study the position reconstruction algorithm and to establish the future electronics specifications. (author)

  10. First results from ALICE on anisotropic flow at Run 2 at LHC

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The goal of studies with relativistic heavy-ion collisions is to investigate the Quark-Gluon Plasma (QGP), a state of matter where quarks and gluons move freely over distances large in comparison to the typical size of a hadron. The exploration of QGP properties has broken new ground with the recent heavy-ion collisions from Run 2 operations at Large Hadron Collider, at the highest energies to date. The ALICE Collaboration has made the first observation of anisotropic flow of charged particles in lead-lead collisions at the record breaking energy of 5.02 TeV per nucleon pair. The talk presents these new results and discusses how they further enlighten the properties of matter produced in ultrarelativistic nuclear collisions.

  11. Neutral meson production in pp and Pb-Pb collisions at the LHC with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Borissov, Alexander [Wayne State University, Detroit, MI, United States and European Organization for Nuclear Research (CERN), Geneva (Switzerland); Collaboration: ALICE Collaboration

    2013-04-15

    The first measurements of the invariant differential cross sections of inclusive {pi}{sup 0} and {eta} meson production with ALICE are presented for pp collisions at {radical}(s) = 0.9 and 7 TeV. Next-to-Leading Order perturbative QCD calculations overestimate the data at {radical}(s) = 7TeV, but are consistent with the {pi}{sup 0} spectrum at {radical}(s) = 0.9TeV and with the measured {pi}{sup 0}/{eta} cross section ratio at {radical}(s) = 7TeV. The nuclear modification factors (R{sub AA}) of {pi}{sup 0} production at different centralities show a strong suppression with respect to pp collisions.

  12. Jet fragmentation properties in proton-proton and Pb-Pb collisions with ALICE at the LHC

    International Nuclear Information System (INIS)

    Leon Vargas, Hermes

    2012-01-01

    The subject of this thesis is the characterization of jets produced by hadron collisions with ALICE at the LHC. The thesis can be divided into three sections. The first section presents the analysis of two jet observables measured in proton-proton collisions at √(s) = 7 TeV. The two jet observables that are used through this work are NT90 and the Second Central Moment of the Jet Profile (SCMJP). NT90 was proposed by J. Pumplin as an observable that could be used to discriminate quark from gluon jets using segmented calorimeters. The second section of the thesis is dedicated as well to the study of the charged jet fragmentation from proton-proton collisions at √(s) = 7 TeV but with a different objective. The goal of this second analysis was to study the dependence of the jet properties on the multiplicity of the event. The last section of the thesis presents the first study of charged jets from Pb-Pb collisions using the NT90 observable. In the thesis it is discussed that in order to decrease the background contamination in the observable it is better to use a harder part of the charged jet that it is more separated in transverse momentum from the bulk of the event, thus it was decided to use NT80 instead of NT90.

  13. Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahn, Sul-Ah; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Wisla; Carena, Francesco; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Kushal; Das, Indranil; Das, Debasish; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Mihaela; Gheata, Andrei George; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Ramni; Gupta, Anik; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Vladimir; Ivanov, Marian; Ivanov, Andrey; Ivanytskyi, Oleksii; Jacobs, Peter; Jang, Haeng Jin; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Shuaib Ahmad; Khan, Palash; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Minwoo; Kim, Se Yong; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Taesoo; Kim, Mimae; Kim, Beomkyu; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Kravcakova, Adela; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Vasily; Kushpil, Svetlana; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Le Bornec, Yves; Lechman, Mateusz; Lee, Ki Sang; Lee, Sung Chul; Lee, Graham Richard; Lefevre, Frederic; Lehnert, Joerg Walter; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Vladimir; Nikulin, Sergey; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Pastircak, Blahoslav; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Hans Rudolf; Schmidt, Christian Joachim; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca; Segato, Gianfranco; Selioujenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Sharma, Rohini; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Leonid; Vinogradov, Alexander; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; vrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Mengliang; Wang, Dong; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Shiming; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Haitao; Zhou, You; Zhou, Fengchu; Zhou, Daicui; Zhu, Jianlin; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-01

    Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass $M_X 3$) $\\sigma_{\\rm DD}/\\sigma_{\\rm INEL} = 0.11 \\pm 0.03, 0.12 \\pm 0.05$, and $0.12^{+0.05}_{-0.04}$, respectively at $\\sqrt{s} = 0.9, 2.76$, and 7 TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: $\\sigma_{\\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \\pm 1.2 (lumi)$ mb at $\\sqrt{s} =$ 2.76 TeV and $73.2^{+2.0}_{-4.6} (model) \\pm 2.6 (lumi)$ mb at $\\sqrt{s}$ = 7 TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared t...

  14. Quarkonium in ALICE: results on p-Pb and Pb-Pb collisions from LHC Run 2

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In 1986, the modification of quarkonium production was first proposed as a signature of the formation of a Quark Gluon Plasma. While the central role of quarkonium in the understanding of the QGP is indisputable, the direct link between the expected sequential suppression, in a very hot medium, and the experimental observations is not yet completely settled. Several other mechanisms, related to either the formation of a hot medium, such as quarkonium regeneration, or to the presence of cold nuclear matter, are well-known key effects in the interpretation of the results. This talk reviews very recent LHC Run 2 results obtained with the ALICE detector, which is designed to study quarkonium in two rapidity ranges,  at mid-rapidity ($|y|<0.9$) in the dielectron decay channel and at forward rapidity ($2.5

  15. Fragmentation of jets into hadrons with strangeness in Pb-Pb collisions in ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Alice [Physikalisches Institut Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    The research programme of the ALICE experiment at the LHC focuses on the so-called Quark-Gluon Plasma, a state of matter where quarks and gluons are deconfined. The measurement of particle jets from fragmentation of hard scatterings of partons in the colliding nuclei allows to study parton energy loss in the hot and dense medium and constrains the modelling of such a phenomenon. By measuring yields of particles like K{sup 0}{sub s}, Λ and anti Λ of low to intermediate momenta within jet cones, fragmentation into strange hadrons, as well as the baryon-meson ratio in jets can be studied. In this contribution we present first results on K{sup 0}{sub s}, Λ and anti Λ production in jets in Pb-Pb collisions at √(s{sub NN}) = 2.76 TeV. The analysis is further performed in different centrality classes, representing collisions with different impact parameters. The strangeness identified fragmentation distributions are compared to first results on inclusive fragmentation in Pb-Pb collisions.

  16. Measurement of the production cross-section of heavy hadrons with the muon spectrometer of the ALICE detector at LHC

    International Nuclear Information System (INIS)

    Manceau, L.

    2010-10-01

    Lattice quantum chromodynamics calculations predict a transition from the phase of hadronic matter to quark and gluon plasma for a temperature T ∼ 173 MeV and a vanishing baryonic potential. Ultra-relativistic heavy ion collisions allow to highlight this phase transition. Heavy flavours can be used to probe the first instants of the collisions where the temperature is the highest. The LHC will provide proton-proton and lead-lead collisions at unprecedented large energy (√(s) = 14 TeV and √(s NN ) 5.5 TeV respectively). The ALICE detector is dedicated to heavy ion collisions but it can also measure proton-proton collisions. The detector includes a muon spectrometer. The spectrometer has been designed to measure heavy flavours. This work presents the performance of the spectrometer to measure beauty hadrons (B) and charmed hadrons (D) inclusive production cross-section in proton-proton collisions. The first step of the measurement consists in extracting heavy hadron decayed muon distributions. The next step consists in extrapolating these distributions to heavy hadrons inclusive production cross-section. This work also presents a preliminary study of the performance of the spectrometer for the measurement of the nuclear modification factor and the associated observable named R B/D in 0-10% central heavy ions collisions. Uncertainties and transverse impulsion range of extraction of the observables have been investigated. (author)

  17. Multi-strange production of baryons at the LHC in proton-proton collisions with the ALICE experiment

    International Nuclear Information System (INIS)

    Maire, A.

    2011-01-01

    Strange quarks define a valuable probe for the understanding of quantum chromodynamics. The present PhD work falls within this scope; it deals with the study of multi-strange baryons Ξ - (dss) and Ω - (sss) in the proton-proton collisions (pp) at the LHC. The analyses make use of the ALICE experiment and are performed at central rapidities (|y| ∼ 0) and low transverse momentum (p T 2 N/dp T dy = f(p T ). At √(s) = 0.9 TeV, the production of (Ξ - +Ξ-bar + ) in the inelastic pp interactions is derived from a small statistics of events. At √(s) = 7 TeV, the large quantity of available data allows the measurement of production rates for each of the four species: Ξ - , Ξ-bar + , Ω - , and Ω-bar + . At both energies, experimental data spectra are compared to spectra as produced by different benchmark phenomenological models (PYTHIA and PHOJET). The comparison shows an unequivocal underestimate of the spectra by the Monte Carlo generators in their current versions (up to a factor ∼ 4 for Ξ, ∼ 15 for Ω). Furthermore, an analysis of azimuthal correlations (Ξ ± - h ± ) is led at intermediate p T (2 ± rises, the emission of the latter is preferentially done in correlation with jets. (author)

  18. ALICE brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  19. ALICE brochure (French version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  20. ALICE brochure (Danish version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  1. ALICE brochure (English version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  2. ALICE brochure (English version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  3. ALICE brochure (Italian version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  4. ALICE brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  5. ALICE brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ALICE will study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  6. ALICE brochure (English version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    ALICE is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which started up in 2008. ALICE studies the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe.

  7. The experiments ALICE

    CERN Document Server

    Fabjan, Christian

    2009-01-01

    This article documents the main design choices and the close to 20 years of preparation, detector R&D, construction and installation of ALICE, the dedicated heavy ion experiment at the CERN LHC accelerator.

  8. ALICE HMPID RICH

    CERN Multimedia

    2003-01-01

    Particle identification plays a key role in the complete understanding of heavy-ion collisions in ALICE at the LHC. . The CsI Photodetector . The Radiator . The Front-End Electronics . Detector performance

  9. Étude de la production de saveurs lourdes et de la multiplicité de particules chargées dans le cadre du formalisme du Color Glass Condensate pour les collisions p+p et p+Pb dans l'expérience ALICE au LHC

    CERN Document Server

    Malek, M

    The classical nuclear matter is characterized by an energy density of the order of " = 0.17 GeV/fm3. For the critical values of the energy density (5 -10 ") or the temperature (150 - 200 MeV), the Lattice QuantumChromo Dynamics (LQCD) calculations predict a phase transition from the classical to a new form of nuclear matter called the Quark Gluon Plasma (QGP) in which quarks and gluons are deconfined. Heavy ion collisions allow to create the thermodynamical conditions needed for the QGP formation. The LHC will collide p+p and Pb+Pb nuclei at ultrarelativistic energies, reaching a few TeV per nucleon. At such ultra-relativistic energies, new theoretical approaches of QCD developed to understand high energy hadronic collisions can be tested experimentally. One of the most discussed topic is the Color Glass Condensate (CGC) approach allowing the description of the initial conditions of the heavy ion collision. The CGC approach predicts the saturation of the parton density of the nucleus for small values of the B...

  10. D-meson measurements in Pb-Pb collisions with the ALICE detector at the LHC

    CERN Document Server

    Bala, Renu

    2017-01-01

    Heavy quarks (charm and beauty) are effective probes to investigate the properties of the hot and dense strongly-interacting medium created in heavy-ion collisions as they are produced in partonic scattering processes occurring in the early stages of the collision. Due to their long life time, they probe all the stages of the medium evolution and they interact with its constituents, losing energy via gluon radiation and elastic collisions. The measurement of the D-meson nuclear modification factor provides a key test of parton energy-loss models. These models predict that beauty quarks lose less energy than charm quarks and the latter experience less in-medium energy loss than light quarks and gluons. D-meson production was measured with ALICE in Pb–Pb collisions at √ s NN = 2.76 TeV. D mesons were reconstructed via their hadronic decays at central rapidity. We will discuss the latest results of the measurement of the D-meson nuclear modification factor as a function of transverse momentum ( p T ) and col...

  11. Study and outlook of Dimuon spectrometer of ALICE experiment at LHC

    International Nuclear Information System (INIS)

    1997-01-01

    The Dimuon spectrometer and its functional integration in the ALICE experiment, planned to work by the Large Hadron Collider at CERN, is briefly presented. The detection assembly consists of a hadron absorber placed near the interaction location, followed by a large dipole superconducting magnet of 4 m aperture and 3 T.m field integral for muon analysis in the rapidity range 2 to 4. The muon tracking is ensured by 5 detection stations bunching 1 million electronic paths on a total detection area of about 100 m 2 . The muon trigger system consists of 4 detection levels ensuring a 10 3 rejection of the incident hadrons. SUBATECH is implied in the tracking and trigger domains of the project. The tracking parameters, relating to spatial resolution, chamber efficiency, magnetic field integral, homogeneity, absorber composition, etc., were optimized in the laboratory. This technical effort was followed by further development of tracking chambers of the spectrometer, based on the MICROMEGAS (MICRO-MEsh-GAseous Structure) detector, conceived by G.Charpak, characterized by its fast response (200 ns) and high position resolution (σ = 100 μm). Larger detectors, with areas of the order of 1 m 2 , as well as, the optimization of readout electronics and associated data acquisition systems are the current preoccupations of a group of 3 physicists and 4 engineers and technicians. A second level muon trigger system was designed to obtain the invariant mass reconstruction for all the muons pairs that cross the first level Pt threshold. After a number of preparing simulations of the trigger system the design of the second level trigger electronics is now to be realized. This work is carried out by two assistant researchers, a post-doctoral researcher and an engineer

  12. Direct photon production in Pb-Pb collisions at the LHC with the ALICE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Friederike [Physikalisches Institut, Heidelberg University (Germany); Lawrence Berkeley National Laboratory, Berkeley (United States)

    2015-07-01

    Unlike hadrons, direct photons are produced in all stages of a nucleus-nucleus collision and therefore test our understanding of the space-time evolution of the produced medium. Of particular interest are so-called thermal photons expected to be produced in a quark-gluon plasma and the subsequent hadron gas. The transverse momentum spectrum of thermal photons carries information about the temperature of the emitting medium. In this presentation, direct-photon spectra from Pb-Pb collisions at √(s{sub NN}) = 2.76 TeV and p-Pb collisions at √(s{sub NN}) = 5.02 TeV are shown. The results were obtained by measuring e{sup +}e{sup -} pairs from external conversions of photons in the detector material. The measured direct-photon spectra are compared with predictions from state-of-the-art hydrodynamic models. In the standard hydrodynamical modeling of nucleus-nucleus collisions, thermal photons mostly come from the early hot stage of the collision. As collective hydrodynamic flow needs time to build up, the azimuthal anisotropy of thermal photons quantified with the Fourier coefficient v{sub 2} is expected to be smaller than the one for hadrons. However, the PHENIX experiment and ALICE experiment observed v{sub 2} values of direct-photons similar in magnitude to the pion v{sub 2}. We present the inclusive photon v{sub 2} and v{sub 3} in Pb-Pb collisions at √(s{sub NN}) = 2.76 TeV and discuss implications for the v{sub 2} and v{sub 3} of direct-photons.

  13. A large area CsI RICH Detector in ALICE at LHC

    CERN Document Server

    Di Bari, D; Davenport, Martyn; Di Mauro, A; Elia, D; Ghidini, B; Grimaldi, A; Martinengo, P; Monno, E; Morsch, Andreas; Nappi, E; Paic, G; Piuz, François; Posa, F; Santiard, Jean-Claude; Stucchi, S; Tomasicchio, G; Williams, T D

    1999-01-01

    A 1m2 CsI RICH prototype has been successfully tested in a hadron beam at CERN SPS. The prototype, fully equipped with 15k electronic channels, has been used to identify particles coming from pi-Be interactions. Track reconstruction has been performed by using a telescope consisting of four gas pad chambers. A detailed description of the detector will be presented and results from the test will be discussed.List of figuresFigure 1 Expected proton and antiproton yields including jet quenching mechanism in central Pb-Pb collisions at LHC.Figure 2 Schematic view of the HMPID CsI-RICHFigure 3 Experimental layout used at the SPS/H4 test beamFigure 4 Distributions of the mean number, per ring, of pad hits (Npad), electrons (Ntot) and Cherenkov photoelectrons (Nres) as a function of the single-electron mean pulse heightFigure 5 Mean single-electron pulse height as a function of high voltage measured at the centre of each of the four photocathodesFigure 6 Evaluation of the uniformity of the chamber gain for the photo...

  14. Transverse momentum spectra of charged particles in proton-proton collisions at $\\sqrt{s}$ = 900 GeV with ALICE at the LHC

    CERN Document Server

    Aamodt, K; Abeysekara, U; Abrahantes Quintana, A; Abramyan, A; Adamov, D; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Aguilar Salazar, S; Ahammed, Z; Ahmad, A; Ahmad, N; Ahn, S U; Akimoto, R; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Almarz Avia, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Andrei, C; Andronic, A; Anelli, G; Angelov, V; Anson, C; Anticic, T; Antinori, F; Antinori, S; Antipin, K; Antonczyk, D; Antonioli, P; Anzo, A; Aphecetche, L; Appelshuser, H; Arcelli, S; Arceo, R; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; AverbecK, R; Awes, T C; yst, J; Azmi, M D; Bablok, S; Bach, M; Badal, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baldit, A; Bn, J; Barbera, R; Barnafldi, G G; Barnby, L S; Barret, V; Bartke, J; Barile, F; Basile, M; Basmanov, V; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Becker, B; Belikov, I; Bellwied, R; Belmont-Moreno, E; Belogianni, A; Benhabib, L; Beole, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchi, N; Bianchin, C; Bielck, J; Bielckov, J; Bilandzic, A; Bimbot, L; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Bggild, H; Bogolyubsky, M; Bohm, J; Boldizsr, L; Bombara, M; Bombonati, C; Bondila, M; Borel, H; Borisov, A; Bortolin, C; Bose, S; Bosisio, L; Boss, F; Botje, M; Bttger, S; Bourdaud, G; Boyer, B; Braun, M; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Bruckner, G; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo, E; Camacho, E; Camerini, P; Campbell, M; Canoa Roman, V; Capitani, G P; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Daz, A; Caselle, M; Castillo Castellanos, J; Castillo Hernandez, J F; Catanescu, V; Cattaruzza, E; Cavicchioli, C; Cerello, P; Chambert, V; Chang, B; Chapeland, S; Charpy, A; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Choi, K; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chuman, F; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Cobanoglu, O; Coffin, J P; Coli, S; Colla, A; Conesa Balbastre, G; Conesa del Valle, Z; Conner, E S; Constantin, P; Contin, G; Contreras, J G; Corrales Morales, Y; Cormier, T M; Cortese, P; Corts Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; Cussonneau, J; Dainese, A; Dalsgaard, H H; Danu, A; Das, I; Dash, A; Dash, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gaspari, M; de Groot, J; De Gruttola, D; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; de Vaux, G; Delagrange, H; Delgado, Y; Dellacasa, G; Deloff, A; Demanov, V; Dnes, E; Deppman, A; D'Erasmo, G; Derkach, D; Devaux, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dialinas, M; Daz, L; Daz, R; Dietel, T; Divi, R; Djuvsland,; Dobretsov, V; Dobrin, A; Dobrowolski, T; Dnigus, B; Domnguez, I; Dordic, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Enokizono, A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fateev, O; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernndez Tllez, A; Ferreiro, E G; Ferretti, A; Ferretti, R; Figueredo, M A S; Filchagin, S; Fini, R; Fionda, F M; Fiore, E M; Floris, M; Fodor, Z; Foertsch, S; Foka, P; Fokin, S; Formenti, F; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Frolov, A; Fuchs, U; Furano, F; Furget, C; Fusco Girard, M; Gaardhje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Ganoti, P; Ganti, M S; Garabatos, C; Garca Trapaga, C; Gebelein, J; Gemme, R; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glasow, R; Glssel, P; Glenn, A; Gomez Jimnez, R; Gonzlez Santos, H; Gonzlez-Trueba, L H; Gonzlez-Zamora, P; Gorbunov, S; Gorbunov, Y; Gotovac, S; Gottschlag, H; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J Y; Grosso, R; Guber, F; Guernane, R; Guerra, C; Guerzoni, B; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Gustafsson, H A; Gutbrod, H; Haaland,; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamblen, J; Han, B H; Harris, J W; Hartig, M; Harutyunyan, A; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernndez, C; Herrera Corral, G; Herrmann, N; Hetland, K F; Hicks, B; Hiei, A; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hrivncov, I; Hu, S; Huang, M; Huber, S; Humanic, T J; Hutter, D; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Iwasaki, T; Jachokowski, A; Jacobs, P; Jancurov, L; Jangal, S; Janik, R; Jena, C; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanovic, P; Jung, H; Jung, W; Jusko, A; Kaidalov, A B; Kalcher, S; Kalink, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kamal, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kapitan, J; Kaplin, V; Kapusta, S; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kikola, D; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J; Kim, J H; Kim, J S; Kim, M; Kim, M; Kim, S H; Kim, S; Kim, Y; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bsing, C; Kliemant, M; Klovning, A; Kluge, A; Knichel, M L; Kniege, S; Koch, K; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornas, E; Kour, R; Kowalski, M; Kox, S; Kozlov, K; Kral, J; Krlik, I; Kramer, F; Kraus, I; Kravckov, A; Krawutschke, T; Krivda, M; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kumar, L; Kumar, N; Kupczak, R; Kurashvili, P; Kurepin, A; Kurepin, A N; Kuryakin, A; Kushpil, S; Kushpil, V; Kutouski, M; Kvaerno, H; Kweon, M J; Kwon, Y; La Rocca, P; Lackner, F; Ladron de Guevara, P; Lafage, V; Lal, C; Lara, Camilo; Larsen, D T; Laurenti, G; Lazzeroni, C; Le Bornec, Y; Le Bris, N; Lee, H; Lee, K S; Lee, S C; Lefvre, F; Lenhardt, M; Leistam, L; Lehnert, J; Lenti, V; Leon, H; Leon Monzon, I; Leon Vargas, H; Lvai, P; Li, X; Li, Y; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loginov, V; Lohn, S; Lopez, X; Lopez Noriega, M; Lopez-Ramrez, R; Lopez Torres, E; Lvhiden, G; Lozea Feijo Soares, A; Lu, S; Luettig, P; Lunardon, M; Luparello, G; Luquin, L; Lutz, J R; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Makhlyueva, I; Mal'Kevich, D; Malaev, M; Malagalage, K J; Maldonado Cervantes, I; Malek, M; Malkiewicz, T; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mares, J; Margagliotti, G V; Margotti, A; Marn, A; Martashvili, I; Martinengo, P; Martnez Hernndez, M I; Martnez Davalos, A; Martnez Garca, G; Maruyama, Y; Marzari Chiesa, A; Masciocchi, S; Masera, M; Masetti, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mendez Lorenzo, P; Meoni, M; Mercado Prez, J; Mereu, P; Miake, Y; Michalon, A; Miftakhov, N; Milano, L; Milosevic, J; Minafra, F; Mischke, A; Miskowiec, D; Mitu, C; Mizoguchi, K; Mlynarz, J; Mohanty, B; Molnar, L; Mondal, M M; Montao Zetina, L; Monteno, M; Montes, E; Morando, M; Moretto, S; Morsch, A; Moukhanova, T; Muccifora, V; Mudnic, E; Muhuri, S; Mller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nianine, A; Nicassio, M; Nielsen, B S; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyatha, A; Nygaard, C; Nyiri, A; Nystrand, J; Ochirov, A; Odyniec, G; Oeschler, H; Oinonen, M; Okada, K; Okada, Y; Oldenburg, M; Oleniacz, J; Oppedisano, C; Orsini, F; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Osmic, F; sterman, L; Ostrowski, P; Otterlund, I; Otwinowski, J; Øvrebekk, G; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paic, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Panse, R; Papikyan, V; Pappalardo, G S; Park, W J; Pastirck, B; Pastore, C; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pepato, A; Pereira, H; Peressounko, D; Prez, C; Perini, D; Perrino, D; Peryt, W; Peschek, J; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petrcek, V; Petridis, A; Petris, M; Petrov, P; Petrovici, M; Petta, C; Peyr, J; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Platt, R; Ploskon, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta Lerma, P L M; Poggio, F; Poghosyan, M.G.; Polk, K; Polichtchouk, B; Polozov, P; Polyakov, V; Pommeresch, B; Pop, A; Posa, F; Pospsil, V; Potukuchi, B; Pouthas, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pujahari, P; Pulvirenti, A; Punin, A; Punin, V; Putis, M; Putschke, J; Quercigh, E; Rachevski, A; Rademakers, A; Radomski, S; Rih, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramrez Reyes, A; Rammler, M; Raniwala, R; Raniwala, S; Rsnen, S S; Rashevskaya, I; Rath, S; Read, K F; Real, J S; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodriguez Cahuantzi, M; Red, K; Rhrich, D; Romn Lopez, S; Romita, R; Ronchetti, F; Rosinsk, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Rubio-Montero, A J; Rui, R; Rusanov, I; Russo, G; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safark, K; Sahoo, R; Saini, J; Saiz, P; Sakata, D; Salgado, C A; Salgueiro Domingues da Silva, R; Salur, S; Samanta, T; Sambyal, S; Samsonov, V; Sndor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schindler, H; Schmidt, C; Schmidt, H R; Schossmaier, K; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Segato, G; Semenov, D; Senyukov, S; Seo, J; Serci, S; Serkin, L; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharkov, G; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddi, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simili, E; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Snow, H; Sgaard, C; Soloviev, A; Soltveit, H K; Soltz, R; Sommer, W; Son, C W; Son, H; Song, M; Soos, C; Soramel, F; Soyk, D; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Staley, F; Stan, E; Stefanek, G; Stefanini, G; Steinbeck, T; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stolpovsky, P; Strmen, P; Suaide, A A P; Subieta Vsquez, M A; Sugitate, T; Suire, C; Sumbera, M; Susa, T; Swoboda, D; Symons, J; Szanto de Toledo, A; Szarka, I; Szostak, A; Szuba, M; Tadel, M; Tagridis, C; Takahara, A; Takahashi, J; Tanabe, R; Tapia Takaki, J D; Taureg, H; Tauro, A; Tavlet, M; Tejeda Muoz, G; Telesca, A; Terrevoli, C; Thader, J; Tieulent, R; Tlusty, D; Toia, A; Tolyhy, T; Torcato de Matos, C; Torii, H; Torralba, G; Toscano, L; Tosello, F; Tournaire, A; Traczyk, T; Tribedy, P; Trger, G; Truesdale, D; Trzaska, W H; Tsiledakis, G; Tsilis, E; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A; Tveter, T S; Tydesj, H; Tywoniuk, K; Ulery, J; Ullaland, K; Uras, A; Urbn, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasiliev, A; Vassiliev, I; Vasileiou, M; Vechernin, V; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vetlitskiy, I; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopianov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Vrlkov, J; Vulpescu, B; Wagner, B; Wagner, V; Wallet, L; Wan, R; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Wen, Q; Wessels, J; Westerhoff, U; Wiechula, J; Wikne, J; Wilk, A; Wilk, G; Williams, M C S; Willis, N; Windelband, B; Xu, C; Yang, C; Yang, H; Yasnopolskiy, S; Yermia, F; Yi, J; Yin, Z; Yokoyama, H; Yoo, I K; Yuan, X; Yurevich, V; Yushmanov, I; Zabrodin, E; Zagreev, B; Zalite, A; Zampolli, C; Zanevsky, Yu; Zaporozhets, S; Zarochentsev, A; Zvada, P; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zepeda, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zhou, S; Zhu, J; Zichichi, A; Zinchenko, A; Zinovjev, G; Zoccarato, Y; Zychcek, V; Zynovyev, M

    2010-01-01

    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at $\\sqrt{s} = 900$~GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region $(|\\eta|_{\\rm INEL}=0.483\\pm0.001$~(stat.)~$\\pm0.007$~(syst.)~GeV/$c$ and $\\left_{\\rm NSD}=0.489\\pm0.001$~(stat.)~$\\pm0.007$~(syst.)~GeV/$c$, respectively. The data exhibit a slightly larger $\\left$ than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.

  15. J/ψ production in Pb-Pb collisions with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Book, Julian

    2014-07-01

    In this thesis various observables for c anti c coalescence into J/ψ have been analyzed in order to understand the interplay of J/ψ dissociation and recombination in the formed medium. In the presented work, we first have investigated the nuclear modification of J/ψ production with respect to nucleon-nucleon interactions. Clearly less J/ψ suppression for the most central nucleus-nucleus collisions is observed at LHC energies than in lower energy measurements. Also no strong centrality dependence of the R{sub AA} for the 90% most central collisions has been found. Furthermore, results of the p{sub T}-differential analysis have been obtained. In the second part of this dissertation, the properties of transverse momentum distribution of J/ψ production were studied in more detail. No significant system-size dependence of left angle p{sub T} right angle and left angle p{sup 2}{sub T} right angle was observed. In addition, the observable r{sub AA}= left angle p{sup 2}{sub T} right angle {sub A-A}/ left angle p{sup 2}{sub T} right angle {sub pp} was obtained for inclusive J/ψ production at √(s{sub NN})=2.76 TeV and found to be significantly below unity. A feasibility study an the signal extraction of the elliptic flow was presented in the last part of the thesis. The statistical uncertainty of such a measurement was estimated for the run 2 Pb-Pb data taking conditions.

  16. On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC.

    CERN Multimedia

    Manzari, Vito

    2008-01-01

    On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC

  17. Study of Υ family resonances in ultrarelativistic heavy ions collisions within the frame of the Alice experiment at CERN-LHC

    International Nuclear Information System (INIS)

    Dumonteil, E.

    2004-09-01

    Quantum Chromodynamics foresees, at high temperature and/or high energy density, a phase transition between hadronic matter and a phase where quarks and gluons are no more confined in the nucleons: the Quark Gluon Plasma (QGP). During the past fifteen years, a large experimental program has taken place at CERN and at BNL, to identify the QGP. ALICE is the LHC experiment dedicated to the study of the plasma via ultrarelativistic heavy ion collisions at 2.75 TeV/nucleon per beam. The measure of Upsilon's resonances suppression, a powerful signature of a deconfined medium, with the ALICE dimuon spectrometer, is the main topic of this thesis. The first part of the work aims at studying the multi-wires pad chambers of the dimuon arm, used to track the muons from resonances decays. The second part presents an in-beam alignment algorithm able to calculate the positions of the different chambers with a very good accuracy. Finally, the last part proposes a study to lead with the ALICE muon spectrometer, involving the measure of Upsilon and Upsilon's production ratio as a function of the transverse momentum. It has been showed that this study should allow to evidence the QGP and to extract some of its properties. (author)

  18. Open-charm production measurements in pp, 1 p-Pb and Pb-Pb collisions with ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Meninno Elisa

    2017-01-01

    Full Text Available ALICE (A Large Ion Collider Experiment is designed to study the strongly in teracting matter, the Quark-Gluon Plasma (QGP, created in heavy-ion collisions at LHC energies. Charm and beauty quarks are powerful probes to study the QGP. Produced in hard partonic scattering processes on a short time scale, they are expected to traverse the QCD medium, interacting with its constituents and losing energy through radiative and collisional processes. In ALICE, open-charm production is studied through the reconstruction of the hadronic decays of D0, D+, D*+ and Ds+ mesons at mid-rapidity. High precision tracking, good vertexing capabilities and excellent particle identification offered by ALICE allow for the measurement of particles containing heavy quarks (particularly D mesons in a wide transverse momentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on D-meson production in pp collisions at √s = 7 TeV, p-Pb collisions at √sNN = 5.02 TeV and Pb-Pb collisions at √sNN = 2.76 TeV will be presented.

  19. Study of the strange baryons and mesons production (Λ and Ks0) in proton-proton collisions with the ALICE experiment at the LHC

    International Nuclear Information System (INIS)

    Ricaud, H.

    2008-11-01

    The ALICE experiment at LHC is dedicated to the investigation of the transition of matter from the hadron gas to the Quark and Gluons Plasma in which partons are deconfined. Ultra-relativistic heavy-ion collisions offer indeed the possibility to create extreme temperature and pressure conditions which are required to reach a deconfined phase. Elementary collisions such as proton-proton are of great importance since they are regarded as the hadronic reference. The aim of this thesis was to prepare the analysis of strange baryon and meson production mechanisms in proton-proton collisions at the LHC energies by the detection of Λ and K s 0 particles with ALICE. Strange particles are a major tool to probe the matter created. The behaviour of the Λ/K s 0 ratio at intermediate transverse momentum in high energy proton-proton collisions, that we have studied with several theoretical models, could also sign the presence of collective phenomena. Up to now, these phenomena have been observed only in heavy-ion collisions. (author)

  20. Charm production at the LHC via $D^{0} -> K^{-} \\pi^{+}$ reconstruction in ALICE:cross section in pp collisions and first flow measurement in Pb-Pb collisions

    CERN Document Server

    Bianchin, Chiara; Dainese, Andrea

    ALICE (A Large Hadron Collider Experiment) is one of the CERN-LHC (Large Hadron Collider) experiments. The main goal of ALICE is investigating the properties of the state of matter formed in ultra-relativistic heavy-ion collisions, the strongly-interacting quark-gluon plasma (QGP). The extremely high-energy-density and high-temperature matter produced in Pb--Pb collisions at centre-of-mass-energy of 2.76 TeV at the LHC is similar to the state of the matter that constituted the Universe few microseconds after the Big Bang. Nucleus-nucleus collisions have been carried out for the last 20 years by the Super Proton Synchrotron at CERN and by the Relativistic Heavy Ion Collider at Brookhaven to study this state of matter in a laboratory. The experimental results confirm the production of a deconfined system that reaches a thermal equilibrium and behaves like an almost perfect fluid, following the equations of hydrodynamics, until it cools down and hadrons are produced again. The properties of such a medium can be ...

  1. Multiplicity dependence of two-particle correlation in $\\sqrt{s}$ = 7 TeV pp collisions at LHC-ALICE experiment

    CERN Document Server

    Bhom, Jihyun; Esumi, Shinlchi

    Early stage of universe or inside of neutron stars are supposed to be Quark Gluon Plasma (QGP) state. The QGP is a state of matter in quantum chromodynamics (QCD), which exists at extremely high temperature and/or high density. In high energy nuclear collisions experiment, hot dense matter or QGP has been studied, the collective flow of the system has been one of key issues to understand the state of matter. Large Hadron Collider (LHC) has served pp collisions at a nucleon–nucleon center-of-mass energy of 7 TeV in 2010, where the maximum charged particle multiplicity has been measured as large as 100$\\sim$200 charged particles in $|\\eta|<$2.5 in $dN/d\\eta$ like Cu-Cu collisions $\\sqrt {s_{NN}} = 200$ GeV at mid-peripheral at RHIC. A Large Ion Collider Experiment (ALICE) detector at the LHC is optimized for studying the high-temperature and high-density system called as QGP. Angular correlations between two charged particles are measured with central and forward detectors in ALICE experiment. Th...

  2. J/ψ production in proton-proton collisions at √ s = 2.76 and 7 TeV in the ALICE forward muon spectrometer at LHC

    International Nuclear Information System (INIS)

    Geuna, C.

    2012-01-01

    Quarkonia are meson states whose constituents are a charm or bottom quark and its corresponding antiquark (Q-Q-bar). The study of the production of such bound states in high-energy hadron collisions represents an important test for the Quantum Chromo-Dynamics. Despite the fact that the quarkonium saga has already a 40-year history, the quarkonium production mechanism is still an open issue. Therefore, measurements at the new CERN Large Hadron Collider (LHC) energy regimes are extremely interesting. In this thesis, the study of inclusive J/Ψ production in proton-proton (pp) collisions at √ = 2.76 and 7 TeV, obtained with the ALICE experiment, is presented. J/Ψ mesons are measured at forward rapidity (2.5 ≤ y ≤ 4), down to zero pT, via their decay into muon pairs (μ + μ - ). Quarkonium resonances also play an important role in probing the properties of the strongly interacting hadronic matter created, at high energy densities, in heavy-ion collisions. Under such extreme conditions, the created system, according to QCD, undergoes a phase transition from ordinary hadronic matter to a new state of deconfined quarks and gluons, called Quark Gluon Plasma (QGP). The ALICE experiment at CERN LHC has been specifically designed to study this state of matter. Quarkonia, among other probes, represents one of the most promising tools to prove the QGP formation. In order to correctly interpret the measurements of quarkonium production in heavy-ion collisions, a solid baseline is provided by the analogous results obtained in pp collisions. Hence, the work discussed in this thesis, concerning the inclusive J/Ψ production in pp collisions, also provides the necessary reference for the corresponding measurements performed in Pb-Pb collisions which were collected, by the ALICE experiment, at the very same center-of-mass energy per nucleon pair (√ = 2.76 TeV). (author) [fr

  3. Installing the ALICE detector

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The huge iron yoke in the cavern at Point 2 in the LHC tunnel is prepared for the installation of the ALICE experiment. The yoke is being reused from the previous L3 experiment that was located at the same point during the LEP project from 1989 to 2000. ALICE will be inserted piece by piece into the cradle where it will be used to study collisions between two beams of lead ions.

  4. High-p$_{T}$ Tomography of d+Au and Au+Au at SPS, RHIC, and LHC

    CERN Document Server

    Vitev, I; Vitev, Ivan; Gyulassy, Miklos

    2002-01-01

    The interplay of nuclear effects on the p_T > 2 GeV inclusive hadron spectra in d+Au and Au+Au reactions at root(s) = 17, 200, 5500 GeV is compared to leading order perturbative QCD calculations for elementary p+p (p-bar+p) collisions. The competition between nuclear shadowing, Cronin effect, and jet energy loss due to medium-induced gluon radiation is predicted to lead to a striking energy dependence of the nuclear suppression/enhancement pattern in A+A reactions. We show that future d+Au data can used to disentangle the initial and final state effects.

  5. Heavy flavour in ALICE

    CERN Document Server

    Pillot, Philippe

    2008-01-01

    Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels

  6. Central Diffraction in ALICE

    CERN Document Server

    Schicker, R

    2012-01-01

    The ALICE experiment at the Large Hadron Collider (LHC) at CERN consists of a central barrel, a muon spectrometer and of additional detectors for trigger and event classification purposes. The low transverse momentum threshold of the central barrel gives ALICE a unique opportunity to study the low mass sector of central production at the LHC. I will report on first analysis results of meson production in double gap events in minimum-bias proton-proton collisions at sqrt{s} = 7 TeV, and will describe a dedicated double gap trigger for future data taking.

  7. Kalibration des ALICE Übergangsstrahlungsdetektors und ein Studium der Z-Boson und schwere Quarks Produktion in pp Kollisionen an der LHC

    CERN Document Server

    Bailhache, Raphaëlle

    2008-01-01

    The ALICE Experiment is one of the four experiments installed at the Large Hadron Collider (LHC). One of its detector-systems, the Transition Radiation Detector (TRD), is a gas detector designed for electron identification and charged particle tracking. The charged particle ionizes the gas along its path and electrons drift in an uniform field of 700 V/cm over 3 cm before being amplified. We implemented procedures to calibrate the drift velocity of the electrons, the time-offset of the signal, the amplification factor and the width of the Pad Response Function (PDF) characterizing the sharing of the deposited charge over adjacent pads. Physics events (pp and PbPb collisions) will be used. The performances of the algorithms were tested on simulated pp collisions at √s=14 TeV and on first real data taken with cosmic-rays in the ALICE setup. The calibration software was installed on the Data Acquisition System at CERN and executed continuously during the cosmic-ray data taking in 2008, providing a first determ...

  8. Study of the neutral mesons in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV in the ALICE experiment at LHC

    CERN Document Server

    Leardini, Lucia

    2015-01-01

    The $\\pi^{0}$ and $\\eta$ meson production in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV is studied with the ALICE experiment at the LHC. The $\\pi^{0}$ invariant yields and nuclear modification factor $R_{\\mbox{AA}}$ are presented here in six centrality classes. The results are a combined measurement using the Photon Conversion Method (PCM) and the PHOS detector, in the transverse momentum range 0.4 $< p_{\\mbox{T}} <$ 12 GeV/$c$. The $\\pi^{0}$ $R_{\\mbox{AA}}$ is studied in different centrality classes and compared with results from experiments at lower energies, both as a function of transverse momentum. The $\\eta$ meson production is studied using the PCM and the EMCal detector. The combination of the individual results will make possible the measurement of the $\\eta$ differential invariant cross section as a function of transverse momentum from 1 to 22 GeV/$c$ in different centrality classes.

  9. Study of {upsilon} family resonances in ultrarelativistic heavy ions collisions within the frame of the Alice experiment at CERN-LHC; Etude des resonances de la famille du {upsilon} dans les collisions d'ions lourds ultra-relativistes a 2.75 TeV/ nucleon et par faisceau sur l'experience Alice du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dumonteil, E

    2004-09-01

    Quantum Chromodynamics foresees, at high temperature and/or high energy density, a phase transition between hadronic matter and a phase where quarks and gluons are no more confined in the nucleons: the Quark Gluon Plasma (QGP). During the past fifteen years, a large experimental program has taken place at CERN and at BNL, to identify the QGP. ALICE is the LHC experiment dedicated to the study of the plasma via ultrarelativistic heavy ion collisions at 2.75 TeV/nucleon per beam. The measure of Upsilon's resonances suppression, a powerful signature of a deconfined medium, with the ALICE dimuon spectrometer, is the main topic of this thesis. The first part of the work aims at studying the multi-wires pad chambers of the dimuon arm, used to track the muons from resonances decays. The second part presents an in-beam alignment algorithm able to calculate the positions of the different chambers with a very good accuracy. Finally, the last part proposes a study to lead with the ALICE muon spectrometer, involving the measure of Upsilon and Upsilon's production ratio as a function of the transverse momentum. It has been showed that this study should allow to evidence the QGP and to extract some of its properties. (author)

  10. Investigation of a Huffman-based compression algorithm for the ALICE TPC read-out in LHC Run 3

    Energy Technology Data Exchange (ETDEWEB)

    Klewin, Sebastian [Physikalisches Institut, University of Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    Within the scope of the ALICE upgrade towards the Run 3 of the Large Hadron Collider at CERN, starting in 2020, the ALICE Time Projection Chamber (TPC) will be reworked in order to allow for a continuous read-out. This rework includes not only a replacement of the current read-out chambers with Gas Electron Multiplier (GEM) technology, but also new front-end electronics. To be able to read out the whole data stream without loosing information, in particular without zero-suppression, a lossless compression algorithm, the Huffman encoding, was investigated and adapted to the needs of the TPC. In this talk, an algorithm, adapted for an FPGA implementation, is presented. We show its capability to reduce the data volume to less than 40% of its original size.

  11. Multiplicity dependence of 2-particle correlations in proton-proton collisions measured with ALICE at the LHC

    International Nuclear Information System (INIS)

    Sicking, E.

    2014-01-01

    We investigate properties of jets in proton-proton collisions using 2-particle angular correlations. By choosing an analysis approach based on 2-particle angular correlations, also the properties of low-energetic jets can be accessed. Observing the strength of the correlation as a function of the charged particle multiplicity reveals jet fragmentation properties as well as the contribution of jets to the overall charged particle multiplicity. Furthermore, the analysis discloses information on the underlying multiple parton interactions. We present results from proton-proton collisions at the center-of-mass energies √(s) = 0.9, 2.76 and 7 TeV recorded by the ALICE experiment. The ALICE data are compared to Pythia6, Pythia8 and Phojet simulations. (author)

  12. Multiplicity Dependence of Two-Particle Correlations in Proton-Proton Collisions Measured with ALICE at the LHC

    CERN Document Server

    Sicking, Eva

    2012-01-01

    We investigate properties of jets in proton-proton collisions using two-particle angular correlations. By choosing an analysis approach based on two-particle angular correlations, also the properties of low-energetic jets can be accessed. Observing the strength of the correlation as a function of the charged particle multiplicity reveals jet fragmentation properties as well as the contribution of jets to the overall charged particle multiplicity. Furthermore, the analysis discloses information on the underlying multiple parton interactions. We present results from proton-proton collisions at the center-of-mass energies $\\sqrt{s}$ = 0.9, 2.76, and 7.0 TeV recorded by the ALICE experiment. The ALICE data are compared to Pythia6, Pythia8, and Phojet simulations.

