Directory of Open Access Journals (Sweden)
Vivek Patel
2012-08-01
Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.
Design of SVC Controller Based on Improved Biogeography-Based Optimization Algorithm
Directory of Open Access Journals (Sweden)
Feifei Dong
2014-01-01
Full Text Available Considering that common subsynchronous resonance controllers cannot adapt to the characteristics of the time-varying and nonlinear behavior of a power system, the cosine migration model, the improved migration operator, and the mutative scale of chaos and Cauchy mutation strategy are introduced into an improved biogeography-based optimization (IBBO algorithm in order to design an optimal subsynchronous damping controller based on the mechanism of suppressing SSR by static var compensator (SVC. The effectiveness of the improved controller is verified by eigenvalue analysis and electromagnetic simulations. The simulation results of Jinjie plant indicate that the subsynchronous damping controller optimized by the IBBO algorithm can remarkably improve the damping of torsional modes and thus effectively depress SSR, and ensure the safety and stability of units and power grid operation. Moreover, the IBBO algorithm has the merits of a faster searching speed and higher searching accuracy in seeking the optimal control parameters over traditional algorithms, such as BBO algorithm, PSO algorithm, and GA algorithm.
Practical mathematical optimization basic optimization theory and gradient-based algorithms
Snyman, Jan A
2018-01-01
This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and dir...
Segment-based dose optimization using a genetic algorithm
International Nuclear Information System (INIS)
Cotrutz, Cristian; Xing Lei
2003-01-01
Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning
Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm
Yumin, Dong; Li, Zhao
2014-01-01
Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...
Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm
International Nuclear Information System (INIS)
Rao, R.V.; More, K.C.
2015-01-01
Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. - Highlights: • The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe. • Two examples of heat pipe design and optimization are presented. • The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
Optimization algorithm based on densification and dynamic canonical descent
Bousson, K.; Correia, S. D.
2006-07-01
Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.
Teaching learning based optimization algorithm and its engineering applications
Rao, R Venkata
2016-01-01
Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.
Tang, Ge; Wei, Biao; Wu, Decao; Feng, Peng; Liu, Juan; Tang, Yuan; Xiong, Shuangfei; Zhang, Zheng
2018-03-01
To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm-particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.
Directory of Open Access Journals (Sweden)
Qingyang Zhang
2015-02-01
Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.
KM-FCM: A fuzzy clustering optimization algorithm based on Mahalanobis distance
Directory of Open Access Journals (Sweden)
Zhiwen ZU
2018-04-01
Full Text Available The traditional fuzzy clustering algorithm uses Euclidean distance as the similarity criterion, which is disadvantageous to the multidimensional data processing. In order to solve this situation, Mahalanobis distance is used instead of the traditional Euclidean distance, and the optimization of fuzzy clustering algorithm based on Mahalanobis distance is studied to enhance the clustering effect and ability. With making the initialization means by Heuristic search algorithm combined with k-means algorithm, and in terms of the validity function which could automatically adjust the optimal clustering number, an optimization algorithm KM-FCM is proposed. The new algorithm is compared with FCM algorithm, FCM-M algorithm and M-FCM algorithm in three standard data sets. The experimental results show that the KM-FCM algorithm is effective. It has higher clustering accuracy than FCM, FCM-M and M-FCM, recognizing high-dimensional data clustering well. It has global optimization effect, and the clustering number has no need for setting in advance. The new algorithm provides a reference for the optimization of fuzzy clustering algorithm based on Mahalanobis distance.
International Nuclear Information System (INIS)
Rao, R. Venkata; Rai, Dhiraj P.
2017-01-01
Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).
Energy Technology Data Exchange (ETDEWEB)
Rao, R. Venkata; Rai, Dhiraj P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)
2017-05-15
Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).
Development of GPT-based optimization algorithm
International Nuclear Information System (INIS)
White, J.R.; Chapman, D.M.; Biswas, D.
1985-01-01
The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme
Directory of Open Access Journals (Sweden)
Ahmet Demir
2017-01-01
Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions.
Portfolio optimization by using linear programing models based on genetic algorithm
Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.
2018-01-01
In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.
Directory of Open Access Journals (Sweden)
R. Venkata Rao
2014-01-01
Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.
Optimal configuration of power grid sources based on optimal particle swarm algorithm
Wen, Yuanhua
2018-04-01
In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.
Kriging-based algorithm for nuclear reactor neutronic design optimization
International Nuclear Information System (INIS)
Kempf, Stephanie; Forget, Benoit; Hu, Lin-Wen
2012-01-01
Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.
Genetic algorithm based separation cascade optimization
International Nuclear Information System (INIS)
Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.
2008-01-01
The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)
On the efficiency of chaos optimization algorithms for global optimization
International Nuclear Information System (INIS)
Yang Dixiong; Li Gang; Cheng Gengdong
2007-01-01
Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions
An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization
Directory of Open Access Journals (Sweden)
Rafał Dreżewski
2017-08-01
Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.
