WorldWideScience

Sample records for alh84001 carbonate disks

  1. The Origin of Magnetite Crystals in ALH84001 Carbonate Disks

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; Wentworth, S. J.; McKay, D. S.; Gibson, E. K., Jr.

    2012-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx 3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.

  2. New Insights into the Origin of Magnetite Crystals in ALH84001 Carbonate Disks

    Science.gov (United States)

    Thomas-Keptra, Katie L.; Clemett, S. J.; Wentworth S. J.; Mckay, D. S.; Gibson, E. K., Jr.

    2010-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx.3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose ori gins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated: that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded [1]. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.

  3. Origin of Magnetite Crystals in Martian Meteorite ALH84001 Carbonate Disks

    Science.gov (United States)

    Thomas-Keprta, K.L.; Clemett, S.J.; McKay, D.S.; Gibson, E. K.; Wentworth, S. J.

    2010-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks which are believed to have precipitated approx.3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these Fe3O4 are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of Fe3O4 and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded [1]. We focus this discussion on the composition of ALH84001 magnetites and then compare these observations with those from our thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios.

  4. Thermal Decomposition of an Impure (Roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in ALH84001 Carbonate Disks

    Science.gov (United States)

    McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Clemett, S.J.; Wentworth, S.J.

    2009-01-01

    The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure magnetite present in the carbonate disks in Martian meteorite ALH84001 could have formed by the thermal decomposition of the impure carbonate matrix in which they are embedded; second, the chemical purity of magnetite has been previously used to identify biogenic magnetite; and, third, previous studies of thermal decomposition of impure (Mg,Ca,Mn)-siderites, which have been investigated under a wide variety of conditions by numerous researchers, invariably yields a mixed metal oxide phase as the product and not chemically pure magnetite. The explanation for this observation is that these siderites all possess the same crystallographic structure (Calcite; R3c) so solid solutions between these carbonates are readily formed and can be viewed on an atomic scale as two chemically different but structurally similar lattices.

  5. Kinetic model of carbonate dissolution in Martian meteorite ALH84001

    OpenAIRE

    Kopp, Robert E.; Humayun, Munir

    2003-01-01

    The magnetites and sulfides located in the rims of carbonate globules in the Martian meteorite ALH84001 have been claimed as evidence of past life on Mars. Here, we consider the possibility that the rims were formed by dissolution and reprecipitation of the primary carbonate by the action of water. To estimate the rate of these solution-precipitation reactions, a kinetic model of magnesite-siderite carbonate dissolution was applied and used to examine the physicochemical conditions under whic...

  6. Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH84001

    Science.gov (United States)

    Leshin, Laurie A.; McKeegan, Kevin D.; Harvey, Ralph P.

    1997-03-01

    With a crystallization age of 4.5 Ga, ALH84001 is unique among the Martian meteorites. It is also the only Martian meteorite that contains an appreciable amount of carbonate, and significantly, this carbonate occurs without associated secondary hydrated minerals. Moreover, McKay et al. (1996) have suggested that ALH84001 contains evidence of past Martian life in the form of nanofossils, biogenic minerals, and polycyclic aromatic hydrocarbons. The presence of carbonate in ALH84001 is especially significant. The early Martian environment is thought to have been more hospitable to life than todays cold, dry climate. In order to better assess the true delta-O-18 values, as well as the isotopic diversity and complexity of the ALH84001 carbonates, direct measurements of the oxygen and carbon isotopic compositions of individual carbonate phases are needed. Here we report in situ analyses of delta-O-18 values in carbonates from two polished thin sections of ALH84001.

  7. Petrography and bulk chemistry of Martian orthopyroxenite ALH84001: implications for the origin of secondary carbonates.

    Science.gov (United States)

    Gleason, J D; Kring, D A; Hill, D H; Boynton, W V

    1997-08-01

    New petrologic and bulk geochemical data for the SNC-related (Martian) meteorite ALH84001 suggest a relatively simple igneous history overprinted by complex shock and hydrothermal processes. ALH84001 is an igneous orthopyroxene cumulate containing penetrative shock deformation textures and a few percent secondary extraterrestrial carbonates. Rare earth element (REE) patterns for several splits of the meteorite reveal substantial heterogeneity in REE abundances and significant fractionation of the REEs between crushed and uncrushed domains within the meteorite. Complex zoning in carbonates indicates nonequilibrium processes were involved in their formation, suggesting that CO2-rich fluids of variable composition infiltrated the rock while on Mars. We interpret petrographic textures to be consistent with an inorganic origin for the carbonate involving dissolution-replacement reactions between CO2-charged fluids and feldspathic glass in the meteorite. Carbonate formation clearly postdated processes that last redistributed the REE in the meteorite. PMID:11540477

  8. Coordinated In Situ Nanosims Analyses of H-C-O Isotopes in ALH 84001 Carbonates

    Science.gov (United States)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2016-01-01

    The surface geology and geomorphology of Mars indicate that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. This study reports the hydrogen, carbon, and oxygen isotope compositions of the ancient atmosphere/hydrosphere of Mars based on in situ ion microprobe analyses of approximately 4 Ga-old carbonates in Allan Hills (ALH) 84001. The ALH 84001 carbonates are the most promising targets because they are thought to have formed from fluid that was closely associated with the Noachian atmosphere. While there are a number of carbon and oxygen isotope studies of the ALH 84001 carbonates, in situ hydrogen isotope analyses of these carbonates are limited and were reported more than a decade ago. Well-documented coordinated in situ analyses of carbon, oxygen and hydrogen isotopes provide an internally consistent dataset that can be used to constrain the nature of the Noachian atmosphere/hydrosphere and may eventually shed light on the hypothesis of ancient watery Mars.

  9. Origins of Magnetite Nanocrystals in Martian Meteorite ALH84001

    Science.gov (United States)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Mckay, David S.; Gibson, Everett K.; Wentworth, Susan J.

    2009-01-01

    The Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks. These carbonate disks are believed to have precipitated 3.9 Ga ago at beginning of the Noachian epoch on Mars during which both the oldest extant Martian surfaces were formed, and perhaps the earliest global oceans. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of mag- netite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. For example, the magnetites might have already been present in the aqueous fluids from which the carbonates were believed to have been deposited. We have sought to resolve between these hypotheses through the detailed characterized of the compo- sitional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. Extensive use of focused ion beam milling techniques has been utilized for sample preparation. We then compared our observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios. We conclude that the vast majority of the nanocrystal magnetites present in the car- bonate disks could not have formed by any of the currently proposed thermal decomposition scenarios. Instead, we find there is considerable evidence in support of an alternative allochthonous origin for the magnetite unrelated to any shock or thermal processing of the carbonates.

  10. Search for Past Life on Mars: Possible Relict Biogenic Activity in Martian Meteorite ALH84001

    Science.gov (United States)

    McKay, David S.; Gibson, Everett K., Jr.; Thomas-Keprta, Kathie L.; Vali, Hojatollah; Romanek, Christopher S.; Clemett, Simon J.; Chillier, Xavier D. F.; Maechling, Claude R.; Zare, Richard N.

    1996-01-01

    Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest the PAHs are indigenous to the meteorite. High resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and Fe-monosulfides. The carbonate globules are similar in texture and size to some terrestrial bacterially induced carbonate precipitates. Although inorganic formation is possible, formation of the globules by biogenic processes could explain many of the observed features including the PAHs. The PAHs, the carbonate globules, and their associated secondary mineral phases and textures could thus be fossil remains of a past martian biota.

  11. Isotope Geochemistry of Possible Terrestrial Analogue for Martian Meteorite ALH84001

    Science.gov (United States)

    Mojzsis, Stephen J.

    2000-01-01

    We have studied the microdomain oxygen and carbon isotopic compositions by SIMS of complex carbonate rosettes from spinel therzolite xenoliths, hosted by nepheline basanite, from the island of Spitsbergen (Norway). The Quaternary volcanic rocks containing the xenoliths erupted into a high Arctic environment and through relatively thick continental crust containing carbonate rocks. We have attempted to constrain the sources of the carbonates in these rocks by combined O-18/O-16 and C-13/C-12 ratio measurements in 25 micron diameter spots of the carbonate and compare them to previous work based primarily on trace-element distributions. The origin of these carbonates can be interpreted in terms of either contamination by carbonate country rock during ascent of the xenoliths in the host basalt, or more probably by hydrothermal processes after emplacement. The isotopic composition of these carbonates from a combined delta.18O(sub SMOW) and delta.13C(sub PDB) standpoint precludes a primary origin of these minerals from the mantle. Here a description is given of the analysis procedure, standardization of the carbonates, major element compositions of the carbonates measured by electron microprobe, and their correlated C and O isotope compositions as measured by ion microprobe. Since these carbonate rosettes may represent a terrestrial analogue to the carbonate "globules" found in the martian meteorite ALH84001 interpretations for the origin of the features found in the Spitsbergen may be of interest in constraining the origin of these carbonate minerals on Mars.

  12. A Hypothesis for the Abiotic and Non-Martian Origins of Putative Signs of Ancient Martian Life in ALH84001

    Science.gov (United States)

    Treiman, Allan H.

    2001-01-01

    Putative evidence of martian life in ALH84001 can be explained by abiotic and non-martian processes consistent with the meteorite's geological history. Additional information is contained in the original extended abstract.

  13. Bacterial mineralization patterns in basaltic aquifers: implications for possible life in martian meteorite ALH84001

    Science.gov (United States)

    Thomas-Keprta, K. L.; McKay, D. S.; Wentworth, S. J.; Stevens, T. O.; Taunton, A. E.; Allen, C. C.; Coleman, A.; Gibson, E. K. Jr; Romanek, C. S.

    1998-01-01

    To explore the formation and preservation of biogenic features in igneous rocks, we have examined the organisms in experimental basaltic microcosms using scanning and transmission electron microscopy. Four types of microorganisms were recognized on the basis of size, morphology, and chemical composition. Some of the organisms mineralized rapidly, whereas others show no evidence of mineralization. Many mineralized cells are hollow and do not contain evidence of microstructure. Filaments, either attached or no longer attached to organisms, are common. Unattached filaments are mineralized and are most likely bacterial appendages (e.g., prosthecae). Features similar in size and morphology to unattached, mineralized filaments are recognized in martian meteorite ALH84001.

  14. Micro-Spectroscopy as a Tool for Detecting Micron-Scale Mineral Variations Across a Rock Surface: An Example Using a Thin Section of Martian Meteorite ALH 84001

    Science.gov (United States)

    Dalton, J. B.; Bishop, J. L.

    2003-03-01

    Visible and near-infrared spectra of a portion of martian meteorite ALH84001 were acquired using a high resolution imaging microscope to investigate imaging spectroscopy for mineral detection at small scales.

  15. Study of a possible magnetite biosignature in Martian meteorite ALH84001: Implications for the biological toxicology of Mars

    Science.gov (United States)

    Thomas-Keprta, Kathie Louise

    "Why do we have such a longstanding fascination with Mars? Very simply put, it's about life. The search for life elsewhere in our Solar System has been a major driver for exploring Mars, pretty much since we began seriously looking at that planet."1 The major objective of this work is to describe signs of possible life, that is biosignatures, in rocks from Mars if indeed they are present. Biosignatures are specific identifiable properties that result from living things; they may be implanted in the environment and may persist even if the living thing is no longer present. Over 100 mineral biosignatures have been discussed in the literature; however, only one, magnetite, is addressed by this study. Magnetite is found in many rock types on earth and in meteorites. Previous studies of terrestrial magnetite have used few properties, such as size and chemical composition, to determine one of the modes of origins for magnetite (e.g., biogenic, inorganic). This study has established a rigorous set of six criteria for the identification of intracellularly precipitated biogenic magnetite. These criteria have been applied to a subpopulation of magnetites embedded within carbonates in Martian meteorite ALH84001. These magnetites are found to be chemically and physically indistinguishable from those produced by magnetotactic bacteria strain MV-1, hence, they were likely formed by biogenic processes on ancient Mars. These criteria may be also used to distinguish origins for magnetites from terrestrial samples with complex or unknown histories. The presence of purported past life on early Mars suggests that, if life once began it may still exist today, possibly in oases in the Martian subsurface. Future manned missions should consider potential hazards of an extant biological environment(s) on Mars. 1 Quote attributed to Jack Farmer of Arizona State University in discussing NASA's program of Mars Exploration (see "Deciphering Mars: Follow the Water," Astrobiology Magazine Sept

  16. FTIR Analysis of Water in Pyroxene and Plagioclase in ALH 84001 and Nakhlites

    Science.gov (United States)

    Peslier, A. H.; Cintala, M. J.; Montes, R.; Cardenas, F.

    2016-01-01

    with crustal reservoirs or hydrothermal fluids. Here, nominally anhydrous minerals (pyroxene, olivine, plagioclase, or maskelynite) in orthopyroxenite ALH 84001 and selected nakhlites are analyzed for water and major elements, in order to determine 1) whether they contain any water; 2) if they do, what controls its distribution (crystallization, degassing, hydrothermal or impact processes); and 3) if any of these measurements can be used to infer the water contents of the parent magma and their mantle sources. A shock-reverberation experiment was also performed on terrestrial orthopyroxenes (opx) to simulate the heavily shocked conditions of ALH 84001 (> 31 GPa [17]).

  17. Implications of noble gases in a recently recognized Martian meteorite (ALH84001) for the degassing history of Mars

    Science.gov (United States)

    Swindle, T. D.

    1994-01-01

    For terrestrial planets, atmospheric compositions are not static, but evolve with time, in part due to degassing of the interior. Unfortunately, the evolution is slow enough that it is usually not observable on human timescales, or even on the timescales of rocks that preserve samples of Earth's ancient atmosphere. Preliminary results on a recently recognized Martian meteorite, ALH84001, indicate that it is a very old rock, and has a relatively high noble gas content suggestive of atmospheric incorporation, but with an isotopic composition slightly inconsistent with currently known Martian reservoirs. Hence, this rock may provide a sample of ancient Martian atmosphere, which can be used to test models of volatile evolution (in particular, degassing) on Mars. ALH84001 is a cumulate orthopyroxenite. Although originally classified as a diogenite, its oxygen isotopes, and several chemical and petrographic features, strong suggest that it is, like the SNC meteorites, Martian. A Sm-Nd crystallization age of 4.5 Ga has been reported. The meteorite is rich in noble gases, compared to most SNC's. In many respects the noble gases are typical of SNC meteorites. However, there are some subtle differences. In particular, the Xe isotopes in SNC meteorites can be explained as a mixture of Martian atmospheric Xe (as represented by glass in EETA 79001), the Xe in the dunite Chassigny (usually assumed to be representative of the Martian interior, and with lower (129)Xe/(132)Xe, (134)Xe/(132)Xe and (136)Xe/(132)Xe ratios), and later additions from known processes like fission, spallation and terrestrial contamination. The isotopic composition of ALH84001 is inconsistent (at greater than 2-3 sigma) with any mixture of those components. Even if no accumulation of fission Xe during the age of the rock is assumed, there is too little (136)Xe and (134)Xe for the amount of (129)Xe measured.

  18. Cryogenic Origin for Mars Analog Carbonates in the Bockfjord Volcanic Complex Svalbard (Norway)

    Science.gov (United States)

    Amundsen, H. E. F.; Benning, L.; Blake, D. F.; Fogel, M.; Ming, D.; Skidmore, M.; Steele, A.

    2011-01-01

    The Sverrefjell and Sigurdfjell eruptive centers in the Bockfjord Volcanic Complex (BVC) on Svalbard (Norway) formed by subglacial eruptions ca. 1 Ma ago. These eruptive centers carry ubiquitous magnesian carbonate deposits including dolomitemagnesite globules similar to those in the Martian meteorite ALH84001. Carbonates in mantle xenoliths are dominated by ALH84001 type carbonate globules that formed during quenching of CO2-rich mantle fluids. Lava hosted carbonates include ALH84001 type carbonate globules occurring throughout lava vesicles and microfractures and massive carbonate deposits associated with vertical volcanic vents. Massive carbonates include cemented lava breccias associated with volcanic vents. Carbonate cements comprise layered deposits of calcite, dolomite, huntite, magnesite and aragonite associated with ALH84001 type carbonate globules lining lava vesicles. Combined Mossbauer, XRD and VNIR data show that breccia carbonate cements at Sverrefjell are analog to Comanche carbonates at Gusev crater.

  19. Carbonate and Magnetite Parageneses as Monitors of Carbon Dioxide and Oxygen Fugacity

    Science.gov (United States)

    Koziol, Andrea M.

    2000-01-01

    The stable coexistence of siderite with other key minerals, such as graphite or magnetite, is only possible under certain restrictive conditions of CO2 and O2 fugacity. Carbonate parageneses in Mars meteorite ALH 84001 are analyzed.

  20. Mars Life? - Orange-colored Carbonate Mineral Globules

    Science.gov (United States)

    1996-01-01

    This photograph shows orange-colored carbonate mineral globules found in a meteorite, called ALH84001, believed to have once been a part of Mars. These carbonate minerals in the meteorite are believed to have been formed on Mars more than 3.6 billion years ago. Their structure and chemistry suggest that they may have been formed with the assistance of primitive, bacteria-like living organisms. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils inside of carbonate minerals such as these in the meteorite.

  1. Organic Carbon Exists in Mars Meteorites: Where is it on the Martian Surface?

    Science.gov (United States)

    McKay, D. S.; Clemett, S. J.; Gibson, E. K., Jr.; Thomas-Keprta, K. L.; Wentworth, S. J.

    2010-01-01

    The search for organic carbon on Mars has been a major challenge. The first attempt was the Viking GC-MS in situ experiment which gave inconclusive results at two sites oil. After the discovery that the SNC meteorites were from Mars, reported C isotopic compositional information which suggested a reduced C component present in the Martian meteorites reported the presence of reduced C components (i.e., polycyclic aromatic hydrocarbons) associated with the carbonate globules in ALH84001. Jull et al. noted in Nakhla there was acid insoluble C component present with more than 75% of its C lacking any C-14, which is modern-day terrestrial carbon. This C fraction was believed to be either indigenous martian or ancient meteoritic carbon. Fisk et al. have shown textural evidence along with C-enriched areas within fractures in Nakhla and ALH84001. Westall et al. have shown the presence of a large irregular fragment of organic material completely embedded within a chip of ALH84001. Interior samples from the Naklnla SNC made available by the British Museum of Natural History, were analyzed. Petrographic examination of Nakhla showed evidence of fractures (approx.0.5 microns wide) filled with dark brown to black dendritic material with characteristics similar to those observed by. Iddingsite is also present along fractures in olivine. Fracture filling and dendritic material was examined by SEM-EDX, TEM-EDX, Focused Electron Beam microscopy, Laser Raman Spectroscopy, Nano-SIMS Ion Micro-probe, and Stepped-Combustion Static Mass Spectrometry. Observations from the first three techniques are discussed.

  2. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 +/- 4 degrees C in a near-surface aqueous environment.

    Science.gov (United States)

    Halevy, Itay; Fischer, Woodward W; Eiler, John M

    2011-10-11

    Despite evidence for liquid water at the surface of Mars during the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether the surface of Mars was ever warmer than today. We address this problem by determining the precipitation temperature of secondary carbonate minerals preserved in the oldest known sample of Mars' crust--the approximately 4.1 billion-year-old meteorite Allan Hills 84001 (ALH84001). The formation environment of these carbonates, which are constrained to be slightly younger than the crystallization age of the rock (i.e., 3.9 to 4.0 billion years), has been poorly understood, hindering insight into the hydrologic and carbon cycles of earliest Mars. Using "clumped" isotope thermometry we find that the carbonates in ALH84001 precipitated at a temperature of approximately 18 °C, with water and carbon dioxide derived from the ancient Martian atmosphere. Furthermore, covarying carbonate carbon and oxygen isotope ratios are constrained to have formed at constant, low temperatures, pointing to deposition from a gradually evaporating, subsurface water body--likely a shallow aquifer (meters to tens of meters below the surface). Despite the mild temperatures, the apparently ephemeral nature of water in this environment leaves open the question of its habitability.

  3. Nature of Reduced Carbon in Martian Meteorites

    Science.gov (United States)

    Gibson, Everett K., Jr.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; White, L. M.

    2012-01-01

    Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures

  4. Carbon isotope fractionation in protoplanetary disks

    CERN Document Server

    Woods, Paul M

    2008-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

  5. AASPT Carbon/Carbon Aircraft Brake Disk Granted MPA

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Xi'an Chaoma Technology Co. Ltd. was issued Parts Manufacturer Approval (PMA) for Carbon/Carbon aircraft brake disk for Airbus 320 series by Civil Aviation Administration of China (CAAC). The company is held by Academy of Aerospace Solid Propulsion Technology (AASPT), a subsidiary of China Aerospace Science and Technology Corporation (CASC). It is the first approval given to a Chinese company to design and produce brakes for main civilian aircraft.

  6. Carbonate Cements from the Sverrefjell and Sigurdfjell Volcanoes, Svalbard Norway: Analogs for Martian Carbonates

    Science.gov (United States)

    Blake, D. F.; Treiman, A. H.; Morris, R.; Bish, D.; Amundsen, H.E.F.; Steele, A.

    2011-01-01

    The Sverrefjell and Sigurdfjell volcanic complexes erupted at 1Ma on Svalbard, Norway. Sverrefjell is a cone of cinders, pillow lavas and dikes; Sigurdfjell is elongate in outcrop and may represent a fissure eruption [1]. The lavas of both volcanos were volatile rich. The volcanos erupted under ice and were subsequently dissected by glaciation (glacial eratics are present on most of Sverrefjell, even on its summit). Eruption beneath an ice sheet is inferred, based on the presence of pillow lavas from near sea level to 1000 m above sea level. Sverrefjell contains the largest fraction of ultramafic xenoliths of any volcanic complex in the world, in places accounting for as much as 50% of the volume of the outcrop. The Sverrefjell and Sigurdfell volcanos contain carbonate cements of several varieties: (1) Amundsen [2] reported Mg-Fe-rich carbonate in sub-mm globules in basalts and ultramafic xenoliths from the volcanos. These globules are the best terrestrial analogs to the carbonate globules in the Mars meteorite ALH84001 [3]. (2) Thick (1-3 cm) coatings of carbonate cement drape the walls of vertical volcanic pipes or conduits on the flanks and near the present summit of Sverrefjell. Similar occurrences are found on Sigurdfjell. (3) Breccia-filled pipes or vents occur on Sverrefjell and Siggurdfjell in which the breccia fragments are cemented by carbonate. The fragments themselves commonly contain carbonate globules similar to those found in the basalts and ultramafic xenoliths.

  7. Disk

    NARCIS (Netherlands)

    Boncz, P.A.; Liu, L.; Özsu, M. Tamer

    2008-01-01

    In disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of the computer b

  8. Carbon-rich planet formation in a solar composition disk

    CERN Document Server

    Ali-Dib, Mohamad; Petit, Jean-Marc; Lunine, Jonathan I

    2014-01-01

    The C--to--O ratio is a crucial determinant of the chemical properties of planets. The recent observation of WASP 12b, a giant planet with a C/O value larger than that estimated for its host star, poses a conundrum for understanding the origin of this elemental ratio in any given planetary system. In this paper, we propose a mechanism for enhancing the value of C/O in the disk through the transport and distribution of volatiles. We construct a model that computes the abundances of major C and O bearing volatiles under the influence of gas drag, sublimation, vapor diffusion, condensation and coagulation in a multi--iceline 1+1D protoplanetary disk. We find a gradual depletion in water and carbon monoxide vapors inside the water's iceline with carbon monoxide depleting slower than water. This effect increases the gaseous C/O and decreases the C/H ratio in this region to values similar to those found in WASP 12b's day side atmosphere. Giant planets whose envelopes were accreted inside the water's iceline should ...

  9. Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments

    Science.gov (United States)

    Niles, Paul B.; Catling, David C.; Berger, Gilles; Chassefière, Eric; Ehlmann, Bethany L.; Michalski, Joseph R.; Morris, Richard; Ruff, Steven W.; Sutter, Brad

    2013-01-01

    Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the CO2 budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2-5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3-6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present.

  10. Biomarkers in Carbonate Thermal Springs: Implications for Mars

    Science.gov (United States)

    Allen, C. C.; Kivett, S. J.; McKay, D. S.

    1998-01-01

    Evidence of possible relict biogenic activity has been reported in carbonate inclusions within martian meteorite ALH 84001. The initial evidence included ovoid and elongated forms 50 - 500 nanometers in length, morphologically similar to but significantly smaller than many terrestrial microbes. More recently, thin structures resembling the remains of organic biofilms have been reported in the same meteorite. Carbonates have also been discussed in the context of Mars sample return missions. Thermal spring deposits have often been cited as prime locations for exobiological exploration. By analogy to Earth, specialized microbes may have existed in the heated, mineralized waters, and precipitates of carbonate and/or silica from these waters may have trapped and preserved evidence of life. Since the geological interactions that produce thermal springs can be recognized in orbital imagery, directed searches for microfossils in such deposits are deemed possible. We are engaged in a study of the signatures produced by contemporary biogenic activity (biomarkers) in carbonate thermal springs. We are examining the microbes that live in such environments and the preservation of microbial forms, biofilms, and petrographic fabrics indicative of life in thermal spring mineral deposits. This work is part of a much more extensive study to refine the appropriate tools, techniques, and approaches to seek evidence of life in a range of planetary samples. A deeper understanding of biological signatures will prepare us for the detailed search for life on Mars and eventually on other planets. Overall. the study of biomarkers in rocks and soils will provide insight into the evolution of life because such signatures are a record of how life interacts with its environment, how it adapts to changing conditions, and how life can influence geology and climate.

  11. Volatile carbon locking and release in protoplanetary disks. A study of TW Hya and HD 100546

    CERN Document Server

    Kama, M; van Dishoeck, E F; Hogerheijde, M; Folsom, C P; Miotello, A; Fedele, D; Belloche, A; Güsten, R; Wyrowski, F

    2016-01-01

    The composition of planetary solids and gases is largely rooted in the processing of volatile elements in protoplanetary disks. To shed light on the key processes, we carry out a comparative analysis of the gas-phase carbon abundance in two systems with a similar age and disk mass, but different central stars: HD 100546 and TW Hya. We combine our recent detections of C$^{0}$ in these disks with observations of other carbon reservoirs (CO, C$^{+}$, C$_{2}$H) and gas mass and warm gas tracers (HD, O$^{0}$), as well as spatially resolved ALMA observations and the spectral energy distribution. The disks are modelled with the DALI 2D physical-chemical code. Stellar abundances for HD 100546 are derived from archival spectra. Upper limits on HD emission from HD 100546 place an upper limit on the total disk mass of $\\leq0.1\\,M_{\\odot}$. The gas-phase carbon abundance in the atmosphere of this warm Herbig disk is at most moderately depleted compared to the interstellar medium, with [C]/[H]$_{\\rm gas}=(0.1-1.5)\\times 1...

  12. The origin and chemical evolution of carbon in the Galactic thin and thick disks

    CERN Document Server

    Bensby, T

    2006-01-01

    [ABRIDGED] In order to trace the origin and evolution of carbon in the Galactic disk we have determined carbon abundances in 51 nearby F and G dwarf stars. The sample is divided into two kinematically distinct subsamples with 35 and 16 stars that are representative of the Galactic thin and thick disks, respectively. The analysis is based on spectral synthesis of the forbidden [C I] line at 872.7 nm using spectra of very high resolution (R~220000)and high signal-to-noise (S/N>300) that were obtained with the CES spectrograph on the ESO 3.6-m telescope on La Silla in Chile. We find that [C/Fe] versus [Fe/H] trends for the thin and thick disks are totally merged and flat for sub-solar metallicities. The thin disk that extends to higher metallicities than the thick disk,shows a shallow decline in [C/Fe] from [Fe/H]=0 and up to [Fe/H]=+0.4. The [C/O] versus [O/H] trends are well separated between the two disks (due to differences in the oxygen abundances)and bear a great resemblance to the [Fe/O] versus [O/H] tren...

  13. Reprocessing of Ices in Turbulent Protoplanetary Disks: Carbon and Nitrogen Chemistry

    CERN Document Server

    Furuya, Kenji

    2014-01-01

    We study the influence of the turbulent transport on ice chemistry in protoplanetary disks, focusing on carbon and nitrogen bearing molecules. Chemical rate equations are solved with the diffusion term, mimicking the turbulent mixing in the vertical direction. Turbulence can bring ice-coated dust grains from the midplane to the warm irradiated disk surface, and the ice mantles are reprocessed by photoreactions, thermal desorption, and surface reactions. The upward transport decreases the abundance of methanol and ammonia ices at r < 30 AU, because warm dust temperature prohibits their reformation on grain surfaces. This reprocessing could explain the smaller abundances of carbon and nitrogen bearing molecules in cometary coma than those in low-mass protostellar envelopes. We also show the effect of mixing on the synthesis of complex organic molecules (COMs) are two ways: (1) transport of ices from the midplane to the disk surface and (2) transport of atomic hydrogen from the surface to the midplane. The fo...

  14. Reprocessing of ices in turbulent protoplanetary disks: Carbon and nitrogen chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Kenji; Aikawa, Yuri, E-mail: furuya@strw.leidenuniv.nl [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan)

    2014-08-01

    We study the influence of the turbulent transport on ice chemistry in protoplanetary disks, focusing on carbon- and nitrogen-bearing molecules. Chemical rate equations are solved with the diffusion term, mimicking the turbulent mixing in the vertical direction. Turbulence can bring ice-coated dust grains from the midplane to the warm irradiated disk surface, and the ice mantles are reprocessed by photoreactions, thermal desorption, and surface reactions. The upward transport decreases the abundance of methanol and ammonia ices at r ≲ 30 AU because warm dust temperature prohibits their reformation on grain surfaces. This reprocessing could explain the smaller abundances of carbon and nitrogen bearing molecules in cometary coma than those in low-mass protostellar envelopes. We also show the effect of mixing on the synthesis of complex organic molecules (COMs) in two ways: (1) transport of ices from the midplane to the disk surface and (2) transport of atomic hydrogen from the surface to the midplane. The former enhances the COMs formation in the disk surface, while the latter suppresses it in the midplane. Then, when mixing is strong, COMs are predominantly formed in the disk surface, while their parent molecules are (re)formed in the midplane. This cycle expands the COMs distribution both vertically and radially outward compared with that in the non-turbulent model. We derive the timescale of the sink mechanism by which CO and N{sub 2} are converted to less volatile molecules to be depleted from the gas phase and find that the vertical mixing suppresses this mechanism in the inner disks.

  15. Study of facing target sputtered diamond-like carbon overcoats for hard disk drive media

    Energy Technology Data Exchange (ETDEWEB)

    Seet, H.L., E-mail: SEET_Hang_Li@dsi.a-star.edu.sg [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore); Ng, K.K.; Chen, X.Y. [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore); Yang, P. [Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, 117603 (Singapore); Shen, L. [Institute of Materials Research and Engineering, A*STAR Agency for Science, Technology and Research, 3 Research Link, 117602 (Singapore); Ji, R.; Ng, H.X.; Lim, C.B. [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore)

    2015-07-01

    The demand for higher areal density in the hard disk drive industry has fuelled extensive research efforts and focuses on magnetic spacing reduction. In the head–disk interface arena, one of the key focuses is to reduce the carbon overcoat thickness without compromising the overcoat protection performance. Thus, in the search for alternative methods to reduce the carbon overcoat thickness, the facing target sputtering (FTS) process for diamond-like carbon deposition has been investigated. The resulting properties have been presented in this paper, with comparison to conventional diamond-like carbon (DLC) layers by other processes such as chemical vapor deposition and reactive sputtering with nitrogen. X-ray reflectometry results showed that facing target sputtered DLC samples displayed significantly higher density, at 2.87 g/cm{sup 3}, as compared to hydrogenated and nitrogenated DLC samples. This was attributed to the higher sp{sup 3} content, as obtained by X-ray photoelectron spectroscopy measurements. As a result of the high sp{sup 3} content, hardness of the FTS deposited samples was higher than that of the hydrogenated and nitrogenated DLC samples. In addition, the surface energy of FTS samples was observed to be comparable, but lower, than that of nitrogenated DLC samples through contact angle measurements. Clearances comparable to that of conventional DLC samples were achieved and the sample disks were flyable. Wear performance tests also revealed more wear resistance for the FTS deposited DLC samples, but also higher head wear. - Highlights: • Facing target sputtered (FTS) diamond-like carbon (DLC) samples were studied. • FTS DLC samples possess higher density and hardness. • Surface conditions and flyability performances for FTS DLC samples were comparable. • Wear tests on FTS DLC samples showed lower media wear, but higher head wear.

  16. Analysis of Siderite Thermal Decomposition by Differential Scanning Calorimetry

    Science.gov (United States)

    Bell, M. S.; Lin, I.-C.; McKay, D. S.

    2000-01-01

    Characterization of carbonate devolitilization has important implications for atmospheric interactions and climatic effects related to large meteorite impacts in platform sediments. On a smaller scale, meteorites contain carbonates which have witnessed shock metamorphic events and may record pressure/temperature histories of impact(s). ALH84001 meteorite contains zoned Ca-Mg-Fe-carbonates which formed on Mars. Magnetite crystals are found in the rims and cores of these carbonates and some are associated with void spaces leading to the suggestion by Brearley et al. that the crystals were produced by thermal decomposition of the carbonate at high temperature, possibly by incipient shock melting or devolitilization. Golden et al. recently synthesized spherical Mg-Fe-Ca-carbonates from solution under mild hydrothermal conditions that have similar carbonate compositional zoning to those of ALH84001. They have shown experimental evidence that the carbonate-sulfide-magnetite assemblage in ALH84001 can result from a multistep inorganic process involving heating possibly due to shock events. Experimental shock studies on calcium carbonate prove its stability to approx. 60 GPa, well in excess of the approx. 45 GPa peak pressures indicated by other shock features in ALH84001. In addition, Raman spectroscopy of carbonate globules in ALH84001 indicates no presence of CaO and MgO. Such oxide phases should be found associated with the magnetites in voids if these magnetites are high temperature shock products, the voids resulting from devolitilization of CO2 from calcium or magnesium carbonate. However, if the starting material was siderite (FeCO3), thermal breakdown of the ALH84001 carbonate at 470 C would produce iron oxide + CO2. As no documentation of shock effects in siderite exists, we have begun shock experiments to determine whether or not magnetite is produced by the decomposition of siderite within the < 45GPa pressure window and by the resultant thermal pulse to approx

  17. Field Characterization of the Mineralogy and Organic Chemistry of Carbonates from the 2010 Arctic Mars Analog Svalbard Expedition by Evolved Gas Analysis

    Science.gov (United States)

    McAdam, A. C.; Ten Kate, I. L.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Morris, R. V.; Steele, A.; Amundson, H. E. F.

    2011-01-01

    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return. The Sample Analysis at Mars (SAM) [1] instrument suite, which will be on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser mass spectrometer (TLS); all will be applied to analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-MS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples [e.g., 2]. Field-portable versions of CheMin were used during AMASE. AMASE 2010 focused on two sites that represented biotic and abiotic analogs. The abiotic site was the basaltic Sigurdfjell vent complex, which contains Mars-analog carbonate cements including carbonate globules which are excellent analogs for the globules in the ALH84001 martian meteorite [e.g., 3, 4]. The biotic site was the Knorringfjell fossil methane seep, which featured carbonates precipitated in a methane-supported chemosynthetic community [5]. This contribution focuses on EGA-MS analyses of samples from each site, with mineralogy comparisons to CheMin team results. The results give insight into organic content and organic-mineral associations, as well as some constraints on the minerals present.

  18. Chemistry in Protoplanetary Disks: the gas-phase CO/H2 ratio and the Carbon reservoir

    CERN Document Server

    Reboussin, L; Guilloteau, S; Hersant, F; Dutrey, A

    2015-01-01

    The gas mass of protoplanetary disks, and the gas-to-dust ratio, are two key elements driving the evolution of these disks and the formation of planetary system. We explore here to what extent CO (or its isotopologues) can be used as a tracer of gas mass. We use a detailed gas-grain chemical model and study the evolution of the disk composition, starting from a dense pre-stellar core composition. We explore a range of disk temperature profiles, cosmic rays ionization rates, and disk ages for a disk model representative of T Tauri stars. At the high densities that prevail in disks, we find that, due to fast reactions on grain surfaces, CO can be converted to less volatile forms (principally s-CO$_2$, and to a lesser extent s-CH$_4$) instead of being evaporated over a wide range of temperature. The canonical gas-phase abundance of 10$^{-4}$ is only reached above about 30-35 K. The dominant Carbon bearing entity depends on the temperature structure and age of the disk. The chemical evolution of CO is also sensit...

  19. Observations and modelling of CO and [CI] in disks. First detections of [CI] and constraints on the carbon abundance

    CERN Document Server

    Kama, M; Carney, M; Hogerheijde, M; van Dishoeck, E F; Fedele, D; Baryshev, A; Boland, W; Güsten, R; Aikutalp, A; Choi, Y; Endo, A; Frieswijk, W; Karska, A; Klaassen, P; Koumpia, E; Kristensen, L; Leurini, S; Nagy, Z; Beaupuits, J -P Perez; Risacher, C; van der Marel, N; van Kempen, T A; van Weeren, R J; Wyrowski, F; Yıldız, U A

    2016-01-01

    The gas-solid budget of carbon in protoplanetary disks is related to the composition of the cores and atmospheres of the planets forming in them. The key gas-phase carbon carriers CO, C$^{0}$ and C$^{+}$ can now be observed in disks. The gas-phase carbon abundance in disks has not yet been well characterized, we aim to obtain new constraints on the [C]/[H] ratio in a sample of disks, and to get an overview of the strength of [CI] and warm CO emission. We carried out a survey of the CO$\\,6$--$5$ and [CI]$\\,1$--$0$ and $2$--$1$ lines towards $37$ disks with APEX, and supplemented it with [CII] data from the literature. The data are interpreted using a grid of models produced with the DALI code. We also investigate how well the gas-phase carbon abundance can be determined in light of parameter uncertainties. The CO$\\,6$--$5$ line is detected in $13$ out of $33$ sources, the [CI]$\\,1$--$0$ in $6$ out of $12$, and the [CI]$\\,2$--$1$ in $1$ out of $33$. With deep integrations, the first unambiguous detections of [C...

  20. Volatile-carbon locking and release in protoplanetary disks. A study of TW Hya and HD 100546

    Science.gov (United States)

    Kama, M.; Bruderer, S.; van Dishoeck, E. F.; Hogerheijde, M.; Folsom, C. P.; Miotello, A.; Fedele, D.; Belloche, A.; Güsten, R.; Wyrowski, F.

    2016-08-01

    Aims: The composition of planetary solids and gases is largely rooted in the processing of volatile elements in protoplanetary disks. To shed light on the key processes, we carry out a comparative analysis of the gas-phase carbon abundance in two systems with a similar age and disk mass, but different central stars: HD 100546 and TW Hya. Methods: We combine our recent detections of C0 in these disks with observations of other carbon reservoirs (CO, C+, C2H) and gas-mass and warm-gas tracers (HD, O0), as well as spatially resolved ALMA observations and the spectral energy distribution. The disks are modelled with the DALI 2D physical-chemical code. Stellar abundances for HD 100546 are derived from archival spectra. Results: Upper limits on HD emission from HD 100546 place an upper limit on the total disk mass of ≤0.1 M⊙. The gas-phase carbon abundance in the atmosphere of this warm Herbig disk is, at most, moderately depleted compared to the interstellar medium, with [C]/[H]gas = (0.1-1.5) × 10-4. HD 100546 itself is a λBoötis star, with solar abundances of C and O but a strong depletion of rock-forming elements. In the gas of the T Tauri disk TW Hya, both C and O are strongly underabundant, with [C]/[H]gas = (0.2-5.0) × 10-6 and C / O > 1. We discuss evidence that the gas-phase C and O abundances are high in the warm inner regions of both disks. Our analytical model, including vertical mixing and a grain size distribution, reproduces the observed [C]/[H]gas in the outer disk of TW Hya and allows to make predictions for other systems. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 093.C-0926, 093.F-0015, 077.D-0092, 084.A-9016, and 085.A-9027.Spectra and models are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A83

  1. Carbon and Oxygen in Nearby Stars: Keys to Protoplanetary Disk Chemistry

    CERN Document Server

    Petigura, Erik A; 10.1088/0004-637X/735/1/41

    2011-01-01

    We present carbon and oxygen abundances for 941 FGK stars-the largest such catalog to date. We find that planet-bearing systems are enriched in these elements. We self-consistently measure C/O, which is thought to play a key role in planet formation. We identify 46 stars with C/O \\geq 1.00 as potential hosts of carbon-dominated exoplanets. We measure a downward trend in [O/Fe] versus [Fe/H] and find distinct trends in the thin and thick disks, supporting the work of Bensby et al. Finally, we measure sub-solar C/O = 0.40+0.11 - 0.07, for WASP-12, a surprising result as this star is host to a transiting hot Jupiter whose dayside atmosphere was recently reported to have C/O \\geq 1 by Madhusudhan et al. Our measurements are based on 15,000 high signal-to-noise spectra taken with the Keck 1 telescope as part of the California Planet Search. We derive abundances from the [O I] and C I absorption lines at {\\lambda} = 6300 and 6587 {\\AA} using the SME spectral synthesizer.

  2. A Significantly Low CO Abundance Toward the TW Hya Protoplanetary Disk: A Path to Active Carbon Chemistry?

    CERN Document Server

    Favre, Cécile; Bergin, Edwin A; Qi, Chunhua; Blake, Geoffrey A

    2013-01-01

    In this Letter we report the CO abundance relative to H2 derived toward the circumstellar disk of the T-Tauri star TW Hya from the HD (1-0) and C18O (2-1) emission lines. The HD (1-0) line was observed by the Herschel Space Observatory Photodetector Array Camera and Spectrometer whereas C18O (2-1) observations were carried out with the Submillimeter Array at a spatial resolution of 2.8" x 1.9" (corresponding to 142 x 97 AU). In the disk's warm molecular layer (T>20 K) we measure a disk-averaged gas-phase CO abundance relative to H2 of $\\chi{\\rm(CO)}=(0.1-3)x10^{-5}$, substantially lower than the canonical value of $\\chi{\\rm(CO)}=10^{-4}$. We infer that the best explanation of this low $\\chi$(CO) is the chemical destruction of CO followed by rapid formation of carbon chains, or perhaps CO2, that can subsequently freeze-out, resulting in the bulk mass of carbon locked up in ice grain mantles and oxygen in water. As a consequence of this likely time-dependent carbon sink mechanism, CO may be an unreliable tracer...