  13. 21 March 2011 - South African Ministry of Science and Technology, Department of Science and Technology (DST) Director General P. Mjwara signing the guest with Head of International Relations F. Pauss and Adviser J. Ellis and ALICE Collaboration Spokesperson P. Giubellino and J. Cleymans; in the CERN control centre with R. Steerenberg; visiting ALICE surface exhibition with P. Giubellino and LHC superconducting magnet test hall with L. Bottura.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    21 March 2011 - South African Ministry of Science and Technology, Department of Science and Technology (DST) Director General P. Mjwara signing the guest with Head of International Relations F. Pauss and Adviser J. Ellis and ALICE Collaboration Spokesperson P. Giubellino and J. Cleymans; in the CERN control centre with R. Steerenberg; visiting ALICE surface exhibition with P. Giubellino and LHC superconducting magnet test hall with L. Bottura.

  14. Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE

    Czech Academy of Sciences Publication Activity Database

    Abelev, B.; Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Čepila, J.; Křelina, M.; Krus, M.; Kushpil, Svetlana; Kushpil, Vasilij; Mareš, Jiří A.; Pachr, M.; Petráček, V.; Petráň, M.; Polák, Karel; Pospíšil, V.; Šmakal, R.; Šumbera, Michal; Tlustý, D.; Vajzer, Michal; Wagner, V.; Zach, Č.; Závada, Petr

    2013-01-01

    Roč. 73, č. 6 (2013), s. 2456 ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE * inelastic cross section Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 5.436, year: 2013 http://download.springer.com/static/pdf/220/art%253A10.1140%252Fepjc%252Fs10052-013-2456-0.pdf?auth66=1379855437_aeb5460b76c14458cb4c1bb354311e2c&ext=.pdf

  15. J/ψ production in proton-lead collisions with the central barrel of ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Michael [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    The description of J/ψ production in proton-proton and its nuclear modification in proton-nucleus collisions remains challenging for theory based on perturbative QCD and factorization. Furthermore, the investigation of J/ψ in pp and p-A collisions represents an important reference for heavy-ion collisions, where charmonium production is seen as a key observable for deconfinement. First results of the nuclear modification factor of inclusive J/ψ in proton-lead collisions with the central barrel of ALICE, both integral as well as differential in transverse momentum, are presented. Model comparisons are discussed.

  16. Measurement of the J/ψ production in pp, p-Pb and Pb-Pb collisions with ALICE at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Book, Julian [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt am Main (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The investigation of the properties of strongly interacting matter under extreme conditions is the aim of the ALICE experiment. Quarkonia, i.e. bound states of heavy (charm or bottom) quarks such as the J/ψ, are expected to be produced in initial hard scattering processes in hadronic collisions. Thus they will provide insights into the earliest and hottest stages of nucleus-nucleus collisions where the formation of a Quark-Gluon Plasma is expected. We present final results of J/ψ production in pp, p-Pb and Pb-Pb collisions performed by ALICE at the LHC in the first 4 years of data taking. Measurements in p-Pb and pp collisions help to decouple cold nuclear matter effects from hot nuclear effects in Pb-Pb collisions and serve as reference for the interpretation and evaluation of medium induced effects, such as color screening and recombination. Measurements differential in p{sub T} and centrality of J/ψ decaying into e{sup +}e{sup -} obtained at mid-rapidity (vertical stroke y vertical stroke < 0.9) for the different collisions systems are shown. Clearly less suppression with respect to SPS and RHIC results can be seen in Pb-Pb collisons at √(s{sub NN})=2.76 TeV. Results for J/ψ decaying into μ{sup +}μ{sup -} measured at forward rapidities (2.5

  17. Analysis of D{sup 0} and D{sup *+}-meson production in pp and p-Pb collisions with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Jeremy John

    2016-07-28

    This thesis presents measurements of D-meson production in the central barrel of the ALICE detector in pp and p-Pb collisions. The reconstruction of D{sup 0} mesons in the hadronic channel D{sup 0}→K{sup -}π{sup +} was studied in pp collisions at √(s)=7 TeV using a Bayesian particle identification (PID) method, in order to test the validity of this new approach. Comparisons were made between these results and those obtained with established PID methods. Consistency was found between the different approaches, as well as an increase of the signal-to-background ratio and a similar or greater statistical significance for most of the implementations of the Bayesian approach. Further measurements of D{sup *+}→D{sup 0}π{sup +} were made as a function of charged-particle multiplicity in p-Pb collisions at √(s{sub NN})=5.02 TeV. The aim was to test the role of multi-parton interactions (MPI) and possible collective phenomena in small systems at LHC energies. The results for D{sup *+} mesons were consistent with the other D-meson species studied by ALICE (D{sup 0} and D{sup +}). The measurements against mid-rapidity multiplicity showed consistency with previous results from pp collisions; however, a slower increase of the relative D-meson yield was found as a function of multiplicity at large rapidity for p-Pb collisions than pp collisions. The results for both multiplicity estimators were reproduced by phenomenological models, both with and without viscous hydrodynamics.

  18. Optimisation of the muon spectrometer from the detector ALICE used for the study of the quark and gluon plasma at LHC

    International Nuclear Information System (INIS)

    Guernane, R.

    2001-01-01

    The ALICE experiment performed at the LHC will establish and study the phase transition from hadronic matter to a matter to a state of deconfined partons called Quark Gluon Plasma (QGP). The suppression of heavy flavour resonances (Jφ,γ) is the most promising probe for diagnosing the formation and early stages of the QGP in ultrarelativistic heavy ion collisions. The complete spectrum of heavy quarkonia resonances, i.e. J/φ, φ', γ, γ' and φ' will be measured via their muonic decay in a forward spectrometer with a mass resolution sufficient to separate all states. It is composed of five tracking stations, each consisting of two Cathode Pad Chambers (CPC). In this work, we developed a prototype of CPC having the original feature of parallel charge read out from one segmented cathode. The geometry and operating parameters have been optimized for station 3. The expected multi-hit rate and multi-hit deconvolution have been evaluated with a complete detailed simulation and an efficient method to disentangle close hits has been proposed. The magnetic field effect on the intrinsic spatial resolution of the chambers has also been estimated. The simulated performance of the CPC's is confirmed by beam-test results obtained at CERN with prototypes. The measurement of dimuons is expected to be contaminated by beam-related background. The rate of beam-gas interactions is several orders of magnitude larger than the signal rate for p-p collisions which is the reference for further studies of p-A and A-A collisions. The ALICE Collaboration decided to equip the muon spectrometer with a level 0 trigger counter (V0) in order to validate the dimuon trigger signal in p-p mode. The various steps involved in designing the V0 scintillator hodoscope are presented in this thesis. (author)

  19. Study of J/psi polarization in proton-proton collisions with the ALICE detector at the LHC

    CERN Document Server

    Batista Camejo, Arianna; Rosnet, Philippe

    The main purpose of the ALICE experiment is the study and characterization of the Quark Gluon Plasma (QGP), a state of nuclear matter in which quarks and gluons are deconfined. Quarkonia (bound states of a heayvy quark Q and its anti-quark Q) constitute one of the most interesting probes of the QGP. Besides this motivation, the study of quarkonium production is very interesting since it can contribute to our understanding of Quantum Chromodynamics, the theory of strong interactions. The formation of quarkonium states in hadronic collisions is not yet completely understood. The two main theoretical approaches to describe the production of quarkonium states, the Color Singlet Model and the Non-Relativistic QCD framework (NRQCD), have historically presented problems to simultaneously describe the production cross section and polarization of such states. On the experimental side, quarkonium polarization measurements have not always been complete and consistent between them. So, neither from the theoretical nor fr...

  20. Central diffraction in proton-proton collisions at {radical}(s) = 7TeV with ALICE at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Reidt, Felix [Physikalisches Institut, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany); Collaboration: ALICE Collaboration

    2013-04-15

    A double-gap topology is used for filtering central-diffractive events from a protonproton minimum-bias data sample at a centre-of-mass energy Central diffraction in proton-proton collisions at {radical}(s) = 7TeV. This topology is defined by particle activity in the ALICE central barrel and absence of particle activity outside. The fraction of events satisfying the double-gap requirement R{sub DG} is found to be 7.63{+-}0.02(st at.){+-}0.87(syst.) Multiplication-Sign 10{sup -4}. The background of this double-gap fraction is estimated by studying the contributions of non-diffractive, single-and double-diffractive dissociation processes as modelled by Monte Carlo event generators, and is found to be about 10%.

  1. Central diffraction in proton-proton collisions at √(s) = 7TeV with ALICE at LHC

    International Nuclear Information System (INIS)

    Reidt, Felix

    2013-01-01

    A double-gap topology is used for filtering central-diffractive events from a protonproton minimum-bias data sample at a centre-of-mass energy Central diffraction in proton-proton collisions at √(s) = 7TeV. This topology is defined by particle activity in the ALICE central barrel and absence of particle activity outside. The fraction of events satisfying the double-gap requirement R DG is found to be 7.63±0.02(st at.)±0.87(syst.)×10 −4 . The background of this double-gap fraction is estimated by studying the contributions of non-diffractive, single-and double-diffractive dissociation processes as modelled by Monte Carlo event generators, and is found to be about 10%.

  2. Charged-particle multiplicity measurement in proton-proton collisions at $\\sqrt{s}$ = 0.9 and 2.36 TeV with ALICE at LHC

    CERN Document Server

    Aamodt, K.; Abeysekara, U.; Abrahantes Quintana, A.; Abramyan, A.; Adamova, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S.U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Avina, E.Almaraz; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antonczyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshauser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bablok, S.; Bach, M.; Badala, A.; Baek, Y.W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Ban, J.; Barbera, R.; Barnafoldi, G.G.; Barnby, L.; Barret, V.; Bartke, J.; Barile, F.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsar, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borshchov, V.; Borisov, A.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossu, F.; Botje, M.; Bottger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G.P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Diaz, A.; Caselle, M.; Castellanos, J.Castillo; Castillo Hernandez, J.F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Conner, E.S.; Constantin, P.; Contin, G.; Contreras, J.G.; Corrales Morales, Y.; Cormier, T.M.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Das, I.; Das, S.; Dash, A.; Dash, S.; de Barros, G.O.V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gaspari, M.; de Groot, J.; De Gruttola, D.; de Haas, A.P.; De Marco, N.; De Pasquale, S.; De Remigis, R.; de Rooij, R.; de Vaux, G.; Delagrange, H.; Dellacasa, G.; Deloff, A.; Demanov, V.; Denes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Diaz, R.; Dietel, T.; Divia, R.; Djuvsland, O.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Donigus, B.; Dominguez, I.; Dordic, O.; Dubey, A.K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Dutta Majumdar, M.R.; Elia, D.; Emschermann, D.; Enokizono, A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C.W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fateev, O.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernandez Tellez, A.; Ferreiro, E.G.; Ferretti, A.; Ferretti, R.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M.S.; Garabatos, C.; Garcia Trapaga, C.; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glassel, P.; Glenn, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Gustafsson, H.A.; Gutbrod, H.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamblen, J.; Han, B.H.; Harris, J.W.; Hartig, M.; Harutyunyan, A.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernandez, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hiei, A.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Hu, S.; Huang, M.; Huber, S.; Humanic, T.J.; Hutter, D.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Iwasaki, T.; Jacholkowski, A.; Jacobs, P.; Jancurova, L.; Jangal, S.; Janik, R.; Jena, C.; Jena, S.; Jirden, L.; Jones, G.T.; Jones, P.G.; Jovanovic, P.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinak, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamal, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J.H.; Kapitan, J.; Kaplin, V.; Kapusta, S.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khan, S.A.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.J.; Kim, D.S.; Kim, D.W.; Kim, H.N.; Kim, J.; Kim, J.H.; Kim, J.S.; Kim, M.; Kim, M.; Kim, S.H.; Kim, S.; Kim, Y.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Kniege, S.; Koch, K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornas, E.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Kralik, I.; Kramer, F.; Kraus, I.; Kravcakova, A.; Krawutschke, T.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kumar, L.; Kumar, N.; Kupczak, R.; Kurashvili, P.; Kurepin, A.; Kurepin, A.N.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kutouski, M.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; La Rocca, P.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; Lal, C.; Lara, C.; Larsen, D.T.; Laurenti, G.; Lazzeroni, C.; Le Bornec, Y.; Le Bris, N.; Lee, H.; Lee, K.S.; Lee, S.C.; Lefevre, F.; Lenhardt, M.; Leistam, L.; Lehnert, J.; Lenti, V.; Leon, H.; Leon Monzon, I.; Leon Vargas, H.; Levai, P.; Li, X.; Li, Y.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Listratenko, O.; Liu, L.; Loginov, V.; Lohn, S.; Lopez, X.; Lopez Noriega, M.; Lopez-Ramirez, R.; Lopez Torres, E.; Lovhoiden, G.; Lozea Feijo Soares, A.; Lu, S.; Lunardon, M.; Luparello, G.; Luquin, L.; Lutz, J.R.; Ma, K.; Ma, R.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Makhlyueva, I.; Mal'Kevich, D.; Malaev, M.; Malagalage, K.J.; Maldonado Cervantes, I.; Malek, M.; Malkiewicz, T.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Martashvili, I.; Martinengo, P.; Martinez Hernandez, M.I.; Martinez Davalos, A.; Martinez Garcia, G.; Maruyama, Y.; Marzari Chiesa, A.; Masciocchi, S.; Masera, M.; Masetti, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Miake, Y.; Michalon, A.; Miftakhov, N.; Milosevic, J.; Minafra, F.; Mischke, A.; Miskowiec, D.; Mitu, C.; Mizoguchi, K.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mondal, M.M.; Montano Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moretto, S.; Morsch, A.; Moukhanova, T.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Muller, H.; Munhoz, M.G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nianine, A.; Nicassio, M.; Nielsen, B.S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyatha, A.; Nygaard, C.; Nyiri, A.; Nystrand, J.; Ochirov, A.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Okada, K.; Okada, Y.; Oldenburg, M.; Oleniacz, J.; Oppedisano, C.; Orsini, F.; Ortiz Velasquez, A.; Ortona, G.; Oskamp, C.J.; Oskarsson, A.; Osmic, F.; Osterman, L.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Ovrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S.K.; Palaha, A.; Palmeri, A.; Panse, R.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Pastircak, B.; Pastore, C.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pepato, A.; Pereira, H.; Peressounko, D.; Perez, C.; Perini, D.; Perrino, D.; Peryt, W.; Peschek, J.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A.J.; Petracek, V.; Petridis, A.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Peyre, J.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Platt, R.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta Lerma, P.L.M.; Poggio, F.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pop, A.; Posa, F.; Pospisil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Rachevski, A.; Rademakers, A.; Radomski, S.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramirez Reyes, A.; Rammler, M.; Raniwala, R.; Raniwala, S.; Rasanen, S.S.; Rashevskaya, I.; Rath, S.; Read, K.F.; Real, J.S.; Redlich, K.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Roed, K.; Rohrich, D.; Roman Lopez, S.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio-Montero, A.J.; Rui, R.; Rusanov, I.; Russo, G.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Saini, J.; Saiz, P.; Sakata, D.; Salgado, C.A.; Salgueiro Domingues da Silva, R.; Salur, S.; Samanta, T.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schindler, H.; Schmidt, C.; Schmidt, H.R.; Schossmaier, K.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Segato, G.; Semenov, D.; Senyukov, S.; Seo, J.; Serci, S.; Serkin, L.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, G.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddi, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simili, E.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, B.C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Snow, H.; Sogaard, C.; Soloviev, A.; Soltveit, H.K.; Soltz, R.; Sommer, W.; Son, C.W.; Son, H.; Song, M.; Soos, C.; Soramel, F.; Soyk, D.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Staley, F.; Stan, E.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovsky, P.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Sumbera, M.; Susa, T.; Swoboda, D.; Symons, J.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Szuba, M.; Tadel, M.; Tagridis, C.; Takahara, A.; Takahashi, J.; Tanabe, R.; Takaki, D.J.Tapia; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thader, J.; Tieulent, R.; Tlusty, D.; Toia, A.; Tolyhy, T.; Torcato de Matos, C.; Torii, H.; Torralba, G.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tribedy, P.; Troger, G.; Truesdale, D.; Trzaska, W.H.; Tsiledakis, G.; Tsilis, E.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A.; Tveter, T.S.; Tydesjo, H.; Tywoniuk, K.; Ulery, J.; Ullaland, K.; Uras, A.; Urban, J.; Urciuoli, G.M.; Usai, G.L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van den Brink, A.; van der Kolk, N.; Vyvre, P.Vande; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasiliev, A.; Vassiliev, I.; Vasileiou, M.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vetlitskiy, I.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopianov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wallet, L.; Wan, R.; Wang, D.; Wang, Y.; Watanabe, K.; Wen, Q.; Wessels, J.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, M.C.S.; Willis, N.; Windelband, B.; Xu, C.; Yang, C.; Yang, H.; Yasnopolskiy, S.; Yermia, F.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I-K.; Yuan, X.; Yurevich, V.; Yushmanov, I.; Zabrodin, E.; Zagreev, B.; Zalite, A.; Zampolli, C.; Zanevsky, Yu.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zepeda, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, S.; Zhu, J.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zychacek, V.; Zynovyev, M.

    2010-01-01

    Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |eta| < 1.4. In the central region (|eta| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 +- 0.01 (stat.) +0.08 -0.05 (syst.) for inelastic interactions, and dNch/deta = 3.58 +- 0.01 (stat.) +0.12 -0.12 (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 +- 0.01 (stat.) +0.25 -0.12 (syst.) for inelastic, and dNch/deta = 4.43 +- 0.01 (stat.) +0.17 -0.12 (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% +- 0.5% (stat.) +5.7% -2.8% (syst.) for inelastic and 23.7% +- 0.5% (stat.) +4.6% -1.1% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger th...

  3. Recent ALICE measurements on open heavy-flavour production in pp, p-Pb, and Pb-Pb collisions at the LHC

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    According to QCD calculations on the lattice, as well as to several measurements performed at the SPS, RHIC, and LHC facilities, a state of matter composed of strongly-interacting deconfined quarks and gluons (the Quark-Gluon Plasma, QGP) is formed in heavy-ion collisions at ultra-relativistic energies. Produced in hard-scattering processes in the initial stage of the collision, heavy quarks are a powerful tool to probe the partonic interactions ongoing in the medium. The analysis of the pT-differential spectra and of the azimuthal anisotropy of heavy-flavour signals in nucleus-nucleus collisions provides a crucial piece of information to achieve a microscopic picture of the system. The ALICE experiment at CERN is equipped to measure electrons and muons from charm and beauty hadron decays and to reconstruct D mesons in hadronic decay channels. The results obtained in Pb-Pb collisions at 2.76 and 5.02 TeV will be discussed. Measurements of open heavy-flavour signals in proton-proton and proton-Pb collisions...

  4. D* Mesons in Jets Analysis in proton-proton collisions at √s 10 TeV using the ALICE detector at CERN-LHC

    International Nuclear Information System (INIS)

    Grelli, A.; Mische, A.

    2009-01-01

    Charm and bottom quarks have been proposed as probes to study partonic matter produced in high-energy heavy-ion collisions. The detailed understanding of the production mechanisms in such collisions is of considerable interest. Measurements of the D * yield in jets probe the production processes in which the observed D * mesons are formed primarily from gluon splitting into c-c(bar) or b-b(bar) pairs. The charm content in jets is calculable in perturbative QCD, and the leading non-perturbative correction is expected to be significant at LHC energies. In this contribution we present latest results on performance studies of the reconstruction of charged D * mesons in jets in proton-proton collisions at √s = 10 TeV using the ALICE central detector. D *+ mesons are reconstructed through the decay sequence D *+ → D 0 + π + and D 0 → K - + π + (and its charge conjugate channel). The results are compared for different jet transverse momenta, and topological cut effects are discussed. (authors)

  5. Strange particle production in proton-proton collisions at $\\sqrt{s}$ = 0.9 TeV with ALICE at the LHC

    CERN Document Server

    INSPIRE-00247373; Abrahantes Quintana, A.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S.U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz Avina, E.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshauser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bach, M.; Badala, A.; Baek, Y.W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Ban, J.; Barbera, R.; Barile, F.; Barnafoldi, G.G.; Barnby, L.S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Biolcati, E.; Blanc, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Boldizsar, L.; Bombara, M.; Bombonati, C.; Book, J.; Borel, H.; Bortolin, C.; Bose, S.; Bossu, F.; Botje, M.; Bottger, S.; Boyer, B.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Catanescu, V.; Cavicchioli, C.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.P.; Coli, S.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J.G.; Cormier, T.M.; Corrales Morales, Y.; Cortes Maldonado, I.; Cortese, P.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; D'Erasmo, G.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; De Azevedo Moregula, A.; de Barros, G.O.V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Remigis, R.; de Rooij, R.; Delagrange, H.; Delgado Mercado, Y.; Dellacasa, G.; Deloff, A.; Demanov, V.; Denes, E.; Deppman, A.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dietel, T.; Divia, R.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Dominguez, I.; Donigus, B.; Dordic, O.; Driga, O.; Dubey, A.K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Dutta Majumdar, M.R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H.A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C.W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Feofilov, G.; Fernandez Tellez, A.; Ferretti, A.; Ferretti, R.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Garabatos, C.; Gemme, R.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Girard, M.R.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glassel, P.; Gomez, R.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gonzalez Santos, H.; Gorbunov, S.; Gotovac, S.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J.W.; Hartig, M.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernandez, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Huang, M.; Huber, S.; Humanic, T.J.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G.M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacholkowski, A.; Jacobs, P.M.; Jancurova, L.; Jangal, S.; Janik, R.; Jayarathna, S.P.; Jena, S.; Jirden, L.; Jones, G.T.; Jones, P.G.; Jovanovic, P.; Jung, H.; Jung, W.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J.H.; Kaplin, V.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D.J.; Kim, D.S.; Kim, D.W.; Kim, H.N.; Kim, J.H.; Kim, J.S.; Kim, M.; Kim, M.; Kim, S.; Kim, S.H.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Knichel, M.L.; Koch, K.; Kohler, M.K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornas, E.; Kottachchi Kankanamge Don, C.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Kralik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Kretz, M.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kurashvili, P.; Kurepin, A.; Kurepin, A.B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M.J.; Kwon, Y.; La Rocca, P.; Ladron de Guevara, P.; Lafage, V.; Lara, C.; Larsen, D.T.; Lazzeroni, C.; Le Bornec, Y.; Lea, R.; Lee, K.S.; Lee, S.C.; Lefevre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; Leon Monzon, I.; Leon Vargas, H.; Levai, P.; Li, X.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Liu, L.; Loggins, V.R.; Loginov, V.; Lohn, S.; Lohner, D.; Lopez, X.; Lopez Noriega, M.; Lopez Torres, E.; Lovhoiden, G.; Lu, X.G.; Luettig, P.; Lunardon, M.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, K.; Ma, R.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Martashvili, I.; Martinengo, P.; Martinez, M.I.; Martinez Davalos, A.; Martinez Garcia, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Mercado Perez, J.; Mereu, P.; Miake, Y.; Midori, J.; Milano, L.; Milosevic, J.; Mischke, A.; Miskowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moreira De Godoy, D.A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muller, H.; Muhuri, S.; Munhoz, M.G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Nattrass, C.; Navach, F.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nicassio, M.; Nielsen, B.S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Obayashi, H.; Ochirov, A.; Oeschler, H.; Oh, S.K.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Ovrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S.K.; Palaha, A.; Palmeri, A.; Pappalardo, G.S.; Park, W.J.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Peresunko, D.; Perez Lara, C.E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A.J.; Petracek, V.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Piyarathna, D.B.; Platt, R.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P.L.M.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Pop, A.; Pospisil, V.; Potukuchi, B.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pulvirenti, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Rademakers, O.; Radomski, S.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramirez Reyes, A.; Rammler, M.; Raniwala, R.; Raniwala, S.; Rasanen, S.S.; Read, K.F.; Real, J.S.; Redlich, K.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Rohr, D.; Rohrich, D.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio Montero, A.J.; Rui, R.; Rusanov, I.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Sahu, P.K.; Saiz, P.; Sakai, S.; Sakata, D.; Salgado, C.A.; Samanta, T.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H.R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P.A.; Scott, R.; Segato, G.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simonetti, G.; Singaraju, R.; Singh, R.; Sinha, B.C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Sogaard, C.; Soloviev, A.; Soltz, R.; Son, H.; Song, M.; Soos, C.; Soramel, F.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovskiy, M.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Sumbera, M.; Susa, T.; Swoboda, D.; Symons, T.J.M.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Tagridis, C.; Takahashi, J.; Tapia Takaki, J.D.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thader, J.; Thomas, D.; Thomas, J.H.; Tieulent, R.; Timmins, A.R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Tosello, F.; Traczyk, T.; Truesdale, D.; Trzaska, W.H.; Tumkin, A.; Turrisi, R.; Turvey, A.J.; Tveter, T.S.; Ulery, J.; Ullaland, K.; Uras, A.; Urban, J.; Urciuoli, G.M.; Usai, G.L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; van Leeuwen, M.; Vande Vyvre, P.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wan, R.; Wang, D.; Wang, Y.; Wang, Y.; Watanabe, K.; Wessels, J.P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, A.; Wilk, G.; Williams, M.C.S.; Windelband, B.; Yang, H.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.K.; Yuan, X.; Yushmanov, I.; Zabrodin, E.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhu, X; Zichichi, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.

    2011-01-01

    The production of mesons containing strange quarks (K0 S, f ) and both singly and doubly strange baryons (L, L, and X−+X+) are measured at central rapidity in pp collisions at √s = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields (hdN/dyi) of 0.184 ± 0.002 (stat.) ± 0.006 (syst.) for K0S and 0.021 ± 0.004 (stat.) ± 0.003 (syst.) for phi. For baryons, we find dN/dy = 0.048±0.001 (stat.) ±0.004 (syst.) for Lambda, 0.047±0.002 (stat.) ±0.005 (syst.) for Lambda and 0.0094±0.0020 (stat.) ±0.0007 (syst.) for Xi−+Xi+. The results are also compared with predictions for identified particle spectra from QCD inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions

  6. CERN Open Days 2013, Point 2 - ALICE: ALICE Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: Visitors will be guided through the ALICE experiment, an extraordinary particle physics detector located at a depth of 80 meters below ground.  ALICE started up in 2008 to study the quark-gluon plasma, a state of matter that probably existed in the first moments of the universe. Visitors will also be able to walk inside the LHC tunnel, where superconducting magnets guide the beams of protons at unprecedented energies around the LHC. In addition to the underground visit, several ALICE physicists and engineers will be available to answer visitors' questions. On surface no restricted access  Above ground, scientific  and other kinds of shows will entertain the visitors to ALICE, even the youngest, throughout the day.

  7. ALICE EMCal Physics Performance Report

    CERN Document Server

    Abeysekara, U.; Aronsson, T.; Awes, T.; Badala, A.; Baumgart, S.; Bellwied, R.; Benhabib, L.; Bernard, C.; Bianchi, N.; Blanco, F.; Bortoli, Y.; Boswell, B.; Bourdaud, G.; Bourrion, O.; Boyer, B.; Brown, C.R.; Bruna, E.; Butterworth, J.; Caines, H.; Calvo Diaz Aldagalan, D.; Capitani, G.P.; Carcagno, Y.; Casanova Diaz, A.; Cherney, M.; Conesa Balbastre, G.; Cormier, T.M.; Cosentino, M.R.; Cunqueiro Mendez, L.; Delagrange, H.; Del Franco, M.; Dialinas, M.; Di Nezza, P.; Donoghue, A.; Elnimr, M.; Enokizono, A.; Estienne, M.; Faivre, J.; Fantoni, A.; Fenton-Olsen, B.; Fichera, F.; Figueredo, M.A.S.; Foglio, B.; Fresneau, S.; Fujita, J.; Furget, C.; Gadrat, S.; Garishvili, I.; Germain, M.; Giudice, N.; Gorbunov, Y.N.; Grimaldi, A.; Guernane, R.; Hadjidakis, C.; Hamblen, J.; Harris, J.W.; Hasch, D.; Heinz, M.; Hicks, B.; Hille, P.T.; Hornback, D.; Ichou, R.; Jacobs, P.; Jangal, S.; Jayananda, K.; Kalliokoski, T.; Kharlov, Y.; Klay, J.L.; Knospe, A.G.; Kox, S.; Kral, J.; Laloux, P.; LaPointe, S.; La Rocca, P.; Lewis, S.; Li, Q.; Librizzi, F.; Ma, R.; Madagodahettige Don, D.; Mao, Y.; Markert, C.; Martashvili, I.; Mayes, B.; Milletto, T.; Mlynarz, J.; Muccifora, V.; Mueller, H.; Munhoz, M.G.; Muraz, J.F.; Newby, J.; Nattrass, C.; Noto, F.; Novitzky, N.; Nilsen, B.S.; Odyniec, G.; Orlandi, A.; Palmeri, A.; Pappalardo, G.S.; Pavlinov, A.; Pesci, W.; Petrov, V.; Petta, C.; Pichot, P.; Pinsky, L.; Ploskon, M.; Pompei, F.; Pulvirenti, A.; Putschke, J.; Pruneau, C.A.; Rak, J.; Rasson, J.; Read, K.F.; Real, J.S.; Reolon, A.R.; Riggi, F.; Riso, J.; Ronchetti, F.; Roy, C.; Roy, D.; Salemi, M.; Salur, S.; Sano, M.; Scharenberg, R.P.; Sharma, M.; Silvermyr, D.; Smirnov, N.; Soltz, R.; Sorensen, S.; Sparti, V.; Srivastava, B.K.; Stutzmann, J.S.; Symons, J.; Tarazona Martinez, A.; Tarini, L.; Thomen, R.; Timmins, A.; Turvey, A.; van Leeuwen, M.; Vieira, R.; Viticchie, A.; Voloshin, S.; Vernet, R.; Wang, D.; Wang, Y.; Ward, R.M.

    2010-01-01

    The ALICE detector at the LHC (A Large Ion Collider Experiment) will carry out comprehensive measurements of high energy nucleus-nucleus collisions, in order to study QCD matter under extreme conditions and the phase transtion between confined matter and the Quark-Gluon Plasma (QGP). This report presents our current state of understanding of the Physics Performance of the large acceptance Electromagnetic Calorimeter (EMCal) in the ALICE central detector. The EMCal enhances ALICE’s capabilities for jet measurements. The EMCal enables triggering and full reconstruction of high energy jets in ALICE, and augments existing ALICE capabilities to measure high momentum photons and electrons. Combined with ALICE’s excellent capabilities to track and identify particles from very low pT to high pT , the EMCal enables a comprehensive study of jet interactions in the medium produced in heavy ion collisions at the LHC.

  8. Prompt D$^+_s$ meson production in pp, p-Pb and Pb-Pb collisions at LHC with ALICE

    CERN Document Server

    AUTHOR|(CDS)2086009; Prino, Francesco

    The aim of this thesis is the study of the D$^+_{\\rm s}$-meson production in pp collisions at the centre-of-mass energy $\\sqrt{s}=7$ TeV and in p-Pb and Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}=5.02$ TeV, with the ALICE detector at the CERN Large Hadron Collider. Heavy quarks provide an excellent way to investigate the properties of the Quark-Gluon Plasma (QGP) created in high-energy nucleus-nucleus collisions via the measurements of the nuclear modification factor ($R_{\\rm AA}$) and azimuthal anisotropy of hadrons originating from their hadronisation. At low and intermediate transverse momentum p$_{\\rm T}$, the study of the D$^+_{\\rm s}$ meson should also reveal information about the charm-quark hadronisation mechanism. If charm quarks hadronise by recombining with lighter quarks from the medium, the relative abundance of D$^+_{\\rm s}$ mesons with respect to non-strange D mesons is expected to be larger in Pb-Pb than in pp collisions, at low and intermediate p$_{\\rm T}$, due to the large abundance o...

  9. Results from (anti-)(hyper-)nuclei production and searches for exotic bound states with ALICE at the LHC

    CERN Document Server

    Sharma, Natasha

    2016-01-01

    The excellent particle identification capabilities of the ALICE detector, using the time projection chamber and the time-of-flight detector, allow the detection of light nuclei and anti-nuclei. Furthermore, the high tracking resolution provided by the inner tracking system enables the separation of primary nuclei from those coming from the decay of heavier systems. This allows for the reconstruction of decays such as the hypertriton mesonic weak decay ($^3_{\\Lambda}$H$\\rightarrow ^3$He + $\\pi^-$), the decay of a hypothetical bound state of a $\\Lambda$n into a deuteron and pion or the H-dibaryon decaying into a $\\Lambda$, a proton and a $\\pi^{-}$. An overview of the production of stable nuclei and anti-nuclei in proton-proton, proton-lead and, in particular, lead-lead collisions is presented. Hypernuclei production rates in Pb--Pb are also shown, together with the upper limits estimated on the production of hypothetical exotica candidates. The results are compared with predictions for the production in thermal...

  10. Precision measurement of the mass difference between light nuclei and anti-nuclei with the ALICE experiment at the LHC

    CERN Document Server

    2015-01-01

    We report on a measurement of the difference $\\Delta \\mu = \\Delta (m / |z|)$ between the mass-over-charge ratio of deuteron (d) and anti-deuteron ($\\overline{\\rm d}$), and $^3{\\rm He}$ and $^3{\\overline{\\rm He}}$ nuclei, carried out with ALICE (A Large Ion Collider Experiment) in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\\sqrt{s_{\\rm NN}}=~2.76~\\rm{TeV}$. Our measurement yields ${\\Delta \\mu}_{\\rm{d\\bar{d}}}/{\\mu}_{\\rm{d}} = [0.9 \\pm 0.5 (\\rm{stat.}) \\pm 1.4 (\\rm{syst.})] \\times 10^{-4}$ and ${\\Delta \\mu}_{\\rm{^{3}He ^{3}\\overline{He}}}/{\\mu}_{\\rm{^{3}He}} = [-1.2 \\pm 0.9 (\\rm{stat.}) \\pm 1.0 (\\rm{syst.})] \\times 10^{-3}$. Combining these results with existing measurements of the masses of the (anti-)nucleons, the relative binding energy differences are extracted, ${\\Delta \\varepsilon}_{\\rm{d\\bar{d}}}/{\\varepsilon}_{\\rm{d}} = -0.04 \\pm 0.05(\\rm{stat.}) \\pm 0.12(\\rm{syst.})$ and ${\\Delta \\varepsilon}_{\\rm{^{3}He ^{3}\\overline{He}}}/{\\varepsilon}_{\\rm{^{3}He}} = 0.24 \\pm 0.16(\\rm{stat.}) \\pm...

  11. D meson-hadron angular correlations in pp and p-Pb collisions with ALICE at the LHC

    CERN Document Server

    Colamaria, Fabio

    2014-01-01

    The comparison of angular correlations between charmed mesons and charged hadrons produced in pp, p-Pb and Pb-Pb collisions can give insight into charm quark energy loss mechanisms in hot nuclear medium formed in heavy-ion collisions and can help to spot possible modifications of charm quark hadronization induced by the presence of the medium. The analysis of pp and p-Pb data and the comparison with predictions from pQCD calculations, besides constituting the necessary baseline for the interpretation of Pb-Pb results, can provide relevant information on charm production and fragmentation processes. We present a study of azimuthal correlations between D$^0$ and D$^{\\ast +}$ mesons and charged hadrons measured by the ALICE experiment in pp collisions at $\\sqrt{s} = 7$ TeV and p-Pb collisions at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV. D mesons were reconstructed from their hadronic decays at central rapidity and in the transverse momentum range $2 < p_{_{\\rm T}} < 16$ GeV/$c$, and they were correlated to charged h...

  12. Study of the muon production from open heavy flavours predicted by the Color Glass Condensate model in proton-proton and proton-lead collision with the Alice muon spectrometer at LHC

    International Nuclear Information System (INIS)

    Charpy, A.

    2007-10-01

    It will be possible to test the latest developments of the Quantum Chromodynamics (QCD) in the new LHC (large hadron collider) machine. One of these, the Colour Glass Condensate (CGC), describes the parton distributions of the nucleus in the saturation region, i.e. at small x. This theoretical description of the initial conditions of the heavy ion collisions is necessary to predict the heavy quark cross section production which evolves in a possible deconfined matter: the Quark-Gluon Plasma (PQG). Alice is the LHC experiment mainly dedicated to the study of the PQG produced in ultra-relativistic heavy ion collisions. The measurement of J/Psi and Upsilon resonance suppression is a signature of this deconfined medium which is studied with the Alice muon spectrometer. Its acceptance at large rapidity is well adapted for studying the prediction of CGC at small-x. The first part of this report presents the results of beam test experiment at CERN. It was the first time that the muon spectrometer tracking chambers were tested equipped with the final version of the front end electronics and the data acquisition system Crocus. The relevant calibration parameters of the front end electronics were introduced in the analysis in order to improve the quality of the track reconstruction. In the second part, these parameters were used in the simulations. The last part proposes a study of the CGC with the Alice muon spectrometer, involving the measurements of open charm and open beauty. (author)

  13. Beauty-jet tagging using the track counting method in pp collisions with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Feldkamp, Linus [Westfaelische Wilhelms-Universitaet Muenster (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    Charm and beauty quarks, produced in the early stage of heavy-ion collisions, are ideal probes to study the characteristics of the hot and dense deconfined medium (Quark-Gluon Plasma) formed in these collisions. The radiative energy loss of high energy partons interacting with the medium is expected to be larger for gluons than for quarks, and to depend on the quark mass, with beauty quarks losing less energy than charm quarks, light quarks and gluons. Therefore, a comparison of the modification in the momentum distribution or possibly in the jet shape of beauty-jets with that of light flavour or c-jets in Pb-Pb collisions relative to pp collisions allows to investigate the mass dependence of the energy loss. It also allows to study the redistribution of the lost energy and possible modifications to b-quark fragmentation in the medium. The track counting method exploits the large rφ-impact parameters, d{sub 0}, of B-meson decay products to identify beauty-jets. The signed rφ-impact parameter, d{sub 0} = sign(vector d{sub 0} . vector p{sub jet}) d{sub 0}, is calculated for each track in the jet cone, where vector d{sub 0} is pointing away from the primary vertex. The distribution of the n-th largest d{sub 0} in a jet is sensitive to the flavor of the hadronizing parton and allows to select jets coming form beauty on a statistical basis. In this contribution, we give an overview of the beauty jet measurement using the track counting method with ALICE in pp collisions at √(s) = 7 TeV that will serve as baseline reference for future energy loss studies.

  14. Studies for dimuon measurement with ALICE

    International Nuclear Information System (INIS)

    Jouan, D.

    1995-01-01

    The idea of measuring dimuon in the ALICE detector is not new, since it already appeared in the Aachen Conference. In the meantime studies were aiming at the use of the two detectors of LHC p-p physics, CMS and ATLAS, already dedicated to dimuon measurement, for these same measurements in heavy ion collisions, whereas the detector dedicated to heavy ions physics at LHC, ALICE, was considering all the other observables. Recently, the interest for dimuon measurements in ALICE was renewed by demands from LHC committee, stiring the activities of a working group in the ALICE collaboration, also associated to a more recent move from new groups. In the following the author briefly describes the interest of measuring dimuons in heavy ion collisions, particularly in ALICE, then the experimental strategy and first estimates of the performances that could be reached with the proposed system

  15. Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE

    CERN Document Server

    Mazer, Joel

    In relativistic heavy ion collisions at the Large Hadron Collider (LHC), a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP) is produced. Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. Within the framework of perturbative Quantum Chromodynamics (pQCD), jet production is well understood in pp collisions. We can use jets measured in pp interactions as a baseline reference for comparing to heavy ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of trigger jets with charged hadrons and is examined in transverse momentum bins of the trigger jets, transverse momentum bins of the associated hadrons, and studied as a function of collision centrality. A highly robust and precise background subtraction method is used in this analysis to remove the complex, flow domin...

  16. Calibration of the ALICE transition radiation detector and a study of Z{sup 0} and heavy quark production in pp colissions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bailhache, Raphaelle

    2009-01-28

    The ALICE Experiment is one of the four experiments installed at the Large Hadron Collider (LHC). One of its detector-systems, the Transition Radiation Detector (TRD), is a gas detector designed for electron identification and charged particle tracking. The charged particle ionizes the gas along its path and electrons drift in an uniform field of 700 V/cm over 3 cm before being amplified. We implemented procedures to calibrate the drift velocity of the electrons, the time-offset of the signal, the amplification factor and the width of the Pad Response Function (PDF) characterizing the sharing of the deposited charge over adjacent pads. Physics events (pp and PbPb collisions) will be used. The performances of the algorithms were tested on simulated pp collisions at {radical}(s)=14 TeV and on first real data taken with cosmic-rays in the ALICE setup. The calibration software was installed on the Data Acquisition System at CERN and executed continuously during the cosmic-ray data taking in 2008, providing a first determination of the calibration constants. This thesis presents also a study on the capability of the ALICE central barrel to detect the Z{sup 0} boson through the decay Z{sup 0}{yields}e{sup +}e{sup -} in pp collisions at 14 TeV. We demonstrated that the Z{sup 0}{yields}e{sup +}e{sup -} is characterized by a very clean signal in the dielectron reconstructed invariant mass spectrum. At such high transverse momentum (about 45 GeV/c), the electrons from Z{sup 0} are identified with the Transition Radiation Detector. The remaining background from misidentified pions and electrons from heavy-flavored decays are rejected by the requirement of two isolated reconstructed tracks. The main challenge comes from the very small production rate. Therefore we estimated the efficiency of a trigger based on a low p{sub T} cut and electron identification with the TRD and showed that about 100 Z{sup 0}{yields}e{sup +}e{sup -} can be reconstructed per year employing such a

  17. Calibration of the ALICE transition radiation detector and a study of Z0 and heavy quark production in pp collisions at the LHC

    International Nuclear Information System (INIS)

    Bailhache, Raphaelle

    2009-01-01

    The ALICE Experiment is one of the four experiments installed at the Large Hadron Collider (LHC). One of its detector-systems, the Transition Radiation Detector (TRD), is a gas detector designed for electron identification and charged particle tracking. The charged particle ionizes the gas along its path and electrons drift in an uniform field of 700 V/cm over 3 cm before being amplified. We implemented procedures to calibrate the drift velocity of the electrons, the time-offset of the signal, the amplification factor and the width of the Pad Response Function (PDF) characterizing the sharing of the deposited charge over adjacent pads. Physics events (pp and PbPb collisions) will be used. The performances of the algorithms were tested on simulated pp collisions at √(s)=14 TeV and on first real data taken with cosmic-rays in the ALICE setup. The calibration software was installed on the Data Acquisition System at CERN and executed continuously during the cosmic-ray data taking in 2008, providing a first determination of the calibration constants. This thesis presents also a study on the capability of the ALICE central barrel to detect the Z 0 boson through the decay Z 0 →e + e - in pp collisions at 14 TeV. We demonstrated that the Z 0 →e + e - is characterized by a very clean signal in the dielectron reconstructed invariant mass spectrum. At such high transverse momentum (about 45 GeV/c), the electrons from Z 0 are identified with the Transition Radiation Detector. The remaining background from misidentified pions and electrons from heavy-flavored decays are rejected by the requirement of two isolated reconstructed tracks. The main challenge comes from the very small production rate. Therefore we estimated the efficiency of a trigger based on a low p T cut and electron identification with the TRD and showed that about 100 Z 0 →e + e - can be reconstructed per year employing such a trigger. Another physics topics investigated in this thesis is the measurement

  18. Data science in ALICE

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    ALICE is the LHC experiment dedicated to the study of Heavy Ion collisions. In particular, the detector features low momentum tracking and vertexing, and comprehensive particle identification capabilities. In a single central heavy ion collision at the LHC, thousands of particles per unit rapidity are produced, making the data volume, track reconstruction and search of rare signals particularly challenging. Data science and machine learning techniques could help to tackle some of the challenges outlined above. In this talk, we will discuss some early attempts to use these techniques for the processing of detector signals and for the physics analysis. We will also highlight the most promising areas for the application of these methods.