Directory of Open Access Journals (Sweden)
R. Venkata Rao
2013-01-01
Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.
International Nuclear Information System (INIS)
Zhang, Zili; Gao, Chao; Liu, Yuxin; Qian, Tao
2014-01-01
Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP. (paper)
Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm
Directory of Open Access Journals (Sweden)
N. Sri Madhava Raja
2014-01-01
Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.
A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2013-01-01
Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.
Huang, Shuqiang; Tao, Ming
2017-01-22
Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems
Directory of Open Access Journals (Sweden)
Shuqiang Huang
2017-01-01
Full Text Available Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest and the population optimum (gbest; thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems
Huang, Shuqiang; Tao, Ming
2017-01-01
Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735
Chaos Time Series Prediction Based on Membrane Optimization Algorithms
Directory of Open Access Journals (Sweden)
Meng Li
2015-01-01
Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.
Directory of Open Access Journals (Sweden)
Shi Chen-guang
2014-08-01
Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.
Directory of Open Access Journals (Sweden)
Ling Ai Wong
2014-01-01
Full Text Available This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.
Nuclear reactors project optimization based on neural network and genetic algorithm
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.
1997-01-01
This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs
Optimization of Pressurizer Based on Genetic-Simplex Algorithm
International Nuclear Information System (INIS)
Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun
2014-01-01
Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design
Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm
Directory of Open Access Journals (Sweden)
Baljit Singh Khehra
2015-03-01
Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.
Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm
International Nuclear Information System (INIS)
Chaudhary, Kailash; Chaudhary, Himanshu
2015-01-01
In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).
Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Chaudhary, Kailash; Chaudhary, Himanshu [Malaviya National Institute of Technology, Jaipur (Malaysia)
2015-11-15
In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).
Warehouse stocking optimization based on dynamic ant colony genetic algorithm
Xiao, Xiaoxu
2018-04-01
In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.
Optimization of Consignment-Store-Based Supply Chain with Black Hole Algorithm
Directory of Open Access Journals (Sweden)
Ágota Bányai
2017-01-01
Full Text Available The globalization of economy and market led to increased networking in the field of manufacturing and services. These manufacturing and service processes including supply chain became more and more complex. The supply chain includes in many cases consignment stores. The design and operation of these complex supply chain processes can be described as NP-hard optimization problems. These problems can be solved using sophisticated models and methods based on metaheuristic algorithms. This research proposes an integrated supply model based on consignment stores. After a careful literature review, this paper introduces a mathematical model to formulate the problem of consignment-store-based supply chain optimization. The integrated model includes facility location and assignment problems to be solved. Next, an enhanced black hole algorithm dealing with multiobjective supply chain model is presented. The sensitivity analysis of the heuristic black hole optimization method is also described to check the efficiency of new operators to increase the convergence of the algorithm. Numerical results with different datasets demonstrate how the proposed model supports the efficiency, flexibility, and reliability of the consignment-store-based supply chain.
An optimized outlier detection algorithm for jury-based grading of engineering design projects
DEFF Research Database (Denmark)
Thompson, Mary Kathryn; Espensen, Christina; Clemmensen, Line Katrine Harder
2016-01-01
This work characterizes and optimizes an outlier detection algorithm to identify potentially invalid scores produced by jury members while grading engineering design projects. The paper describes the original algorithm and the associated adjudication process in detail. The impact of the various...... (the base rule and the three additional conditions) play a role in the algorithm's performance and should be included in the algorithm. Because there is significant interaction between the base rule and the additional conditions, many acceptable combinations that balance the FPR and FNR can be found......, but no true optimum seems to exist. The performance of the best optimizations and the original algorithm are similar. Therefore, it should be possible to choose new coefficient values for jury populations in other cultures and contexts logically and empirically without a full optimization as long...
Directory of Open Access Journals (Sweden)
Hyo Seon Park
2014-01-01
Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.
Directory of Open Access Journals (Sweden)
B. Thamaraikannan
2014-01-01
Full Text Available This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO algorithm with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization (mechanical components problems reveals the ability of the proposed methodology to find better optimal solutions compared to other optimization algorithms.
Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption
Saritha, R.; Vinod Chandra, S. S.
2017-10-01
In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.
Directory of Open Access Journals (Sweden)
Karla Vittori
2008-12-01
Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.