  3. Observations and modelling of CO and [C i] in protoplanetary disks. First detections of [C i] and constraints on the carbon abundance

    Science.gov (United States)

    Kama, M.; Bruderer, S.; Carney, M.; Hogerheijde, M.; van Dishoeck, E. F.; Fedele, D.; Baryshev, A.; Boland, W.; Güsten, R.; Aikutalp, A.; Choi, Y.; Endo, A.; Frieswijk, W.; Karska, A.; Klaassen, P.; Koumpia, E.; Kristensen, L.; Leurini, S.; Nagy, Z.; Perez Beaupuits, J.-P.; Risacher, C.; van der Marel, N.; van Kempen, T. A.; van Weeren, R. J.; Wyrowski, F.; Yıldız, U. A.

    2016-04-01

    Context. The gas-solid budget of carbon in protoplanetary disks is related to the composition of the cores and atmospheres of the planets forming in them. The principal gas-phase carbon carriers CO, C0, and C+ can now be observed regularly in disks. Aims: The gas-phase carbon abundance in disks has thus far not been well characterized observationally. We obtain new constraints on the [C]/[H] ratio in a large sample of disks, and compile an overview of the strength of [C i] and warm CO emission. Methods: We carried out a survey of the CO 6-5 line and the [C i] 1-0 and 2-1 lines towards 37 disks with the APEX telescope, and supplemented it with [C ii] data from the literature. The data are interpreted using a grid of models produced with the DALI disk code. We also investigate how well the gas-phase carbon abundance can be determined in light of parameter uncertainties. Results: The CO 6-5 line is detected in 13 out of 33 sources, [C i] 1-0 in 6 out of 12, and [C i] 2-1 in 1 out of 33. With separate deep integrations, the first unambiguous detections of the [C i] 1-0 line in disks are obtained, in TW Hya and HD 100546. Conclusions: Gas-phase carbon abundance reductions of a factor of 5-10 or more can be identified robustly based on CO and [C i] detections, assuming reasonable constraints on other parameters. The atomic carbon detection towards TW Hya confirms a factor of 100 reduction of [C]/[H]gas in that disk, while the data are consistent with an ISM-like carbon abundance for HD 100546. In addition, BP Tau, T Cha, HD 139614, HD 141569, and HD 100453 are either carbon-depleted or gas-poor disks. The low [C i] 2-1 detection rates in the survey mostly reflect insufficient sensitivity for T Tauri disks. The Herbig Ae/Be disks with CO and [C ii] upper limits below the models are debris-disk-like systems. An increase in sensitivity of roughly order of magnitude compared to our survey is required to obtain useful constraints on the gas-phase [C]/[H] ratio in most of the

  4. Herschel HIFI observations of ionised carbon in the {\\beta} Pictoris debris disk

    CERN Document Server

    Cataldi, G; Olofsson, G; Larsson, B; Liseau, R; Blommaert, J; Fridlund, M; Ivison, R; Pantin, E; Sibthorpe, B; Vandenbussche, B; Wu, Y

    2013-01-01

    Context: The dusty debris disk around the ~20 Myr old main-sequence A-star beta Pic is known to contain gas. Evidence points towards a secondary origin of the gas as opposed to being a direct remnant from the initial protoplanetary disk, although the dominant gas production mechanism is so far no identified. The origin of the observed overabundance of C and O compared to e.g. Na and Fe is also unclear. Aims: Our goal is to constrain the spatial distribution of C in the disk, and thereby the gas origin and its abundance pattern. Methods: We used the HIFI instrument aboard Herschel to observe and spectrally resolve C II 158 micron emission from the beta Pic debris disk. Assuming Keplerian rotation and a model for the line emission from the disk, we used the spectrally line profile to constrain the spatial distribution of the gas. Results: We detect the C II 158 micron emission. Modelling the shape of the emission line shows that most of the gas is located around ~100 AU or beyond. We estimate a total C gas mass...

  5. Multiple Carbon monoxide Snow-lines in Disks Sculpted by Radial Drift

    CERN Document Server

    Cleeves, L Ilsedore

    2015-01-01

    Observations of protoplanetary disks suggest that the gas and dust follow significantly different radial distributions. This finding can be theoretically explained by a combination of radial drift and gas drag of intermediate-sized dust grains. Using a simple parametric model to approximate the different distributions of the gas and dust components, we calculate and examine the impact of radial drift on the global dust temperature structure. We find that the removal of large grains beyond the "truncation radius" allows this region to become significantly warmer from reprocessed stellar radiation shining down from the disk upper layers, increasing the outer disk temperature by $\\sim10-30\\%$. This change is sufficient to raise the local temperature to a value exceeding the CO desorption temperature. These findings imply that the disk density structures induced by radial drift are able to create multiple CO snow-lines. The inner disk CO is in the gas phase, freezing out near the classical snow-line at $R\\sim20-4...

  6. Preparation and characterization of platinum/carbon and ruthenium/platinum/carbon nanocatalyst using the novel rotating disk-slurry electrode (RoDSE) technique

    Science.gov (United States)

    Santiago de Jesus, Diana

    An effort to develop electrochemically smaller and well-dispersed catalytic material on a high surface area carbon material is required for fuel cell applications. In terms of pure metal catalysts, platinum has shown to be the most common catalyst used in fuel cells, but suffers from poisoning when carbon monoxide is strongly adsorbed on its surface when used for direct methanol fuel cell applications. The addition of a metal with the ability to form oxides, such as ruthenium, helps to oxidize the carbon monoxide, freeing the platinum surface for new methanol oxidation. The deposition of catalysts of PtRu onto a carbon support helps to increase the active surface area of the catalyst. Vulcan X is the most commonly used of the amorphous carbon materials for fuel cell applications. Also, a high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthetic method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. A rotating disk-slurry electrode (RoDSE) technique was developed as a unique method to electrochemically prepare bulk Pt/Carbon and PtRu/Carbon nanocatalysts avoiding a constant contact of the carbon support to an electrode surface during the electrodeposition process. The nanocatalysts were prepared by using a slurry that was saturated with functionalized Vulcan XC-72R and the metal precursor in sulfuric acid. The electrochemically prepared Pt/C and PtRu/C catalysts were characterized by using TEM, STEM, XRD, XRF, TGA, XPS and electrochemical techniques. A computational analysis also was done.

  7. Design of carbon-ceramic brake disks: Combining simulation and trials; Auslegung von Carbon-Keramik-Bremsscheiben: Zusammenspiel von Simulation und Erprobung

    Energy Technology Data Exchange (ETDEWEB)

    Wuellner, A. [SGL Brakes GmbH, Meitingen (Germany)

    2004-06-01

    Higher safety, longer life and lower weight are important goals in motor car engineering. Developing engineers are constantly on the search for innovative components made of new lightweight materials. The specialists of SGL Brakes GmbH recently presented their new carbon-ceramic brake disk. In view of the high safety relevance of this component, simulation and trial must meet maximum requirements. (orig.) [German] Erhoehung der Sicherheit, laengere Lebensdauer und Gewichtsreduktion sind wichtige Ziele der Automobilentwicklung. Dafuer sind die Entwicklungsingenieure staendig auf der Suche nach innovativen Komponenten aus neuen Leichtbauwerkstoffen. Den Spezialisten der SGL Brakes GmbH ist ein bedeutender Fortschritt in der Bremsentechnologie mit der Entwicklung der Carbon-Keramik-Bremsscheibe gelungen. Da es sich bei Bremsscheiben um eines der wichtigsten Sicherheitsbauteile am Fahrzeug handelt, werden an die Simulation und Erprobung hoechste Ansprueche gestellt. (orig.)

  8. Carbon, nitrogen and $\\alpha$-element abundances determine the formation sequence of the Galactic thick and thin disks

    CERN Document Server

    Masseron, T

    2015-01-01

    Using the DR12 public release of APOGEE data, we show that thin and thick disk separate very well in the space defined by [$\\alpha$/Fe], [Fe/H] and [C/N]. Thick disk giants have both higher [C/N] and higher [$\\alpha$/Fe] than do thin disk stars with similar [Fe/H]. We deduce that the thick disk is composed of lower mass stars than the thin disk. Considering the fact that at a given metallicity there is a one-to-one relation between stellar mass and age, we are then able to infer the chronology of disk formation. Both the thick and the thin disks - defined by [$\\alpha$/Fe] -- converge in their dependance on [C/N] and [C+N/Fe] at [Fe/H]$\\approx$-0.7. We conclude that 1) the majority of thick disk stars formed earlier than did the thin disk stars 2) the formation histories of the thin and thick disks diverged early on, even when the [Fe/H] abundances are similar 3) that the star formation rate in the thin disk has been lower than in the thick disk, at all metallicities. Although these general conclusions remain ...

  9. Effectiveness of activated carbon disk for the analysis of iodine in water samples using wavelength dispersive X-ray fluorescence spectrometry.

    Science.gov (United States)

    Lee, Junseok; An, Jinsung; Kim, Joo-Ae; Yoon, Hye-On

    2016-01-01

    A novel approach using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry combined with an activated carbon (AC) disk was developed for the determination of total iodine concentrations in water samples. Dissolved iodine species (i.e., I(-) and IO3(-)) in water samples were preconcentrated on the AC disk and directly analyzed by WDXRF spectrometry. The adsorption behavior of I(-) and IO3(-) on the AC disk was assessed at varying pH levels (4, 6, and 8). The AC disks completely retained the I(-) and IO3(-) for all the pH levels tested. The calibration curve obtained from the iodine concentrations (i.e., 0, 20, 200, and 400 μg) of AC disks and the measured X-ray intensity from the WDXRF analysis showed a good linearity (R(2)=0.9960), with a relatively low limit of detection (0.575 μg). The durability of the AC disk for repeatable measurements was also assessed to validate the sustainability of the proposed method and consequently the measured X-ray intensity for the AC disks was constant until 8d of analysis time. The accuracy of the proposed AC-WDXRF method was confirmed by measuring iodine concentration spiked in drinking water using inductively coupled plasma-mass spectrometry (ICP-MS). The proposed method is simple, rapid, efficient, and environmental friendly for iodine analysis in water samples. As a precursor of disinfection by products (DBPs), it is important to determine the total iodine concentrations in raw water.

  10. Water in protoplanetary disks : Line flux modeling and disk structure

    NARCIS (Netherlands)

    Antonellini, Stefano

    2016-01-01

    Protoplanetary disks are the places in which planets form around young stars. These environments consist of dust and gas mainly in forms of molecules. Simple and abundant molecules such as water, carbon monoxide, ammonia, play an important role in the disk thermal balance, and allow also observers t

  11. Disk Chemistry*

    OpenAIRE

    Thi Wing-Fai

    2015-01-01

    The chemical species in protoplanetary disks react with each other. The chemical species control part of the thermal balance in those disks. How the chemistry proceeds in the varied conditions encountered in disks relies on detailed microscopic understanding of the reactions through experiments or theoretical studies. This chapter strives to summarize and explain in simple terms the different types of chemical reactions that can lead to complex species. The first part of the chapter deals wit...

  12. Disk Galaxies and Galaxy Disks

    CERN Document Server

    Funes, J G

    2000-01-01

    The conference Galaxy Disks and Disk Galaxies, sponsored by the Vatican Observatory, was held in June 12-16, 2000 at the Pontifical Gregorian University, in Rome (Italy). The meeting hosted about 230 participants coming from 30 countries. The very full program consisted of 29 review papers, 34 invited talks, and more than 180 posters. The meeting covered topics regarding the structure, formation and evolution of galaxies with disks. Particular attention was dedicated to the stellar and gaseous disk of the Milky Way, the global characteristics of galaxy disks, their structure, morphology and dynamics, the gaseous components, star formation, and chemical evolution, the interactions, accretion, mergers and starbursts, the dark and luminous matter, the establishment of the scaling laws, and the formation and evolution of disk galaxies from a theoretical and observational point of view.

  13. Superhard carbon deposited by pulsed high-current arc as protective nanocoating for magnetic hard disks; Superharter Kohlenstoff abgeschieden mit gepulstem Hochstrombogen als Nanoschutzschicht fuer Magnetspeicherplatten

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaeuser, M.; Hilgers, H. [IBM Mainz (Germany). Abt. 4627; Witke, T. [Infenion Dresden (Germany). Bereich PVD; Siemroth, P. [Fraunhofer-Institut fuer Werkstoffphysik und Schichttechnologie (IWS), Dresden (Germany)

    2001-08-01

    Superhard amorphous carbon films (ta-C) deposited by pulsed high-current arc (HCA) possess a good perspective to be used as future ultrathin protective coatings for magnetic hard disks. The ta-C coatings meet all demands concerning the mechanical, chemical and tribological properties required for corrosion and wear protective coatings with thicknesses of 2-3 nm. From the current point of view the deposition technique also qualifies for an industrial mass production. Consequently there is a very good prospect that in near future the high-current arc technique will be the method of choice for carbon deposition in industrial hard disk drive production. (orig.) [German] Superharte amorphe Kohlenstoffschichten (ta-C), die mit gepulstem Hochstrombogen (high-current arc, HCA) abgeschieden werden, besitzen ein hohes Potential als zukuenftige ultraduenne Schutzschichten fuer Magnetspeicherplatten. Die ta-C-Schichten erfuellen alle wesentlichen Anforderungen, die in mechanischer, chemischer und tribologischer Hinsicht an 2-3 nm dicke Verschleiss- und Korrosionsschutzschichten gestellt werden. Auch die Beschichtungstechnik ist aus jetziger Sicht fuer die Massenproduktion geeignet. Damit bestehen sehr gute Aussichten, dass in naher Zukunft die Hochstrombogenverdampfung die Methode der Wahl fuer die Kohlenstoffabscheidung in der industriellen Festplattenproduktion darstellt. (orig.)

  14. Mechanistic Switching by Hydronium Ion Activity for Hydrogen Evolution and Oxidation over Polycrystalline Platinum Disk and Platinum/Carbon Electrodes

    KAUST Repository

    Shinagawa, Tatsuya

    2014-07-22

    Fundamental electrochemical reactions, namely the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), are re-evaluated under various pH conditions over polycrystalline Pt disk electrodes and Pt/C electrodes to investigate the overpotential and Tafel relations. Kinetic trends are observed and can be classified into three pH regions: acidic (1-5), neutral (5-9), and alkaline (9-13). Under neutral conditions, in which H2O becomes the primary reactant, substantial overpotential, which is not affected by pH and the supporting electrolyte type, is required for electrocatalysis in both directions. This ion independence, including pH, suggests that HER/HOR performance under neutral conditions solely reflects the intrinsic electrocatalytic activity of Pt in the rate determining steps, which involve electron transfer with water molecules. A global picture of the HER/HOR, resulting from mechanistic switching accompanied by change in pH, is detailed.

  15. An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases

    Science.gov (United States)

    Shock, E. L.

    2000-01-01

    Thermodynamic calculations of metastable equilibria were used to evaluate the potential for abiotic synthesis of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in the martian meteorite Allan Hills (ALH) 84001. The calculations show that PAHs and normal alkanes could form metastably from CO, CO2, and H2 below approximately 250-300 degrees C during rapid cooling of trapped magmatic or impact-generated gases. Depending on temperature, bulk composition, and oxidation-reduction conditions, PAHs and normal alkanes can form simultaneously or separately. Moreover, PAHs can form at lower H/C ratios, higher CO/CO2 ratios, and higher temperatures than normal alkanes. Dry conditions with H/C ratios less than approximately 0.01-0.001 together with high CO/CO2 ratios also favor the formation of unalkylated PAHs. The observed abundance of PAHs, their low alkylation, and a variable but high aromatic to aliphatic ratio in ALH 84001 all correspond to low H/C and high CO/CO2 ratios in magmatic and impact gases and can be used to deduce spatial variations of these ratios. Some hydrocarbons could have been formed from trapped magmatic gases, especially if the cooling was fast enough to prevent reequilibration. We propose that subsequent impact heating(s) in ALH 84001 could have led to dissociation of ferrous carbonates to yield fine-grain magnetite, formation of a CO-rich local gas phase, reduction of water vapor to H2, reequilibration of the trapped magmatic gases, aromatization of hydrocarbons formed previously, and overprinting of the synthesis from magmatic gases, if any. Rapid cooling and high-temperature quenching of CO-, H2-rich impact gases could have led to magnetite-catalyzed hydrocarbon synthesis.

  16. Volatiles in protoplanetary disks

    CERN Document Server

    Pontoppidan, Klaus M; Bergin, Edwin A; Brittain, Sean; Marty, Bernard; Mousis, Olvier; Oberg, Karin L

    2014-01-01

    Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, nitrogen and oxygen. Volatiles are central to the process of planet formation, forming the backbone of a rich chemistry that sets the initial conditions for the formation of planetary atmospheres, and act as a solid mass reservoir catalyzing the formation of planets and planetesimals. This growth has been driven by rapid advances in observations and models of protoplanetary disks, and by a deepening understanding of the cosmochemistry of the solar system. Indeed, it is only in the past few years that representative samples of molecules have been discovered in great abundance throughout protoplanetary disks - enough to begin building a complete budget for the most abundant elements after hydrogen and helium. The spatial distributions of key volatiles are being mapped...

  17. Is there a metallicity ceiling to form carbon stars? - A novel technique reveals a scarcity of C stars in the inner M31 disk

    CERN Document Server

    Boyer, M L; Marigo, P; Williams, B F; Aringer, B; Nowotny, W; Rosenfield, P; Dorman, C E; Guhathakurta, P; Dalcanton, J J; Melbourne, J L; Olsen, K A G; Weisz, D R

    2013-01-01

    We use medium-band near-infrared (NIR) Hubble Space Telescope WFC3 photometry with model NIR spectra of Asymptotic Giant Branch (AGB) stars to develop a new tool for efficiently distinguishing carbon-rich (C-type) AGB stars from oxygen-rich (M-type) AGB stars in galaxies at the edge of and outside the Local Group. We present the results of a test of this method on a region of the inner disk of M31, where we find a surprising lack of C stars, contrary to the findings of previous C star searches in other regions of M31. We find only 1 candidate C star (plus up to 6 additional, less certain C stars candidates), resulting in an extremely low ratio of C to M stars (C/M = (3.3(+20,-0.1))x10^-4) that is 1-2 orders of magnitude lower than other C/M estimates in M31. The low C/M ratio is likely due to the high metallicity in this region which impedes stars from achieving C/O > 1 in their atmospheres. These observations provide stringent constraints evolutionary models of metal-rich AGB stars and suggest that there is ...

  18. Is There a Metallicity Ceiling to Form Carbon Stars? - A Novel Technique Reveals a Scarcity of C-Stars in the Inner M31 Disk

    Science.gov (United States)

    Boyer, Martha L.; Girardi, L.; Marigo, P.; Williams, B. F.; Aringer, B.; Nowotny, W.; Rosenfield, P.; Dorman, C. E.; Guhathakurta, P.; Dalcanton, J. J.; Melbourne, J. L.; Olsen, K. A. G.; Weisz, D. R.

    2013-01-01

    We use medium-band near-infrared (NIR) Hubble Space Telescope WFC3 photometry with model NIR spectra of Asymptotic Giant Branch (AGB) stars to develop a new tool for efficiently distinguish- ing carbon-rich (C-type) AGB stars from oxygen-rich (M-type) AGB stars in galaxies at the edge of and outside the Local Group. We present the results of a test of this method on a region of the inner disk of M31, where we nd a surprising lack of C stars, contrary to the ndings of previous C star searches in other regions of M31. We nd only 1 candidate C star (plus up to 6 additional, less certain C stars candidates), resulting in an extremely low ratio of C to M stars (C=M = (3.3(sup +20)(sub - 0.1) x 10(sup -4)) that is 1-2 orders of magnitude lower than other C/M estimates in M31. The low C/M ratio is likely due to the high metallicity in this region which impedes stars from achieving C/O > 1 in their atmospheres. These observations provide stringent constraints to evolutionary models of metal-rich AGB stars and suggest that there is a metallicity threshold above which M stars are unable to make the transition to C stars, dramatically affecting AGB mass loss and dust production and, consequently, the observed global properties of metal-rich galaxies.

  19. Secure Disk Mixed System

    Directory of Open Access Journals (Sweden)

    Myongchol Ri

    2013-01-01

    Full Text Available We propose a disk encryption method, called Secure Disk Mixed System (SDMS in this paper, for data protection of disk storages such as USB flash memory, USB hard disk and CD/DVD. It is aimed to solve temporal and spatial limitations of existing disk encryption methods and to control security performance flexibly according to the security requirement of system.

  20. Microbial Extremophiles in Evolutionary Aspect

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath the ice crusts of icy moons of Jupiter and Saturn. For astrobiology the focus on the study alkaliphilic microorganisms was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and" filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology and the evolution of life. Extremophilic microorganisms on Earth are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath the icy crusts of Europa and Enceladus.

  1. Galaxy Disks are Submaximal

    NARCIS (Netherlands)

    Bershady, Matthew A.; Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.

    2011-01-01

    We measure the contribution of galaxy disks to the overall gravitational potential of 30 nearly face-on intermediate-to-late-type spirals from the DiskMass Survey. The central vertical velocity dispersion of the disk stars (sigma(disk)(z,R=0)) is related to the maximum rotation speed (V-max) as sigm

  2. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  3. Accretion disk electrodynamics

    Science.gov (United States)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  4. Galactic Disk Warps

    NARCIS (Netherlands)

    Kuijken, K.; García, I.

    2000-01-01

    Abstract: This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  5. Galactic Disk Warps

    CERN Document Server

    Kuijken, K; Kuijken, Konrad; Garcia, Inigo

    2000-01-01

    This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  6. Chemistry in Protoplanetary Disks

    CERN Document Server

    Henning, Thomas

    2013-01-01

    This comprehensive review summarizes our current understanding of the evolution of gas, solids and molecular ices in protoplanetary disks. Key findings related to disk physics and chemistry, both observationally and theoretically, are highlighted. We discuss which molecular probes are used to derive gas temperature, density, ionization state, kinematics, deuterium fractionation, and study organic matter in protoplanetary disks.

  7. Galaxy Disks are Submaximal

    CERN Document Server

    Bershady, Matthew A; Verheijen, Marc A W; Westfall, Kyle B; Andersen, David R; Swaters, Rob A

    2011-01-01

    We measure the contribution of galaxy disks to the overall gravitational potential of 30 nearly face-on intermediate-to-late-type spirals from the DiskMass Survey. The central vertical velocity dispersion of the disk stars, sigma(z,R=0), is related to the maximum rotation speed (Vmax) as sigma(z,R=0) ~ 0.26 Vmax, consistent with previous measurements for edge-on disk galaxies and a mean stellar velocity ellipsoid axial ratio sigma(z) / sigma(R) = 0.6. For reasonable values of disk oblateness, this relation implies these galaxy disks are submaximal. We find disks in our sample contribute only 15% to 30% of the dynamical mass within 2.2 disk scale-lengths (hR), with percentages increasing systematically with luminosity, rotation speed and redder color. These trends indicate the mass ratio of disk-to-total matter remains at or below 50% at 2.2 hR even for the most extreme, fast-rotating disks (Vmax > 300 km/s), of the reddest rest-frame, face-on color (B-K ~ 4 mag), and highest luminosity (M(K)<-26.5 mag). Th...

  8. REMARKS ON JOHN DISKS

    Institute of Scientific and Technical Information of China (English)

    Chu Yuming; Cheng Jinfa; Wang Gendi

    2009-01-01

    Let D R2 be a Jordan domain, D* = -R2 \\ -D, the exterior of D. In this article, the authors obtained the following results: (1) If D is a John disk, then D is an outer linearly locally connected domain; (2) If D* is a John disk, then D is an inner linearly locally connected domain; (3) A homeomorphism f: R2→R2 is a quasiconformal mapping if and only if f(D) is a John disk for any John disk D(∈)R2; and (4) If D is a bounded quasidisk, then D is a John disk, and there exists an unbounded quasidisk which is not a John disk.

  9. Isolated unilateral disk edema

    OpenAIRE

    Varner P

    2011-01-01

    Paul VarnerJohn J Pershing VAMC, Poplar Bluff, MO, USAAbstract: Isolated unilateral disk edema is a familiar clinical presentation with myriad associations. Related, non-consensus terminology is a barrier to understanding a common pathogenesis. Mechanisms for the development of disk edema are reviewed, and a new framework for clinical differentiation of medical associations is presented.Keywords: disk edema, axoplasmic flow, clinical multiplier, optic neuritis, ischemic optic neuropathy, papi...

  10. Fast pulsars with disks

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.C.; Dessler, A.J.

    1983-05-05

    The observed properties of the pulsar PSR1937+214 are compared with predictions of the disk model. It is assumed that an isolated magnetized rotating neutron star is ringed by a fluid disk with a 0.00001 solar mass, and relative rotations of the star and the disk produce potential differences across the disk. A Faraday disk dynamo is also formed between the disk and the star, and allows the polar cap current to return from the disk to the star through auroral arcing. Preferential regions of the star are recipients of a return current controlled by the surface magnetic field structure, which configures the pulsing emissions. The disk model predicts the average luminosity to be 10 to the 31st erg/sec, and an emission of 3 x 10 to the 30th erg/sec was detected. Only one-millionth of the output of the emissions is in the radio region, and the X and gamma ray emissions are in the normal range for pulsars. It is concluded that PSR1937+214 behaves within the predictions of the disk model and is not a new kind of object. 9 references.

  11. HNC in Protoplanetary Disks

    CERN Document Server

    Graninger, Dawn; Qi, Chunhua; Kastner, Joel

    2015-01-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3--2 towards the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3--2, and IRAM 30m observations of HCN and HNC 1--0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1--0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. To realize the fu...

  12. Evidence for a Noachian-Aged Ephemeral Lake in Gusev Crater, Mars

    Science.gov (United States)

    Ruff, S. W.; Niles, P. B.; Alfano, F.; Clarke, A. B.

    2014-01-01

    Gusev crater was selected as the landing site for the Spirit rover because of the likelihood that it contained an ancient lake. Although outcrops rich in Mg-Fe carbonate dubbed Comanche were discovered in the Noachian-aged Columbia Hills, they were inferred to result from volcanic hydrothermal activity. Spirit encountered other mineral and chemical indicators of aqueous activity, but none was recognized as definitive evidence for a former lake in part because none was associated with obvious lacustrine sedimentary deposits. However, water discharge into Martian crater basins like Gusev may have been episodic, producing only small amounts of sediment and shallow ephemeral lakes. Evaporative precipitation from such water bodies has been suggested as a way of producing the Mg- and Fe-rich carbonates found in ALH84001 and carbonates and salts in some nakhlites a hypothesis we examine for the Comanche carbonate.

  13. The Milky Way disk

    Science.gov (United States)

    Carraro, G.

    2015-08-01

    This review summarises the invited presentation I gave on the Milky Way disc. The idea underneath was to touch those topics that can be considered hot nowadays in the Galactic disk research: the reality of the thick disk, the spiral structure of the Milky Way, and the properties of the outer Galactic disk. A lot of work has been done in recent years on these topics, but a coherent and clear picture is still missing. Detailed studies with high quality spectroscopic data seem to support a dual Galactic disk, with a clear separation into a thin and a thick component. Much confusion and very discrepant ideas still exist concerning the spiral structure of the Milky Way. Our location in the disk makes it impossible to observe it, and we can only infer it. This process of inference is still far from being mature, and depends a lot on the selected tracers, the adopted models and their limitations, which in many cases are neither properly accounted for, nor pondered enough. Finally, there are very different opinions on the size (scale length, truncation radius) of the Galactic disk, and on the interpretation of the observed outer disk stellar populations in terms either of external entities (Monoceros, Triangulus-Andromeda, Canis Major), or as manifestations of genuine disk properties (e.g., warp and flare).

  14. Planetesimals in Debris Disks

    CERN Document Server

    Youdin, Andrew N

    2015-01-01

    Planetesimals form in gas-rich protoplanetary disks around young stars. However, protoplanetary disks fade in about 10 Myr. The planetesimals (and also many of the planets) left behind are too dim to study directly. Fortunately, collisions between planetesimals produce dusty debris disks. These debris disks trace the processes of terrestrial planet formation for 100 Myr and of exoplanetary system evolution out to 10 Gyr. This chapter begins with a summary of planetesimal formation as a prelude to the epoch of planetesimal destruction. Our review of debris disks covers the key issues, including dust production and dynamics, needed to understand the observations. Our discussion of extrasolar debris keeps an eye on similarities to and differences from Solar System dust.

  15. Radio pulsar disk electrodynamics

    Science.gov (United States)

    Michel, F. C.

    1983-01-01

    Macroscopic physics are discussed for the case of a disk close to an isolated, magnetized, rotating neutron star that acts as a Faraday disk dynamo, while the disk acts as both a load and a neutral sheet. This sheet allows the polar cap current to return to the neutron star, splitting a dipolar field into two monopolar halves. The dominant energy loss is from the stellar wind torque, and the next contribution is dissipation in the auroral zones, where the current returns to the star in a 5 cm-thick sheet. The disk itself may be a source of visible radiation comparable to that in pulsed radio frequency emission. As the pulsar ages, the disk expands and narrows into a ring which, it is suggested, may lead to a cessation of pulsed emission at periods of a few sec.

  16. Coupled Evolution of the Martian Atmosphere and Crust Through Geologic Time

    Science.gov (United States)

    Hutchins, Kevin Sean

    1998-09-01

    This dissertation investigates the coupled evolution of the Martian atmosphere and crust throughout geologic time and the implications for Martian sample analysis and exobiology. Abundant geological and atmospheric evidence suggests that Mars has changed significantly throughout time. Removal of volatiles from the atmosphere may have been the trigger for the dramatic transition from that scenario to the present cold, harsh climate. Previous modeling work has shown that loss to space enriches the residual atmosphere in the heavier isotopes. Furthermore, stable isotope measurements from secondary mineral deposits within the Martian meteorites indicate exchange with an isotopically-enriched atmosphere. To investigate the Martian climate history, we developed an atmospheric evolution model for argon and neon considering a mass balance between the mantle, atmosphere, and loss to space by sputtering. Sputtering loss is particularly relevant for noble gases which have few mechanisms of escape. Due to substantial loss, our model is only capable of explaining sputtering loss. A strong magnetic field could limit sputtering loss by deflecting the solar wind around the upper atmosphere. We found that a magnetic field that persists until 1-2 Ga could affect the loss of light noble gases from the atmosphere. Nonetheless, our model predicts additional sources to balance the atmospheric volatile budgets. Therefore, we investigated outgassing from the Martian crust via groundwater circulation. We found that a crustal reservoir 5-25 km thick could satisfy the atmospheric argon budget. Recently, putative evidence of life has been purported for the Martian meteorite ALH84001. We examined the stable isotope measurements from carbonate and organic deposits found in ALH84001. Due to atmosphere-crust exchange, δ13C and δ18O measurements indicate that the carbonates may have formed at T ~ 50-300oC and, thus, may not harbor evidence of life. Further, we investigated abiotic organic

  17. Truncations in stellar disks

    CERN Document Server

    Van der Kruit, P C

    2000-01-01

    The presence of radial truncations in stellar disks is reviewed. There is ample evidence that many disk galaxies have relatively shaprt truncations in their disks. These often are symmetric and independent of the wavelength band of the observations. The ratio of the truncation radius R_{max} to the disk scalelength h appears often less then 4.5, as expected on a simple model for the disk collapse. Current samples of galaxies observed may however not be representative and heavily biased towards sisks witht he largest scalelengths. Many spiral galaxies also have HI warps and these generally start at the truncation radius of the stellar disk. The HI surface density suddenly becomes much flatter with radius. In some galaxies the start of the warp and the position of the disk truncation radius is accompanied by a drop in the rotation velocity. In the regiosn beyond the dis truncation in the HI layer some star formation does occur, but the heavy element abundance and the dust content are very low. All evidence is c...

  18. Olivine in Martian Meteorite Allan Hills 84001: Evidence for a High-Temperature Origin and Implications for Signs of Life

    Science.gov (United States)

    Shearer, C. K.; Leshin, L. A.; Adcock, C. T.

    1999-01-01

    Olivine from Martian meteorite Allan Hills (ALH) 84001 occurs as clusters within orthopyroxene adjacent to fractures containing disrupted carbonate globules and feldspathic shock glass. The inclusions are irregular in shape and range in size from approx. 40 microns to submicrometer. Some of the inclusions are elongate and boudinage-like. The olivine grains are in sharp contact with the enclosing orthopyroxene and often contain small inclusions of chromite The olivine exhibits a very limited range of composition from Fo(sub 65) to Fo(sub 66) (n = 25). The delta(sup 18)O values of the olivine and orthopyroxene analyzed by ion microprobe range from +4.3 to +5.3% and are indistinguishable from each other within analytical uncertainty. The mineral chemistries, O-isotopic data, and textural relationships indicate that the olivine inclusions were produced at a temperature greater than 800 C. It is unlikely that the olivines formed during the same event that gave rise to the carbonates in ALH 84001, which have more elevated and variable delta(sup 18)O values, and were probably formed from fluids that were not in isotopic equilibrium with the orthopyroxene or olivine The reactions most likely instrumental in the formation of olivine could be either the dehydration of hydrous silicates that formed during carbonate precipitation or the reduction of orthopyroxene and spinel If the olivine was formed by either reaction during a postcarbonate beating event, the implications are profound with regards to the interpretations of McKay et al. Due to the low diffusion rates in carbonates, this rapid, high-temperature event would have resulted in the preservation of the fine-scale carbonate zoning' while partially devolatilizing select carbonate compositions on a submicrometer scale. This may have resulted in the formation of the minute magnetite grains that McKay et al attributed to biogenic activity.

  19. Disk-satellite interaction in disks with density gaps

    CERN Document Server

    Petrovich, Cristobal

    2012-01-01

    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them which can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly nonuniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existin...

  20. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    Science.gov (United States)

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing. PMID:23869013

  1. More approximation on disks

    OpenAIRE

    Paepe, de, P.J.I.M.; Wiegerinck, J.J.O.O.

    2007-01-01

    Abstract: In this article we study the function algebra generated by z2 and g2 on a small closed disk centred at the origin of the complex plane. We prove, using a biholomorphic change of coordinates and already developed techniques in this area, that for a large class of functions g this algebra consists of all continuous functions on the disk. Keywords: 2000 Mathematics Subject Classifications: 46J10; 32E20

  2. Vortices in circumstellar disks

    CERN Document Server

    Adams, F; Adams, Fred; Watkins, Richard

    1995-01-01

    We discuss the physics of vortices in the circumstellar disks associated with young stellar objects. We elucidate the basic physical properties of these localized storm systems. In particular, we consider point vortices, linear vortices, the effects of self-gravity, magnetic fields, and nonlinear aspects of the problem. We find that these vortices can exist in many different forms in the disks of young stellar objects and may play a role in the formation of binary companions and/or giant planets. Vortices may enhance giant planet formation via gravitational instability by allowing dust grains (heavy elements) to settle to the center on a short timescale; the gravitational instability itself is also enhanced because the vortices also create a larger local surface density in the disk. In addition, vortices can enhance energy dissipation in disks and thereby affect disk accretion. Finally, we consider the possibility that vortices of this type exist in molecular clouds and in the disk of the galaxy itself. On al...

  3. Pulsar disk systems

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.C.; Dessler, A.J.

    1981-12-15

    We argue that the radio pulsars and the X-ray pulsars differ mainly in the fact that the latter are surrounded by an accretion disk, while the former are surrounded by a fossil collapse disk presumably left over from the formation event. We attribute the difference between these two types of pulsars to a strong interaction (enforced accretion) of the X-ray pulsars with their disks as opposed to a relatively weak interaction (and negligible accretion) in the case of the radio pulsars. A number of observational problems (e.g., role of alignment, ion confinement, nulling, drifting subpulses, braking index, residuals, and the supernova association) are readily addressed in terms of the disk model. Moreover, the model is consistent with a ''hollow cone'' type of emission pattern. Rough estimates here suggest that pulsars with disks could function with magnetic fields at the neutron star surface as low as 10/sup 9/ gauss, far below that often assumed; conventional field strengths of 10/sup 12/ gauss are not excluded, however.

  4. Chemistry in Protoplanetary Disks

    CERN Document Server

    Semenov, Dmitry

    2010-01-01

    Protoplanetary disks (PPDs) surrounding young stars are short-lived (~0.3-10 Myr), compact (~10-1000 AU) rotating reservoirs of gas and dust. PPDs are believed to be birthplaces of planetary systems, where tiny grains are assembled into pebbles, then rocks, planetesimals, and eventually planets, asteroids, and comets. Strong variations of physical conditions (temperature, density, ionization rate, UV/X-rays intensities) make a variety of chemical processes active in disks, producing simple molecules in the gas phase and complex polyatomic (organic) species on the surfaces of dust particles. In this entry, we summarize the major modern observational methods and theoretical paradigms used to investigate disk chemical composition and evolution, and present the most important results. Future research directions that will become possible with the advent of the Atacama Large Millimeter Array (ALMA) and other forthcoming observational facilities are also discussed.

  5. Silica in Protoplanetary Disks

    CERN Document Server

    Sargent, B A; Tayrien, C; McClure, M K; Li, A; Basu, A R; Manoj, P; Watson, D M; Bohac, C J; Furlan, E; Kim, K H; Green, J D; Sloan, G C

    2008-01-01

    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found...

  6. Supersized Disk (Artist's Concept)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Annotated ImageData Graph This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system. Monstrous disks like this one were discovered around two 'hypergiant' stars by NASA's Spitzer Space Telescope. Astronomers believe these disks might contain the early 'seeds' of planets, or possibly leftover debris from planets that already formed. The hypergiant stars, called R 66 and R 126, are located about 170,000 light-years away in our Milky Way's nearest neighbor galaxy, the Large Magellanic Cloud. The stars are about 100 times wider than the sun, or big enough to encompass an orbit equivalent to Earth's. The plump stars are heavy, at 30 and 70 times the mass of the sun, respectively. They are the most massive stars known to sport disks. The disks themselves are also bloated, with masses equal to several Jupiters. The disks begin at a distance approximately 120 times greater than that between Earth and the sun, or 120 astronomical units, and terminate at a distance of about 2,500 astronomical units. Hypergiant stars are the puffed-up, aging descendants of the most massive class of stars, called 'O' stars. The stars are so massive that their cores ultimately collapse under their own weight, triggering incredible explosions called supernovae. If any planets circled near the stars during one of these blasts, they would most likely be destroyed. The orbital distances in this picture are plotted on a logarithmic scale. This means that a given distance shown here represents proportionally larger actual distances as you move to the right. The sun and planets in our solar system have been scaled up in size for better viewing. Little Dust Grains in Giant Stellar Disks The graph above of data from NASA's Spitzer Space Telescope shows the composition of a monstrous disk of what may be planet-forming dust circling the colossal 'hypergiant' star called R 66. The disk contains

  7. Lunar and Planetary Science XXXV: Astrobiology

    Science.gov (United States)

    2004-01-01

    The presentations in this session are: 1. A Prototype Life Detection Chip 2. The Geology of Atlantis Basin, Mars, and Its Astrobiological Interest 3. Collecting Bacteria Together with Aerosols in the Martian Atmosphere by the FOELDIX Experimental Instrument Developed with a Nutrient Detector Pattern: Model Measurements of Effectivity 4. 2D and 3D X-ray Imaging of Microorganisms in Meteorites Using Complexity Analysis to Distinguish Field Images of Stromatoloids from Surrounding Rock Matrix in 3.45 Ga Strelley Pool Chert, Western Australia 4. Characterization of Two Isolates from Andean Lakes in Bolivia Short Time Scale Evolution of Microbiolites in Rapidly Receding Altiplanic Lakes: Learning How to Recognize Changing Signatures of Life 5. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode 6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence 7. Microbial D/H Fractionation in Extraterrestrial Materials: Application to Micrometeorites and Mars 8. Carbon Isotope Characteristics of Spring-fed Iron-precipitating Microbial Mats 9. Amino Acid Survival Under Ambient Martian Surface UV Lighting Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions 10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods 11. Thermal Decomposition of Siderite-Pyrite Assemblages: Implications for Sulfide Mineralogy in Martian Meteorite ALH84001 Carbonate Globules 12. Determination of the Three-Dimensional Morphology of ALH84001 and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy 13. On the Possibility of a Crypto-Biotic Crust on Mars Based on Northern and Southern Ringed Polar Dune Spots 14. Comparative Planetology of the Terrestrial Inner Planets: Implications for Astrobiology 15. A Possible Europa Exobiology 16. A Possible Biogeochemical Model for Titan

  8. Volatile depletion in the TW Hydrae disk atmosphere

    CERN Document Server

    Du, Fujun; Hogerheijde, Michiel R

    2015-01-01

    An abundance decrease in carbon- and oxygen-bearing species relative to dust has been frequently found in planet-forming disks, which can be attributed to an overall reduction of gas mass. However, in the case of TW Hya, the only disk with gas mass measured directly with HD rotational lines, the inferred gas mass ($\\lesssim$0.005 solar mass) is significantly below the directly measured value ($\\gtrsim$0.05 solar mass). We show that this apparent conflict can be resolved if the elemental abundances of carbon and oxygen are reduced in the upper layers of the outer disk but are normal elsewhere (except for a possible enhancement of their abundances in the inner disk). The implication is that in the outer disk, the main reservoir of the volatiles (CO, water, ...) resides close to the midplane, locked up inside solid bodies that are too heavy to be transported back to the atmosphere by turbulence. An enhancement in the carbon and oxygen abundances in the inner disk can be caused by inward migration of these solid ...

  9. Polarimetric microlensing of circumstellar disks

    CERN Document Server

    Sajadian, Sedighe

    2015-01-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar disks around the microlensed stars located at the Galactic bulge. These disks which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these disks can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot disks which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of disks, we show that although the polarimetric efficiency for detecting disks is similar to the photometric observation, but polarimetry observations can help to constraint the disk geometrical parameters e.g. the disk inner radius and the lens trajectory with resp...