  19. Muon production from heavy-flavour hadron decays in p-Pb and pp collisions with ALICE at the CERN-LHC

    International Nuclear Information System (INIS)

    Shuang, Li

    2015-01-01

    The LHC heavy-ion physics program aims at investigating the properties of strongly-interacting matter in extreme conditions of temperature and energy density where the Quark-Gluon Plasma (QGP) is formed. In high-energy heavy-ion collisions, heavy quarks (charm and beauty) are regarded as efficient probes of the properties of the QGP. The heavy-ion physics program requires also the study of proton-proton (pp) and proton-nucleus (p-Pb) collisions. The study of p-Pb collisions is used to investigate cold nuclear matter effects and to validate and quantify hot nuclear matter effects which are observed in nucleus-nucleus (Pb-Pb) collisions. This thesis work is devoted to the study of open heavy-flavour production at forward and backward rapidity via single muons in p-Pb collisions at √(s_N_N) = 5.02 TeV with the ALICE experiment at the LHC. The pp reference using available measurements at 2.76 and 7 TeV and a pQCD-driven method for the scaling to 5.02 TeV is estimated. The measurements of the nuclear modification factor (R_p_P_b) at forward and backward rapidity and forward-to-backward ratio in p-Pb collisions, indicate that cold nuclear matter effects are small over the whole transverse momentum (p_T) region at forward rapidity (R_p_P_b compatible with unity within uncertainties). In the backward rapidity, the nuclear modification factor deviates from unity in the intermediate p_T region (2 < pT < 4 GeV/c). These results confirm that the strong suppression measured at high p_T in central Pb-Pb collisions is due to final-state effects induced by the hot and dense nuclear medium. The results of the nuclear modification factor and forward-to-backward ratio as a function of centrality in p-Pb collisions are discussed. Even in central collisions, the nuclear modification factor is compatible with unity at high p_T. (author)

  20. ALICE electromagnetic calorimeter technical design report

    NARCIS (Netherlands)

    Cortese, P.; Peitzmann, T.; de Haas, A.P.; Nooren, G.J.L.; Oskamp, C.J.; van den Brink, A.; Ivan, C.G.; Kamermans, R.; Kuijer, P.G.; Botje, M.A.J.; van der Kolk, N.; Mischke, A.; van Leeuwen, M.

    2008-01-01

    ALICE (A Large Ion Collider Experiment) at the LHC contains a wide array of detector systems for measuring hadrons, leptons, and photons. ALICE is designed to carry out comprehensive measurements of high energy nucleus-nucleus collisions, in order to study QCD matter under extreme conditions and to

  1. The ALICE TPC Upgrad

    Science.gov (United States)

    Castro, Andrew; Alice-Usa Collaboration; Alice-Tpc Collaboration

    2017-09-01

    The Time Projection Chamber (TPC) currently used for ALICE (A Large Ion Collider Experiment at CERN) is a gaseous tracking detector used to study both proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) In order to accommodate the higher luminosit collisions planned for the LHC Run-3 starting in 2021, the ALICE-TPC will undergo a major upgrade during the next LHC shut down. The TPC is limited to a read out of 1000 Hz in minimum bias events due to the intrinsic dead time associated with back ion flow in the multi wire proportional chambers (MWPC) in the TPC. The TPC upgrade will handle the increase in event readout to 50 kHz for heavy ion minimum bias triggered events expected with the Run-3 luminosity by switching the MWPCs to a stack of four Gaseous Electron Multiplier (GEM) foils. The GEM layers will combine different hole pitches to reduce the dead time while maintaining the current spatial and energy resolution of the existing TPC. Undertaking the upgrade of the TPC represents a massive endeavor in terms of design, production, construction, quality assurance, and installation, thus the upgrade is coordinated over a number of institutes worldwide. The talk will go over the physics motivation for the upgrade, the ALICE-USA contribution to the construction of Inner Read Out Chambers IROCs, and QA from the first chambers built in the U.S

  2. Performance of the Alice muon spectrometer. Weak boson production and measurement in heavy-ion collisions at LHC; Performance du spectrometre a muons d'ALICE. Production et mesure des bosons faibles dans des collisions d'ions lourds aupres du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Conesa del valle, Z

    2007-07-15

    Lattice QCD predicts a transition from a hadronic phase to a Quark Gluon Plasma phase, QGP, for temperatures above 10{sup 13} K. Heavy-ion collisions are proposed to recreate it in laboratory. With such a purpose, the LHC (Large Hadron Collider) will provide Pb-Pb collisions at 5.5 TeV/u, and the ALICE experiment will permit to explore them. In particular, the ALICE muon spectrometer will permit to investigate the muon related probes (quarkonia, open beauty,...). The expected apparatus performances to measure muons and dimuons are discussed. A factorization technique is employed to unravel the different contributions to the global efficiency. Results indicate that the detector should be able to measure muons up to pT {approx} 100 GeV/c with a resolution of about 10 per cent. We show that weak bosons production could be measured for the first time in heavy-ion collisions. Single muon p{sub T} and dimuons invariant mass distributions will probe W and Z production. As mainly muons from b- and c-quarks decays will populate the intermediate-p{sub T} of 5 - 25 GeV/c, heavy quark in-medium energy loss calculations indicate that the single muon spectra would be suppressed by a factor 2-4 in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. However, for p{sub T} > 35 GeV/c the weak boson decays are predominant, and no suppression is expected. Estimations indicate that the b- and W-muons crossing point shifts down in transverse momenta by 5 to 7 GeV/c in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. (author)

  3. Measurements of the dielectron continuum in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

    Science.gov (United States)

    Vázquez Doce, O.; Alice Collaboration

    2017-11-01

    Dielectrons produced in ultra-relativistic heavy-ion collisions provide a unique probe of the whole system evolution as they are unperturbed by final-state interactions. The dielectron continuum is extremely rich in physics sources: thermal radiation is of particular interest as it carries information about the temperature of the hot and dense system created in such collisions. The dielectron invariant mass distribution is sensitive to medium modifications of the spectral function of vector mesons that are linked to the potential restoration of chiral symmetry. Correlated electron pairs from semi-leptonic charm and beauty decays provide information about the heavy-quark energy loss. A summary of the LHC Run-1 preliminary results in all three collisions systems (pp, p-Pb and Pb-Pb) is presented. Furthermore, the status of the ongoing Run-2 analyses is discussed with a focus on pp collisions collected with a high charged-particle multiplicity trigger, on new analysis methods to separate prompt from non-prompt sources, and on the usage of machine learning methods for background rejection.

  4. Production of strange hadrons in charged jets in Pb–Pb collisions measured with ALICE at the LHC

    CERN Document Server

    AUTHOR|(CDS)2091404

    First measurements of the baryon-to-meson ratio in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) showed an relatively enhanced baryon production at interme- diate transverse momentum (pT ≈ 3 GeV/c) relative to pp collisions. Measurements at much higher energy at the Large Hadron Collider (LHC) at CERN corroborated this observation. Although the mechanisms of this enhanced baryon production is not yet known, there are several scenarios proposed to explain this. These are e.g. collective effects and string fragmentation in a hydro-dynamically expanding environment. These collective phenomena, like the particle flow, are a characteristic feature of the Underly- ing Event (UE) in Pb–Pb collisions. Partons that are produced by hard parton scatterings in an early stage of the heavy-ion collision and which can be measured as a collimated spray of particles, a particle jet, are assumed to hadronise via fragmentation. The production of the particles from the Underlying Event (UE) is in princip...

  5. Chasseurs de Higgs au LHC - A la Recherche des l'Origines

    CERN Multimedia

    Yves Sirois

    To increase understanding of the LHC, why scientists collaborate on this experiment and what they hope to achieve with the LHC. A 51 slide presentation in French for a general audience. Delivered at the "Cité des Sciences" in Paris, "Rencontres du Ciel et de l'Espace," November, 2010 This presentation covers the following topics: - The LHC --what it is --what it looks like --where it is located --the international nature of CERN & experiment collaborations --the experiments - Accelerators --a brief history on accelerators --what accelerators can do - The scientific goals of the LHC - Particle Physics in General --history & the basics - Impact on Technology and Society - First LHC Results - Concluding remarks

  6. First Physics Results from ALICE

    International Nuclear Information System (INIS)

    Peressounko, Dmitri; Castillo Castellanos, Javier; Belikov, Iouri

    2010-01-01

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. The main purpose of ALICE is to investigate the properties of a state of deconfined nuclear matter, the Quark Gluon Plasma. Heavy flavour measurements will play a crucial role in this investigation. The physics programme of ALICE has started by studying proton-proton collisions at unprecedented high energies. We will present the first results on open heavy flavour and quarkonia in proton-proton collisions at √s = 7 TeV measured by the ALICE experiment at both mid- and forward-rapidities. We will conclude with the prospects for heavy flavour and quarkonium measurements in both proton-proton and nucleus-nucleus collisions. Also presented are first results of neutral meson reconstruction and its perspectives, as well as further physics studies. (author)

  7. Measurement of $\\Lambda_{\\rm c}$ Baryon production in the decay channel $\\Lambda_{\\rm c} \\rightarrow p \\rm K^{0}_{\\rm S}~$ in proton-proton and proton-lead collisions with ALICE detector at LHC

    CERN Document Server

    Meninno, Elisa

    This thesis describes the study of the production of the charmed baryon $\\Lambda_{\\rm c}^{+}$ in proton-proton and proton-lead collisions with the ALICE experiment, operating at the Large Hadron Collider (LHC) at CERN. ALICE was built to study hadronic collisions (pp and A-A) and, in particular, aims to investigate the $Quark-Gluon Plasma$ (QGP), state of the matter during the first instants of life of the universe. When two ultra-relativistic heavy nuclei collide, the extreme conditions of temperature and pressure, necessary for the QGP formation, can be created. In particular, heavy quarks (charm and beauty) are produced in hard scattering processes during the first stages of the hadronic collision. The measurement of hadrons with heavy quarks in pp collisions at the LHC energies is a powerful test for perturbative quantum cromodynamics (pQCD) in this energy domain. Moreover, these studies are the necessary reference for studying the production of heavy quarks in nucleus-nucleus collisions. Results from pp ...

  8. On the horizon for ALICE

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    ALICE – the LHC experiment specifically designed to study the physics of the Quark Gluon Plasma (QGP) and, more generally, of strongly interacting matter at extreme energy densities – is planning a series of upgrades during the long shutdowns of the accelerator in the coming years. The new ALICE will have enhanced read-out capabilities and improved efficiency when tracking particles and identifying the vertex of the interactions.     Corrado Gargiulo, ALICE's Project Engineer with ITS prototype. The new ITS will consist of 7 layers of silicon sensors supported by a ultra-light carbon fibre structure.  The LHC has been operated with lead ions for only about two months, but this has been sufficient for ALICE and other LHC experiments to produce results that previous accelerators took several years of operation to produce. “Prior to the start-up of the LHC heavy-ion programme, the nature of the QGP as an almost-perfect liquid had already...

  9. Production of strange hadrons in charged jets in Pb-Pb collisions measured with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Alice

    2016-10-26

    First measurements of the baryon-to-meson ratio in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) showed an relatively enhanced baryon production at intermediate transverse momentum (p{sub T}∼3 GeV/c) relative to pp collisions. Measurements at much higher energy at the Large Hadron Collider (LHC) at CERN corroborated this observation. Although the mechanisms of this enhanced baryon production is not yet known, there are several scenarios proposed to explain this. These are e.g. collective effects and string fragmentation in a hydro-dynamically expanding environment. These collective phenomena, like the particle flow, are a characteristic feature of the Underlying Event (UE) in Pb-Pb collisions. Partons that are produced by hard parton scatterings in an early stage of the heavy-ion collision and which can be measured as a collimated spray of particles, a particle jet, are assumed to hadronise via fragmentation. The production of the particles from the Underlying Event (UE) is in principle indepen-dent of the fragmentation process but could have a possible impact on the jet fragments. In this way it is possible that interactions between partons that stem from the fragmentation and those inside the hot and dense medium created in heavy-ion collisions, could change the jet pattern. So far several measurements observed these medium-modifications in terms of jet quenching. Furthermore a modification of the fragmentation functions in Pb-Pb collisions was lately seen by the CMS and the ATLAS experiment. There are models that consider alternative hadronisation mechanisms to explain the baryon anomaly. They expect hadrons at low p{sub T} to be produced via recombination, which is a soft process that is expected to favour baryon over meson production. Particles with a momentum larger than p{sub T}=4-6 GeV/c would, on the other hand, be produced in hard processes via fragmentation, that does not lead to an enhanced production of baryons (compared to

  10. Study of the muon production from open heavy flavours predicted by the Color Glass Condensate model in proton-proton and proton-lead collision with the Alice muon spectrometer at LHC

    International Nuclear Information System (INIS)

    Charpy, A.

    2007-10-01

    The whole particle physics community is waiting for the Large Hadron Collider (LHC) commissioning at CERN. Indeed, the potential of discovery is very large in lots of themes. In particular, it will be possible to test the developments of the Quantum Chromodynamics (QCD) achieved during last years. One of these, the Colour Glass Condensate, describes the parton distributions of the nucleus in the saturation region, i.e. at small x. This theoretical description of the initial conditions of the heavy ion collisions is necessary to predict the heavy quark cross section production which evolves in a possible deconfined matter: the Quark-Gluon Plasma (PQG). ALICE is the LHC experiment mainly dedicated to the study of the PQG produced in ultra-relativistic heavy ion collisions. The measurement of J /Ψ and Υ resonance suppression is a signature of this deconfined medium which is studied with the ALICE muon spectrometer. Its acceptance at large rapidity is well adapted for studying the prediction of CGC at small-x. The first part of this report presents the results of beam test experiment at CERN. It was the first time that the muon spectrometer tracking chambers were tested equipped with the final version of the front end electronics and the data acquisition system CROCUS. The relevant calibration parameters of the front end electronics were introduced in the analysis in order to improve the quality of the track reconstruction. In the second part. these parameters were used in the simulations. The last part proposes a study of the CGC with the ALICE muon spectrometer. involving the measurements of open charm and open beauty. (author)

  11. Study of the muon production from open heavy flavours predicted by the Color Glass Condensate model in proton-proton and proton-lead collision with the Alice muon spectrometer at LHC; Etude de la production de muons issus des saveurs lourdes predite par le modele de Color Glass Condensate dans les collisions proton-proton et proton-plomb dans l'acceptance du spectrometre a muons de l'experience Alice du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Charpy, A

    2007-10-15

    The whole particle physics community is waiting for the Large Hadron Collider (LHC) commissioning at CERN. Indeed, the potential of discovery is very large in lots of themes. In particular, it will be possible to test the developments of the Quantum Chromodynamics (QCD) achieved during last years. One of these, the Colour Glass Condensate, describes the parton distributions of the nucleus in the saturation region, i.e. at small x. This theoretical description of the initial conditions of the heavy ion collisions is necessary to predict the heavy quark cross section production which evolves in a possible deconfined matter: the Quark-Gluon Plasma (PQG). ALICE is the LHC experiment mainly dedicated to the study of the PQG produced in ultra-relativistic heavy ion collisions. The measurement of J /{psi} and {upsilon} resonance suppression is a signature of this deconfined medium which is studied with the ALICE muon spectrometer. Its acceptance at large rapidity is well adapted for studying the prediction of CGC at small-x. The first part of this report presents the results of beam test experiment at CERN. It was the first time that the muon spectrometer tracking chambers were tested equipped with the final version of the front end electronics and the data acquisition system CROCUS. The relevant calibration parameters of the front end electronics were introduced in the analysis in order to improve the quality of the track reconstruction. In the second part. these parameters were used in the simulations. The last part proposes a study of the CGC with the ALICE muon spectrometer. involving the measurements of open charm and open beauty. (author)

  12. 10 February 2012 - Permanent Representative of the Republic of India to the Conference on Disarmament, United Nations Office at Geneva Ambassador Mehta signing the guest book with International Relations Adviser R. Voss;in the LHC tunnel at Point 2 and ALICE underground experimental area with Collaboration Deputy Spokesperson Y. Schutz.

    CERN Document Server

    Maximilien Brice

    2012-01-01

    10 February 2012 - Permanent Representative of the Republic of India to the Conference on Disarmament, United Nations Office at Geneva Ambassador Mehta signing the guest book with International Relations Adviser R. Voss;in the LHC tunnel at Point 2 and ALICE underground experimental area with Collaboration Deputy Spokesperson Y. Schutz.

  13. 21 May 2013 - Slovakian State Secretary, Ministry of Health V. Čislák signing the Guest Book with CERN Director-General R. Heuer; in the LHC tunnel at Point 2 with V. Senaj (Technology Department); in the ALICE experimental cavern with P. Chochula (Physics Department). M. Cirilli (Knowledge Transfer Group) present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    21 May 2013 - Slovakian State Secretary, Ministry of Health V. Čislák signing the Guest Book with CERN Director-General R. Heuer; in the LHC tunnel at Point 2 with V. Senaj (Technology Department); in the ALICE experimental cavern with P. Chochula (Physics Department). M. Cirilli (Knowledge Transfer Group) present.

  14. 27 February 2012 - First Lady of Mexico, M. Zavala Gómez del Campo, welcomed by Adviser J. Salicio Diez withe ALICE Management and Mexican Users at LHC Point 2 and signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    27 February 2012 - First Lady of Mexico, M. Zavala Gómez del Campo, welcomed by Adviser J. Salicio Diez withe ALICE Management and Mexican Users at LHC Point 2 and signing the guest book with CERN Director-General R. Heuer.

  15. 31 Jannuary 2012 - Pakistan COMSATS Executive Director I. E. Qureshi visiting the LHC tunnel at Point 2 with ALICE Collaboration Spokesperson P. Giubellino and International Relations Adviser R. Voss; Exchange of gifts and signature of the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    31 Jannuary 2012 - Pakistan COMSATS Executive Director I. E. Qureshi visiting the LHC tunnel at Point 2 with ALICE Collaboration Spokesperson P. Giubellino and International Relations Adviser R. Voss; Exchange of gifts and signature of the guest book with CERN Director-General R. Heuer.

  16. Jet physics in ALICE

    International Nuclear Information System (INIS)

    Loizides, C.A.

    2005-01-01

    The ALICE experiment is one of the experiments currently prepared for the Large Hadron Collider (LHC) at CERN, Geneva, starting operation end of 2007. ALICE is dedicated to the research on nucleus-nucleus collisions at ultra-relativistic energies, which addresses the properties of strongly interacting matter under varying conditions of high density and temperature. The conditions provided at the LHC allow significant qualitative improvement with respect to previous studies. In particular, energetic probes, light quarks and gluons, will be abundantly produced. These probes might be identified by their fragmentation into correlated particles, so called jets, of high enough energy to allow full reconstruction of jet properties; even in the underlying heavy-ion environment. Understanding the dependence of high-energy jet production and fragmentation influenced by the dense medium created in the collision region is an open field of active research. Generally, one expects energy loss of the probes due to medium-induced gluon radiation. It is suggested that hadronization products of these, rather soft gluons may be contained within the jet emission cone, resulting in a modification of the characteristic jet fragmentation, as observed via longitudinal and transverse momentum distributions with respect to the direction of the initial parton, as well as of the multiplicity distributions arising from the jet fragmentation. Particle momenta parallel to the jet axis are softened (jet quenching), while transverse to it increased (transverse heating). The present thesis studies the capabilities of the ALICE detectors to measure these jets and quantifies obtainable rates and the quality of jet reconstruction, in both proton-proton and lead-lead collisions at the LHC. In particular, it is addressed whether modification of the jet fragmentation can be detected within the high-particle-multiplicity environment of central lead-lead collisions. (orig.)

  17. Particle correlations at ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Erazmus, B.; Lednicky, R.; Lyuboshitz, V.; Martin, L.; Mikhailov, K.; Pluta, J.; Sinyukov, Yu.; Stavinsky, A.; Werner, K

    1998-12-31

    The ability of the ALICE detector for determination of the space-time characteristics of particle production in heavy-ion collisions at LHC from measurements of the correlation functions of identical and non-identical particles at small relative velocities is discussed. The possibility to use the correlations of non-identical particles for a direct determination of the delays in emission of various particle species at time scales as small as 10{sup -23} s is demonstrated. The influence of the multi-boson effects on pion multiplicities, single-pion spectra and two-pion correlation functions is discussed. (author) 63 refs.

  18. First proton-proton collisions at the LHC as observed with the ALICE detector measurement of the charged particle pseudorapidity density at $\\sqrt{s}$ = 900 GeV

    CERN Document Server

    Aamodt, K; Abeysekara, U; Abrahantes Quintana, A; Acero, A; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Aguilar Salazar, S; Ahammed, Z; Ahmad, A; Ahmad, N; Ahn, S U; Akimoto, R; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Almaráz Aviña, E; Alme, J; Altini, V; Altinpinar, S; Alt, T; Andrei, C; Andronic, A; Anelli, G; Angelov, V; Anson, C; Anticic, T; Antinori, F; Antinori, S; Antipin, K; Antonczyk, D; Antonioli, P; Anzo, A; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arceo, R; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bablok, S; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baldit, A; Bán, J; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L; Barret, V; Bartke, J; Basile, M; Basmanov, V; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Becker, B; Belikov, I; Bellwied, R; Belmont-Moreno, E; Belogianni, A; Benhabib, L; Beolé, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchin, C; Bianchi, N; Bielcík, J; Bielcíková, J; Bilandzic, A; Bimbot, L; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Bohm, J; Boldizsár, L; Bombara, M; Bombonati, C; Bondila, M; Borel, H; Borshchov, V; Bortolin, C; Bose, S; Bosisio, L; Bossú, F; Botje, M; Böttger, S; Bourdaud, G; Boyer, B; Braun, M; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Bruckner, G; Bruna, E; Bruno, G E; Brun, R; Budnikov, D; Buesching, H; Bugaev, K; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Caines, H; Cai, X; Camacho, E; Camerini, P; Campbell, M; Canoa Roman, V; Capitani, G P; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Caselle, M; Castillo Castellanos, J; Castillo Hernandez, J F; Catanescu, V; Cattaruzza, E; Cavicchioli, C; Cerello, P; Chambert, V; Chang, B; Chapeland, S; Charpy, A; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Choi, K; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chuman, F; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Cobanoglu, O; Coffin, J P; Coli, S; Colla, A; Conesa Balbastre, G; Conesa del Valle, Z; Conner, E S; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; Cussonneau, J; Dainese, A; Dalsgaard, H H; Danu, A; Dash, A; Dash, S; Das, I; Das, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; de Gaspari, M; de Groot, J; De Gruttola, D; de Haas, A P; De Marco, N; de Rooij, R; De Pasquale, S; de Vaux, G; Delagrange, H; Dellacasa, G; Deloff, A; Demanov, V; Dénes, E; Deppman, A; D'Erasmo, G; Derkach, D; Devaux, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dialinas, M; Díaz, L; Díaz, R; Dietel, T; Ding, H; Divià, R; Djuvsland, Ø; do Amaral Valdiviesso, G; Dobretsov, V; Dobrin, A; Dobrowolski, T; Dönigus, B; Domínguez, I; Dordic, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Enokizono, A; Espagnon, B; Estienne, M; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Ferretti, R; Figueredo, M A S; Filchagin, S; Fini, R; Fionda, F M; Fiore, E M; Floris, M; Fodor, Z; Foertsch, S; Foka, P; Fokin, S; Formenti, F; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Frolov, A; Fuchs, U; Furano, F; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Ganoti, P; Ganti, M S; Garabatos, C; García Trapaga, C; Gebelein, J; Gemme, R; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glasow, R; Glässel, P; Glenn, A; Gomez, R; González Santos, H; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Gorbunov, Y; Gotovac, S; Gottschlag, H; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J Y; Grosso, R; Guarnaccia, C; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Gustafsson, H A; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamblen, J; Han, B H; Harris, J W; Hartig, M; Harutyunyan, A; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernández, C; Herrera Corral, G; Herrmann, N; Hetland, K F; Hicks, B; Hiei, A; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hrivnácová, I; Huber, S; Humanic, T J; Hu, S; Hutter, D; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Iwasaki, T; Jacholkowski, A; Jacobs, P; Jancurová, L; Jangal, S; Janik, R; Jayananda, K; Jena, C; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanovic, P; Jung, H; Jung, W; Jusko, A; Kaidalov, A B; Kalcher, S; Kalinák, P; Kalliokoski, T; Kalweit, A; Kamal, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kapitan, J; Kaplin, V; Kapusta, S; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kikola, D; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J H; Kim, J; Kim, J S; Kim, M; Kim, M; Kim, S H; Kim, S; Kim, Y; Kirsch, S; Kiselev, S; Kisel, I; Kisiel, A; Klay, J L; Klein-Bösing, C; Klein, J; Kliemant, M; Klovning, A; Kluge, A; Kniege, S; Koch, K; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornas, E; Kour, R; Kowalski, M; Kox, S; Kozlov, K; Králik, I; Kral, J; Kramer, F; Kraus, I; Kravcáková, A; Krawutschke, T; Krivda, M; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kumar, L; Kumar, N; Kupczak, R; Kurashvili, P; Kurepin, A; Kurepin, A N; Kuryakin, A; Kushpil, S; Kushpil, V; Kutouski, M; Kvaerno, H; Kweon, M J; Kwon, Y; Lackner, F; Ladrón de Guevara, P; Lafage, V; Lal, C; Lara, C; La Rocca, P; Larsen, D T; Laurenti, G; Lazzeroni, C; Le Bornec, Y; Le Bris, N; Lee, H; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; León Monzón, I; León Vargas, H; Lévai, P; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Listratenko, O; Liu, L; Li, Y; Loginov, V; Lohn, S; López Noriega, M; López-Ramírez, R; López Torres, E; Lopez, X; Løvhøiden, G; Lozea Feijo Soares, A; Lunardon, M; Luparello, G; Luquin, L; Lu, S; Lutz, J R; Luvisetto, M; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahajan, A; Mahapatra, D P; Maire, A; Makhlyueva, I; Ma, K; Malaev, M; Maldonado Cervantes, I; Malek, M; Mal'Kevich, D; Malkiewicz, T; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mares, J; Margagliotti, G V; Margotti, A; Marín, A; Martashvili, I; Martinengo, P; Martínez Davalos, A; Martínez García, G; Martínez, M I; Maruyama, Y; Ma, R; Marzari Chiesa, A; Masciocchi, S; Masera, M; Masetti, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Mattos Tavares, B; Matyja, A; Mayani, D; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mendez Lorenzo, P; Meoni, M; Mercado Pérez, J; Mereu, P; Miake, Y; Michalon, A; Miftakhov, N; Milosevic, J; Minafra, F; Mischke, A; Miskowiec, D; Mitu, C; Mizoguchi, K; Mlynarz, J; Mohanty, B; Molnar, L; Mondal, M M; Montaño Zetina, L; Monteno, M; Montes, E; Morando, M; Moretto, S; Morsch, A; Moukhanova, T; Muccifora, V; Mudnic, E; Muhuri, S; Müller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nianine, A; Nicassio, M; Nielsen, B S; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyatha, A; Nygaard, C; Nyiri, A; Nystrand, J; Ochirov, A; Odyniec, G; Oeschler, H; Oinonen, M; Okada, K; Okada, Y; Oldenburg, M; Oleniacz, J; Oppedisano, C; Orsini, F; Ortíz Velázquez, A; Ortona, G; Oskamp, C; Oskarsson, A; Osmic, F; Österman, L; Ostrowski, P; Otterlund, I; Otwinowski, J; Øvrebekk, G; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paic, G; Painke, F; Pajares, C; Palaha, A; Palmeri, A; Pal, S K; Pal, S; Panse, R; Pappalardo, G S; Park, W J; Pastircák, B; Pastore, C; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pepato, A; Pereira, H; Peressounko, D; Pérez, C; Perini, D; Perrino, D; Peryt, W; Peschek, J; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petrácek, V; Petridis, A; Petris, M; Petrovici, M; Petrov, P; Petta, C; Peyré, J; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinsky, L; Pitz, N; Piuz, F; Platt, R; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta Lerma, P L M; Poggio, F; Poghosyan, M G; Poghosyan, T; Polák, K; Polichtchouk, B; Polozov, P; Polyakov, V; Pommeresch, B; Pop, A; Posa, F; Pospísil, V; Potukuchi, B; Pouthas, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pujahari, P; Pulvirenti, A; Punin, A; Punin, V; Putis, M; Putschke, J; Quercigh, E; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Rammler, M; Raniwala, R; Raniwala, S; Räsänen, S; Rashevskaya, I; Rath, S; Read, K F; Real, J; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodriguez Cahuantzi, M; Røed, K; Röhrich, D; Román López, S; Romita, R; Ronchetti, F; Rosinský, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Rubio-Montero, A J; Rui, R; Rusanov, I; Russo, G; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safarík, K; Sahoo, R; Saini, J; Saiz, P; Sakata, D; Salgado, C A; Salgueiro Dominques da Silva, R; Salur, S; Samanta, T; Sambyal, S; Samsonov, V; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schindler, H; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Segato, G; Semenov, D; Senyukov, S; Seo, J; Serci, S; Serkin, L; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharkov, G; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddi, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simili, E; Simonetti, G; Singaraju, R; Singhal, V; Singh, R; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Snow, H; Søgaard, C; Sokolov, O; Soloviev, A; Soltveit, H K; Soltz, R; Sommer, W; Son, C W; Song, M; Son, H S; Soos, C; Soramel, F; Soyk, D; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Staley, F; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stolpovsky, P; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sumbera, M; Susa, T; Swoboda, D; Symons, J; Szanto de Toledo, A; Szarka, I; Szostak, A; Szuba, M; Tadel, M; Tagridis, C; Takahara, A; Takahashi, J; Tanabe, R; Tapia Takaki, J D; Taureg, H; Tauro, A; Tavlet, M; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Tieulent, R; Tlusty, D; Toia, A; Tolyhy, T; Torcato de Matos, C; Torii, H; Torralba, G; Toscano, L; Tosello, F; Tournaire, A; Traczyk, T; Tribedy, P; Tröger, G; Truesdale, D; Trzaska, W H; Tsiledakis, G; Tsilis, E; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A; Tveter, T S; Tydesjö, H; Tywoniuk, K; Ulery, J; Ullaland, K; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vala, M; Valencia Palomo, L; Vallero, S; van den Brink, A; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasiliev, A; Vassiliev, I; Vassiliou, M; Vechernin, V; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vetlitskiy, I; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopianov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, V; Wallet, L; Wan, R; Wang, D; Wang, Y; Watanabe, K; Wen, Q; Wessels, J; Wheadon, R; Wiechula, J; Wikne, J; Wilk, A; Wilk, G; Williams, M C S; Willis, N; Windelband, B; Xu, C; Yang, C; Yang, H; Yasnopolsky, A; Yermia, F; Yi, J; Yin, Z; Yokoyama, H; Yoo, I-K; Yuan, X; Yushmanov, I; Zabrodin, E; Zagreev, B; Zalite, A; Zampolli, C; Zanevsky, Yu; Zaporozhets, Y; Zarochentsev, A; Závada, P; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zepeda, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zhou, S; Zhu, J; Zichichi, A; Zinchenko, A; Zinovjev, G; Zinovjev, M; Zoccarato, Y; Zychácek, V; Ploskon, M

    2010-01-01

    On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |eta| < 0.5, we obtain dNch/deta = 3.10 +- 0.13 (stat.) +- 0.22 (syst.) for all inelastic interactions, and dNch/deta = 3.51 +- 0.15 (stat.) +- 0.25 (syst.)...

  19. Overview of recent ALICE results

    Energy Technology Data Exchange (ETDEWEB)

    Gunji, Taku

    2016-12-15

    The ALICE experiment explores the properties of strongly interacting QCD matter at extremely high temperatures created in Pb-Pb collisions at LHC and provides further insight into small-system physics in (high-multiplicity) pp and p-Pb collisions. The ALICE collaboration presented 27 parallel talks, 50 posters, and 1 flash talk at Quark Matter 2015 and covered various topics including collective dynamics, correlations and fluctuations, heavy flavors, quarkonia, jets and high p{sub T} hadrons, electromagnetic probes, small system physics, and the upgrade program. This paper highlights some of the selected results.

  20. Overview of recent ALICE results

    CERN Document Server

    Gunji, Taku

    2016-01-01

    The ALICE experiment explores the properties of strongly interacting QCD matter at extremely high temperatures created in Pb-Pb collisions at LHC and provides further insight into small-system physics in (high-multiplicity) pp and p-Pb collisions. The ALICE collaboration presented 27 parallel talks, 50 posters, and 1 flash talk at Quark Matter 2015 and covered various topics including collective dynamics, correlations and fluctuations, heavy flavors, quarkonia, jets and high $p_{\\rm T}$ hadrons, electromagnetic probes, small system physics, and the upgrade program. This paper highlights some of the selected results.

  1. Du personnel au politique : construction d’une identité militante dans le journal d’Alice Stone Blackwell (1872-1874

    Directory of Open Access Journals (Sweden)

    Claire Sorin

    2008-09-01

    Full Text Available Le militantisme n’est pas seulement affaire de scène publique ; les coulisses, qui sont en interaction permanente avec cette scène, forment un espace crucial où les enjeux se tissent et les acteurs se fabriquent. Alice Stone Blackwell, la fille de la célèbre féministe américaine Lucy Stone, a laissé un certain nombre de journaux mais c’est dans celui qu’elle écrivit adolescente (1872-1874 que l’on voit clairement s’ébaucher et s’incarner la voix militante de l’auteur. L’étude d’un texte « privé » (dont le statut est en fait beaucoup plus complexe ne présente pas seulement l’intérêt d’un regard intime et particulier sur le mouvement féministe américain de la fin du dix-neuvième siècle. Elle permet aussi de comprendre comment l’écriture autorise le sujet à tester et à s’approprier un ensemble de discours sur la nature féminine qui rompent avec l’idéal de domesticité et le culte de la fragilité. Le journal permet à Alice Blackwell de construire son identité de militante et de l’articuler avec d’autres facettes de son existence. Loin d’être simplement le reflet conventionnel d’une pratique bourgeoise essentiellement réservée au sexe féminin, l’écriture du journal chez Blackwell participe d’un acte militant, dont le trait le plus saillant est sans doute de mettre en scène un corps vigoureux et triomphant, apte à investir la sphère publique.El militantismo no sólo es un asunto de la escena pública ; los arcanos, en continua interacción con esa escena, forman un espacio donde se trama lo que está en juego y donde se fabrican los actores. Alice Stone Blackwell, hija de la famosa feminista americana Lucy Stone, ha dejado varios diarios, pero es en él que escribió de joven (1872-1874 donde claramente se esboza y se encarna la voz militante de la autora. El estudiar un texto « privado » no sólo presenta el interés de una mirada intima sobre el movimiento

  2. Transverse momentum distributions of primary charged particles in pp, p-Pb and Pb-Pb collisions measured with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Knichel, Michael Linus

    2015-07-01

    The data analyzed for this thesis were collected in pp, p-Pb and Pb-Pb collisions by ALICE in 2010-2013. Transverse momentum (p{sub T}) distributions of primary charged particles have been measured at mid rapidity vertical stroke η vertical stroke <0.8 in inelastic pp collisions at center-of-mass energies of √(s)=0.9 TeV (for 0.15LHC in 2012 covered 0.5

  3. Underlying Event measurements in pp collisions at s√=0.9 and 7 TeV with the ALICE experiment at the LHC

    Czech Academy of Sciences Publication Activity Database

    Abelev, B.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Čepila, J.; Krus, M.; Kushpil, Svetlana; Kushpil, Vasilij; Mareš, Jiří A.; Pachr, M.; Petráček, V.; Petráň, M.; Polák, Karel; Pospíšil, V.; Šmakal, R.; Šumbera, Michal; Tlustý, D.; Vajzer, Michal; Wagner, V.; Zach, Č.; Závada, Petr

    2012-01-01

    Roč. 2012, č. 7 (2012), 116/1-116/42 ISSN 1126-6708 R&D Projects: GA MŠk LA08015 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : hadron-hadron scattering * ALICE Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.618, year: 2012

  4. Production of $\\pi^{0}$, $K^{\\pm}$ and $\\eta$ mesons in Pb-Pb and pp collisions at $\\sqrt{s_{\\rm NN}}=$2.76 TeV measured with the ALICE detector at the LHC

    CERN Document Server

    Morreale, Astrid

    2017-01-01

    One of the key signatures of the Quark-Gluon Plasma (QGP) is the modification of hadron transverse momentum differential cross-sections in heavy-ion collisions (HIC) as compared to proton-proton (pp) collisions. Suppression of hadron production at high transverse momenta ($p_{\\rm T}$) in HIC has been explained by the energy loss of the partons produced in the hard scattering processes which traverse the deconfined quantum chromodynamic (QCD) matter. The dependence of the observed suppression on the $p_{\\rm T}$ of the measured hadron towards higher $p_{\\rm T}$ is an important input for the theoretical understanding of jet quenching effects in the QGP and the nature of the energy loss, while suppression towards lower $p_{\\rm T}$ gives information about collective behaviour. The ALICE experiment at the Large Hadron Collider (LHC) performs a variety of measurements including the spectra of neutral mesons and kaons at mid-rapidity in a wide $p_{\\rm T}$ range in pp, p-Pb and Pb-Pb collisions. An overview of ALICE r...

  5. Multi-strange particle measurements in 7 TeV proton-proton and 2.76 TeV PbPb collisions with the ALICE experiment at the LHC

    CERN Document Server

    Chinellato, D D

    2011-01-01

    The production of charged multi-strange particles is studied with the ALICE experiment at the CERN LHC. Measurements of the central rapidity yields of $\\Xi^-$ and $\\Omega^-$ baryons, as well as their antiparticles, are presented as a function of transverse momentum ($p_\\mathrm{t}$) for inelastic pp collisions at $\\sqrt{s}=7$ TeV and compared to existing measurements performed at the same and/or at lower energies. The results are also compared to predictions from two different tunes of the PYTHIA event generator. We find that data significantly exceed the production rates from those models. Finally, we present the status of the multi-strange particle production studies in Pb-Pb at $\\sqrt{s_{NN}}=2.76$ TeV performed as a function of collision centrality.

  6. Correlations in small systems with ALICE

    CERN Document Server

    Lakomov, Igor

    2016-01-01

    ALICE is dedicated to the study of the strongly interacting matter, the so-called Quark-Gluon Plasma (QGP), formed in heavy-ion collisions at the LHC. In addition, ALICE also actively participated in the pp and p–Pb collision programs. In particular, the measurements of the twoparticle azimuthal correlations in pp collisions at √ s = 7 TeV and in p–Pb collisions at √ sNN = 5.02 TeV have been performed by the ALICE Collaboration during Run I of the LHC. Similar long-range correlations in p–Pb and Pb–Pb collisions have been observed on the near and away side — also known as the double ridge. Further investigations showed the importance of the Multi-Parton Interactions (MPI) in high-multiplicity collisions in small systems. In this work the ALICE results on the correlations in small systems are presented including MPI measurements in pp collisions.

  7. ALICE: Simulated lead-lead collision

    CERN Multimedia

    2003-01-01

    This track is an example of simulated data modelled for the ALICE detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. ALICE will focus on the study of collisions between nuclei of lead, a heavy element that produces many different particles when collided. It is hoped that these collisions will produce a new state of matter known as the quark-gluon plasma, which existed billionths of a second after the Big Bang.

  8. Microstrip detector for the ALICE experiment

    CERN Multimedia

    Laurent Guiraud

    1996-01-01

    This photo shows a close up of one of the silicon microstrip detectors that will be installed on the ALICE experiment at the LHC. 1698 double-sided modules of these silicon microstrips will be installed in the two outermost layers of the ALICE inner tracking system. The microstrips have to be specially designed to withstand the high resolution levels at the heart of the detector.

  9. Managing Information Flow in ALICE

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    ALICE is one of the experiments at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The ALICE detector control system is an integrated system collecting 18 different detectors’ controls and general services. Is implemented using the commercial SCADA package PVSS. Information of general interest, such as beam and condition data, and data related to shared plants or systems, are made available to all the subsystems via the distribution capabilities of PVSS. Great care has been taken to build a modular and hierarchical system, limiting the interdependencies of the various subsystems. Accessing remote resources in a PVSS distributed environment is very simple and can be initiated unilaterally. In order to improve the reliability of distributed data and to avoid unforeseen and unwished dependencies, the ALICE DCS group has enforced the centralization of global data required by the subsystems. A tool has been developed to monitor the level of interdependency and to understand the ...