Support vector machines optimization based theory, algorithms, and extensions
Deng, Naiyang; Zhang, Chunhua
2013-01-01
Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi
Economic dispatch optimization algorithm based on particle diffusion
International Nuclear Information System (INIS)
Han, Li; Romero, Carlos E.; Yao, Zheng
2015-01-01
Highlights: • A dispatch model that considers fuel, emissions control and wind power cost is built. • An optimization algorithm named diffusion particle optimization (DPO) is proposed. • DPO was used to analyze the impact of wind power risk and emissions on dispatch. - Abstract: Due to the widespread installation of emissions control equipment in fossil fuel-fired power plants, the cost of emissions control needs to be considered, together with the plant fuel cost, in providing economic power dispatch of those units to the grid. On the other hand, while using wind power decreases the overall power generation cost for the power grid, it poses a risk to a traditional grid, because of its inherent stochastic characteristics. Therefore, an economic dispatch optimization model needs to consider all of the fuel cost, emissions control cost and wind power cost for each of the generating unit conforming the fleet that meets the required grid power demand. In this study, an optimization algorithm referred as diffusion particle optimization (DPO) is proposed to solve such complex optimization problem. In this algorithm, Brownian motion theory is used to guide the movement of particles so that the particles can search for an optimal solution over the entire definition region. Several benchmark functions and power grid system data were used to test the performance of DPO, and compared to traditional algorithms used for economic dispatch optimization, such as, particle swarm optimization and artificial bee colony algorithm. It was found that DPO has less probability to be trapped in local optimums. According to results of different power systems DPO was able to find economic dispatch solutions with lower costs. DPO was also used to analyze the impact of wind power risk and fossil unit emissions coefficients on power dispatch. The result are encouraging for the use of DPO as a dynamic tool for economic dispatch of the power grid.
FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS
Directory of Open Access Journals (Sweden)
Evans BAIDOO
2017-03-01
Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.
Directory of Open Access Journals (Sweden)
Po-Chen Cheng
2015-06-01
Full Text Available In this paper, an asymmetrical fuzzy-logic-control (FLC-based maximum power point tracking (MPPT algorithm for photovoltaic (PV systems is presented. Two membership function (MF design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V curve of solar cells under standard test conditions (STC. The second method uses the particle swarm optimization (PSO technique to optimize the input MF setting values. Because the PSO approach must target and optimize a cost function, a cost function design methodology that meets the performance requirements of practical photovoltaic generation systems (PGSs is also proposed. According to the simulated and experimental results, the proposed asymmetrical FLC-based MPPT method has the highest fitness value, therefore, it can successfully address the tracking speed/tracking accuracy dilemma compared with the traditional perturb and observe (P&O and symmetrical FLC-based MPPT algorithms. Compared to the conventional FLC-based MPPT method, the obtained optimal asymmetrical FLC-based MPPT can improve the transient time and the MPPT tracking accuracy by 25.8% and 0.98% under STC, respectively.
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.
Sun, Tao; Xu, Ming-Hai
2017-01-01
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.
Multiphase Return Trajectory Optimization Based on Hybrid Algorithm
Directory of Open Access Journals (Sweden)
Yi Yang
2016-01-01
Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.
Directory of Open Access Journals (Sweden)
Mingjian Sun
2015-01-01
Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.
International Nuclear Information System (INIS)
Milickovic, N.; Lahanas, M.; Papagiannopoulou, M.; Zamboglou, N.; Baltas, D.
2002-01-01
In high dose rate (HDR) brachytherapy, conventional dose optimization algorithms consider multiple objectives in the form of an aggregate function that transforms the multiobjective problem into a single-objective problem. As a result, there is a loss of information on the available alternative possible solutions. This method assumes that the treatment planner exactly understands the correlation between competing objectives and knows the physical constraints. This knowledge is provided by the Pareto trade-off set obtained by single-objective optimization algorithms with a repeated optimization with different importance vectors. A mapping technique avoids non-feasible solutions with negative dwell weights and allows the use of constraint free gradient-based deterministic algorithms. We compare various such algorithms and methods which could improve their performance. This finally allows us to generate a large number of solutions in a few minutes. We use objectives expressed in terms of dose variances obtained from a few hundred sampling points in the planning target volume (PTV) and in organs at risk (OAR). We compare two- to four-dimensional Pareto fronts obtained with the deterministic algorithms and with a fast-simulated annealing algorithm. For PTV-based objectives, due to the convex objective functions, the obtained solutions are global optimal. If OARs are included, then the solutions found are also global optimal, although local minima may be present as suggested. (author)
A synthesis/design optimization algorithm for Rankine cycle based energy systems
International Nuclear Information System (INIS)
Toffolo, Andrea
2014-01-01
The algorithm presented in this work has been developed to search for the optimal topology and design parameters of a set of Rankine cycles forming an energy system that absorbs/releases heat at different temperature levels and converts part of the absorbed heat into electricity. This algorithm can deal with several applications in the field of energy engineering: e.g., steam cycles or bottoming cycles in combined/cogenerative plants, steam networks, low temperature organic Rankine cycles. The main purpose of this algorithm is to overcome the limitations of the search space introduced by the traditional mixed-integer programming techniques, which assume that possible solutions are derived from a single superstructure embedding them all. The algorithm presented in this work is a hybrid evolutionary/traditional optimization algorithm organized in two levels. A complex original codification of the topology and the intensive design parameters of the system is managed by the upper level evolutionary algorithm according to the criteria set by the HEATSEP method, which are used for the first time to automatically synthesize a “basic” system configuration from a set of elementary thermodynamic cycles. The lower SQP (sequential quadratic programming) algorithm optimizes the objective function(s) with respect to cycle mass flow rates only, taking into account the heat transfer feasibility constraint within the undefined heat transfer section. A challenging example of application is also presented to show the capabilities of the algorithm. - Highlights: • Energy systems based on Rankine cycles are used in many applications. • A hybrid algorithm is proposed to optimize the synthesis/design of such systems. • The topology of the candidate solutions is not limited by a superstructure. • Topology is managed by the genetic operators of the upper level algorithm. • The effectiveness of the algorithm is proved in a complex test case
Streuber, Gregg Mitchell
Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.
Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm
Directory of Open Access Journals (Sweden)
Hui Li
2017-01-01
Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.
Optimization approaches to mpi and area merging-based parallel buffer algorithm
Directory of Open Access Journals (Sweden)
Junfu Fan
Full Text Available On buffer zone construction, the rasterization-based dilation method inevitably introduces errors, and the double-sided parallel line method involves a series of complex operations. In this paper, we proposed a parallel buffer algorithm based on area merging and MPI (Message Passing Interface to improve the performances of buffer analyses on processing large datasets. Experimental results reveal that there are three major performance bottlenecks which significantly impact the serial and parallel buffer construction efficiencies, including the area merging strategy, the task load balance method and the MPI inter-process results merging strategy. Corresponding optimization approaches involving tree-like area merging strategy, the vertex number oriented parallel task partition method and the inter-process results merging strategy were suggested to overcome these bottlenecks. Experiments were carried out to examine the performance efficiency of the optimized parallel algorithm. The estimation results suggested that the optimization approaches could provide high performance and processing ability for buffer construction in a cluster parallel environment. Our method could provide insights into the parallelization of spatial analysis algorithm.
A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization
Directory of Open Access Journals (Sweden)
Soroor Sarafrazi
2015-07-01
Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.
Directory of Open Access Journals (Sweden)
R. Venkata Rao
2015-12-01
Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.
The Algorithm of Continuous Optimization Based on the Modified Cellular Automaton
Directory of Open Access Journals (Sweden)
Oleg Evsutin
2016-08-01
Full Text Available This article is devoted to the application of the cellular automata mathematical apparatus to the problem of continuous optimization. The cellular automaton with an objective function is introduced as a new modification of the classic cellular automaton. The algorithm of continuous optimization, which is based on dynamics of the cellular automaton having the property of geometric symmetry, is obtained. The results of the simulation experiments with the obtained algorithm on standard test functions are provided, and a comparison between the analogs is shown.
International Nuclear Information System (INIS)
Huang, Chia-Ling
2015-01-01
This paper proposes a new swarm intelligence method known as the Particle-based Simplified Swarm Optimization (PSSO) algorithm while undertaking a modification of the Updating Mechanism (UM), called N-UM and R-UM, and simultaneously applying an Orthogonal Array Test (OA) to solve reliability–redundancy allocation problems (RRAPs) successfully. One difficulty of RRAP is the need to maximize system reliability in cases where the number of redundant components and the reliability of corresponding components in each subsystem are simultaneously decided with nonlinear constraints. In this paper, four RRAP benchmarks are used to display the applicability of the proposed PSSO that advances the strengths of both PSO and SSO to enable optimizing the RRAP that belongs to mixed-integer nonlinear programming. When the computational results are compared with those of previously developed algorithms in existing literature, the findings indicate that the proposed PSSO is highly competitive and performs well. - Highlights: • This paper proposes a particle-based simplified swarm optimization algorithm (PSSO) to optimize RRAP. • Furthermore, the UM and an OA are adapted to advance in optimizing RRAP. • Four systems are introduced and the results demonstrate the PSSO performs particularly well
Multi-objective genetic algorithm based innovative wind farm layout optimization method
International Nuclear Information System (INIS)
Chen, Ying; Li, Hua; He, Bang; Wang, Pengcheng; Jin, Kai
2015-01-01
Highlights: • Innovative optimization procedures for both regular and irregular shape wind farm. • Using real wind condition and commercial wind turbine parameters. • Using multiple-objective genetic algorithm optimization method. • Optimize the selection of different wind turbine types and their hub heights. - Abstract: Layout optimization has become one of the critical approaches to increase power output and decrease total cost of a wind farm. Previous researches have applied intelligent algorithms to optimizing the wind farm layout. However, those wind conditions used in most of previous research are simplified and not accurate enough to match the real world wind conditions. In this paper, the authors propose an innovative optimization method based on multi-objective genetic algorithm, and test it with real wind condition and commercial wind turbine parameters. Four case studies are conducted to investigate the number of wind turbines needed in the given wind farm. Different cost models are also considered in the case studies. The results clearly demonstrate that the new method is able to optimize the layout of a given wind farm with real commercial data and wind conditions in both regular and irregular shapes, and achieve a better result by selecting different type and hub height wind turbines.
Nature-inspired optimization algorithms
Yang, Xin-She
2014-01-01
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning
Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm
Anam, S.