  10. Secular Evolution in Disk Galaxies

    CERN Document Server

    Sellwood, J A

    2013-01-01

    Disk galaxies evolve over time through processes that may rearrange both the radial mass profile and the metallicity distribution within the disk. This review of such slow changes is largely, though not entirely, restricted to internally-driven processes that can be distinguished from evolution driven by galaxy interactions. It both describes our current understanding of disk evolution, and identifies areas where more work is needed. Stellar disks are heated through spiral scattering, which increases random motion components in the plane, while molecular clouds redirect some fraction of the random energy into vertical motion. The recently discovered process of radial migration at the corotation resonance of a transient spiral mode does not alter the underlying structure of the disk, since it neither heats the disk nor causes it to spread, but it does have a profound effect on the expected distribution of metallicities among the disk stars. Bars in disks are believed to be major drivers of secular evolution th...

  11. Disk Scheduling: Selection of Algorithm

    OpenAIRE

    Yashvir, S.; Prakash, Om

    2012-01-01

    The objective of this paper is to take some aspects of disk scheduling and scheduling algorithms. The disk scheduling is discussed with a sneak peak in general and selection of algorithm in particular.

  12. More approximation on disks

    NARCIS (Netherlands)

    P.J.I.M. de Paepe; J.J.O.O. Wiegerinck

    2007-01-01

    Abstract: In this article we study the function algebra generated by z2 and g2 on a small closed disk centred at the origin of the complex plane. We prove, using a biholomorphic change of coordinates and already developed techniques in this area, that for a large class of functions g this algebra co

  13. The Tilt between Acretion Disk and Stellar Disk

    Indian Academy of Sciences (India)

    Shiyin Shen; Zhengyi Shao; Minfeng Gu

    2011-03-01

    The orientations of the accretion disk of active galactic nuclei (AGN) and the stellar disk of its host galaxy are both determined by the angular momentum of their forming gas, but on very different physical environments and spatial scales. Here we show the evidence that the orientation of the stellar disk is correlated with the accretion disk by comparing the inclinations of the stellar disks of a large sample of Type 2 AGNs selected from Sloan Digital Sky Survey (SDSS, York et al. 2000) to a control galaxy sample. Given that the Type 2 AGN fraction is in the range of 70–90 percent for low luminosity AGNs as a priori, we find that the mean tilt between the accretion disk and stellar disk is ∼ 30 degrees (Shen et al. 2010).

  14. CO gas inside the protoplanetary disk cavity in HD 142527: disk structure from ALMA

    CERN Document Server

    Perez, Sebastian; Ménard, F; Roman, P; van der Plas, G; Cieza, L; Pinte, C; Christiaens, V; Hales, A S

    2014-01-01

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 au from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue observations of the gas-rich disk HD 142527, in the J=2-1 line of 12CO, 13CO and C18O, obtained with the Atacama Large Millimeter Array (ALMA). We detect emission coming from inside the dust-depleted cavity in all three isotopologues. Based on our analysis of the gas in the dust cavity, the 12CO emission is optically thick, while 13CO and C18O emission are both optically thin. The total mass of residual gas inside the cavity is about 1.5-2 Jupiter masses. We model the gas with an axisymmetric disk model. Our best fit model shows t...

  15. The Evolution of Inner Disk Gas in Transition Disks

    CERN Document Server

    Hoadley, Keri; Alexander, Richard D; McJunkin, Matthew; Schneider, Christian

    2015-01-01

    Investigating the molecular gas in the inner regions of protoplanetary disks provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H$_2$) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed HI-Lyman $\\alpha$-pumped H$_2$ disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H$_{2}$ emission in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H$_2$ FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner a...

  16. DVD - digital versatile disks

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  17. Ringed accretion disks: equilibrium configurations

    CERN Document Server

    Pugliese, D

    2015-01-01

    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  18. Audit: Automated Disk Investigation Toolkit

    Directory of Open Access Journals (Sweden)

    Umit Karabiyik

    2014-09-01

    Full Text Available Software tools designed for disk analysis play a critical role today in forensics investigations. However, these digital forensics tools are often difficult to use, usually task specific, and generally require professionally trained users with IT backgrounds. The relevant tools are also often open source requiring additional technical knowledge and proper configuration. This makes it difficult for investigators without some computer science background to easily conduct the needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation toolkit that supports investigations conducted by non-expert (in IT and disk technology and expert investigators. Our proof of concept design and implementation of AUDIT intelligently integrates open source tools and guides non-IT professionals while requiring minimal technical knowledge about the disk structures and file systems of the target disk image.

  19. Ringed accretion disks: instabilities

    CERN Document Server

    Pugliese, D

    2016-01-01

    We analyze the possibility that several instability points may be formed, due to the Paczy\\'nski mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider recently proposed model of ringed accretion disk, made up by several tori (rings) which can be corotating or counterrotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  20. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming, E-mail: wangcm@lzu.edu.cn

    2013-05-24

    Graphical abstract: -- Highlights: •A green and facile approach for synthesis of β-CD-PDDA-Gr at room temperature. •We present the β-CD-PDDA-Gr modified GC-RDE for simultaneous detection of SY and TT. •SY and TT's electrooxidations are both the one-electron-one-proton-transfer process. •Diffusion coefficients and standard rate constants of SY and TT were discussed. -- Abstract: We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant k{sub b}, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0 × 10{sup −8} to 2.0 × 10{sup −5} mol L{sup −1}, with a low limit of detection (LOD) of 1.25 × 10{sup −8} mol L{sup −1} for SY and 1.43 × 10{sup −8} mol L{sup −1} for TT (S N{sup −1} = 3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant

  1. Foraminal and extraforaminal disk herniations

    International Nuclear Information System (INIS)

    This paper reports on a study of thirty-three patients with persistent radiculopathy and with CT findings suggestive of a far lateral disk herniation at 34 disk levels with MR imaging. In 33 cases, the disk fragment was identified and its separation with the nerve root was possible. One case of enlarged nerve root was misdiagnosed as a free fragment. A cephalad migration was noted on the sagittal lateral facet plane in 23 cases. Surgical correlations were available in 25 cases. Three cases had false-positive findings for disk herniation. Enlarged foraminal veins were responsible for these images, as confirmed in one case by Gd-DTPA infusion

  2. High Power Thin Disk Laser

    OpenAIRE

    Giesen, Adolf

    2011-01-01

    In this talk, the latest results for thin disk lasers will be presented. Thin disk lasers can be operated in cw-mode as well as in pulsed mode with pulse durations from 100 fs to microseconds. Results from different institutes and companies will be shown demonstrating the power/energy scalability of the thin disk laser design with good beam quality and high efficiency, simultaneously. Several German companies are selling thin disk lasers with up to 16 kW output power (cw) and with up to 1 kW...

  3. [Disk calcifications in children].

    Science.gov (United States)

    Schmit, P; Fauré, C; Denarnaud, L

    1985-05-01

    It is not unusual for intervertebral disk calcifications to be detected in pediatric practice, the 150 or so cases reported in the literature probably representing only a small proportion of lesions actually diagnosed. Case reports of 33 children with intervertebral disk calcifications were analyzed. In the majority of these patients (31 of 33) a diagnosis of "idiopathic" calcifications had been made, the cervical localization of the lesions being related to repeated ORL infections and/or trauma. A pre-existing pathologic factor was found in two cases (one child with juvenile rheumatoid arthritis treated by corticoids and one child with Williams and Van Beuren's syndrome). An uncomplicated course was noted in 31 cases, the symptomatology (pain, spinal stiffness and febricula) improving after several days. Complications developed in two cases: one child had very disabling dysphagia due to an anteriorly protruding cervical herniated disc and surgery was necessary; the other child developed cervicobrachial neuralgia due to herniated disc protrusion into the cervical spinal canal, but symptoms regressed within several days although calcifications persisted unaltered. These findings and the course of the rare complications documented in the literature suggest the need for the most conservative treatment possible in cases of disc calcifications in children. PMID:4032343

  4. Disk storage at CERN

    CERN Document Server

    Mascetti, L; Chan, B; Espinal, X; Fiorot, A; Labrador, H Gonz; Iven, J; Lamanna, M; Presti, G Lo; Mościcki, JT; Peters, AJ; Ponce, S; Rousseau, H; van der Ster, D

    2015-01-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  5. Disk storage at CERN

    Science.gov (United States)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  6. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  7. Friction characteristics of floppy disks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This note presents the principle and structure of a tribological measure for floppy disks.The precision of the force measuring system is 1 mN in loading and 3×10-6 N in friction.The resolution of the film thickness between head and floppy disk is 0.5 nm in the vertical and 1.5 nm in the horizontal direction.In order to investigate the tribological characteristics of floppy disks,six types of floppy disks have been tested and the floating properties of these disks are also studied with film measuring system.The experimental results of the surface morphology and friction coefficient of these floppy disks using the atomic force microscope/friction force mcroscope (AFM/FFM) are in accordance with the conclusion made by our own measuring system.The experimental results show that the air film thickness between head and disk is of the same order as the surface roughness of floppy disks.

  8. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  9. An Old Disk That Can Still Form a Planetary System

    CERN Document Server

    Bergin, Edwin A; Gorti, Uma; Zhang, Ke; Blake, Geoffrey A; Green, Joel D; Andrews, Sean M; Evans, Neal J; Henning, Thomas; Oberg, Karin; Pontoppidan, Klaus; Qi, Chunhua; Salyk, Colette; van Dishoeck, Ewine F

    2013-01-01

    From the masses of planets orbiting our Sun, and relative elemental abundances, it is estimated that at birth our Solar System required a minimum disk mass of ~0.01 solar masses within ~100 AU of the star. The main constituent, gaseous molecular hydrogen, does not emit from the disk mass reservoir, so the most common measure of the disk mass is dust thermal emission and lines of gaseous carbon monoxide. Carbon monoxide emission generally probes the disk surface, while the conversion from dust emission to gas mass requires knowledge of the grain properties and gas-to-dust mass ratio, which likely differ from their interstellar values. Thus, mass estimates vary by orders of magnitude, as exemplified by the relatively old (3--10 Myr) star TW Hya, with estimates ranging from 0.0005 to 0.06 solar masses. Here we report the detection the fundamental rotational transition of hydrogen deuteride, HD, toward TW Hya. HD is a good tracer of disk gas because it follows the distribution of molecular hydrogen and its emissi...

  10. Detection of precessing circumpulsar disks

    CERN Document Server

    Grimani, C

    2014-01-01

    Experimental evidences indicate that formations of disks and planetary systems around pulsars are allowed. Unfortunately, direct detections through electromagnetic observations appear to be quite rare. In the case of PSR 1931+24, the hypothesis of a rigid precessing disk penetrating the pulsar light cylinder is found consistent with radio transient observations from this star. Disk self-occultation and precession may limit electromagnetic observations. Conversely, we show here that gravitational waves generated by disk precessing near the light cylinder of young and middle aged pulsars would be detected by future space interferometers with sensitivities like those expected for DECIGO (DECI-hertz Interferometer Gravitational Wave Observatory) and BBO (Big Bang Observer). The characteristics of circumpulsar detectable precessing disks are estimated as a function of distance from the Solar System. Speculations on upper limits to detection rates are presented.

  11. A Disk Scheduling Algorithm: SPFF

    Institute of Scientific and Technical Information of China (English)

    HU Ming

    2005-01-01

    We put forward an optimal disk schedule with n disk requests and prove its optimality mathematically. Generalizing the idea of an optimal disk schedule, we remove the limit of n requests and, at the same time, consider the dynamically arrival model of disk requests to obtain an algorithm, shortest path first-fit first (SPFF). This algorithm is based on the shortest path of disk head motion constructed by all the pendent requests. From view of the head-moving distance, it has the stronger globality than SSTF. From view of the head-moving direction, it has the better flexibility than SCAN. Therefore, SPFF keeps the advantage of SCAN and, at the same time, absorbs the strength of SSTF. The algorithm SPFF not only shows the more superiority than other scheduling polices, but also have higher adjustability to meet the computer system's different demands.

  12. Physical processes in protoplanetary disks

    CERN Document Server

    Armitage, Philip J

    2015-01-01

    This review introduces physical processes in protoplanetary disks relevant to accretion and the initial stages of planet formation. After reprising the elementary theory of disk structure and evolution, I discuss the gas-phase physics of angular momentum transport through turbulence and disk winds, and how this may be related to episodic accretion observed in Young Stellar Objects. Turning to solids, I review the evolution of single particles under aerodynamic forces, and describe the conditions necessary for the development of collective gas-particle instabilities. Observations show that disks are not always radially smooth axisymmetric structures, and I discuss how gas and particle processes can interact to form observable large-scale structure (at ice lines, vortices and in zonal flows). I conclude with disk dispersal.

  13. Debris Disks and Hidden Planets

    Science.gov (United States)

    Kuchner, Marc

    2008-01-01

    When a planet orbits inside a debris disk like the disk around Vega or Beta Pictoris, the planet may be invisible, but the patterns it creates in the disk may give it away. Observing and decoding these patterns may be the only way we can detect exo-Neptunes orbiting more than 20 AU from their stars, and the only way we can spot planets in systems undergoing the late stages of planet formation. Fortunately, every few months, a new image of a debris disk appears with curious structures begging for explanation. I'll describe some new ideas in the theory of these planet-disk interactions and provide a buyers guide to the latest models (and the planets they predict).

  14. TRANSITIONAL DISKS AROUND YOUNG LOW MASS STARS

    Directory of Open Access Journals (Sweden)

    P. D'Alessio

    2009-01-01

    have been interpreted as produced by disks with inner holes, which have been classi ed as \\Transitional Disks". These disks are considered the evolutionary link between the full disks typically found around the young T Tauri and Herbig Ae stars, and the debris disks, found around some main sequence stars. In this contribution we summarize the observed/inferred characteristics of these transitional disks and also some of the models proposed to explain their peculiar geometry.

  15. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Takayuki [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Maruta, Akito; Machida, Masahiro N., E-mail: tanigawa@pop.lowtem.hokudai.ac.jp [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  16. DiskJockey: Protoplanetary disk modeling for dynamical mass derivation

    Science.gov (United States)

    Czekala, Ian

    2016-03-01

    DiskJockey derives dynamical masses for T Tauri stars using the Keplerian motion of their circumstellar disks, applied to radio interferometric data from the Atacama Large Millimeter Array (ALMA) and the Submillimeter Array (SMA). The package relies on RADMC-3D (ascl:1202.015) to perform the radiative transfer of the disk model. DiskJockey is designed to work in a parallel environment where the calculations for each frequency channel can be distributed to independent processors. Due to the computationally expensive nature of the radiative synthesis, fitting sizable datasets (e.g., SMA and ALMA) will require a substantial amount of CPU cores to explore a posterior distribution in a reasonable timeframe.

  17. Magneto-thermal Disk Wind from Protoplanetary Disks

    CERN Document Server

    Bai, Xue-Ning; Goodman, Jeremy; Yuan, Feng

    2015-01-01

    Global evolution and dispersal of protoplanetary disks (PPDs) is governed by disk angular momentum transport and mass-loss processes. Recent numerical studies suggest that angular momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a 1D model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on 1) the magnetic field strength at the wind base, characterized by the poloidal Alfv\\'en speed $v_{Ap}$, 2) the sound speed $c_s$ near the wind base, and 3) how rapidly poloidal field lines diverge (achieve $R^{-2}$ scaling). When $v_{Ap}\\gg c_s$, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accel...

  18. Disk evolution: dust and gas*

    Directory of Open Access Journals (Sweden)

    Dominik Carsten

    2015-01-01

    Full Text Available Disks are a natural by-product of start formation. Just like the formation if a star is a lengthy process that goes through many stages, disks around young stars evolve my processing matter through the disk and dumping it onto the star. The solid and gaseous components of disks do not always evolve together - dust-gas separation can take place, dust grains may grow. In this chapter we attempt a brief overview of processes that shape this evolution, in a way that is useful as a background to the other chapters in this lecture series. As such, the chapter does not aim for completeness or being up to date with some of the most recent developments.

  19. Gravitational Instabilities in Circumstellar Disks

    CERN Document Server

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  20. Resolved observations of transition disks

    CERN Document Server

    Casassus, Simon

    2016-01-01

    Resolved observations are bringing new constraints on the origin of radial gaps in protoplanetary disks. The kinematics, sampled in detail in one case-study, are indicative of non-Keplerian flows, corresponding to warped structures and accretion which may both play a role in the development of cavities. Disk asymmetries seen in the radio continuum are being interpreted in the context of dust segregation via aerodynamic trapping. We summarise recent observational progress, and also describe prospects for improvements in the near term.

  1. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  2. Planet-Disk Interaction revisited

    OpenAIRE

    Illenseer T. F.; Jung Manuel; Duschl W. J.

    2013-01-01

    We present results on our investigations of planet–disk interaction in protoplanetary disks. For the hydrodynamic simulations we use a second order semi–discrete total variation diminishing (TVD) scheme for systems of hyperbolic conservation laws on curvilinear grids. Our previously used method conserves the momentum in two dimensional systems with rotational symmetry. Additionally, we modified our simulation techniques for inertial angular momentum conservation even in two dimensional ...

  3. Collisional Grooming of Debris Disks

    CERN Document Server

    Kuchner, Marc J

    2009-01-01

    Debris disk images show clumps, rings, warps, and other structures, many of which have been interpreted as perturbations from hidden planets. But so far, no models of these structures have properly accounted for collisions between dust grains. We have developed new steady-state 3D models of debris disks that self-consistently incorporate grain-grain collisions. We summarize our algorithm and use it to illustrate how collisions interact with resonant trapping in the presence of a planet.

  4. Jets from magnetized accretion disks

    Science.gov (United States)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  5. Disk eccentricity and embedded planets

    CERN Document Server

    Kley, W; Kley, Wilhelm; Dirksen, Gerben

    2005-01-01

    We investigate the response of an accretion disk to the presence of a perturbing protoplanet embedded in the disk through time dependent hydrodynamical simulations. The disk is treated as a two-dimensional viscous fluid and the planet is kept on a fixed orbit. We run a set of simulations varying the planet mass, and the viscosity and temperature of the disk. All runs are followed until they reach a quasi-equilibrium state. We find that for planetary masses above a certain minimum mass, already 3 M_Jup for a viscosity of nu = 10^{-5}, the disk makes a transition from a nearly circular state into an eccentric state. Increasing the planetary mass leads to a saturation of disk eccentricity with a maximum value of around 0.25. The transition to the eccentric state is driven by the excitation of an m=2 spiral wave at the outer 1:3 Lindblad resonance. The effect occurs only if the planetary masses are large enough to clear a sufficiently wide and deep gap to reduce the damping effect of the outer 1:2 Lindblad resona...

  6. Physically Consistent Protoplanetary Disk Models

    Science.gov (United States)

    Calvet, Nuria

    2002-07-01

    We propose to make our physically consistent models for protoplanetary disks, which are the most detailed so far, available to the community. We propose to make available two types of models. First, we will construct a complete grid of models where dust and gas are well mixed throughout the disks, which are relevant for the youngest, less evolved objects. Then, we propose to advance in our present modeling efforts to include the effects of dust coagulation and settling towards the midplane on the structure and the emission of the disks. With our results, we propose to create a Web-based library of disk model results, including both scattered light images, as observed by the imaging detectors of HST, and far infrared to millimeter spectral energy distributions, to provide the community with the tools required for a comprehensive interpretation of protoplanetary disk data. Our proposed effort will provide the Star Formation users of HST with a powerful tool to best interpret their data and obtain key results for protoplanetary disk evolution.

  7. Disks around young stellar objects

    Indian Academy of Sciences (India)

    H C Bhatt

    2011-07-01

    By 1939, when Chandrasekhar’s classic monograph on the theory of Stellar Structure was published, although the need for recent star formation was fully acknowledged, no one had yet recognized an object that could be called a star in the process of being born. Young stellar objects (YSOs), as pre-main-sequence stars, were discovered in the 1940s and 1950s. Infrared excess emission and intrinsic polarization observed in these objects in the 1960s and 1970s indicated that they are surrounded by flattened disks. The YSO disks were seen in direct imaging only in the 1980s. Since then, high-resolution optical imaging with HST, near-infrared adaptive optics on large groundbased telescopes, mm and radiowave interferometry have been used to image disks around a large number of YSOs revealing disk structure with ever-increasing detail and variety. The disks around YSOs are believed to be the sites of planet formation and a few such associations have now been confirmed. The observed properties of the disk structure and their evolution, that have very important consequences for the theory of star and planet formation, are discussed.

  8. Relativistic Self-similar Disks

    CERN Document Server

    Cai, M J; Cai, Mike J.; Shu, Frank H.

    2002-01-01

    We formulate and solve by semi-analytic means the axisymmetric equilibria of relativistic self-similar disks of infinitesimal vertical thickness. These disks are supported in the horizontal directions against their self-gravity by a combination of isothermal (two-dimensional) pressure and a flat rotation curve. The dragging of inertial frames restricts possible solutions to rotation speeds that are always less than 0.438 times the speed of light, a result first obtained by Lynden-Bell and Pineault in 1978 for a cold disk. We show that prograde circular orbits of massive test particles exist and are stable for all of our model disks, but retrograde circular orbits cannot be maintained with particle velocities less than the speed of light once the disk develops an ergoregion. We also compute photon trajectories, planar and non-planar, in the resulting spacetime, for disks with and without ergoregions. We find that all photon orbits, except for a set of measure zero, tend to be focused by the gravity of the flat...

  9. Global Models for Embedded, Accreting Protostellar Disks

    CERN Document Server

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Most analytic work to date on protostellar disks has focused on disks in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via several mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks' masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disk's temperature, controls the disk evolution. We track the dominant mode of...

  10. Determining protoplanetary disk gas masses from CO isotopologues line observations

    Science.gov (United States)

    Miotello, A.; van Dishoeck, E. F.; Kama, M.; Bruderer, S.

    2016-10-01

    Context. Despite intensive studies of protoplanetary disks, there is still no reliable way to determine their total (gast+dust) mass and their surface density distribution, quantities that are crucial for describing both the structure and the evolution of disks up to the formation of planets. Aims: The goal of this work is to use less-abundant CO isotopologues, such as 13CO, C18O and C17O, detection of which is routine for ALMA, to infer the gas mass of disks. Isotope-selective effects need to be taken into account in the analysis, because they can significantly modify CO isotopologues' line intensities. Methods: CO isotope-selective photodissociation has been implemented in the physical-chemical code DALI (Dust And LInes) and more than 800 disk models have been run for a range of disk and stellar parameters. Dust and gas temperature structures have been computed self-consistently, together with a chemical calculation of the main atomic and molecular species. Both disk structure and stellar parameters have been investigated by varying the parameters in the grid of models. Total fluxes have been ray-traced for different CO isotopologues and for various low J-transitions for different inclinations. Results: A combination of 13CO and C18O total intensities allows inference of the total disk mass, although with non-negligible uncertainties. These can be overcome by employing spatially resolved observations, that is the disk's radial extent and inclination. Comparison with parametric models shows differences at the level of a factor of a few, especially for extremely low and high disk masses. Finally, total line intensities for different CO isotopologue and for various low-J transitions are provided and are fitted to simple formulae. The effects of a lower gas-phase carbon abundance and different gas-to-dust ratios are investigated as well, and comparison with other tracers is made. Conclusions: Disk masses can be determined within a factor of a few by comparing CO

  11. Magneto-thermal Disk Winds from Protoplanetary Disks

    Science.gov (United States)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  12. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2013-04-01

    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  13. Tissue Engineering for Intervertebral Disk Degeneration

    OpenAIRE

    Leung, VYL; Chan, D; Chan, BP; Cheung, KMC; Tam, V

    2011-01-01

    Many challenges confront intervertebral disk engineering owing to complexity and the presence of extraordinary stresses. Rebuilding a disk of native function could be useful for removal of the symptoms and correction of altered spine kinematics. Improvement in understanding of disk properties and techniques for disk engineering brings promise to the fabrication of a functional motion segment for the treatment of disk degeneration. Increasing sophistication of techniques available in biomedica...

  14. Nonlinear resonant traveling waves in rotating disks

    Institute of Scientific and Technical Information of China (English)

    AlbertC.J.LUO; ChinAnTAN

    2000-01-01

    The resonant conditions for traveling waves in rotating disks are derived. The nonlinear resonant spectrum of a rotating disk is computed from the resonant conditions.Such a resonant spectrum is useful for the disk drive industry to determine the range of operational rotation speed. The resonant wave motions for linear and nonlinear, rotating disks are simulated numerically for a 3.5-inch diameter computer memory disk.

  15. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    We consider new versions of the two-center problem where the input consists of a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. We give exact and approximation algorithms for these versions. © 2011 Springer-Verlag.

  16. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  17. Disk Instabilities and Cooling Fronts

    CERN Document Server

    Vishniac, E T

    1998-01-01

    Accretion disk outbursts, and their subsequent decline, offer a unique opportunity to constrain the physics of angular momentum transport in hot accretion disks. Recent work has centered on the claim by Cannizzo et al. that the exponential decay of luminosity following an outburst in black hole accretion disk systems is only consistent with a particular form for the dimensionless viscosity, $\\alpha=35(c_s/r\\Omega)^{3/2}$. This result can be understood in terms of a simple model of the evolution of cooling fronts in accretion disks. In particular, the cooling front speed during decline is $\\sim cooling front, and the exact value of $n$ depends on the hot state opacity, (although generally $n\\approx 1/2$). Setting this speed proportional to $r$ constrains the functional form of $\\alpha$ in the hot phase of the disk, which sets it apart from previous arguments based on the relative durations of outburst and quiescence. However, it remains uncertain how well we know the exponent $n$. In addition, more work is nee...

  18. Barred disks in dense environments

    CERN Document Server

    Marinova, I; Heiderman, A; Barazza, F D; Gray, M E; Barden, M; Wolf, C; Peng, C Y; Bacon, D; Balogh, M; Bell, E F; Bohm, A; Caldwell, J A R; Haussler, B; Heymans, C; Jahnke, K; van Kampen, E; Koposov, S; Lane, K; McIntosh, D H; Meisenheimer, K; Rix, H -W; Sanchez, S F; Taylor, A; Wisotzki, L; Zheng, X

    2010-01-01

    We investigate the properties of bright (MV <= -18) barred and unbarred disks in the Abell 901/902 cluster system at z~0.165 with the STAGES HST ACS survey. To identify and characterize bars, we use ellipse-fitting. We use visual classification, a Sersic cut, and a color cut to select disk galaxies, and find that the latter two methods miss 31% and 51%, respectively of disk galaxies identified through visual classification. This underscores the importance of carefully selecting the disk sample in cluster environments. However, we find that the global optical bar fraction in the clusters is ~30% regardless of the method of disk selection. We study the relationship of the optical bar fraction to host galaxy properties, and find that the optical bar fraction depends strongly on the luminosity of the galaxy and whether it hosts a prominent bulge or is bulgeless. Within a given absolute magnitude bin, the optical bar fraction increases for galaxies with no significant bulge component. Within each morphological ...

  19. An Observational Perspective of Transitional Disks

    CERN Document Server

    Espaillat, Catherine; Najita, Joan; Andrews, Sean; Zhu, Zhaohuan; Calvet, Nuria; Kraus, Stefan; Hashimoto, Jun; Kraus, Adam; D'Alessio, Paola

    2014-01-01

    Transitional disks are objects whose inner disk regions have undergone substantial clearing. The Spitzer Space Telescope produced detailed spectral energy distributions (SEDs) of transitional disks that allowed us to infer their radial dust disk structure in some detail, revealing the diversity of this class of disks. The growing sample of transitional disks also opened up the possibility of demographic studies, which provided unique insights. There now exist (sub)millimeter and infrared images that confirm the presence of large clearings of dust in transitional disks. In addition, protoplanet candidates have been detected within some of these clearings. Transitional disks are thought to be a strong link to planet formation around young stars and are a key area to study if further progress is to be made on understanding the initial stages of planet formation. Here we provide a review and synthesis of transitional disk observations to date with the aim of providing timely direction to the field, which is about...

  20. The Milky Way's Stellar Disk

    CERN Document Server

    Rix, Hans-Walter

    2013-01-01

    A suite of vast stellar surveys mapping the Milky Way, culminating in the Gaia mission, is revolutionizing the empirical information about the distribution and properties of stars in the Galactic stellar disk. We review and lay out what analysis and modeling machinery needs to be in place to test mechanisms of disk galaxy evolution and to stringently constrain the Galactic gravitational potential, using such Galactic star-by-star measurements. We stress the crucial role of stellar survey selection functions in any such modeling; and we advocate the utility of viewing the Galactic stellar disk as made up from `mono-abundance populations' (MAPs), both for dynamical modeling and for constraining the Milky Way's evolutionary processes. We review recent work on the spatial and kinematical distribution of MAPs, and lay out how further study of MAPs in the Gaia era should lead to a decisively clearer picture of the Milky Way's dark matter distribution and formation history.

  1. C/C composite brake disk nondestructive evaluation by IR thermography

    Science.gov (United States)

    Chu, Tsuchin P.; Poudel, Anish; Filip, Peter

    2012-06-01

    This paper discusses the non-destructive evaluation of thick Carbon/Carbon (C/C) composite aircraft brake disks by using transient infrared thermography (IRT) approach. Thermal diffusivity measurement technique was applied to identify the subsurface anomalies in thick C/C brake disks. In addition, finite element analysis (FEA) modeling tool was used to determine the transient thermal response of the C/C disks that were subjected to flash heating. For this, series of finite element models were built and thermal responses with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models by using custom built in-house IRT system and commercial turnkey system. The analysis and experimental results showed good correlation between thermal diffusivity value and anomalies within the disk. It was demonstrated that the step-heating transient thermal approach could be effectively applied to obtain the whole field thermal diffusivity value of C/C composites.

  2. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  3. Theory of Protostellar Disk Fromation

    Science.gov (United States)

    Li, Zhi-Yun

    2015-08-01

    Disk formation, once thought to be a simple consequence of the conservation of angular momentum during the hydrodynamic core collapse, is far more subtle in magnetized gas. In this case, the rotation can be strongly magnetically braked. Indeed, both analytic arguments and numerical simulations have shown that disk formation is suppressed in strict ideal MHD for the observed level of core magnetization. I will discuss the physical reason for this so-called "magnetic braking catastrophe," and review possible resolutions to this problem that have been proposed so far, including non-ideal MHD effects, misalignment between the magnetic field and rotation axis, and especially turbulence.

  4. The Herschel Cold Debris Disks

    CERN Document Server

    Gaspar, Andras

    2013-01-01

    The Herschel "DUst around NEarby Stars (DUNES)" survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue we carefully examine the alternative explanation, that the detections arise from confusion with IR cirrus and/or background galaxies that are not physically associated with the foreground star. We find that such an explanation is consistent with all of these detections.

  5. Planet-disk interaction and orbital evolution

    CERN Document Server

    Kley, W

    2012-01-01

    As planets form and grow within gaseous protoplanetary disks, the mutual gravitational interaction between the disk and planet leads to the exchange of angular momentum, and migration of the planet. We review current understanding of disk-planet interactions, focussing in particular on physical processes that determine the speed and direction of migration. We describe the evolution of low mass planets embedded in protoplanetary disks, and examine the influence of Lindblad and corotation torques as a function of the disk properties. The role of the disk in causing the evolution of eccentricities and inclinations is also discussed. We describe the rapid migration of intermediate mass planets that may occur as a runaway process, and examine the transition to gap formation and slower migration driven by the viscous evolution of the disk for massive planets. The roles and influence of disk self-gravity and magnetohydrodynamic turbulence are discussed in detail, as a function of the planet mass, as is the evolution...

  6. Vortex migration in protoplanetary disks

    CERN Document Server

    Paardekooper, S -J; Papaloizou, J C B

    2010-01-01

    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migrat...

  7. Spaceflight optical disk recorder development

    Science.gov (United States)

    Jurczyk, Stephen G.; Hines, Glenn D.; Shull, Thomas A.

    1992-01-01

    Mass memory systems based on rewriteable optical disk media are expected to play an important role in meeting the data system requirements for future NASA spaceflight missions. NASA has established a program to develop a high performance (high rate, large capacity) optical disk recorder focused on use aboard unmanned Earth orbiting platforms. An expandable, adaptable system concept is proposed based on disk drive modules and a modular controller. Drive performance goals are 10 gigabyte capacity, 300 megabit/s transfer rate, 10 exp -12 corrected bit error rate, and 150 millisec access time. This performance is achieved by writing eight data tracks in parallel on both sides of a 14 in. optical disk using two independent heads. System goals are 160 gigabyte capacity, 1.2 gigabits/s data rate with concurrent I/O, 250 millisec access time, and two to five year operating life on orbit. The system can be configured to meet various applications. This versatility is provided by the controller. The controller provides command processing, multiple drive synchronization, data buffering, basic file management, error processing, and status reporting. Technology developments, design concepts, current status including a computer model of the system and a Controller breadboard, and future plans for the Drive and Controller are presented.

  8. Gas Evolution in Protoplanetary Disks

    NARCIS (Netherlands)

    Woitke, Peter; Dent, Bill; Thi, Wing-Fai; Sibthorpe, Bruce; Rice, Ken; Williams, Jonathan; Sicilia-Aguilar, Aurora; Brown, Joanna; Kamp, Inga; Pascucci, Ilaria; Alexander, Richard; Roberge, Aki

    2009-01-01

    This article summarizes a Splinter Session at the Cool Stars XV conference in St. Andrews with 3 review and 4 contributed talks. The speakers have discussed various approaches to understand the structure and evolution of the gas component in protoplanetary disks. These ranged from observational spec

  9. Creation of ultra-high-pressure shocks by the collision of laser-accelerated disks: experiment and theory

    International Nuclear Information System (INIS)

    We have used the SHIVA laser system to accelerate carbon disks to speeds in excess of 100 km/sec. The 3KJ/3 ns pulse, on a 1 mm diameter spot of a single disk produced a conventional shock of about 5 MB. The laser energy can, however, be stored in kinetic motion of this accelerated disk and delivered (reconverted to thermal energy) upon impact with another carbon disk. This collision occurs in a time much shorter than the 3 ns pulse, thus acting as a power amplifier. The shock pressures measured upon impact are estimated to be in the 20 MB range, thus demonstrating the amplification power of this colliding disk technique in creating ultra-high pressures. Theory and computer simulations of this process will be discussed, and compared with the experiment

  10. Optimization of the Processing of Mo Disks

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Harvey, James [NorthStar Medical Technologies, LLC, Madison, WI (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  11. A Note on Bimodal Accretion Disks

    OpenAIRE

    Dullemond, C.P.; Turolla, R.

    1998-01-01

    The existence of bimodal disks is investigated. Following a simple argument based on energetic considerations we show that stationary, bimodal accretion disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an advection dominated accretion flow (ADAF) at smaller radii are never possible using the standard slim disk approach, unless some extra energy flux is present. The same argument, however, predicts the possibility of a transition from an outer Shapiro--Lightman--Eardle...

  12. PSOCT studies of intervertebral disk

    Science.gov (United States)

    Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.

    2004-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.

  13. Optical Disk Formats: A Briefing. ERIC Digest.

    Science.gov (United States)

    Schamber, Linda

    This digest begins with a brief description and review of the development of optical disks. Optical disk formats are then described by capability: Read Only Memory (ROM), Write Once, Read Many (WORM), Interactive (I), and Erasable (E); forms of information (audio, text or data, video or graphics, or a combination); and disk size (most often 12 or…

  14. Growing and moving planets in disks

    NARCIS (Netherlands)

    Paardekooper, Sijme-Jan

    2006-01-01

    Planets form in disks that are commonly found around young stars. The intimate relationship that exists between planet and disk can account for a lot of the exotic extrasolar planetary systems known today. In this thesis we explore disk-planet interaction using numerical hydrodynamical simulations.

  15. Electromagnetic design of a conducting disk

    Energy Technology Data Exchange (ETDEWEB)

    Astakhov, V.I.

    1985-07-01

    Materials are presented which can serve as the basis for calculation of the electromagnetic process occurring in a conducting disk, an important part of many electrical devices. An integral equation is derived for the eddy currents in the disk and the transient electromagnetic process in the disk resulting from a change in applied magnetic field upon switching or disconnection of power sources is calculated.

  16. Thermal radiation from an accretion disk

    OpenAIRE

    Prigara, F. V.

    2003-01-01

    An effect of stimulated radiation processes on thermal radiation from an accretion disk is considered. The radial density waves triggering flare emission and producing quasi-periodic oscillations in radiation from an accretion disk are discussed. It is argued that the observational data suggest the existence of the weak laser sources in a two-temperature plasma of an accretion disk.

  17. Circumplanetary disks around young giant planets: a comparison between core-accretion and disk instability

    CERN Document Server

    Szulágyi, J; Quinn, T

    2016-01-01

    Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks a...

  18. Two Disk Components from a Gas Rich Disk-Disk Merger

    CERN Document Server

    Brook, C; Kawata, D; Martel, H; Gibson, B K; Brook, Chris; Richard, Simon; Kawata, Daisuke; Martel, Hugo

    2006-01-01

    We employ N-body, smoothed particle hydrodynamical simulations, including detailed treatment of chemical enrichment, to follow a gas-rich merger which results in a galaxy with disk morphology. We trace the kinematic, structural and chemical properties of stars formed before, during, and after the merger. We show that such a merger produces two exponential disk components, with the older, hotter component having a scale-length 20% larger than the later-forming, cold disk. Rapid star formation during the merger quickly enriches the protogalactic gas reservoir, resulting in high metallicities of the forming stars. These stars form from gas largely polluted by Type II supernovae, which form rapidly in the merger-induced starburst. After the merger, a thin disk forms from gas which has had time to be polluted by Type Ia supernovae. Abundance trends are plotted, and we examine the proposal that increased star formation during gas-rich mergers may explain the high alpha-to-iron abundance ratios which exist in the re...

  19. The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime

    Science.gov (United States)

    Walsh, Catherine; Nomura, Hideko; van Dishoeck, Ewine

    2015-10-01

    Context. Near- to mid-infrared observations of molecular emission from protoplanetary disks show that the inner regions are rich in small organic volatiles (e.g., C2H2 and HCN). Trends in the data suggest that disks around cooler stars (Teff ≈ 3000 K) are potentially (i) more carbon-rich; and (ii) more molecule-rich than their hotter counterparts (Teff ≳ 4000 K). Aims: We explore the chemical composition of the planet-forming region (gas-grain chemical network to map the molecular abundances in the planet-forming zone. The effects of (i) N2 self shielding; (ii) X-ray-induced chemistry; and (iii) initial abundances, are investigated. The chemical composition in the "observable" atmosphere is compared with that in the disk midplane where the bulk of the planet-building reservoir resides. Results: M dwarf disk atmospheres are relatively more molecule rich than those for T Tauri or Herbig Ae disks. The weak far-UV flux helps retain this complexity which is enhanced by X-ray-induced ion-molecule chemistry. N2 self shielding has only a small effect in the disk molecular layer and does not explain the higher C2H2/HCN ratios observed towards cooler stars. The models underproduce the OH/H2O column density ratios constrained in Herbig Ae disks, despite reproducing (within an order of magnitude) the absolute value for OH: the inclusion of self shielding for H2O photodissociation only increases this discrepancy. One possible explanation is the adopted disk structure. Alternatively, the "hot" H2O (T ≳ 300 K) chemistry may be more complex than assumed. The results for the atmosphere are independent of the assumed initial abundances; however, the composition of the disk midplane is sensitive to the initial main elemental reservoirs. The models show that the gas in the inner disk is generally more carbon rich than the midplane ices. This effect is most significant for disks around cooler stars. Furthermore, the atmospheric C/O ratio appears larger than it actually is when

  20. The Geologic History of Mars: An Astrobiology Perspective

    Science.gov (United States)

    Gibson, Everett K.; Westall, Frances; McKay, David S.; Thomas-Keprta, Kathie; Socki, Richard A.

    2000-01-01

    Fourteen SNC meteorites contain information which must be incorporated with recent spaceflight data for developing Mars' geologic history. SNCs have crystallization ages of 4500 to 160 m.y. Tle oldest meteorite ALH84001 contains information on the Noachian period of Mars' history. There are no meteorites from the Hesperian period and the remaining 13 meteorites fall into two age groups within the Amazonian: The nakhlites around 1300 m.y. and the shergottites between 800-160 m.y. Oxygen isotopic analysis of Martian samples shows two distinct O2 reservoirs throughout Martian history indicating late additions of volatiles and a lack of plate tectonics prior to 3.9 Gy. Evidence for percolation of aqueous brines through impact-produced fractures in the rocky surface is contained in the 3.9 Gy-old ALH84001 carbonate deposits. These carbonates precipitated at approx. 100 C. At this time life had already evolved on Earth. Early Mars could have hosted life similar to the bacteria that inhabited early Earth. Potential microorganisms could have been transported into fractures by carbonate-bearing waters and their remains could have become incorporated into the precipitated carbonate. Since Mars had a weak magnetic field at this time, it can be hypothesized that some of the Martian microorganisms may have been similar to terrestrial magnetotactic bacteria. Over geologic time episodic cratering, and tectonic events have occurred on Mars along with the periodic release of subsurface waters which may have produced clays within SNC meteorites. The geochemical data contained within SNC meteorites complements previous observational data and the recent Mars Global Surveyor data to provide a geological and environmental history which spans almost the entire lifespan on Mars. One of the outstanding features of this model is the possible creation of an early (about 4 Gy) volatile reservoir distinct from the outgassed Mars volatiles, and the persistence of this reservoir throughout most

  1. Warped circumbinary disks in active galactic nuclei

    International Nuclear Information System (INIS)

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10–2 pc to 10–4 pc for 107 M☉ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  2. Accretion disks in Algols: progenitors and evolution

    CERN Document Server

    Van Rensbergen, W

    2016-01-01

    There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. We investigate the origin and evolution of 6 Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Initial parameters for 6 Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. When RLOF starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  3. Meridional circulation in turbulent protoplanetary disks

    CERN Document Server

    Fromang, Sebastien; Masset, Frederic

    2011-01-01

    Based on viscous disk theory, a number of recent studies have suggested the existence of a large scale meridional circulation in protoplanetary disks. Such a flow could account for the presence of crystalline silicates, among which Calcium and Aluminium-rich Inclusions (CAIs), at large distances from the sun. This paper aims at examining whether such large scale flows exist in turbulent protoplanetary disks. High resolution global hydrodynamical and magnetohydrodynamical numerical simulations of turbulent protoplanetary disks are used to infer the properties of the flow in such disks. By performing hydrodynamic simulations using explicit viscosity, we demonstrate that our numerical setup does not suffer from any numerical artifact. The aforementioned meridional circulation is readily recovered in viscous and laminar disks. In MHD simulations, the magneto-rotational instability drives turbulence in the disks. Averaging out the turbulent fluctuations over long timescale, the results fail to show any large scale...