  10. Protecting detectors in ALICE

    International Nuclear Information System (INIS)

    Lechman, M.; Augustinus, A.; Chochula, P.; Di Mauro, A.; Stig Jirden, L.; Rosinsky, P.; Schindler, H.; Cataldo, G. de; Pinazza, O.; Kurepin, A.; Moreno, A.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related to beam safety. The gained experiences and conclusions from the individual safety projects are also presented. (authors)

  11. Performance of the ALICE VZERO system

    CERN Document Server

    Abbas, E.; Adam, J.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A.G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Masoodi, A.Ahmad; Ahmed, I.; Ahn, S.A.; Ahn, S.U.; Aimo, I.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R.Alfaro; Alici, A.; Alkin, A.; Almaraz Avina, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshauser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bach, M.; Badala, A.; Baek, Y.W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Ban, J.; Baral, R.C.; Barbera, R.; Barile, F.; Barnafoldi, G.G.; Barnby, L.S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P.C.; Baumann, C.; Bearden, I.G.; Beck, H.; Behera, N.K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A.A.E.; Bertens, R.A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bottger, S.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Boldizsar, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossu, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T.A.; Browning, T.A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Casanova Diaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Casula, E.A.R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chung, S.U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M.E.; Contin, G.; Contreras, J.G.; Cormier, T.M.; Corrales Morales, Y.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Alaniz, E.Cruz; Albino, R.Cruz; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, I.; Das, S.; Das, D.; Dash, S.; Dash, A.; De, S.; de Barros, G.O.V.; De Caro, A.; De Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Denes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G.D.; de Rooij, R.; Diaz Corchero, M.A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divia, R.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Donigus, B.; Dordic, O.; Dubey, A.K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H.A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernandez Tellez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M.A.S.; Filchagin, S.; Finogeev, D.; Fionda, F.M.; Fiore, E.M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D.R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glassel, P.; Gomez, R.; Ferreiro, E.G.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L.K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B.H.; Hanratty, L.D.; Hansen, A.; Harmanova-Tothova, Z.; Harris, J.W.; Hartig, M.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S.T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B.A.; Hetland, K.F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Huang, M.; Humanic, T.J.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G.M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, M.; Ivanov, A.; Ivanov, V.; Ivanytskyi, O.; Jacholkowski, A.; Jacobs, P.M.; Jahnke, C.; Jang, H.J.; Janik, M.A.; Jayarathna, P.H.S.Y.; Jena, S.; Jha, D.M.; Jimenez Bustamante, R.T.; Jones, P.G.; Jung, H.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinak, P.; Kalliokoski, T.; Kalweit, A.; Kang, J.H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Ketzer, B.; Khan, M.M.; Khan, P.; Khan, S.A.; Khan, K.H.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, M.; Kim, T.; Kim, B.; Kim, S.; Kim, M.; Kim, D.J.; Kim, J.S.; Kim, J.H.; Kim, D.W.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Kluge, A.; Knichel, M.L.; Knospe, A.G.; Kohler, M.K.; Kollegger, T.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Kralik, I.; Kramer, F.; Kravcakova, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P.G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A.B.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; La Pointe, S.L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, S.C.; Lee, G.R.; Legrand, I.; Lehnert, J.; Lemmon, R.C.; Lenhardt, M.; Lenti, V.; Leon, H.; Leoncino, M.; Leon Monzon, I.; Levai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Ljunggren, H.M.; Lodato, D.F.; Loenne, P.I.; Loggins, V.R.; Loginov, V.; Lohner, D.; Loizides, C.; Loo, K.K.; Lopez, X.; Lopez Torres, E.; Lovhoiden, G.; Lu, X.G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N.A.; Martinengo, P.; Martinez, M.I.; Martinez Garcia, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Perez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A.N.; Miskowiec, D.; Mitu, C.; Mizuno, S.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D.A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Muller, H.; Munhoz, M.G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B.K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T.K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B.S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S.; Oh, S.K.; Oleniacz, J.; Oliveira Da Silva, A.C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Passfeld, A.; Patalakha, D.I.; Paticchio, V.; Paul, B.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Perez Lara, C.E.; Perrino, D.; Peryt, W.; Pesci, A.; Pestov, Y.; Petracek, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D.B.; Planinic, M.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P.L.M.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Pospisil, V.; Potukuchi, B.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, S.; Raniwala, R.; Rasanen, S.S.; Rascanu, B.T.; Rathee, D.; Rauch, W.; Rauf, A.W.; Razazi, V.; Read, K.F.; Real, J.S.; Redlich, K.; Reed, R.J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Riccati, L.; Ricci, R.A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Rodriguez Manso, A.; Roed, K.; Rogochaya, E.; Rohr, D.; Rohrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, P.; Roy, C.; Rubio Montero, A.J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Sahu, P.K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C.A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sandor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkamo, J.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schmidt, H.R.; Schmidt, C.; Schuchmann, S.; Schukraft, J.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P.A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, S.; Sharma, N.; Rohni, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B.C.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.J.M.; Sogaard, C.; Soltz, R.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J.H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T.J.M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M.A.; J.Tapia Takaki, D.; Peloni, A.Tarantola; Tarazona Martinez, A.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Minasyan, A.Ter; Terrevoli, C.; Thader, J.; Thomas, D.; Tieulent, R.; Timmins, A.R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Trubnikov, V.; Truesdale, D.; Trzaska, W.H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T.S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urciuoli, G.M.; Usai, G.L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Van Hoorne, J.W.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, Y.; Vinogradov, L.; Vinogradov, A.; Virgili, T.; Viyogi, Y.P.; Vodopyanov, A.; Volkl, M.A.; Voloshin, S.; Voloshin, K.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, Y.; Wang, Y.; Wang, M.; Watanabe, K.; Weber, M.; Wessels, J.P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Williams, M.C.S.; Windelband, B.; Winn, M.; Yaldo, C.G.; Yamaguchi, Y.; Yang, S.; Yang, P.; Yang, H.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.K.; Yoon, J.; Yuan, X.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I.S.; Zhalov, M.; Zhang, Y.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, Y.; Zhou, F.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-01-01

    ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton--proton, proton--nucleus and nucleus--nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus--nucleus collisions. After describing the VZERO system, this publication presents its performance over more than four years of operation at the LHC.

  12. The ALICE Central Trigger Processor (CTP) upgrade

    International Nuclear Information System (INIS)

    Krivda, M.; Alexandre, D.; Barnby, L.S.; Evans, D.; Jones, P.G.; Jusko, A.; Lietava, R.; Baillie, O. Villalobos; Pospíšil, J.

    2016-01-01

    The ALICE Central Trigger Processor (CTP) at the CERN LHC has been upgraded for LHC Run 2, to improve the Transition Radiation Detector (TRD) data-taking efficiency and to improve the physics performance of ALICE. There is a new additional CTP interaction record sent using a new second Detector Data Link (DDL), a 2 GB DDR3 memory and an extension of functionality for classes. The CTP switch has been incorporated directly onto the new LM0 board. A design proposal for an ALICE CTP upgrade for LHC Run 3 is also presented. Part of the development is a low latency high bandwidth interface whose purpose is to minimize an overall trigger latency

  13. ALICE moves into warp drive.

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). Since its successful start-up in 2010, the LHC has been performing outstandingly, providing to the experiments long periods of stable collisions and an integrated luminosity that greatly exceeds the planned targets. To fully explore these privileged conditions, we aim at maximizing the experiment's data taking productivity during stable collisions. We present in this paper the evolution of the online systems in order to spot reasons of inefficiency and address new requirements. This paper describes the features added to the ALICE Electronic Logbook (eLogbook) to allow the Run Coordination team to identify, prioritize, fix and follow causes of inefficiency in the experiment. Thorough monitoring of the data taking efficiency provides reports for the collaboration to portray its evolution and evaluate the measures (fix...

  14. Overview of results from ALICE

    International Nuclear Information System (INIS)

    Płoskoń, Mateusz

    2014-01-01

    ALICE is a dedicated experiment for measurements of heavy-ion collisions at the Large Hadron Collider (LHC). A wealth of experimental data recorded in 2010, 2011 and 2012 suggests that a strongly interacting de-confined medium is created in collisions of lead ions at a centre-of-mass energy √S_N_N = 2.76 TeV. In order to quantify the properties of this hot and dense matter, measurements were performed in smaller systems, such as proton-proton and proton-lead, where effects related to the medium are expected to be negligible. We present an overview of recent measurements of particle production and particle correlations in proton-proton, Pb-Pb and p-Pb collisions at the LHC by ALICE Collaboration.

  15. Inclusive J/$\\psi$ and $\\psi$(2S) production in pp and p-Pb collisions at forward rapidity with ALICE at the LHC

    CERN Document Server

    Paul, Biswarup

    2015-01-01

    The ALICE collaboration has studied inclusive J/$\\psi$ and $\\psi$(2S) production at forward rapidities in pp collisions at $\\sqrt{s} = 7$ TeV with the ALICE Muon Spectrometer. The analysis has been carried out on a data sample corresponding to an integrated luminosity $\\mathcal{L}_{\\rm int}$ = 1.35 pb$^{-1}$. The production cross-sections of J/$\\psi$ and $\\psi$(2S), integrated over the transverse momentum (0 $<$ $p_{{\\mathrm T}}$ $<$ 20 GeV/$c$) and rapidity (2.5 $<$ $y$ $<$ 4), have been measured. The J/$\\psi$ and $\\psi$(2S) differential cross-sections, in transverse momentum and rapidity, have also been measured, significantly extending the $p_{{\\mathrm T}}$ reach of previous measurements performed in the same $y$-range. The results have been compared with the previously published ALICE results ($\\mathcal{L}_{\\rm int}$ = 15.6 nb$^{-1}$) and also with the measurement performed by the LHCb collaboration. The $\\psi$(2S)/J/$\\psi$ ratio, integrated over $p_{{\\mathrm T}}$ and $y$, has been measured. T...

  16. ALICE tests its digital chain

    CERN Multimedia

    2007-01-01

    During its 7th data challenge, ALICE successfully tested the infrastructure of its data acquisition, transfer and storage system. The ALICE experiment will need a rock-solid data acquisition, selection, transfer, storage and handling system to analyse the billions of bits of data that will be generated every second. The heavy ion collisions at the LHC will generate 10 times more data per second than proton collisions. The ALICE teams have therefore been hard at it for several years designing a cutting-edge informatics system, whose reliability is regularly put to the test in the annual data challenges. Last December, groups from the Collaboration and the IT Department joined forces, or rather cables, in the 7th of these challenges. The teams of ALICE DAQ (data acquisition), ALICE Offline (data handling), IT-CS-IO (network) and IT-FIO (CASTOR and data storage) all took part in testing the various components of the infrastructure, from data acquisition to transfer and storage. Working in close collaboration,...

  17. ALICE through the phase transition

    CERN Document Server

    CERN. Geneva

    2000-01-01

    While proton-proton collisions will be the principal diet of CERN's LHC machine, heavy-ion collisions will also be on the menu. The ALICE experiment will be ready and waiting. Another of ALICE's TDRs concerns the experiment's inner tracking system (ITS). This is the innermost layer of the detector, responsible for tracking emerging particles where their density will be at its highest. ALICE physicists have been working with colleagues from fellow LHC experiment LHCb to develop silicon pixel chips for the inner two layers of the ITS.The result is a chip with 50 x 425 mu m cells; a prototype detector based on this chip is being tested this year.The ITS has six layers, all using silicon technology, and about 10 million digital and 2 million analogue readout channels to digest the huge number of particles produced in LHC lead-ion collisions. The collaboration has opted for a hybrid ITS structure combining sensors, electronics and mechanical support. Beam tests so far have indicated that the ITS should achieve pos...

  18. Around ALICE

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ On the occasion of CERN's Golden Jubilee, at the Centre culturel Jean Monnet de Saint-Genis-Pouilly Exposition from Monday 11 October to Sunday 24 October. A presentation of CERN and the ALICE experiment with photos, student-made projects, computer animations, virtual reality demonstrations, and more. Saturday 16 October* Planting of a commemorative tree at 16:00 Public presentation at 16:30, followed by a visit to the subterranean site of the ALICE experiment (Number of places limited, reservations at: Service Culturel de la Marie de Saint-Genis-Pouilly, tél 04. 50. 20. 52. 59, Office de Tourisme Saint-Genis-Pouilly, tél: 04. 50. 42. 29. 37) * for the occasion of the Open Day, with 50 sites at CERN, see: http://intranet.cern.ch/Chronological/2004/CERN50/

  19. Around ALICE

    CERN Multimedia

    2004-01-01

    On the occasion of CERN's Golden Jubilee at Centre Culturel Jean Monnet de Saint-Genis-Pouilly Exposition from Monday 11 October to Sunday 24 October A presentation of CERN and the ALICE experiment with photos, student-made projects, computer animations, virtual reality demonstrations, and more. Saturday 16 October* Planting of a commemorative tree at 16:00 Public presentation at 16:30, followed by a visit to the subterranean site of the ALICE experiment (Number of places limited, reservations at: Service Culturel de la Marie de Saint-Genis-Pouilly, tel 04 50 20 52 59, or the Office de Tourisme Saint-Genis-Pouilly, tel: 04 50 42 29 37) * for the occasion of the Open Day, with 50 sites at CERN, see: http://intranet.cern.ch/Chronological/2004/CERN50/openday/openday_en.html

  20. Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    NARCIS (Netherlands)

    Aamodt, K.; Chojnacki, M.; Christakoglou, P.; de Haas, A.P.; de Rooij, R. S.; Grelli, A.|info:eu-repo/dai/nl/326052577; Ivan, C.G.|info:eu-repo/dai/nl/304847747; Kamermans, R.|info:eu-repo/dai/nl/073698733; Mischke, A.|info:eu-repo/dai/nl/325781435; Nooren, G.J.L.|info:eu-repo/dai/nl/07051349X; Oskamp, C.J.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Simili, E.; van den Brink, A.; van Leeuwen, M.|info:eu-repo/dai/nl/250599171; Verweij, M.|info:eu-repo/dai/nl/330542133

    2010-01-01

    ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with

  1. ALICE Organisation

    CERN Multimedia

    Gouriou, Nathalie

    2016-01-01

    ALICE is the acronym for A Large Ion Collider Experiment, one of the largest experiments in the world devoted to research in the physics of matter at an infinitely small scale. Hosted at CERN, the European Laboratory for Nuclear Research, this project involves an international collaboration of more than 1400 physicists, engineers and technicians, including about 340 graduate students, from 132 physics institutes in 37 countries across the world.

  2. ALICE Organisation

    CERN Multimedia

    Hadre, J

    2015-01-01

    ALICE is the acronym for A Large Ion Collider Experiment, one of the largest experiments in the world devoted to research in the physics of matter at an infinitely small scale. Hosted at CERN, the European Laboratory for Nuclear Research, this project involves an international collaboration of more than 1400 physicists, engineers and technicians, including around 340 graduate students, from 132 physics institutes in 37 countries across the world.

  3. L'aventure du grand collisionneur LHC du big bang au boson de Higgs

    CERN Document Server

    Denegri, Daniel; Hoecker, Andreas; Roos, Lydia; Rubbia, Carlo

    2014-01-01

    Qu'est-ce que la physique des particules élémentaires, le LHC, et le boson de Higgs ? Ce livre présente de manière simple le monde des quarks, des leptons et de leurs interactions, gouvernées par des symétries fondamentales de la nature, ainsi que le lien entre ce monde de l'infiniment petit et celui de l'infiniment grand. Cette conjonction entre la physique des particules élémentaires et l'évolution de la matière dans les premiers instants de l Univers qui ont suivi le Big-Bang est un des plus beaux acquis de la science de ces cinquante dernières années. Après une description du cadre théorique, le modèle standard, et de son élaboration durant la deuxième moitié du XXe siècle, l'accent est mis sur ses grands succès expérimentaux, mais aussi sur ses faiblesses ou insuffisances telles que nous les percevons aujourd'hui. La passionnante histoire du grand collisionneur de hadrons du CERN, le LHC, le plus grand projet purement scientifique jamais réalisé, est présentée à la fois sous ses...

  4. Fitting ALICE

    CERN Multimedia

    2004-01-01

    The support structures for the detectors inside the ALICE solenoid magnet (the L3 magnet) were finished in December 2003. After commissioning and testing, over the next year, the structures will be lowered into the cavern and installed in the magnet by spring 2005. At first sight you might mistake them for scaffolding. But a closer look reveals unusual features: Two are made of austenitic (non-magnetic) stainless steel with a cross section that looks like an "H". Another is made of 8 centimetre aluminium square tubes. "Them" are the support structures for the detectors and services inside the ALICE solenoid magnet (the L3 magnet) which were finished in December 2003. «The physicists don't want to have a lot of material close to their detectors; it has to be as few as possible,» says Diego Perini, who is responsible for the common support structures of ALICE. «We therefore had the very difficult task to design something relatively light that i...

  5. Upgrade of the ALICE Inner Tracking System

    OpenAIRE

    Reidt, Felix; Collaboration, for the ALICE

    2014-01-01

    During the Long Shutdown 2 of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System. It will replace the current six layer detector system with a seven layer detector using Monolithic Active Pixel Sensors. The upgraded Inner Tracking System will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity of the LHC. The choice of Monolithic Active Pixel Sensors has be...

  6. CERN: ALICE in the looking-glass

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    While proton-proton collisions will provide the main research thrust at CERN's planned LHC high energy collider to be built in the LEP tunnel, its 27-kilometre superconducting magnet ring will also be able to handle all the other high energy beams on the CERN menu, opening up the possibility of both heavy ion and electron-proton collisions to augment the LHC research programme. A major new character in the LHC cast - ALICE (A Large Ion Collider Experiment) - has recently published a letter of intent, announcing its intention to appear on the LHC stage. Three letters of intent for major LHC proton-proton experiments were aired last year (January, page 6), and ALICE, if approved, would cohabit with the final solution for the protonproton sector (see box). Only a single major heavy ion experiment is envisaged. The protonproton detectors have some heavy ion capability, but could only look at some very specific signals. (Detailed plans for LHC's electron proton collision option are on hold, awaiting the initial exploration of this field by the new HERA collider which came into operation last year at the DESY Laboratory in Hamburg.) Describing the ALICE detector and its research aims, spokesman Jurgen Schukraft echoes T.D.Lee's observations on the state of particle physics. It is becoming increasingly clear that resolving some of today's particle puzzles require a deeper understanding of the vacuum

  7. ALICE Particle Identification

    CERN Document Server

    Hussein Ezzelarab, Nada

    2014-01-01

    During my stay at CERN, I have attended lectures mornings and worked on my research project under orienting guidance of my supervisors afternoons. The lectures were informative and pedagog- ically well-prepared and presented. Their contents was an excellent combination of theoretical and experimental topics in high-energy physics. Furthermore, I was privileged to visit the ALICE, CMS and LHCb detectors and the LINIAC accelerator. I have participated in workshop on ”MadGraph software”. I was furnished with excellent experiences and cultural exchanges with good colleagues from different countries. I got opportunities to know what the other students have done, in which projects they were involved and how they performed their scientific researches, especially regarding LHC data analysis. For my own project, I have to prove excellent experience with C++ and of course LINUX, ROOT and AliROOT. Tools such as Histograms, Graphs, Fitting, trees and many others were very essential. Furthermore, I am very proud getti...

  8. Latest results from ALICE

    CERN Document Server

    Scapparone, Eugenio

    2011-01-01

    In this paper selected results obtained by the ALICE experiment at the LHC will be presented. Data collected during the pp runs taken at sqrt(s)=0.9, 2.76 and 7 TeV and Pb-Pb runs at sqrt(s_NN)=2.76 TeV allowed interesting studies on the properties of the hadronic and nuclear matter: proton runs gave us the possibility to explore the ordinary matter at very high energy and up to very low pt, while Pb-Pb runs provided spectacular events where several thousands of particles produced in the interaction revealed how a very dense medium behaves, providing a deeper picture on the quark gluon plasma(QGP) chemical composition and dynamics.

  9. The ALICE TPC

    CERN Document Server

    Garabatos, C

    2004-01-01

    We describe the ALICE TPC, with emphasis on the design features which are driven by the physics requirements of the detector. In particular, the gas choice and composition, Ne-CO/sub 2/ Ý90-10¿, as well as the unprecedentedly high gain for a TPC (2*10/sup 40/), are direct consequences of the expected performance in the high- multiplicity environment of heavy-ion collisions at the LHC. The characteristics of this mixture are discussed and a viable way of improving the stability of detectors working under these conditions, namely the addition of nitrogen into the mixture, is presented. This results in a more effective Penning transfer of neon excited states onto ionisation of the quencher at no penalty for the charge transport and amplification properties.

  10. ALICE Masterclass on strangeness

    Directory of Open Access Journals (Sweden)

    Foka Panagiota

    2014-04-01

    Full Text Available An educational activity, the International Particle Physics Masterclasses, was developed by the International Particle Physics Outreach Group with the aim to bring the excitement of cutting-edge particle-physics research into the classroom. Thousands of pupils, every year since 2005, in many countries all over the world, are hosted in research centers or universities close to their schools and become “scientists for a day” as they are introduced to the mysteries of particle physics. The program of a typical day includes lectures that give insight to topics and methods of fundamental research followed by a “hands-on” session where the high-school students perform themselves measurements on real data from particle-physics experiments. The last three years data from the ALICE experiment at LHC were used. The performed measurement “strangeness enhancement” and the employed methodology are presented.

  11. Measurement of jet spectra in Pb–Pb collisions at √(sNN)=2.76TeV with the ALICE detector at the LHC

    International Nuclear Information System (INIS)

    Verweij, Marta

    2013-01-01

    We report a measurement of transverse momentum spectra of jets detected with the ALICE detector in Pb–Pb collisions at √(s NN )=2.76TeV. Jets are reconstructed from charged particles using the anti-k T jet algorithm. The background from soft particle production is determined for each event and subtracted. The remaining influence of underlying event fluctuations is quantified by embedding different probes into heavy-ion data. The reconstructed transverse momentum spectrum is corrected for background fluctuations by unfolding. We compare the inclusive jet spectra reconstructed with R=0.2 and R=0.3 for different centrality classes and compare the jet yield in Pb–Pb and pp events

  12. Suppression of inclusive J/$\\mathbf{\\psi}$ and $\\mathbf{\\psi}$(2S) production in p-Pb collisions with ALICE at the LHC

    CERN Document Server

    Paul, Biswarup

    2014-01-01

    The ALICE Collaboration has studied inclusive J/$\\psi$ and $\\psi$(2S) production in p-Pb collisions at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV with the Muon Spectrometer. The measurement was performed at forward (2.03 $<$ $y_{\\rm cms}$ $<$ 3.53) and backward ($-$4.46 $<$ $y_{\\rm cms}$ $<$ $-$2.96) centre of mass rapidities. The nuclear modification factor of J/$\\psi$ and $\\psi$(2S) has been measured as a function of transverse momentum and event activity. Theoretical models based on nuclear shadowing, coherent energy loss or both are in reasonable agreement with the J/$\\psi$ results but cannot describe the $\\psi$(2S) behaviour. Other mechanisms must be invoked in order to explain the $\\psi$(2S) suppression in p-Pb collisions.

  13. Charged–particle multiplicities in proton–proton collisions at $\\sqrt{s}=$ 0.9 to 8 TeV, with ALICE at the LHC

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2017-01-17

    The ALICE Collaboration has carried out a detailed study of pseudorapidity densities and multiplicity distributions of primary charged particles produced in proton-proton collisions, at $\\sqrt{s} =$ 0.9, 2.36, 2.76, 7 and 8 TeV, in the pseudorapidity range $|\\eta| < 2$. Measurements were obtained for three event classes: inelastic, non-single diffractive and events with at least one charged particle in the pseudorapidity interval $|\\eta| < 1$. The use of an improved track-counting algorithm combined with ALICE’s measurements of diffractive processes allows a higher precision compared to our previous publications. A KNO scaling study was performed in the pseudorapidity intervals $|\\eta| < 0.5$, 1.0 and 1.5. The data are compared to other experimental results and to models as implemented in Monte Carlo event generators PHOJET and recent tunes of PYTHIA6, PYTHIA8 and EPOS.

  14. ALICE TRD results from prototype tests

    CERN Document Server

    Andronic, A; Blume, C; Braun-Munzinger, P; Bucher, D; Catanescu, G; Ciobanu, M; Daues, H W; Devismes, A; Finck, C; Herrmann, N; Lister, T A; Mahmoud, Tariq; Peitzmann, Thomas; Petrovici, M; Reygers, K; Santo, R; Schicker, R; Sedykha, S; Simon, R S; Stachel, J; Stelzer, H; Wessels, J P; Winkelmann, O; Windelband, B; Xu, C

    2002-01-01

    We present results from tests of a prototype of the TRD for the ALICE experiment at LHC. We investigate the performance-of different radiator types, composed of foils, fibres and foams. The pion rejection performance for different methods of analysis over a momentum range from 0.7 to 2 GeV/c is presented. (8 refs).

  15. Round Two for Three ALICE Industrial Awards

    CERN Multimedia

    2004-01-01

    Excellency in industrial collaboration with the LHC experimental teams is one important contribution to the successful development and realization of the experiments. A few weeks ago the ALICE collaboration presented a second round of awards to industrial collaborators for their novel and remarkable contributions to major detector systems.

  16. Fibre optic cables for the ALICE experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    These thin fibres will transmit the signal received in detectors at the ALICE experiment when it starts up with the LHC in 2008. The analogue signals produced in the detectors are first converted into digital pulse, which are transported in light down such fibres. Computers then read this digital signal to produce the final set of data.

  17. ALICE upgrades its powerful eyes

    CERN Multimedia

    Yuri Kharlov, ALICE Collaboration

    2013-01-01

    The ALICE Photon Spectrometer (PHOS) is a high-resolution photon detector that measures the photons coming out of the extremely hot plasma created in the lead-lead collisions at the LHC. Taking advantage of the long accelerator shut-down, the ALICE teams are now repairing and upgrading the existing modules and getting ready to install the brand-new module in time for the next run. The upgraded PHOS detector will be faster and more stable with wider acceptance and improved photon identification.   PHOS crystal matrix during repair. The key feature and the main complexity of the ALICE PHOS detector is that it operates at a temperature of -25°C, which makes it the second-coldest equipment element at the LHC after the cryogenic superconducting magnets. Since 2009 when it was installed, the PHOS detector, with its cold and warm volumes, has been immersed in airtight boxes to avoid condensation in the cold volumes. The 10,752 lead tungstate crystals of the PHOS were completely insulated fr...

  18. The ALICE data quality monitoring

    International Nuclear Information System (INIS)

    Haller, B von; Roukoutakis, F; Chapeland, S; Carena, F; Carena, W; Barroso, V Chibante; Costa, F; Divia, R; Fuchs, U; Makhlyueva, I; Schossmaier, K; Soos, C; Vyvre, P Vande; Altini, V

    2010-01-01

    ALICE is one of the four experiments installed at the CERN Large Hadron Collider (LHC), especially designed for the study of heavy-ion collisions. The online Data Quality Monitoring (DQM) is an important part of the data acquisition (DAQ) software. It involves the online gathering, the analysis by user-defined algorithms and the visualization of monitored data. This paper presents the final design, as well as the latest and coming features, of the ALICE's specific DQM software called AMORE (Automatic MonitoRing Environment). It describes the challenges we faced during its implementation, including the performances issues, and how we tested and handled them, in particular by using a scalable and robust publish-subscribe architecture.We also review the on-going and increasing adoption of this tool amongst the ALICE collaboration and the measures taken to develop, in synergy with their respective teams, efficient monitoring modules for the sub-detectors. The related packaging and release procedure needed by such a distributed framework is also described. We finally overview the wide range of usages people make of this framework, and we review our own experience, before and during the LHC start-up, when monitoring the data quality on both the sub-detectors and the DAQ side in a real-world and challenging environment.

  19. Recherche d’un neutrino lourd avec le détecteur ATLAS au LHC

    CERN Document Server

    Bazid, Houriya

    This M.Sc. thesis describes a search for fourth generation heavy leptons using data from the ATLAS detector at LHC. The total integrated luminosity is 1.02 fb-1 in pp collisions at sqrt(s) = 7 TeV. This analysis study the single production of fourth generation neutral heavy lepton (N) via the charged channel and where W decays leptonically : pp -> W -> Ne -> eWe -> eevl (l = e ou ), which depends on the mixing element between the heavy lepton and the light lepton. The model of fourth generation leptons is constructed using FeynRules while the production of events is done by MadGraph 5.1.2.4. As point of reference, we chose a mass of 100 GeV for the fourth generation neutral heavy lepton (N) with $\\xi^2_{N_e}$ = 0.19, which produce a cross section of 0.312 pb. The generation of the signal was done privately in Montreal and not by the ATLAS collaboration. Therefore the results cannot be considered official. With the simulation, the expected superior limit at 95% C.L. on the cross section is 0.145 pb with 0.294 ...

  20. Study of inclusive J/psi production in Pb-Pb collisions at √(sNN)=2.76 TeV with the ALICE muon spectrometer at the LHC

    International Nuclear Information System (INIS)

    Lardeux, A.

    2014-01-01

    The quantum chromodynamics theory predicts the existence of a deconfined state of matter called Quark Gluon Plasma (PQG). Experimentally, the formation of a PQG is expected under the extreme conditions of temperature and density reached in ultra-relativistic heavy-ion collisions. Many observables were proposed to observe and characterize indirectly such a state of matter. In particular, the phenomena of suppression and (re)combination of the J/ψ meson in the PQG are extensively studied. This thesis presents the analysis of the inclusive production of J/psi in Pb-Pb collisions, at a center of mass energy √(s NN ) = 2.76 TeV, detected with the ALICE muon spectrometer at the LHC. From the high statistics of events collected during 2011 data taking, the J/ψ nuclear modification factor was measured as a function of transverse momentum, rapidity and collision centrality. The J/ψ means transverse momentum was also measured as a function of centrality. The predictions of theoretical models, all including a (re)combination contribution, are in good agreement with data. Finally, an excess of J/ψ yield at very low transverse momentum (<300 MeV/c) with respect to the expected hadronic production was observed for the first time. (author)

  1. Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at $\\sqrt{s_{NN}} = 5.02$ TeV using TPC and EMCal detectors with ALICE at LHC

    CERN Document Server

    Jahnke, Cristiane

    Heavy-ion collisions are a powerful tool to study hot and dense QCD matter, the so-called Quark Gluon Plasma (QGP). Since heavy quarks (charm and beauty) are dominantly produced in the early stages of the collision, they experience the complete evolution of the system. Measurements of electrons from heavy-flavour hadron decay is one possible way to study the interaction of these particles with the QGP. With ALICE at LHC, electrons can be identified with high efficiency and purity. A strong suppression of heavy-flavour decay electrons has been observed at high $p_{m T}$ in Pb-Pb collisions at 2.76 TeV. Measurements in p-Pb collisions are crucial to understand cold nuclear matter effects on heavy-flavour production in heavy-ion collisions. The spectrum of electrons from the decays of hadrons containing charm and beauty was measured in p-Pb collisions at $\\sqrt = 5.02$ TeV. The heavy flavour decay electrons were measured by using the Time Projection Chamber (TPC) and the Electromagnetic Calorimeter (EMCal) detec...

  2. Measurement of the D-meson nuclear modification factor and elliptic flow in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}=5.02~{\\rm TeV}$ with ALICE at the LHC arXiv

    CERN Document Server

    Grosa, Fabrizio

    Heavy-flavour hadrons are recognised as a powerful probe for the characterisation of the deconfined medium created in heavy-ion collisions, the Quark-Gluon Plasma (QGP). The ALICE Collaboration measured the production of ${\\rm D}^{0}$, ${\\rm D}^{+}$, ${\\rm D}^*$ and ${\\rm D_s}^{+}$ mesons in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}=5.02~{\\rm TeV}$. The measurement of the nuclear modification factor ($R_{\\rm AA}$) provides a strong evidence of the in-medium parton energy loss. The comparison between the ${\\rm D_s}^{+}$ and the non-strange D-meson $R_{\\rm AA}$ can help to study the hadronisation mechanism of the charm quark in the QGP. In mid-central collisions, the measurement of the D-meson elliptic flow $v_2$ at low transverse momentum ($p_{\\rm T}$) gives insight into the participation of the charm quark into the collective motion of the system, while at high $p_{\\rm T}$ it constrains the path-length dependence of the energy loss. The ${\\rm D_s}^{+}$ $v_2$, measured for the first time at the LHC, is found to b...

  3. Performance du spectrometre a muons d’ALICE. Production et mesure des bosons faibles dans des collisions d’ions lourds aupres du LHC

    CERN Document Server

    Conesa Del Valle, Zaida; Moreno, F Fernandez

    2007-01-01

    Nucleus-nucleus collisions are the unique tool available to investigate the QCD matter phase diagram in the laboratory. A lot of work has been devoted to explore it in different domains in the last 3 decades, and the forthcoming LHC collider will contribute to such research increasing the collision center-of-mass energy by a factor 30 and the energy densities by a factor 1-10 with respect to the RHIC collider [C+04, A+06].Only a comprehensive analysis of a wide spectrum of experimental observables can help to fully characterize the prospected matter. In particular, valuable information is expected from charm and beauty production, the situation from SPS and RHIC charmonia data being puzzling [GdC07, Lei07, A+00a, Sco07], and the c¯c (b¯b) yields per central nucleon-nucleon collision being increased from 10 (0.1) to 110 (5) from RHIC to LHC [C+04, MG07]. Whether quarkonia will thermalize, will develop collective motion, will be further suppressed or regenerated are still open questions that LHC data might re...

  4. The ALICE Inner Tracking System Upgrade

    CERN Document Server

    Siddhanta, Sabyasachi

    2015-01-01

    The long term plan of ALICE (A Large Ion Collider Experiment) at the CERN Large Hadron Collider (LHC) is a detailed investigation and characterisation of the Quark-Gluon Plasma (QGP). ALICE has devised a comprehensive upgrade strategy to enhance its physics capabilities and to exploit the LHC running conditions after the second long shutdown of the LHC scheduled in 2019-20. The upgraded ALICE will focus on high precision measurements of rare probes over a wide range of momenta, which will significantly improve the performance with respect to the present experimental set up. The upgrade strategy is based on the fact that after LS2 LHC will progressively increase its luminosity with Pb beams eventually reaching an interaction rate of about 50 kHz. To exploit the new LHC capabilities, several existing detectors will undergo a substantial upgrade and new detectors will be added. Within this upgrade strategy, the Inner Tracking System (ITS) upgrade forms an important cornerstone, providing precise measurements for...

  5. Production of pions, kaons and protons in pp collisions at $\\sqrt{s}$ = 900 GeV with ALICE at the LHC

    CERN Document Server

    Aamodt, K.; Abeysekara, U.; Abrahantes Quintana, A.; Abramyan, A.; Adamova, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S.U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Molina, R.Alfaro; Alici, A.; Almaraz Avina, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antonczyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshauser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bablok, S.; Bach, M.; Badala, A.; Baek, Y.W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Ban, J.; Barbera, R.; Barnafoldi, G.G.; Barnby, L.S.; Barret, V.; Bartke, J.; Barile, F.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsar, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borisov, A.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossu, F.; Botje, M.; Bottger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo, E.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G.P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Conner, E.S.; Constantin, P.; Contin, G.; Contreras, J.G.; Corrales Morales, Y.; Cormier, T.M.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Das, I.; Dash, A.; Dash, S.; de Barros, G.O.V.; De Caro, A.; De Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gaspari, M.; de Groot, J.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Remigis, R.; de Rooij, R.; de Vaux, G.; Delagrange, H.; Delgado, Y.; Dellacasa, G.; Deloff, A.; Demanov, V.; Denes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Diaz, R.; Dietel, T.; Divia, R.; Djuvsland, O.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Donigus, B.; Dominguez, I.; Dordic, O.; Dubey, A.K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Dutta Majumdar, M.R.; Elia, D.; Emschermann, D.; Engel, H.; Enokizono, A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C.W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fateev, O.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernandez Tellez, A.; Ferreiro, E.G.; Ferretti, A.; Ferretti, R.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M.S.; Garabatos, C.; Trapaga, C.Garcia; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glassel, P.; Glenn, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra, C.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Gustafsson, H.A.; Gutbrod, H.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamblen, J.; Han, B.H.; Harris, J.W.; Hartig, M.; Harutyunyan, A.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernandez, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hiei, A.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Hu, S.; Huang, M.; Huber, S.; Humanic, T.J.; Hutter, D.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Iwasaki, T.; Jacholkowski, A.; Jacobs, P.; Jancurova, L.; Jangal, S.; Janik, R.; Jena, C.; Jena, S.; Jirden, L.; Jones, G.T.; Jones, P.G.; Jovanovic, P.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinak, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamal, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J.H.; Kapitan, J.; Kaplin, V.; Kapusta, S.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khan, S.A.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.J.; Kim, D.S.; Kim, D.W.; Kim, H.N.; Kim, J.; Kim, J.H.; Kim, J.S.; Kim, M.; Kim, M.; Kim, S.H.; Kim, S.; Kim, Y.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Knichel, M.L.; Kniege, S.; Koch, K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornas, E.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Kralik, I.; Kramer, F.; Kraus, I.; Kravcakova, A.; Krawutschke, T.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kumar, L.; Kumar, N.; Kupczak, R.; Kurashvili, P.; Kurepin, A.; Kurepin, A.N.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kutouski, M.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; La Rocca, P.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; Lal, C.; Lara, C.; Larsen, D.T.; Laurenti, G.; Lazzeroni, C.; Le Bornec, Y.; Le Bris, N.; Lee, H.; Lee, K.S.; Lee, S.C.; Lefevre, F.; Lenhardt, M.; Leistam, L.; Lehnert, J.; Lenti, V.; Leon, H.; Leon Monzon, I.; Leon Vargas, H.; Levai, P.; Li, X.; Li, Y.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Liu, L.; Loginov, V.; Lohn, S.; Lopez, X.; Lopez Noriega, M.; Lopez-Ramirez, R.; Lopez Torres, E.; Lovhoiden, G.; Lozea Feijo Soares, A.; Lu, S.; Lunardon, M.; Luparello, G.; Luquin, L.; Lutz, J.R.; Ma, K.; Ma, R.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Makhlyueva, I.; Mal'Kevich, D.; Malaev, M.; Malagalage, K.J.; Maldonado Cervantes, I.; Malek, M.; Malkiewicz, T.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Martashvili, I.; Martinengo, P.; Martinez Hernandez, M.I.; Martinez Davalos, A.; Martinez Garcia, G.; Maruyama, Y.; Marzari Chiesa, A.; Masciocchi, S.; Masera, M.; Masetti, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Miake, Y.; Michalon, A.; Miftakhov, N.; Milano, L.; Milosevic, J.; Minafra, F.; Mischke, A.; Miskowiec, D.; Mitu, C.; Mizoguchi, K.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mondal, M.M.; Montano Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moretto, S.; Morsch, A.; Moukhanova, T.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Muller, H.; Munhoz, M.G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nianine, A.; Nicassio, M.; Nielsen, B.S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyatha, A.; Nygaard, C.; Nyiri, A.; Nystrand, J.; Ochirov, A.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Okada, K.; Okada, Y.; Oldenburg, M.; Oleniacz, J.; Oppedisano, C.; Orsini, F.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Osmic, F.; Osterman, L.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Ovrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S.K.; Palaha, A.; Palmeri, A.; Panse, R.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Pastircak, B.; Pastore, C.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pepato, A.; Pereira, H.; Peressounko, D.; Perez, C.; Perini, D.; Perrino, D.; Peryt, W.; Peschek, J.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A.J.; Petracek, V.; Petridis, A.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Peyre, J.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Platt, R.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta Lerma, P.L.M.; Poggio, F.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pop, A.; Posa, F.; Pospisil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Rachevski, A.; Rademakers, A.; Radomski, S.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramirez Reyes, A.; Rammler, M.; Raniwala, R.; Raniwala, S.; Rasanen, S.S.; Rashevskaya, I.; Rath, S.; Read, K.F.; Real, J.S.; Redlich, K.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Roed, K.; Rohrich, D.; Roman Lopez, S.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio-Montero, A.J.; Rui, R.; Rusanov, I.; Russo, G.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Saini, J.; Saiz, P.; Sakata, D.; Salgado, C.A.; Salgueiro Domingues da Silva, R.; Salur, S.; Samanta, T.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schindler, H.; Schmidt, C.; Schmidt, H.R.; Schossmaier, K.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P.A.; Segato, G.; Semenov, D.; Senyukov, S.; Seo, J.; Serci, S.; Serkin, L.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, G.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddi, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simili, E.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, B.C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Snow, H.; Sogaard, C.; Soloviev, A.; Soltveit, H.K.; Soltz, R.; Sommer, W.; Son, C.W.; Son, H.; Song, M.; Soos, C.; Soramel, F.; Soyk, D.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Staley, F.; Stan, E.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovsky, P.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Sumbera, M.; Susa, T.; Swoboda, D.; Symons, J.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Szuba, M.; Tadel, M.; Tagridis, C.; Takahara, A.; Takahashi, J.; Tanabe, R.; J.Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thader, J.; Tieulent, R.; Tlusty, D.; Toia, A.; Tolyhy, T.; Torcato de Matos, C.; Torii, H.; Torralba, G.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tribedy, P.; Troger, G.; Truesdale, D.; Trzaska, W.H.; Tsiledakis, G.; Tsilis, E.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A.; Tveter, T.S.; Tydesjo, H.; Tywoniuk, K.; Ulery, J.; Ullaland, K.; Uras, A.; Urban, J.; Urciuoli, G.M.; Usai, G.L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasiliev, A.; Vassiliev, I.; Vasileiou, M.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vetlitskiy, I.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopianov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wallet, L.; Wan, R.; Wang, D.; Wang, Y.; Wang, Y.; Watanabe, K.; Wen, Q.; Wessels, J.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, M.C.S.; Willis, N.; Windelband, B.; Xu, C.; Yang, C.; Yang, H.; Yasnopolskiy, S.; Yermia, F.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I-K.; Yuan, X.; Yurevich, V.; Yushmanov, I.; Zabrodin, E.; Zagreev, B.; Zalite, A.; Zampolli, C.; Zanevsky, Yu.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zepeda, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, S.; Zhu, J.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zychacek, V.; Zynovyev, M.

    2011-01-01

    The production of $\\pi^+, pi^-, K^+, K^-$, p, and $\\bar{p}$ at mid-rapidity has been measured in proton-proton collisions at $\\sqrt{s}$ = 900 GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum ($p_t$) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from $p_t$ = 100 MeV/c to 2.5 GeV/c. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean $p_t$ are compared with previous measurements, and the trends as a function of collision energy are discussed.

  6. $K^{0}_{s}-K^{0}_{s}$ correlations in pp collisions at $\\sqrt{s}=7 TeV$ from the LHC ALICE experiment

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonschior, Alexey; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-07-16

    Identical neutral kaon pair correlations are measured in $\\sqrt{s}$=7 TeV pp collisions in the ALICE experiment. One-dimensional K$^{0}_{s}$-K$^{0}_{s}$ correlation functions in terms of the invariant momentum difference of kaon pairs are formed in two multiplicity and two transverse momentum ranges. The femtoscopic parameters for the radius and correlation strength of the kaon source are extracted. The fit includes quantum statistics and final-state interactions of the $a_0/f_0$ resonance. K$^{0}_{s}$-K$^{0}_{s}$ correlations show an increase in radius for increasing multiplicity and a slight decrease in radius for increasing transverse mass, $m_T$, as seen in pion-pion correlations in the pp system and in heavy-ion collisions. Transverse mass scaling is observed between the K$^{0}_{s}$-K$^{0}_{s}$ and pion-pion radii. Also, the first observation is made of the decay of the $f_{2}'$(1525) meson into the K$^{0}_{s}$-K$^{0}_{s}$ channel in pp collisions.

  7. Multiplicity dependence of identified hadron production in pp collisions at √s = 7 TeV in the ALICE at LHC

    International Nuclear Information System (INIS)

    Nayak, Kishora

    2016-01-01

    Recent measurements in proton-lead (p-Pb) and high-multiplicity proton-proton (pp) collisions show some collective features that are similar to those observed in Pb-Pb collisions. We report the production of charged light flavour, strange and multi-strange hadrons (π; K; p; Λ; Ξ; Ω) at mid rapidity as a function of event multiplicity in pp collisions at √s = 7 TeV using the ALICE detectors. In the p_T -differential baryon to meson ratios (p/π; Λ/K"0_s), an enhancement of baryon production at intermediate p_T is observed in high-multiplicity pp collisions. This behavior is qualitatively similar to earlier measurements performed in p-Pb and Pb-Pb collisions as a function of event activity. The production rate of strange and multi-strange hadrons relative to pions exhibits a significant increase with multiplicity in the smaller colliding systems of pp and p-Pb, pointing to similar mechanisms at play in pp and p-Pb collisions. The results are also compared with QCD inspired model calculations. (author)

  8. Measurement of the ${\\rm D}^0$ meson production in Pb-Pb and p-Pb collisions with the ALICE experiment at the LHC

    CERN Document Server

    AUTHOR|(CDS)2081395; Dainese, Andrea

    2016-01-01

    This thesis presents the measurement of the charmed ${\\rm D}^0$ meson production relative to the reaction plane in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon collision of $\\sqrt{s_{\\rm NN}}=2.76$ TeV, and the measurement of the ${\\rm D}^0$ production in p-Pb collisions at $\\sqrt{s_{\\rm NN}}=5.02$ TeV with the ALICE detector at the CERN Large Hadron Collider. The ${\\rm D}^0$ azimuthal anisotropy with respect to the reaction plane is sensitive to the interaction of the charm quarks with the high-density strongly-interacting medium formed in ultra-relativistic heavy-ion collisions and, thus, to the properties of this state of matter. In particular, this observable allows to establish whether low-momentum charm quarks participate in the collective expansion of the system and whether they can reach thermal equilibrium with the medium constituents. The azimuthal anisotropy is quantified in terms of the second coefficient $v_2$ in a Fourier expansion of the ${\\rm D}^0$ azimuthal distribution ...