2017-10-01
Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.
Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm
Directory of Open Access Journals (Sweden)
S. Talatahari
2014-01-01
Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
Jing Chen
2015-01-01
This study takes the concept of food logistics distribution as the breakthrough point, by means of the aim of optimization of food logistics distribution routes and analysis of the optimization model of food logistics route, as well as the interpretation of the genetic algorithm, it discusses the optimization of food logistics distribution route based on genetic and cluster scheme algorithm.
Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller
International Nuclear Information System (INIS)
Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok
2015-01-01
This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design
Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller
Energy Technology Data Exchange (ETDEWEB)
Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)
2015-11-15
This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.
Rapid Optimal Generation Algorithm for Terrain Following Trajectory Based on Optimal Control
Institute of Scientific and Technical Information of China (English)
杨剑影; 张海; 谢邦荣; 尹健
2004-01-01
Based on the optimal control theory, a 3-dimensionnal direct generation algorithm is proposed for anti-ground low altitude penetration tasks under complex terrain. By optimizing the terrain following(TF) objective function,terrain coordinate system, missile dynamic model and control vector, the TF issue is turning into the improved optimal control problem whose mathmatical model is simple and need not solve the second order terrain derivative. Simulation results prove that this method is reasonable and feasible. The TF precision is in the scope from 0.3 m to 3.0 m,and the planning time is less than 30 min. This method have the strongpionts such as rapidness, precision and has great application value.
Jiang, Shouyong; Yang, Shengxiang
2016-02-01
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.
Optimal Seamline Detection for Orthoimage Mosaicking Based on DSM and Improved JPS Algorithm
Directory of Open Access Journals (Sweden)
Gang Chen
2018-05-01
Full Text Available Based on the digital surface model (DSM and jump point search (JPS algorithm, this study proposed a novel approach to detect the optimal seamline for orthoimage mosaicking. By threshold segmentation, DSM was first identified as ground regions and obstacle regions (e.g., buildings, trees, and cars. Then, the mathematical morphology method was used to make the edge of obstacles more prominent. Subsequently, the processed DSM was considered as a uniform-cost grid map, and the JPS algorithm was improved and employed to search for key jump points in the map. Meanwhile, the jump points would be evaluated according to an optimized function, finally generating a minimum cost path as the optimal seamline. Furthermore, the search strategy was modified to avoid search failure when the search map was completely blocked by obstacles in the search direction. Comparison of the proposed method and the Dijkstra’s algorithm was carried out based on two groups of image data with different characteristics. Results showed the following: (1 the proposed method could detect better seamlines near the centerlines of the overlap regions, crossing far fewer ground objects; (2 the efficiency and resource consumption were greatly improved since the improved JPS algorithm skips many image pixels without them being explicitly evaluated. In general, based on DSM, the proposed method combining threshold segmentation, mathematical morphology, and improved JPS algorithms was helpful for detecting the optimal seamline for orthoimage mosaicking.
Loading pattern optimization using ant colony algorithm
International Nuclear Information System (INIS)
Hoareau, Fabrice
2008-01-01
Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)
Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm
Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei
2018-01-01
In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.
Directory of Open Access Journals (Sweden)
Litian Duan
2016-11-01
Full Text Available In the multiple-reader environment (MRE of radio frequency identification (RFID system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.
Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
Norlina Mohd Sabri
2016-06-01
Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.
International Nuclear Information System (INIS)
Vaitheeswaran, Ranganathan; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram
2011-01-01
The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) (∼ 2% - 5% improvement) and Homogeneity Index (HI) (∼ 4% - 10% improvement) as compared to GEM and FSA algorithms (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are
Practical mine ventilation optimization based on genetic algorithms for free splitting networks
Energy Technology Data Exchange (ETDEWEB)
Acuna, E.; Maynard, R.; Hall, S. [Laurentian Univ., Sudbury, ON (Canada). Mirarco Mining Innovation; Hardcastle, S.G.; Li, G. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories; Lowndes, I.S. [Nottingham Univ., Nottingham (United Kingdom). Process and Environmental Research Division; Tonnos, A. [Bestech, Sudbury, ON (Canada)
2010-07-01
The method used to optimize the design and operation of mine ventilation has generally been based on case studies and expert knowledge. It has yet to benefit from optimization techniques used and proven in other fields of engineering. Currently, optimization of mine ventilation systems is a manual based decision process performed by an experienced mine ventilation specialist assisted by commercial ventilation distribution solvers. These analysis tools are widely used in the mining industry to evaluate the practical and economic viability of alternative ventilation system configurations. The scenario which is usually selected is the one that reports the lowest energy consumption while delivering the required airflow distribution. Since most commercial solvers do not have an integrated optimization algorithm network, the process of generating a series of potential ventilation solutions using the conventional iterative design strategy can be time consuming. For that reason, a genetic algorithm (GA) optimization routine was developed in combination with a ventilation solver to determine the potential optimal solutions of a primary mine ventilation system based on a free splitting network. The optimization method was used in a small size mine ventilation network. The technique was shown to have the capacity to generate good feasible solutions and improve upon the manual results obtained by mine ventilation specialists. 9 refs., 7 tabs., 3 figs.