  4. The Evolving Structure of Galactic Disks

    CERN Document Server

    Martel, H; McGee, S; Gibson, B; Kawata, D; Martel, Hugo; Brook, Chris; Gee, Sean Mc; Gibson, Brad

    2005-01-01

    Observations suggest that the structural parameters of disk galaxies have not changed greatly since redshift 1. We examine whether these observations are consistent with a cosmology in which structures form hierarchically. We use SPH/N-body galaxy-scale simulations to simulate the formation and evolution of Milky-Way-like disk galaxies by fragmentation, followed by hierarchical merging. The simulated galaxies have a thick disk, that forms in a period of chaotic merging at high redshift, during which a large amount of alpha-elements are produced, and a thin disk, that forms later and has a higher metallicity. Our simulated disks settle down quickly and do not evolve much since redshift z~1, mostly because no major mergers take place between z=1 and z=0. During this period, the disk radius increases (inside-out growth) while its thickness remains constant. These results are consistent with observations of disk galaxies at low and high redshift.

  5. A Supersymmetric Dark Disk Universe

    CERN Document Server

    Fischler, Willy; Tangarife, Walter

    2014-01-01

    We present a model of partially interacting dark matter (PIDM) within the framework of supersymmetry with gauge mediated symmetry breaking. Dark sector atoms are produced through Affleck-Dine baryogenesis in the dark sector while avoiding the production of Q-ball relics. We discuss the astrophysical constraints relevant for this model and the possibility of dark galactic disk formation. In addition, jet emission from rotating black holes is discussed in the context of this class of models.

  6. Regression of lumbar disk herniation

    Directory of Open Access Journals (Sweden)

    G. Yu Evzikov

    2015-01-01

    Full Text Available Compression of the spinal nerve root, giving rise to pain and sensory and motor disorders in the area of its innervation is the most vivid manifestation of herniated intervertebral disk. Different treatment modalities, including neurosurgery, for evolving these conditions are discussed. There has been recent evidence that spontaneous regression of disk herniation can regress. The paper describes a female patient with large lateralized disc extrusion that has caused compression of the nerve root S1, leading to obvious myotonic and radicular syndrome. Magnetic resonance imaging has shown that the clinical manifestations of discogenic radiculopathy, as well myotonic syndrome and morphological changes completely regressed 8 months later. The likely mechanism is inflammation-induced resorption of a large herniated disk fragment, which agrees with the data available in the literature. A decision to perform neurosurgery for which the patient had indications was made during her first consultation. After regression of discogenic radiculopathy, there was only moderate pain caused by musculoskeletal diseases (facet syndrome, piriformis syndrome that were successfully eliminated by minimally invasive techniques. 

  7. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  8. The Earliest Stage of Planet Formation: Disk-Planet Interactions in Protoplanetary Disks and Observations of Transitional Disks

    Science.gov (United States)

    Dong, Ruobing; Rafikov, R.; Stone, J. M.; Hartmann, L. W.; SEEDS Team

    2013-01-01

    I will first talk about numerical simulations of disk-planet interactions in protoplanetary disks. Particularly, I’ll discuss the damping of the density waves excited by planets due to the nonlinearity in their propagation, which can result in gap opening in a low viscosity disk by low mass planets. I'll also discuss the effects of various numerical algorithms and parameters in simulations of disk-planet interaction, and address the question of how to produce correct simulations. Then I’ll move on to recent Subaru observations of transitional disks, which are protoplanetary disks with central depleted regions (cavities). Several ideas on the formation of transitional disks have been proposed, including gaps opened by planet(s). Recently, Subaru directly imaged a number of such disks at near infrared (NIR) wavelengths (the SEEDS project) with high spatial resolution and small inner working angles. Using radiative transfer simulations, we study the structure of transitional disks by modeling the NIR images, the SED, and the sub-mm observations from literature (whenever available) simultaneously. We obtain physical disk+cavity structures, and constrain the spatial distribution of the dust grains, particularly inside the cavity and at the cavity edge. Interestingly, we find that in some cases cavities are not present in the scattered light. In such cases we present a new transitional disk model to simultaneously account for all observations. Decoupling between the sub-um-sized and mm-sized grains inside the cavity is required, which may necessitate the dust filtration mechanism. For another group of transitional disks in which Subaru does reveal the cavities at NIR, we focus on whether grains at different sizes have the same spatial distribution or not. We use our modeling results to constrain transitional disk formation theories, particularly to comment on their possible planets origin.

  9. Braking the Gas in the beta Pictoris Disk

    CERN Document Server

    Fern'andez, R; Wu, Y; Brandeker, Alexis; Fern\\'andez, Rodrigo

    2006-01-01

    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in t...

  10. A Major Asymmetric Dust Trap in a Transition Disk

    CERN Document Server

    van der Marel, Nienke; Bruderer, Simon; Birnstiel, Til; van Kempen, Tim A; Schmalzl, Markus; Brown, Joanna M; Herczeg, Gregory J; Mathews, Geoffrey S; Geers, Vincent

    2013-01-01

    The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter-wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.

  11. Magnetotactic bacteria on Earth and on Mars.

    Science.gov (United States)

    McKay, Christopher P; Friedmann, E Imre; Frankel, Richard B; Bazylinski, Dennis A

    2003-01-01

    Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.

  12. Mineralization of Bacteria in Terrestrial Basaltic Rocks: Comparison With Possible Biogenic Features in Martian Meteorite Allan Hills 84001

    Science.gov (United States)

    Thomas-Keprta, K. L.; McKay, D. S.; Wentworth, S. J.; Stevens, T. O.; Taunton, A. E.; Allen, C. C.; Gibson, E. K., Jr.; Romanek, C. S.

    1998-01-01

    The identification of biogenic features altered by diagenesis or mineralization is important in determining whether specific features in terrestrial rocks and in meteorites may have a biogenic origin. Unfortunately, few studies have addressed the formation of biogenic features in igneous rocks, which may be important to these phenomena, including the controversy over possible biogenic features in basaltic martian meteorite ALH84001. To explore the presence of biogenic features in igneous rocks, we examined microcosms growing in basaltic small-scale experimental growth chambers or microcosms. Microbial communities were harvested from aquifers of the Columbia River Basalt (CRB) group and grown in a microcosm containing unweathered basalt chips and groundwater (technique described in. These microcosms simulated natural growth conditions in the deep subsurface of the CRB, which should be a good terrestrial analog for any putative martian subsurface ecosystem that may have once included ALH84001. Here we present new size measurements and photomicrographs comparing the putative martian fossils to biogenic material in the CRB microcosms. The range of size and shapes of the biogenic features on the CRB microcosm chips overlaps with and is similar to those on ALH84001 chips. Although this present work does not provide evidence for the biogenicity of ALH84001 features, we believe that, based on criteria of size, shape, and general morphology, a biogenic interpretation for the ALH84001 features remains plausible.

  13. Probing the structure and dynamics of B[e] supergiant stars' disks

    Science.gov (United States)

    Kraus, M.

    2016-08-01

    B[e] supergiants are a group of evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulates in a circumstellar ring or disk-like structure, revolving around the star on Keplerian orbits. In most objects, the disks seem to be stable over many decades. This guarantees these disks as ideal chemical laboratories to study molecule formation and dust condensation. Combining high-resolution optical and infrared spectroscopic data allows to search for emission features that trace the disk structure, kinematics, and chemical composition at different distances from the star. Certain forbidden emission lines of singly ionized or neutral metals, such as [Caii] and [Oi], are ideal tracers for the innermost gaseous (atomic) regions. Farther out, molecules form. While first-overtone bands of carbon monoxide (CO) mark the hot, inner rim of the molecular disk, more molecules are expected to form and to fill the space between the CO emitting region and the dust condensation zone. Observing campaigns have been initiated to search for these molecules and their emission features, in order to construct a global picture of the properties of the disks around B[e] supergiants. This paper presents an overview of the status of our knowledge about the structure and kinematics of B[e] supergiant stars' disks, based on currently available information from different observational tracers.

  14. Non-LTE spectral models for the gaseous debris-disk component of Ton 345

    CERN Document Server

    Hartmann, S; Rauch, T; Werner, K

    2014-01-01

    For a fraction of single white dwarfs with debris disks, an additional gaseous disk was discovered. Both dust and gas are thought to be created by the disruption of planetary bodies. The composition of the extrasolar planetary material can directly be analyzed in the gaseous disk component, and the disk dynamics might be accessible by investigating the temporal behavior of the Ca II infrared emission triplet, hallmark of the gas disk. We obtained new optical spectra for the first helium-dominated white dwarf for which a gas disk was discovered (Ton 345) and modeled the non-LTE spectra of viscous gas disks composed of carbon, oxygen, magnesium, silicon, sulfur, and calcium with chemical abundances typical for solar system asteroids. Iron and its possible line-blanketing effects on the model structure and spectral energy distribution was still neglected. A set of models with different radii, effective temperatures, and surface densities as well as chondritic and bulk-Earth abundances was computed and compared w...

  15. Herschel detects oxygen in the β Pictoris debris disk

    Science.gov (United States)

    Brandeker, A.; Cataldi, G.; Olofsson, G.; Vandenbussche, B.; Acke, B.; Barlow, M. J.; Blommaert, J. A. D. L.; Cohen, M.; Dent, W. R. F.; Dominik, C.; Di Francesco, J.; Fridlund, M.; Gear, W. K.; Glauser, A. M.; Greaves, J. S.; Harvey, P. M.; Heras, A. M.; Hogerheijde, M. R.; Holland, W. S.; Huygen, R.; Ivison, R. J.; Leeks, S. J.; Lim, T. L.; Liseau, R.; Matthews, B. C.; Pantin, E.; Pilbratt, G. L.; Royer, P.; Sibthorpe, B.; Waelkens, C.; Walker, H. J.

    2016-06-01

    The young star β Pictoris is well known for its dusty debris disk produced through collisional grinding of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star; this gas is likely the result of vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio that is 20 × higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent withthat previously reported observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher density region in the disk, perhaps in the shape of a clump or a dense torus required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by the Atacama Large Millimeter/submillimeter Array in the disk and that the redistribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. Thin disk lasers: history and prospects

    Science.gov (United States)

    Speiser, Jochen

    2016-04-01

    During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.

  17. Ring shaped dust accumulation in transition disks

    CERN Document Server

    Pinilla, P; Birnstiel, T

    2012-01-01

    Context.Transition disks are believed to be the final stages of protoplanetary disks, during which a forming planetary system or photoevaporation processes open a gap in the inner disk, drastically changing the disk structure. From theoretical arguments it is expected that dust growth, fragmentation and radial drift are strongly influenced by gas disk structure, and pressure bumps in disks have been suggested as key features that may allow grains to converge and grow efficiently. Aims. We want to study how the presence of a large planet in a disk influences the growth and radial distribution of dust grains, and how observable properties are linked to the mass of the planet. Methods. We combine two-dimensional hydrodynamical disk simulations of disk-planet interactions with state-of-the-art coagulation/fragmentation models to simulate the evolution of dust in a disk which has a gap created by a massive planet. We compute images at different wavelengths and illustrate our results using the example of the transi...

  18. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  19. Secular Planetary Perturbations in Circumstellar Debris Disks

    Science.gov (United States)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  20. Generalized Similarity for Accretion/Decretion Disks

    Science.gov (United States)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  1. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  2. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  3. Counterrotating Stars in Simulated Galaxy Disks

    CERN Document Server

    Algorry, David G; Abadi, Mario G; Sales, Laura V; Steinmetz, Matthias; Piontek, Franziska

    2013-01-01

    Counterrotating stars in disk galaxies are a puzzling dynamical feature whose origin has been ascribed to either satellite accretion events or to disk instabilities triggered by deviations from axisymmetry. We use a cosmological simulation of the formation of a disk galaxy to show that counterrotating stellar disk components may arise naturally in hierarchically-clustering scenarios even in the absence of merging. The simulated disk galaxy consists of two coplanar, overlapping stellar components with opposite spins: an inner counterrotating bar-like structure made up mostly of old stars surrounded by an extended, rotationally-supported disk of younger stars. The opposite-spin components originate from material accreted from two distinct filamentary structures which at turn around, when their net spin is acquired, intersect delineating a "V"-like structure. Each filament torques the other in opposite directions; the filament that first drains into the galaxy forms the inner counterrotating bar, while material ...

  4. Non-isothermal effects on Be disks

    CERN Document Server

    Vieira, Rodrigo G; Bjorkman, Jon E

    2016-01-01

    In the last decade, the viscous decretion disk model has emerged as the new paradigm for Be star disks. In this contribution, we propose a simple analytical model to estimate the continuum infrared excess arising from these circumstellar disks, in the light of the currently accepted scenario. We demonstrate that the disk can be satisfactorily described by a two component system: an inner optically thick region, which we call the pseudo-photosphere, and a diffuse outer part. In particular, a direct connexion between the disk brightness profile and the thermal structure is derived, and then confronted to realistic numerical simulations. This result quantifies how the non-isothermality of the disk ultimately affects both infrared measured fluxes and visibilities.

  5. Dusty Disks around White Dwarfs I: Origin of Debris Disks

    CERN Document Server

    Dong, Ruobing; Lin, D N C; Liu, X -W

    2010-01-01

    A significant fraction of the mature FGK stars have cool dusty disks at least an orders of magnitudes brighter than the solar system's outer zodiacal light. Since such dusts must be continually replenished, they are generally assumed to be the collisional fragments of residual planetesimals analogous to the Kuiper Belt objects. At least 10% of solar type stars also bear gas giant planets. The fraction of stars with known gas giants or detectable debris disks (or both) appears to increase with the stellar mass. Here, we examine the dynamical evolution of systems of long-period gas giant planets and residual planetesimals as their host stars evolve off the main sequence, lose mass, and form planetary nebula around remnant white dwarf cores. The orbits of distant gas giant planets and super-km-size planetesimals expand adiabatically. During the most intense AGB mass loss phase, sub-meter-size particles migrate toward their host stars due to the strong hydrodynamical drag by the intense stellar wind. Along their ...

  6. DNA纳米网络修饰碳纤维盘电极及其分子传感应用%DNA Nano-netting modification on carbon fiber disk electrode and application for molecular sensing

    Institute of Scientific and Technical Information of China (English)

    林祥钦; 蒋晓华; 鲁理平

    2003-01-01

      DNA immobilization on electrode surfaces has been widely used for fabricating sensors since DNA can interact with a wide variety of biomolecules. Recendy, DNA has been demonstrated as an electronic super conductor and become the most promising biomolecule for application of chemical sensing in biological system. Calf thymus DNA (ct-DNA) is a most popularly used native DNA in many applications. An electrochemical deposition on carbon fiber micro electrode can provide sensitive detection of dopamine in presence of large amount of ascorbic acid.……

  7. Floating-disk parylene micro check valve

    OpenAIRE

    Chen, Po-Jui; Tai, Yu-Chong

    2008-01-01

    A novel micro check valve which has nearly ideal fluidic shunting behaviors is presented. Featuring a parylene-based floating disk, this surface-micromachined check valve ultimately realizes both zero forward cracking pressure and zero reverse leakage in fluidic operations. Two different floating disk designs have been implemented to demonstrate functionality of the microvalve. Experimental data of underwater testing successfully show that in-channel floating-disk valv...

  8. Disk access controller for Multi 8 computer

    International Nuclear Information System (INIS)

    After having presented the initial characteristics and weaknesses of the software provided for the control of a memory disk coupled with a Multi 8 computer, the author reports the development and improvement of this controller software. He presents the different constitutive parts of the computer and the operation of the disk coupling and of the direct access to memory. He reports the development of the disk access controller: software organisation, loader, subprograms and statements

  9. Molecular Gas in Young Debris Disks

    Science.gov (United States)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  10. Vertical dynamics of disk galaxies in MOND

    OpenAIRE

    Nipoti, Carlo; Londrillo, Pasquale; Zhao, HongSheng; Ciotti, Luca

    2007-01-01

    We investigate the possibility of discriminating between Modified Newtonian Dynamics (MOND) and Newtonian gravity with dark matter, by studying the vertical dynamics of disk galaxies. We consider models with the same circular velocity in the equatorial plane (purely baryonic disks in MOND and the same disks in Newtonian gravity embedded in spherical dark matter haloes), and we construct their intrinsic and projected kinematical fields by solving the Jeans equations under the assumption of a t...

  11. Regulering af jødiske kroppe

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2014-01-01

    Formålet med artiklen er at beskrive og forklare, hvordan jødiske kroppe reguleres, og på hvilke præmisser tolerance over for afvigende kroppe opstår i en jødisk kontekst. Artiklens materiale udgøres af israelitisk-jødiske kropsopfattelser fra Mosebøgerne til den tidlige rabbinske litteratur, hvo...

  12. Counting of 90Sr on SPE Disks

    Institute of Scientific and Technical Information of China (English)

    YANG; Su-liang; SUN; Hong-qing; DING; You-qian; YANG; Zhi-hong; ZHANG; Sheng-dong

    2012-01-01

    <正>90 Sr on SPE disks may be counted by either liquid scintillation or proportional counting. These two methods have both been employed in literature, but detailed description about counting conditions and efficiencies were not presented. In this work, counting efficiency using liquid scintillation counting was determined. The counting efficiency of 90Sr on SPE disks was approximately 99% by scintillation counting, which implied that the effect of self-adsorption of disk was negligible.

  13. Quasar Accretion Disks Are Strongly Inhomogeneous

    OpenAIRE

    Dexter, Jason; Agol, Eric

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with l...

  14. Uncommon Manifestations of Intervertebral Disk Pathologic Conditions.

    Science.gov (United States)

    Diehn, Felix E; Maus, Timothy P; Morris, Jonathan M; Carr, Carrie M; Kotsenas, Amy L; Luetmer, Patrick H; Lehman, Vance T; Thielen, Kent R; Nassr, Ahmad; Wald, John T

    2016-01-01

    Beyond the familiar disk herniations with typical clinical features, intervertebral disk pathologic conditions can have a wide spectrum of imaging and clinical manifestations. The goal of this review is to illustrate and discuss unusual manifestations of intervertebral disk pathologic conditions that radiologists may encounter, including disk herniations in unusual locations, those with atypical imaging features, and those with uncommon pathophysiologic findings. Examples of atypical disk herniations presented include dorsal epidural, intradural, symptomatic thoracic (including giant calcified), extreme lateral (retroperitoneal), fluorine 18 fluorodeoxyglucose-avid, acute intravertebral (Schmorl node), and massive lumbar disk herniations. Examples of atypical pathophysiologic conditions covered are discal cysts, fibrocartilaginous emboli to the spinal cord, tiny calcified disks or disk-level spiculated osteophytes causing spinal cerebrospinal fluid (CSF) leak and intracranial hypotension, and pediatric acute calcific discitis. This broad gamut of disease includes a variety of sizes of disk pathologic conditions, from the tiny (eg, the minuscule calcified disks causing high-flow CSF leaks) to the extremely large (eg, giant calcified thoracic intradural disk herniations causing myelopathy). A spectrum of clinical acuity is represented, from hyperacute fibrocartilaginous emboli causing spinal cord infarct, to acute Schmorl nodes, to chronic intradural herniations. The entities included are characterized by a range of clinical courses, from the typically devastating cord infarct caused by fibrocartilaginous emboli, to the usually spontaneously resolving pediatric acute calcific discitis. Several conditions have important differential diagnostic considerations, and others have relatively diagnostic imaging findings. The pathophysiologic findings are well understood for some of these entities and poorly defined for others. Radiologists' knowledge of this broad scope of

  15. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds

    DEFF Research Database (Denmark)

    Jensen, Vibeke Frøkjær; Beck, S.; Christensen, K.A.;

    2008-01-01

    Objective-To quantify the association between intervertebral disk calcification and disk herniation in Dachshunds. Design-Longitudinal study. Animals-61 Dachshunds that had been radiographically screened for calcification of intervertebral disks at 2 years of age in other studies. Thirty......-seven of the dogs had survived to the time of the present study and were >= 8 years of age; 24 others had not survived. Procedures-Radiographic examination of 36 surviving dogs was performed, and information on occurrence of disk calcification at 2 years of age were obtained from records of all 61 Dachshunds....... Information on occurrence of disk herniation between 2 and 8 years of age was obtained from owners via questionnaire. Associations between numbers of calcified disks and disk herniation were analyzed via maximum likelihood logistic regression. Results-Disk calcification at 2 years of age was a significant...

  16. Volatile-Rich Circumstellar Gas in the Unusual 49 Ceti Debris Disk

    CERN Document Server

    Roberge, Aki; Kamp, Inga; Weinberger, Alycia J; Grady, Carol A

    2014-01-01

    We present Hubble Space Telescope STIS far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing sub-mm CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight CI column density, estimated the total carbon column density, and set limits on the OI column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in the line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of Beta Pictoris.

  17. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    CERN Document Server

    Nesvold, Erika R; Vican, Laura; Farr, Will M

    2016-01-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles' eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare t...

  18. Chemical history of molecules in circumstellar disks

    OpenAIRE

    Visser, Ruud; van Dishoeck, Ewine F.; Doty, Steven D.

    2011-01-01

    The chemical composition of a protoplanetary disk is determined not only by in situ chemical processes during the disk phase, but also by the history of the gas and dust before it accreted from the natal envelope. In order to understand the disk's chemical composition at the time of planet formation, especially in the midplane, one has to go back in time and retrace the chemistry to the molecular cloud that collapsed to form the disk and the central star. Here we present a new astrochemical m...

  19. Evaluation of powder metallurgy superalloy disk materials

    Science.gov (United States)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  20. Generalized Similarity for Accretion/Decretion Disks

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post main sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects - circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc. - feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and non-linear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter $\\lambda$, which is uniquely related to the degree, to which the...

  1. The Galactic Thick Disk Stellar Abundances

    CERN Document Server

    Prochaska, J X; Carney, B W; McWilliam, A; Wolfe, A M; Prochaska, Jason X.; Naumov, Sergei O.; Carney, Bruce W.; William, Andrew Mc; Wolfe, Arthur M.

    2000-01-01

    We present first results from a program to measure the chemical abundances of a large (N>30) sample of thick disk stars with the principal goal of investigating the formation history of the Galactic thick disk. Our analysis confirms previous studies of O and Mg in the thick disk stars which reported enhancements in excess of the thin disk population. Furthermore, the observations of Si, Ca, Ti, Mn, Co, V, Zn, Al, and Eu all argue that the thick disk population has a distinct chemical history from the thin disk. With the exception of V and Co, the thick disk abundance patterns match or tend towards the values observed for halo stars with [Fe/H]~-1. This suggests that the thick disk stars had a chemical enrichment history similar to the metal-rich halo stars. With the possible exception of Si, the thick disk abundance patterns are in excellent agreement with the chemical abundances observed in the metal-poor bulge stars suggesting the two populations formed from the same gas reservoir at a common epoch. We disc...

  2. Characterisation of the Galactic thick disk

    CERN Document Server

    Bensby, Thomas

    2013-01-01

    Thick disks appear to be common in external large spiral galaxies and our own Milky Way also hosts one. The existence of a thick disk is possibly directly linked to the formation history of the host galaxy and if its properties is known it can constrain models of galaxy formation and help us to better understand galaxy formation and evolution. This brief review attempts to highlight some of the characteristics of the Galactic thick disk and how it relates to other stellar populations such as the thin disk and the Galactic bulge. Focus has been put on results from high-resolution spectroscopic data obtained during the last 10 to 15 years.

  3. Hyperaccreting Neutron-Star Disks, Magnetized Disks and Gamma-Ray Bursts

    OpenAIRE

    Zhang, Dong

    2009-01-01

    This thesis focuses on the study of the hyperaccreting neutron-star disks and magnetized accretion flows. It is usually proposed that hyperaccreting disks surrounding stellar-mass black holes with a huge accretion rate are central engines of gamma-ray bursts (GRBs). However, hyperaccretion disks around neutron stars may exist in some GRB formation scenarios. We study the structure and neutrino emission of a hyperaccretion disk around a neutron star. We consider a steady-state hyperaccretion d...

  4. Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes.

    Science.gov (United States)

    Taylor, A P; Barry, J C

    2004-02-01

    The organic matrix surrounding bullet-shaped, cubo-octahedral, D-shaped, irregular arrowhead-shaped, and truncated hexa-octahedral magnetosomes was analysed in a variety of uncultured magnetotactic bacteria. The matrix was examined using low- (80 kV) and intermediate- (400 kV) voltage TEM. It encapsulated magnetosomes in dehydrated cells, ultraviolet-B-irradiated dehydrated cells and stained resin-embedded fixed cells, so the apparent structure of the matrix does not appear to be an artefact of specimen preparation. High-resolution images revealed lattice fringes in the matrix surrounding magnetite and greigite magnetosomes that were aligned with lattice fringes in the encapsulated magnetosomes. In all except one case, the lattice fringes had widths equal to or twice the width of the corresponding lattice fringes in the magnetosomes. The lattice fringes in the matrix were aligned with the [311], [220], [331], [111] and [391] related lattice planes of magnetite and the [222] lattice plane of greigite. An unidentified material, possibly an iron hydroxide, was detected in two immature magnetosomes containing magnetite. The unidentified phase had a structure similar to that of the matrix as it contained [311], [220] and [111] lattice fringes, which indicates that the matrix acts as a template for the spatially controlled biomineralization of the unidentified phase, which itself transforms into magnetite. The unidentified phase was thus called pre-magnetite. The presence of the magnetosomal matrix explains all of the five properties of the biosignature of the magnetosomal chain proposed previously by Friedmann et al. and supports their claim that some of the magnetite particles in the carbonate globules in the Martian meteorite ALH84001 are biogenic. Two new morphologies of magnetite magnetosomes are also reported here (i.e. tooth-shaped and hexa-octahedral magnetosomes). Tooth-shaped magnetite magnetosomes elongated in the [110] direction are reported, and are distinct

  5. Dust amorphization in protoplanetary disks

    CERN Document Server

    Glauser, Adrian M; Watson, Dan M; Henning, Thomas; Schegerer, Alexander A; Wolf, Sebastian; Audard, Marc; Baldovin-Saavedra, Carla

    2009-01-01

    High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradiation, indicated by X-ray emission, on the crystalline structure of the circumstellar dust. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 micron silicate feature, measured with the Spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequ...

  6. Hard disks with SCSI interface

    CERN Document Server

    Denisov, O Yu

    1999-01-01

    The testing of 20 models of hard SCSI-disks is carried out: the Fujitsu MAE3091LP; the IBM DDRS-39130, DGHS-318220, DNES-318350, DRHS-36V and DRVS-18V; the Quantum Atlas VI 18.2; the Viking 11 9.1; the Seagate ST118202LW, ST118273LW, ST118273W, ST318203LW, ST318275LW, ST34520W, ST39140LW and ST39173W; and the Western Digital WDE9100-0007, WDE9100-AV0016, WDE9100-AV0030 and WDE9180-0048. All tests ran under the Windows NT 4.0 workstation operating system with Service Pack 4, under video mode with 1024*768 pixel resolution, 32- bit colour depth and V-frequency equal to 85 Hz. The detailed description and characteristics of SCSI stores are presented. Test results (ZD Winstone 99 and ZD WinBench 99 tests) are given in both table and diagram (disk transfer rate) forms. (0 refs).

  7. Improving actuator disk wake model

    International Nuclear Information System (INIS)

    The wind energy industry has traditionally relied on simple wake models for estimating Wind Turbine (WT) wake losses. Despite limitations, low requirements in terms of detailed rotor information makes their use feasible, unlike more complex models, such as Blade Element Method (BEM) or Actuator Line. Froude's Actuator Disk (AD) does not suffer the simpler model's limitation of prescribing the wake through a closed set of equations, while sharing with them the low rotor data requirements. On the other hand they require some form of parametrization to close the model and calculate total thrust acting on the flow. An Actuator Disk model was developed, using an iterative algorithm based on Froude's one-dimensional momentum theory to determine the WT's performance, proving to be successful in estimating the performance of both machines in undisturbed flow and in the wake of an upstream machines. Before Froude's AD limitations compared to more complex rotor models, load distributions emulating those of a BEM model were tested. The results show that little impact is obtained at 3 rotor diameters downstream and beyond, agreeing with common definition of a far-wake that starts at 1-2 diameters downstream, where rotor characteristics become negligible and atmospheric flow effects dominate

  8. Circumplanetary disk or circumplanetary envelope?

    CERN Document Server

    Szulágyi, J; Lega, E; Crida, A; Morbidelli, A; Guillot, T

    2016-01-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution ($80\\%$ of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche-lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000 K, 1500 K, and 2000 K). In these fixed temperature cases circumplanetary disks (CPDs) were formed. This suggests that the capability to form a circumplanetary disk is not simply linked to the mass of the planet and its ability to open a gap. Inste...

  9. The Orientation of Accretion Disks Relative to Dust Disks in Radio Galaxies

    CERN Document Server

    Schmitt, H R

    2002-01-01

    We study the orientation of accretion disks, traced by the position angle of the jet, relative to the dust disk major axis in a sample of 20 nearby Radio Galaxies. We find that the observed distribution of angles between the jet and dust disk major axis is consistent with jets homogeneously distributed over a polar cap of 77 degrees.

  10. Thick-disk Evolution Induced by the Growth of an Embedded Thin Disk

    NARCIS (Netherlands)

    Villalobos, Alvaro; Kazantzidis, Stelios; Helmi, Amina

    2010-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initial

  11. Thick-disk evolution induced by the growth of an embedded thin disk

    CERN Document Server

    Villalobos, Álvaro; Helmi, Amina

    2009-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically-common 5:1 encounters between initially-thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale-length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale-height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale-lengths and scale-heights of thick disks. Kinematically, ...

  12. The chemical history of molecules in circumstellar disks. I. Ices

    CERN Document Server

    Visser, R; Doty, S D; Dullemond, C P

    2009-01-01

    (Abridged) Aims & Methods. A two-dimensional, semi-analytical model is presented that follows, for the first time, the chemical evolution from a collapsing molecular cloud (a pre-stellar core) to a protostar and circumstellar disk. The model computes infall trajectories from any point in the cloud and tracks the radial and vertical motion of material in the viscously evolving disk. It includes a full time-dependent radiative transfer treatment of the dust temperature, which controls much of the chemistry. A small parameter grid is explored to understand the effects of the sound speed and the mass and rotation of the cloud. The freeze-out and evaporation of carbon monoxide (CO) and water (H2O), as well as the potential for forming complex organic molecules in ices, are considered as important first steps to illustrate the full chemistry. Results. Both species freeze out towards the centre before the collapse begins. Pure CO ice evaporates during the infall phase and re-adsorbs in those parts of the disk th...

  13. Disk Instability vs. Core Accretion: Observable Discriminants

    Science.gov (United States)

    Jang-Condell, H.

    2007-06-01

    I will discuss ways to distinguish between disk instability and core accretion, the two competing paradigms for giant planet formation. Disk instability happens when a massive disk fragments into planet-sized self-gravitating clumps. Scattered light from these disks will illuminate high altitude density variations that result from stirring of the disk by the forming planet. These variations will evolve quickly, within several years, but do not correlate with the position of the planet itself. Alternatively, core accretion happens when solid particles collide and coagulate into larger and larger bodies until a body large enough to accrete a gaseous envelope forms -- around 10-20 Earth masses. This process is thought to be more quiescent than gravitational instability, so the disk should appear smooth. Although a 10-20 Earth mass core is insufficiently massive to fully clear an annular gap in the disk, it does perturb the disk material immediately in its vicinity, creating shadows and brightenings at the protoplanet's location. The planet may also begin to clear a partial gap. Shadowing and illumination on this partial gap can alter the thermal structure at the upper layers of the disk on a sufficiently large scale to be observable. Observing the signatures of either disk instability or core accretion requires milliarcsecond resolution and high contrast imaging. Advances in coronography, adaptive optics, and interferometry are bringing us ever closer to begin able to make these detections. Observational confirmation of either process taking place in a young circumstellar disk will help resolve the long-standing debate over how giant planets form.

  14. Development of Powered Disk Type Sugar Cane Stubble Saver

    Directory of Open Access Journals (Sweden)

    Radite P.A.S.

    2009-04-01

    Full Text Available The objective of this research was to design, fabricate and test a prototype of sugar cane stubble saver based on powered disk mechanism. In this research, a heavy duty disk plow or disk harrow was used as a rotating knife to cut the sugarcane stubble. The parabolic disk was chosen because it is proven reliable as soil working tools and it is available in the market as spare part of disk plow or disk harrow unit. The prototype was mounted on the four wheel tractor’s three point hitch, and powered by PTO of the tractor. Two kinds of disks were used in these experiments, those were disk with regular edge or plain disk and disk with scalloped edge or scalloped disk. Both disks had diameter of 28 inch. Results of field test showed that powered disk mechanism could satisfy cut sugar cane’s stubble. However, scalloped disk type gave smoother stubble cuts compared to that of plain disk. Plain disk type gave broken stubble cut. Higher rotation (1000 rpm resulted better cuts as compared to lower rotation (500 rpm both either on plain disk and scalloped disk. The developed prototype could work below the soil surface at depth of 5 to 10 cm. With tilt angle setting 20O and disk angle 45O the width of cut was about 25 cm.

  15. Circular plate capacitor with different disks

    CERN Document Server

    Paffuti, Giampiero; Di Lieto, Alberto; Maccarrone, Francesco

    2016-01-01

    In this paper we write a system of integral equations for a capacitor composed by two disks of different radii, generalizing Love's equation for equal disks. We compute the complete asymptotic form of the capacitance matrix both for large and small distances obtaining a generalization of Kirchhoff's formula for the latter case.

  16. Scaling Ratios and Triangles in Siegel Disks

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    1999-01-01

    Let f(z)=e^{2i\\pi \\theta} + z^2, where \\theta is a quadratic irrational. McMullen proved that the Siegel disk for f is self-similar about the critical point, and we show that if \\theta = (\\sqrt{5}-1)/2 is the golden mean, then there exists a triangle contained in the Siegel disk, and with one...

  17. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios;

    2007-01-01

    if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...

  18. A Primer on Unifying Debris Disk Morphologies

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  19. The Transitional Disks Associated With Herbig Stars

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Lomax, J.; Hashimoto, J.; Currie, T.; Okamoto, Y.; Momose, M.; McElwain, M.

    2015-01-01

    As part of the Strategic Exploration of Exoplanets and Disks with Subaru YSO survey, we have surveyed a number of Herbig B-F stars mainly at H-band using Polarimetric Differential Imaging + Angular differential imaging. Historically, Herbig stars have been sorted by the shape of the IR SEDs into those which can be fit by power laws over 1-200 micrometers (Meeus et al. 2001, group II), and those which can be interpreted as a power law + a blackbody component (Meeus group I) or as transitional or pre-transitional disks (Maaskant et al. 2013). Meeus group II disks, when imaged with HiCIAO show featureless disks with depolarization along the projection of the disk semi-minor axis (Kusakabe et al. 2012). This is what we had expected to see for the Meeus group I disks, except for the addition of wide gaps or central cavities. Instead we find wild diversity, suggesting that transitional disks are highly perturbed compared to Meeus group II disks. To date, similar structure continues to be observed as higher Strehl ratio imagery becomes available.

  20. Early Phases of Protoplanetary Disk Evolution

    NARCIS (Netherlands)

    Kamp, Inga; Macchetto, FD

    2010-01-01

    It is widely accepted that planetary systems form from protoplanetary disks, and observations of the dust reveal significant grain growth over timescales of a few million years. However, we know little about the gas processing in the first 10-20 Myr of disk evolution. This is the phase where protopl

  1. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  2. Molecular gas in young debris disks

    CERN Document Server

    Moór, A; Juhász, A; Kiss, Cs; Pascucci, I; Kóspál, Á; Apai, D; Henning, Th; Csengeri, T; Grady, C

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas, and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J=3-2 survey with Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities...

  3. Recent development of disk lasers at TRUMPF

    Science.gov (United States)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  4. Disks and Planets Around Massive White Dwarfs

    OpenAIRE

    Livio, M.; Pringle, J. E.; Wood, K.

    2005-01-01

    We predict the existence of dusty disks and possibly CO planets around massive white dwarfs. We show that the thermal emission from these disks should be detectable in the infrared. The planets may also be detectable either by direct IR imaging, spectroscopy, or using the pulsations of the white dwarfs.

  5. Sporadically Torqued Accretion Disks Around Black Holes

    CERN Document Server

    Garofalo, D; Garofalo, David; Reynolds, Christopher S.

    2005-01-01

    The assumption that black hole accretion disks possess an untorqued inner boundary, the so-called zero torque boundary condition, has been employed by models of black hole disks for many years. However, recent theoretical and observational work suggests that magnetic forces may appreciably torque the inner disk. This raises the question of the effect that a time-changing magnetic torque may have on the evolution of such a disk. In particular, we explore the suggestion that the ``Deep Minimum State'' of the Seyfert galaxy MCG--6-30-15 can be identified as a sporadic inner disk torquing event. This suggestion is motivated by detailed analyses of changes in the profile of the broad fluorescence iron line in XMM-Newton spectra. We find that the response of such a disk to a torquing event has two phases; an initial damming of the accretion flow together with a partial draining of the disk interior to the torque location, followed by a replenishment of the inner disk as the system achieves a new (torqued) steady-st...

  6. The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime

    CERN Document Server

    Walsh, Catherine; van Dishoeck, Ewine F

    2015-01-01

    (Abridged) Near- to mid-IR observations of protoplanetary disks show that the inner regions (<10AU) are rich in small organic volatiles (e.g., C2H2 and HCN). Trends in the data suggest that disks around cooler stars (~3000K) are potentially more carbon- and molecule-rich than their hotter counterparts. Our aims are to explore the composition of the planet-forming region of disks around stars from M dwarf to Herbig Ae and compare with the observed trends. Models of the disk physical structure are coupled with a gas-grain chemical network to map the abundances in the planet-forming zone. N2 self shielding, X-ray-induced chemistry, and initial abundances, are investigated. The composition in the 'observable' atmosphere is compared with that in the midplane where the planet-building reservoir resides. M dwarf disk atmospheres are relatively more molecule rich than those for T Tauri or Herbig Ae disks. The weak far-UV flux helps retain this complexity which is enhanced by X-ray-induced ion-molecule chemistry. N...

  7. Magnetic fields in early protostellar disk formation

    CERN Document Server

    González-Casanova, Diego F; Lazarian, Alexander

    2016-01-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac (1999) model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called "magnetic braking catastrophe". In particular, we provide a detailed study of the dynamics of a 0.5 M$_\\odot$ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, "reconnection diffusion", removes the magnetic flux from the disk, the other involves the change of the magnetic field's topology, but does not change the a...

  8. Gravitational Instabilities in Disks with Radiative Cooling

    CERN Document Server

    Mejia, A C; Pickett, M K; Mej\\'ia, Annie C.; Durisen, Richard H.; Pickett, Megan K.

    2003-01-01

    Previous simulations of self-gravitating protostellar disks have shown that, once developed, gravitational instabilities are enhanced by cooling the disk constantly during its evolution (Pickett et al. 2002). These earlier calculations included a very simple form of volumetric cooling, with a constant cooling time throughout the disk, which acted against the stabilizing effects of shock heating. The present work incorporates more realistic treatments of energy transport. The initial disk model extends from 2.3 to 40 AU, has a mass of 0.07 Msun and orbits a 0.5 Msun star. The models evolve for a period of over 2500 years, during which extensive spiral arms form. The disks structure is profoundly altered, transient clumps form in one case, but no permanent bound companion objects develop.

  9. Structures of magnetized thin accretion disks

    Institute of Scientific and Technical Information of China (English)

    LI; xiaoqing(李晓卿); JI; Haisheng(季海生)

    2002-01-01

    We investigate the magnetohydrodynamic (MHD) process in thin accretion disks. Therelevant momentum as well as magnetic reduction equations in the thin disk approximation areincluded. On the basis of these equations, we examine numerically the stationary structures, includingdistributions of the surface mass density, temperature and flow velocities of a disk around a youngstellar object (YSO). The numerical results are as follows: (i) There should be an upper limit to themagnitude of magnetic field, such an upper limit corresponds to the equipartition field. For relevantmagnitude of magnetic field of the disk's interior the disk remains approximately Keplerian. (ii) Thedistribution of effective temperature T(r) is a smoothly decreasing function of radius with power 1 corresponding to the observed radiation flux density, provided that the magnetic fieldindex γ= -1/2,is suitably chosen.

  10. Quasar Accretion Disks Are Strongly Inhomogeneous

    CERN Document Server

    Dexter, Jason

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with large fluctuations (\\sigma_T=0.35-0.50) in 100-1000 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of \\sigma_T, inhomogeneous disk spectra provide excellent fits to the HST quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microl...

  11. Disk-loss and disk-renewal phases in classical Be stars. II. Contrasting with stable and variable disks

    International Nuclear Information System (INIS)

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen and Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10–11 and ≈4 × 10–12 g cm–3 during quasi steady state periods given there maximum observed polarization.

  12. Disk-loss and disk-renewal phases in classical Be stars. II. Contrasting with stable and variable disks

    Energy Technology Data Exchange (ETDEWEB)

    Draper, Zachary H. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2 (Canada); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Bjorkman, Karen S.; Bjorkman, Jon E. [Ritter Observatory, Department of Physics and Astronomy, Mail Stop 113, University of Toledo, Toledo, OH 43606 (United States); Meade, Marilyn R. [Space Astronomy Lab, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); Haubois, Xavier; Mota, Bruno C.; Carciofi, Alex C., E-mail: wisniewski@ou.edu, E-mail: karen.bjorkman@utoledo.edu, E-mail: jon@physics.utoledo.edu, E-mail: meade@astro.wisc.edu, E-mail: xhaubois@astro.iag.usp.br, E-mail: carciofi@usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universitária de São Paulo, Rua do Matão 1226, Cidade Universitária, 05508-900 São Paulo, SP (Brazil)

    2014-05-10

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen and Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10{sup –11} and ≈4 × 10{sup –12} g cm{sup –3} during quasi steady state periods given there maximum observed polarization.