  9. Set up and programming of an ALICE Time-Of-Flight trigger facility and software implementation for its Quality Assurance (QA) during LHC Run 2

    CERN Document Server

    Toschi, Francesco

    2016-01-01

    The Cosmic and Topology Trigger Module (CTTM) is the main component of a trigger based on the ALICE TOF detector. Taking advantage of the TOF fast response, this VME board implements the trigger logic and delivers several L0 trigger outputs, used since Run 1, to provide cosmic triggers and rare triggers in pp, p+Pb and Pb+Pb data taking. Due to TOF DCS architectural change of the PCs controlling the CTTM (from 32 bits to 64 bits) it is mandatory to upgrade the software related to the CTTM including the code programming the FPGA firmware. A dedicated CTTM board will be installed in a CERN lab (Meyrin site), with the aim of recreating the electronics chain of the TOF trigger, to get a comfortable porting of the code to the 64 bit environment. The project proposed to the summer student is the setting up of the CTTM and the porting of the software. Moreover, in order to monitor the CTTM Trigger board during the real data taking, the implementation of a new Quality Assurance (QA) code is also crucial, together wit...

  10. Multi-strange baryon production in pp, p-Pb and Pb-Pb collisions measured with ALICE at the LHC

    CERN Document Server

    INSPIRE-00381902

    2014-01-01

    Multi-strange baryons are of particular interest in the understanding of particle production mechanisms, as their high strangeness content makes them susceptible to changes in the hadrochemistry of the colliding systems. In ALICE, these hyperons are reconstructed via the detection of their weak decay products, which are identified through their measured ionisation losses and momenta in the Time Projection Chamber. The production rates of charged $\\Xi$ and $\\Omega$ baryons in proton-proton (pp), proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions are reported as a function of $p_{\\mathrm{T}}$. A direct comparison in the hyperon-to-pion ratios between the three collision systems is made as a function of event charged-particle multiplicity. The recently measured production rates in p-Pb interactions reveal an enhancement with increasing event multiplicity, consistent with a hierarchy dependent on the strangeness content of the hyperons. These results are discussed in the context of chemical equilibrium predictio...

  11. LHC Startup

    CERN Document Server

    AUTHOR|(CDS)2067853

    2008-01-01

    The Large Hadron Collider will commence operations in the latter half of 2008. The plans of the LHC experiments ALICE, ATLAS, CMS and LHCb are described. The scenario for progression of luminosity and the strategies of these 4 experiments to use the initial data are detailed. There are significant measurements possible with integrated luminosities of 1, 10 and 100 pb^-1. These measurements will provide essential calibration and tests of the detectors, understanding of the Standard Model backgrounds and a first oportunity to look for new physics.

  12. submitter LHC experiments

    CERN Document Server

    Tanaka, Shuji

    2001-01-01

    Large Hadron Collider (LHC) is under construction at the CERN Laboratory in Switzerland. Four experiments (ATLAS, CMS, LHCb, ALICE) will try to study the new physics by LHC from 2006. Its goal to explore the fundamental nature of matter and the basic forces. The PDF file of the transparency is located on http://www-atlas.kek.jp/sub/documents/lepsymp-stanaka.pdf.

  13. Femtoscopic analysis of hadron-hadron correlations in ultrarelativistic collisions of protons and heavy-ions registered by ALICE at the LHC

    CERN Document Server

    Graczykowski, Łukasz Kamil

    One of the most powerful methods developed to probe the properties of the Quark-Gluon Plasma (QGP) is the technique of two-particle correlations in momentum space, called \\emph{femtoscopy}. Femtoscopy gives the unique possibility to measure the space-time evolution of the system created in particle collisions. It is capable of measuring space scales of the order of femtometers ($10^{-15}$~m; the size of a nucleon), as well as times of the order of $10^{-23}$~s. In heavy-ion collisions it provides insight into the collective effects exhibited by the created bulk strongly coupled matter. Intriguing results from the analysis of the p--Pb collisions at the Large Hadron Collider (LHC) suggest that collective properties could also develop in small systems after all. First studies of the p--Pb system, which was initially expected to serve as a control measurement, assuming no formation of a QGP state, show that particularly at the extreme energies at the LHC, more complex physics mechanisms maybe involved, interes...

  14. Study of $\\Lambda$(1520) resonance production in Pb--Pb collisions at $\\sqrt{s}_{NN}$ = 2.76 TeV with ALICE at the LHC

    CERN Document Server

    AUTHOR|(CDS)2087859

    The Large Hadron Collider (LHC) at CERN provides the opportunity to study nuclear matter under extreme conditions, that is at very high temperature and energy density, which are similar to those prevailing just a few microsecond after the Big Bang. At the LHC, a very hot and dense state of partonic matter is created in collisions of heavy ions at very high centre-of-mass energy. In this state of matter, known as Quark-Gluon Plasma (QGP), quarks and gluons become "free" and are no longer confined within hadrons. After formation, the QGP fireball expands and cool down with a typical lifetime of a few fm/$c$ before the partonic phase make a subsequent transition to a hadronic phase (hadronisation) and eventually the produced particles reach the detectors. Hadronic resonances are very short-lived particles, with typical lifetimes ranging from fm/$c$ to a few tens of fm/$c$. For this reason, hadronic resonances are very good candidates to probe the various stages of the evolution of the fireball and the properties...

  15. ALICE takes its ITS to heart

    CERN Multimedia

    2007-01-01

    In the study of heavy-ion events, the ALICE Inner Tracking System must use the most delicate materials. A hundred physicists and engineers from around the world witnessed its impressive journey to the centre of the ALICE experiment. ALICE's ITS on its way into the TCP. On 15 March, after 15 years of development, construction, commissioning and testing, the Inner Tracking System (ITS) finally reached its ultimate destination at the heart of ALICE. With almost five square meters of double-sided silicon strip detectors and over one square meter of silicon drift detectors, ALICE's ITS is the largest system built for either type of silicon detector. In ALICE's search for heavy-ion events at the LHC, it is necessary for the ITS to be extremely lightweight and delicate. For this reason the ITS was designed and built using the smallest amounts of only the lightest materials, with the design team developing innovative construction and assembly systems. The team prepared in detail for the final transport from the fi...

  16. Charged-particle multiplicity measurement in proton-proton collisions at $\\sqrt{s}$ = 7 TeV with ALICE at LHC

    CERN Document Server

    Aamodt, K.; Abeysekara, U.; Abrahantes Quintana, A.; Abramyan, A.; Adamová, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S.U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Almaráz Aviña, E.; Alme, J.; Altini, V.; Altinpinar, S.; Alt, T.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antonczyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Äystö, J.; Azmi, M.D.; Bablok, S.; Bach, M.; Badalà, A.; Baek, Y.W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldi, A.; Bán, J.; Barbera, R.; Barile, F.; Barnaföldi, G.G.; Barnby, L.; Barret, V.; Bartke, J.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, L.; Bianchin, C.; Bianchi, N.; Bielcík, J.; Bielcíková, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borshchov, V.; Borisov, A.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossú, F.; Botje, M.; Böttger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Bruna, E.; Bruno, G.E.; Brun, R.; Budnikov, D.; Buesching, H.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Caines, H.; Cai, X.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G.P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Conner, E.S.; Constantin, P.; Contin, G.; Contreras, J.G.; Cormier, T.M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Dash, A.; Dash, S.; Das, I.; Das, S.; de Barros, G.O.V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; de Gaspari, M.; de Groot, J.; De Gruttola, D.; de Haas, A.P.; De Marco, N.; De Pasquale, S.; De Remigis, R.; de Rooij, R.; de Vaux, G.; Delagrange, H.; Dellacasa, G.; Deloff, A.; Demanov, V.; Dénes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Díaz, L.; Díaz, R.; Dietel, T.; Divià, R.; Djuvsland, Ø.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Don, D.M.M.; Dordic, O.; Dönigus, B.; Dubey, A.K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Dutta Majumdar, M.R.; Elia, D.; Emschermann, D.; Enokizono, A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C.W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fateev, O.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E.G.; Ferretti, A.; Ferretti, R.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhøje, J.J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M.S.; Garabatos, C.; García Trapaga, C.; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glässel, P.; Glenn, A.; Gomez Jiménez, R.; González Santos, H.; González-Trueba, L.H.; González-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Gustafsson, H.A.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamblen, J.; Han, B.H.; Harris, J.W.; Hartig, M.; Harutyunyan, A.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernández, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hiei, A.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnácová, I.; Huber, S.; Humanic, T.J.; Hu, S.; Huang, M.; Hutter, D.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Iwasaki, T.; Jacholkowski, A.; Jacobs, P.; Jancurová, L.; Jangal, S.; Janik, R.; Jena, C.; Jena, S.; Jirden, L.; Jones, G.T.; Jones, P.G.; Jovanovic, P.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinák, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamal, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J.H.; Kapitan, J.; Kaplin, V.; Kapusta, S.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khan, S.A.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.J.; Kim, D.S.; Kim, D.W.; Kim, H.N.; Kim, J.H.; Kim, J.; Kim, J.S.; Kim, M.; Kim, M.; Kim, S.H.; Kim, S.; Kim, Y.; Kirsch, S.; Kiselev, S.; Kisel, I.; Kisiel, A.; Klay, J.L.; Klein-Bösing, C.; Klein, J.; Kliemant, M.; Klovning, A.; Kluge, A.; Kniege, S.; Koch, K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornas, E.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kral, J.; Kramer, F.; Kraus, I.; Kravcáková, A.; Krawutschke, T.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kumar, L.; Kumar, N.; Kupczak, R.; Kurashvili, P.; Kurepin, A.; Kurepin, A.N.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kutouski, M.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; La Rocca, P.; Lackner, F.; Ladrón de Guevara, P.; Lafage, V.; Lal, C.; Lara, C.; Larsen, D.T.; Laurenti, G.; Lazzeroni, C.; Le Bornec, Y.; Le Bris, N.; Lee, H.; Lee, K.S.; Lee, S.C.; Lefèvre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; León, H.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, X.; Li, Y.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Listratenko, O.; Liu, L.; Loginov, V.; Lohn, S.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lopez, X.; Løvhøiden, G.; Lozea Feijo Soares, A.; Lu, S.; Lunardon, M.; Luparello, G.; Luquin, L.; Lutz, J.R.; Ma, K.; Ma, R.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Makhlyueva, I.; Mal'Kevich, D.; Malaev, M.; Malagalage, K.J.; Maldonado Cervantes, I.; Malek, M.; Malkiewicz, T.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marín, A.; Martashvili, I.; Martinengo, P.; Martínez Hernandez, M.I.; Martínez Davalos, A.; Martínez García, G.; Martínez, M.I.; Maruyama, Y.; Marzari Chiesa, A.; Masciocchi, S.; Masera, M.; Masetti, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Meoni, M.; Mercado Pérez, J.; Mereu, P.; Miake, Y.; Michalon, A.; Miftakhov, N.; Milosevic, J.; Minafra, F.; Mischke, A.; Miskowiec, D.; Mitu, C.; Mizoguchi, K.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mondal, M.M.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moretto, S.; Morsch, A.; Moukhanova, T.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Müller, H.; Munhoz, M.G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nianine, A.; Nicassio, M.; Nielsen, B.S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyatha, A.; Nygaard, C.; Nyiri, A.; Nystrand, J.; Ochirov, A.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Okada, K.; Okada, Y.; Oldenburg, M.; Oleniacz, J.; Oppedisano, C.; Orsini, F.; Ortíz Velázquez, A.; Ortona, G.; Oskamp, C.J.; Oskarsson, A.; Osmic, F.; Österman, L.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Øvrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.K.; Pal, S.; Palaha, A.; Palmeri, A.; Panse, R.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Pastircák, B.; Pastore, C.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pepato, A.; Pereira, H.; Peressounko, D.; Pérez, C.; Perini, D.; Perrino, D.; Peryt, W.; Peschek, J.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A.J.; Petrácek, V.; Petridis, A.; Petris, M.; Petrovici, M.; Petrov, P.; Petta, C.; Peyré, J.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Platt, R.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta Lerma, P.L.M.; Poggio, F.; Poghosyan, M.G.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pop, A.; Posa, F.; Pospísil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Rammler, M.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rashevskaya, I.; Rath, S.; Read, K.F.; Real, J.S.; Redlich, K.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román López, S.; Romita, R.; Ronchetti, F.; Rosinský, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio-Montero, A.J.; Rui, R.; Rusanov, I.; Russo, G.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Sakata, D.; Salgado, C.A.; Salgueiro Dominques da Silva, R.; Salur, S.; Samanta, T.; Sambyal, S.; Samsonov, V.; Sándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schindler, H.; Schmidt, C.; Schmidt, H.R.; Schossmaier, K.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Segato, G.; Semenov, D.; Senyukov, S.; Seo, J.; Serci, S.; Serkin, L.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, G.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddi, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simili, E.; Simonetti, G.; Singaraju, R.; Singhal, V.; Singh, R.; Sinha, B.C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Snow, H.; Søgaard, C.; Soloviev, A.; Soltveit, H.K.; Soltz, R.; Sommer, W.; Son, C.W.; Son, H.; Song, M.; Soos, C.; Soramel, F.; Soyk, D.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Staley, F.; Stan, E.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovsky, P.; Strmen, P.; Suaide, A.A.P.; Subieta Vásquez, M.A.; Sugitate, T.; Suire, C.; Sumbera, M.; Susa, T.; Swoboda, D.; Symons, J.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Szuba, M.; Tadel, M.; Tagridis, C.; Takahara, A.; Takahashi, J.; Tanabe, R.; Tapia Takaki, J.D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Tieulent, R.; Tlusty, D.; Toia, A.; Tolyhy, T.; Torcato de Matos, C.; Torii, H.; Torralba, G.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tribedy, P.; Tröger, G.; Truesdale, D.; Trzaska, W.H.; Tsiledakis, G.; Tsilis, E.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A.; Tveter, T.S.; Tydesjö, H.; Tywoniuk, K.; Ulery, J.; Ullaland, K.; Uras, A.; Urbán, J.; Urciuoli, G.M.; Usai, G.L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van den Brink, A.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasiliev, A.; Vassiliev, I.; Vasileiou, M.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vetlitskiy, I.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopianov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wallet, L.; Wang, D.; Wang, Y.; Wan, R.; Watanabe, K.; Wen, Q.; Wessels, J.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, M.C.S.; Willis, N.; Windelband, B.; Xu, C.; Yang, C.; Yang, H.; Yasnopolskiy, S.; Yermia, F.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I-K; Yuan, X.; Yurevich, V.; Yushmanov, I.; Zabrodin, E.; Zagreev, B.; Zalite, A.; Zampolli, C.; Zanevsky, Yu; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zepeda, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, S.; Zhu, J.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zychácek, V.; Zynovyev, M.

    2010-01-01

    The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy sqrt(s) = 7 TeV, were measured in the central pseudorapidity region |eta| < 1. Comparisons are made with previous measurements at sqrt(s) = 0.9 TeV and 2.36 TeV. At sqrt(s) = 7 TeV, for events with at least one charged particle in |eta| < 1, we obtain dNch/deta = 6.01 +- 0.01 (stat.) +0.20 -0.12 (syst.). This corresponds to an increase of 57.6% +- 0.4% (stat.) +3.6 -1.8% (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.

  17. Multi-strange baryon elliptic flow in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV measured with the ALICE detector

    CERN Document Server

    Zhongbao, Yin

    2012-01-01

    We present the results on elliptic flow with multi-strange baryons produced in Pb-Pb collisions at \\sqrt{s_{NN}} = 2.76 TeV. The analysis is performed with the ALICE detector at LHC. Multi-strange baryons are reconstructed via their decay topologies and the v_2 values are analyzed with the two-particle scalar product method. The p_T differential v_2 values are compared to the VISH2+1 model calculation and to the STAR measurements at 200 GeV in Au+Au collisions. We found that the model describes \\Xi and \\Omega v_2 measurements within experimental uncertainties. The differential flow of \\Xi and \\Omega is similar to the STAR measurements at 200 GeV in Au+Au collisions.

  18. ALICE Diffractive Detector Control System for RUN-II in the ALICE Experiment

    CERN Document Server

    INSPIRE-00522336; Martinez, M.I.; Monzon, I. Leon

    2016-01-01

    This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.

  19. ALICE HLT Cluster operation during ALICE Run 2

    Science.gov (United States)

    Lehrbach, J.; Krzewicki, M.; Rohr, D.; Engel, H.; Gomez Ramirez, A.; Lindenstruth, V.; Berzano, D.; ALICE Collaboration

    2017-10-01

    ALICE (A Large Ion Collider Experiment) is one of the four major detectors located at the LHC at CERN, focusing on the study of heavy-ion collisions. The ALICE High Level Trigger (HLT) is a compute cluster which reconstructs the events and compresses the data in real-time. The data compression by the HLT is a vital part of data taking especially during the heavy-ion runs in order to be able to store the data which implies that reliability of the whole cluster is an important matter. To guarantee a consistent state among all compute nodes of the HLT cluster we have automatized the operation as much as possible. For automatic deployment of the nodes we use Foreman with locally mirrored repositories and for configuration management of the nodes we use Puppet. Important parameters like temperatures, network traffic, CPU load etc. of the nodes are monitored with Zabbix. During periods without beam the HLT cluster is used for tests and as one of the WLCG Grid sites to compute offline jobs in order to maximize the usage of our cluster. To prevent interference with normal HLT operations we separate the virtual machines running the Grid jobs from the normal HLT operation via virtual networks (VLANs). In this paper we give an overview of the ALICE HLT operation in 2016.

  20. Alignment of the ALICE transition radiation detector as well as two particle intensity interferometry of identical pions from p+p collisions at LHC energies of 900 GeV and 7 TeV

    International Nuclear Information System (INIS)

    Huber, Sebastian

    2011-01-01

    This PhD thesis deals with results from the Large Hadron Collider (LHC). A Large Ion Collider Experiment (ALICE) is one of the four major detectors at the LHC and the only one dedicated to heavy ion physics. It is divided into 13 subsystems. One of these is the ALICE Transition Radiation Detector (TRD), which is installed around the Time Projection Chamber (TPC) at a distance of 3 m to the beam pipe. The acceptance in φ covers the complete 360 . This subsystems concept is intentionally modular, being composed of 18 supermoduls, each containing 30 chambers. Always 6 such small units in a row (in r direction) are called a stack. Altogether the TRD is made up of 522 chambers, each of them being able to work as a self-sustaining small Transition Radiation Detector. Aim of the alignment of the TRD is the minimization of the geometrical uncertainties while the conversion of the detector signals into digital position informations, the so called reconstruction. For this purpose the AliROOT alignment framework was developed. As a result one receives six correction parameters (alignment parameters) for each alignable module of the TRD (supermoduls and chambers) in the chosen reference frame. These parameters are the three shifts along the axis in the local frame - z shift, rφ-shift and r-shift, as well as the three rotations or tilts around these axis - z-tilt, φ-tilt and r-tilt. The extracted correction parameters are stored in the of Offline Condition Data Base (OCDB) and used when doing a new reconstruction cycle. In the end the efficiency and resolution of the TRD are monitored. The final position uncertainty of the supermoduls concerning the TPC was below 1000 μm. The position uncertainty of the chambers within their stacks appears to be around 300 μm. The data of ALICE where analysed with this method. The systems for intensity interferometry of identical pions (π + π + und π - π - ) which we analysed were p+p at √(s NN )=900 GeV as well as 7 TeV, and heavy

  1. The ALICE data acquisition system

    CERN Document Server

    Carena, F; Chapeland, S; Chibante Barroso, V; Costa, F; Dénes, E; Divià, R; Fuchs, U; Grigore, A; Kiss, T; Simonetti, G; Soós, C; Telesca, A; Vande Vyvre, P; Von Haller, B

    2014-01-01

    In this paper we describe the design, the construction, the commissioning and the operation of the Data Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large Hadron Collider (LHC). The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for the overall control of the experiment. They are two computing systems made of hundreds of PCs and data storage units interconnected via two networks. The collection of experimental data from the detectors is performed by several hundreds of high-speed optical links. We describe in detail the design considerations for these systems handling the extreme data throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting requirements into hardware (custom optical links and commercial computing equipment), infrastructure (racks, cooling, power distribution, control room), and software led to many innovative solutions which are described together with ...

  2. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  3. Two-Particle Correlations with Neutral Pion and Direct Photon Triggers in pp and Pb+Pb Collisions with ALICE at the LHC

    CERN Document Server

    Zhu, Xiangrong; Constantinos, Loizides; Zhongbao, Yin; Loizides, Constantinos; Zhongbao, Yin

    Two-particle correlations is considered as a powerful probe for understanding the properties of the strongly interacting hot and dense medium. In such an analysis, a particle is chosen from higher $p_{\\rm T}$ region and called the trigger particle, which is presumably from jet fragmentations. The so called associated particles from lower $p_{\\rm T}$ region are always from the other fragmentation of the jet, or another production, such as collective flow. At RHIC and LHC, the measurements of the azimuthal angle distribution from two-particle correlations in A+A collisions show a strong suppression even disappeared at the high $p_{\\rm T}$ and enhancement with double-peak at the low $p_{\\rm T}$ on the away side, and ``ridge'' structure in pseudo-rapidity direction at the low $p_{\\rm T}$ on the near side compared to pp collisions. All the measurements can be explained as the effects of the hot and dense medium, and imply the Quark-Gluon Plasma is indeed formed in the heavy-ion collisions. When the direct ph...

  4. Transverse momentum distributions of primary charged particles in pp, p–Pb and Pb–Pb collisions measured with ALICE at the LHC

    CERN Document Server

    Knichel, Michael Linus

    According to the standard model of Big Bang cosmology the earliest universe contained an extremely hot and dense medium that subsequently expanded and cooled. The evolution of the early universe happened through a phase with of deconfined quarks and gluons: the quark-gluon plasma (QGP). This phase ended about ten microseconds after the Big Bang when the temperature dropped below the critical temperature Tc and quarks and gluons became confined into hadrons. The existence of a QGP phase at high temperature is also predicted by Quantum Chromodynamics (QCD), the fundamental field theory describing the strong interaction of quarks and gluons. In high-energy collisions of heavy nuclei a QGP can be created and studied experimentally. The energy loss of high energy partons in the hot QCD medium results in a suppression of particle production at large transverse momenta. Measurements of the parton energy loss can be used to characterize the QGP properties. The Large Hadron Collider (LHC) at CERN provides hadron-hadro...

  5. Managing information flow in ALICE

    International Nuclear Information System (INIS)

    Pinazza, O.; Augustinus, A.; Chochula, P.Ch.; Jirden, L.S.; Lechman, M.; Rosinsky, P.; Cataldo, G. de; Kurepin, A.N.; Moreno, A.

    2012-01-01

    ALICE is one of the experiments at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The ALICE detector control system (DCS) is an integrated system collecting 18 different detectors' controls and general services. DCS is implemented using the commercial SCADA package PVSS. Information of general interest, such as beam and condition data, and data related to shared plants or systems, are made available to all the subsystems via the distribution capabilities of PVSS. Great care has been taken to build a modular and hierarchical system, limiting the inter-dependencies of the various subsystems. Accessing remote resources in a PVSS distributed environment is very simple and can be initiated unilaterally. In order to improve the reliability of distributed data and to avoid unforeseen and unwished dependencies, the ALICE DCS group has enforced the centralization of global data required by the subsystems. A tool has been developed to monitor the level of inter-dependency and to understand the optimal layout of the distributed connections, allowing for an interactive visualization of the distribution topology. (authors)

  6. ALICE HMPID Radiator Vessel

    CERN Document Server

    2003-01-01

    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure. http://alice-hmpid.web.cern.ch/alice-hmpid

  7. The ALICE Transition Radiation Detector: construction, operation, and performance

    OpenAIRE

    Acharya, Shreyasi; Adam, Jaroslav; Ahmad, Nazeer; Bhattacharjee, Buddhadeb; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Bhom, Jihyun

    2018-01-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 G...

  8. ALICE gives its first thesis awards

    CERN Multimedia

    2008-01-01

    For the first time the ALICE collaboration has given two of its doctoral students awards for their outstanding theses. Winners Christian Holm Christensen and Zaida Conesa del Valle holding their awards.On 29 October the ALICE collaboration honoured two students for their outstanding theses at a ceremony held at CERN. The two awards, one of which was given for a physics thesis and the other for a technical thesis, went to Zaida Conesa Del Valle (Laboratoire de physique subatomique et des technologies associées) and Christian Holm Christensen (Niels Bohr Institute) respectively. "It is very gratifying to see that the collaboration appreciates our work," said Zaida Conesa del Valle, winner of the physics award for her thesis: Performance of the ALICE Muon Spectrometer. Weak Boson Production and Measurement in Heavy Ion Collisions at the LHC. "I also feel specially thankful to all the people who worked with me," she added. "It was pl...

  9. ALICE Upgrades: Plans and Potentials

    CERN Document Server

    Tieulent, Raphael

    2015-01-01

    The ALICE collaboration consolidated and completed the installation of current detectors during LS1 with the aim to accumulate 1 nb$^{-1}$ of Pb-Pb collisions during Run 2 corresponding to about 10 times the Run 1 integrated luminosity. In parallel, the ALICE experiment has a rich detector upgrade programme scheduled during the second LHC long shutdown (LS2, 2018-2019) in order to fully exploit the LHC Runs 3 and 4. The main objectives of this programme are: improving the tracking precision and enabling the read-out of all Pb-Pb interactions at a rate of up to 50 kHz, with the goal to record an integrated luminosity of 10 nb$^{-1}$ after LS2 in minimum-bias trigger mode. This sample would represent an increase by a factor of one hundred with respect to the minimum-bias sample expected during Run 2. The implementation of this upgrade programme, foreseen in LS2, includes: a new low-material Inner Tracking System at central rapidity with a forward rapidity extension to add vertexing capabilities to the current M...

  10. ALICE: Physics Performance Report, Volume II

    International Nuclear Information System (INIS)

    Alessandro, B; Antinori, F; Belikov, J A

    2006-01-01

    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dN ch /dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update

  11. Recherche de leptoquarks de troisième génération dans l’expérience CMS au LHC

    CERN Document Server

    Chasserat, Julien

    L'expérience CMS (Compact Muon Solenoid), construite sur l'anneau du LHC (Large Hadron Collider) a enregistré une quantité colossale de données provenant des collisions proton-proton de 2009 à 2012 à des énergies dans le centre de masse de 7 TeV et 8 TeV. Cette expérience est consacrée aux mesures de précision des paramètres du modèle standard, à l'étude du boson de Higgs ainsi qu'à la mise à l'épreuve de théories au-delà du modèle standard. Un certain nombre de ces théories prévoient l'existence de particules appelées leptoquarks, de nouveaux bosons se couplant à la fois aux leptons et au quarks. La première partie de cette thèse est consacrée à la présentation du Modèle Standard des particules et à une introduction théorique aux leptoquarks. La seconde explique brièvement le fonctionnement du LHC et de l'expérience CMS. La troisième partie est dédiée au travail effectué dans le groupe générateur de CMS au cours de la première année de ma thèse. Cette mission consis...

  12. ALICE HLT Run 2 performance overview.

    Science.gov (United States)

    Krzewicki, Mikolaj; Lindenstruth, Volker; ALICE Collaboration

    2017-10-01

    For the LHC Run 2 the ALICE HLT architecture was consolidated to comply with the upgraded ALICE detector readout technology. The software framework was optimized and extended to cope with the increased data load. Online calibration of the TPC using online tracking capabilities of the ALICE HLT was deployed. Offline calibration code was adapted to run both online and offline and the HLT framework was extended to support that. The performance of this schema is important for Run 3 related developments. An additional data transport approach was developed using the ZeroMQ library, forming at the same time a test bed for the new data flow model of the O2 system, where further development of this concept is ongoing. This messaging technology was used to implement the calibration feedback loop augmenting the existing, graph oriented HLT transport framework. Utilising the online reconstruction of many detectors, a new asynchronous monitoring scheme was developed to allow real-time monitoring of the physics performance of the ALICE detector, on top of the new messaging scheme for both internal and external communication. Spare computing resources comprising the production and development clusters are run as a tier-2 GRID site using an OpenStack-based setup. The development cluster is running continuously, the production cluster contributes resources opportunistically during periods of LHC inactivity.

  13. The ALICE time machine

    Directory of Open Access Journals (Sweden)

    Ferretti Alessandro

    2013-09-01

    Full Text Available According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. In such a state the normal nuclear matter could not exist: it is believed that a few microsecond after big-bang the matter underwent a phase transition, from a state called Quark-Gluon Plasma (QGP to a hadron gas. Some of the unexplained features of the Universe could be explained by the QGP properties. One of the aims of the CERN LHC is to recreate (on a smaller scale a QGP state, compressing and heating ordinary nuclear matter by means of ultrarelativistic heavy-ion collisions. The ALICE experiment at CERN is dedicated to the study of the medium produced in these collisions : in particular, the study of the heavy quarkonia suppression pattern can give a measure of the temperature reached in these collisions, helping us to understand how close we are getting to the conditions of the starting point of the Universe.

  14. MAPS development for the ALICE ITS upgrade

    OpenAIRE

    Yang, P; Aglieri, G; Cavicchioli, C; Chalmet, P L; Chanlek, N; Collu, A; Gao, C; Hillemanns, H; Junique, A; Kofarago, M; Keil, M; Kugathasan, T; Kim, D; Kim, J; Lattuca, A

    2015-01-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging senso...

  15. 27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Laurent Egli

    2012-01-01

    27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

  16. Technical design report for the upgrade of the ALICE inner tracking system

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.|info:eu-repo/dai/nl/371577810; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.|info:eu-repo/dai/nl/371578248; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.|info:eu-repo/dai/nl/355079615; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.|info:eu-repo/dai/nl/070139032; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.|info:eu-repo/dai/nl/411885812; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.|info:eu-repo/dai/nl/411888056; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; Delagrange, H.; Delo, A.; Dénes, E.; D'Erasmo, G.; De Barros, G. O V; De Caro, A.; De Cataldo, G.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; De Rooij, R.|info:eu-repo/dai/nl/315888644; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, O.; Dobrin, A.|info:eu-repo/dai/nl/372618715; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.|info:eu-repo/dai/nl/355502488; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.|info:eu-repo/dai/nl/326052577; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, I.M.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jacho lkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.|info:eu-repo/dai/nl/362845670; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.|info:eu-repo/dai/nl/074064975; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron De Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.|info:eu-repo/dai/nl/355080192; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X. G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.|info:eu-repo/dai/nl/355080400; Luzzi, C.; M. Gago, A.; M. Jacobs, P.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.|info:eu-repo/dai/nl/325781435; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhammad Bhopal, F.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.|info:eu-repo/dai/nl/07051349X; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.|info:eu-repo/dai/nl/323375618; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Poskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.|info:eu-repo/dai/nl/32823219X; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M|info:eu-repo/dai/nl/165585781; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Sooden, V.; Soramel, F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.|info:eu-repo/dai/nl/412860996; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerho, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.; Zhang, Y.|info:eu-repo/dai/nl/352841931; Zhao, C.; Zherebchevsky, V. I.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is

  17. The search for charginos and neutralinos with the ATLAS detector at LHC; La recherche des charginos et des neutralinos avec le detecteur Atlas au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Muanza, G.S.

    1996-05-01

    This thesis concerns the prospective study to evidence the supersymmetry with the ATLAS detector at the CERN Large Hadron Collider (LHC) by searching for the disintegration of chargino-neutralino pairs into three leptons. The analysis of this channel is performed through a rapid simulation of the detector used for the signal processing and to process the background (from the standard model and from the MSSM) which may hinder the detection. The results are given for different configurations of LHC: at low energy ({radical}s = 9.3 TeV), at high energy ({radical}s = 14 TeV), at low luminosity (L = 10 sup 3 sup 3 cm sup -2 sup -1), at high luminosity (L = 10 sup 3 sup 4 cm sup -2 sup -1). Finally, we propose an original method allowing the estimation of the gluino mass (an essential parameter of the MSSM) as well as that of all the charginos and neutralinos. This method is of course approximated but it relies on a unique experimental measurement and permits the rebuilding of the whole mass spectrum of the MSSM jauginos to be performed with a worthy precision. The experimental part of this thesis deals with the tests performed on the new photomultipliers (PMTs) HAMAMATSU R5900 which are foreseen for the outfit of the ATLAS tile calorimeter TICAL. The results of these tests show that the PMTs are in conformity with the specifications of the reading of TICAL. (N.T.).

  18. Status of the Grid Computing for the ALICE Experiment in the Czech Republic

    International Nuclear Information System (INIS)

    Adamova, D; Hampl, J; Chudoba, J; Kouba, T; Svec, J; Mendez, Lorenzo P; Saiz, P

    2010-01-01

    The Czech Republic (CR) has been participating in the LHC Computing Grid project (LCG) ever since 2003 and gradually, a middle-sized Tier-2 center has been built in Prague, delivering computing services for national HEP experiments groups including the ALICE project at the LHC. We present a brief overview of the computing activities and services being performed in the CR for the ALICE experiment.

  19. Nuclear suppression of the φ meson yields with large p{sub T} at the RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei; Zhang, Ben-Wei; Zhang, Han-Zhong; Wang, Enke [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Chen, Xiao-Fang [Jiangsu Normal University, School of Physics and Electronic Engineering, Xuzhou (China)

    2017-08-15

    We calculate φ meson transverse momentum spectra in p+p collisions as well as their nuclear suppressions in central A + A collisions both at the RHIC and the LHC in LO and NLO with the QCD-improved parton model. We have included the parton energy loss effect in a hot/dense QCD medium with the effectively medium-modified φ fragmentation functions in the higher-twist approach of jet quenching. The nuclear modification factors of the φ meson in central Au + Au collisions at the RHIC and central Pb + Pb collisions at the LHC are provided, and nice agreement of our numerical results at NLO with the ALICE measurement is observed. Predictions of the yield ratios of neutral mesons such as φ/π{sup 0}, φ/η and φ/ρ{sup 0} at large p{sub T} in relativistic heavy-ion collisions are also presented for the first time. (orig.)

  20. LHC France 2013: French Meeting on High Energy Physics at the LHC

    CERN Document Server

    2013-01-01

    Cette 1ère édition des rencontres françaises sur la physique des hautes énergies au Large Hadron Collider réunira près de 300 physiciens membres des laboratoires IN2P3-CNRS et IRFU-CEA, participants aux collaborations Atlas, CMS, LHCb et Alice. La rencontre LHC France, aura lieu à une période particulièrement cruciale pour la discipline, les derniers résultats des expériences LHC, basés sur toutes les données collectées en 2011 et 2012 y seront présentés et discutés. Elle sera l'occasion de faire le point et le bilan des avancées des diverses thématiques de recherche: boson de Higgs, les interactions électrofaibles, le quark top, la Supersymétrie, les saveurs lourdes, la violation de CP et le Plasma de Quarks et de Gluons. Elle sera aussi l'occasion de discuter des plans d'amélioration des détecteurs en vue des futures phases de fonctionnement du LHC ainsi que les perspectives pour la physique. Cette rencontre se veut un moment d'échange privilégié pour la communauté française des ...

  1. Top quark studies with Atlas at the LHC. Electromagnetic calorimeter commissioning; Etude du quark top avec Atlas au LHC. Mise en route du calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Resende Vaz de Melo Xavier, B

    2007-05-15

    The first proton-proton collisions in the Large Hadron Collider at CERN will take place on 2007. It aims at understanding the origins of mass. and it will also look for new physics. The ATLAS experiment will exploit all those physics potentialities. using a multilayer generalist detector. Quark top studies will be an important step in ATLAS physics program: its properties may reveal hints of new phenomena. One way to look for new physics is through quark top and W boson polarizations. which are studied here. This detailed simulation study has confirmed previous fast simulation results including extensive systematics estimation. ATLAS should thus yield a precision of a few percents with 10 fb{sup -1} of data. that is a year of LHC working. This precision is sufficient to select among several new physics models. Among ATLAS subsystems, the electromagnetic calorimeter plays a crucial role in the characterisation of electrons and photons. which are used in particular for the Higgs boson search. This document deals with the calorimeter commissioning as the time of the first collisions approaches. The detector itself and its electronics will be described, as well as its installation and calibration. Cosmic muons observation will then be presented. as the first overall test of the reading and reconstruction electronics chain in actual working conditions. (author)

  2. The ALICE Experiment at the CERN LHC

    Czech Academy of Sciences Publication Activity Database

    Aamodt, K.; Quintana, A.A.; Achenbach, R.; Acounis, S.; Adamová, Dagmar; Adler, C.; Aggarwal, M. M.; Agnese, F.; Rinella, G.A.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticic, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Aysto, J.; Azmi, M. D.; Bablock, S.; Badala, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.L.; Barbet, J.M.; Barnafoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J.L.; Benhabib, L.; Benotto, F.; Beoe, S.; Berceanu, I.; Kushpil, Vasilij; Šumbera, Michal; Bielčík, Jaroslav; Bielčíková, Jana; Kapitán, Jan; Kushpil, Svetlana; Petráček, Vojtěch; Rak, Jan

    2008-01-01

    Roč. 3, - (2008), S08002/1-S08002/5 ISSN 1748-0221 R&D Projects: GA MŠk 1P04LA211 Institutional research plan: CEZ:AV0Z10480505 Keywords : Instrumentation for heavy-ion accelerators * Instrumentation for particle accelerators and storage rings - high energy * Cherenkov and transition radiation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.333, year: 2008

  3. The ALICE experiment at the CERN LHC

    Czech Academy of Sciences Publication Activity Database

    Aamodt, K.; Quintana, A.A.; Achenbach, R.; Mareš, Jiří A.; Polák, Karel; Závada, Petr

    2008-01-01

    Roč. 3, - (2008), S08002/1-S08002/218 ISSN 1748-0221 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10100502 Keywords : instrumentation for heavy-ion acceleratorsy * instrumentation for particle accelerators and storage rings - high energy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.333, year: 2008

  4. ALICE installs new hardware in preparation for the 2012 run

    CERN Multimedia

    CERN Bulletin and ALICE Matters

    2012-01-01

    2011 was a fantastic year for the heavy-ion run at ALICE despite unprecedented challenges and difficult conditions. The data collected is at least one order of magnitude greater than the 2010 data. Thanks to a planned upgrade to two subdetectors during the 2011/2012 winter shutdown and a reorganisation of ALICE’s Physics Working Groups that should allow them to better deal with the greater challenges imposed by the LHC, the collaboration is confident that the 2011 run will allow ALICE to extend its physics reach and improve its performance.   Photograph of ALICE taken by Antonio Saba during this year's winter shutdown. The annual winter shutdown has been a very intense period for the ALICE collaboration. In conjunction with the general maintenance, modifications and tests of the experiment, two major projects – the installation of 3 supermodules of the Transition Radiation Detector (TRD) and 2 supermodules of the Electromagnetic Calorimeter (EMCal) – hav...

  5. ALICE chip processor

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This tiny chip provides data processing for the time projection chamber on ALICE. Known as the ALICE TPC Read Out (ALTRO), this device was designed to minimize the size and power consumption of the TPC front end electronics. This single chip contains 16 low-power analogue-to-digital converters with six million transistors of digital processing and 8 kbits of data storage.

  6. "Alice imedemaal" Vanemuises

    Index Scriptorium Estoniae

    2004-01-01

    7. veebr. esietendub Vanemuises tantsulavastus "Alice imedemaal". Etendus põhineb briti kirjaniku L. Carrolli samanimelisel lasteraamatul, koreograaf M. Murdmaa, kunstnik K. Jancis ja muusika on kirjutanud ungari helilooja S. Kall̤s, Alice'i osa tantsib korealanna Hye Min Kim

  7. The ALICE data challenges

    International Nuclear Information System (INIS)

    Baud, J.P.; Collignon, M.; Collin, F.; Durand, J.; Jarp, S.; Jouanigot, J.M.; Panzer, B.; Carena, W.; Carminati, F.; Divia, R.; Rademakers, F.; Saiz, P.; Schossmaier, K.; Vande Vyvre, P.; Vascotto, A.