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585
Directory of Open Access Journals (Sweden)
Xun Zhang
2014-01-01
Full Text Available Optimal sensor placement is a key issue in the structural health monitoring of large-scale structures. However, some aspects in existing approaches require improvement, such as the empirical and unreliable selection of mode and sensor numbers and time-consuming computation. A novel improved particle swarm optimization (IPSO algorithm is proposed to address these problems. The approach firstly employs the cumulative effective modal mass participation ratio to select mode number. Three strategies are then adopted to improve the PSO algorithm. Finally, the IPSO algorithm is utilized to determine the optimal sensors number and configurations. A case study of a latticed shell model is implemented to verify the feasibility of the proposed algorithm and four different PSO algorithms. The effective independence method is also taken as a contrast experiment. The comparison results show that the optimal placement schemes obtained by the PSO algorithms are valid, and the proposed IPSO algorithm has better enhancement in convergence speed and precision.
A new column-generation-based algorithm for VMAT treatment plan optimization
International Nuclear Information System (INIS)
Peng Fei; Epelman, Marina A; Romeijn, H Edwin; Jia Xun; Gu Xuejun; Jiang, Steve B
2012-01-01
We study the treatment plan optimization problem for volumetric modulated arc therapy (VMAT). We propose a new column-generation-based algorithm that takes into account bounds on the gantry speed and dose rate, as well as an upper bound on the rate of change of the gantry speed, in addition to MLC constraints. The algorithm iteratively adds one aperture at each control point along the treatment arc. In each iteration, a restricted problem optimizing intensities at previously selected apertures is solved, and its solution is used to formulate a pricing problem, which selects an aperture at another control point that is compatible with previously selected apertures and leads to the largest rate of improvement in the objective function value of the restricted problem. Once a complete set of apertures is obtained, their intensities are optimized and the gantry speeds and dose rates are adjusted to minimize treatment time while satisfying all machine restrictions. Comparisons of treatment plans obtained by our algorithm to idealized IMRT plans of 177 beams on five clinical prostate cancer cases demonstrate high quality with respect to clinical dose–volume criteria. For all cases, our algorithm yields treatment plans that can be delivered in around 2 min. Implementation on a graphic processing unit enables us to finish the optimization of a VMAT plan in 25–55 s. (paper)
A Direct Search Algorithm for Global Optimization
Directory of Open Access Journals (Sweden)
Enrique Baeyens
2016-06-01
Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.
Advances in metaheuristic algorithms for optimal design of structures
Kaveh, A
2017-01-01
This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...
Advances in metaheuristic algorithms for optimal design of structures
Kaveh, A
2014-01-01
This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...
Genetic algorithms applied to nuclear reactor design optimization
International Nuclear Information System (INIS)
Pereira, C.M.N.A.; Schirru, R.; Martinez, A.S.
2000-01-01
A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)
Optimal Design for PID Controller Based on DE Algorithm in Omnidirectional Mobile Robot
Directory of Open Access Journals (Sweden)
Wu Peizhang
2017-01-01
Full Text Available This paper introduces a omnidirectional mobile robot based on Mecanum wheel, which is used for conveying heavy load in a small space of the automatic warehousing logistics center. Then analyzes and establishes the omnidirectional chassis inverse and forward kinematic model. In order to improve the performance of motion, the paper proposes the optimal PID controller based on differential evolution algorithm. Finally, through MATLAB simulation, the results show that the kinematic model of mobile robot chassis is correct, further more the controller optimized by the DE algorithm working better than the traditional Z-N PID tuned. So the optimal scheme is reasonable and feasible, which has a value for engineering applications.
Directory of Open Access Journals (Sweden)
Shouheng Tuo
Full Text Available Harmony Search (HS and Teaching-Learning-Based Optimization (TLBO as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.
Guidelines for Interactive Reliability-Based Structural Optimization using Quasi-Newton Algorithms
DEFF Research Database (Denmark)
Pedersen, C.; Thoft-Christensen, Palle
increase of the condition number and preserve positive definiteness without discarding previously obtained information. All proposed modifications are also valid for non-interactive optimization problems. Heuristic rules from various optimization problems concerning when and how to impose interactions......Guidelines for interactive reliability-based structural optimization problems are outlined in terms of modifications of standard quasi-Newton algorithms. The proposed modifications minimize the condition number of the approximate Hessian matrix in each iteration, restrict the relative and absolute...