  13. Disk-loss and Disk-renewal Phases in Classical Be Stars. II. Contrasting with Stable and Variable Disks

    Science.gov (United States)

    Draper, Zachary H.; Wisniewski, John P.; Bjorkman, Karen S.; Meade, Marilyn R.; Haubois, Xavier; Mota, Bruno C.; Carciofi, Alex C.; Bjorkman, Jon E.

    2014-05-01

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen & Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10-11 and ≈4 × 10-12 g cm-3 during quasi steady state periods given there maximum observed polarization.

  14. Herschel detects oxygen in the beta Pictoris debris disk

    CERN Document Server

    Brandeker, A; Olofsson, G; Vandenbussche, B; Acke, B; Barlow, M J; Blommaert, J A D L; Cohen, M; Dent, W R F; Dominik, C; Di Francesco, J; Fridlund, M; Gear, W K; Glauser, A M; Greaves, J S; Harvey, P M; Heras, A M; Hogerheijde, M R; Holland, W S; Huygen, R; Ivison, R J; Leeks, S J; Lim, T L; Liseau, R; Matthews, B C; Pantin, E; Pilbratt, G L; Royer, P; Sibthorpe, B; Waelkens, C; Walker, H J

    2016-01-01

    The young star beta Pictoris is well known for its dusty debris disk, produced through the grinding down by collisions of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star, likely the result from vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio 20x higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent with that previously reported being observed by the HIFI instrument on Herschel,...

  15. A Gap in TW Hydrae's Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    Located a mere 176 light-years away, TW Hydrae is an 8-million-year-old star surrounded by a nearly face-on disk of gas and dust. Recent observations have confirmed the existence of a gap within that disk a particularly intriguing find, since gaps can sometimes signal the presence of a planet.Gaps and PlanetsNumerical simulations have shown that newly-formed planets orbiting within dusty disks can clear the gas and dust out of their paths. This process results in pressure gradients that can be seen in the density structure of the disk, in the form of visible gaps, rings, or spirals.For this reason, finding a gap in a protoplanetary disk can be an exciting discovery. Previous observations of the disk around TW Hydrae had indicated that there might be a gap present, but they were limited in their resolution; despite TW Hydraes relative nearness, attempting to observe the dim light scattered off dust particles in a disk surrounding a distant, bright star is difficult!But a team led by Valerie Rapson (Rochester Institute of Technology, Dudley Observatory) recently set out to follow up on this discovery using a powerful tool: the Gemini Planet Imager (GPI).New ObservationsComparison of the actual image of TW Hydraes disk from GPI (right) to a simulated scattered-light image from a model of a ~0.2 Jupiter-mass planet orbiting in the disk at ~21 AU (left) in two different bands (top: J, bottom: K1).[Adapted from Rapson et al. 2015]GPI is an instrument on the Gemini South Telescope in Chile. Its near-infrared imagers, equipped with extreme adaptive optics, allowed it to probe the disk from ~80 AU all the way in to ~10 AU from the central star, with an unprecedented resolution of ~1.5 AU.These observations from GPI allowed Rapson and collaborators to unambiguously confirm the presence of a gap in TW Hydraes disk. The gap lies at a distance of ~23 AU from the central star (roughly the same distance as Uranus to the Sun), and its ~5 AU wide.Modeled PossibilitiesThere are a

  16. The CDF Run II Disk Inventory Manager

    Institute of Scientific and Technical Information of China (English)

    PaulHubbard; StephanLammel

    2001-01-01

    The Collider Detector at Fermilab(CDF) experiment records and analyses proton-antiprotion interactions at a center-of -mass energy of 2 TeV,Run II of the Fermilab Tevatron started in April of this year,The duration of the run is expected to be over two years.One of the main data handling strategies of CDF for RUn II is to hide all tape access from the user and to facilitate sharing of data and thus disk space,A disk inventory manager was designed and developed over the past years to keep track of the data on disk.to coordinate user access to the data,and to stage data back from tape to disk as needed.The CDF Run II disk inventory manager consists of a server process,a user and administrator command line interfaces.and a library with the routines of the client API.Data are managed in filesets which are groups of one or more files.The system keeps track of user acess to the filesets and attempts to keep frequently accessed data on disk.Data that are not on disk are automatically staged back from tape as needed.For CDF the main staging method is based on the mt-tools package as tapes are written according to the ANSI standard.

  17. The Spitzer IRS Debris Disk Catalog

    Science.gov (United States)

    Chen, C.

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and MIPS debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. We carried out two separate SED analyses. (1) For all targets, we modeled the IRS and MIPS 70 micron data (where available) assuming that the SEDs were well-described using, zero, one or two temperature black bodies. We calculated the probability for each model and computed the average probability to select among models. (2) For a subset of 120 targets with 10 and/or 20 micron silicate features, we modeled the data using spherical silicate (olivine, pyroxene, forsterite, and enstatite) grains located either in a continuous disk with power-law size and surface density distributions or two thin rings that are well-characterized using two separate dust grain temperatures. We present a demographic analysis of the disk properties. For example, we find that the majority of debris disks are better fit using two dust components, suggesting that planetary systems are common in debris disks and that the size distribution of dust grains is consistent with a collisional cascade.

  18. The observational appearance of slim accretion disks

    CERN Document Server

    Szuszkiewicz, E; Abramowicz, M A; Szuszkiewicz, Ewa; Malkan, Matthew A; Abramowicz, Marek Artur

    1995-01-01

    We reexamine the hypothesis that the optical/UV/soft X-ray continuum of Active Galactic Nuclei is thermal emission from an accretion disk. Previous studies have shown that fitting the spectra with the standard, optically thick and geometrically thin accretion disk models often led to luminosities which contradict the basic assumptions adopted in the standard model. There is no known reason why the accretion rates in AGN should not be larger than the thin disk limit. In fact, more general, slim accretion disk models are self-consistent even for moderately super-Eddington luminosities. We calculate here spectra from a set of thin and slim, optically thick accretion disks. We discuss the differences between the thin and slim disk models, stressing the implications of these differences for the interpretation of the observed properties of AGN. We found that the spectra can be fitted not only by models with a high mass and a low accretion rate (as in the case of thin disk fitting) but also by models with a low mass...

  19. Dynamics of acoustically levitated disk samples.

    Science.gov (United States)

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis. PMID:15600551

  20. The Hot Inner Disk of FU Ori

    CERN Document Server

    Zhu, Zhaohuan; Calvet, Nuria; Hernandez, Jesus; Muzerolle, James; Tannirkulam, Ajay-Kumar

    2007-01-01

    We have constructed a detailed radiative transfer disk model which reproduces the main features of the spectrum of the outbursting young stellar object FU Orionis from ~ 4000 angstrom, to ~ 8 micron. Using an estimated visual extinction Av~1.5, a steady disk model with a central star mass ~0.3 Msun and a mass accretion rate ~ 2e-4 Msun/yr, we can reproduce the spectral energy distribution of FU Ori quite well. With the mid-infrared spectrum obtained by the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, we estimate that the outer radius of the hot, rapidly accreting inner disk is ~ 1 AU using disk models truncated at this outer radius. Inclusion of radiation from a cooler irradiated outer disk might reduce the outer limit of the hot inner disk to ~ 0.5 AU. In either case, the radius is inconsistent with a pure thermal instability model for the outburst. Our radiative transfer model implies that the central disk temperature Tc > 1000 K out to ~ 0.5 - 1 AU, suggesting that the magnetorotationa...

  1. Cold Dark Matter Substructure and Galactic Disks

    CERN Document Server

    Kazantzidis, Stelios; Bullock, James S

    2008-01-01

    We perform a set of high-resolution, dissipationless N-body simulations to investigate the influence of cold dark matter (CDM) substructure on the dynamical evolution of thin galactic disks. Our method combines cosmological simulations of galaxy-sized CDM halos to derive the properties of substructure populations and controlled numerical experiments of consecutive subhalo impacts onto initially-thin, fully-formed disk galaxies. We demonstrate that close encounters between massive subhalos and galactic disks since z~1 should be common occurrences in LCDM models. In contrast, extremely few satellites in present-day CDM halos are likely to have a significant impact on the disk structure. One typical host halo merger history is used to seed controlled N-body experiments of subhalo-disk encounters. As a result of these accretion events, the disk thickens considerably at all radii with the disk scale height increasing in excess of a factor of 2 in the solar neighborhood. We show that interactions with the subhalo p...

  2. The effects of viscosity on circumplanetary disks

    Institute of Scientific and Technical Information of China (English)

    De-Fu Bu; Hsien Shang; Feng Yuan

    2013-01-01

    The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model.We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp (<) 33 M(⊙),where M(⊙) is the Earth's mass.However,effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp(>) 33 M(⊙).We find that when Mp(<) 33 M(⊙),viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas,which weakens the torques exerted on the protoplanet.Thus,viscosity can slow the migration speed of a protoplanet.After including viscosity,the size of the circumplanetary disk can be decreased by a factor of (>) 20%.Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk.The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp(<) 33 M(⊙).Effects of viscosity on the formation of planets and satellites are briefly discussed.

  3. Stellar Disks in Aquarius Dark Matter Haloes

    CERN Document Server

    DeBuhr, Jackson; White, Simon D M

    2012-01-01

    We investigate the gravitational interactions between live stellar disks and their dark matter halos, using LCDM haloes similar in mass to that of the Milky Way taken from the Aquarius Project. We introduce the stellar disks by first allowing the haloes to respond to the influence of a growing rigid disk potential from z = 1.3 to z = 1.0. The rigid potential is then replaced with star particles which evolve self-consistently with the dark matter particles until z = 0.0. Regardless of the initial orientation of the disk, the inner parts of the haloes contract and change from prolate to oblate as the disk grows to its full size. When the disk normal is initially aligned with the major axis of the halo at z=1.3, the length of the major axis contracts and becomes the minor axis by z=1.0. Six out of the eight disks in our main set of simulations form bars, and five of the six bars experience a buckling instability that results in a sudden jump in the vertical stellar velocity dispersion and an accompanying drop in...

  4. Quasar Accretion Disks are Strongly Inhomogeneous

    Science.gov (United States)

    Dexter, Jason; Agol, Eric

    2011-01-01

    Active galactic nuclei have been observed to vary stochastically with 10%-20% rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of σ T in dex. Models with large fluctuations (σ T = 0.35-0.50) in 102-103 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of σ T , inhomogeneous disk spectra provide excellent fits to the Hubble Space Telescope quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microlensing light curves for the Einstein cross from our time-varying toy models are well fit using a time-steady power-law temperature disk and produce magnification light curves that are consistent with current microlensing observations. Deviations due to the inhomogeneous, time-dependent disk structure should occur above the 1% level in the light curves, detectable in future microlensing observations with millimagnitude sensitivity.

  5. Lunar and Meteorite Sample Disk for Educators

    Science.gov (United States)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.

    2015-01-01

    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  6. The $Spitzer$ infrared spectrograph survey of protoplanetary disks in Orion A: I. disk properties

    CERN Document Server

    Kim, K H; Manoj, P; Forrest, W J; Furlan, Elise; Najita, Joan; Sargent, Benjamin; Hernández, Jesús; Calvet, Nuria; Adame, Lucía; Espaillat, Catherine; Megeath, S T; Muzerolle, James; McClure, M K

    2016-01-01

    We present our investigation of 319 Class II objects in Orion A observed by $Spitzer$/IRS. We also present the follow-up observation of 120 of these Class II objects in Orion A from IRTF/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks to those of Taurus disks with respect to position within Orion A (ONC and L1641) and to the sub-groups by the inferred radial structures, such as transitional disks vs. radially continuous full disks. Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) Mass accretion rate of transitional disks and that of radially continuous full disks are statistically significantly displaced from each other. The m...

  7. Disk degeneration in 14 year old children

    International Nuclear Information System (INIS)

    This paper reports low back symptoms of 1,500 school children (14 years old) evaluated with a questionnaire and with a standardized clinical examination. Forty children who complained of recurrent and/or persistent low back pain and 40 matching symptomless controls were randomly chosen to undergo MR imaging of the lumbar spine. Premature disk degeneration was seen in 25.5% of asymptomatic children and in 40% of those with low back pain. The difference was statistically not significant. Disk degeneration is a surprisingly frequent MR finding in symptomless children. Premature disk degeneration may be the cause of low back pain in some children but is not always symptomatic in childhood

  8. When did round disk galaxies form?

    OpenAIRE

    Takeuchi, Tomoe M.; Ohta, Kouji; Yuma, Suraphong; Yabe, Kiyoto

    2015-01-01

    When and how galaxy morphology such as disk and bulge seen in the present-day universe emerged is still not clear. In the universe at $z\\gtrsim 2$, galaxies with various morphology are seen, and star-forming galaxies at $z\\sim2$ show an intrinsic shape of bar-like structure. Then, when did round disk structure form? Here we take a simple and straightforward approach to see the epoch when a round disk galaxy population emerged by constraining the intrinsic shape statistically based on apparent...

  9. The innermost astronomical unit of protoplanetary disks

    CERN Document Server

    Kluska, J; Benisty, M

    2016-01-01

    Circumstellar disks around young stars are the birthsites of planets. It is thus fundamental to study the disks in which they form, their structure and the physical conditions therein. The first astronomical unit is of great interest because this is where the terrestrial-planets form and the angular momentum is controled via massloss through winds/jets. With its milli-arcsecond resolution, optical interferometry is the only technic able to spatially resolve the first few astronomical units of the disk. In this review, we will present a broad overview of studies of young stellar objects with interferometry, and discuss prospects for the future.

  10. Mass Extinctions and a Dark Disk

    CERN Document Server

    Kramer, Eric David

    2016-01-01

    We consider whether the observed periodicity of mass extinctions and of comet impacts on Earth is consistent with Solar oscillation about the Galactic midplane and spiral arm crossings. It is of further interest to determine whether a hypothetical thin dark disk is necessary to give the right periodicity, and whether such a dark disk is allowed given kinematic and other observational constaints on the Galaxy's gravitational potential. We show that a dark disk consistent with recent bounds, combined with data for spiral arm crossing, can lead to the required periodicity. Moreover, we find that the best fit values correctly predict the date of the Chicxulub crater dated to 66 My ago.

  11. The Age of the Galactic Disk

    CERN Document Server

    Carraro, G

    1999-01-01

    I review different methods devised to derive the age of the Galactic Disk, namely the Radio-active Decay (RD), the Cool White Dwarf Luminosity Function (CWDLF), old opne clusters (OOC) and the Color Magnitude Diagram (CMD) of the stars in the solar vicinity. I argue that the disk is likely to be 8-10 Gyr old. Since the bulk of globulars has an age around 13 Gyr, the possibility emerges that the Galaxy experienced a minimum of Star Formation at the end of the halo/bulge formation. This minimum might reflect the time at which the Galaxy started to acquire material to form the disk inside-out.

  12. Analytical models of relativistic accretion disks

    CERN Document Server

    Zhuravlev, Viacheslav V

    2015-01-01

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is much older than the other, both are of topical current interest for black hole studies. The way the exposition is presented, the reader with only a limited knowledge of general relativity and relativistic hydrodynamics can --- with little or no use of additional sources -- gain good insight into many technical details lacking in the original papers.

  13. Disk-Loss and Disk-Renewal Phases in Classical Be Stars II. Contrasting with Stable and Variable Disks

    CERN Document Server

    Draper, Zachary H; Bjorkman, Karen S; Meade, Marilyn R; Haubois, Xavier; Mota, Bruno C; Carciofi, Alex C; Bjorkman, Jon E

    2014-01-01

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCD) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of 9 additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, ...

  14. Effects of inclined star-disk encounter on protoplanetary disk size

    CERN Document Server

    Bhandare, Asmita; Pfalzner, Susanne

    2016-01-01

    Most, if not all, young stars are initially surrounded by protoplanetary disks. Owing to the preferential formation of stars in stellar clusters, the protoplanetary disks around these stars may potentially be affected by the cluster environment. Various works have investigated the influence of stellar fly-bys on disks, although many of them consider only the effects due to parabolic, coplanar encounters often for equal-mass stars, which is only a very special case. We perform numerical simulations to study the fate of protoplanetary disks after the impact of parabolic star-disk encounter for the less investigated case of inclined up to coplanar, retrograde encounters, which is a much more common case. Here, we concentrate on the disk size after such encounters because this limits the size of the potentially forming planetary systems. In addition, with the possibilities that ALMA offers, now a direct comparison to observations is possible. Covering a wide range of periastron distances and mass ratios between t...

  15. Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    CERN Document Server

    Megevand, Miguel; Frank, Juhan; Hirschmann, Eric W; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2009-01-01

    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung luminosities. On the other hand, when the recoil direction has a component orthogonal to the disk's angular momentum, the disk's dynamics are strongly impacted, giving rise to relativistic shocks. The shock heating leaves its signature in our proxies for radiation, the total internal energy and bremsstrahlung luminosity. Interestingly, for cases where the kick velocity is below the smallest orbital velocity in the disk (a likely scenario in real AGN), we observe a common, characteristic pattern in the internal energy of the dis...

  16. Development of a 2 1/4 Cr-Mo-V-Nb steel for heavy duty gas turbine rotor disk. Gas turbine disk yo 2 1/4 Cr-Mo-V-Nb tainetsuko no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, I.; Kadoya, Y. (Mitsubishi Heavy Industries, Ltd., Tokyo (Japan))

    1991-05-01

    A new low alloy steel for gas turbine rotor disk was menufactured as a trial and examined. A target of new low alloy steel development for disk was to have excellent stress rupture strength without taking account of creep below 400 centigrade, and to have excellent both high temperature strength (yield strength at 400 centigrade higher than 60kgf/mm {sup 2}) and fracture toughness (FATT lower than 40 centigrade) at bore of disk. An effect of chemical composition on mechanical properties and heat treatment characteristics of low allow steel were investigated. Consequently, a 2 {sup 1}/{sub 4} Cr-Mo-V-Nb steel containing low silicon manufactured by vacuum carbon deoxidization (VCD) or electroslag remelting (ESR) process showed the best performance for large size disk. On the basis of the results, the 2 {sup 1}/{sub 4} Cr-Mo-V-Nb steel disk for turbine was produced by commercial base. Tensile, impact, and metallurgical tests were conducted on the disk, and it was confirmed that the disk had excellent yield strength and impact properties at both rim and bore. 14 refs., 12 figs., 4 tabs.

  17. Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    OpenAIRE

    Megevand, Miguel; Anderson, Matthew; Frank, Juhan; Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M; Neilsen, David

    2009-01-01

    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung lumino...

  18. Launching of Poynting Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E

    2009-01-01

    The jets observed to emanate from many compact accreting objects may arise from the twisting of the magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic outflows, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting outflows, where the mass flux is negligible and energy and angular momentum are carried predominantly by the electromagnetic field. We describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks and new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks.

  19. Ionization and Dust Charging in Protoplanetary Disks

    CERN Document Server

    Ivlev, A V; Caselli, P

    2016-01-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field and the development of magnetorotational instability in protoplanetary disks. We present a self-consistent analytical model which allows us to exactly calculate abundances of charged species in dusty gas, in the regime where the dust-phase recombination dominates over the gas-phase recombination. The model is employed to verify applicability of a conventional approximation of low dust charges in protoplanetary disks, and to discuss the implications for the dust coagulation and the development of the "dead zone" in the disk. Furthermore, the importance of mutually consistent models for the ionization and dust evolution is addressed: These processes are coupled via several mechanisms operating in the disk, and therefore their interplay can be crucial for the ultimate ...

  20. Interstellar Gas and a Dark Disk

    CERN Document Server

    Kramer, Eric David

    2016-01-01

    We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. Although a small dark disk is slightly favored, the current data is inadequate to establish its existence

  1. Observations of Solids in Protoplanetary Disks

    CERN Document Server

    Andrews, Sean M

    2015-01-01

    This review addresses the state of research that employs astronomical (remote sensing) observations of solids ("dust") in young circumstellar disks to learn about planet formation. The intention is for it to serve as an accessible, introductory, pedagogical resource for junior scientists interested in the subject. After some historical background and a basic observational primer, the focus is shifted to the three fundamental topics that broadly define the field: (1) demographics -- the relationships between disk properties and the characteristics of their environments and hosts; (2) structure -- the spatial distribution of disk material and its associated physical conditions and composition; and (3) evolution -- the signposts of key changes in disk properties, including the growth and migration of solids and the impact of dynamical interactions with young planetary systems. Based on the state of the art results in these areas, suggestions are made for potentially fruitful lines of work in the near future.

  2. Interstellar Gas and a Dark Disk

    Science.gov (United States)

    Kramer, Eric David; Randall, Lisa

    2016-10-01

    We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. The current models and data are inadequate to determine the disk's existence, but taken at face value, may favor its existence depending on the gas parameters used.

  3. Analytic Creep Durability of Rotating Uniform Disks

    Directory of Open Access Journals (Sweden)

    Yuriy Nyashin

    1998-01-01

    Full Text Available Turbine disks of aircraft engines in operation are subjected to alternating thermocyclic deformation under high temperatures. Operation gives rise to sufficiently high stresses and subsequent creep damaging effects.

  4. Advanced disk-type LP turbine rotors

    International Nuclear Information System (INIS)

    This paper addresses the application of these design considerations. After twenty years experience with disk-type rotors, the Siemens/KWU ten-disk rotor for low-speed nuclear LP turbines was developed in 1969. Full volumetric disk hub inspections after 83,000 service hours did not reveal any stress corrosion cracking. In the meantime, this rotor design has been further improved. In 1987, two advanced eight-disk rotors went into operation at the Connecticut Yankee station. This rotor design together with the advanced LP turbine blading has been delivered to the Unterweser station. First test results indicated a remarkably improved thermodynamic performance. Avoidance of stress corrosion cracking can be accomplished by a combination of various measures: Proper keyway design; Low metal temperature; Low tensile stressing (by design); Low yield strength; High fracture toughness; Low surface stresses (by manufacturing); Proper steam/water cycle chemistry

  5. Observations of Solids in Protoplanetary Disks

    Science.gov (United States)

    Andrews, Sean M.

    2015-10-01

    This review addresses the state of research that employs astronomical (remote sensing) observations of solids ("dust") in young circumstellar disks to learn about planet formation. The intention is for it to serve as an accessible, introductory, pedagogical resource for junior scientists interested in the subject. After some historical background and a basic observational primer, the focus is shifted to the three fundamental topics that broadly define the field: (1) demographics—the relationships between disk properties and the characteristics of their environments and hosts; (2) structure—the spatial distribution of disk material and its associated physical conditions and composition; and (3) evolution—the signposts of key changes in disk properties, including the growth and migration of solids and the impact of dynamical interactions with young planetary systems. Based on the state-of-the-art results in these areas, suggestions are made for potentially fruitful lines of work in the near future.

  6. Disks, accretion and outflows of brown dwarfs

    CERN Document Server

    Joergens, V; Liu, Y; Pascucci, I; Whelan, E; Alcala, J; Biazzo, K; Costigan, G; Gully-Santiago, M; Henning, Th; Natta, A; Rigliaco, E; Rodriguez-Ledesma, V; Sicilia-Aguilar, A; Tottle, J; Wolf, S

    2012-01-01

    Characterization of the properties of young brown dwarfs are important to constraining the formation of objects at the extreme low-mass end of the IMF. While young brown dwarfs share many properties with solar-mass T Tauri stars, differences may be used as tests of how the physics of accretion/outflow and disk chemistry/dissipation depend on the mass of the central object. This article summarizes the presentations and discussions during the splinter session on 'Disks, accretion and outflows of brown dwarfs' held at the CoolStars17 conference in Barcelona in June 2012. Recent results in the field of brown dwarf disks and outflows include the determination of brown dwarf disk masses and geometries based on Herschel far-IR photometry (70-160 um), accretion properties based on X-Shooter spectra, and new outflow detections in the very low-mass regime.

  7. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  8. Stochastic oscillations of general relativistic disks

    CERN Document Server

    Harko, Tiberiu

    2012-01-01

    We analyze the general relativistic oscillations of thin accretion disks around compact astrophysical objects interacting with the surrounding medium through non-gravitational forces. The interaction with the external medium (a thermal bath) is modeled via a friction force, and a random force, respectively. The general equations describing the stochastically perturbed disks are derived by considering the perturbations of trajectories of the test particles in equatorial orbits, assumed to move along the geodesic lines. By taking into account the presence of a viscous dissipation and of a stochastic force we show that the dynamics of the stochastically perturbed disks can be formulated in terms of a general relativistic Langevin equation. The stochastic energy transport equation is also obtained. The vertical oscillations of the disks in the Schwarzschild and Kerr geometries are considered in detail, and they are analyzed by numerically integrating the corresponding Langevin equations. The vertical displacement...

  9. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    CERN Document Server

    Silverberg, Steven M; Wisniewski, John P; Gagne, Jonathan; Bans, Alissa S; Bhattacharjee, Shambo; Currie, Thayne R; Debes, John R; Biggs, Joseph R; Bosch, Milton; Doll, Katharina; Durantini-Luca, Hugo A; Enachioaie, Alexandru; Griffith,, Philip; Hyogo, Michiharu; Piniero, Fernanda

    2016-01-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 $\\mu$m, is a likely member ($\\sim 90\\%$ BANYAN II probability) of the $\\sim 45$ Myr-old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  10. The Debris Disk Explorer: a balloon-borne coronagraph for observing debris disks

    CERN Document Server

    Roberts, Lewis C; Traub, Wesley; Unwin, Stephen; Trauger, John; Krist, John; Aldrich, Jack; Brugarolas, Paul; Stapelfeldt, Karl; Wyatt, Mark; Stuchlik, David; Lanzi, James

    2013-01-01

    The Debris Disk Explorer (DDX) is a proposed balloon-borne investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of tens of disks. These measurements will enable us to place the Solar System in context. By imaging debris disks around nearby stars, DDX will reveal the presence of perturbing planets via their influence on disk structure, and explore the physics and history of debris disks by characterizing the size and composition of disk dust. The DDX instrument is a 0.75-m diameter off-axis telescope and a coronagraph carried by a stratospheric balloon. DDX will take high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a month-long science flight launched from New Zealand. The long flight will fully explore the set of known de...

  11. Gaps in Protoplanetary Disks as Signatures of Planets: II. Inclined Disks

    CERN Document Server

    Jang-Condell, Hannah

    2013-01-01

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffs it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star th...

  12. YottaYotta announces new world record set for TCP disk-to-disk bulk transfer

    CERN Multimedia

    2002-01-01

    The Yottabyte NetStorage(TM) Company, today announced a new world record for TCP disk-to-disk data transfer using the company's NetStorager(R) System. The record-breaking demonstration transferred 5 terabytes of data between Chicago, Il. to Vancouver, BC and Ottawa, ON, at a sustained average throughput of 11.1 gigabits per second. Peak throughput exceeded 11.6 gigabits per second, more than 15-times faster than previous records for TCP transfer from disk-to-disk (1 page).

  13. Lumbar Disk Herniation Surgery: Outcome and Predictors

    OpenAIRE

    Sedighi, Mahsa; Haghnegahdar, Ali

    2014-01-01

    Study Design A retrospective cohort study. Objectives To determine the outcome and any differences in the clinical results of three different surgical methods for lumbar disk herniation and to assess the effect of factors that could predict the outcome of surgery. Methods We evaluated 148 patients who had operations for lumbar disk herniation from March 2006 to March 2011 using three different surgical techniques (laminectomy, microscopically assisted percutaneous nucleotomy, and spinous proc...

  14. Shock Waves in Dense Hard Disk Fluids

    OpenAIRE

    Sirmas, Nick; Tudorache, Marion; Barahona, Javier; Radulescu, Matei I.

    2011-01-01

    Media composed of colliding hard disks (2D) or hard spheres (3D) serve as good approximations for the collective hydrodynamic description of gases, liquids and granular media. In the present study, the compressible hydrodynamics and shock dynamics are studied for a two-dimensional hard-disk medium at both the continuum and discrete particle level descriptions. For the continuum description, closed form analytical expressions for the inviscid hydrodynamic description, shock Hugoniot, isentropi...

  15. Propeller-driven Outflows and Disk Oscillations

    OpenAIRE

    Romanova, M. M.; Ustyugova, G. V.; Koldoba, A. V.; Lovelace, R. V. E.

    2005-01-01

    We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic field lines from the star. The ``efficiency'' of the propeller may be very high in the respect that mos...

  16. LMC Microlensing and Very Thick Disks

    OpenAIRE

    Gyuk, Geza; Gates, Evalyn

    1998-01-01

    We investigate the implications of a very thick (scale height 1.5 - 3.0 kpc) disk population of MACHOs. Such a population represents a reasonable alternative to standard halo configurations of a lensing population. We find that very thick disk distributions can lower the lens mass estimate derived from the microlensing data toward the LMC, although an average lens mass substantially below $0.3\\Msol$ is unlikely. Constraints from direct searches for such lenses imply very low luminosity object...

  17. A Note on Disk Drag Dynamics

    CERN Document Server

    Gunther, Neil J

    2012-01-01

    The electrical power consumed by typical magnetic hard disk drives (HDD) not only increases linearly with the number of spindles but, more significantly, it increases as very fast power-laws of speed (RPM) and diameter. Since the theoretical basis for this relationship is neither well-known nor readily accessible in the literature, we show how these exponents arise from aerodynamic disk drag and discuss their import for green storage capacity planning.

  18. Disk-averaged synthetic spectra of Mars

    OpenAIRE

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2004-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of the planet Mars to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra as a f...

  19. HD95881 : a gas rich to gas poor transition disk?

    NARCIS (Netherlands)

    Verhoeff, A. P.; Min, M.; Acke, B.; van Boekel, R.; Pantin, E.; Waters, L. B. F. M.; Tielens, A. G. G. M.; van den Ancker, M. E.; Mulders, G. D.; de Koter, A.; Bouwman, J.

    2010-01-01

    Context. Based on the far infrared excess the Herbig class of stars is divided into a group with flaring circumstellar disks (group I) and a group with flat circumstellar disks (group II). Dust sedimentation is generally proposed as an evolution mechanism to transform flaring disks into flat disks.

  20. Is dynamic heating of stellar disk inevitable?

    CERN Document Server

    Zasov, A; Katkov, I

    2012-01-01

    Major mergers or/and the repeated minor mergers lead to dynamical heating of disks of galaxies. We analyze the available data on the velocity dispersion of stellar disks of S-S0 galaxies, including the new observational data obtained at 6m telescope of SAO RAS. As a measure of dynamical (over)heating, we use the ratio of the observed velocity dispersion to the minimal dispersion which provides the local stability of the stellar disks with respect to gravitational perturbations. We came to conclusion that stellar disks in a significant part of galaxies (including LSB and some S0 galaxies) are close to the marginal stability condition (or are slightly overheated) -- at least at radial distances $r\\sim$ 2-3 radial scalelenghts. It enables to constrain the role of merging in the heating of stellar disks: in many cases it seems to be non-efficient. Marginal stability condition may also be successfully used to estimate the mass of a disk and the midplane volume gas (stars) densities on the basis of kinematic measur...

  1. A Primer on Unifying Debris Disk Morphologies

    CERN Document Server

    Lee, Eve J

    2016-01-01

    A "minimum model" for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: "rings," "needles," "ships-and-wakes," "bars," and "moths (a.k.a. fans)," depending on the viewing geometry. Moths can also sport "double wings." We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intui...

  2. Tilt, Warp, and Simultaneous Precessions in Disks

    CERN Document Server

    Montgomery, M M

    2012-01-01

    Warps are suspected in disks around massive compact objects. However, the proposed warping source -- non-axisymmetric radiation pressure -- does not apply to white dwarfs. In this letter we report the first Smoothed Particle Hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After ~79 days in V344 Lyrae, the disk angular momentum L_d becomes misaligned to the orbital angular momentum L_o. As the gas stream remains normal to L_o, hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit ne...

  3. An MCMC Circumstellar Disks Modeling Tool

    Science.gov (United States)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  4. Near continuum flows over a rotating disk

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Rodriguez, Gerardo; Cai, Chunpei, E-mail: geralara680@gmail.com, E-mail: ccai@nmsu.edu [New Mexico State University, Las Cruces, NM (United States)

    2015-08-15

    We analyze the near continuum flow created by a rotating disk facing a stagnant gas. The flow-field properties change from the traditional continuum solutions, due to the introductions of new velocity-slip and temperature-jump boundary conditions. To compute the velocity profiles, a self-similar transformation simplifies the Navier-Stokes equations into a system of ordinary differential equations. The introduction of new boundary conditions generates new parameters which can be adjusted at different degrees of rarefaction. Shooting methods are adopted to solve the differential equations with the new boundary conditions. Based on the solved velocity profiles, exact solutions for the temperature distribution are obtained. The gas temperature at the disk surface shifts towards the free stream temperature, while the heat flux between the gas and surface is reduced. Stream function solutions for the flow at the disk surface are presented to demonstrate the effects of the slip boundary conditions. The torque generated by the disk is obtained with different disk rotating speed, and the gas at the disk surface has different slip velocities. (author)

  5. Axisymmetric bending oscillations of stellar disks

    CERN Document Server

    Sellwood, J A

    1996-01-01

    Self-gravitating stellar disks with random motion support both exponentially growing and, in some cases, purely oscillatory axisymmetric bending modes, unlike their cold disk counterparts. A razor-thin disk with even a very small degree of random motion in the plane is both unstable and possesses a discrete spectrum of neutral modes, irrespective of the sharpness of the edge. Random motion normal to the disk plane has a stabilizing effect but at the same time allows bending waves to couple to the internal vibrations of the particles, which causes the formerly neutral modes to decay through Landau damping. Focusing first on instabilities, I here determine the degree of random motion normal to the plane needed to suppress global, axisymmetric, bending instabilities in a family of self-gravitating disks. As found previously, bending instabilities are suppressed only when the thickness exceeds that expected from a na\\"\\i ve local criterion when the degree of pressure support within the disk plane is comparable to...

  6. Gravitational Instability in Neutrino Dominated Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    刘彤; 薛力

    2011-01-01

    We revisit the vertical structure of neutrino-dominated accretion flows (NDAFs) in spherical coordinates under a boundary condition based on a mechanical equilibrium. The solutions show that the NDAF is significantly geometrically thick. The Toomre parameter is determined by the mass accretion rate and the viscosity parameter, which is defined as Q = csΩ/πGΣ, where cs, Ω and Σ are the sound speed, angular velocity and surface density, respectively. According to the distribution of the Toomre parameter, the possible fragments of the disk may appear near the disk surface in the outer region. These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts.%We revisit the vertical structure of neutrino-dominated accretion flows(NDAFs)in spherical coordinates under a boundary condition based on a mechanical equilibrium.The solutions show that the NDAF is significantly geometrically thick.The Toomre parameter is determined by the mass accretion rate and the viscosity parameter,which is defined as Q =csΩ/πG∑,where cs,Ω and ∑ are the sound speed,angular velocity and surface density,respectively.According to the distribution of the Toomre parameter,the possible fragments of the disk may appear near the disk surface in the outer region.These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts.

  7. The Collisional Evolution of Debris Disks

    CERN Document Server

    Gaspar, Andras; Balog, Zoltan

    2012-01-01

    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off ~ t^-0.35 at its fastest point (where t is time) for our reference model, while the dust mass and its proxy -- the infrared excess emission -- fades significantly faster (~ t^-0.8). These later level off to a decay rate of M_tot(t) ~ t^-0.08 and M_dust(t) or L_ir(t) ~ t^-0.6. This is slower than the ~ t^-1 decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 micron observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of debris disk harboring stars observed at 24 micron and also model the distribution of measured excesses at the far-...

  8. Extra-Solar Kuiper Belt Dust Disks

    CERN Document Server

    Moro-Martin, A; Malhotra, R; Trilling, D E; Moro-Martin, Amaya; Wyatt, Mark C.; Malhotra, Renu; Trilling, David E.

    2007-01-01

    The dust disks observed around mature stars are evidence that plantesimals are present in these systems on spatial scales that are similar to that of the asteroids and the KBOs in the Solar System. These dust disks (a.k.a. ``debris disks'') present a wide range of sizes, morphologies and properties. It is inferred that their dust mass declines with time as the dust-producing planetesimals get depleted, and that this decline can be punctuated by large spikes that are produced as a result of individual collisional events. The lack of solid state features indicate that, generally, the dust in these disks have sizes larger than approximately 10 microns, but exceptionally, strong silicate features in some disks suggest the presence of large quantities of small grains, thought to be the result of recent collisions. Spatially resolved observations of debris disks show a diversity of structural features, such as inner cavities, warps, offsets, brightness asymmetries, spirals, rings and clumps. There is growing eviden...

  9. Synchronized Intermittent Motion Induced by the Interaction between Camphor Disks

    Science.gov (United States)

    Suematsu, Nobuhiko J.; Tateno, Kurina; Nakata, Satoshi; Nishimori, Hiraku

    2015-03-01

    A new mode of collective motion was discovered in a system of camphor disks floating on the water surface in a circular chamber. The mode was induced by tuning the number of the disks. A single or few disks are known to continuously move on the water surface. Conversely, when many disks are present, motion comes to a stop and the disks form ordered spatial patterns by repulsive interaction. Here we found the third mode that emerged at an intermediate disk number, in which inactive and active motion phases alternated non-periodically. This new mode exhibited synchronization as the disk number increased.

  10. Vertical Structure of Magnetized Accretion Disks around Young Stars

    CERN Document Server

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  11. Determination of small dialkyl organophosphonates at microgram/l concentrations in contaminated groundwaters using multiple extraction membrane disks

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.A.; Griest, W.H. [Oak Ridge National Lab., TN (United States); Hearle, D.R. [Parkdale High School, Riverdale, MD (United States)

    1996-12-31

    Di-isopropyl methylphosphonate (DIMP) and dimethyl methylphosphonate (DMMP) are byproducts and surrogates for Sarin (GB) and VX; they are readily quantitated at {mu}g/L concentrations in groundwaters. Liter aqueous samples are fortified with triethylphosphate, then passed through a sandwich of 3 preconditioned extraction disks: glass fiber filter to remove particulates, C{sub 18}-based extraction disk to collect DIMP, and carbon-based extraction disk to collect DMMP. The two extraction disks are dried and extracted with MeOH. After the extract is fortified with with diethyl ethylphosphonate internal standard, it is analyzed using a gas chromatograph with a nitrogen- phosphorus detector. When the pump and treat criterion is used, detection limits for DMMP and DIMP are 2 {mu}g/L. Method recovery is 40-50%, based on synthetic groundwaters containing 0.2-50 {mu}g/L of each analyte. DIMP and DMMP are cleanly resolved.

  12. A method for rapid testing of the photosynthesis-inhibiting activity of herbicides by leaf disk infiltration

    Directory of Open Access Journals (Sweden)

    Krzysztof Bielecki

    2013-12-01

    Full Text Available A method for rapid detection of photosynthesis inhibitors in low concentration (0.25-1.25 ppm was developed. The experiments were performed on disks cut from young bean leaves. The disks were infiltrated with solutions of the tested compounds and placed at the bottom of a crystallizer containing an acidic sodium carbonate solution and then illuminated. The toxicity of the tested substance was measured as the number of disks corning to the surface. It was found that linuron, monolinuron, metoksuron, atrazine and prometrine inhibited floating of the disks, whereas 2,4,5-T, MCPA and chlorpropham gave no effect. This confirms the specificity of the test which is appropriate for determining the phytotoxicity of typical photosynthesis inhibitors.

  13. Research overview on vibration damping of mistuned bladed disk assemblies

    OpenAIRE

    Zhang, Liang; Liu, Tiejian; Li, Xin; Xuyao HUO

    2016-01-01

    Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home a...

  14. Intermediate mass black holes in AGN disks: I. Production & Growth

    OpenAIRE

    McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.

    2012-01-01

    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in disks around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disk. Stars, compact objects and binaries can migrate, accrete and merge within disks around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disk, gas in the disk damps NCO orbits. If gas damping domi...

  15. Disk-Planet Interaction: Triggered Formation and Migration

    OpenAIRE

    Lufkin, Graeme; Quinn, Thomas; Governato, Fabio

    2004-01-01

    We present three-dimensional SPH calculations of giant planets embedded in gaseous disks. Our findings are collected into a map of parameter space, exhibiting four distinct regions: Type I migration, gap formation, triggered formation of more planets, and wholly unstable disks. For Type I migration of the planet due to secular interactions with the disk material, the migration rate depends linearly on the disk mass, and is independent of the initial planet mass. For more massive disks, the pl...

  16. Snow Lines in Gas Rich Protoplanetary Disks and the Delivery of Volatiles to Planetary Surfaces

    Science.gov (United States)

    Blake, Geoffrey A.

    2016-06-01

    Compared to the Sun and to the gas+dust composition of the interstellar medium from which the solar system formed, the Carbon and Nitrogen content of the bulk silicate Earth (mantle+hydrosphere+atmosphere) is reduced by several orders of magnitude, relative to Silicon. Evidence from primitive bodies as a function of distance from the Sun suggests that at least part of this depletion must occur early in the process of planetesimal assembly. With combined infrared and (sub)mm observations such as those enabled by ground-based 8-10m class telescopes (and in future the James Webb Space Telescope) and the Atacama Large Millimeter Array (ALMA), we can now examine the principal volatile reservoirs of gas rich disks as a function position within the disk and evolutionary state. Key to these studies is the concept of condensation fronts, or 'snow lines,' in disks - locations at which key volatiles such as water, carbon monoxide, or nitrogen first condense from the gas. This talk will review the observational characterization of snow lines in protoplanetary disks, especially recent ALMA observations, and highlight the laboratory astrophysics studies and theoretical investigations that are needed to tie the observational results to the delivery of volatiles to planetary surfaces in the habitable zones around Sun-like stars.

  17. Thermal Test on Target with Pressed Disks

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chemerisov, Sergey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gromov, Roman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lowden, Rick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-27

    A thorough test of the thermal performance of a target for Mo99 production using solid Mo100 target to produce the Mo99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod. The production plant will have Mo100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.

  18. Radially Magnetized Protoplanetary Disk: Vertical Profile

    Science.gov (United States)

    Russo, Matthew; Thompson, Christopher

    2015-11-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  19. Failure characterization at head/disk interface of hard disk drive

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The characterization of sub-micron features and particles between hard disk interface(HDI) is becoming even more important to the hard disk industry in the fields of corrosion, tribologyand the contamination. In this paper, media scratch and particles are characterized with AES,TOF-SIMS, SEM/EDX and LPC. The main causes resulted in serious media scratch have beenanalyzed and discussed.