    2001-01-01

    Since 1998, the ALICE experiment and the CERN/IT division have jointly executed several large-scale high throughput distributed computing exercises: the ALICE data challenges. The goals of these regular exercises are to test hardware and software components of the data acquisition and computing systems in realistic conditions and to execute an early integration of the overall ALICE computing infrastructure. The authors report on the third ALICE Data Challenge (ADC III) that has been performed at CERN from January to March 2001. The data used during the ADC III are simulated physics raw data of the ALICE TPC, produced with the ALICE simulation program AliRoot. The data acquisition was based on the ALICE online framework called the ALICE Data Acquisition Test Environment (DATE) system. The data, after event building, were then formatted with the ROOT I/O package and a data catalogue based on MySQL was established. The Mass Storage System used during ADC III is CASTOR. Different software tools have been used to monitor the performances. DATE has demonstrated performances of more than 500 MByte/s. An aggregate data throughput of 85 MByte/s was sustained in CASTOR over several days. The total collected data amounts to 100 TBytes in 100.000 files

  8. ALICE A Large Ion Collider Experiment

    CERN Multimedia

    Mager, M; Rohr, D M; Suljic, M; Miskowiec, D C; Donigus, B; Mercado-perez, J; Lohner, D; Bertelsen, H; Kox, S; Cheynis, B; Sambyal, S S; Usai, G; Agnello, M; Toscano, L; Miake, Y; Inaba, M; Maldonado cervantes, I A; Fernandez tellez, A; Kulibaba, V; Zinovjev, G; Martynov, Y; Usenko, E; Pshenichnov, I; Nikolaev, S; Vasiliev, A; Vinogradov, A; Moukhanova, T; Vasilyev, A; Kozlov, Y; Voloshin, K; Kiselev, S; Kirilko, Y; Lyublev, E; Kondratyeva, N; Gameiro munhoz, M; Alarcon do passo suaide, A; Lagana fernandes, C; Carlin filho, N; Yin, Z; Zhu, J; Luo, J; Pikna, M; Bombara, M; Pastircak, B; Marangio, G; Gianotti, P; Muccifora, V; Sputowska, I A; Ilkiv, I; Christiansen, P; Dodokhov, V; Yurevich, V; Fedunov, A; Malakhov, A; Efremov, A; Feofilov, G; Vinogradov, L; Asryan, A; Kovalenko, V; Piyarathna, D; Myers, C J; Martashvili, I; Oh, H; Cherney, M G; D'erasmo, G; Wagner, V; Smakal, R; Sartorelli, G; Xaplanteris karampatsos, L; Mlynarz, J; Murray, C J; Oh, S; Becker, B; Zbroszczyk, H P; Feldkamp, L; Pappalardo, G; Khlebnikov, A; Basmanov, V; Punin, V; Demanov, V; Naseer, M A; Gotovac, S; Zgura, S I; Yang, H; Vernet, R; Son, C; Shtejer diaz, K; Hwang, S; Alfaro molina, J R; Jahnke, C; Richter, M R; Garcia-solis, E J; Hitchcock, T M; Bazo alba, J L; Utrobicic, A; Brun, R; Divia, R; Hillemanns, H; Schukraft, J; Riedler, P; Eulisse, G; Von haller, B; Kushpil, V; Ivanov, M; Malzacher, P; Schweda, K O; Renfordt, R A E; Reygers, K J; Pachmayer, Y C; Gaardhoeje, J J; Bearden, I G; Porteboeuf, S J; Borel, H; Pereira da costa, H D A; Faivre, J; Germain, M; Schutz, Y R; Delagrange, H; Batigne, G; Stocco, D; Estienne, M D; Bergognon, A A E; Zoccarato, Y D; Jones, P G; Levai, P; Bencedi, G; Khan, M M; Mahapatra, D P; Ghosh, P; Das, T K; Cicalo, C; De falco, A; Mazzoni, A M; Cerello, P; De marco, N; Riccati, L; Saavedra san martin, O; Paic, G; Ovchynnyk, V; Karavicheva, T; Kucheryaeva, M; Skuratovskiy, O; Mal kevich, D; Bogdanov, A; Pereira, L G; Cai, X; Zhu, X; Wang, M; Kar, S; Fan, F; Sitar, B; Cerny, V; Aggarwal, M M; Bianchi, N; Torii, H; Hori, Y; Tsuji, T; Herrera corral, G A; Kowalski, M; Rybicki, A; Deloff, A; Petrovici, A; Nomokonov, P; Parfenov, A; Koshurnikov, E; Shahaliyev, E; Rogochaya, E; Kondratev, V; Oreshkina, N; Tarasov, A; Norenberg, M; Bodnya, E; Bogolyubskiy, M; Symons, T; Blanco, F; Madagodahettige don, D M; Umaka, E N; Schaefer, B; De pasquale, S; Fusco girard, M; Kim, J; Jeon, H; Nandi, B K; Kumar, J; Sarkar - sinha, T; Arcelli, S; Scapparone, E; Shevel, A; Nikulin, V; Komkov, B; Voloshin, S; Hille, P T; Kannan, S; Dainese, A; Matynia, R M; Dabala, L B; Zimmermann, M B; Vinogradov, Y; Vikhlyantsev, O; Telnov, A; Tumkin, A; Van leeuwen, M; Erdal, H A; Keidel, R; Rui, R; Yeo, I; Vilakazi, Z; Klay, J L; Boswell, B D; Lindenstruth, V; Tveter, T S; Batzing, P C; Breitner, T G; Sahoo, R; Roy, A; Musa, L; Perini, D; Vande vyvre, P; Fuchs, U; Oberegger, M; Aglieri rinella, G; Salgueiro domingues da silva, R M; Kalweit, A P; Greco, V; Bellini, F; Bond, P M; Mohammadi, N; Marin, A M; Glassel, P; Schicker, R M; Staley, F M; Castillo castellanos, J E; Furget, C; Real, J; Martino, J F; Evans, D; Sahu, P K; Sahu, S K; Ahammed, Z; Saini, J; Bala, R; Gupta, R; Di bari, D; Biasotto, M; Nappi, G; Esumi, S; Sano, M; Roehrich, D; Lonne, P; Drakin, Y; Manko, V; Nikulin, S; Yushmanov, I; Kozlov, K; Kerbikov, B; Stavinskiy, A; Sultanov, R; Raniwala, R; Zhou, D; Zhu, H; Meres, M; Kralik, I; Parmar, S; Rizzi, V; Orlandi, A; Lea, R; Kuijer, P G; Figiel, J; Gorlich, L M; Shabratova, G; Lobanov, V; Zaporozhets, S; Ivanov, A; Iglovikov, V; Ochirov, A; Petrov, V; Jacobs, P M; De gruttola, D; Corsi, F; Varma, R; Nania, R; Wilkinson, J J; Samsonov, V; Pruneau, C A; Caines, H L; Aronsson, T; Adare, A M; Zwick, S M; Fearick, R W; Ostrowski, P K; Kulasinski, K; Heine, N; Wilk, A; Ilkaev, R; Ilkaeva, L; Pavlov, V; Mikhaylyukov, K; Rybin, A; Naumov, N; Mudnic, E; Cortese, P; Listratenko, O; Stan, I; Nooren, G; Song, J; Krawutschke, T; Kim, S Y; Hwang, D S; Lee, S H; Leon monzon, I; Vorobyev, I; Skaali, B; Wikne, J; Dordic, O; Yan, Y; Mazumder, R; Shahoyan, R; Kluge, A; Pellegrino, F; Safarik, K; Tauro, A; Foka, P; Frankenfeld, U M; Masciocchi, S; Schwarz, K E; Bailhache, R M; Anguelov, V; Hansen, A; Vulpescu, B; Baldisseri, A; Aphecetche, L B; Berenyi, D; Sahoo, S; Nayak, T K; Muhuri, S; Patra, R N; Adhya, S P; Potukuchi, B; Masoni, A; Scomparin, E; Beole, S; Mizuno, S; Enyo, H; Cuautle flores, E; Gonzalez zamora, P; Djuvsland, O; Altinpinar, S; Wagner, B; Fehlker, D; Velure, A; Potin, S; Kurepin, A; Ryabinkin, E; Kiselev, I; Pestov, Y; Hayrapetyan, A; Manukyan, N; Lutz, J; Belikov, I; Roy, C S; Takahashi, J; Araujo silva figueredo, M; Tang, S; Szarka, I; Kapusta, S; Hasko, J; Putis, M; Sandor, L; Vrlakova, J; Das, S; Hayashi, S; Van rijn, A J; Siemiarczuk, T; Petrovici, M; Petris, M; Stenlund, E A; Malinina, L; Fateev, O; Kolozhvari, A; Altsybeev, I; Sadovskiy, S; Soloviev, A; Ploskon, M A; Mayes, B W; Sorensen, S P; Mazer, J A; Awes, T; Virgili, T; Pagano, P; Krus, M; Sett, P; Bhatt, H; Sinha, B; Khan, P; Antonioli, P; Scioli, G; Sakaguchi, H; Volkov, S; Khanzadeev, A; Malaev, M; Lisa, M A; Loggins, V R; Schuster, T R; Scharenberg, R P; Turrisi, R; Debski, P R; Oleniacz, J; Westerhoff, U; Yanovskiy, V; Domrachev, S; Smirnova, Y; Zimmermann, S; Veldhoen, M; Van der maarel, J; Kileng, B; Seo, J; Lopez torres, E; Camerini, P; Jang, H J; Buthelezi, E Z; Suleymanov, M K O; Belmont moreno, E; Zhao, C; Perales, M; Kobdaj, C; Spyropoulou-stassinaki, M; Roukoutakis, F; Keil, M; Morsch, A; Rademakers, A; Soos, C; Zampolli, C; Grigoras, C; Chibante barroso, V M; Schuchmann, S; Grigoras, A G; Lafuente mazuecos, A; Wegrzynek, A T; Bielcikova, J; Kushpil, S; Braun-munzinger, P; Andronic, A; Zimmermann, A; Rosnet, P; Ramillien barret, V; Lopez, X B; Arbor, N; Erazmus, B E; Pichot, P; Pillot, P; Grossiord, J; Boldizsar, L; Khan, S; Puddu, G; Marras, D; Siddhanta, S; Costanza, S; Botta, E; Gallio, M; Masera, M; Simonetti, L; Prino, F; Oppedisano, C; Vargas trevino, A D; Nystrand, J I; Ullaland, K; Haaland, O S; Huang, M; Naumov, S; Zinovjev, M; Trubnikov, V; Alkin, A; Ivanytskyi, O; Guber, F; Karavichev, O; Nyanin, A; Sibiryak, Y; Peresunko, D Y; Patarakin, O; Aleksandrov, D; Blau, D; Yasnopolskiy, S; Chumakov, M; Vetlitskiy, I; Nedosekin, A; Selivanov, A; Okorokov, V; Grigoryan, A; Papikyan, V; Kuhn, C C; Wan, R; Cajko, F; Siska, M; Mares, J; Zavada, P; Ceballos sanchez, C; Reolon, A R; Gunji, T; Snellings, R; Mayer, C; Klusek-gawenda, M J; Schiaua, C C; Andrei, C; Herghelegiu, A I; Soegaard, C; Panebrattsev, Y; Penev, V; Efimov, L; Zanevskiy, Y; Vechernin, V; Zarochentsev, A; Kolevatov, R; Agapov, A; Polishchuk, B; Nattrass, C; Anticic, T; Kwon, Y; Kim, M; Moon, T; Seger, J E; Petran, M; Sahoo, B; Das bose, L; Hushnud, H; Hatzifotiadou, D; Shigaki, K; Jha, D M; Murray, S; Badala, A; Putevskoy, S; Shapovalova, E; Haiduc, M; Mitu, C M; Mischke, A; Grelli, A; Hetland, K F; Rachevski, A; Menchaca-rocha, A A; De cuveland, J; Hutter, D; Langhammer, M; Dahms, T; Watkins, E P; Gago medina, A M; Planinic, M; Riegler, W; Telesca, A; Knichel, M L; Lazaridis, L; Ferencei, J; Martin, N A; Appelshaeuser, H; Heckel, S T; Windelband, B S; Nielsen, B S; Chojnacki, M; Baldit, A; Manso, F; Crochet, P; Espagnon, B; Uras, A; Lietava, R; Lemmon, R C; Agocs, A G; Viyogi, Y; Pal, S K; Singhal, V; Khan, S A; Alam, S N; Rodriguez cahuantzi, M; Maslov, M; Kurepin, A; Ippolitov, M; Lebedev, V; Tsvetkov, A; Klimov, A; Agafonov, G; Martemiyanov, A; Loginov, V; Kononov, S; Hnatic, M; Kalinak, P; Trzaska, W H; Raha, S; Canoa roman, V; Cruz albino, R; Botje, M; Gladysz-dziadus, E; Marszal, T; Oskarsson, A N E; Otterlund, I; Tydesjo, H; Ljunggren, H M; Vodopyanov, A; Akichine, P; Kuznetsov, A; Vedeneyev, V; Naumenko, P; Bilov, N; Rogalev, R; Evdokimov, S; Braidot, E; Bellwied, R; De caro, A; Kang, J H; Gorbunov, Y; Lee, J; Pachr, M; Dash, S; Roy, P K; Cifarelli, L; Laurenti, G; Margotti, A; Sugitate, T; Ivanov, V; Zhalov, M; Salzwedel, J S N; Pavlinov, A; Harris, J W; Caballero orduna, D; Fiore, E M; Pluta, J M; Kisiel, A R; Wrobel, D; Klein-boesing, C; Grimaldi, A; Zhitnik, A; Nazarenko, S; Zavyalov, N; Miroshnikov, D; Kuryakin, A; Vyushin, A; Mamonov, A; Vickovic, L; Niculescu, M; Fragiacomo, E; Ahn, S U; Ahn, S; Foertsch, S V; Brown, C R; Lovhoiden, G; Harton, A V; Khosonthongkee, K; Langoy, R; Schmidt, H R; Betev, L; Buncic, P; Di mauro, A; Martinengo, P; Gargiulo, C; Grosse-oetringhaus, J F; Costa, F; Baltasar dos santos pedrosa, F; Laudi, E; Adamova, D; Lippmann, C; Schmidt, C J; Book, J H; Grajcarek, R; Christensen, C H; Dupieux, P; Bastid, N; Rakotozafindrabe, A M; Conesa balbastre, G; Martinez-garcia, G; Suire, C P; Ducroux, L; Tieulent, R N; Jusko, A; Barnafoldi, G G; Pochybova, S; Hussain, T; Dubey, A K; Acharya, S; Gupta, A; Ricci, R A; Meddi, F; Vercellin, E; Chujo, T; Watanabe, K; Onishi, H; Akiba, Y; Vergara limon, S; Tejeda munoz, G; Skjerdal, K; Svistunov, S; Reshetin, A; Maevskaya, A; Antonenko, V; Mishustin, N; Meleshko, E; Korsheninnikov, A; Balygin, K; Zagreev, B; Akindinov, A; Mikhaylov, K; Gushchin, O; Grigoryev, V; Gulkanyan, H; Sanchez castro, X; Peretti pezzi, R; Oliveira da silva, A C; Harmanova, Z; Vokal, S; Beitlerova, A; Rak, J; Ghosh, S K; Bhati, A K; Spiriti, E; Ronchetti, F; Casanova diaz, A O; Kuzmin, N; Melkumov, G; Zinchenko, A; Shklovskaya, A; Bunzarov, Z I; Chernenko, S; Rogachevskiy, O; Toulina, T; Kompaniets, M; Titov, A; Kharlov, Y; Dantsevich, G; Stolpovskiy, M; Porter, R J; Datskova, O V; Kim, D S; Jung, W W; Kim, H; Bielcik, J; Pospisil, V; Cepila, J; Das, D; Williams, C; Pesci, A; Roshchin, E; Grounds, A; Humanic, T; Steinpreis, M D; Yaldo, C G; Smirnov, N; Heinz, M T; Connors, M E; Barile, F; Lunardon, M; Orzan, G; Wielanek, D H; Servais, E L J; Patecki, M; Passfeld, A; Zhelezov, S; Morkin, A; Zabelin, O; Hobbs, D A; Gul, M; Ramello, L; Van den brink, A; Bertens, R A; Lodato, D F; Haque, M R; Kim, E J; Coccetti, F; Margagliotti, G V; Rauf, A W; Sandoval, A; Berger, M E; Munzer, R H; Qvigstad, H; Lindal, S; Cervantes jr, M; Kebschull, U W; Engel, H; Karasu uysal, A; Lien, J A; Hess, B A; Calvo villar, E; Augustinus, A; Carena, W; Chochula, P; Chapeland, S; Dobrin, A F; Reidt, F; Bock, F; Festanti, A; Galdames perez, A; Sumbera, M; Averbeck, R P; Garabatos cuadrado, J; Reichelt, P S; Marquard, M; Stachel, J; Wang, Y; Boggild, H; Gulbrandsen, K H; Hansen, J C; Charvet, J F; Shabetai, A; Hadjidakis, C M; Krivda, M; Vertesi, R; Mitra, J; Altini, V; Ferretti, A; Gagliardi, M; Sakata, D; Niida, T; Martinez hernandez, M I; Yang, S; Karpechev, E; Veselovskiy, A; Konevskikh, A; Finogeev, D; Fokin, S; Karadzhev, K; Kucheryaev, Y; Plotnikov, V; Ryabinin, M; Golubev, A; Kaplin, V; Ter-minasyan, A; Abramyan, A; Raniwala, S; Hippolyte, B; Strmen, P; Krivan, F; Kalliokoski, T E A; Chang, B; De cataldo, G; Paticchio, V; Fantoni, A; Gomez jimenez, R; Christakoglou, P; Cyz, A; Wilk, G A; Kurashvili, P; Pop, A; Arefiev, V; Batyunya, B; Lioubochits, V; Zryuev, V; Sokolov, M; Patalakha, D; Pinsky, L; Timmins, A R; Petracek, V; Krelina, M; Chattopadhyay, S; Basile, M; Falchieri, D; Miftakhov, N; Garner, R M; Konyushikhin, M; Joseph, N; Srivastava, B K; Cleymans, J W A; Dietel, T; Soramel, F; Pawlak, T J; Kucinski, M; Janik, M A; Surma, K D; Wessels, J P; Riggi, F; Ivanov, A; Selin, I; Budnikov, D; Filchagin, S; Sitta, M; Gheata, M; Danu, A; Peitzmann, T; Reicher, M; Helstrup, H; Subasi, M; Mathis, A M; Nilsson, M S; Rist, J A S; Jena, C; Lara martinez, C E; Vasileiou, M

    2002-01-01

    %title\\\\ \\\\ALICE is a general-purpose heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 750~physicists and $\\sim$70 institutions in 27 countries.\\\\ \\\\The detector is designed to cope with the highest particle multiplicities anticipated for Pb-Pb reactions (dN/dy~$\\approx$~8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and p-nucleus), which provide reference data for the nucleus-nucleus collisions.\\\\ \\\\ALICE consists of a central part, which measures event-by-event hadrons, electrons and photons, and a forward spectrometer to measure muons. The central part, which covers polar angles from 45$^{0} $ to 135$^{0} $ ($\\mid \\eta \\mid $ < 0.9) over the full azimuth, is embedded in the large L3 solenoidal mag...

  9. ALICE: The best is yet to come

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The ALICE wonderland is the ion-ion collisions. However, the proton run was intensely used by the collaboration to get to know its detector in detail and to produce its first results in QCD-related matters. This very successful preparatory phase will now allow ALICE to enter the uncharted territory of the quark-gluon plasma at the extreme energies provided by the LHC.   The ALICE detector is optimized to study ion-ion collisions in which quark-gluon plasma may be formed. This type of matter, which existed a few moments after the Big Bang and appears when quarks and gluons are deconfined to form a highly dense and hot soup, has been studied at CERN’s SPS in the 1990s and later, from 2000 onwards, at much higher energy at RHIC in the US. Now it’s ALICE’s turn. “Quark-gluon plasma is created at very high temperatures but starts to cool down very quickly to become normal matter again. The high energy of the LHC puts us much higher above the threshold of its for...

  10. Performance optimisations for distributed analysis in ALICE

    CERN Document Server

    Betev, L; Gheata, M; Grigoras, C; Hristov, P

    2014-01-01

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the framewo rks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available r esources and ranging from fully I/O - bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by a...

  11. The Wonderland of Operating the ALICE Experiment

    CERN Document Server

    Augustinus, A; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L; Chochula, P

    2011-01-01

    ALICE is one of the experiments at the Large Hadron Collider (LHC), CERN, Geneva, Switzerland. Composed of 18 sub-detectors each with numerous subsystems that need to be controlled and operated in a safe and efficient way. The Detector Control System (DCS) is the key to this and has been used by detector experts with success during the commissioning of the individual detectors. During the transition from commissioning to operation, more and more tasks were transferred from detector experts to central operators. By the end of the 2010 datataking campaign, the ALICE experiment was run by a small crew of central operators, with only a single controls operator. The transition from expert to non-expert operation constituted a real challenge in terms of tools, documentation and training. A relatively high turnover and diversity in the operator crew that is specific to the HEP experiment environment (as opposed to the more stable operation crews for accelerators) made this challenge even bigger. Thi...

  12. New Fast Interaction Trigger for ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Trzaska, Wladyslaw Henryk

    2017-02-11

    The LHC heavy-ion luminosity and collision rate from 2021 onwards will considerably exceed the design parameters of the present ALICE forward trigger detectors and the introduction of the Muon Forward Tracker (MFT) will significantly reduce the space available for the new trigger detectors. To comply with these conditions a new Fast Interaction Trigger (FIT) will be built. FIT will be the main forward trigger, luminometer, and interaction-time detector. It will also determine multiplicity, centrality, and reaction plane of heavy-ion collisions. FIT will consist of two arrays of Cherenkov quartz radiators with MCP-PMT sensors and of a plastic scintillator ring. By increasing the overall acceptance of FIT, the scintillator will improve centrality and event plane resolution. It will also add sensitivity for the detection of beam-gas events and provide some degree of redundancy. FIT is currently undergoing an intense R&D and prototyping period. It is scheduled for installation in ALICE during 2020.

  13. The ALICE Glance Shift Accounting Management System (SAMS)

    Science.gov (United States)

    Martins Silva, H.; Abreu Da Silva, I.; Ronchetti, F.; Telesca, A.; Maidantchik, C.

    2015-12-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the CERN LHC (Large Hadron Collider) studying the physics of strongly interacting matter and the quark-gluon plasma. The experiment operation requires a 24 hours a day and 7 days a week shift crew at the experimental site, composed by the ALICE collaboration members. Shift duties are calculated for each institute according to their correlated members. In order to ensure the full coverage of the experiment operation as well as its good quality, the ALICE Shift Accounting Management System (SAMS) is used to manage the shift bookings as well as the needed training. ALICE SAMS is the result of a joint effort between the Federal University of Rio de Janeiro (UFRJ) and the ALICE Collaboration. The Glance technology, developed by the UFRJ and the ATLAS experiment, sits at the basis of the system as an intermediate layer isolating the particularities of the databases. In this paper, we describe the ALICE SAMS development process and functionalities. The database has been modelled according to the collaboration needs and is fully integrated with the ALICE Collaboration repository to access members information and respectively roles and activities. Run, period and training coordinators can manage their subsystem operation and ensure an efficient personnel management. Members of the ALICE collaboration can book shifts and on-call according to pre-defined rights. ALICE SAMS features a user profile containing all the statistics and user contact information as well as the Institutes profile. Both the user and institute profiles are public (within the scope of the collaboration) and show the credit balance in real time. A shift calendar allows the Run Coordinator to plan data taking periods in terms of which subsystems shifts are enabled or disabled and on-call responsible people and slots. An overview display presents the shift crew present in the control room and allows the Run Coordination team to confirm the presence

  14. The ALICE data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Dénes, E. [Research Institute for Particle and Nuclear Physics, Wigner Research Center, Budapest (Hungary); Divià, R.; Fuchs, U. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Grigore, A. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Politehnica Univesity of Bucharest, Bucharest (Romania); Kiss, T. [Cerntech Ltd., Budapest (Hungary); Simonetti, G. [Dipartimento Interateneo di Fisica ‘M. Merlin’, Bari (Italy); Soós, C.; Telesca, A.; Vande Vyvre, P. [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland); Haller, B. von, E-mail: bvonhall@cern.ch [European Organization for Nuclear Research (CERN), Geneva 23 (Switzerland)

    2014-03-21

    In this paper we describe the design, the construction, the commissioning and the operation of the Data Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large Hadron Collider (LHC). The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for the overall control of the experiment. They are two computing systems made of hundreds of PCs and data storage units interconnected via two networks. The collection of experimental data from the detectors is performed by several hundreds of high-speed optical links. We describe in detail the design considerations for these systems handling the extreme data throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting requirements into hardware (custom optical links and commercial computing equipment), infrastructure (racks, cooling, power distribution, control room), and software led to many innovative solutions which are described together with a presentation of all the major components of the systems, as currently realized. We also report on the performance achieved during the first period of data taking (from 2009 to 2013) often exceeding those specified in the DAQ Technical Design Report.

  15. A fast high-voltage current-peak detection system for the ALICE transition radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Verclas, Robert [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    During LHC operation in run 1, the gaseous detectors of ALICE occasionally experienced simultaneous trips in their high voltage which affected the majority of the high voltage channels. These trips are caused by large anode currents in the detector and are potentially related to LHC machine operations. We developed and installed a fast current-peak detection system for the ALICE Transition Radiation Detector. This system is based on FPGA technology and monitors 144 out 522 high voltage channels minimally invasively at a maximum readout rate of 2 MHz. It is an integral part of the LHC beam monitoring system. We report on the latest status.

  16. The ALICE TPC, a high resolution device for ultra-high particle multiplicities. Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Marian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The Time Projection Chamber (TPC) of the ALICE apparatus is a large 3-dimensional tracking and particle identification device for ultra-high multiplicity collision events. It has been operated successfully at the Large Hadron Collider (LHC) at CERN, recording data from pp, p-Pb, and Pb-Pb collisions. Presently, LHC is in its first long shutdown (LS1), the next round of data taking will start in summer 2015 at or close to the LHC design energy and luminosity. During the second long shutdown (LS2), LHC will undergo a further increase in the Pb-Pb luminosity together with a major upgrade of ALICE. After the upgrade, the ALICE TPC will operate with Pb-Pb collisions at an interaction rate of 50 kHz. We present the performance in operation, calibration and reconstruction with the ALICE TPC together with ongoing work and plans for the near future and the coming 10 years.

  17. Computing in ALICE

    International Nuclear Information System (INIS)

    Brun, R.; Buncic, P.; Carminati, F.; Morsch, A.; Rademakers, F.; Safarik, K.

    2003-01-01

    The objective of the offline framework is to reconstruct and analyse the data coming from real interactions. The ALICE Offline framework, AliRoot, has already been used during the production of the Technical Design Reports of each detector to optimise their design and it is currently used to evaluate the physics performance of the full ALICE detector. This paper describes the AliRoot software environment. We wish to put into perspective the main decisions and the organisation of the offline project. First a general description of the ALICE offline framework (AliRoot) is given, starting with a short historical background followed by a description of the simulation, reconstruction and analysis architecture and the organisation of the ALICE offline project. Finally we briefly indicate the main conclusions of our work on AliRoot

  18. Masterclasses - ALICE - 2012

    CERN Multimedia

    Bennett, Polly

    2012-01-01

    29 students from the Lycée International de Ferney participated in the International Masterclasses - hands-on Particle Physics programme. In the CERN training centre they analysed ALICE data looking for strange particles.

  19. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  20. Computing in ALICE

    CERN Document Server

    Brun, R; Carminati, F; Morsch, Andreas; Rademakers, F; Safarík, K

    2003-01-01

    The objective of the offline framework is to reconstruct and analyse the data coming from real interactions. The ALICE Offline framework, AliRoot, has already been used during the production of the Technical Design Reports of each detector to optimise their design and it is currently used to evaluate the physics performance of the full ALICE detector. This paper describes the AliRoot software environment. We wish to put into perspective the main decisions and the organisation of the offline project. First a general description of the ALICE offline framework (AliRoot) is given, starting with a short historical background followed by a description of the simulation, reconstruction and analysis architecture and the organisation of the ALICE offline project. Finally we briefly indicate the main conclusions of our work on AliRoot.

  1. ALICE honours industries

    CERN Document Server

    2006-01-01

    The third annual ALICE Awards ceremony recognizes three companies for their contribution to the experiment's detector. The ALICE Awards winners pictured with CERN Secretary-General, Maximilian Metzger, during the ceremony. Three industries were honoured at the ALICE Awards ceremony on 17 March for their exceptional work on the collaboration's detector. Representatives from the companies accepted their awards at the ceremony, which was also attended by CERN Secretary-General Maximilian Metzger and members of the ALICE Collaboration Board. VTT Microelectronics of Finland received an award for the production of the thin bump bonded ladders (detector arrays, each consisting of 40 960 active cells) for the silicon pixel detector (SPD) in the inner tracking system. A number of technical hurdles had to be overcome: complex and expensive equipment was procured or upgraded, and processes underwent a detailed study and careful tuning. The ladders have a high and stable yield and the production will soon be completed...

  2. Leading lead through the LHC

    CERN Multimedia

    2011-01-01

    Three of the LHC experiments - ALICE, ATLAS and CMS - will be studying the upcoming heavy-ion collisions. Given the excellent results from the short heavy-ion run last year, expectations have grown even higher in experiment control centres. Here they discuss their plans:   ALICE For the upcoming heavy-ion run, the ALICE physics programme will take advantage of a substantial increase of the LHC luminosity with respect to last year’s heavy-ion run.  The emphasis will be on the acquisition of rarely produced signals by implementing selective triggers. This is a different operation mode to that used during the first low luminosity heavy-ion run in 2010, when only minimum-bias triggered events were collected. In addition, ALICE will benefit from increased acceptance coverage by the electromagnetic calorimeter and the transition radiation detector. In order to double the amount of recorded events, ALICE will exploit the maximum available bandwidth for mass storage at 4 GB/s and t...

  3. Probe station for testing of ALICE silicon drift detectors

    CERN Document Server

    Humanic, T J; Piemonte, C; Rashevsky, A; Sugarbaker, E R; Vacchi, A

    2003-01-01

    Large area, 7.25 cm multiplied by 8.76 cm silicon drift detectors have been developed and are in production for the ALICE experiment at LHC. An active area of the detector of more than 50 cm**2 imposes high demands on the quality of processing and raw material. Automated testing procedures have been developed to test detectors before mounting them on the ladders. Probe stations for ALICE SDD testing were designed and built at INFN, Trieste and Ohio State University (OSU). Testing procedures, detector selection criteria and some details of the OSU probe station design are discussed.

  4. Measurement of azimuthal correlations of D$^{+}$ mesons with charged particles in pp collisions at $\\sqrt{s}$ = 7 TeV and p-Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}$ = 5.02 TeV with ALICE at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361265

    ALICE (A Large Ion Collider Experiment) was designed for the study of heavy-ion collisions at the LHC. It is now established that in these collisions a state of matter consisting of deconfined quarks and gluons, Quark-Gluon Plasma (QGP), is formed. The QGP appears as the hottest and almost lowest-viscosity liquid ever observed. While the experiments at LHC and at RHIC have unravelled a lot of its properties, one still does not have a complete picture. One of the ways of exploring the properties of the QGP would be to perform Rutherford scattering experiments with well-defined probes. One can use hard scattering processes as sources of strongly-interacting probes. Then by comparing particle production rates in ion-ion collisions to that in proton-proton collisions, one can gain insight into the properties of the medium. There are several ways by which one can learn about medium properties, for example, measurement of two particle correlations distribution and their properties such as, yield $I_{\\rm{AA}}$, defi...

  5. Cryogénie hélium et efficacité énergétique: L'expérience du LHC au CERN

    CERN Document Server

    Claudet, S; Tavian, L

    2012-01-01

    Résumé La supraconductivité et la cryogénie hélium associée sont devenues des technologies clés des grands équipements de recherche en physique, et en particulier des accélérateurs de particules. Le coût thermodynamique du fonctionnement à basse température impose à leurs systèmes cryogéniques une haute efficacité énergétique dans la gestion des charges thermiques, la distribution des fluides et la production de froid, obtenue par une approche intégrée couvrant toutes les phases du projet, de la conception préliminaire jusqu'à l'exploitation. L'expérience du LHC au CERN vient illustrer le propos, tandis que quelques pistes de développements futurs sont évoquées. Abstract Superconductivity and associated helium cryogenics have become key technologies for large research infrastructures in physics, and particularly particle accelerators. The thermodynamic penalty for operating at low temperature requires their cryogenic systems to be highly energy efficient in managing heat loads, dis...

  6. Diffraction in ALICE and trigger efficiencies

    CERN Document Server

    Navin, Sparsh; Lietava, Roman

    ALICE is built to measure the properties of strongly interacting matter created in heavy-ion collisions. In addition, taking advantage of the low pT acceptance in the central barrel, ALICE is playing an important role in understanding pp collisions with minimum bias triggers at LHC energies. The work presented in this thesis is based on pp data simulated by the ALICE collaboration and early data collected at a center-of-mass energy of 7 TeV. A procedure to calculate trigger efficiencies and an estimate of the systematic uncertainty due to the limited acceptance of the detector are shown. A kinematic comparison between Monte Carlo event generators, PYTHIA 6, PYTHIA 8 and PHOJET is also presented. To improve the description of diffraction in PYTHIA, a hard diffractive component was added to PYTHIA 8 in 2009, which is described. Finally a trigger with a high efficiency for picking diffractive events is used to select a sample with an enhanced diffractive component from pp data. These data are compared to Monte ...

  7. ALICE's first vacuum bakeout a success

    CERN Multimedia

    2007-01-01

    At the beginning of April, the ALICE central beryllium beam pipe and absorber beam pipes were successfully conditioned. The installation and bakeout shell surround the beam pipe (lower left), running through the middle of the ITS and TPC. Notice the high-tech cooling system, an additional precaution to avoid overheating the ALICE detection equipment.One end of the vacuum sector during the bakeout and pure gas refill. It is unusual for a vacuum sector to end as it does in the middle of a non-accessible detector and made the installation and cabling of the bakeout equipment a more difficult procedure. Just before Easter, the first bakeout and NEG activation of experimental chambers in the LHC was carried out, followed by ultra pure gas refill. The bakeout consisted of externally heating the chambers under vacuum in order to lower their outgassing. This same heating process also activates the NEG, a coating on the inside surface of the beam vacuum chambers, which pumps the residual gas. ALICE's bakeout was pa...

  8. LS1 Report: ALICE ups the ante

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    SPS up and running... LHC almost cold... CCC Operators back at their desks... all telltale signs of the start of Run 2! For the experiments, that means there are just a few short months left for them to prepare for beams. The CERN Bulletin will be checking in with each of the Big Four to see how they are getting on during these closing months...   It has been a long road for the ALICE LS1 team. From major improvements to the 19 sub-detectors to a full re-cabling and replacement of LEP-era electrical infrastructure, no part of the ALICE cavern has gone untouched.* With the experiment set to close in early December, the teams are making finishing touches before turning their focus towards re-commissioning and calibration. "Earlier this week, we installed the last two modules of the di-jet calorimeter," explains Werner Riegler, ALICE technical coordinator. "These are the final parts of a 60 degree calorimeter extension that is installed opposite the present calorimeter, c...

  9. LHC preparations change gear

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    After the formal approval by CERN Council in December (January, page 1) of the LHC protonproton collider for CERN's 27- kilometre LEP tunnel, preparations for the new machine change gear. Lyndon Evans becomes LHC Project Leader, and CERN's internal structure will soon be reorganized to take account of the project becoming a definite commitment. On the experimental side, the full Technical Proposals for the big general purpose ATLAS and CMS detectors were aired at a major meeting of the LHC Committee at CERN in January. These Technical Proposals are impressive documents each of some several hundred pages. (Summaries of the detector designs will appear in forthcoming issues of the CERN Courier.) The ALICE heavy ion experiment is not far behind, and plans for other LHC experiments are being developed. Playing an important role in this groundwork has been the Detector Research and Development Committee (DRDC), founded in 1990 to foster detector development for the LHC experimental programme and structured along the lines of a traditional CERN Experiments Committee. Established under the Director Generalship of Carlo Rubbia and initially steered by Research Director Walter Hoogland, the DRDC has done sterling work in blazing a trail for LHC experiments. Acknowledging that the challenge of LHC experimentation needs technological breakthroughs as well as specific detector subsystems, DRDC proposals have covered a wide front, covering readout electronics and computing as well as detector technology. Its first Chairman was Enzo larocci, succeeded in 1993 by Michal Turala. DRDC's role was to evaluate proposals, and make recommendations to CERN's Research Board for approval and resource allocation, not an easy task when the LHC project itself had yet to be formally approved. Over the years, a comprehensive portfolio of detector development has been built up, much of which has either led to specific LHC detector subsystems for traditional detector tasks

  10. Members of the LHC Resources Review Boards

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Members of the LHCRRB visiting Point 2, hosting the ALICE experiment From l. to r. : W. Korda, Head of the VIP Office; P. Rimmer, CERN public relations, J. Seed, Member of the LHCRRB, J.-P. Revol, ALICE CERN Team Leader; J. Bartke, Member of the LHCRRB; F. Suransky, Member of the LHCRRB; J. Schukraft, Spokesperson, ALICE experiment and S. Molinari, VIP Office. Photo 02: Members of the LHC Resources Review Boards visiting the ALICE magnet at Point 2. L. to. r.: O. Dines-Hansen, H. Boggild, S. Irgens-Jensens, H.A. Gustafsson Photo 03: Members of the LHCRRB visiting Point 2, hosting the ALICE experiment From l. t to r.: J.Richter, Member of the LHCRRB; H. Gutbrod, Deputy Spokesperson, ALICE experiment; G. Paic, ALICE experiment; D. Muller, Member of the LHCRRB; P. Brau-Munzinger, ALICE experiment; R. Santo, Member of the LHCRRB, A. Van Rijn, Member of the LHCRRB; J. Engelen, Member of the LHCRRB.

  11. LHC an unprecedented technological challenge

    International Nuclear Information System (INIS)

    Baruch, J.O.

    2002-01-01

    This article presents the future LHC (large hadron collider) in simple terms and gives some details concerning radiation detectors and supra-conducting magnets. LHC will take the place of the LEP inside the 27 km long underground tunnel near Geneva and is scheduled to operate in 2007. 8 years after its official launching the LHC project has piled up 2 year delay and has exceeded its initial budget (2 milliard euros) by 18%. Technological challenges and design difficulties are the main causes of these shifts. The first challenge has been carried out successfully, it was the complete clearing out of the LEP installation. In order to release 14 TeV in each proton-proton collision, powerful magnetic fields (8,33 Tesla) are necessary. 1248 supra-conducting 15 m-long bipolar magnets have to be built. 30% of the worldwide production of niobium-titanium wires will be used each year for 5 years in the design of these coils. The global cryogenic system will be gigantic and will use 94 tons of helium. 4 radiation detectors are being built: ATLAS (a toroidal LHC apparatus), CMS (compact muon solenoid), ALICE (a large ion collider experiment) and LHC-b (large hadron collider beauty). The 2 first will search after the Higgs boson, ALICE will be dedicated to the study of the quark-gluon plasma and LHC-b will gather data on the imbalance between matter and anti-matter. (A.C.)

  12. Beam test results of the irradiated Silicon Drift Detector for ALICE

    OpenAIRE

    Kushpil, S.; Crescio, E.; Giubellino, P.; Idzik, M.; Kolozhvari, A.; Kushpil, V.; Martinez, M. I.; Mazza, G.; Mazzoni, A.; Meddi, F.; Nouais, D.; Petracek, V.; Piemonte, C.; Rashevsky, A.; Riccati, L.

    2005-01-01

    The Silicon Drift Detectors will equip two of the six cylindrical layers of high precision position sensitive detectors in the ITS of the ALICE experiment at LHC. In this paper we report the beam test results of a SDD irradiated with 1 GeV electrons. The aim of this test was to verify the radiation tolerance of the device under an electron fluence equivalent to twice particle fluence expected during 10 years of ALICE operation.

  13. Upgrade of the ALICE Experiment: Letter of Intent

    CERN Document Server

    Abelev, B; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agostinelli, A; Agrawal, N; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Anderssen, E C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anticic, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bairathi, V; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastian Van Beelen, J; Bastid, N; Basu, S; Bathen, B; Batigne, G; Battistin, M; Batyunya, B; Batzing, P C; Baudot, J; Baumann, C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Benettoni, M; Benotto, F; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berger, M E; Bertens, R A; Berzano, D; Besson, A; Betev, L; Bhasin, A; Bhati, A K; Bhatti, A; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielcík, J; Bielcíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blau, D; Blume, C; Bock, F; Boehmer, F V; Bogdanov, A; Boggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Borshchov, V N; Bortolin, C; Bossú, F; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Breitner, T; Broker, T A; Browning, T A; Broz, M; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Carena, F; Carena, W; Cariola, P; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Caudron, T; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Claus, G; Cleymans, J; Colamaria, F; Colella, D; Coli, S; Colledani, C; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Da Riva, E; Das, D; Das, I; Das, K; Das, S; Dash, A; Dash, S; De, S; Decosse, C; Delagrange, H; Deloff, A; Dénes, E; D'Erasmo, G; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Robertis, G; De Roo, K; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, o; Dobrin, A; Dobrowolski, T; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Dorheim, S; Dorokhov, A; Doziere, G; Dubey, A K; Dubla, A; Ducroux, L; Dulinski, W; Dupieux, P; Dutta Majumdar, A K; Ehlers III, R J; Elia, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fiorenza, G; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Franco, M; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhoje, J J; Gagliardi, M; Gajanana, D; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Ghosh, S K; Gianotti, P; Giubilato, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gomez Marzoa, M; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Graczykowski, L K; Grajcarek, R; Greiner, L C; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grondin, D; Grosse-Oetringhaus, J F; Grossiord, J -Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; H Khan, K; Haake, R; Haaland, o; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Hennes, E; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hicks, B; Hillemanns, H; Himmi, A; Hippolyte, B; Hladky, J; Hristov, P; Huang, M; Hu-Guo, C; Humanic, T J; Hutter, D; Hwang, D S; Igolkin, S; Ijzermans, P; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jacholkowski, A; Jadlovsky, J; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Junique, A; Jusko, A; Kalcher, S; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kebschull, U; Keidel, R; Keil, M; Ketzer, B; Khan, M Mohisin; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D; Kim, D W; Kim, D J; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravcáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Krymov, E B; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; La Pointe, S L; La Rocca, P; Lea, R; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; Leogrande, E; Leoncino, M; León Monzón, I; Lesenechal, Y; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Listratenko, O M; Ljunggren, H M; Lodato, D F; Loddo, F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Lopez, X; López Torres, E; Lu, X -G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; M Gago, A; M Jacobs, P; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Maltsev, N A; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Mapelli, A; Marchisone, M; Mares, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Marquard, M; Marras, D; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Maslov, M; Masoni, A; Massacrier, L; Mastroserio, A; Mattiazzo, S; Matyja, A; Mayer, C; Mazer, J; Mazumder, R; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miskowiec, D; Mitu, C M; Mlynarz, J; Mohanty, B; Molnar, L; Mongelli, M; Montaño Zetina, L; Montes, E; Morando, M; Moreira De Godoy, D A; Morel, F; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhammad Bhopal, F; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Okatan, A; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paic, G; Painke, F; Pajares, C; Pal, S K; Palmeri, A; Panati, S; Pant, D; Pantano, D; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastore, C; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Peryt, W; Pesci, A; Pestov, Y; Petagna, P; Petrácek, V; Petran, M; Petris, M; Petrovici, M; Petta, C; Pham, H; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Ploskon, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Pohjoisaho, E H O; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Protsenko, M A; Pruneau, C A; Pshenichnov, I; Puddu, G; Puggioni, C; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rasson, J E; Rathee, D; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J -P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Roed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossegger, S; Rossewij, M J; Rossi, A; Roudier, S; Rousset, J; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sacchetti, M; Sadovsky, S; Safarík, K; Sahlmuller, B; Sahoo, R; Sahu, P K; Saini, J; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sánchez Rodríguez, F J; sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schipper, J D; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Seger, J E; Selyuzhenkov, I; Senyukhov, S; Seo, J; Serradilla, E; Sevcenco, A; Sgura, I; Shabetai, A; Shabratova, G; Shahoyan, R; Shangaraev, A; Sharma, N; Sharma, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Snoeys, W; Sogaard, C; Soltz, R; Song, J; Song, M; Sooden, V; Soramel, F; Sorensen, S; Spacek, M; spalek, J; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vasquez, M A; Sugitate, T; Suire, C; Suleymanov, M; suljic, M; Sultanov, R; sumbera, M; Sun, X; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turchetta, R; Turrisi, R; Tveter, T S; Tymchuk, I T; Ulery, J; Ullaland, K; Uras, A; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Valentino, V; Valin, I; Vallero, S; Vande Vyvre, P; Vannucci, L; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vasta, P; Vechernin, V; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Vergara Limón, S; Verlaat, B; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wagner, V; Wang, M; Wang, Y; Watanabe, D; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Winter, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I -K; Yushmanov, I; Zaccolo, V; Zach, C; Zaman, A; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, F; Zhang, H; Zhang, X; Zhang, Y; Zhao, C; Zherebchevsky, V I; Zhou, D; Zhou, F; Zhou, Y; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2014-01-01

    The long term goal of the ALICE experiment is to provide a precise characterization of the high-density, high-temperature phase of strongly interacting matter. To achieve this goal, high-statistics precision measurement are required. The general upgrade strategy for the ALICE detector is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz aiming at an integrated luminosity of the order of 10 nb^-1. With the proposed timeline, starting the high-rate operation progressively after 2018 shutdown, the goals set up in our upgrade plans should be achieved collecting data until mid-2020's. In this document we present the main physics motivations for running the LHC with heavy ions at high luminosities and discuss the modifications and replacements needed in the ALICE detectors, the online systems and offline system. The schedule, cost estimate and organization of the upgrade programme are presented as well.

  14. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  15. AliEn: ALICE environment on the GRID

    International Nuclear Information System (INIS)

    Bagnasco, S; Betev, L; Buncic, P; Carminati, F; Cirstoiu, C; Grigoras, C; Hayrapetyan, A; Harutyunyan, A; Peters, A J; Saiz, P

    2008-01-01

    Starting from mid-2008, the ALICE detector at CERN LHC will collect data at a rate of 4PB per year. ALICE will use exclusively distributed Grid resources to store, process and analyse this data. The top-level management of the Grid resources is done through the AliEn (ALICE Environment) system, which is in continuous development since year 2000. AliEn presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called Data Challenges. This paper describes the AliEn architecture: Job Management, Data Management and UI. The current status of AliEn will be illustrated, as well as the performance of the system during the data challenges. The paper also describes the future AliEn development roadmap

  16. The ALICE High Level Trigger: status and plans

    CERN Document Server

    Krzewicki, Mikolaj; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-01-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before t...