An opposition-based harmony search algorithm for engineering optimization problems
Directory of Open Access Journals (Sweden)
Abhik Banerjee
2014-03-01
Full Text Available Harmony search (HS is a derivative-free real parameter optimization algorithm. It draws inspiration from the musical improvisation process of searching for a perfect state of harmony. The proposed opposition-based HS (OHS of the present work employs opposition-based learning for harmony memory initialization and also for generation jumping. The concept of opposite number is utilized in OHS to improve the convergence rate of the HS algorithm. The potential of the proposed algorithm is assessed by means of an extensive comparative study of the numerical results on sixteen benchmark test functions. Additionally, the effectiveness of the proposed algorithm is tested for reactive power compensation of an autonomous power system. For real-time reactive power compensation of the studied model, Takagi Sugeno fuzzy logic (TSFL is employed. Time-domain simulation reveals that the proposed OHS-TSFL yields on-line, off-nominal model parameters, resulting in real-time incremental change in terminal voltage response profile.
Directory of Open Access Journals (Sweden)
Muhammad Farhan Ausaf
2015-12-01
Full Text Available Process planning and scheduling are two important components of a manufacturing setup. It is important to integrate them to achieve better global optimality and improved system performance. To find optimal solutions for integrated process planning and scheduling (IPPS problem, numerous algorithm-based approaches exist. Most of these approaches try to use existing meta-heuristic algorithms for solving the IPPS problem. Although these approaches have been shown to be effective in optimizing the IPPS problem, there is still room for improvement in terms of quality of solution and algorithm efficiency, especially for more complicated problems. Dispatching rules have been successfully utilized for solving complicated scheduling problems, but haven’t been considered extensively for the IPPS problem. This approach incorporates dispatching rules with the concept of prioritizing jobs, in an algorithm called priority-based heuristic algorithm (PBHA. PBHA tries to establish job and machine priority for selecting operations. Priority assignment and a set of dispatching rules are simultaneously used to generate both the process plans and schedules for all jobs and machines. The algorithm was tested for a series of benchmark problems. The proposed algorithm was able to achieve superior results for most complex problems presented in recent literature while utilizing lesser computational resources.
A Constraint programming-based genetic algorithm for capacity output optimization
Directory of Open Access Journals (Sweden)
Kate Ean Nee Goh
2014-10-01
Full Text Available Purpose: The manuscript presents an investigation into a constraint programming-based genetic algorithm for capacity output optimization in a back-end semiconductor manufacturing company.Design/methodology/approach: In the first stage, constraint programming defining the relationships between variables was formulated into the objective function. A genetic algorithm model was created in the second stage to optimize capacity output. Three demand scenarios were applied to test the robustness of the proposed algorithm.Findings: CPGA improved both the machine utilization and capacity output once the minimum requirements of a demand scenario were fulfilled. Capacity outputs of the three scenarios were improved by 157%, 7%, and 69%, respectively.Research limitations/implications: The work relates to aggregate planning of machine capacity in a single case study. The constraints and constructed scenarios were therefore industry-specific.Practical implications: Capacity planning in a semiconductor manufacturing facility need to consider multiple mutually influenced constraints in resource availability, process flow and product demand. The findings prove that CPGA is a practical and an efficient alternative to optimize the capacity output and to allow the company to review its capacity with quick feedback.Originality/value: The work integrates two contemporary computational methods for a real industry application conventionally reliant on human judgement.
Optimization model of conventional missile maneuvering route based on improved Floyd algorithm
Wu, Runping; Liu, Weidong
2018-04-01
Missile combat plays a crucial role in the victory of war under high-tech conditions. According to the characteristics of maneuver tasks of conventional missile units in combat operations, the factors influencing road maneuvering are analyzed. Based on road distance, road conflicts, launching device speed, position requirements, launch device deployment, Concealment and so on. The shortest time optimization model was built to discuss the situation of road conflict and the strategy of conflict resolution. The results suggest that in the process of solving road conflict, the effect of node waiting is better than detour to another way. In this study, we analyzed the deficiency of the traditional Floyd algorithm which may limit the optimal way of solving road conflict, and put forward the improved Floyd algorithm, meanwhile, we designed the algorithm flow which would be better than traditional Floyd algorithm. Finally, throgh a numerical example, the model and the algorithm were proved to be reliable and effective.
Two-Phase Algorithm for Optimal Camera Placement
Directory of Open Access Journals (Sweden)
Jun-Woo Ahn
2016-01-01
Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.
GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE
Directory of Open Access Journals (Sweden)
Ashish Jain
2012-07-01
Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.
Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems
International Nuclear Information System (INIS)
Mohamed, A.H.
2008-01-01
The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2015-06-01
Full Text Available In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO algorithm combined with the least squares method (LMS to optimize the adaptive network-based fuzzy inference system (ANFIS model parameters. Through the introduction of metric function of population diversity to ensure the diversity of population and adaptive changes in inertia weight and learning factors, the optimization ability of the particle swarm optimization (PSO algorithm is improved, which avoids the premature convergence problem of the PSO algorithm. The simulation comparison experiments are carried out with BP-LMS algorithm and standard PSO-LMS by adopting real commercial banks’ cash flow data to verify the effectiveness of the proposed time series prediction of bank cash flow based on improved PSO-ANFIS optimization method. Simulation results show that the optimization speed is faster and the prediction accuracy is higher.