  20. Formation of Organic Molecules and Water in Warm Disk Atmospheres

    CERN Document Server

    Najita, Joan R; Glassgold, Alfred E

    2011-01-01

    Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molec...

  1. Disk radii and grain sizes in Herschel-resolved debris disks

    Energy Technology Data Exchange (ETDEWEB)

    Pawellek, Nicole; Krivov, Alexander V. [Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2-3, 07745 Jena (Germany); Marshall, Jonathan P. [School of Physics, University of New South Wales, Sydney NSW 2052 (Australia); Montesinos, Benjamin [Departmento de Astrofísica, Centro de Astrobiología (CAB, CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Ábrahám, Péter; Moór, Attila [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Bryden, Geoffrey [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Eiroa, Carlos [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain)

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease

  2. Disk Radii and Grain Sizes in Herschel-resolved Debris Disks

    Science.gov (United States)

    Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s blow that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s blow at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s blow, appear to decrease with the luminosity

  3. Milky Way's Thick and Thin disk: Is there distinct thick disk?

    CERN Document Server

    Kawata, D

    2016-01-01

    This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical models. The discussion focused on the following question: "Are there distinct thick and thin disks?". The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besancon and Galaxia, chemica...

  4. Chemical evolution of protoplanetary disks - the effects of viscous accretion, turbulent mixing and disk winds

    CERN Document Server

    Heinzeller, Dominikus; Walsh, Catherine; Millar, Tom J

    2011-01-01

    We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared LTE line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line ...

  5. Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

    Directory of Open Access Journals (Sweden)

    Maxim E. Stebliy

    2015-03-01

    Full Text Available Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations.

  6. Radiative Ablation of Disks Around Massive Stars

    CERN Document Server

    Kee, N D

    2015-01-01

    Hot, massive stars (spectral types O and B) have extreme luminosities ($10^4 -10^6 L_\\odot$) that drive strong stellar winds through UV line-scattering. Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar...

  7. Bar instability in disk-halo systems

    CERN Document Server

    Sellwood, J A

    2016-01-01

    We show that the exponential growth rate of a bar in a stellar disk is substantially greater when the disk is embedded in a live halo than in a rigid one having the same mass distribution. We also find that the vigor of the instability in disk-halo systems varies with the shape of the halo velocity ellipsoid. Disks in rigid halos that are massive enough to be stable by the usual criteria, quickly form bars in isotropic halos and much greater halo mass is needed to avoid a strong bar; thus stability criteria derived for disks in rigid halos do not apply when the halo is responsive. The study presented here is of an idealized family of models with near uniform central rotation and that lack an extended halo; we present more realistic models with extended halos in a companion paper. The puzzle presented by the absence of strong bars in some galaxies having gently rising inner rotation curves is compounded by the results presented here.

  8. Water vapor distribution in protoplanetary disks

    CERN Document Server

    Du, Fujun

    2014-01-01

    Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...

  9. Low EUV Luminosities Impinging on Protoplanetary Disks

    CERN Document Server

    Pascucci, I; Gorti, U; Hollenbach, D; Hendler, N P; Brooks, K J; Contreras, Y

    2014-01-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the EUV luminosity impinging on 14 disks around young (~2-10Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10$^{42}$ photons/s for all sources without jets and lower than $5 \\times 10^{40}$ photons/s for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [NeII] 12.81 micron luminosities from three disks with slow [NeII]-detected winds. This indicates that the [NeII] line in these sources prima...

  10. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  11. The Migrating Embryo Model for Disk Evolution

    CERN Document Server

    Basu, Shantanu

    2012-01-01

    A new view of disk evolution is emerging from self-consistent numerical simulation modeling of the formation of circumstellar disks from the direct collapse of prestellar cloud cores. This has implications for many aspects of star and planet formation, including the growth of dust and high-temperature processing of materials. A defining result is that the early evolution of a disk is crucially affected by the continuing mass loading from the core envelope, and is driven into recurrent phases of gravitational instability. Nonlinear spiral arms formed during these episodes fragment to form gaseous clumps in the disk. These clumps generally migrate inward due to gravitational torques arising from their interaction with a trailing spiral arm. Occasionally, a clump can open up a gap in the disk and settle into a stable orbit, revealing a direct pathway to the formation of companion stars, brown dwarfs, or giant planets. At other times, when multiple clumps are present, a low mass clump may even be ejected from the...

  12. Nucleosynthesis in Gamma Ray Burst Accretion Disks

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason

    2003-01-01

    We follow the nuclear reactions that occur in the accretion disks of stellar mass black holes that are accreting at a very high rate, 0.01 to 1 solar masses per second, as is realized in many current models for gamma-ray bursts (GRBs). The degree of neutronization in the disk is a sensitive function of the accretion rate, black hole mass, Kerr parameter, and disk viscosity. For high accretion rates and low viscosity, material arriving at the black hole will consist predominantly of neutrons. This degree of neutronization will have important implications for the dynamics of the GRB producing jet and perhaps for the synthesis of the r-process. For lower accretion rates and high viscosity, as might be appropriate for the outer disk in the collapsar model, neutron-proton equality persists allowing the possible synthesis of 56Ni in the disk wind. 56Ni must be present to make any optically bright Type Ib supernova, and in particular those associated with GRBs.

  13. Radiative Transfer on Perturbations in Protoplanetary Disks

    CERN Document Server

    Jang-Condell, H; Jang-Condell, Hannah; Sasselov, Dimitar D.

    2003-01-01

    We present a method for calculating the radiative tranfer on a protoplanetary disk perturbed by a protoplanet. We apply this method to determine the effect on the temperature structure within the photosphere of a passive circumstellar disk in the vicinity of a small protoplanet of up to 20 Earth masses. The gravitational potential of a protoplanet induces a compression of the disk material near it, resulting in a decrement in the density at the disk's surface. Thus, an isodensity contour at the height of the photosphere takes on the shape of a well. When such a well is illuminated by stellar irradiation at grazing incidence, it results in cooling in a shadowed region and heating in an exposed region. For typical stellar and disk parameters relevant to the epoch of planet formation, we find that the temperature variation due to a protoplanet at 1 AU separation from its parent star is about 4% (5 K) for a planet of 1 Earth mass, about 14% (19 K) for planet of 10 Earth masses, and about 18% (25 K) for planet of ...

  14. Updated Kinematic Constraints on a Dark Disk

    CERN Document Server

    Kramer, Eric David

    2016-01-01

    We update the method of the Holmberg & Flynn (2000) study, including an updated model of the Milky Way's interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, traditional method, we subtract the mean velocity and displacement from the tracers' phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an...

  15. Scattered light mapping of protoplanetary disks

    CERN Document Server

    Stolker, T; Min, M; Garufi, A; Mulders, G D; Avenhaus, H

    2016-01-01

    High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R'-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R'-ban...

  16. Propeller-driven Outflows and Disk Oscillations

    CERN Document Server

    Romanova, M M; Koldoba, A V; Lovelace, R V E

    2005-01-01

    We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic field lines from the star. The ``efficiency'' of the propeller may be very high in the respect that most of the incoming disk matter is expelled from the system in winds. The star spins-down rapidly due to the magnetic interaction with the disk through closed field lines and with corona through open field lines. Diffusive and viscous interaction between magnetosphere and the disk are important: no outflows were observed for very small values of the diffusivity and viscosity. These simulation results are applicable to the early stages of evolution of classical T Tauri stars and to different stages of evolution of cataclysmi...

  17. Radially Magnetized Protoplanetary Disk: Vertical Profile

    CERN Document Server

    Russo, Matthew

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, is wound up by the disk shear, and is pushed downward by a combination of turbulent mixing and ambipolar and Ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field $B_r \\sim (10^{-4}$-$10^{-2})(r/{\\rm AU})^{-2}$ G. Careful attention is giv...

  18. Building massive compact planetesimal disks from the accretion of pebbles

    CERN Document Server

    Moriarty, John

    2015-01-01

    We present a model in which planetesimal disks are built from the combination of planetesimal formation and accretion of radially drifting pebbles onto existing planetesimals. In this model, the rate of accretion of pebbles onto planetesimals quickly outpaces the rate of direct planetesimal formation in the inner disk. This allows for the formation of a high mass inner disk without the need for enhanced planetesimal formation or a massive protoplanetary disk. Our proposed mechanism for planetesimal disk growth does not require any special conditions to operate. Consequently, we expect that high mass planetesimal disks form naturally in nearly all systems. The extent of this growth is controlled by the total mass in pebbles that drifts through the inner disk. Anything that reduces the rate or duration of pebble delivery will correspondingly reduce the final mass of the planetesimal disk. Therefore, we expect that low mass stars (with less massive protoplanetary disks), low metallicity stars and stars with gian...

  19. Three-dimensional modeling of radiative disks in binaries

    CERN Document Server

    Picogna, Giovanni

    2013-01-01

    Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation. The energy equation includes a flux--limited radiative transfer algorithm and the disk cooling is obtained via "boundary particles". We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. The numerical simulations performed for different values of binary separation and disk density show that the dis...

  20. Optimization of the Chemical Composition of Cast Iron Used for Casting Ball Bearing Grinding Disks

    Institute of Scientific and Technical Information of China (English)

    Aurel Crisan; Sorin Ion; Munteanu; Ioan Ciobanu; Iulian Riposan

    2008-01-01

    The chemical composition of cast iron used for casting ball bearing machining disks was varied to optimize the properties such as castability, hardenability, and durability in ball machining. The cast iron characteristics were most strongly dependent on the Ni content and the carbon saturation degree, So. This paper describes the types of test specimens, the working conditions, and the experimental results. The in-crease of the degree of carbon saturation reduces the tendency to form shrinkholes in the castings. The de-crease in the Ni content negatively affects the final hardening treatment. A way to control solidification de-fects in cast iron, by reducing the Ni content, has been verified on cast disks.

  1. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  2. Chemistry in disks. X. The molecular content of protoplanetary disks in Taurus

    Science.gov (United States)

    Guilloteau, S.; Reboussin, L.; Dutrey, A.; Chapillon, E.; Wakelam, V.; Piétu, V.; Di Folco, E.; Semenov, D.; Henning, Th.

    2016-08-01

    Aims: We attempt to determine the molecular composition of disks around young low-mass stars. Methods: We used the IRAM 30 m radio telescope to perform a sensitive wideband survey of 30 stars in the Taurus Auriga region known to be surrounded by gaseous circumstellar disks. We simultaneously observed HCO+(3-2), HCN(3-2), C2H(3-2), CS(5-4), and two transitions of SO. We combined the results with a previous survey that observed 13CO (2-1), CN(2-1), two o-H2CO lines, and another transition of SO. We used available interferometric data to derive excitation temperatures of CN and C2H in several sources. We determined characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compared the derived column densities to the predictions of an extensive gas-grain chemical disk model under conditions representative of T Tauri disks. Results: This survey provides 20 new detections of HCO+ in disks, 18 in HCN, 11 in C2H, 8 in CS, and 4 in SO. HCO+ is detected in almost all sources and its J = 3-2 line is essentially optically thick, providing good estimates of the disk radii. The other transitions are (at least partially) optically thin. Large variations of the column density ratios are observed, but do not correlate with any specific property of the star or disk. Disks around Herbig Ae stars appear less rich in molecules than those around T Tauri stars, although the sample remains small. SO is only found in the (presumably younger) embedded objects, perhaps reflecting an evolution of the S chemistry due to increasing depletion with time. Overall, the molecular column densities, and in particular the CN/HCN and CN/C2H ratios, are well reproduced by gas-grain chemistry in cold disks. Conclusions: This study provides a comprehensive census of simple molecules in disks of radii >200-300 au. Extending that to smaller disks, or searching for less

  3. Herschel Observations of Dusty Debris Disks

    CERN Document Server

    Vican, Laura; Bryden, Geoff; Melis, Carl; Zuckerman, B; Rhee, Joseph; Song, Inseok

    2016-01-01

    We present results from two Herschel observing programs using the Photodetector Array Camera and Spectrometer. During three separate campaigns, we obtained Herschel data for 24 stars at 70, 100, and 160 microns. We chose stars that were already known or suspected to have circumstellar dust based on excess infrared emission previously measured with IRAS or Spitzer, and used Herschel to examine long-wavelength properties of the dust. Fifteen stars were found to be uncontaminated by background sources, and possess infrared emission most likely due to a circumstellar debris disk. We analyzed the properties of these debris disks to better understand the physical mechanisms responsible for dust production and removal. Seven targets were spatially resolved in the Herschel images. Based on fits to their spectral energy distributions, nine disks appear to have two temperature components. Of these nine, in three cases, the warmer dust component is likely the result of a transient process rather than a steady state coll...

  4. High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  5. Earth, Moon, Sun, and CV Accretion Disks

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting Cataclysmic Variable (CV) Dwarf Novae systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar and black hole systems. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our a...

  6. Optical disk uses in criminal identification systems

    Science.gov (United States)

    Sypherd, Allen D.

    1990-08-01

    A significant advancement in law enforcement tools has been made possible by the rapid and innovative development of electronic imaging for criminal identification systems. In particular, development of optical disks capable of high-capacity and random-access storage has provided a unique marriage of application and technology. Fast random access to any record, non-destructive reading of stored images, electronic sorting and transmission of images and an accepted legal basis for evidence are a few of the advantages derived from optical disk technology. This paper discusses the application of optical disk technology to both Automated Fingerprint Identification Systems (AFIS) and Automated Mugshot Retrieval Systems (AMRS). The following topics are addressed in light of AFIS and AMRS user requirements and system capabilities: Write once vs. rewritable, gray level and storage requirements, multi-volume library systems, data organization and capacity trends.

  7. Disk Dispersal: Theoretical Understanding and Observational Constraints

    CERN Document Server

    Gorti, U; Sandor, Zs; clarke, C

    2015-01-01

    Protoplanetary disks dissipate rapidly after the central star forms, on time-scales comparable to those inferred for planet formation. In order to allow the formation of planets, disks must survive the dispersive effects of UV and X-ray photoevaporation for at least a few Myr. Viscous accretion depletes significant amounts of the mass in gas and solids, while photoevaporative flows driven by internal and external irradiation remove most of the gas. A reasonably large fraction of the mass in solids and some gas get incorporated into planets. Here, we review our current understanding of disk evolution and dispersal, and discuss how these might affect planet formation. We also discuss existing observational constraints on dispersal mechanisms and future directions.

  8. Disk Dispersal: Theoretical Understanding and Observational Constraints

    Science.gov (United States)

    Gorti, U.; Liseau, R.; Sándor, Z.; Clarke, C.

    2016-05-01

    Protoplanetary disks dissipate rapidly after the central star forms, on time-scales comparable to those inferred for planet formation. In order to allow the formation of planets, disks must survive the dispersive effects of UV and X-ray photoevaporation for at least a few Myr. Viscous accretion depletes significant amounts of the mass in gas and solids, while photoevaporative flows driven by internal and external irradiation remove most of the gas. A reasonably large fraction of the mass in solids and some gas get incorporated into planets. Here, we review our current understanding of disk evolution and dispersal, and discuss how these might affect planet formation. We also discuss existing observational constraints on dispersal mechanisms and future directions.

  9. The structure of the central disk of NGC 1068 a clumpy disk model

    CERN Document Server

    Kumar, P

    1999-01-01

    NGC 1068 is one of the best studied Seyfert II galaxies, for which the blackhole mass has been determined from the Doppler velocities of water maser. We show that the standard $\\alpha$-disk model of NGC 1068 gives disk mass between the radii of 0.65 pc and 1.1 pc (the region from which water maser emission is detected) to be about 7x10$^7$ M$_\\odot$ (for $\\alpha=0.1$), more than four times the blackhole mass, and a Toomre Q-parameter for the disk is large-amplitude density fluctuations. We conclude that the standard invalid for NGC 1068. In this paper we develop a new model for the accretion disk. The disk is considered to be composed of gravitationally bound clumps; accretion in this clumped disk model arises because of gravitational interaction of clumps with each other and the dynamical frictional drag exerted on clumps from the stars in the central region of the galaxy. The clumped disk model provides a self-consistent description of the observations of NGC 1068. The computed temperature and density are w...

  10. The orbital evolution of planets in disks

    CERN Document Server

    Kley, W

    2000-01-01

    The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on timescales of about $10^5$ years on nearly circular orbits, during which they may grow up to about 5 Jupiter masses. The interaction of the disk with several planets may halt the migration process and lead to a system similar to the solar planetary system.

  11. Maximal possible accretion rates for slim disks

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    It was proved in the previous work that there must be a maximal possible accretion rate Mmax for a slim disk. Here we discuss how the value of Mmax depends on the two fundamental parameters of the disk,namely the mass of the central black hole M and the viscosity parameter α. It is shown that Mmax increases with decreasing α,but is almost independent of M if Mmax is measured by the Eddington accretion rate MEdd ,which is in turn proportional to M.

  12. HTS nonlinearities in microwave disk resonators

    Science.gov (United States)

    Collado, Carlos; Mateu, Jordi; Shaw, Timothy J.; O'Callaghan, Juan M.

    2002-08-01

    This article describes a procedure for the calculation of the intermodulation behavior of the TM0 1 0 mode in high temperature superconducting (HTS) disk resonators from a description of the local HTS nonlinearities. Successful cross-checks are performed by comparing the theoretical results with experimental measurements and simulations based on the multiport harmonic balance algorithm for a specific model of HTS nonlinearity. The application of this procedure to the determination of nonlinear material parameters from disk resonator measurements is illustrated and compared to theoretical predictions.

  13. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    D. Κ. Ojha

    2000-06-01

    This paper presents an analysis of the first 2MASS (The Two Micron All Sky Survey) sampler data as observed at lower Galactic latitude in our Galaxy. These new near-infrared data provide insight into the structure of the thin disk of our Galaxy, The interpretation of star counts and color distributions of stars in the near-infrared with the synthetic stellar population model, gives strong evidence that the Galactic thin disk density scale length, ℎ, is rather short (2.7 ± 0.1 kpc).

  14. The Rossby wave instability in protoplanetary disks

    Directory of Open Access Journals (Sweden)

    Meheut H.

    2013-04-01

    Full Text Available The Rossby wave instability has been proposed as a mechanism to transport angular momentum in the dead zone of protoplanetary disks and to form vortices. These vortices are of particular interest to concentrate solids in their centres and eventually to form planetesimals. Here we summarize some recent results concerning the growth and structure of this instability in radially and vertically stratified disks, its saturation and non-linear evolution. We also discuss the concentration of solids in the Rossby vortices including vertical settling.

  15. Nanosecond cryogenic Yb:YAG disk laser

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Vadimova, O L; Palashov, O V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2014-05-30

    A cryogenic Yb:YAG disk laser is modernised to increase its average and peak power. The master oscillator unit of the laser is considerably modified so that the pulse duration decreases to several nanoseconds with the same pulse energy. A cryogenic disk laser head with a flow-through cooling system is developed. Based on two such laser heads, a new main amplifier is assembled according to an active multipass cell scheme. The total small-signal gain of cryogenic cascades is ∼10{sup 8}. (lasers)

  16. Extended HI disks in nearby spiral galaxies

    CERN Document Server

    Bosma, A

    2016-01-01

    In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a "tilted ring model" allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.

  17. Explorations of Dusty Debris Disk Geometry

    CERN Document Server

    Dennihy, E; Clemens, J C

    2016-01-01

    As the sample of white dwarfs with signatures of planetary systems has grown, statistical studies have begun to suggest our picture of compact debris disk formation from disrupted planetary bodies is incomplete. Here we present the results of an effort to extend the preferred dust disk model introduced by \\citet{jur03} to include elliptical geometries. We apply this model the observed distribution of fractional infrared luminosities, and explore the difference in preferred parameter spaces for a circular and highly elliptical model on a well-studied dusty white dwarf.

  18. TOWARD A GLOBAL EVOLUTIONARY MODEL OF PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States)

    2016-04-20

    A global picture of the evolution  of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  19. Evolution of Thick Accretion Disks Produced by Tidal Disruption Events

    CERN Document Server

    Ulmer, A

    1997-01-01

    Geometrically thick disks may form after tidal disruption events, and rapid accretion may lead to short flares followed by long-term, lower-level emission. Using a novel accretion disk code which relies primarily on global conservation laws and the assumption that viscosity is everywhere positive, a broad range of physically allowed evolutionary sequences of thick disks is investigated. The main result is that accretion in the thick disk phase can consume only a fraction of the initial disk material before the disk cools and becomes thin. This fraction is ~0.5-0.9 for disruptions around 10^6 to 10^7 M_ødot black holes and is sensitive to the mean angular momentum of the disk. The residual material will accrete in some form of thin disk over a longer period of time. The initial thick disk phase may reduce the dimming timescale of the disk by a factor of ~2 from estimates based on thin disks alone. Assuming an 0.5 M_ødot initial thick disk, even if the thin disks become advection dominated, the black hole mas...

  20. Frequency Correlations of QPOs Based on a Disk Oscillation Model in Warped Disks

    CERN Document Server

    Kato, S

    2007-01-01

    In previous papers we proposed a model that high-frequency quasi-periodic oscillations (QPOs) observed in black-hole and neutron-star X-ray binaries are disk oscillations (inertial-acoustic and/or g-mode oscillations) resonantly excited on warped disks. In this paper we examine whether time variations of the QPOs and their frequency correlations observed in neutron-star X-ray binaries can be accounted for by this disk-oscillation model. By assuming that a warp has a time-dependent precession, we can well describe observed frequency correlations among kHz QPOs and LF QPOs in a wide range of frequencies.

  1. ACCRETION DISK WARPING BY RESONANT RELAXATION: THE CASE OF MASER DISK NGC 4258

    International Nuclear Information System (INIS)

    The maser disk around the massive black hole (MBH) in active galaxy NGC 4258 exhibits an O(10 deg.) warp on the O(0.1 pc) scale. The physics driving the warp is still debated. Suggested mechanisms include torquing by relativistic frame dragging or by radiation pressure. We propose here a new warping mechanism: resonant torquing of the disk by stars in the dense cusp around the MBH. We show that resonant torquing can induce such a warp over a wide range of observed and deduced physical parameters of the maser disk.

  2. Accretion disk warping by resonant relaxation: The case of maser disk NGC4258

    CERN Document Server

    Bregman, Michal

    2009-01-01

    The maser disk around the massive black hole (MBH) in active galaxy NGC 4258 exhibits an O(10 deg) warp on the O(0.1 pc) scale. The physics driving the warp are still debated. Suggested mechanisms include torquing by relativistic frame dragging or by radiation pressure. We propose here a new warping mechanism: resonant torquing of the disk by stars in the dense cusp around the MBH. We show that resonant torquing can induce such a warp over the range of observed and deduced physical parameters of the maser disk.

  3. Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology

    Science.gov (United States)

    Chiang, E.; Kite, E.; Kalas, P.; Graham, J. R.; Clampin, M.

    2008-01-01

    Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still holds. Parent bodies are evacuated from mean

  4. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.; Esposito, Thomas M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Duchêne, Gaspard; Kalas, Paul G.; De Rosa, Robert J.; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Maire, Jérôme; Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Marois, Christian [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Bruzzone, Sebastian [Department of Physics and Astronomy, Centre for Planetary and Space Exploration, University of Western Ontario, London, ON N6A 3K7 (Canada); Rajan, Abhijith [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Pueyo, Laurent; Wolff, Schuyler G.; Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Konopacky, Quinn [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); and others

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.

  5. First Scattered-Light Image of the Debris Disk around HD 131835 with the Gemini Planet Imager

    CERN Document Server

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P; Maire, Jérôme; Marois, Christian; Millar-Blanchaer, Maxwell A; Bruzzone, Sebastian; Rajan, Abhijith; Pueyo, Laurent; Kalas, Paul G; De Rosa, Robert J; Graham, James R; Konopacky, Quinn; Wolff, Schuyler G; Ammons, S Mark; Chen, Christine; Chilcote, Jeffrey K; Draper, Zachary H; Esposito, Thomas M; Gerard, Benjamin; Goodsell, Stephen; Greenbaum, Alexandra; Hibon, Pascale; Hinkley, Sasha; Macintosh, Bruce; Marchis, Franck; Metchev, Stanimir; Nielsen, Eric L; Oppenheimer, Rebecca; Patience, Jenny; Perrin, Marshall; Rantakyrö, Fredrik T; Sivaramakrishnan, Anand; Wang, Jason J; Ward-Duong, Kimberly; Wiktorowicz, Sloane J

    2015-01-01

    We present the first scattered-light image of the debris disk around HD 131835 in $H$ band using the Gemini Planet Imager. HD 131835 is a $\\sim$15 Myr old A2IV star at a distance of $\\sim$120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission, the disk in scattered light shows similar orientation but different morphology. The scattered-light disk extends from $\\sim$75 to $\\sim$210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can well describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis with the northeast side being 1.3 times brighter than the southwest side at a 3-{\\sigma} level.

  6. THE GRAVITATIONAL FORCE AND POTENTIAL OF THE FINITE MESTEL DISK

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Earl, E-mail: earlschulz@gmail.com [60 Mountain Road, North Granby, CT 06060 (United States)

    2012-03-10

    Mestel determined the surface mass distribution of the finite disk for which the circular velocity is constant in the disk and found the gravitational field for points in the z = 0 plane. Here we find the exact closed form solutions for the potential and the gravitational field of this disk in cylindrical coordinates over all the space. The finite Mestel disk (FMD) is characterized by a cuspy mass distribution in the inner disk region and by an exponential distribution in the outer region of the disk. The FMD is quite different from the better known exponential disk or the untruncated Mestel disk which, being infinite in extent, are not realistic models of real spiral galaxies. In particular, the FMD requires significantly less mass to explain a measured velocity curve.

  7. The gravitational force and potential of the finite Mestel disk

    CERN Document Server

    Schulz, Earl

    2011-01-01

    Mestel determined the surface mass distribution of the finite disk for which the circular velocity is constant in the disk and found the gravitational field for points in the $z=0$ plane. Here we find the exact closed form solutions for the potential and the gravitational field of this disk in cylindrical coordinates over all the space. The Finite Mestel Disk (FMD) is characterized by a cuspy mass distribution in the inner disk region and by an exponential distribution in the outer region of the disk. The FMD is quite different from the better known exponential disk or the untruncated Mestel disk which, being infinite in extent, are not realistic models of real spiral galaxies. In particular, the FMD requires significantly less mass to explain a measured velocity curve.

  8. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where...

  9. Capture of planetesimals by waning circumplanetary gas disks

    CERN Document Server

    Suetsugu, Ryo

    2016-01-01

    When gas giant protoplanets grow sufficiently massive, circumplanetary disks would form. While solid bodies captured by the circumplanetary disks likely contribute to the growth of the planets and regular satellites around them, some of captured bodies would remain in planet-centered orbits after the dispersal of the disk. We examine capture and subsequent orbital evolution of planetesimals in waning circumplanetary gas disks using three-body orbital integration. We find that some of captured planetesimals can survive in the circumplanetary disk for a long period of time under such weak gas drag. Captured planetesimals have semi-major axes smaller than about one third of the planet's Hill radius. Distributions of their eccentricities and inclinations after disk dispersal depend on the strength of gas drag and the timescale of disk dispersal, and initially strong gas drag and quick disk dispersal facilitates capture and survival of planetesimals. However, in such a case, final orbital eccentricities and inclin...

  10. Disk Truncation and Planet Formation in gamma Cephei

    CERN Document Server

    Jang-Condell, H; Schmidt, T

    2008-01-01

    The $\\gamma$ Cephei system is one of the most closely bound binary planet hosts known to date. The companion ($\\gamma$ Cep B) to the planet-hosting star ($\\gamma$ Cep A) should have truncated any protoplanetary disk around $\\gamma$ Cep A, possibly limiting planet formation in the disk. We explore this problem by calculating the truncation radii of protoplanetary disk models around $\\gamma$ Cep A to determine whether or not there is sufficient material remaining in the disk to form a planet. We vary the accretion rate and viscosity parameter of the disk models to cover a range of reasonable possibilities for the disks properties and determine that for accretion rates of $\\geq 10^{-7}$ M$_{\\sun}$/yr and low viscosity parameter, sufficient material in gas and solids exist for planet formation via core accretion to be possible. Disk instability is less favored, as this can only occur in the most massive disk model with an extremely high accretion rate.

  11. Holographic Compact Disk Read-Only Memories

    Science.gov (United States)

    Liu, Tsuen-Hsi

    1996-01-01

    Compact disk read-only memories (CD-ROMs) of proposed type store digital data in volume holograms instead of in surface differentially reflective elements. Holographic CD-ROM consist largely of parts similar to those used in conventional CD-ROMs. However, achieves 10 or more times data-storage capacity and throughput by use of wavelength-multiplexing/volume-hologram scheme.

  12. Fast Radial Flows in Transition Disk Holes

    CERN Document Server

    Rosenfeld, Katherine A; Andrews, Sean M

    2013-01-01

    Protoplanetary "transition" disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival ALMA data on the transition disk HD 142527, and uncover evidence for free-fal...

  13. Computing Temperatures in Optically Thick Protoplanetary Disks

    Science.gov (United States)

    Capuder, Lawrence F.. Jr.

    2011-01-01

    We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.

  14. The short circuit instability in protoplanetary disks

    DEFF Research Database (Denmark)

    Hubbard, A.; McNally, C.P.; Mac Low, M.M.;

    2013-01-01

    We introduce a magneto-hydrodynamic instability which occurs, among other locations, in the inner, hot regions of protoplanetary disks, and which alters the way in which resistive dissipation of magnetic energy into heat proceeds. This instability can be likened to both an electrical short circuit...

  15. Herniated Disk in the Lower Back

    Science.gov (United States)

    ... of patients with lumbar disk herniations require surgery. Spine surgery is typically recommended only a er a period ... be as good as if you had elected surgery earlier. The risk of surgical complications is exceptionally low. Possible complications include: • Infection • Nerve ...

  16. The Inner Rim in Protoplanetary Disks

    Science.gov (United States)

    Flock, Mario; Turner, Neal J.

    2016-10-01

    Many stars host planets orbiting within one astronomical unit (AU). These close planets origins are a mystery that motivates investigating protoplanetary disks central regions.A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models.The results show for the first time the dynamical stability of the rim. Passing the model disks into Monte Carlo radiative transfer calculations allows us to directly compare with observational constraints. The inner rim has a substantial radial extent, corresponding to several disk scale heights. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  17. Local Magnetohydrodynamical Models of Layered Accretion Disks

    CERN Document Server

    Fleming, T; Fleming, Timothy; Stone, James M.

    2003-01-01

    Using numerical MHD simulations, we have studied the evolution of the magnetorotational instability in stratified accretion disks in which the ionization fraction (and therefore resistivity) varies substantially with height. This model is appropriate to dense, cold disks around protostars or dwarf nova systems which are ionized by external irradiation of cosmic rays or high-energy photons. We find the growth and saturation of the MRI occurs only in the upper layers of the disk where the magnetic Reynolds number exceeds a critical value; in the midplane the disk remains queiscent. The vertical Poynting flux into the "dead", central zone is small, however velocity fluctuations in the dead zone driven by the turbulence in the active layers generate a significant Reynolds stress in the midplane. When normalized by the thermal pressure, the Reynolds stress in the midplane never drops below about 10% of the value of the Maxwell stress in the active layers, even though the Maxwell stress in the dead zone may be orde...

  18. The geometry of the disk complex

    OpenAIRE

    Masur, Howard; Schleimer, Saul

    2010-01-01

    We give a distance estimate for the metric on the disk complex and show that it is Gromov hyperbolic. As another application of our techniques, we find an algorithm which computes the Hempel distance of a Heegaard splitting, up to an error depending only on the genus.

  19. Magnetohydrodynamic Origin of Jets from Accretion Disks

    Science.gov (United States)

    Lovelace, R. V. E.; Romanova, M. M.

    1998-01-01

    A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.

  20. Asymmetric transition disks: Vorticity or eccentricity?

    CERN Document Server

    Zsom, A; Ghanbari, J

    2013-01-01

    Context. Transition disks typically appear in resolved millimeter observations as giant dust rings surrounding their young host stars. More accurate observations with ALMA have shown several of these rings to be in fact asymmetric: they have lopsided shapes. It has been speculated that these rings act as dust traps, which would make them important laboratories for studying planet formation. It has been shown that an elongated giant vortex produced in a disk with a strong viscosity jump strikingly resembles the observed asymmetric rings. Aims. We aim to study a similar behavior for a disk in which a giant planet is embedded. However, a giant planet can induce two kinds of asymmetries: (1) a giant vortex, and (2) an eccentric disk. We studied under which conditions each of these can appear, and how one can observationally distinguish between them. This is important because only a vortex can trap particles both radially and azimuthally, while the eccentric ring can only trap particles in radial direction. Method...

  1. Strength of Cracked Reinforced Concrete Disks

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with models, based on the theory of plasticity, to be used in strength assessments of reinforced concrete disks suffering from different kinds of cracking. Based on the assumption that the sliding strength of concrete is reduced in sections where cracks are located, solutions...

  2. The abundance and thermal history of water ice in the disk surrounding HD 142527 from the DIGIT Herschel Key Program

    Science.gov (United States)

    Min, M.; Bouwman, J.; Dominik, C.; Waters, L. B. F. M.; Pontoppidan, K. M.; Hony, S.; Mulders, G. D.; Henning, Th.; van Dishoeck, E. F.; Woitke, P.; Evans, Neal J., II; Digit Team

    2016-08-01

    Context. The presence or absence of ice in protoplanetary disks is of great importance to the formation of planets. By enhancing solid surface density and increasing sticking efficiency, ice catalyzes the rapid formation of planetesimals and decreases the timescale of giant planet core accretion. Aims: In this paper, we analyze the composition of the outer disk around the Herbig star HD 142527. We focus on the composition of water ice, but also analyze the abundances of previously proposed minerals. Methods: We present new Herschel far-infrared spectra and a re-reduction of archival data from the Infrared Space Observatory (ISO). We modeled the disk using full 3D radiative transfer to obtain the disk structure. Also, we used an optically thin analysis of the outer disk spectrum to obtain firm constraints on the composition of the dust component. Results: The water ice in the disk around HD 142527 contains a large reservoir of crystalline water ice. We determine the local abundance of water ice in the outer disk (i.e., beyond 130 AU). The re-reduced ISO spectrum differs significantly from that previously published, but matches the new Herschel spectrum at their common wavelength range. In particular, we do not detect any significant contribution from carbonates or hydrous silicates, in contrast to earlier claims. Conclusions: The amount of water ice detected in the outer disk requires ~80% of oxygen atoms. This is comparable to the water ice abundance in the outer solar system, comets, and dense interstellar clouds. The water ice is highly crystalline while the temperatures where we detect it are too low to crystallize the water on relevant timescales. We discuss the implications of this finding.

  3. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  4. Resonant Excitation of Disk Oscillations in Deformed Disks VII: Stability Criterion in MHD Systems

    CERN Document Server

    Kato, Shoji

    2013-01-01

    In a disk with an oscillatory deformation from an axisymmetric state with frequency $\\omega_{\\rm D}$ and azimuthal wavenumber $m_{\\rm D}$, a set of two normal mode oscillations with frequency and azimuthal wavenumber being ($\\omega_1$, $m_1$) and ($\\omega_2$, $m_2$) resonantly couple through the disk deformation, when the resonant conditions ($\\omega_1+\\omega_2+\\omega_{\\rm D}=0$ and $m_1+m_2+m_{\\rm D}=0$) are satisfied. In the case of hydrodynamical disks, the resonance amplifies the set of the oscillations if $(E_1/\\omega_1)(E_2/\\omega_2)>0$ (Kato 2013b), where $E_1$ and $E_2$ are wave energies of the two oscillations with $\\omega_1$ and $\\omega_2$, respectively. In this paper we show that this instability criterion is still valid even when the oscillations are ideal MHD ones in magnetized disks, if the displacements associated with the oscillations vanish on the boundary of the system.

  5. SOLIS: reconciling disk-integrated and disk-resolved spectra from the Sun

    CERN Document Server

    Pevtsov, Alexei; Harker, Brian; Giampapa, Mark; Marble, Andrew

    2014-01-01

    Unlike other stars, the surface of the Sun can be spatially resolved to a high degree of detail. But the Sun can also be observed as if it was a distant star. The availability of solar disk-resolved and disk-integrated spectra offers an opportunity to devise methods to derive information about the spatial distribution of solar features from Sun-as-a-star measurements. Here, we present an update on work done at the National Solar Observatory to reconcile disk-integrated and disk-resolved solar spectra from the Synoptic Optical Long-term Investigation of the Sun (SOLIS) station. The results of this work will lead to a new approach to infer the information about the spatial distribution of features on other stars, from the overall filling factor of active regions to, possibly, the latitude/longitude distribution of features.

  6. MODELING DUST EMISSION OF HL TAU DISK BASED ON PLANET–DISK INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sheng; Ji, Jianghui [Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Shengtai; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Isella, Andrea [Rice University, Houston, TX (United States)

    2016-02-10

    We use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M{sub Jup} at 13.1, 33.0, and 68.6 AU, respectively. Implications for the planet formation as well as the limitations of this scenario are discussed.

  7. Cometary grains in the HD 32297 debris disk

    Science.gov (United States)

    Yang, Y.-G.; Li, Aigen

    2016-07-01

    HD 32297 is a young A-type star with a bright edge-on debris disk. The dust thermal emission spectral energy distribution and scattered starlight spectrum are simultaneously modeled in terms of porous cometary grains. Our modeling suggests that, similar to the solar system, the debris disk around HD 32297 may have an inner warm ring and an outer cold disk which are seen in other young debris disks as well.

  8. DISK BATTERIES IN THE ESOPHAGUS OF NIGERIAN CHILDREN: CASE SERIES

    OpenAIRE

    LUCKY OBUKOWHO ONOTAI; ADAOBI ELIZABETH OSUJI

    2015-01-01

    Foreign body (FB) ingestion is common in clinical practice especially in children. Its impaction in the esophagus constitutes an important cause of morbidity and mortality in our environment. Due to technological advancement and increase use of disk batteries to power children toys and remote control gadgets, ingestion of disk batteries is now commonplace. In our environment there is paucity of information on disk batteries hence we decided to present case series of disk batteries in the esop...

  9. Updated Kinematic Constraints on a Dark Disk

    Science.gov (United States)

    Kramer, Eric David; Randall, Lisa

    2016-06-01

    We update the method of the Holmberg & Flynn study, including an updated model of the Milky Way’s interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, using the traditional method, we subtract the mean velocity and displacement from the tracers’ phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an oscillating tracer distribution. Despite updates in the mass model and reddening map, the traditional method results remain consistent with those of HF2000. The second, non-equilibrium technique, however, allows a surface density as large as 14 {M}ȯ {{{pc}}}-2 (and as small as 0 {M}ȯ {{{pc}}}-2), demonstrating much weaker constraints. For both techniques, the bound on surface density is weaker for larger scale height. In future analyses of Gaia data it will be important to verify whether the tracer populations are in equilibrium.

  10. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert [Max-Planck-Institut für Astronomie Heidelberg, Königstuhl 17, D-69117 Heidelberg (Germany); Chandler, Claire J.; Pérez, Laura [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Anglada, Guillem; Macias, Enrique; Osorio, Mayra [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain); Flock, Mario [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Menten, Karl [Jansky Fellow of the National Radio Astronomy Observatory (United States); Testi, Leonardo [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Zhu, Zhaohuan, E-mail: c.carrasco@crya.unam.mx, E-mail: l.rodriguez@crya.unam.mx, E-mail: r.galvan@crya.unam.mx, E-mail: henning@mpia.de, E-mail: linz@mpia.de [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  11. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    NARCIS (Netherlands)

    Stanonik, K.; Platen, E.; Aragon-Calvo, M. A.; van Gorkom, J. H.; van de Weygaert, R.; van der Hulst, J. M.; Peebles, P. J. E.

    2009-01-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an Hi survey of SDSS void galaxies, with no optical counterpart to the Hi polar disk. Yet the Hi mass in th

  12. The Design of a High-Integrity Disk Management Subsystem

    NARCIS (Netherlands)

    Oey, M.A.

    2005-01-01

    This dissertation describes and experimentally evaluates the design of the Logical Disk, a disk management subsystem that guarantees the integrity of data stored on disk even after system failures, while still providing performance competitive to other storage systems. Current storage systems that

  13. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  14. Ultrasonic testing of turbine rotors with hooped disks

    International Nuclear Information System (INIS)

    Alsthom-Atlantique has developed ultrasonic testing methods for in-service inspection of the low-pressure rotors of 900 MW steam turbines; they allow to detect fatigue cracks which grow from the rotor shaft/disk interface, either within the shaft, or in the disks, without removing the disks

  15. Outer Spiral Disks as Clues to Galaxy Formation and Evolution

    CERN Document Server

    Vlajić, Marija

    2010-01-01

    Recent studies of outer spiral disks have given rise to an abundance of new results. We discuss the observational and theoretical advances that have spurred the interest in disk outskirts, as well as where we currently stand in terms of our understanding of outer disk structure, ages and metallicities.

  16. The DiskMass Survey : II. Error Budget

    NARCIS (Netherlands)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-01-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Gamma(*)), and to yield robust estimates of the dark-matter

  17. On the structure of the transition disk around TW Hydrae

    NARCIS (Netherlands)

    J. Menu; R. van Boekel; T. Henning; C.J. Chandler; H. Linz; M. Benisty; S. Lacour; M. Min; C. Waelkens; S.M. Andrews; N. Calvet; J.M. Carpenter; S.A. Corder; A.T. Deller; J.S. Greaves; R. J. Harris; A. Isella; W. Kwon; J. Lazio; J.B. de Bouquin; F. Ménard; L.G. Mundy; L.M. Pérez; L. Ricci; A.I. Sargent; S. Storm; L. Testi; D.J. Wilner

    2014-01-01

    Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might

  18. Tomographic Sounding of Protoplanetary and Transitional Disks: Using Inner Disk Variability at Near to Mid-IR Wavelengths to Probe Conditions in the Outer Disk

    Science.gov (United States)

    Grady, C. A.; Sitko, M.L.