  17. AliEn: ALICE Environment on the GRID

    CERN Multimedia

    Bagnasco, S; Buncic, P; Carminati, F; Cirstoiu, C; Grigoras, C; Hayrapetyan, A; Harutyunyan, A; Peters, A J; Saiz, P

    2007-01-01

    Starting from mid-2008, the ALICE detector at CERN LHC will collect data at a rate of 4PB per year. ALICE will use exclusively distributed Grid resources to store, process and analyse this data. The top-level management of the Grid resources is done through the AliEn (ALICE Environment) system, which is in continuous development since year 2000. AliEn presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called Data Challenges. This paper describes the AliEn architecture: Job Management, Data Management and UI. The current status of AliEn will be illustrated, as well as the performance of the system during the data challenges. The paper also describes the future AliEn development roadmap.

  18. A Bayesian approach to particle identification in ALICE

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Among the LHC experiments, ALICE has unique particle identification (PID) capabilities exploiting different types of detectors. During Run 1, a Bayesian approach to PID was developed and intensively tested. It facilitates the combination of information from different sub-systems. The adopted methodology and formalism as well as the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE will be reviewed. Results are presented with PID performed via measurements of specific energy loss (dE/dx) and time-of-flight using information from the TPC and TOF detectors, respectively. Methods to extract priors from data and to compare PID efficiencies and misidentification probabilities in data and Monte Carlo using high-purity samples of identified particles will be presented. Bayesian PID results were found consistent with previous measurements published by ALICE. The Bayesian PID approach gives a higher signal-to-background ratio and a similar or larger statist...

  19. The Fast Interaction Trigger Upgrade for ALICE

    CERN Document Server

    Garcia-Solis, Edmundo

    2016-01-01

    The ALICE Collaboration is preparing a major detector upgrade for the second LHC long shutdown (2019–20). The LHC heavy-ion luminosity and collision rate from 2021 onwards will considerably exceed the design parameters of the present ALICE forward trigger detectors. Furthermore, the introduction of a new Muon Forward Tracker (MFT) will significantly reduce the space available for the upgraded trigger detectors. To comply with these conditions a Fast Interaction Trigger (FIT) has been designed. FIT will be the primary forward trigger, luminosity, and collision time measurement detector. The FIT will be capable of triggering at an interaction rate of 50 kHz, with a time resolution better than 30 ps, with 99% efficiency. It will also determine multiplicity, centrality, and reaction plane. FIT will consist of two arrays of Cherenkov radiators with MCP-PMT sensors and of a single, large-size scintillator ring. The arrays will be placed on both sides of the interaction point (IP). Because of the presence of the h...

  20. Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    INSPIRE-00246160

    2015-05-20

    {During the Long Shutdown 2 (LS2) of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System (ITS). The upgraded detector will fully replace the current ITS having six layers by seven layers of Monolithic Active Pixel Sensors (MAPS). The upgraded ITS will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity in LHC. The choice of MAPS has been driven by the specific requirements of ALICE as a heavy ion experiment dealing with rare probes at low $p_\\mathrm{T}$. This leads to stringent requirements on the material budget of 0.3$\\%~X/X_{0}$ per layer for the three innermost layers. Furthermore, the detector will see large hit densities of $\\sim 19~\\mathrm{cm}^{-2}/\\mathrm{event}$ on average for minimum-bias events in the inner most layer and has to stand moderate radiation loads of 700 kRad TID and $1\\times 10^{13}$ 1 MeV n$_\\mathrm{eq}/\\mathrm{cm}^{2}$ NIEL at maximum. The MAPS dete...

  1. ALICE High Level Trigger

    CERN Multimedia

    Alt, T

    2013-01-01

    The ALICE High Level Trigger (HLT) is a computing farm designed and build for the real-time, online processing of the raw data produced by the ALICE detectors. Events are fully reconstructed from the raw data, analyzed and compressed. The analysis summary together with the compressed data and a trigger decision is sent to the DAQ. In addition the reconstruction of the events allows for on-line monitoring of physical observables and this information is provided to the Data Quality Monitor (DQM). The HLT can process event rates of up to 2 kHz for proton-proton and 200 Hz for Pb-Pb central collisions.

  2. The ALICE Pixel Detector

    International Nuclear Information System (INIS)

    Mercado-Perez, Jorge

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well

  3. Performance optimisations for distributed analysis in ALICE

    International Nuclear Information System (INIS)

    Betev, L; Gheata, A; Grigoras, C; Hristov, P; Gheata, M

    2014-01-01

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the frameworks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available resources and ranging from fully I/O-bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by an important factor to satisfy the analysis needs. We have instrumented all analysis jobs with ''sensors'' collecting comprehensive monitoring information on the job running conditions and performance in order to identify bottlenecks in the data processing flow. This data are collected by the MonALISa-based ALICE Grid monitoring system and are used to steer and improve the job submission and management policy, to identify operational problems in real time and to perform automatic corrective actions. In parallel with an upgrade of our production system we are aiming for low level improvements related to data format, data management and merging of results to allow for a better performing ALICE analysis

  4. GEM Foil Quality Assurance For The ALICE TPC Upgrade

    Directory of Open Access Journals (Sweden)

    Brücken Erik

    2018-01-01

    Full Text Available The ALICE (A Large Ion Collider Experiment experiment at the Large Hadron Collider (LHC at CERN is dedicated to heavy ion physics to explore the structure of strongly interacting matter. The Time Projection Chamber (TPC of ALICE is a tracking detector located in the central region of the experiment. It offers excellent tracking capabilities as well as particle identification. After the second long shutdown (LS2 the LHC will run at substantially higher luminosities. To be able to increase the data acquisition rate by a factor of 100, the ALICE TPC experiment has to replace the Multi-Wire Proportional Chamber (MWPC –based readout chambers. The MWPC are operated with gating grid that limits the rate to O(kHz. The new ReadOut Chamber (ROC design is based on Gas Electron Multiplier (GEM technology operating in continuous mode. The current GEM productions scheme foresees the production of more than 800 GEM foils of different types. To fulfill the requirements on the performance of the GEM TPC readout, necessitates thorough Quality Assurance (QA measures. The QA scheme, developed by the ALICE collaboration, will be presented in detail.

  5. GEM Foil Quality Assurance For The ALICE TPC Upgrade

    Science.gov (United States)

    Brücken, Erik; Hildén, Timo

    2018-02-01

    The ALICE (A Large Ion Collider Experiment) experiment at the Large Hadron Collider (LHC) at CERN is dedicated to heavy ion physics to explore the structure of strongly interacting matter. The Time Projection Chamber (TPC) of ALICE is a tracking detector located in the central region of the experiment. It offers excellent tracking capabilities as well as particle identification. After the second long shutdown (LS2) the LHC will run at substantially higher luminosities. To be able to increase the data acquisition rate by a factor of 100, the ALICE TPC experiment has to replace the Multi-Wire Proportional Chamber (MWPC) -based readout chambers. The MWPC are operated with gating grid that limits the rate to O(kHz). The new ReadOut Chamber (ROC) design is based on Gas Electron Multiplier (GEM) technology operating in continuous mode. The current GEM productions scheme foresees the production of more than 800 GEM foils of different types. To fulfill the requirements on the performance of the GEM TPC readout, necessitates thorough Quality Assurance (QA) measures. The QA scheme, developed by the ALICE collaboration, will be presented in detail.

  6. Système de PLC pour la supervision de la distribution basse tension des expériences ALICE et LHCb

    CERN Document Server

    Burdet, G

    2004-01-01

    Le groupe TS/EL étudie et réalise la distribution électrique basse tension pour alimenter les racks contenant l'électronique associée aux détecteurs dans les zones expérimentales du LHC. La distribution basse tension utilisera des tableaux récupérés des expériences du LEP pour ALICE et LHCb et un système basé sur des gaines CANALIS pour ATLAS et CMS. L'ensemble de la distribution électrique basse tension sera surveillée et contrôlée par l'intermédiaire de systèmes à base de PLC. Ce papier décrit l'infrastructure de supervision proposée pour ALICE et LHCb et son intégration au CERN Electrical Network Supervisor (ENS) et au Detector Control System (DCS).

  7. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  8. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  9. The ALICE Electronic Logbook

    Energy Technology Data Exchange (ETDEWEB)

    Altini, V [INFN, Dipartimento di Fisica dell' Universita and Sezione INFN Bary (Italy); Carena, F; Carena, W; Chapeland, S; Barroso, V Chibante; Costa, F; Divia, R; Fuchs, U; Makhlyueva, I; Roukoutakis, F; Schossmaier, K; Soos, C; Vyvre, P Vande; Haller, B Von, E-mail: Vasco.Chibante.Barroso@cern.c [CERN, Physics Department, Geneva (Switzerland)

    2010-04-01

    All major experiments need tools that provide a way to keep a record of the events and activities, both during commissioning and operations. In ALICE (A Large Ion Collider Experiment) at CERN, this task is performed by the Alice Electronic Logbook (eLogbook), a custom-made application developed and maintained by the Data-Acquisition group (DAQ). Started as a statistics repository, the eLogbook has evolved to become not only a fully functional electronic logbook, but also a massive information repository used to store the conditions and statistics of the several online systems. It's currently used by more than 600 users in 30 different countries and it plays an important role in the daily ALICE collaboration activities. This paper will describe the LAMP (Linux, Apache, MySQL and PHP) based architecture of the eLogbook, the database schema and the relevance of the information stored in the eLogbook to the different ALICE actors, not only for near real time procedures but also for long term data-mining and analysis. It will also present the web interface, including the different used technologies, the implemented security measures and the current main features. Finally it will present the roadmap for the future, including a migration to the web 2.0 paradigm, the handling of the database ever-increasing data volume and the deployment of data-mining tools.

  10. The ALICE Electronic Logbook

    International Nuclear Information System (INIS)

    Altini, V; Carena, F; Carena, W; Chapeland, S; Barroso, V Chibante; Costa, F; Divia, R; Fuchs, U; Makhlyueva, I; Roukoutakis, F; Schossmaier, K; Soos, C; Vyvre, P Vande; Haller, B Von

    2010-01-01

    All major experiments need tools that provide a way to keep a record of the events and activities, both during commissioning and operations. In ALICE (A Large Ion Collider Experiment) at CERN, this task is performed by the Alice Electronic Logbook (eLogbook), a custom-made application developed and maintained by the Data-Acquisition group (DAQ). Started as a statistics repository, the eLogbook has evolved to become not only a fully functional electronic logbook, but also a massive information repository used to store the conditions and statistics of the several online systems. It's currently used by more than 600 users in 30 different countries and it plays an important role in the daily ALICE collaboration activities. This paper will describe the LAMP (Linux, Apache, MySQL and PHP) based architecture of the eLogbook, the database schema and the relevance of the information stored in the eLogbook to the different ALICE actors, not only for near real time procedures but also for long term data-mining and analysis. It will also present the web interface, including the different used technologies, the implemented security measures and the current main features. Finally it will present the roadmap for the future, including a migration to the web 2.0 paradigm, the handling of the database ever-increasing data volume and the deployment of data-mining tools.

  11. ALICE Vzero Detector

    CERN Multimedia

    Cheynis, B

    2013-01-01

    ALICE is the only experiment at CERN specifically designed to study the Quark-Gluon Plasma, the hot and dense matter which is created in ultra relativistic heavy-ion collisions. - VZERO-A (CINVESTAV-UNAM Mexico): 2.8 328 cm away from Interaction Point - VZERO-C (IPN Lyon): -3.6 88 cm away from Interaction Point

  12. ALICE installs its TPC

    CERN Multimedia

    2007-01-01

    The ALICE time projection chamber has been transported to the experimental cavern. The handling of this extremely fragile detector was a long and delicate process. The lorry transporting the TPC took one hour to travel from the assembly hall to the access shaft...200 metres away.The TPC was lowered into the ALICE experimental cavern with extreme care. The gap between the structure and the shaft wall was only 10 centimetres! For ALICE the year started with a flurry of activity...but at a snail's pace. On 8 January, the day CERN reopened after the end-of-year break, teams from ALICE and the TS Department began the transportation of the experiment's time projection chamber (TPC), the largest ever built. This 5-metre long and 5-m diameter cylinder was transported from the clean room where it had been assembled to the experimental cavern. The 300-metre journey took no less than four days! Since the TPC is an extremely fragile object, the utmost precautions were exercised in its transportation. The TPC, which is d...

  13. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  14. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  15. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  16. The ALICE silicon pixel detector system

    International Nuclear Information System (INIS)

    Kapusta, S.

    2009-01-01

    The Large Hadron Collider (LHC) is again reaching its startup phase at the European Organization for Particle Physics (CERN). The LHC started its operation on the 10 th of September, 2008 with huge success managing to sent the the first beam successfully around the entire ring in less than an hour after the first injection in one direction, and later that day in the opposite direction. Unfortunately, on the 19 th of September, an accident occurred during the 5.5 TeV magnet commissioning in Sector 34, which will significantly delay the operation of the LHC. The ALICE experiment will exploit the collisions of accelerated ions produced at the LHC to study strongly interacting matter at extreme densities and high temperatures. e ALICE Silicon Pixel Detector (SPD) represents the two innermost layers of the ALICE Inner Traing System (ITS) located at radii of 3.9 cm and 7.6 cm from the Interaction Point (IP). One of the main tasks of the SPD is to provide precise traing information. is information is fundamental for the study of weak decays of heavy flavor particles, since the corresponding signature is a secondary vertex separated from the primary vertex only by a few hundred micrometers. e tra density could be as high as 80 tracks per cm 2 in the innermost SPD layer as a consequence of a heavy ion collision. The SPD will provide a spatial resolution of around ≅12 μm in the rφ direction and ≅70 μm in the z direction. The expected occupancy of the SPD ranges from 0.4% to 1.5% which makes it an excellent charged particle multiplicity detector in the pseudorapidity region |η| < 2. Furthermore, by combining all possible hits in the SPD, one can get a rough estimate of the position of the primary interaction. One of the challenges is the tight material budget constraint (<1% radiation length per layer) in order to limit the scattering of the traversing particles. e silicon sensor and its readout chip have a total thickness of only 350 μm and the signal lines from the

  17. Particles are back in the LHC!

    CERN Multimedia

    2009-01-01

    Last weekend (23-25 October) particles once again entered the LHC after the one-year interruption following the incident of September 2008. Particles travelled through one sector clockwise and one anticlockwise. ALICE and LHCb, the two experiments sitting along the portion of the beam lines in question, were able to observe the first effects of real beams in the machine.

  18. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  19. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  20. ALICE comes to life

    CERN Multimedia

    2002-01-01

    On 26 March, a first major part of the ALICE detector arrived at CERN: one of the four cylinders in composite material for the Time Projection Chamber (TPC). The construction of the TPC 'field cage' (the structure that defines the configuration of the electrical field of the TPC) is the fruit of exceptional collaboration between CERN and the Austrian manufacturer Fischer Advanced Composite Components (Fischer ACC).

  1. ALICE dipole and decoration

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.

  2. ALICE on the move

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A new management, new modules for its sub-detectors and an increased capacity to probe the properties of the quark-gluon plasma. The new year bodes well for ALICE and ion physics as quarks and gluons prepare to unveil their most profound mysteries.   Installation of one of the new EMCal modules in the detector. Paolo Giubellino, the new ALICE spokesperson, talks with enthusiasm about what has already been done by the ALICE collaboration and what is yet to come. He has recently taken over from Jurgen Schukraft, who led the collaboration from its earliest beginnings. “We had a very exciting first year of operation, with many interesting results coming up in a very short space of time,” says Giubellino, a heavy-ion-physics expert from the Italian National Institute for Nuclear Physics (see box for details). “The Christmas technical stop wasn’t a break for us as we upgraded the detector, completing the installation of the electromagnetic calorimeter (E...

  3. Pentaquark searches with ALICE

    CERN Document Server

    Bobulska, Dana

    2016-01-01

    In this report we present the results of the data analysis for searching for possible invariant mass signals from pentaquarks in the ALICE data. Analysis was based on filtered data from real p-Pb events at psNN=5.02 TeV collected in 2013. The motivation for this project was the recent discovery of pentaquark states by the LHCb collaboration (c ¯ cuud resonance P+ c ) [1]. The search for similar not yet observed pentaquarks is an interesting research topic [2]. In this analysis we searched for a s ¯ suud pentaquark resonance P+ s and its possible decay channel to f meson and proton. The ALICE detector is well suited for the search of certain candidates thanks to its low material budget and strong PID capabilities. Additionally we might expect the production of such particles in ALICE as in heavy-ion and proton-ion collisions the thermal models describes well the particle yields and ratios [3]. Therefore it is reasonable to expect other species of hadrons, including also possible pentaquarks, to be produced w...

  4. ALICE-ARC integration

    International Nuclear Information System (INIS)

    Anderlik, C; Gregersen, A R; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  5. Jet quenching at ALICE

    International Nuclear Information System (INIS)

    Bianchi, Nicola

    2007-01-01

    RHIC results on leading hadron suppression indicate that the jets produced in hard processes are strongly quenched by the dense medium created in heavy ion collisions. Most of the energy lost by the leading parton remains within the jet cone, but several questions on the medium modification of the jet structure have not been addressed. These include the longitudinal and transverse structures of the quenched jet, the associated radiation observables, and the dependence on the parton flavor. These topics will be studied by ALICE thanks to both the robustness of its tracking and the charged particle identification system. Large medium effects are expected in both the low pt and in the high pt regions. To make ALICE better suited for jet physics, the performances on high p t particles and jets can be significantly improved by completing the present set-up with a large Electromagnetic Calorimeter (EmCal). This will significantly improve the resolution on the jet energy and on the particle composition (with the detection of both charged and neutral particles). It will also allow to calibrate the jet energy by measuring the high energy photon emitted in the opposite direction. EmCal will be used to trigger on the jet energy itself, thus allowing a significant improvement of the statistics achievable for jets of high energy. Finally, due too both the γ/π 0 and the electron/hadron discrimination, EmCal will enhance the ALICE capabilities at high p t for direct photons and heavy quarks measurements

  6. Alice in Danceland

    Directory of Open Access Journals (Sweden)

    Fabio Ciambella

    2012-12-01

    Full Text Available The purpose of this paper is to present an unexplored case study in the field of the studies on adaptation: the dance in Alice's Adventures in Wonderland (1865 by Lewis Carroll and its transformations during the transmodalization. In particular the two most popular film adaptations of the novel of the Victorian writer will be presented and analysed: the cartoon produced by Disney in 1951 and the 2010 film directed by the Californian director Tim Burton. If in Alice's Adventures in Wonderland Carroll introduce a dance performed by some lobsters (precisely in chapter X that is titled "The Lobster Quadrille", in the Disney's masterpiece there is no trace either of lobsters, turtles or griffins. Paradoxically, dancing in the cartoon is a recurring motif, which is the background to the vicissitudes of the protagonist from the beginning to the end. The viewer of Burton’s Alice will be even much more shocked by the presence of the dance in two specific moments of the film – at the beginning and at the end – which are not present nor in the hypotext, nor in its Twentieth-century adaptation. In other words, although the dance is present in the three works, it never appears at the same time.

  7. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  8. Measurement of neutral mesons and direct photons in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE experiment at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00416390

    The Quark-Gluon Plasma (QGP) is a strongly interacting matter with high temperature and energy density, where partons are deconfined. It is hypothesised being the same state the universe was in just a few microseconds after the Big Bang. Experimentally, the QGP is studied at accelerator experiments using heavy-ions. The presence of a deconfined phase after the ultra-relativistic collisions is expected to influence the system evolution. The search for modifications induced on the particle production is carried out taking elementary particle collisions as reference measurement. The research presented in this thesis focuses on the study of neutral meson and direct photon production in lead ion collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The neutral pion and \\e mesons are reconstructed via their photon decay channel, exploiting the photon conversions in the detector material. A modification of the meson spectra is observed and investigated further with ...

  9. Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at $\\sqrt{s_NN}$ = 5.02 TeV with ALICE at LHC

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Belmont Iii, Ronald John; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Hilden, Timo Eero; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gumbo, Mervyn; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kadyshevskiy, Vladimir; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zyzak, Maksym

    2015-02-04

    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 < $p_{T,assoc} < p_{T,trig}$ < 5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |η| < 0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p–Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non- jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton–parton scatte...

  10. Measurement of electrons from charm and beauty-hadron decays in p-Pb collisions at √(s{sub NN}) = 5.02 TeV with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jan [Research Division and ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgrabenstr. 9, 64289 Darmstadt (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    Electrons from inclusive semileptonic heavy-flavor hadron decays are used to measure charm and beauty production. Because of their large masses, heavy quarks are mostly produced in initial hard partonic interactions and thus can be used to probe a medium created in heavy-ion collisions. In heavy-ion collisions the p{sub t}-differential heavy-flavor yields are sensitive to initial state effects of the colliding nuclei (e.g. shadowing, saturation) and to the interaction of the heavy quarks with the hot and dense medium. To distinguish these effects from each other a reference measurement using p-Pb collisions is necessary, where only initial state effects play a role. The status of the analysis of semi-electronic heavy-flavor decays at midrapidity from p-Pb collisions at √(s{sub NN})=5.02 TeV using the ALICE apparatus is presented. R{sub pPb} is shown together with predictions of shadowing effects calculated on the basis of the EPS09 parametrization. The method of separating the charm and beauty contributions from each other is explained, and an outlook to upcoming results is given.

  11. J/$\\psi$ production as a function of event multiplicity in pp collisions at $\\sqrt{s}$ = 13 TeV using EMCal-triggered events with ALICE at the LHC arXiv

    CERN Document Server

    Jahnke, Cristiane

    The study of the J/$\\psi$ production in pp collisions provides important information on perturbative and non-perturbative quantum chromodynamics. Using high multiplicity pp events, we can study how charmonium production depends on the event activity. These measurements are used to investigate the possible influence of multiple partonic interactions to the J/$\\psi$ production and the interplay between soft and hard processes.In this work we report on studies of J/$\\psi$ production as a function of event multiplicity in pp collisions at $\\sqrt{s}$ = 13 TeV at mid-rapidity with ALICE. The J/$\\psi$ are reconstructed via their dielectron decay channel in events where at least one of the decay electrons was triggered on by the Electromagnetic Calorimeter (EMCal). The availability of a high-$p_{\\rm T}$ electron trigger enhances the sampled luminosity significantly relative to the available minimum-bias triggered data set and extends the $p_{\\rm T}$ reach for the J/$\\psi$ measurement. Using these data, the J/$\\psi$ m...

  12. arXiv Measurement of the D-meson nuclear modification factor and elliptic flow in Pb-Pb collisions at $\\sqrt{s_{\\text{{NN}}}}$ = 5.02 TeV with ALICE at the LHC

    CERN Document Server

    Jaelani, Syaefudin

    2018-05-03

    Heavy-flavour hadrons are effective probes to study the Quark-Gluon Plasma (QGP) formed in ultra-relativistic heavy-ion collisions. The ALICE Collaboration measured the D-mesons (D0, D+, D*+ and Ds+) production in Pb–Pb collisions at sNN = 5.02 TeV. The in-medium energy loss can be studied by means of the nuclear modification factor (RAA). The comparison between the Ds+ and the non-strange D-meson RAA can help to study the hadronisation mechanism of the charm quark in the QGP. In semi-central collisions the measurement of the D-meson elliptic flow, v2, at low pT allows to investigate the participation of the heavy quarks in the collective expansion of the system while at high pT it constrains the path-length dependence of the energy loss. Furthermore the Event-Shape Engineering (ESE) technique is used to measure D-meson elliptic flow in order to study the coupling of the charm quarks to the light quarks of the underlying medium.

  13. LHC physics

    National Research Council Canada - National Science Library

    Binoth, T

    2012-01-01

    "Exploring the phenomenology of the Large Hadron Collider (LHC) at CERN, LHC Physics focuses on the first years of data collected at the LHC as well as the experimental and theoretical tools involved...

  14. LHC Report: Ion Age

    CERN Multimedia

    John Jowett for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    Commissioning this new and almost unprecedented mode of collider operation is a major challenge both for the LHC and its injector chain. Moreover, it has to be done very quickly to achieve a whole series of physics goals, requiring modifications of the LHC configuration, in a very short time. These include a switch of the beam directions halfway through the run, polarity reversals of the ALICE spectrometer magnet and Van der Meer scans.    The Linac3 team kept the lead source running throughout the end-of-year technical stop, and recovery of the accelerator complex was very quick. New proton and lead beams were soon ready, with a bunch filling pattern that ensures they will eventually match up in the LHC. The LEIR machine has even attained a new ion beam intensity record.  On Friday 11 January the first single bunches o...

  15. The (di)muon physics in the ALICE experiment at the LHC: light vector meson analysis (ρ, ω, φ) in pp collisions [√(s)=7 TeV], Pb-Pb collisions [√(sNN)=2.76 TeV] and study of a new silicon tracker in the muon spectrometer acceptance

    International Nuclear Information System (INIS)

    Massacrier, L.

    2011-01-01

    ALICE experiment at LHC studies the Quark Gluon Plasma (QGP), a particular state of matter where quarks and gluons are deconfined. A probe to explore this state is the study of several resonances (ρ, ω, φ, J/ψ and Υ) through their dimuon decay channel, with a muon spectrometer covering pseudo-rapidity -4 NN )=2.76 TeV. Light vector mesons are powerful tools to probe the QGP due to their short lifetime and their dimuon decay channel. Indeed, leptons have negligible final state interactions. Production rates and spectral functions of those mesons are modified by the hot hadronic and QGP medium. Chiral symmetry restoration study is done thanks to the study of ρ spectral function. Strangeness enhancement is accessed via the ratio of φ over ρ + ω yields as a function of the centrality of the collision. In pp analysis, the emphasis is on background understanding and on first physics results such as φ yield over ρ + ω yield as a function of p T , and p T distributions of φ and ρ + ω. Cross sections and p T -differential cross sections of light mesons will also be shown. The Pb-Pb analysis and its prospects will be presented. The second part of the thesis concerns ALICE upgrade plans of year 2017. A feasibility study for a Muon Forward Tracker (MFT) in Silicon pixels located upstream of the hadronic absorber in the spectrometer acceptance was performed. This upgrade is mainly motivated by the improvement of the dimuon invariant mass resolution and secondary vertex measurement. This gives access to open charm and beauty direct study in single muon channel. Prompt J/ψ can also be distinguished from B feed-down J/ψ, allowing a better study of a QGP signature: the 'J/ψ suppression' in ultra-relativistic heavy ion collisions. MFT performances on those different topics were established in simulations. The track matching algorithm to match MFT tracks with spectrometer tracks (a crucial step for the feasibility of the project) and its results are presented

  16. Ausrichtung des ALICE Übergangsstrahlungsdetektors sowie Zweiteilchenintensitätsinterferometrie identischer Pionen aus p+p Kollisionen bei LHC Energien von 900 GeV und 7 TeV

    CERN Document Server

    Huber, Sebastian

    This PhD thesis deals with results from the Large Hadron Collider (LHC), which provided first data in September 2009. Intrinsically it was foreseen that first collisions should already occur end of 2008. On September the 10th the first beam event was partially successful, but after a week of running an accident in the sectors 3 and 4 spoiled some of the magnets of the synchrotron. This caused a delay of almost one year due to the necessary repairs. After repairing and some further test for the purpose of calibration and alignment of the subsystems with cosmic rays on the 23rd of November and ultimately with stable beam on the 6/7th of December 2009 collisions of protons (p+p) at an energy of √sNN = 900 GeV took place. After an intended winter stop the first long run of the LHC commenced on the 30th of March 2010. Like in the previous years protons with an increased world record energy of 7 TeV were brought to collision. After 7 month of continuous data taking in p+p the last month of running was dedicated t...

  17. ALICE doffs hat to two companies

    CERN Multimedia

    2007-01-01

    During the fifth annual ALICE Industrial Awards ceremony, the ALICE Collaboration honoured two companies for their outstanding contributions to the construction of the experiment.For the past five years, the ALICE collaboration has been presenting its industrial partners with awards for meeting demanding or unusual requirements, for excellence in design or execution, for delivery on-time and on-budget and for outstanding cooperation. This year, on 9 March, ALICE presented awards to two companies for their exceptional performance. From left to right: Kees Oskamp (ALICE SSD), Arie de Haas (ALICE SSD), Gert-Jan Nooren (ALICE SSD), Shon Shmuel (FIBERNET), Yehuda Mor-Yosef (FIBERNET), Hans Boggild (ALICE), Jurgen Schukraft (ALICE Spokesperson), Catherine Decosse (ALICE) and Jean-Robert Lutz (ALICE SSD). FIBERNET Ltd., based in Yokneam, Israel, was rewarded for the excellent and timely assembly of the Silicon Strip Detector boards (SSD) of the Inner Tracking System with cable connections. Special low-mass cables, ...

  18. Readout of the upgraded ALICE-ITS

    Science.gov (United States)

    Szczepankiewicz, A.; ALICE Collaboration

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  19. Readout of the upgraded ALICE-ITS

    International Nuclear Information System (INIS)

    Szczepankiewicz, A.

    2016-01-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  20. MAPS development for the ALICE ITS upgrade

    Science.gov (United States)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-03-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.

  1. Readout of the upgraded ALICE-ITS

    Energy Technology Data Exchange (ETDEWEB)

    Szczepankiewicz, A., E-mail: Adam.Szczepankiewicz@cern.ch [CERN, Geneva (Switzerland); Institute of Computer Science, Warsaw University of Technology, Warsaw (Poland)

    2016-07-11

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  2. Detection of atmospheric muons with ALICE detectors

    International Nuclear Information System (INIS)

    Alessandro, B.; Cortes Maldonado, I.; Cuautle, E.; Fernandez Tellez, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Herrera Corral, G.; Leon, I.; Martinez, M.I.; Munoz Mata, J.L.; Podesta, P.; Ramirez Reyes, A.; Rodriguez Cahuantzi, M.; Sitta, M.; Subieta, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.

    2010-01-01

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  3. MAPS development for the ALICE ITS upgrade

    International Nuclear Information System (INIS)

    Yang, P.; Gao, C.; Huang, G.; Aglieri, G.; Cavicchioli, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Tobon, C.A. Marin; Mager, M.; Martinengo, P.; Chalmet, P.L.; Chanlek, N.; Collu, A.; Marras, D.; Kim, D.; Kim, J.; Lattuca, A.

    2015-01-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm 2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips

  4. AliEn - EDG Interoperability in ALICE

    CERN Document Server

    Bagnasco, S; Buncic, P; Carminati, F; Cerello, P G; Saiz, P

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and...

  5. Recent ALICE results on hadronic resonance production

    CERN Document Server

    Badalà, Angela

    2015-01-01

    Hadronic resonances are a valuable tool to study the properties of the medium formed in heavy-ion collisions. In particular, they can provide information on particle-formation mechanisms and on the properties of the medium at chemical freeze-out. Furthermore they contribute to the systematic study of parton energy loss and quark recombination. Measurements of resonances in pp and in p-Pb collisions provide a necessary baseline for heavy-ion data and help to disentangle initial-state effects from medium-induced effects. In this paper the latest ALICE results on mid-rapidity K*(892)^0 and {\\phi}(1020) production in pp, p-Pb and Pb-Pb collisions at LHC energies are presented

  6. ALICE & LHCb: refinements for the restart

    CERN Multimedia

    2009-01-01

    Following the previous issue, the Bulletin continues its series to find out what the six LHC experiments have been up to since last September, and how they are preparing for the restart. Previously we looked at CMS and ATLAS; this issue we will round up the past 10 months of activity at ALICE and LHCb. LHCb The cavern of the LHCb experiment. This year has given LHCb the chance to install the 5th and final plane of muon chambers, which will improve the triggering at nominal luminosity. This is the final piece of the experiment to be installed. "Now the detector looks exactly as it does in the technical design report," confirms Andrei Golutvin, LHCb Spokesperson. "We also took advantage of this shutdown to make several improvements. For example, we modified the high voltage system of the electromagnetic calorimeter to reduce noise further to a negligible level. We also took some measures to improve ...

  7. Measurement of neutral mesons and direct photons in Pb-Pb collisions at √(s{sub NN})=2.76 TeV with the ALICE experiment at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Leardini, Lucia

    2017-11-20

    The Quark-Gluon Plasma (QGP) is a strongly interacting matter with high temperature and energy density, where partons are deconfined. It is hypothesised being the same state the universe was in just a few microseconds after the Big Bang. Experimentally, the QGP is studied at accelerator experiments using heavy-ions. The presence of a deconfined phase after the ultra-relativistic collisions is expected to influence the system evolution. The search for modifications induced on the particle production is carried out taking elementary particle collisions as reference measurement. The research presented in this thesis focuses on the study of neutral meson and direct photon production in lead ion collisions at √(s{sub NN})=2.76 TeV with the ALICE detector at the Large Hadron Collider. The neutral pion and η mesons are reconstructed via their photon decay channel, exploiting the photon conversions in the detector material. A modification of the meson spectra is observed and investigated further with the comparison to similar experimental results as well as theoretical models. The measurement of neutral mesons is essential for the study of direct photon production, since decay photons are the largest background for this signal. The photon excess signal on top of the decay photon background in the transverse momentum interval 1

  8. The ALICE data quality monitoring system

    International Nuclear Information System (INIS)

    Haller, B von; Telesca, A; Chapeland, S; Carena, F; Carena, W; Barroso, V Chibante; Costa, F; Denes, E; Divià, R; Fuchs, U; Simonetti, G; Soós, C; Vyvre, P Vande

    2011-01-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). The online Data Quality Monitoring (DQM) is a key element of the Data Acquisition's software chain. It provide shifters with precise and complete information to quickly identify and overcome problems, and as a consequence to ensure acquisition of high quality data. DQM typically involves the online gathering, the analysis by user-defined algorithms and the visualization of monitored data. This paper describes the final design of ALICE'S DQM framework called AMORE (Automatic MOnitoRing Environment), as well as its latest and coming features like the integration with the offline analysis and reconstruction framework, a better use of multi-core processors by a parallelization effort, and its interface with the eLogBook. The concurrent collection and analysis of data in an online environment requires the framework to be highly efficient, robust and scalable. We will describe what has been implemented to achieve these goals and the procedures we follow to ensure appropriate robustness and performance. We finally review the wide range of usages people make of this framework, from the basic monitoring of a single sub-detector to the most complex ones within the High Level Trigger farm or using the Prompt Reconstruction and we describe the various ways of accessing the monitoring results. We conclude with our experience, before and after the LHC startup, when monitoring the data quality in a challenging environment.

  9. The ALICE data quality monitoring system

    Science.gov (United States)

    von Haller, B.; Telesca, A.; Chapeland, S.; Carena, F.; Carena, W.; Chibante Barroso, V.; Costa, F.; Denes, E.; Divià, R.; Fuchs, U.; Simonetti, G.; Soós, C.; Vande Vyvre, P.; ALICE Collaboration

    2011-12-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). The online Data Quality Monitoring (DQM) is a key element of the Data Acquisition's software chain. It provide shifters with precise and complete information to quickly identify and overcome problems, and as a consequence to ensure acquisition of high quality data. DQM typically involves the online gathering, the analysis by user-defined algorithms and the visualization of monitored data. This paper describes the final design of ALICE'S DQM framework called AMORE (Automatic MOnitoRing Environment), as well as its latest and coming features like the integration with the offline analysis and reconstruction framework, a better use of multi-core processors by a parallelization effort, and its interface with the eLogBook. The concurrent collection and analysis of data in an online environment requires the framework to be highly efficient, robust and scalable. We will describe what has been implemented to achieve these goals and the procedures we follow to ensure appropriate robustness and performance. We finally review the wide range of usages people make of this framework, from the basic monitoring of a single sub-detector to the most complex ones within the High Level Trigger farm or using the Prompt Reconstruction and we describe the various ways of accessing the monitoring results. We conclude with our experience, before and after the LHC startup, when monitoring the data quality in a challenging environment.

  10. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  11. Simple models with ALICE fluxes

    CERN Document Server

    Striet, J

    2000-01-01

    We introduce two simple models which feature an Alice electrodynamics phase. In a well defined sense the Alice flux solutions we obtain in these models obey first order equations similar to those of the Nielsen-Olesen fluxtube in the abelian higgs model in the Bogomol'nyi limit. Some numerical solutions are presented as well.

  12. Light vector meson production in pp collisions at root s=7 TeV ALICE Collaboration

    Czech Academy of Sciences Publication Activity Database

    Abelev, B.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Čepila, J.; Krus, M.; Kushpil, Svetlana; Kushpil, Vasilij; Mareš, Jiří A.; Pachr, M.; Petráček, V.; Petráň, M.; Polák, Karel; Pospíšil, V.; Šmakal, R.; Šumbera, Michal; Tlustý, D.; Vajzer, Michal; Wagner, V.; Zach, Č.; Závada, Petr

    2012-01-01

    Roč. 710, 4-5 (2012), s. 557-568 ISSN 0370-2693 R&D Projects: GA MŠk LA08015 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : heavy ion collisions * LHC * ALICE Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.569, year: 2012

  13. ALICE distributed analysis of the K*(892)0 signal in pp events with the AliEn package

    International Nuclear Information System (INIS)

    Badala, A.; Barbera, R.; Lo Re, G.; Palmeri, A.; Pappalardo, G.S.; Pulvirenti, A.; Riggi, F.

    2004-01-01

    A simulation study concerning the K*(892)0 resonance was carried out within the ALICE Collaboration, in order to evaluate the capability of the detector in the reconstruction of this signal in pp collisions at the Large Hadron Collider (LHC) energy. A description of the analysis procedure which makes use of AliEn, the ALICE package for distributed computing, is given together with the obtained results

  14. ALICE distributed analysis of the $K^{*}(892)^{0}$ signal in pp events with the AliEn package

    CERN Document Server

    Badalà, A; Palmeri, A; Pappalardo, G S; Pulvirenti, A; Lo Re, G; Riggi, F

    2004-01-01

    A simulation study concerning the K*(892)**0 resonance was carried out within the ALICE Collaboration, in order to evaluate the capability of the detector in the reconstruction of this signal in pp collisions at the Large Hadron Collider (LHC) energy. A description of the analysis procedure which makes use of AliEn, the ALICE package for distributed computing, is given together with the obtained results.

  15. ALICE bags data storage accolades

    CERN Multimedia

    2007-01-01

    ComputerWorld has recognized CERN with an award for the 'Best Practices in Storage' for ALICE's data acquisition system, in the category of 'Systems Implementation'. The award was presented to the ALICE DAQ team on 18 April at a ceremony in San Diego, CA. (Top) ALICE physicist Ulrich Fuchs. (Bottom) Three of the five storage racks for the ALICE Data Acquisition system (Photo Antonio Saba). Between 16 and19 April, one thousand people from data storage networks around the world gathered to attend the biannual Storage Networking World Conference. Twenty-five companies and organizations were celebrated as finalists, and five of those were given honorary awards-among them CERN, which tied for first place in the category of Systems Implementation for the success of the ALICE Data Acquisition System. CERN was one of five finalists in this category, which recognizes the winning facility for 'the successful design, implementation and management of an interoperable environment'. 'Successful' could include documentati...

  16. ALICE honours two Italian suppliers

    CERN Multimedia

    2006-01-01

    During the ALICE week held in Bologna from 19 to 23 June, the Collaboration recognized two of its top suppliers. From left to right: Robert Terpin (MIPOT), Pier Luigi Bellutti (ITC), Andrea Zanotti, President of ITC, Luciano Bosisio (Trieste University), Gennady Zinovjev (Kiev), Catherine Decosse (CERN), Lodovico Riccati, ALICE Collaboration Board Chair (INFN Torino), Paolo Giubellino (INFN Torino), Mario Zen, Director of ITC, Maurizio Boscardin (ITC), Paolo Tonella (ITC), Jurgen Schukraft, ALICE Spokesperson (CERN), Giacomo Vito Margagliotti (Trieste University), Nevio Grion (INFN Trieste), Marco Bregant (INFN Trieste). Front row from left to right: Paolo Traverso (ITC), Federico Carminati, ALICE Computing Project Leader (CERN), and Jean-Robert Lutz, ITS-SSD Project leader (IPHC Strasbourg). It is in the picturesque city of Bologna that the ALICE Collaboration has rewarded two Italian suppliers, Istituto Trentino di Cultura ITC-irst (Trento) and MIPOT (Cormons), both involved in the construction of the Sili...

  17. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  18. Inclusive production at LHC energies

    International Nuclear Information System (INIS)

    Merino, C.; Pajares, C.; Shabelski, Yu.M.

    2011-01-01

    We consider the first LHC data for pp collisions in the framework of Regge theory. The integral cross sections and inclusive densities of secondaries are determined by the Pomeron exchange, and we present the corresponding predictions for them. The first measurements of inclusive densities in the midrapidity region are in agreement with these predictions. The contribution of the baryon-number transfer due to String Junction diffusion in the rapidity space is at the origin of the differences in the inclusive spectra of particle and antiparticle in the central region, and this effect could be significant at LHC energies. We discuss the first data of ALICE and LHCb collaborations on the baryon/antibaryon asymmetry at LHC. (orig.)

  19. Study of J/ψ production dependence with the charged particle multiplicity in p-Pb collisions at √(s_N_N) = 5.02 TeV and pp collisions at √(s)= 8 TeV with the ALICE experiment at LHC

    International Nuclear Information System (INIS)

    Martin Blanco, J.

    2015-01-01

    A suppression (relative to the measurement in pp collisions at the same energy) of the J/ψ production was found in Pb-Pb collisions at √(s_N_N) = 2.76 TeV, providing further evidence of the formation of a deconfined medium in ultra-relativistic heavy-ion collisions, the so-called Quark-Gluon Plasma. In addition, p-Pb collisions at √(s_N_N) = 5.02 TeV have been studied at the LHC to measure cold nuclear matter effects (e.g. gluon shadowing, energy loss, nuclear absorption). Understanding p-Pb collisions will help to disentangle hot and cold nuclear matter effects in Pb-Pb collisions. Surprisingly, some observables in p-Pb collisions behave as in heavy-ion collisions where it is understood as a result of a collective expansion of the medium. This thesis analyses inclusive J/ψ production in p-Pb and pp collisions with the ALICE muon spectrometer. The J/ψ production rate, and its mean transverse momentum, have been measured at forward and backward rapidities as a function of the charged particle multiplicity. Measurements of particle production as a function of the event multiplicity in small size systems provide a way to sign the presence of collective final state effects like those observed in Pb-Pb collisions. In p-Pb collisions, the observed increase of the J/ψ production at backward rapidity with multiplicity is consistent with that observed in pp collisions. However, a deviation from this behavior in the J/ψ production at forward rapidity at high multiplicity has been measured. A trend towards saturation has also been observed in the J/ψ mean transverse momentum in p-Pb collisions. Whether these effects can be explained by cold nuclear matter effects or by the presence of further final state effects is currently under investigation. (author)

  20. ALICE Expert System

    CERN Document Server

    Ionita, C

    2014-01-01

    The ALICE experiment at CERN employs a number of human operators (shifters), who have to make sure that the experiment is always in a state compatible with taking Physics data. Given the complexity of the system and the myriad of errors that can arise, this is not always a trivial task. The aim of this paper is to describe an expert system that is capable of assisting human shifters in the ALICE control room. The system diagnoses potential issues and attempts to make smart recommendations for troubleshooting. At its core, a Prolog engine infers whether a Physics or a technical run can be started based on the current state of the underlying sub-systems. A separate C++ component queries certain SMI objects and stores their state as facts in a Prolog knowledge base. By mining the data stored in dierent system logs, the expert system can also diagnose errors arising during a run. Currently the system is used by the on-call experts for faster response times, but we expect it to be adopted as a standard tool by reg...