    2013-01-01

    Spitzer synoptic monitoring of young stellar associations has demonstrated that variability among young stars and their disks is ubiquitous. The Spitzer studies have been limited by target visibility windows and cover only a short temporal baseline in years. A complementary approach is to focus on stars chosen for high-value observations (e.g. high-contrast imaging, interferometry, or access to wavelengths which are difficult to achieve from the ground) where the synoptic data can augment the imagery or interferometry as well as probing disk structure. In this talk, we discuss how synoptic data for two protoplanetary disks, MWC 480 and HD 163296, constrain the dust disk scale height, account for variable disk illumination, and can be used to locate emission features, such as the IR bands commonly associated with PAHs in the disk, as part of our SOFIA cycle 1 study. Similar variability is now known for several pre-transitional disks, where synoptic data can be used to identify inner disks which are not coplanar with the outer disk, and which may be relicts of giant planet-giant planet scattering events. Despite the logistical difficulties in arranging supporting, coordinated observations in tandem with high-value observations, such data have allowed us to place imagery in context, constrained structures in inner disks not accessible to direct imagery, and may be a tool for identifying systems where planet scattering events have occurred.

  19. Inward Radial Mixing of Interstellar Water Ices in the Solar Protoplanetary Disk

    Science.gov (United States)

    Vacher, Lionel G.; Marrocchi, Yves; Verdier-Paoletti, Maximilien J.; Villeneuve, Johan; Gounelle, Matthieu

    2016-08-01

    The very wide diversity of asteroid compositions in the main belt suggests significant material transport in the solar protoplanetary disk and hints at the presence of interstellar ices in hydrated bodies. However, only a few quantitative estimations of the contribution of interstellar ice in the inner solar system have been reported, leading to considerable uncertainty about the extent of radial inward mixing in the solar protoplanetary disk 4.56 Ga ago. We show that the pristine CM chondrite Paris contains primary Ca-carbonates whose O-isotopic compositions require an 8%-35% contribution from interstellar water. The presence of interstellar water in Paris is confirmed by its bulk D/H isotopic composition that shows significant D enrichment (D/H = (167 ± 0.2) × 10-6) relative to the mean D/H of CM chondrites ((145 ± 3) × 10-6) and the putative D/H of local CM water ((82 ± 1.5) × 10-6). These results imply that (i) efficient radial mixing of interstellar ices occurred from the outer zone of the solar protoplanetary disk inward and that (ii) chondrites accreted water ice grains from increasing heliocentric distances in the solar protoplanetary disk.

  20. Fomalhaut's Debris Disk and Planet: Constraining the Mass of Fomalhaut b From Disk Morphology

    CERN Document Server

    Chiang, E; Kalas, P; Graham, J R; Clampin, M

    2008-01-01

    Following the optical imaging of the exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. We find that to not disrupt the belt, Fom b must have a mass < 3 Jupiter masses. Previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Preliminary analysi...

  1. Chemistry in Disks X: The Molecular Content of Proto-planetary Disks in Taurus

    CERN Document Server

    Guilloteau, S; Dutrey, A; Chapillon, E; Wakelam, V; Piétu, V; Di Folco, E; Semenov, D; Henning, Th

    2016-01-01

    (abridged) We used the IRAM 30-m to perform a sensitive wideband survey of 30 protoplanetary disks in the Taurus Auriga region. We simultaneously observed HCO$^+$(3-2), HCN(3-2), C$_2$H(3-2), CS(5-4), and two transitions of SO. We combine the results with a previous survey which observed $^{13}$CO (2-1), CN(2-1), two o-H$_2$CO lines and one of SO. We use available interferometric data to derive excitation temperatures of CN and C$_2$H in several sources. We determine characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compare the derived column densities to the predictions of an extensive gas-grain chemical disk model, under conditions representative of T Tauri disks. This survey provides 20 new detections of HCO$^+$ in disks, 18 in HCN, 11 in C$_2$H, 8 in CS and 4 in SO. HCO$^+$ is detected in almost all sources, and its J=3-2 line is essentially optically thick, provid...

  2. Brown dwarf disks with ALMA: evidence for truncated dust disks in Ophiuchus

    CERN Document Server

    Testi, L; Scholz, A; Tazzari, M; Ricci, L; Monsalvo, I de Gregorio

    2016-01-01

    The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. High angular resolution observations of the cold outer disk are limited, we used ALMA to attempt a first survey of young brown dwarfs in the rho-Ophiuchi star forming region with ALMA. All 17 young brown dwarfs in our sample were observed at 890 um in the continuum at ~0.5" angular resolution. The sensitivity of our observations was chosen to detect ~0.5 MEarth of dust. We detect continuum emission in 11 disks (65% of the total), the estimated mass of dust in the detected disks ranges from ~0.5 to ~6 MEarth. These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supra-Jupiter mass companions found around some brown dwarfs are probably the result of a binar...

  3. CID: Chemistry In Disks VII. First detection of HC3N in protoplanetary disks

    CERN Document Server

    Chapillon, E; Guilloteau, S; Pietu, V; Wakelam, V; Hersant, F; Gueth, F; Henning, T; Launhardt, R; Schreyer, K; Semenov, D

    2012-01-01

    Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30m telescope by using the new broad band correlator (FTS) to search for so far undetected molecules in the protoplanetary disks surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10^{12}cm^{-2}. We also obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen and sulfur-bearing molecule observations. The observed column densiti...

  4. Turbulence driven diffusion in protoplanetary disks - chemical effects in the outer disk

    CERN Document Server

    Willacy, K; Langer, W D

    2006-01-01

    The dynamics and chemistry of protostellar disks are likely to be intricately linked, with dynamical processes altering the chemical composition, and chemistry, in turn, controlling the ionization structure and hence the ability of the magneto-rotational instability to drive the disk turbulence. Here we present the results from the first chemical models of the outer regions (R > 100 AU) of protoplanetary disks to consider the effects of turbulence driven diffusive mixing in the vertical direction. We show that vertical diffusion can greatly affect the column densities of many species, increasing them by factors of up to two orders of magnitude. Previous disk models have shown that disks can be divided into three chemically distinct layers, with the bulk of the observed molecular emission coming from a region between an atomic/ionic layer on the surface of the disk and the midplane regoin where the bulk of molecules are frozen onto grains. Diffusion retains this three layer structure, but increases the depth o...

  5. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Valparaiso (Chile); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Merin, Bruno [Herschel Science Centre, ESAC (ESA), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Smith Castelli, Analia V. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Allen, Lori E. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  6. Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs

    Science.gov (United States)

    Woitke, P.; Min, M.; Pinte, C.; Thi, W.-F.; Kamp, I.; Rab, C.; Anthonioz, F.; Antonellini, S.; Baldovin-Saavedra, C.; Carmona, A.; Dominik, C.; Dionatos, O.; Greaves, J.; Güdel, M.; Ilee, J. D.; Liebhart, A.; Ménard, F.; Rigon, L.; Waters, L. B. F. M.; Aresu, G.; Meijerink, R.; Spaans, M.

    2016-02-01

    We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on the assumptions about the shape of the disk, the dust opacities, dust settling, and polycyclic aromatic hydrocarbons (PAHs). In particular, we propose new standard dust opacities for disk models, we present a simplified treatment of PAHs in radiative equilibrium which is sufficient to reproduce the PAH emission features, and we suggest using a simple yet physically justified treatment of dust settling. We roughly adjust parameters to obtain a model that predicts continuum and line observations that resemble typical multi-wavelength continuum and line observations of Class II T Tauri stars. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all mainstream continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63 μm, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties, i.e. large grains, often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger near- to far-IR emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can efficiently shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities in comparison to evolved dust. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models

  7. DISK BATTERIES IN THE ESOPHAGUS OF NIGERIAN CHILDREN: CASE SERIES

    Directory of Open Access Journals (Sweden)

    LUCKY OBUKOWHO ONOTAI

    2015-07-01

    Full Text Available Foreign body (FB ingestion is common in clinical practice especially in children. Its impaction in the esophagus constitutes an important cause of morbidity and mortality in our environment. Due to technological advancement and increase use of disk batteries to power children toys and remote control gadgets, ingestion of disk batteries is now commonplace. In our environment there is paucity of information on disk batteries hence we decided to present case series of disk batteries in the esophagus of children highlighting the peculiarities of disk batteries, the dangers posed by them, the mode of retrieval, complications encountered, and possible recommendations to curtail the increasing occurrence.

  8. Do low surface brightness galaxies have dense disks?

    CERN Document Server

    Saburova, A S

    2010-01-01

    The disk masses of four low surface brightness galaxies (LSB) were estimated using marginal gravitational stability criterion and the stellar velocity dispersion data which were taken from Pizzella et al., 2008 [1]. The constructed mass models appear to be close to the models of maximal disk. The results show that the disks of LSB galaxies may be significantly more massive than it is usually accepted from their brightnesses. In this case their surface densities and masses appear to be rather typical for normal spirals. Otherwise, unlike the disks of many spiral galaxies, the LSB disks are dynamically overheated.

  9. Disk Destruction and (Re)-Creation in the Magellanic Clouds

    OpenAIRE

    Nidever, David L.

    2013-01-01

    Unlike most satellite galaxies in the Local Group that have long lost their gaseous disks, the Magellanic Clouds are gas-rich dwarf galaxies most-likely on their first pericentric passage allowing us to study disk evolution on the smallest scales. The Magellanic Clouds show both disk destruction and (re)-creation. The Large Magellanic Cloud has a very extended stellar disk reaching to at least 15 kpc (10 radial scalelengths) while its gaseous disk is truncated at ~5 kpc mainly due to its inte...

  10. Reading the Signatures of Extrasolar Planets in Debris Disks

    Science.gov (United States)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  11. Energy response of CaSO4:Dy teflon TLD disk dosimeters to photons and electrons.

    Science.gov (United States)

    Sharada, K S

    1983-01-01

    The photon energy response of CaSO4:Dy teflon disk dosimeters used widely in radiation dosimetry is computed using the energy absorption coefficient values for calcium, sulfur, oxygen, and carbon taken from J. H. Hubbell's tables. For fluorine, the energy absorption coefficients were obtained from the values given by F. H. Attix for CaF2 and Ca. The energy response of the radiation-monitoring disk for the range of 10 keV to 10 MeV, relative to air, is computed and plotted. The response is maximum between 20 and 30 keV and then gradually falls to a constant at 200 keV to 10 MeV. This computed response for different energies is compared with the experimental TL response of the dosimeter. The electron energy response of these TLD disks is computed using the stopping-power values for the different component elements. The electron stopping power for sulfur and calcium from 10 keV to 10 MeV is computed using the Bethe-Bloch formula. Those for oxygen and carbon are taken from the tables given by M. J. Berger and S. M. Seltzer. For fluorine, the values are computed from those for Li and LiF given in the same tables. This calculated response is compared with the experimental beta response of the TL dosimeter. PMID:6823508

  12. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  13. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  14. Dust dynamics in 2D gravito-turbulent disks

    CERN Document Server

    Shi, Ji-Ming; Stone, James M; Chiang, Eugene

    2016-01-01

    The dynamics of solid bodies in protoplanetary disks are subject to the properties of any underlying gas turbulence. Turbulence driven by disk self-gravity shows features distinct from those driven by the magnetorotational instability (MRI). We study the dynamics of solids in gravito-turbulent disks with two-dimensional (in the disk plane), hybrid (particle and gas) simulations. Gravito-turbulent disks can exhibit stronger gravitational stirring than MRI-active disks, resulting in greater radial diffusion and larger eccentricities and relative speeds for large particles (those with dimensionless stopping times $t_{stop} \\Omega > 1$, where $\\Omega$ is the orbital frequency). The agglomeration of large particles into planetesimals by pairwise collisions is therefore disfavored in gravito-turbulent disks. However, the relative speeds of intermediate-size particles $t_{stop} \\Omega \\sim 1$ are significantly reduced as such particles are collected by gas drag and gas gravity into coherent filament-like structures ...

  15. Accretion Disks Around Binary Black Holes: A Quasistationary Model

    CERN Document Server

    Liu, Yuk Tung

    2010-01-01

    Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...

  16. Inner polar gaseous disks: incidence, ages, possible origin

    CERN Document Server

    Sil'chenko, Olga K

    2014-01-01

    We review our current knowledge about a particular case of decoupled gas kinematics -- inner ionized-gas polar disks. Though more difficult to be noticed, they seem to be more numerous than their large-scale counterparts; our recent estimates imply about 10 per cent of early-type disk galaxies to be hosts of inner polar disks. Since in the most cases the kinematics of the inner polar gaseous disks is decoupled from the kinematics of the outer large-scale gaseous disks and since they nested around very old stellar nuclei, we speculate that the inner polar disks may be relics of very early events of external gas accretion several Gyr ago. Such view is in agreement with our new paradigm of the disk galaxies evolution.

  17. Dipper disks not inclined towards edge-on orbits

    CERN Document Server

    Ansdell, M; Williams, J P; Kennedy, G; Wyatt, M C; LaCourse, D M; Jacobs, T L; Mann, A W

    2016-01-01

    The so-called "dipper" stars host circumstellar disks and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disk. Most of the proposed mechanisms explaining the dips---i.e., occulting disk warps, vortices, and forming planetesimals---assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals disks with a range of inclinations, most notably the face-on transition disk J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disk processes that regularly produce dusty structures far above the outer disk midplane in regions relevant to planet formation.

  18. Thermal instability of advection-dominated disks against local perturbations

    CERN Document Server

    Kato, S; Chen, X; Kato, Shoji; Abramowicz, Marek Artur; Chen, Xingming

    1995-01-01

    Thermal instability is examined for advection-dominated one-temperature accretion disks. We consider axisymmetric perturbations with short wavelength in the radial direction. The viscosity is assumed to be sufficiently small for the vertical hydrostatic balance to hold in perturbed states. The type of viscosity is given either by the \\alpha-viscosity or by a diffusion-type stress tensor. Optically thick disks are found to be in general more unstable than optically thin ones. When the thermal diffusion is present, the optically thin disks become stable, but the optically thick disks are still unstable. The instability of the advection-dominated disks is different from that of the geometrically thin disks without advection. In the case of no advection, the thermal mode behaves under no appreciable surface density change. In the case of advection-dominated disks, however, the thermal mode occurs with no appreciable pressure change (compared with the density change), when local perturbations are considered. The v...

  19. Metallicity Gradients in Disks: Do Galaxies Form Inside-Out?

    CERN Document Server

    Pilkington, K; Gibson, B K; Calura, F; Michel-Dansac, L; Thacker, R J; Molla, M; Matteucci, F; Rahimi, A; Kawata, D; Kobayashi, C; Brook, C B; Stinson, G S; Couchman, H M P; Bailin, J; Wadsley, J

    2012-01-01

    We examine radial and vertical metallicity gradients using a suite of disk galaxy simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient and reconcile differences between extant models and observations within the `inside-out' disk growth paradigm. A sample of 25 disks is used, consisting of 19 from our RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code RAMSES. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE, alongside disks from Rahimi et al. (GCD+) and Kobayashi & Nakasato (GRAPE-SPH). Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. We find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, comp...

  20. Determining locus and periphery of optic disk in retinal images

    Science.gov (United States)

    Norouzi Fard, Mohammad; Salehi, Alireza; Shanbeh Zadeh, Jamshid

    2008-04-01

    Diabetes can be recognized by features of retina. Automatic retina feature extraction improves the speed of diabetes diagnosis. The first step in extracting the features is to localize the optic disk. Methods with low accuracy in localizing the optic disk include area with maximum lightness or the largest area containing pixels with maximum gray levels. A more accurate method is to find the physical position of blood vessel that passes through optic disk. This paper presents a fast and accurate algorithm for localizing the optic disk. The process of localization consists of finding the target area, Optic Disk center and Optic Disk boundaries. Optic Disk boundaries are recognized by our algorithm with %90 accuracy.

  1. Eccentric Jupiters via Disk-Planet Interactions

    CERN Document Server

    Duffell, Paul C

    2015-01-01

    Numerical hydrodynamics calculations are performed to determine conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified --- provided their orbits start eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. If the eccentricity driving documented here survives in 3D, it may explain the low-to-moderate eccentricities $\\lesssim 0.1$ exhibited by many giant planets (including Jupiter and Saturn), especially those without plane...

  2. Zodiac II: Debris Disk Imaging Potential

    Science.gov (United States)

    Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John

    2011-01-01

    Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.

  3. Accretion disk structure in SS Cygni

    Science.gov (United States)

    Hessman, F. V.

    1987-02-01

    High-resolution coude observations of nonaxisymmetric line emission from the dwarf nova SS Cygni are presented. By subtracting the constant line component, the asymmetric line emission responsible for the observed phase shift between the absorption and emission line radial velocity curves can be isolated. The extra emission is a large fraction of the total line emission and extends to large velocities (of about 1500 km/sec). The phase stability of the emission demands a large-scale structure which is fixed in the frame of the binary. A magnetic origin of the excitation cannot be ruled out but is implausible. A simple explanation is that the accretion stream from the companion star is able to spill over the edge of the disk, introducing emission at noncircular velocities and most likely disturbing the upper layers of the accretion disk.

  4. Dust coagulation in protoplanetary disks: porosity matters

    CERN Document Server

    Ormel, C W; Tielens, A G G M

    2006-01-01

    Context: Sticking of colliding dust particles through van der Waals forces is the first stage in the grain growth process in protoplanetary disks, eventually leading to the formation of comets, asteroids and planets. A key aspect of the collisional evolution is the coupling between dust and gas motions, which depends on the internal structure (porosity) of aggregates. Aims: To quantify the importance of the internal structure on the collisional evolution of particles, and to create a new coagulation model to investigate the difference between porous and compact coagulation in the context of a turbulent protoplanetary disk. Methods: We have developed simple prescriptions for the collisional evolution of porosity of grain-aggregates in grain-grain collisions. Three regimes can then be distinguished: `hit-and-stick' at low velocities, with an increase in porosity; compaction at intermediate velocities, with a decrease of porosity; and fragmentation at high velocities. (..) Results: (..) We can discern three diff...

  5. Magnetic white dwarfs with debris disks

    CERN Document Server

    Külebi, Baybars; Lorén-Aguilar, Pablo; Isern, Jordi; García-Berro, Enrique

    2012-01-01

    It has long been accepted that a possible mechanism for explaining the existence of magnetic white dwarfs is the merger of a binary white dwarf system, as there are viable mechanisms for producing sustainable magnetism within the merger product. However, the lack of rapid rotators in the magnetic white dwarf population has been always considered a problematic issue of this scenario. In order to explain this discrepancy we build a model in which the interaction between the magnetosphere of the star and the disk induces angular momentum transfer. Our model predicts that the magnetospheric interaction of magnetic white dwarfs with their disks results in a significant spin down, and we show that the observed rotation period of REJ 0317-853, which is suggested to be a product of a double degenerate merger, can be reproduced.

  6. Shock Waves in Dense Hard Disk Fluids

    CERN Document Server

    Sirmas, Nick; Barahona, Javier; Radulescu, Matei I

    2011-01-01

    Media composed of colliding hard disks (2D) or hard spheres (3D) serve as good approximations for the collective hydrodynamic description of gases, liquids and granular media. In the present study, the compressible hydrodynamics and shock dynamics are studied for a two-dimensional hard-disk medium at both the continuum and discrete particle level descriptions. For the continuum description, closed form analytical expressions for the inviscid hydrodynamic description, shock Hugoniot, isentropic exponent and shock jump conditions were obtained using the Helfand equation of state. The closed-form analytical solutions permitted us to gain physical insight on the role of the material's density on its compressibility, i.e. how the medium compresses under mechanical loadings and sustains wave motion. Furthermore, the predictions were found in excellent agreement with calculations using the Event Driven Molecular Dynamic method involving 30,000 particles over the entire range of compressibility spanning the dilute id...

  7. Exponential Galaxy Disks from Stellar Scattering

    CERN Document Server

    Elmegreen, Bruce G

    2013-01-01

    Stellar scattering off of orbiting or transient clumps is shown to lead to the formation of exponential profiles in both surface density and velocity dispersion in a two-dimensional non-self gravitating stellar disk with a fixed halo potential. The exponential forms for both nearly-flat rotation curves and near-solid body rotation curves. The exponential does not depend on initial conditions, spiral arms, bars, viscosity, star formation, or strong shear. After a rapid initial development, the exponential saturates to an approximately fixed scale length. The inner exponential in a two-component profile has a break radius comparable to the initial disk radius; the outer exponential is primarily scattered stars.

  8. Turbulent Comptonization in Black Hole Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2004-01-01

    In the inner-most regions of radiation pressure supported accretion disks, the turbulent magnetic pressure may greatly exceed that of the gas. If this is the case, it is possible for bulk Alfvenic motions driven by the magnetorotational instability (MRI) to surpass the electron thermal velocity. Bulk rather than thermal Comptonization may then be the dominant radiative process which mediates gravitational energy release. For sufficiently large turbulent stresses, we show that turbulent Comptonization produces a significant contribution to the far-UV and X-ray emission of black hole accretion disks. The existence of this spectral component provides a means of obtaining direct observational constraints on the nature of the turbulence itself. We describe how this component may affect the spectral energy distributions and variability properties of X-ray binaries and active galactic nuclei.

  9. Comment to "Thomson rings in a disk"

    CERN Document Server

    Amore, Paolo

    2016-01-01

    We have found that the minimum energy configuration of $N=395$ charges confined in a disk and interacting via the Coulomb potential, reported by Cerkaski et al. in Ref.~\\cite{Cerkaski15} is not a global minimum of the total electrostatic energy. We have identified a large number of configurations with lower energy, where defects are present close to the center of the disk; thus, the formation of a hexagonal core and valence circular rings for the centered configurations, predicted by the model of Ref.~\\cite{Cerkaski15}, is not supported by numerical evidence and the configurations obtained with this model cannot be used as a guide for the numerical calculations, as claimed by the authors.

  10. Transient dynamics of perturbations in astrophysical disks

    CERN Document Server

    Razdoburdin, Dmitry N

    2015-01-01

    This paper reviews some aspects of one of the major unsolved problems in understanding astrophysical (in particular, accretion) disks: whether the disk interiors may be effectively viscous in spite of the absence of marnetorotational instability? In this case a rotational homogeneous inviscid flow with a Keplerian angular velocity profile is spectrally stable, making the transient growth of perturbations a candidate mechanism for energy transfer from the regular motion to perturbations. Transient perturbations differ qualitatively from perturbation modes and can grow substantially in shear flows due to the nonnormality of their dynamical evolution operator. Since the eigenvectors of this operator, alias perturbation modes, are mutually nonorthogonal, they can mutually interfere, resulting in the transient growth of their linear combinations. Physically, a growing transient perturbation is a leading spiral whose branches are shrunk as a result of the differential rotation of the flow. This paper discusses in d...

  11. High-Temperature Ionization in Protoplanetary Disks

    CERN Document Server

    Desch, Steven J

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (> 500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains' work functions. The charged species' abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks' dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge locat...

  12. Capsule- and disk-filter procedure

    Science.gov (United States)

    Skrobialowski, Stanley C.

    2016-01-01

    Capsule and disk filters are disposable, self-contained units composed of a pleated or woven filter medium encased in a polypropylene or other plastic housing that can be connected inline to a sample-delivery system (such as a submersible or peristaltic pump) that generates sufficient pressure (positive or negative) to force water through the filter. Filter media are available in several pore sizes, but 0.45 µm is the pore size used routinely for most studies at this time. Capsule or disk filters (table 5.2.1.A.1) are required routinely for most studies when filtering samples for trace-element analyses and are recommended when filtering samples for major-ion or other inorganic-constituent analyses.

  13. Terabyte IDE RAID-5 Disk Arrays

    Energy Technology Data Exchange (ETDEWEB)

    David A. Sanders et al.

    2003-09-30

    High energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that exploit recent developments in commodity hardware. We report on tests of redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now are less than the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordable to institutions without robots and used when fast random access at low cost is important.

  14. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  15. Effective gluon interactions from superstring disk amplitudes

    International Nuclear Information System (INIS)

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full α' dependence. In this connection material for obtaining the α' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  16. Effective gluon interactions from superstring disk amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Oprisa, D.

    2006-05-15

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  17. The orbital evolution of planets in disks

    OpenAIRE

    Kley, Wilhelm

    2000-01-01

    The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on timescales of about $10^5$ years on nearly circular orbits, during which they may grow up to about ...

  18. Fallback Disks, Magnetars and Other Neutron Stars

    OpenAIRE

    Alpar, M. Ali; Caliskan, S.; Ertan, U.

    2012-01-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron ...

  19. Fallback disks, magnetars and other neutron stars

    OpenAIRE

    Alpar, M. Ali; Çalışkan, Şirin; Caliskan, Sirin; Ertan, Ünal; Ertan, Unal

    2012-01-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutr...

  20. The DiskMass Survey. II. Error Budget

    Science.gov (United States)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  1. THE LONG-LIVED DISKS IN THE η CHAMAELEONTIS CLUSTER

    International Nuclear Information System (INIS)

    We present Infrared Spectrograph spectra and revised Multiband Imaging Photometer photometry for the 18 members of the η Chamaeleontis cluster. Aged 8 Myr, the η Cha cluster is one of the few nearby regions within the 5-10 Myr age range, during which the disk fraction decreases dramatically and giant planet formation must come to an end. For the 15 low-mass members, we measure a disk fraction ∼50%, high for their 8 Myr age, and four of the eight disks lack near-IR excesses, consistent with the empirical definition of 'transition' disks. Most of the disks are comparable to geometrically flat disks. The comparison with regions of different ages suggests that at least some of the 'transition' disks may represent the normal type of disk around low-mass stars. Therefore, their flattened structure and inner holes may be related to other factors (initial masses of the disk and the star, environment, binarity), rather than to pure time evolution. We analyze the silicate dust in the disk atmosphere, finding moderate crystalline fractions (∼10%-30%) and typical grain sizes ∼1-3 μm, without any characteristic trend in the composition. These results are common to other regions of different ages, suggesting that the initial grain processing occurs very early in the disk lifetime (<1 Myr). Large grain sizes in the disk atmosphere cannot be used as a proxy for age, but are likely related to higher disk turbulence. The dust mineralogy varies between the 8-12 μm and the 20-30 μm features, suggesting high temperature dust processing and little radial mixing. Finally, the analysis of IR and optical data on the B9 star η Cha reveals that it is probably surrounded by a young debris disk with a large inner hole, instead of being a classical Be star.

  2. Lopsided dust rings in transition disks

    CERN Document Server

    Birnstiel, T; Pinilla, P

    2013-01-01

    Context. Particle trapping in local or global pressure maxima in protoplanetary disks is one of the new paradigms in the theory of the first stages of planet formation. However, finding observational evidence for this effect is not easy. Recent work suggests that the large ring-shaped outer disks observed in transition disk sources may in fact be lopsided and constitute large banana-shaped vortices. Aims. We wish to investigate how effective dust can accumulate along the azimuthal direction. We also want to find out if the size- sorting resulting from this can produce a detectable signatures at millimeter wavelengths. Methods. To keep the numerical cost under control we develop a 1+1D method in which the azimuthal variations are treated sepa- rately from the radial ones. The azimuthal structure is calculated analytically for a steady-state between mixing and azimuthal drift. We derive equilibration time scales and compare the analytical solutions to time-dependent numerical simulations. Results. We find that ...

  3. Radiative Flow in a Luminous Disk

    CERN Document Server

    Fukue, J

    2005-01-01

    Radiatively-driven flow in a luminous disk is examined in the subrelativistic regime of $(v/c)^1$, taking account of radiation transfer. The flow is assumed to be vertical, and the gravity and gas pressure are ignored. When internal heating is dropped, for a given optical depth and radiation pressure at the flow base (disk ``inside''), where the flow speed is zero, the flow is analytically solved under the appropriate boundary condition at the flow top (disk ``surface''), where the optical depth is zero. The loaded mass and terminal speed of the flow are both determined by the initial conditions; the mass-loss rate increases as the initial radiation pressure increases, while the flow terminal speed increases as the initial radiation pressure and the loaded mass decrease. In particular, when heating is ignored, the radiative flux $F$ is constant, and the radiation pressure $P_0$ at the flow base with optical depth $\\tau_0$ is bound in the range of $2/3 < cP_0/F < 2/3 + \\tau_0$. In this case, in the limit...

  4. Evolution of Massive Protostars via Disk Accretion

    CERN Document Server

    Hosokawa, Takashi; Omukai, Kazuyuki

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates > 10^-4 M_sun/yr is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10^-3 M_sun/yr the radius of a protostar is initially small, about a few R_sun. After several solar masses have accreted, the protostar...

  5. Molecular emission from GG Car's circumbinary disk

    CERN Document Server

    Kraus, Michaela; Nickeler, Dieter; Muratore, Florencia; Fernandes, Marcelo Borges; Aret, Anna; Cidale, Lydia; de Wit, Willem-Jan

    2012-01-01

    The appearance of the B[e] phenomenon in evolved massive stars such as B[e] supergiants is still a mystery. While these stars are generally found to have disks that are cool and dense enough for efficient molecule and dust condensation, the origin of the disk material is still unclear. We aim at studying the kinematics and origin of the disk in the eccentric binary system GG Car, whose primary component is proposed to be a B[e] supergiant. Based on medium- and high-resolution near-infrared spectra we analyzed the CO-band emission detected from GG Car. The complete CO-band structure delivers information on the density and temperature of the emitting region, and the detectable 13CO bands allow us to constrain the evolutionary phase. In addition, the kinematics of the CO gas can be extracted from the shape of the first 12CO band head. We find that the CO gas is located in a ring surrounding the eccentric binary system, and its kinematics agrees with Keplerian rotation with a velocity, projected to the line of si...

  6. Massive Star Formation: The Role of Disks

    Science.gov (United States)

    Fallscheer, Cassandra L.; Beuther, H.; Sauter, J.; Wolf, S.; Zhang, Q.; Keto, E.; Sridharan, T. K.

    2011-01-01

    We have obtained multiple data sets from the SMA, PdBI, and IRAM 30m telescope of the Infrared Dark Cloud IRDC18223-3, the High-Mass Protostellar Object IRAS18151-1208, and the hot core source IRAS18507+0121 in order to search for clues regarding the role of rotation and disks in high mass star formation. These three objects allow us to compare the central-most regions surrounding the embedded continuum source at three different evolutionary stages of the formation process. Toward all three regions we see rotational or elongated structures perpendicular to the molecular outflows. Similarities and differences in the evolutionary sequence are discussed in the context of core and disk evolution. We have also carried out continuum and line radiative transfer modeling of the disk-like structures. Having a more complete picture of the evolutionary process that a massive star experiences will contribute significantly to the future of massive star formation research. Support for this project comes from the Deutsche Forschungsgemeinschaft and the International Max-Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg.

  7. When did round disk galaxies form?

    CERN Document Server

    Takeuchi, Tomoe M; Yuma, Suraphong; Yabe, Kiyoto

    2015-01-01

    When and how galaxy morphology such as disk and bulge seen in the present-day universe emerged is still not clear. In the universe at $z\\gtrsim 2$, galaxies with various morphology are seen, and star-forming galaxies at $z\\sim2$ show an intrinsic shape of bar-like structure. Then, when did round disk structure form? Here we take a simple and straightforward approach to see the epoch when a round disk galaxy population emerged by constraining the intrinsic shape statistically based on apparent axial ratio distribution of galaxies. We derived the distributions of the apparent axial ratios in the rest-frame optical light ($\\sim 5000$ \\AA) of star-forming main sequence galaxies at $2.5>z>1.4$, $1.4>z>0.85$, and $0.85>z>0.5$, and found that the apparent axial ratios of them show peaky distributions at $z\\gtrsim0.85$, while a rather flat distribution at the lower redshift. By using a tri-axial model ($A>B>C$) for the intrinsic shape, we found the best-fit models give the peaks of the $B/A$ distribution of $0.81\\pm0...

  8. The DiskMass Survey. I. Overview

    CERN Document Server

    Bershady, Matthew A; Swaters, Rob A; Andersen, David R; Westfall, Kyle B; Martinsson, Thomas

    2010-01-01

    We present a survey of the mass surface-density of spiral disks, motivated by outstanding uncertainties in rotation-curve decompositions. Our method exploits integral-field spectroscopy to measure stellar and gas kinematics in nearly face-on galaxies sampled at 515, 660, and 860 nm, using the custom-built SparsePak and PPak instruments. A two-tiered sample, selected from the UGC, includes 146 nearly face-on galaxies, with B<14.7 and disk scale-lengths between 10 and 20 arcsec, for which we have obtained H-alpha velocity-fields; and a representative 46-galaxy subset for which we have obtained stellar velocities and velocity dispersions. Based on re-calibration of extant photometric and spectroscopic data, we show these galaxies span factors of 100 in L(K) (0.03 < L/L(K)* < 3), 8 in L(B)/L(K), 10 in R-band disk central surface-brightness, with distances between 15 and 200 Mpc. The survey is augmented by 4-70 micron Spitzer IRAC and MIPS photometry, ground-based UBVRIJHK photometry, and HI aperture-synt...

  9. Hydrogen environment embrittlement of turbine disk alloys

    International Nuclear Information System (INIS)

    Differences in reported data on properties of turbine disk materials are examined. Results confirm previous results that Udimet 700 bar stock is severely embrittled when tested in gaseous hydrogen. This extreme sensitivity to embrittlement of Udimet 700 is presumably related to its microstructure. Results that Astroloy forgings exhibit a high degree of resistance to hydrogen environment embrittlement during short-term testing, and possibly long-term testing are also confirmed. Therefore, this alloy could be considered for use as the turbine disk alloy for advanced versions of the APU, thereby permitting an increased turbine inlet temperature and/or higher rotational speed than possible with V-57. V-57 is an iron-base superalloy (stable austenitic stainless steel) and is a member of a class of alloys generally quite resistant to hydrogen environment embrittlement. The results of investigation demonstrate the good resistance of V-57 alloy to embrittlement only during short-term tensile testing. Significant reductions in creep and rupture lives, as well as post-creep residual ductility, were determined. Despite these laboratory results, V-57 turbine disks successfully completed short-time performance testing in the experimental APU

  10. Information Leakage Prevention Using Virtual Disk Drive

    Directory of Open Access Journals (Sweden)

    Tarek S. Sobh

    2013-06-01

    Full Text Available The worst news for information technology people are computer has been stolen or lost. The actual problem is the loss of the data stored on the hard drive that can fall into the wrong hands. However, users of information system and laptops computers are facing real problems with due to intruders using attack techniques when they are connected to the network and lost or stolen computers. In order to protect your organization against information leakage you should encrypt this data by only allowing the user with access to the encryption key to view the data, authorized application usage, and control who gets access to specific types of data. This work focuses on confidentiality of secure information storage. In addition, it presents the model to create of a Virtual Disk Drive (VDD on MS Windows, that appear to the user (after the mounting process as hard disks, but that are really stored as ciphered files on a file system. The proposed VDD prevents dictionary attacks and brute force attacks by incorporating a CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart in the login mechanism. The authentication method for the VDD login is based upon a 3-D image CAPTCHA. All components of this work are integrated in one security VDD tool called "SecDisk".

  11. HST observations of nuclear stellar disks

    CERN Document Server

    Krajnovic, D; Krajnovic, Davor; Jaffe, Walter

    2004-01-01

    We present observations of four nearby early-type galaxies with previously known nuclear stellar disks using two instruments on-board the Hubble Space Telescope. We observed NGC4128, NGC4612, and NGC5308 with the Wide Field Planetary Camera 2, and the same three galaxies, plus NGC4570, with the Space Telescope Imaging Spectrograph. We have detected a red nucleus in NGC4128, a blue nucleus in NGC4621, and a blue disk in NGC5308. Additionally, we have discovered a blue disk-like feature with position angle ~15 degrees from the major axis in NGC4621. In NGC5308 there is evidence for a blue region along the minor axis. We discovered a blue transient on the images of NGC4128 at position 0.14" west and 0.32" north from the nucleus. The extracted kinematic profiles belong to two groups: fast (NGC4570 and NGC5308) and kinematically disturbed rotators (NGC4128 and NGC4621). We report the discovery of a kinematically decoupled core in NGC4128. Galaxies have mostly old (10-14 Gyr) stellar populations with large spread i...

  12. Observations, Modeling and Theory of Debris Disks

    CERN Document Server

    Matthews, Brenda C; Wyatt, Mark C; Bryden, Geoff; Eiroa, Carlos

    2014-01-01

    Main sequence stars, like the Sun, are often found to be orbited by circumstellar material that can be categorized into two groups, planets and debris. The latter is made up of asteroids and comets, as well as the dust and gas derived from them, which makes debris disks observable in thermal emission or scattered light. These disks may persist over Gyrs through steady-state evolution and/or may also experience sporadic stirring and major collisional breakups, rendering them atypically bright for brief periods of time. Most interestingly, they provide direct evidence that the physical processes (whatever they may be) that act to build large oligarchs from micron-sized dust grains in protoplanetary disks have been successful in a given system, at least to the extent of building up a significant planetesimal population comparable to that seen in the Solar System's asteroid and Kuiper belts. Such systems are prime candidates to host even larger planetary bodies as well. The recent growth in interest in debris dis...

  13. Fallback Disks, Magnetars and Other Neutron Stars

    CERN Document Server

    Alpar, M Ali; Ertan, U

    2012-01-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron stars may have different strengths of the dipole and higher multipole components of the magnetic field is now actually required by observations on the spindown rates of some magnetars. This talk gives a broad overview and some applications of the fallback disk model to particular neutron stars. Salient points are: (i) A fallback disk has already been observed around the AXP 4U 0142+61 some years ago. (ii) The low observed spindown rate of the SGR 0418+5729 provides direct evidence that the dipole component of the field is...

  14. Disk-averaged synthetic spectra of Mars

    CERN Document Server

    Tinetti, G; Fong, W; Meadows, V S; Snively, H; Velusamy, T; Crisp, David; Fong, William; Meadows, Victoria S.; Snively, Heather; Tinetti, Giovanna; Velusamy, Thangasamy

    2004-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of the planet Mars to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPF-C) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model which uses observational data as input to generate a database of spatially-resolved synthetic spectra for a range of illumination conditions (phase angles) and viewing geometries. Results presented here include disk averaged synthetic spectra, light-cur...

  15. ON THE UNUSUAL GAS COMPOSITION IN THE {beta} PICTORIS DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ji-Wei; Wu, Yanqin [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Brandeker, Alexis, E-mail: jwxie@astro.utoronto.ca, E-mail: wu@astro.utoronto.ca, E-mail: alexis@astro.su.se [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden)

    2013-01-10

    The metallic gas associated with the {beta} Pic debris disk is not believed to be primordial, but arises from the destruction of dust grains. Recent observations have shown that carbon and oxygen in this gas are exceptionally overabundant compared to other elements, by some 400 times. We study the origin of this enrichment under two opposing hypotheses: preferential production, where the gas is produced with the observed unusual abundance (as may happen if gas is produced by photodesorption from C/O-rich icy grains), and preferential depletion, where the gas evolves to the observed state from an original solar abundance (if outgassing occurs under high-speed collisions) under a number of dynamical processes. We include in our study the following processes: radiative blowout of metallic elements, dynamical coupling between different species, and viscous accretion onto the star. We find that, if gas viscosity is sufficiently low (the conventional {alpha} parameter {approx}< 10{sup -3}), differential blowout dominates. While gas accumulates gradually in the disks, metallic elements subject to strong radiation forces, such as Na and Fe, deplete more quickly than C and O, naturally leading to the observed overabundance of C and O. On the other hand, if gas viscosity is high ({alpha} {approx}> 10{sup -1}, as expected for this largely ionized disk), gas is continuously produced and viscously accreted toward the star. This removal process does not discriminate between elements so the observed overabundance of C and O has to be explained by a preferential production that strongly favors C and O to other metallic elements. One such candidate is photodesorption off the grains. We compare our calculation against all observed elements ({approx}10) in the gas disk and find a mild preference for the second scenario, based on the abundance of Si alone. If true, {beta} Pic should still be accreting at an observable rate, well after its primordial disk has disappeared.

  16. DISCOVERY OF AN EDGE-ON DEBRIS DISK WITH A DUST RING AND AN OUTER DISK WING-TILT ASYMMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, Markus [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Apai, Dániel; Wagner, Kevin [Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson AZ 85718 (United States); Robberto, Massimo, E-mail: mkasper@eso.org [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-10-20

    Using Very Large Telescope/SPHERE near-infrared dual-band imaging and integral field spectroscopy, we discovered an edge-on debris disk around the 17 Myr old A-type member of the Scorpius–Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.″6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright, and symmetrically placed knots at 0.″3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bow in the disk, but we identify a pair of symmetric, hooklike features in both wings. Based on similar features in the Beta Pictoris disk, we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen inner belt that is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales.

  17. Young stars in Epsilon Cha and their disks: disk evolution in sparse associations

    CERN Document Server

    Fang, M; Bouwman, J; Henning, Th; Lawson, W A; Sicilia-Aguilar, A

    2012-01-01

    The nearby young stellar association Epsilon Cha association has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. We combine the available literature data with our Spitzer IRS spectroscopy and VLT/VISIR imaging data. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination where the central star is effectively screened by the cold outer parts of a flared disk but the 10 micron radiation of the warm inner disk can still reach us. We find the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C_{2}H_{2} rovibrational band around 13.7 micron on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all Epsilon Cha members with 10 m...

  18. The VLA view of the HL Tau Disk - Disk Mass, Grain Evolution, and Early Planet Formation

    CERN Document Server

    Carrasco-Gonzalez, Carlos; Chandler, Claire J; Linz, Hendrik; Perez, Laura; Rodriguez, Luis F; Galvan-Madrid, Roberto; Anglada, Guillem; Birnstiel, Til; van Boekel, Roy; Flock, Mario; Klahr, Hubert; Macias, Enrique; Menten, Karl; Osorio, Mayra; Testi, Leonardo; Torrelles, Jose M; Zhu, Zhaohuan

    2016-01-01

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain...

  19. Rotationally-supported disks around Class I sources in Taurus: disk formation constraints

    CERN Document Server

    Harsono, Daniel; van Dishoeck, Ewine F; Hogerheijde, Michiel R; Bruderer, Simon; Persson, Magnus V; Mottram, Joseph C

    2013-01-01

    (Abridged) Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. We present subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus. The 13CO and C18O J=2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ~0.8'' and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity radient. Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are 100 AU around these sources are dominated by infallin...