  1. The Latest from ALICE

    CERN Multimedia

    2009-01-01

    After intensive installation operations from October 2008 until July 2009 (see Bulletin 31/7/2009), ALICE started a full-detector cosmics run in August, which is scheduled to last until the end of October. In addition to the Silicon Pixel and ACORDE detectors, the latter specially built for triggering on cosmic muons, ALICE is now making extensive use of the trigger provided by the Time Of Flight array. The high granularity and the low noise (0.1 Hz/cm2) of the TOF MRPCs, combined with the large coverage (~150 m2), offers a wide range of trigger combinations. This extended cosmic run serves many purposes: to test the performance of each individual detector; to ensure their integration in the central Data Acquisition; to perform alignment and calibration; to check the reconstruction software; to fine-tune the tracking algorithms; and last but not least, to train the personnel for the long shifts ahead. More than 100 million events h...

  2. ALICE Expert System

    International Nuclear Information System (INIS)

    Ionita, C; Carena, F

    2014-01-01

    The ALICE experiment at CERN employs a number of human operators (shifters), who have to make sure that the experiment is always in a state compatible with taking Physics data. Given the complexity of the system and the myriad of errors that can arise, this is not always a trivial task. The aim of this paper is to describe an expert system that is capable of assisting human shifters in the ALICE control room. The system diagnoses potential issues and attempts to make smart recommendations for troubleshooting. At its core, a Prolog engine infers whether a Physics or a technical run can be started based on the current state of the underlying sub-systems. A separate C++ component queries certain SMI objects and stores their state as facts in a Prolog knowledge base. By mining the data stored in different system logs, the expert system can also diagnose errors arising during a run. Currently the system is used by the on-call experts for faster response times, but we expect it to be adopted as a standard tool by regular shifters during the next data taking period

  3. The ALICE Transition Radiation Detector: Construction, operation, and performance

    Science.gov (United States)

    Alice Collaboration

    2018-02-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

  4. Identified hadron distributions in p-Pb collisions at $\\sqrt{{\\rm s}_{\\rm \\scriptscriptstyle NN}}$ = 5.02 TeV with the Inner Tracking System of ALICE at the LHC

    CERN Document Server

    Corrales Morales, Yasser; Prino, Francesco

    Heavy-ion (A-A) collisions offer a unique possibility to study in the laboratory the properties of the strongly-interacting matter under extreme conditions of pressure, energy density and temperature. In particular, the deconfined quark-gluon plasma (QGP) system which is predicted by quantum chromodynamic (QCD) calculations can be investigated. The measurements performed in smaller systems, such as proton-proton (p-p) and proton-nucleus (p-Pb) collisions, provide the reference data for the interpretation of the A-A collision results. In addition, an unexpected ``double-ridge" structure in two particle correlation measurements in high multiplicity p-Pb collisions at the Large Hadron Collider (LHC) has been observed. The features of this ridge are qualitatively, and to some extent also quantitative, similar to those observed in heavy-ion collisions where they are commonly explained in term of collective expansion ($flow$) of the high density medium created in the collision. Both a Colour Glass Condensate (CGC) ...

  5. Study Of Higher Moments Of Net-Electric Charge & Net-Proton Number Fluctuations In Pb+Pb Collisions At $\\sqrt{s_{NN}}$=2.76 TeV In ALICE At LHC

    CERN Document Server

    Behera, Nirbhay Kumar

    Lattice QCD predicts that at extreme temperature and energy density, QCD matter will undergo a phase transition from hadronic matter to partonic matter called as QGP. One of the fundamental goals of heavy ion collision experiments to map the QCD phase diagram as a function of temperature (T) and baryo-chemical potential ($\\mu_{B}$). There are many proposed experimental signatures of QGP and fluctuations study are regarded as sensitive tool for it. It is proposed that fluctuation of conserved quantities like net-charge and net-proton can be used to map the QCD phase diagram. The mean ($\\mu$), sigma ($\\sigma$), skewness (S) and kurtosis ($\\kappa$) of the distribution of net charge and net proton are believed to be sensitive probes in fluctuation analysis. It has been argued that critical phenomena are signaled with increase and divergence of correlation length. The dependence of $n^{th}$ order higher moments (cumulants, $c_{n}$) with the correlation length $\\xi$ is as $c_{n}\\sim\\xi^{2.5n-3}$. At LHC energy, the...

  6. ALICE honours two Italian suppliers

    CERN Multimedia

    2006-01-01

    From left to right: Robert Terpin (MIPOT), Pier Luigi Bellutti (ITC), Andrea Zanotti, President of ITC, Luciano Bosisio (Trieste University), Gennady Zinovjev (Kiev), Catherine Decosse (CERN), Lodovico Riccati, ALICE Collaboration Board Chair (INFN Torino), Paolo Giubellino (INFN Torino), Mario Zen, Director of ITC, Maurizio Boscardin (ITC), Paolo Tonella (ITC), Jurgen Schukraft, ALICE Spokesperson (CERN), Giacomo Vito Margagliotti (Trieste University), Nevio Grion (INFN Trieste), Marco Bregant (INFN Trieste) Front row from left to right: Paolo Traverso (ITC), Federico Carminati, ALICE Computing Project Leader (CERN), and Jean-Robert Lutz, ITS-SSD Project leader (IPHC Strasbourg).

  7. Hierarchical trigger of the ALICE calorimeters

    CERN Document Server

    Muller, Hans; Novitzky, Norbert; Kral, Jiri; Rak, Jan; Schambach, Joachim; Wang, Ya-Ping; Wang, Dong; Zhou, Daicui

    2010-01-01

    The trigger of the ALICE electromagnetic calorimeters is implemented in 2 hierarchically connected layers of electronics. In the lower layer, level-0 algorithms search shower energy above threshold in locally confined Trigger Region Units (TRU). The top layer is implemented as a single, global trigger unit that receives the trigger data from all TRUs as input to the level-1 algorithm. This architecture was first developed for the PHOS high pT photon trigger before it was adopted by EMCal also for the jet trigger. TRU units digitize up to 112 analogue input signals from the Front End Electronics (FEE) and concentrate their digital stream in a single FPGA. A charge and time summing algorithm is combined with a peakfinder that suppresses spurious noise and is precise to single LHC bunches. With a peak-to-peak noise level of 150 MeV the linear dynamic range above threshold spans from MIP energies at 215 up to 50 GeV. Local level-0 decisions take less than 600 ns after LHC collisions, upon which all TRUs transfer ...

  8. The upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Ravasenga, Ivan

    2017-01-01

    In 2021, for the third run of the CERN Large Hadron Collider (LHC), Pb-Pb collisions will be performed at a centre-of-mass energy per nucleon of 5.5 TeV, with an integrated luminosity of $6 \\times 10^{27}$ cm$^{-2}$ s$^{-1}$ and at an unprecedented interaction rate up to 50 kHz. To fulfil the requirements of the ALICE physics program for Run 3, the ALICE experiment at LHC is planning a major upgrade during the Long Shutdown 2 of LHC in 2019-2020. One of the key elements, is the construction of a new ultra-light and high-resolution Inner Tracking System (ITS). The upgraded ITS will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities, with respect to what can be achieved with the current detector. It will consist of seven layers equipped with silicon Monolithic Active Pixel Sensors (MAPS) with a pixel size of the order of $30 \\times 30 \\mu m^2$. They will be produced by Towerjazz ...

  9. Sprint final pour l'accélérateur Le LHC du CERN va entrer en service au mois de juin

    CERN Multimedia

    Du Brulle, Christian

    2008-01-01

    "Our new tool should be ready to function this summer", is delighted Jos Engelen, the scientific director of the international scientific organization. In more than hundred metres deep, under the French-Swiss border, the circular tunnel 27 kilometres in diameter of the LHC is almost equipped.

  10. That’s a matter for ALICE!

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    ALICE has launched a new online newsletter to report on developments at the detector: ALICE Matters. The fortnightly newsletter will keep members of the collaboration – and a wider readership – up-to-date with the latest news from the detector.   Screenshot of the ALICE Matters website. The new ALICE Matters newsletter highlights the work of ALICE collaborators through news, interviews and feature articles. Published online every fortnight, it will report the latest developments from the experiment, providing information about operation and data taking, installation work during technical stops, and news from ALICE members. The newsletter is aimed at members of the collaboration, but as an online publication it is also open to the general public. “We often receive questions from people who follow our progress and are interested in what's happening at ALICE,” explains Despina Hatzifotiadou, ALICE Outreach Coordinator. “With ALICE Matters, we can n...

  11. Photoproduction of $\\rho^0$ in ultra--peripheral nuclear collisions at ALICE

    CERN Document Server

    Skjerdal, Kyrre

    2013-01-01

    Photoproduction of $\\rho^0$ mesons in ultra-peripheral Pb+Pb collisions has been studied by the ALICE Collaboration at the CERN LHC. The strong photon flux associated with relativistic charged nuclei leads to a very large cross section for exclusive photoproduction of $\\rho^0$ meson in interactions of the type $Pb + Pb \\rightarrow Pb + Pb + \\rho^0$. For a $\\rho^0$ produced at mid-rapidity at the LHC, the photon-nucleus center of mass energy is higher than in any previous experiment. The ALICE detector is a general purpose detector dedicated to study heavy--ion collisions. ALICE has excellent performance in the low $p_T$ region, and can reconstruct charged particle tracks with 0.1 GeV/c $\\leq p_T \\leq 100$ GeV/c. In this analysis all tracks were required to be within ALICE's central barrel. Analysis of data from the first heavy ion run at the LHC in 2010 will be discussed in this paper.

  12. Open Access to the LHC takes on a new meaning

    CERN Multimedia

    2008-01-01

    Complete scientific documentation on the LHC machine and detectors is now freely available on the Web. The ATLAS collaboration, shown here, contributed to the 1,600-page scientific documentation of the LHC, along with staff from the other five detectors and the LHC machine.Now that the LHC tunnel and the experimental caverns are shut down for public visits, "Open Access to the LHC" has taken on an entirely new meaning. Last Thursday, 14 August, seven major articles were published electronically in a special issue of the Journal of Instrumentation (JINST). Together they form the complete scientific documentation on the design and construction of the LHC machine and the six detectors (ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM), and thus on the entire LHC project, well before start-up on 10 September. For many years to come, these papers will serve as key references for the stream of scientific results that will begin to emerge from the ...

  13. LHC Report: Ticking over

    CERN Multimedia

    Mike Lamont for the LHC Team

    2012-01-01

    The past two weeks have seen luminosity production rates vary somewhat but the overall upwards slope has remained steady. Over 17 fb-1 have been delivered to both ATLAS and CMS; LHCb is also doing well, with around 1.6 fb-1 delivered so far in 2012. The proton physics production also slotted in a five-day machine development period (Monday 8 to Saturday 13 October).   When producing the LHC beam in the PS, some parasitic low-intensity satellite bunches are formed 25 ns from the main bunches, which are spaced by 50 ns. ALICE, whose detector is designed to work with relatively low collision rates, has been taking data from satellite-main collisions. The population of these satellites has recently been increased thanks to gentle tweaks by the PS radio frequency experts. This has increased the peak luminosity in ALICE and will help them to reach their proton-proton integrated luminosity goal for the year. The October machine development programme was a mixed bag. While some studies were aimed at sho...

  14. Measurements of quarkonia with the central detectors of ALICE

    International Nuclear Information System (INIS)

    Sommer, Wolfgang

    2008-01-01

    The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector. (orig.)

  15. Measurements of quarkonia with the central detectors of ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Wolfgang

    2008-03-26

    The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector. (orig.)

  16. A study of Double Pomeron Exchange in ALICE

    CERN Document Server

    Kirk, A.

    1998-01-01

    The non-Abelian nature of QCD suggests that particles that have a gluon constituent, such as glueballs or hybrids, should exist. Experiments WA76, WA91 and WA102 have performed a dedicated search for these states in central production using the CERN Omega Spectrometer. New results from central production show that there is a kinematical filter which can select out glueball candidates from known qqbar states. A further study of this at high energies is essential in order to get information on the M(X0) > 2 GeV region. This paper describes how this could be done using the the ALICE detector at the LHC.

  17. High level trigger system for the ALICE experiment

    International Nuclear Information System (INIS)

    Frankenfeld, U.; Roehrich, D.; Ullaland, K.; Vestabo, A.; Helstrup, H.; Lien, J.; Lindenstruth, V.; Schulz, M.; Steinbeck, T.; Wiebalck, A.; Skaali, B.

    2001-01-01

    The ALICE experiment at the Large Hadron Collider (LHC) at CERN will detect up to 20,000 particles in a single Pb-Pb event resulting in a data rate of ∼75 MByte/event. The event rate is limited by the bandwidth of the data storage system. Higher rates are possible by selecting interesting events and subevents (High Level trigger) or compressing the data efficiently with modeling techniques. Both require a fast parallel pattern recognition. One possible solution to process the detector data at such rates is a farm of clustered SMP nodes, based on off-the-shelf PCs, and connected by a high bandwidth, low latency network

  18. First p-Pb results from the ALICE experiment

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    We present the first results from proton-lead collisions at sqrt(s_NN)=5.02 TeV obtained by the ALICE experiment at the CERN LHC. They are based on the data obtained during the pilot p-Pb run in September 2012. The measurements include the pseudorapidity density, transverse momentum distribution and the nuclear modification factor of unidentified charged particles. Our results will be compared to previous p-p, A-A and d-A experimental results and to the available theoretical model predictions. Prospects for the long p-Pb run at the beginning of 2013 will be given.

  19. Start of run2 physics at the Large Hadron Collider (LHC)

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    Images from the CERN Control Centre (CCC), where operators control the LHC, and from the control rooms of the ALICE, ATLAS, CMS and LHCb experiments, where operators control huge detectors that capture data from collisions between beams of protons in the LHC.

  20. The ALICE Workload Management System: Status before the real data taking

    International Nuclear Information System (INIS)

    Bagnasco, S; Betev, L; Buncic, P; Carminati, F; Furano, F; Grigoras, A; Grigoras, C; Lorenzo, P Mendez; Peters, A J; Saiz, P

    2010-01-01

    With the startup of LHC, the ALICE detector will collect data at a rate that, after two years, will reach 4PB per year. To process such a large amount of data, ALICE has developed AliEn, a distributed computing environment, integrated with the WLCG environment. The ALICE environment presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called ALICE Data Challenges. Within the ALICE distributed computing environment, the AliEn Workload Management Structure was created to submit to the WLCG infrastructure, and has played a crucial role to achieve the mentioned results. ALICE has more than 80 sites distributed all over the world and this WMS together with the operations management structure defined by the experiment has demonstrated a reliability and performance level ready to begin the data taking at the end of the year. In this talk we will focus on the description and current status of the AliEn WMS, emphasizing the last functionalities that have been included to handle from a single entry point the different matchmaking services of WLCG (lcg-RB, gLite WMS) and also the CREAM Computing Element; the latter has been extensively tested by the experiment during summer 2008.

  1. Event visualisation in ALICE - current status and strategy for Run 3

    Science.gov (United States)

    Niedziela, Jeremi; von Haller, Barthélémy

    2017-10-01

    A Large Ion Collider Experiment (ALICE) is one of the four big experiments running at the Large Hadron Collider (LHC), which focuses on the study of the Quark-Gluon Plasma (QGP) being produced in heavy-ion collisions. The ALICE Event Visualisation Environment (AliEve) is a tool providing an interactive 3D model of the detector’s geometry and a graphical representation of the data. Together with the online reconstruction module, it provides important quality monitoring of the recorded data. As a consequence it has been used in the ALICE Run Control Centre during all stages of Run 2. Static screenshots from the online visualisation are published on the public website - ALICE LIVE. Dedicated converters have been developed to provide geometry and data for external projects. An example of such project is the Total Event Display (TEV) - a visualisation tool recently developed by the CERN Media Lab based on the Unity game engine. It can be easily deployed on any platform, including web and mobile platforms. Another external project is More Than ALICE - an augmented reality application for visitors, overlaying detector descriptions and event visualisations on the camera’s picture. For the future Run 3 both AliEve and TEV will be adapted to fit the ALICE O2 project. Several changes are required due to the new data formats, especially so-called Compressed Time Frames.

  2. Study of D-mesons using hadronic decay channels with the ALICE detector

    CERN Document Server

    Bala, Renu

    2010-01-01

    At LHC energy, heavy quarks will be abundantly produced and the design of the ALICE Experiment will allow us to study their production using several channels. We investigate the feasibility of the study of D mesons reconstructed in their exclusive hadronic decay channel. After reviewing the ALICE potential for such studies, we will present some results for the two more promising decay channels i.e D0->KPi and D+ -> K-Pi+Pi+ obtained with 7 TeV pp data and 5.5 A TeV Pb-Pb Monte Carlo data .

  3. Study of micro-strip gas ionisation chambers substrates for CMS experiment at LHC; Etude de substrats pour chambres gazeuses a micropistes dans le cadre de l`experience CMS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A.

    1996-06-14

    High luminosity, expected interaction and dose rates of the future LHC collider require the development of micro-strips gas chambers. In addition to optimization of this new detector, this work is concerned with understanding of gain loss phenomena. Influence of the gas substrate is carefully analysed, as well as theoretical concepts concerning glasses and their behaviour under polarization and irradiation, and the consequence on detection operations.Electron spin resonance is used to study, in standard glass, creation of radiation induced defects which may be charged. (D.L.). 14 refs.

  4. Etude et optimisation des performances du calorimètre électromagnétique de l'expérience CMS pour la physique au LHC

    CERN Document Server

    Descamps, Julien; Jarry, Patrick

    2007-01-01

    The CMS experiment (Compact Muon Solenoid) is one of the two multi-purpose experiments of the proton-proton collider LHC (Large Hadron Collider) currently starting at CERN (Geneva). One of the main goals of CMS is the search for the Higgs boson. Because of the LHC challenging environment, the collaboration have chosen an electromagnetic calorimeter made of about 75000 scintillating lead tungstate crystals P bW O4 , at the same time fast, radiation hard, and extremely precise, especially in the energy range for the Higgs boson search, in the channel where it decays in two photons. The five first chapters of this thesis present the LHC, the CMS detector and notably the electro- magnetic calorimeter (ECAL). The sixth chapter presents a test beam analysis realized in 2004 at CERN with an electron beam of different energies (20-250 GeV) incident on a part (1/36) of the calorimeter barrel called “ supermodule ”. A study of the energy measurement variation within 9 (3×3) and 25 (5×5) crystals matrices as funct...

  5. Le LHC, un tunnel cosmique

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERN a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus peti...

  6. Challenges to Software/Computing for Experimentation at the LHC

    Science.gov (United States)

    Banerjee, Sunanda

    The demands of future high energy physics experiments towards software and computing have led the experiments to plan the related activities as a full-fledged project and to investigate new methodologies and languages to meet the challenges. The paths taken by the four LHC experiments ALICE, ATLAS, CMS and LHCb are coherently put together in an LHC-wide framework based on Grid technology. The current status and understandings have been broadly outlined.

  7. LHC data and cosmic ray coplanarity at superhigh energies

    Directory of Open Access Journals (Sweden)

    Mukhamedshin R.A.

    2017-01-01

    Full Text Available A new phenomenological model FANSY 2.0 is designed, which makes it possible to simulate hadron interactions via traditional and coplanar generation of most energetic particles as well as to reproduce a lot of LHC (ALICE, ATLAS, CMS, TOTEM, LHCf data. Features of the model are compared with LHC data. Problems of coplanarity are considered and a testing experiment is proposed.

  8. The ALICE DAQ infoLogger

    Science.gov (United States)

    Chapeland, S.; Carena, F.; Carena, W.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Ionita, C.; Delort, C.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.; Alice Collaboration

    2014-04-01

    ALICE (A Large Ion Collider Experiment) is a heavy-ion experiment studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The ALICE DAQ (Data Acquisition System) is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches). The DAQ reads the data transferred from the detectors through 500 dedicated optical links at an aggregated and sustained rate of up to 10 Gigabytes per second and stores at up to 2.5 Gigabytes per second. The infoLogger is the log system which collects centrally the messages issued by the thousands of processes running on the DAQ machines. It allows to report errors on the fly, and to keep a trace of runtime execution for later investigation. More than 500000 messages are stored every day in a MySQL database, in a structured table keeping track for each message of 16 indexing fields (e.g. time, host, user, ...). The total amount of logs for 2012 exceeds 75GB of data and 150 million rows. We present in this paper the architecture and implementation of this distributed logging system, consisting of a client programming API, local data collector processes, a central server, and interactive human interfaces. We review the operational experience during the 2012 run, in particular the actions taken to ensure shifters receive manageable and relevant content from the main log stream. Finally, we present the performance of this log system, and future evolutions.

  9. LHC related projects and studies - Part (I)

    International Nuclear Information System (INIS)

    Garoby, R.; Ponce, L.

    2012-01-01

    This session was the first of the two sessions dealing with future projects and the associated studies. Starting with descriptions of the plans and needs of the LHCb and ALICE experiments which are less extensively documented than those of ATLAS and CMS, it addressed the plans for the High Luminosity LHC and for the upgrade of the injectors, both for protons and other ions. (authors)

  10. Charged-particle multiplicity at LHC energies

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  11. ALICE rewards one of its suppliers

    CERN Multimedia

    2007-01-01

    On 6 October 2007 the ALICE Collaboration Board awarded one of its prestigious Industrial Awards to Hewlett-Packard for its instrumental role in enabling ALICE physicists to collect and process experimental data on the Grid. From left to right: Jurgen Schukraft, ALICE Spokesperson; Michel Bénard, Hewlett Packard, Director, Technology Programs and University Relations; Federico Carminati, ALICE Computing Project Leader; Lodovico Riccati, ALICE Collaboration Board Chairperson; Arnaud Pierson, Hewlett Packard, E.M.E.A Program Manager, University Relations and HP Labs; Latchezar Betev, ALICE Distributed Computing Coordinator.The ALICE DAQ and Offline groups have been collaborating with HP since 1993 in the yearly Computing and GRID physics data challenges programme. These are high-level exercises of readiness of hardware and software frameworks for data acquisition and processing. HP hosted ALICE experts in their "centre de compétences"...

  12. ALICE presents its first award to Industry

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Behind from left to right (Derrière de gauche à droite): Bernardo Mota, member of the ALTRO design team, Jurgen Schukraft, ALICE Spokesperson, Luciano Musa, leader of the ALTRO Design Team and Coordinator of the ALICE TPC FEE, Roberto Camapagnolo, member of the ALICE TPC FEE team, Jean-Pierre Coffin, Deputy of the ALICE Collaboration Board Chairman, Hans de Groot ALICE Resource Coordinator, Laurent Degoujon, ST - Data Converter Design Manager, Claude Engster, member of the ALICE TPC FEE team, Alain Delpi, ST - Data Converter Business Unit Manager, Carmen Gonzalez, member of the ALICE TPC FEE team, Yiota Foka, ALICE Outreach Coordinator; Front: Fabio Formenti , EP-ED Group Leader, Juan Antonio Rubio, ETT Division Leader.

  13. Study and optimization of the performances of the CMS electromagnetic calorimeter for the physics at LHC; Etude et optimisation des performances du calorimetre electromagnetique de l'experience CMS pour la physique au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, J

    2007-07-15

    The CMS experiment (Compact Muon Solenoid) is one of the two multi-purpose experiments of the proton-proton collider LHC (Large Hadron Collider). One of the main goals of CMS is the search for the Higgs boson. The collaboration has chosen an electromagnetic calorimeter made of about 75000 scintillating lead tungstate crystals PbWO{sub 4}, at the same time fast, radiation hard, and extremely precise, especially in the energy range for the Higgs boson search, in the channel where it decays in 2 photons. The five first chapters of this thesis present the LHC, the CMS detector and notably the electromagnetic calorimeter (ECAL). The sixth chapter presents a test beam analysis realized in 2004 at CERN with an electron beam of different energies (20-250 GeV) incident on a part (1/36) of the calorimeter barrel called super-module. A study of the energy measurement variation within 9 (3*3) and 25 (5*5) crystals matrices as function of the impact position of the initial electron was done to infer a correction method of the energy measured as function of different parameters. This method has improved very significantly the energy resolution of the calorimeter in the test beam configuration. The last chapter of this thesis presents an application of this correction method for the electrons and photons in the full simulation chain of CMS. The energy reconstruction of photons and electrons is more complicated compared to the test beam case, because of an important amount of matter in front of the calorimeter and of the strong magnetic field in the central part of the CMS detector. The photons have a non negligible probability to convert into an electron-positron pair before the calorimeter, while the electrons (and positrons), whose trajectory is bent in the transverse plan, lose energy in the matter and can emit a random number of Bremsstrahlung photons. A reconstruction algorithm of the electrons and photons energy has been developed to take into account this issue and to

  14. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  15. A Dashboard for the Italian Computing in ALICE

    Science.gov (United States)

    Elia, D.; Vino, G.; Bagnasco, S.; Crescente, A.; Donvito, G.; Franco, A.; Lusso, S.; Mura, D.; Piano, S.; Platania, G.; ALICE Collaboration

    2017-10-01

    A dashboard devoted to the computing in the Italian sites for the ALICE experiment at the LHC has been deployed. A combination of different complementary monitoring tools is typically used in most of the Tier-2 sites: this makes somewhat difficult to figure out at a glance the status of the site and to compare information extracted from different sources for debugging purposes. To overcome these limitations a dedicated ALICE dashboard has been designed and implemented in each of the ALICE Tier-2 sites in Italy: in particular, it provides a single, interactive and easily customizable graphical interface where heterogeneous data are presented. The dashboard is based on two main ingredients: an open source time-series database and a dashboard builder tool for visualizing time-series metrics. Various sensors, able to collect data from the multiple data sources, have been also written. A first version of a national computing dashboard has been implemented using a specific instance of the builder to gather data from all the local databases.

  16. Monitoring and calibration of the ALICE time projection chamber

    CERN Document Server

    Larsen, Dag Toppe

    The aim of the A Large Ion Collider Experiment (ALICE) experiment at CERN is to study the properties of the Quark–Gluon Plasma (QGP). With energies up to 5.5 A T eV for Pb+Pb collisions, the Large Hadron Collider (LHC) sets a new benchmark for heavy- ion collisions, and opens the door to a so far unexplored energy domain. A closer look at some of the physics topics of ALICE is given in Chapter 1. ALICE consists of several sub-detectors and other sub-systems. The various sub- detectors are designed for exploring different aspects of the particle production of an heavy-ion collision. Chapter 2 gives some insight into the design. The main tracking detector is the Time Projection Chamber (TPC). It has more than half million read-out channels, divided into 216 Read-out Partitions (RPs). Each RP is a separate Front-End Electronics (FEE) entity, as described in Chapter 3. A complex Detector Control System (DCS) is needed for configuration, monitoring and control. The heart of it on the RP side is a small embedded ...

  17. The Readout Control Unit of the ALICE TPC

    CERN Document Server

    Lien, J A; Musa, L

    2004-01-01

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of the central barrel of the ALICE (A Large Ion Collider) Experiment at the Large Hadron Collider (LHC), being constructed at CERN, Geneva. It is a 88 m$^{3}$ cylinder filled with gas and divided into two drift regions by the central electrode located at its axial center. The readout chambers of the TPC are multi-wire proportional chambers with cathode pad readout. About 570 000 pads are read-out by an electronics chain of amplification, digitalization and pre-processing. One of the challenges in designing the TPC for ALICE is the design of Front End Electronics (FEE) to cope with the data rates and the channel occupancy. The Readout Control Unit (RCU), which is presented in this work, is designed to control and monitor the Front End Electronics, and to collect and ship data to the High Level Trigger and the Data Acquisition System, via the Detector Data Link (DDL - optical fibre). The RCU must be capable of reading out up to 200 Mbytes/s f...

  18. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  19. ACORDE a cosmic ray detector for ALICE

    International Nuclear Information System (INIS)

    Fernandez, A.; Gamez, E.; Herrera, G.; Lopez, R.; Leon-Monzon, I.; Martinez, M.I.; Pagliarone, C.; Paic, G.; Roman, S.; Tejeda, G.; Vargas, M.A.; Vergara, S.; Villasenor, L.; Zepeda, A.

    2007-01-01

    ACORDE is one of the ALICE detectors, presently under construction at CERN. It consists of an array of plastic scintillator counters placed on the three upper faces of the ALICE magnet. It will act as a cosmic ray trigger, and, together with other ALICE sub-detectors, will provide precise information on cosmic rays with primary energies around 10 15 -10 17 eV. Here we describe the design of ACORDE along with the present status and integration into ALICE

  20. The LHC at the AAAS

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The American Association for the Advancement of Science held its annual meeting in the Walter E. Washington Convention Center in Washington D.C. last week.   Veteran science writer Tim Radford introduces LHC scientists during a media briefing at the AAAS annual meeting. Left to right: Felicitas Pauss, Tom LeCompte, Yves Schutz and Nick Hadley. As the world’s largest popular science meeting, the AAAS meeting is a major event in the calendar of science journalists.  At this year’s LHC session, CERN’s coordinator for international relations, Felicitas Pauss, opened the discussion, paving the way for Tom LeCompte of ATLAS, Joe Incandela of CMS, Yves Schutz of ALICE and Monica Pepe-Altarelli of LHCb to report on the status of the first year’s analysis from their experiments.    

  1. Test of the little Higgs model in Atlas at LHC: simulation of the digitization of the electromagnetic calorimeter; Test du modele du petit Higgs dans ATLAS au LHC: simulation de la numerisation du calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lechowski, M

    2005-04-15

    LHC is a proton-proton collider with an energy of 14 TeV in the center of mass, which will start operating in 2007 at CERN. Two of its experiments, ATLAS, and CMS, will search and study in particular the Higgs boson, Supersymmetry and other new physics. This thesis was about two aspects of the ATLAS experiment. On one hand the simulation of the liquid Argon electromagnetic calorimeter, with the emulation of the electronic chain in charge of the digitization of the signal and also the evaluation of the electronic noise and the pile-up noise (coming from minimum bias events of inelastic collisions at LHC). These two points have been validated by the analysis of the data taken during beam tests in 2002 and 2004. On the other hand, a physics study concerning the Little Higgs model. This recent model solves the hierarchy problem of the Standard Model, in introducing new heavy particles to cancel quadratic divergences arising in the calculation of the Higgs boson mass. These new particles, with a mass about the TeV/c{sup 2}, are a heavy quark top, heavy gauge bosons Z{sub H}, W{sub H} and A{sub H}, and a heavy Higgs boson triplet. The physics study dealt with the characteristic decays of the model, Z{sub H} in Z + H and W{sub H} in W + H, with a Higgs mass either at 120 GeV/c{sup 2} decaying in two photons or at 200 GeV/c{sup 2} decaying in ZZ or WW. Results show that in both cases, for 300 fb{sup -1} (3 years at high luminosity), an observation of the signal at 5 {sigma} for Z{sub H} et W{sub H} masses less than 2 TeV/c{sup 2} is possible, covering a large part of the parameter space. (author)

  2. Optimization of the ATLAS detector to search for the two-photon decaying Higgs boson at LHC; Optimisation du detecteur ATLAS pour la recherche du boson de Higgs se desintegrant en deux photons au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, V [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire; [Universite de Paris Sud, 91 - Orsay (France)

    1997-02-03

    The two photon decay channel is the most clear and promising way to detect a Higgs boson of an intermediate mass between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} at the future large proton collider of CERN (LHC). As the Higgs mass is narrow in this range, the observation of this channel relies on the performance of the electromagnetic calorimeter. A full simulation study has been performed to evaluate the discovery potential of the ATLAS detector. The results of this simulation have been confirmed by beam tests with a prototype. This simulation includes different contributions such as energy resolution sampling term, electronic and pile-up noise, global constant term and angular measurement of the two photon opening angle. The levels of the irreducible background from prompt di-photon production and the reducible background from jets with isolated leading neutrals pions have been estimated, taking into account the rejection capability of the detector. After the computation of the two photon invariant mass resolution, and the evaluation of signal and background rates, the discovery potential of the Higgs boson with the ATLAS detector was calculated. The Higgs can be discovered at five sigma confidence level after less than a year of data taking at LHC with the nominal luminosity of 10{sup 34} cm{sup -2}.s{sup -1} if the Higgs mass is between 100 GeV/c{sup 2} and 150 GeV/c{sup 2}. The Higgs mass window between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} will be covered with an integrated luminosity of 3.10{sup 5} pb{sup -1}. In the case of the Minimal Supersymmetric Model (MSSM) the plane (m{sub A{sup 0}}, tan({beta})) will be fully explored if m{sub A{sup 0}} > 175 GeV/c{sup 2}. (author)

  3. PC adapter and patch panel for ALICE

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    These components form part of the ALICE detector data link (DDL). This is a high-speed optical link designed to interface the readout electronics of ALICE detectors to computers for data acquisition. A total of 400 DDLs will be installed on ALICE. These silicon devices have been developed especially for use in the high radiation levels produced in detector environments.

  4. ALICE presents its first award to Industry

    CERN Multimedia

    On 19 June, a French company received the first ALICE award to industry. ST Technologies has provided ALICE with a key device for the design of a very sophisticated chip for the readout of the ALICE Time Projection Chamber. Behind from left to right (Derrière de gauche à droite): Bernardo Mota, member of the ALTRO design team, Jurgen Schukraft, ALICE Spokesperson, Luciano Musa, leader of the ALTRO Design Team and Coordinator of the ALICE TPC FEE, Roberto Camapagnolo, member of the ALICE TPC FEE team, Jean-Pierre Coffin, Deputy of the ALICE Collaboration Board Chairman, Hans de Groot ALICE Resource Coordinator, Laurent Degoujon, ST - Data Converter Design Manager, Claude Engster, member of the ALICE TPC FEE team, Alain Delpi, ST - Data Converter Business Unit Manager, Carmen Gonzalez, member of the ALICE TPC FEE team, Yiota Foka, ALICE Outreach Coordinator; Front: Fabio Formenti , EP-ED Group Leader, Juan Antonio Rubio, ETT Division Leader The ALICE experiment is setting new demands on readout electronics i...

  5. Charged-Particle Multiplicity Distributions over Wide Pseudorapidity Range in Proton-Proton and Proton-Lead Collisions with ALICE

    DEFF Research Database (Denmark)

    Zaccolo, Valentina

    distributionis sensitive to the number of collisions between quarks and gluonscontained in the colliding systems.In this thesis, data using the Forward Multiplicity Detector and the SiliconPixel Detector of ALICE at CERN’s Large Hadron Collider (LHC) arepresented, for pp and pPb collisions. For the first time...

  6. Recherche de résonances $W' \\rightarrow t\\bar{b}$ dans le canal lepton plus jets avec le détecteur ATLAS au LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)742766

    The research work carried out during this Ph.D thesis has been performed in the context of the ATLAS experiment, one of the four major LHC experiments, and was primarily dedicated to the search for a new chaged heavy gauge boson, called $W'$ and predicted by many extensions of the Standard Model of particle physics. \\\\ This manuscript presents a search for $W'$ boson decaying into a top and a bottom quark through an effective coupling approach, in the lepton plus jets final states. This search is performed with 20.3 $\\text{fb}^{-1}$ of proton-proton collision data, produced by the LHC with a center-of-mass energy of 8 TeV and collected by the ATLAS detector in 2012. Several scenarios are considered where the $W'$ boson can couple to left-handed ($W'_{L}$) or right-handed ($W'^{R}$) fermions. A multivariate techniques based on boosted decision trees is used to search for an excess of $W'$ signal process in the recorded data. No excess is observed beyond the experimental uncertainties for the data analysed so f...

  7. Industrial collaborators honoured by ALICE

    CERN Document Server

    Maximilien Brice

    2004-01-01

    Picture 01 : the winners gather after the ALICE Award ceremony (from left to right): Yuri Saveliev, Stanislav Burachas and Sergei Beloglovsky of North Crystals; Maximilian Metzger, CERN's secretary-general; Rang Cai of ATM; Jürgen Schukraft, ALICE spokesperson; Erich Pamminger and Daniel Gattinger of FACC; and Tiejun Wang of ATM. The ALICE collaboration has presented its second round of awards to three companies for their novel and remarkable contributions to major detector systems: Advance Technology and Materials (ATM), Fischer Advanced Composite Components (FACC) and North Crystals. The awards presented to these three leaders in advanced, modern materials were beautifully sculpted from one of the oldest materials used by mankind to manufacture tools - Mexican Obsidian

  8. JACoW ADAPOS: An architecture for publishing ALICE DCS conditions data

    CERN Document Server

    Lång, John; Bond, Peter; Chochula, Peter; Kurepin, Alexander; Lechman, Mateusz; Pinazza, Ombretta

    2018-01-01

    ALICE Data Point Service (ADAPOS) is a software architecture being developed for the RUN3 period of LHC, as a part of the effort to transmit conditions data from ALICE Detector Control System (DCS) to Event Processing Network (EPN), for distributed processing. The key processes of ADAPOS, Engine and Terminal, run on separate machines, facing different networks. Devices connected to DCS publish their state as DIM services. Engine gets updates to the services, and converts them into a binary stream. Terminal receives it over 0MQ, and maintains an image of the DCS state. It sends copies of the image, at regular intervals, over another 0MQ connection, to a readout process of ALICE Data Acquisition.

  9. The readout system for the ALICE zero degree calorimeters

    CERN Document Server

    Siddhanta, S; De Falco, A; Floris, M; Masoni, A; Puddu, G; Serci, S; Uras, A; Usai, G; Arnaldi, R; Bianchi, L; Bossu, F; Chiavassa, E; De Marco, N; Ferretti, A; Gagliardi, M; Gallio, M; Luparello, G; Musso, A; Oppedisano, C; Piccotti, A; Scomparin, E; Vercellin, E; Cortese, P; Dellacasa, G

    2011-01-01

    ALICE at the CERN LHC will investigate the physics of strongly interacting matter at extreme energy densities where the formation of the Quark Gluon Plasma is expected. Its properties can be studied from observations like the production of mesons w ith charm and beauty quarks. These signals have to be studied as a function of energy density, which is determined by the centrality of collisions. One of the physics observables that is closely related with the centrality of the collision is the number o f spectator nucleons that can be measured by the Zero Degree Calorimeters (ZDC). Having a direct geometric interpretation allows to extract the impact parameter with minimal model assumptions. This paper describes the readout system of the ZDC. The ZDC re adout consists of a VME system with a ZDC Readout Card, a VME Processor, Discriminators, a ZDC Trigger Card, scalers, QDCs and TDCs. The system was successfully tested during the 2009 ALICE data taking and is currently operational at the LHC.

  10. Studies for the ALICE Inner Tracking System Upgrade

    CERN Document Server

    AUTHOR|(CDS)2079168; Musa, Luciano

    The ALICE experiment at the CERN LHC identifies D0 mesons via secondary-vertex reconstruction and topological cuts to reduce the corresponding combinatorial background in heavy-ion collisions. The D0 meson is produced promptly in initial, hard scatterings via the strong interaction or as feed-down from weakly decaying B hadrons. Within this thesis, a novel method for the separation of prompt and feed-down D0 mesons using cut variations was implemented and applied to data from p–Pb collisions at $\\sqrt(s_\\mathrm{NN})=5.02$ TeV. The effectiveness of the secondary-vertex reconstruction strongly depends on the performance and in particular the pointing resolution of the Inner Tracking System. The upgrade of the ALICE Inner Tracking System for the Long Shutdown 2 of the LHC in 2019/2020 will significantly improve its vertex-reconstruction and tracking capabilities. It will be equipped with Monolithic Active Pixel Sensors manufactured using the TowerJazz 180nm CMOS process on wafers with a high-resistivity epitax...

  11. Future Upgrade and Physics Perspectives of the ALICE TPC

    CERN Document Server

    INSPIRE-00033137

    The ALICE experiment at the Large Hadron Collider (LHC) proposes major detector upgrades to fully exploit the increase of the luminosity of the LHC in RUN~3 and to extend the physics reach for rare probes at low transverse momentum. The Time Projection Chamber (TPC) is one of the main tracking and PID devices in the central barrel of ALICE. The maximum trigger rate of the TPC is currently limited to about 3.5 kHz by the operation of a gating grid system. In order to make full use of the luminosity in RUN 3, the TPC is foreseen to be operated in an ungated mode with continuous readout. The existing MWPC readout will be replaced by a Micro-Pattern Gaseous Detector (MPGD) based readout, which provides intrinsic ion capture capability without gating. Extensive detector R\\&D employing Gas Electron Multiplier (GEM) and Micro-Mesh Gaseous detector (Micromegas) technologies, and simulation studies to advance the techniques for the corrections of space-charge distortions have been performed since 2012. In this pap...

  12. Commissioning and initial experience with the ALICE on-line

    International Nuclear Information System (INIS)

    Altini, V; Anticic, T; Carena, F; Carena, W; Chapeland, S; Barroso, V Chibante; Costa, F; Divia, R; Fuchs, U; Makhlyueva, I; Roukoutakis, F; Schossmaier, K; Soos, C; Vyvre, P Vande; Haller, B von; Denes, E; Kiss, T

    2010-01-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A large bandwidth and flexible Data Acquisition System (DAQ) has been designed and deployed to collect sufficient statistics in the short running time available per year for heavy ions and to accommodate very different requirements originated from the 18 sub-detectors. This paper will present the large scale tests conducted to assess the standalone DAQ performances, the interfaces with the other online systems and the extensive commissioning performed in order to be fully prepared for physics data taking. It will review the experience accumulated since May 2007 during the standalone commissioning of the main detectors and the global cosmic runs and the lessons learned from this exposure on the b attle field . It will also discuss the test protocol followed to integrate and validate each sub-detector with the online systems and it will conclude with the first results of the LHC injection tests and startup in September 2008. Several papers of the same conference present in more details some elements of the ALICE DAQ system.

  13. Commissioning and initial experience with the ALICE on-line

    Energy Technology Data Exchange (ETDEWEB)

    Altini, V [INFN, Dipartimento di Fisica dell' Universita and Sezione INFN Bari (Italy); Anticic, T [Ruder Botkovic Institute, Zagreb (Croatia); Carena, F; Carena, W; Chapeland, S; Barroso, V Chibante; Costa, F; Divia, R; Fuchs, U; Makhlyueva, I; Roukoutakis, F; Schossmaier, K; Soos, C; Vyvre, P Vande; Haller, B von [CERN, Physics department, Geneva (Switzerland); Denes, E; Kiss, T, E-mail: pierre.vande.vyvre@cern.c [KFKI Research Institute for Particle and Nuclear Physics, Budapest (Hungary)

    2010-04-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A large bandwidth and flexible Data Acquisition System (DAQ) has been designed and deployed to collect sufficient statistics in the short running time available per year for heavy ions and to accommodate very different requirements originated from the 18 sub-detectors. This paper will present the large scale tests conducted to assess the standalone DAQ performances, the interfaces with the other online systems and the extensive commissioning performed in order to be fully prepared for physics data taking. It will review the experience accumulated since May 2007 during the standalone commissioning of the main detectors and the global cosmic runs and the lessons learned from this exposure on the {sup b}attle field{sup .} It will also discuss the test protocol followed to integrate and validate each sub-detector with the online systems and it will conclude with the first results of the LHC injection tests and startup in September 2008. Several papers of the same conference present in more details some elements of the ALICE DAQ system.

  14. Commissioning and initial experience with the ALICE on-line

    Science.gov (United States)

    Altini, V.; Anticic, T.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Kiss, T.; Makhlyueva, I.; Roukoutakis, F.; Schossmaier, K.; Soós, C.; Vande Vyvre, P.; von Haller, B.; ALICE Collaboration

    2010-04-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A large bandwidth and flexible Data Acquisition System (DAQ) has been designed and deployed to collect sufficient statistics in the short running time available per year for heavy ions and to accommodate very different requirements originated from the 18 sub-detectors. This paper will present the large scale tests conducted to assess the standalone DAQ performances, the interfaces with the other online systems and the extensive commissioning performed in order to be fully prepared for physics data taking. It will review the experience accumulated since May 2007 during the standalone commissioning of the main detectors and the global cosmic runs and the lessons learned from this exposure on the "battle field". It will also discuss the test prot