  20. Modeling transiting circumstellar disks: characterizing the newly discovered eclipsing disk system OGLE LMC-ECL-11893

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Erin L.; Mamajek, Eric E.; Pecaut, Mark J.; Quillen, Alice C.; Moolekamp, Fred; Bell, Cameron P. M., E-mail: elscott@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2014-12-10

    We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ∼1.4 mag, preceded by a plateau of ∼0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ∼150 Myr and mass ∼4 M {sub ☉}. The disk appears to have an outer radius of ∼0.2 AU with predicted temperatures of ∼1100-1400 K. We model the eclipses as being due to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.

  1. Milky Way's thick and thin disk: Is there a distinct thick disk?

    Science.gov (United States)

    Kawata, D.; Chiappini, C.

    2016-09-01

    This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models. The discussion focused on the following question: "Are there distinct thick and thin disks?". The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besançon and Galaxia, chemical evolution models, extended distribution functions method, chemodynamics in the cosmological context, and self-consistent cosmological simulations) illustrated how important is to have all these parallel approaches. All approaches have their advantages and shortcomings (also discussed), and different approaches are useful to address specific points that might help us answering the more general question above.

  2. The DiskMass Survey. VIII. On the Relationship Between Disk Stability and Star Formation

    CERN Document Server

    Westfall, Kyle B; Bershady, Matthew A; Martinsson, Thomas P K; Swaters, Robert A; Verheijen, Marc A W

    2014-01-01

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q_RW), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of sigma_z/sigma_R = 0.51^{+0.36}_{-0.25} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q_RW = 2.0 +/- 0.9. We also find that the disk-averaged star-formation-rate surface density (Sigma-dot_e,*) is correlated with the disk-averaged gas and stellar mass surface densitie...

  3. The vertical structure of T Tauri accretion disks II physical conditions in the disk

    CERN Document Server

    Malbet, F; Monin, J L

    2001-01-01

    We present a self-consistent analytical model for the computation of the physical conditions in a steady quasi-Keplerian accretion disk. The method, based on the thin disk approximation, considers the disk as concentric cylinders in which we treat the vertical transfer as in a plane-parallel medium. The formalism generalizes a work by Hubeny (1990), linking the disk temperature distribution to the local energy dissipation and leads to analytical formulae for the temperature distribution which help to understand the behaviour of the radiation propagated inside the disks. One of the main features of our new model is that it can take into account many heating sources. We apply the method first to two sources: viscous dissipation and stellar irradiation. We show that other heating sources like horizontal transfer or irradiation from the ambiant medium can also be taken into account. Using the analytical formulation in the case of a modified Shakura & Sunyaev radial distribution that allow the accretion rate t...

  4. Line emission from an accretion disk around black hole effects of the disk structure

    CERN Document Server

    Pariev, V I; Bromley, Benjamin C.; Pariev, Vladimir I.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. Previous studies of line emission have considered only geometrically thin disks, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to include effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov-Thorne solution, and find that within this framework, turbulent broadening is the most significant effect. The most prominent changes in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. We show that at the present level of signal-to-noise in X-ray spectra, proper treatment of the actual structure of the accretion disk can change estimates of the inclination angle of the disk. Thus these effects will be important for future detailed modeling of high quality observational d...

  5. Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    CERN Document Server

    Kuchner, Marc J; Bans, Alissa S; Bhattacharjee, Shambo; Kenyon, Scott J; Debes, John H; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L; Rebull, Luisa M; Wisniewski, John P; Nesvold, Erika; Schawinski, Kevin; Thaller, Michelle L; Grady, Carol A; Biggs, Joseph; Bosch, Milton; Cernohous, Tadeás; Luca, Hugo A Durantini; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Piñeiro, Fernanda

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASA's WISE mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false-positives (galaxies, background stars, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection o...

  6. Molecular Gas Clumps from the Destruction of Icy Bodies in the beta Pictoris Debris Disk

    Science.gov (United States)

    Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J. -C.; Casassus, S.; Corder, S.; Greaves, J. S.; DeGregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.; Hughes, A. Meredith; Lagrange, A. -M.; Matthews, B.; Wilner, D.

    2014-01-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at sub-mm wavelengths of the archetypal debris disk around ß Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 AU from the star, in a plane closely aligned with the orbit of the inner planet, beta Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.

  7. Molecular Gas Clumps from the Destruction of Icy Bodies in the $\\beta$ Pictoris Debris Disk

    CERN Document Server

    Dent, W R F; Roberge, A; Augereau, J -C; Casassus, S; Corder, S; Greaves, J S; de Gregorio-Monsalvo, I; Hales, A; Jackson, A P; Hughes, A Meredith; Lagrange, A -M; Matthews, B; Wilner, D

    2014-01-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at submm wavelengths of the archetypal debris disk around $\\beta$ Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85AU from the star, in a plane closely aligned with the orbit of the inner planet, $\\beta$ Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.

  8. The V0 detector is two disks of counters in both sides of the interaction point.

    CERN Multimedia

    Grossiord, Jean-Yves

    2006-01-01

    The V0 detector is two disks of counters in both sides of the interaction point. Here is the V0C disk to be fixed on the front face of the muon spectrometer absorber. It is made of 48 scintillating elements coupled to two wavelength fibre layers which emit and guide the light up to connrctors arounda case made of Carbon fibre plates. The light going out of connectors is collected by an optical fibre bundle and transmitted at 3 metres to photo-multipliers which convert light to electrical signal. The elements are set in the case following 2 small rings of 8 counters and 2 large rings of 16 counters grouped two by two. 32 channels of detection distributed around the LHC beam pipe constitute thus the detector

  9. Debris disks as signposts of terrestrial planet formation. II Dependence of exoplanet architectures on giant planet and disk properties

    CERN Document Server

    Raymond, Sean N; Moro-Martin, Amaya; Booth, Mark; Wyatt, Mark C; Armstrong, John C; Mandell, Avi M; Selsis, Franck; West, Andrew A

    2012-01-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple unstable gas giants. We previously showed that the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and debris disks. Here we present new simulations that show that this connection is qualitatively robust to changes in: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk. We discuss how variations in these parameters affect the evolution. Systems with equal-mass giant planets undergo the most violent instabilities, and these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass outermost giant planets have stable gaps between these p...

  10. Molecular dynamics simulations of the structures and mechanical properties of ZDOL polymer films on diamond-like carbon

    OpenAIRE

    Zhang, Yong-Wei

    2014-01-01

    One of the core technologies in the design and manufacture of the next-generation hard disk drives is the head-disk interface (HDI). The design of HDI must provide sufficient stability and durability for tens of thousands of hard drive start/stop cycles. However, the intermittent contacts between the head and disk are often unavoidable. To avoid and minimize disk damage, the surface of hard drive disks is often protected by a diamond-like carbon (DLC) coating, which is in turn covered by a th...

  11. When did Round Disk Galaxies Form?

    Science.gov (United States)

    Takeuchi, T. M.; Ohta, K.; Yuma, S.; Yabe, K.

    2015-03-01

    When and how galaxy morphology, such as the disk and bulge seen in the present-day universe, emerged is still not clear. In the universe at z >~ 2, galaxies with various morphologies are seen, and star-forming galaxies at z ~ 2 show the intrinsic shape of bar-like structures. Then, when did the round disk structure form? Here we take a simple and straightforward approach to see the epoch when a round disk galaxy population emerged by constraining the intrinsic shape statistically based on the apparent axial ratio distribution of galaxies. We derived the distributions of the apparent axial ratios in the rest-frame optical light (~5000 Å) of star-forming main-sequence galaxies at 2.5 > z > 1.4, 1.4 > z > 0.85, and 0.85 > z > 0.5, and found that their apparent axial ratios show peaky distributions at z >~ 0.85, while a rather flat distribution at the lower redshift. By using a tri-axial model (A > B > C) for the intrinsic shape, we found that the best-fit models give the peaks of the B/A distribution of 0.81 ± 0.04, 0.84 ± 0.04, and 0.92 ± 0.05 at 2.5 > z > 1.4, 1.4 > z > 0.85, and 0.85 > z > 0.5, respectively. The last value is close to the local value of 0.95. Thickness (C/A) is ~0.25 at all the redshifts and is close to the local value (0.21). The results indicate that the shape of the star-forming galaxies in the main sequence changes gradually, and that the round disk is established at around z ~ 0.9. The establishment of the round disk may be due to the cessation of a violent interaction between galaxies or the growth of a bulge and/or a supermassive black hole residing at the center of a galaxy that dissolves the bar structure.

  12. Elemental Abundance Survey of The Galactic Thick Disk

    CERN Document Server

    Reddy, B E; Allende-Prieto, C; Reddy, Bacham E.; Lambert, David L.; Prieto, Carlos Allende

    2006-01-01

    [Abridged abstract] We have performed an abundance analysis for 176 F- and G- dwarfs of the Galactic thick disk component. Using accurate radial velocities combined with $Hipparcos$ astrometry, kinematics (U, V, and W) and Galactic orbital parameters were computed. We estimate the probability for a star to belong to the thin disk, the thick disk or the halo. Abundances of C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, Ce, Nd, and Eu have been obtained. The abundances for thick disk stars are compared with those for thin disk members from Reddy et al. (2003). The ratios of $\\alpha$-elements (O, Mg, Si, Ca and Ti) to iron for thick disk disk stars show a clear enhancement compared to thin disk members in the range $-0.3 <$ [Fe/H] $ < -1.2$. There are also other elements -- Al, Sc, V, Co, and possibly Zn -- which show enhanced ratios to iron in the thick disk relative to the thin disk. The abundances of Na, Cr, Mn, Ni, and Cu (relative to Fe) are very similar for thin and thick dis...

  13. Obscuring Active Galactic Nuclei with Nuclear Starburst Disks

    CERN Document Server

    Ballantyne, D R

    2008-01-01

    We assess the potential of nuclear starburst disks to obscure the Seyfert-like AGN that dominate the hard X-ray background at z~1. Over 1200 starburst disk models, based on the theory developed by Thompson et al., are calculated for five input parameters: the black hole mass, the radial size of the starburst disk, the dust-to-gas ratio, the efficiency of angular momentum transport in the disk, and the gas fraction at the outer disk radius. We find that a large dust-to-gas ratio, a relatively small starburst disk, a significant gas mass fraction, and efficient angular momentum transport are all important to produce a starburst disk that can potentially obscure an AGN. The typical maximum star-formation rate in the disks is ~10 solar masses per year. Assuming no mass-loss due to outflows, the starburst disks feed gas onto the black hole at rates sufficient to produce hard X-ray luminosities of 10^{43}-10^{44} erg s^{-1}. The starburst disks themselves should be detectable at mid-infrared and radio wavelengths; ...

  14. On the Flaring of Jet-sustaining Accretion Disks

    CERN Document Server

    Namouni, Fathi

    2009-01-01

    Jet systems with two unequal components interact with their parent accretion disks through the asymmetric removal of linear momentum from the star-disk system. We show that as a result of this interaction, the disk's state of least energy is not made up of orbits that lie in a plane containing the star's equator as in a disk without a jet. The disk's profile has the shape of a sombrero curved in the direction of acceleration. For this novel state of minimum energy, we derive the temperature profile of thin disks. The flaring geometry caused by the sombrero profile increases the disk temperature especially in its outer regions. The jet-induced acceleration disturbs the vertical equilibrium of the disk leading to mass loss in the form of a secondary wind emanating from the upper face of the disk. Jet time variability causes the disk to radially expand or contract depending on whether the induced acceleration increases or decreases. Jet time variability also excites vertical motion and eccentric distortions in t...

  15. Intermediate mass black holes in AGN disks: I. Production & Growth

    CERN Document Server

    McKernan, B; Lyra, W; Perets, H B

    2012-01-01

    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in disks around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disk. Stars, compact objects and binaries can migrate, accrete and merge within disks around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disk, gas in the disk damps NCO orbits. If gas damping dominates, NCOs remain in the disk with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disk NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disk NCOs, growth of IMBH seeds can become dominated by gas accretion from the AGN disk. However, the IMBH can migrate in the disk and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via N...

  16. Suppression of type I migration by disk winds

    CERN Document Server

    Ogihara, Masahiro; Guillot, Tristan

    2015-01-01

    Planets less massive than Saturn tend to rapidly migrate inward in protoplanetary disks. This is the so-called type I migration. Simulations attempting to reproduce the observed properties of exoplanets show that type I migration needs to be significantly reduced over a wide region of the disk for a long time. However, the mechanism capable of suppressing type I migration over a wide region has remained elusive. The recently found turbulence-driven disk winds offer new possibilities. We investigate the effects of disk winds on the disk profile and type I migration for a range of parameters that describe the strength of disk winds. We also examine the in situ formation of close-in super-Earths in disks that evolve through disk winds. The disk profile, which is regulated by viscous diffusion and disk winds, was derived by solving the diffusion equation. We carried out a number of simulations and plot here migration maps that indicate the type I migration rate. We also performed N-body simulations of the formati...

  17. Models of the Structure and Evolution of Protoplanetary Disks

    Science.gov (United States)

    Dullemond, C. P.; Hollenbach, D.; Kamp, I.; D'Alessio, P.

    We review advances in the modeling of protoplanetary disks. This review will focus on the regions of the disk beyond the dust sublimation radius, i.e., beyond 0.1-1 AU, depending on the stellar luminosity. We will be mostly concerned with models that aim to fit spectra of the dust continuum or gas lines, and derive physical parameters from these fits. For optically thick disks, these parameters include the accretion rate through the disk onto the star, the geometry of the disk, the dust properties, the surface chemistry, and the thermal balance of the gas. For the latter we are mostly concerned with the upper layers of the disk, where the gas and dust temperature decouple and a photoevaporative flow may originate. We also briefly discuss optically thin disks, focusing mainly on the gas, not the dust. The evolution of these disks is dominated by accretion, viscous spreading, photoevaporation, and dust settling and coagulation. The density and temperature structure arising from the surface layer models provide input to models of photoevaporation, which occurs largely in the outer disk. We discuss the consequences of photoevaporation on disk evolution and planet formation.

  18. STAR FORMATION IN THE OUTER DISK OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Kate L.; Van Zee, Liese [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Cote, Stephanie [Canadian Gemini Office, Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria (Canada); Schade, David, E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: Stephanie.Cote@nrc-cnrc.gc.ca, E-mail: David.Schade@nrc-cnrc.gc.ca [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria (Canada)

    2012-09-20

    We combine new deep and wide field of view H{alpha} imaging of a sample of eight nearby (d Almost-Equal-To 17 Mpc) spiral galaxies with new and archival H I and CO imaging to study the star formation and the star formation regulation in the outer disk. We find that, in agreement with previous studies, star formation in the outer disk has low covering fractions, and star formation is typically organized into spiral arms. The star formation in the outer disk is at extremely low levels, with typical star formation rate surface densities of {approx}10{sup -5} to 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}. We find that the ratio of the radial extent of detected H II regions to the radius of the H I disk is typically {approx}>85%. This implies that in order to further our understanding of the implications of extended star formation, we must further our understanding of the formation of extended H I disks. We measure the gravitational stability of the gas disk, and find that the outer gaseous disk is typically a factor of {approx}2 times more stable than the inner star-forming disk. We measure the surface density of outer disk H I arms, and find that the disk is closer to gravitational instability along these arms. Therefore, it seems that spiral arms are a necessary, but not sufficient, requirement for star formation in the outer disk. We use an estimation of the flaring of the outer gas disk to illustrate the effect of flaring on the Schmidt power-law index; we find that including flaring increases the agreement between the power-law indices of the inner and outer disks.

  19. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  20. Synthesis of disk-rod-disk liquid crystal trimers by using click chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of disk-rod-disk liquid crystal trimers were synthesized.CuI-NEt3 catalyzed alkyne azide cycloaddition in toluene at room temperature connected two triphenylene discogens to a biphenyl rod-shaped mesogen.The trimers were characterized by using 1H NMR,IR,and high resolution mass spectrometry.The mesomorphic properties were investigated using polarized optical microscopy(POM) ,differential scanning calorimetry(DSC) ,and wide-angle X-ray diffraction.The results showed that the trimers exhibited rectangular columnar mesophase(Colr) .The length of the flexible spacer connecting the three segments has prominent influence on the phase transition temperatures of the trimers.

  1. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    Science.gov (United States)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  2. Magnetically-levitating disks around supermassive black holes

    CERN Document Server

    Gaburov, Evghenii; Levin, Yuri

    2012-01-01

    In this paper we report on the formation of magnetically-levitating accretion disks around supermassive black holes. The structure of these disks is calculated by numerically modelling tidal disruption of magnetized interstellar gas clouds. We find that the resulting disks are entirely supported by the pressure of the magnetic fields against the component of gravitational force directed perpendicular to the disks. The magnetic field shows ordered large-scale geometry that remains stable for the duration of our numerical experiments extending over 10% of the disk lifetime. Strong magnetic pressure allows high accretion and inhibits disk fragmentation. This in combination with the repeated feeding of manetized molecular clouds to a supermassive black hole yields a possible solution to the long-standing puzzle of black hole growth in the centres of galaxies.

  3. Long-term Evolution of Photoevaporating Protoplanetary Disks

    CERN Document Server

    Bae, Jaehan; Zhu, Zhaohuan; Gammie, Clarles

    2013-01-01

    We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coupled with a range of initial angular momenta of the protostellar cloud, can explain the observed decline of the frequency of optically-thick dusty disks with increasing age. In the parameter space we explore, disks have accreting and/or non-accreting transitional phases lasting of $\\lesssim20 %$ of their lifetime, which is in reasonable agreement with observed statistics. Assuming that photoevaporation controls disk clearing, we find that initial angular momentum distribution of clouds needs to be weighted in favor of slowly rotating protostellar cloud cores. Again, assuming inner disk dispersal by photoevaporation, we conjecture that this skewed angular momentum distribution is a result of fragmentation into binary or multiple stellar systems in rapidly-rotating c...

  4. Bimodality of circumstellar disk evolution induced by Hall current

    CERN Document Server

    Tsukamoto, Y; Okuzumi, S; Machida, M N; Inutsuka, S

    2015-01-01

    The formation process of circumstellar disks is still controversial because of the interplay of complex physical processes that occurs during the gravitational collapse of prestellar cores. In this study, we investigate the effect of the Hall current term on the formation of circumstellar disk using three-dimensional simulations. In our simulations, all non-ideal effects as well as the radiation transfer are considered. We show that the size of the disk is significantly affected by a simple difference in the inherent properties of the prestellar core, namely whether the rotation vector and the magnetic field are parallel or anti-parallel. In the former case, only a very small disk ($20$ AU) disk is formed in the early phase of protostar formation. We also show that the anti-rotating envelopes against the disk-rotation appear with a size of $\\gtrsim 200$ AU. We predict that the anti-rotating envelope will be found in the future observations.

  5. Featured Image: Hubble's New Views of Debris Disks

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    The Hubble image of a second circumstellar debris disk, HD 207917, and its best-fit model.This is a new deep observation made by Hubbles Space Telescope Imaging Spectrograph of the tilted debris disk surrounding the star HD 207129. In a recent study led by Glenn Schneider (Seward Observatory, University of Arizona), three known, nearby circumstellar disks were imaged by Hubble in order to gain a better understanding of the disks ring-like structure. The three central stars of these disks are all G-type solar analogs, and the debris rings bear many similarities to our own Kuiper belt. Imaging of debris disks like these can help us to learn more about how solar systems form around stars like our own. For more information, check out the paper below!CitationGlenn Schneider et al 2016 AJ 152 64. doi:10.3847/0004-6256/152/3/64

  6. How bright are the gaps in circumbinary disk systems?

    CERN Document Server

    Shi, Ji-Ming

    2016-01-01

    When a circumbinary disk surrounds a binary whose secondary's mass is at least $\\sim 10^{-2}\\times$ the primary's mass, a nearly empty cavity with radius a few times the binary separation is carved out of the disk. Narrow streams of material pass from the inner edge of the circumbinary disk into the domain of the binary itself, where they eventually join onto the small disks orbiting the members of the binary. Using data from 3-d MHD simulations of this process, we determine the luminosity of these streams; it is mostly due to weak laminar shocks, and is in general only a few percent of the luminosity of adjacent regions of either the circumbinary disk or the "mini-disks". This luminosity therefore hardly affects the deficit in the thermal continuum predicted on the basis of a perfectly dark gap region.

  7. Isotopic mixing by magnetorotational instability in the protolunar disk

    Science.gov (United States)

    Desch, Steven; Carballido, Augusto; Taylor, G. Jeffrey

    2016-10-01

    One explanation for the striking similarity in isotopic ratios between the Earth and Moon is that isotopes were efficiently mixed in the protolunar disk and between the disk and the Earth. We examine the ability of the magnetorotational instability to act in the protolunar disk, calculating the ionization fraction of the vapor component and the resultant Elsasser numbers. We perform shearing box magnetohydrodynamic simulations to calculate the rate of turbulent mixing. We conclude that mixing of isotopes in the disk is effective on ~ 102 yr timescales, faster than the time for the disk to evolve and the Moon to form. We also consider the effectiveness of isotopic mixing between the disk and the Earth.

  8. Convective heat and mass transfer in rotating disk systems

    Energy Technology Data Exchange (ETDEWEB)

    Shevchuk, Igor V. [MBtech Powertrain GmbH, Fellbach-Schmiden (Germany)

    2009-07-01

    The book describes results of investigations of a series of convective heat-and-mass transfer problems in rotating-disk systems, namely, over free rotating disks, under conditions of transient heat transfer, solid-body rotation of fluid, orthogonal flow impingement onto a disk, swirl radial flow between parallel co-rotating disks, in cone-disk systems and for Prandtl and Schmidt numbers larger than one. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD. The book is aimed at the professional audience of academic researchers, industrial R and D engineers, university lecturers and graduate/postgraduate students working in the area of rotating-disk systems. (orig.)

  9. Giant planet formation at the pressure maxima of protoplanetary disks

    CERN Document Server

    Guilera, O M

    2016-01-01

    Context. In the classical core-accretion planet formation scenario, rapid inward migration and accretion timescales of kilometer size planetesimals may not favour the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On the other hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation, favoring the formation of massive cores. Aims. We aim to study the radial drift of planetesimals and planet migration at pressure maxima in a protoplanetary disk and their implications for the formation of massive cores as triggering a gaseous runaway accretion phase. Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosity region in the protoplanetary disk. A population of planetesimals evolving by radial drift and accretion by the planets is also considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of plane...

  10. On the gravitational stability of gravito-turbulent accretion disks

    CERN Document Server

    Lin, Min-Kai

    2016-01-01

    Low mass, self-gravitating accretion disks admit quasi-steady, `gravito-turbulent' states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: 1) cooling, which reduces pressure support; and/or 2) viscosity, which reduces rotational support. We analyze the gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes wi...

  11. Imaging protoplanets: observing transition disks with non-redundant masking

    CERN Document Server

    Sallum, Steph; Close, Laird M; Hinz, Philip M; Follette, Katherine B; Kratter, Kaitlin; Skemer, Andrew J; Bailey, Vanessa P; Briguglio, Runa; Defrere, Denis; Macintosh, Bruce A; Males, Jared R; Morzinski, Katie M; Puglisi, Alfio T; Rodigas, Timothy J; Spalding, Eckhart; Tuthill, Peter G; Vaz, Amali; Weinberger, Alycia; Xomperio, Marco

    2016-01-01

    Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.

  12. A powerful local shear instability in stratified disks

    CERN Document Server

    Richard, D; Dauchot, O; Daviaud, F; Dubrulle, B; Zahn, J P

    2001-01-01

    In this paper, we show that astrophysical accretion disks are dynamically unstable to non-axisymmetric disturbances. This instability is present in any stably stratified anticyclonically sheared flow as soon as the angular velocity increases outwards. In the large Froude number limit, the maximal growth rate is proportional to the angular rotation velocity, and is independent of the stratification. In the low Froude number limit, it decreases like the inverse of the Froude number, thereby vanishing for unstratified, centrigugally stable flows. The instability is not sensitive to disk boundaries. We discuss the possible significance of our result, and its implications on the turbulent state achieved by the disks. We conclude that this linear instability is one of the best candidates for the source of turbulence in geometrically thin disks, and that magnetic fields can be safely ignored when studying their turbulent state. The relevance of the instability for thick disks or nearly neutrally stratified disks rem...

  13. Spiral Density Waves in a Young Protoplanetary Disk

    CERN Document Server

    Pérez, Laura M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G

    2016-01-01

    Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk.

  14. Molecular Disk Properties in Early-Type Galaxies

    CERN Document Server

    Xu, X; Walker, C

    2010-01-01

    We study the simulated CO emission from elliptical galaxies formed in the mergers of gas-rich disk galaxies. The cold gas not consumed in the merger-driven starburst quickly resettles into a disk-like configuration. By analyzing a variety of arbitrary merger orbits that produce a range of fast to slow-rotating remnants, we find that molecular disk formation is a fairly common consequence of gas-rich galaxy mergers. Hence, if a molecular disk is observed in an early-type merger remnant, it is likely the result of a "wet merger" rather than a "dry merger". We compare the physical properties from our simulated disks (e.g. size and mass) and find reasonably good agreement with recent observations. Finally, we discuss the detectability of these disks as an aid to future observations.

  15. Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks

    CERN Document Server

    Ji, H; Schartman, E; Goodman, J; Ji, Hantao; Burin, Michael J.; Schartman, Ethan; Goodman, Jeremy

    2006-01-01

    The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5 -- 40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, hence essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, Keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is con...

  16. Scattering line polarization in rotating, optically thick disks

    CERN Document Server

    Milic, Ivan

    2014-01-01

    To interpret observations of astrophysical disks it is essential to understand the formation process of the emitted light. If the disk is optically thick, scattering dominated and permeated by a Keplerian velocity field, Non-Local Thermodynamic Equilibrium radiative transfer modeling must be done to compute the emergent spectrum from a given disk model. We investigate Non-local thermodynamic equilibrium polarized line formation in different simple disk models and aim to demonstrate the importance of both radiative transfer effects and scattering as well as the effects of velocity fields. We self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for a two level atom model by means of Jacobi iteration. We compute scattering polarization, that is Q/I and U/I line profiles. The degree of scattering polarization is significantly influenced by the inclination of the disk with respect to observer, but also by the optical thickness of the disk and the presence of rotation. Sto...

  17. High-temperature Ionization in Protoplanetary Disks

    Science.gov (United States)

    Desch, Steven J.; Turner, Neal J.

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  18. Star Formation Modes in Low-Mass Disk Galaxies

    CERN Document Server

    Gallagher, J S

    2001-01-01

    Low-mass disk galaxies with well-organized structures are relatively common in low density regions of the nearby Universe. They display a wide range in levels of star formation activity, extending from sluggishly evolving `superthin' disk systems to nearby starbursts. Investigations of this class of galaxy therefore provides opportunities to test and define models of galactic star formation processes. In this paper we briefly explore characteristics of examples of quiescent and starbursting low-mass disk galaxies.

  19. On the Gravitational Stability of Gravito-turbulent Accretion Disks

    Science.gov (United States)

    Lin, Min-Kai; Kratter, Kaitlin M.

    2016-06-01

    Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ˜60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.

  20. Computational topology for configuration spaces of hard disks

    CERN Document Server

    Carlsson, Gunnar; Kahle, Matthew; Mason, Jeremy

    2011-01-01

    We explore the topology of configuration spaces of hard disks experimentally, and show that several changes in the topology can already be observed with a small number of particles. The results illustrate a theorem of Baryshnikov, Bubenik, and Kahle that critical points correspond to configurations of disks with balanced mechanical stresses, and suggest conjectures about the asymptotic topology as the number of disks tends to infinity.

  1. Computational topology for configuration spaces of hard disks.

    Science.gov (United States)

    Carlsson, Gunnar; Gorham, Jackson; Kahle, Matthew; Mason, Jeremy

    2012-01-01

    We explore the topology of configuration spaces of hard disks experimentally and show that several changes in the topology can already be observed with a small number of particles. The results illustrate a theorem of Baryshnikov, Bubenik, and Kahle that critical points correspond to configurations of disks with balanced mechanical stresses and suggest conjectures about the asymptotic topology as the number of disks tends to infinity. PMID:22400561

  2. The Collisions of HVCs with a Magnetized Gaseous Galactic Disk

    OpenAIRE

    Alfredo Santillán; José Franco; Marco Martos; Jongsoo Kim

    1998-01-01

    We present two-dimensional MHD numerical simulations for the interaction of high-velocity clouds with both magnetic and non-magnetic Galactic thick gaseous disks. For the magnetic models, the initial magnetic field is oriented parallel to the disk, and we consider two different field topologies (with and without tension effects): parallel and perpendicular to the plane of motion of the clouds. The impinging clouds move in oblique trajectories and fall toward the central disk with different in...

  3. The matter-neutrino resonance around thick disks

    Science.gov (United States)

    Deaton, Michael

    2016-03-01

    We are studying neutrino flavor transformations in typical neutron star merger environments. Here a dominance of νe over νe fluxes introduces transformation behaviors qualitatively different from those seen in supernovae. Discovered in thin disk models, the matter neutrino resonance (MNR) may behave differently around thick disks, or not appear at all. I'll present what we have learned about the MNR using a phenomenological model motivated by hydrodynamical simulations of post-merger disks. JINA-CEE.

  4. The Nature of Transition Circumstellar Disks II. Southern Molecular Clouds

    OpenAIRE

    Romero, Gisela A.; Schreiber, Matthias R.; Cieza, Lucas A.; Rebassa-Mansergas, Alberto; Merín, Bruno; Castelli, Analía V. Smith; Allen, Lori E.; Morrell, Nidia

    2012-01-01

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate ...

  5. Linear Quadratic Controller with Fault Detection in Compact Disk Players

    DEFF Research Database (Denmark)

    Vidal, Enrique Sanchez; Hansen, K.G.; Andersen, R.S.;

    2001-01-01

    The design of the positioning controllers in Optical Disk Drives are today subjected to a trade off between an acceptable suppression of external disturbances and an acceptable immunity against surfaces defects. In this paper an algorithm is suggested to detect defects of the disk surface combined...... with an observer and a Linear Quadratic Regulator. As a result, the mentioned trade off is minimized and the playability of the tested compact disk player is considerably enhanced....

  6. THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Price, Daniel J. [Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Clayton, Vic. 3800 (Australia); Doğan, Suzan [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 İzmir (Turkey); King, Andrew [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-09-10

    We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes.

  7. Conceptual design of a Disk Chopper Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Copley, J.R.D. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1997-09-01

    We describe methods that we have used for the conceptual design of the Disk Chopper Spectrometer at the Cold Neutron Research Facility, National Institute of Standards and Technology. Most of the discussion concerns the multiple chopper system. No single design method is best in every situation. We believe that an analytical approach is preferable, whenever possible. Graphical methods of expressing problems have been very instructive. We have also found it useful, and occasionally invaluable, to cross-check results obtained using different methods, such as analytical integration and ray-tracing.

  8. Stability properties of an isothermal accretion disk

    International Nuclear Information System (INIS)

    A local stability analysis of an isothermal, transonic accretion disk around a non-rotating black hole is used to infer the time-dependent behaviour of linear perturbations. The three modes in the problem are one viscous Lightman-Eardley mode, which is always stable, and two acoustic modes, which are always overstable. If the growth rate is required to be greater than the escape rate, then the acoustic modes become stable in the outer region, and unstable in the innermost region, if the viscosity parameter α is greater than 0.5. (orig.)

  9. Lumbar disk herniation surgery: outcome and predictors.

    Science.gov (United States)

    Sedighi, Mahsa; Haghnegahdar, Ali

    2014-12-01

    Study Design A retrospective cohort study. Objectives To determine the outcome and any differences in the clinical results of three different surgical methods for lumbar disk herniation and to assess the effect of factors that could predict the outcome of surgery. Methods We evaluated 148 patients who had operations for lumbar disk herniation from March 2006 to March 2011 using three different surgical techniques (laminectomy, microscopically assisted percutaneous nucleotomy, and spinous process osteotomy) by using Japanese Orthopaedic Association (JOA) Back Pain Evaluation Questionnaire, Resumption of Activities of Daily Living scale and changes of visual analog scale (VAS) for low back pain and radicular pain. Our study questionnaire addressed patient subjective satisfaction with the operation, residual complaints, and job resumption. Data were analyzed with SPSS version 16.0 (SPSS, Inc., Chicago, Illinois, United States). Statistical significance was set at 0.05. For statistical analysis, chi-square test, Mann-Whitney U test, Kruskal-Wallis test, and repeated measure analysis were performed. For determining the confounding factors, univariate analysis by chi-square test was used and followed by logistic regression analysis. Results Ninety-four percent of our patients were satisfied with the results of their surgeries. VAS documented an overall 93.3% success rate for reduction of radicular pain. Laminectomy resulted in better outcome in terms of JOA Back Pain Evaluation Questionnaire. The outcome of surgery did not significantly differ by age, sex, level of education, preoperative VAS for back, preoperative VAS for radicular pain, return to previous job, or level of herniation. Conclusion Surgery for lumbar disk herniation is effective in reducing radicular pain (93.4%). All three surgical approaches resulted in significant decrease in preoperative radicular pain and low back pain, but intergroup variation in the outcome was not achieved. As indicated

  10. Rotating-disk thin-layer chromatography

    International Nuclear Information System (INIS)

    Fundamental studies and applications of a new separations technique, rotating-disk thin-layer chromatography (RDTLC), are reported. The studies include evaluation of several packing methods, effects of silica activation on the reproducibility and related efficiencies of the chromatographic systems, and the utility of the instrument with regard to the fractionation of complex mixtures. Reproducibility is found to be excellent if the adsorbent activity is controlled. The technique is most advantageous when used for preparative separations. It is also shown to be useful in the clean-up of complex natural products for subsequent analysis

  11. Alfvenic Heating of Protostellar Accretion Disks

    OpenAIRE

    Vasconcelos, M. J.; Jatenco-Pereira, V.; R. Opher

    1999-01-01

    We investigate the effects of heating generated by damping of Alfven waves on protostellar accretion disks. Two mechanisms of damping are investigated, nonlinear and turbulent, which were previously studied in stellar winds (Jatenco-Pereira & Opher 1989a, b). For the nominal values studied, f=delta v/v_{A}=0.002 and F=varpi/Omega_{i}=0.1, where delta v, v_{A} and varpi are the amplitude, velocity and average frequency of the Alfven wave, respectively, and Omega_{i} is the ion cyclotron freque...

  12. The Young Outer Disk of M83

    Science.gov (United States)

    Davidge, T. J.

    2010-08-01

    Deep near-infrared images recorded with NICI on Gemini South are used to investigate the evolved stellar content in the outer southeast quadrant of the spiral galaxy M83. A diffuse population of asymptotic giant branch (AGB) stars is detected, indicating that there are stars outside of the previously identified young and intermediate age star clusters in the outer disk. The brightest AGB stars have M K >= -8, and the AGB luminosity function (LF) is well matched by model LFs that assume ages Innovacion Productiva (Argentina).

  13. Embedded protostellar disks around (sub-)solar protostars. I. Disk structure and evolution

    CERN Document Server

    Vorobyov, Eduard I

    2010-01-01

    We perform a comparative numerical hydrodynamics study of embedded protostellar disks formed as a result of the gravitational collapse of cloud cores of distinct mass (M_cl=0.2--1.7 M_sun) and ratio of rotational to gravitational energy (\\beta=0.0028--0.023). An increase in M_cl and/or \\beta leads to the formation of protostellar disks that are more susceptible to gravitational instability. Disk fragmentation occurs in most models but its effect is often limited to the very early stage, with the fragments being either dispersed or driven onto the forming star during tens of orbital periods. Only cloud cores with high enough M_cl or \\beta may eventually form wide-separation binary/multiple systems with low mass ratios and brown dwarf or sub-solar mass companions. It is feasible that such systems may eventually break up, giving birth to rogue brown dwarfs. Protostellar disks of {\\it equal} age formed from cloud cores of greater mass (but equal \\beta) are generally denser, hotter, larger, and more massive. On th...

  14. Hydrodynamic Models of Line-Driven Accretion Disk Winds II Adiabatic Winds from Nonisothermal Disks

    CERN Document Server

    Pereyra, N A; Blondin, J M; Pereyra, Nicolas Antonio; Kallman, Timothy R.; Blondin, John M.

    2000-01-01

    We present here numerical hydrodynamic simulations of line-driven accretion disk winds in cataclysmic variable systems. We calculate wind mass-loss rate, terminal velocities, and line profiles for CIV (1550 A) for various viewing angles. The models are 2.5-dimensional, include an energy balance condition, and calculate the radiation field as a function of position near an optically thick accretion disk. The model results show that centrifugal forces produce collisions of streamlines in the disk wind which in turn generate an enhanced density region, underlining the necessity of two dimensional calculations where these forces may be represented. For disk luminosity Ldisk = Lsun, white dwarf mass Mwd = 0.6 Msun, and white dwarf radii Rwd = 0.01 Rsun, we obtain a wind mass-loss rate of dMwind/dt = 8.0E-12 Msun/yr, and a terminal velocity of ~3000 km/s. The line profiles we obtain are consistent with observations in their general form, in particular in the maximum absorption at roughly half the terminal velocity ...

  15. Line Emission from an Accretion Disk around a Black hole Effects of Disk Structure

    CERN Document Server

    Pariev, V I; Pariev, Vladimir I.; Bromley, Benjamin C.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. These lines serve as powerful probes for examining the structure of inner regions of accretion disks. Previous studies of line emission have considered geometrically thin disks only, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to consider effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov and Thorne (1973) solution, and find that within this framework, turbulent broadening is the dominant new effect. The most prominent change in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. The effect is most pronounced when the inclination angle is large, and when the accretion rate is high. Thus, the effects discussed here may be important for future detailed model...

  16. HD 100453: A Link Between Gas-Rich Protoplanetary Disks and Gas-Poor Debris Disks

    CERN Document Server

    Collins, K A; Hamaguchi, K; Wisniewski, J P; Brittain, S; Sitko, M; Carpenter, W J; Williams, J P; Mathews, G S; Williger, G M; Van Boekel, R; Carmona, A; Henning, T; Ancker, M E van den; Meeus, G; Chen, X P; Petre, R; Woodgate, B E

    2009-01-01

    HD 100453 has an IR spectral energy distribution (SED) which can be fit with a power-law plus a blackbody. Previous analysis of the SED suggests that the system is a young Herbig Ae star with a gas-rich, flared disk. We reexamine the evolutionary state of the HD 100453 system by refining its age (based on a candidate low-mass companion) and by examining limits on the disk extent, mass accretion rate, and gas content of the disk environment. We confirm that HD 100453B is a common proper motion companion to HD 100453A, with a spectral type of M4.0V - M4.5V, and derive an age of 10 +/- 2 Myr. We find no evidence of mass accretion onto the star. Chandra ACIS-S imagery shows that the Herbig Ae star has L_X/L_Bol and an X-ray spectrum similar to non-accreting Beta Pic Moving Group early F stars. Moreover, the disk lacks the conspicuous Fe II emission and excess FUV continuum seen in spectra of actively accreting Herbig Ae stars, and from the FUV continuum, we find the accretion rate is < 1.4x10^-9 M_Sun yr^-1. A...

  17. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    CERN Document Server

    Woitke, Peter; Thi, Wing-Fai

    2009-01-01

    This paper introduces a new disk code, called ProDiMo, to calculate the thermo-chemical structure of protoplanetary disks and to interpret gas emission lines from UV to sub-mm. We combine frequency-dependent 2D dust continuum radiative transfer, kinetic gas-phase and UV photo-chemistry, ice formation, and detailed non-LTE heating & cooling balance with the consistent calculation of the hydrostatic disk structure. We include FeII and CO ro-vibrational line heating/cooling relevant for the high-density gas close to the star, and apply a modified escape probability treatment. The models are characterized by a high degree of consistency between the various physical, chemical and radiative processes, where the mutual feedbacks are solved iteratively. In application to a T Tauri disk extending from 0.5AU to 500AU, the models are featured by a puffed-up inner rim and show that the dense, shielded and cold midplane (z/r<0.1, Tg~Td) is surrounded by a layer of hot (5000K) and thin (10^7 to 10^8 cm^-3) atomic ga...

  18. Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs

    CERN Document Server

    Woitke, P; Pinte, C; Thi, W -F; Kamp, I; Rab, C; Anthonioz, F; Antonellini, S; Baldovin-Saavedra, C; Carmona, A; Dominik, C; Dionatos, O; Greaves, J; Güdel, M; Ilee, J D; Liebhart, A; Ménard, F; Rigon, L; Waters, L B F M; Aresu, G; Meijerink, R; Spaans, M

    2015-01-01

    We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. We propose new standard dust opacities for disk models, we present a simplified treatment of PAHs sufficient to reproduce the PAH emission features, and we suggest using a simple treatment of dust settling. We roughly adjust parameters to obtain a model that predicts typical Class II T Tauri star continuum and line observations. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63um, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties (large grains...

  19. Accretion in Radiative Equipartition (AiRE) Disks

    CERN Document Server

    Yazdi, Yasaman K

    2016-01-01

    Standard accretion disk theory (Shakura & Sunyaev 1973) predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability time-scale, our accretion models in the radiation pressure dominated regime (i.e. inner disk) need to be modified. Here, we present a modification to the SS model, where radiation pressure is in equipartition with gas pressure in the inner region. We call these flows Accretion in Radiative Equipartition (AiRE) Disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a fu...

  20. Warped accretion disks and the unification of Active Galactic Nuclei

    CERN Document Server

    Nayakshin, S

    2004-01-01

    Orientation of parsec-scale accretion disks in AGN is likely to be nearly random for different black hole feeding episodes. Since AGN accretion disks are unstable to self-gravity on parsec scales, star formation in these disks will create young stellar disks, similar to those recently discovered in our Galactic Center. The disks blend into the quasi-spherical star cluster enveloping the AGN on time scales much longer than a likely AGN lifetime. Therefore, the gravitational potential within the radius of the black hole influence is at best axi-symmetric rather than spherically symmetric. Here we show that as a result, a newly formed accretion disk will be warped. For the simplest case of a potential resulting from a thin stellar ring, we calculate the disk precession rates, and the time dependent shape. We find that, for a realistic parameter range, the disk becomes strongly warped in few hundred orbital times. We suggest that this, and possibly other mechanisms of accretion disk warping, have a direct relevan...