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-04-17
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.
AES Encryption Algorithm Optimization Based on 64-bit Processor Android Platform
Directory of Open Access Journals (Sweden)
ZHAO Jun
2017-06-01
Full Text Available Algorithm implemented on the mobile phone is different from one on PC． It requires little storage space and low power consumption． Standard AES S-box design uses look up table，and has high complexity and high power consumption，so it needs to be optimized when used in mobile phones． In our optimization AES encryption algorithm，the packet length is expanded to 256 bits，which would increase the security of our algorithm; look up table is replaced by adding the affine transformation based on inversion，which would reduce the storage space; operation is changed into 16-bit input and 64-bit output by merging the three steps，namely SubWords，ShiftＲows MixColumns and AddＲoundKey，which would improve the operation efficiency of the algorithm． The experimental results show that our algorithm not only can greatly enhance the encryption strength，but also maintain high computing efficiency．
Algorithm of axial fuel optimization based in progressive steps of turned search
International Nuclear Information System (INIS)
Martin del Campo, C.; Francois, J.L.
2003-01-01
The development of an algorithm for the axial optimization of fuel of boiling water reactors (BWR) is presented. The algorithm is based in a serial optimizations process in the one that the best solution in each stage is the starting point of the following stage. The objective function of each stage adapts to orient the search toward better values of one or two parameters leaving the rest like restrictions. Conform to it advances in those optimization stages, it is increased the fineness of the evaluation of the investigated designs. The algorithm is based on three stages, in the first one are used Genetic algorithms and in the two following Tabu Search. The objective function of the first stage it looks for to minimize the average enrichment of the one it assembles and to fulfill with the generation of specified energy for the operation cycle besides not violating none of the limits of the design base. In the following stages the objective function looks for to minimize the power factor peak (PPF) and to maximize the margin of shutdown (SDM), having as restrictions the one average enrichment obtained for the best design in the first stage and those other restrictions. The third stage, very similar to the previous one, it begins with the design of the previous stage but it carries out a search of the margin of shutdown to different exhibition steps with calculations in three dimensions (3D). An application to the case of the design of the fresh assemble for the fourth fuel reload of the Unit 1 reactor of the Laguna Verde power plant (U1-CLV) is presented. The obtained results show an advance in the handling of optimization methods and in the construction of the objective functions that should be used for the different design stages of the fuel assemblies. (Author)
An Optimal Parallel Algorithm for the Knapsack Problem Based on EREW
Institute of Scientific and Technical Information of China (English)
李肯立; 蒋盛益; 王卉; 李庆华
2003-01-01
A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2n/4)1-ε processors, 0≤ε≤1, and O(2n/2) memory to find a solution for the n-element knapsack problem in time O(2n/4(2n/4)ε). The cost of the proposed parallel algorithm is O(2n/2), which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.
An algorithm for gradient-based dynamic optimization of UV ﬂash processes
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Gaspar, Jozsef
2017-01-01
This paper presents a novel single-shooting algorithm for gradient-based solution of optimal control problems with vapor-liquid equilibrium constraints. Such optimal control problems are important in several engineering applications, for instance in control of distillation columns, in certain two...... softwareaswellastheperformanceofdiﬀerentcompilersinaLinuxoperatingsystem. Thesetestsindicatethatreal-timenonlinear model predictive control of UV ﬂash processes is computationally feasible....
A Novel Hybrid Firefly Algorithm for Global Optimization.
Directory of Open Access Journals (Sweden)
Lina Zhang
Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.
Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-04-01
Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases. The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.
Distributed Algorithms for Time Optimal Reachability Analysis
DEFF Research Database (Denmark)
Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand
2016-01-01
. We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...... algorithms with four models in terms of their ability to compute near- or proven-optimal solutions, their scalability, time and memory consumption and communication overhead. Our results show that distributed algorithms work much faster than sequential algorithms and have good speedup in general.......Time optimal reachability analysis is a novel model based technique for solving scheduling and planning problems. After modeling them as reachability problems using timed automata, a real-time model checker can compute the fastest trace to the goal states which constitutes a time optimal schedule...
International Nuclear Information System (INIS)
Lima, Alan M.M. de; Schirru, Roberto
2000-01-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. The purpose of this work is to introduce a new parallelization method to be applied to the Population-Based Incremental Learning (PBIL) algorithm. PBIL combines standard genetic algorithm mechanisms with simple competitive learning and has ben successfully used in combinatorial optimization problems. The development of this algorithm aims its application to the reload optimization of PWR nuclear reactors. Tests have been performed with combinatorial optimization problems similar to the reload problem. Results are compared to the serial PBIL ones, showing the new method's superiority and its viability as a tool for the nuclear core reload problem solution. (author)
Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen
2013-08-01
Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.
Hybrid Firefly Variants Algorithm for Localization Optimization in WSN
Directory of Open Access Journals (Sweden)
P. SrideviPonmalar
2017-01-01
Full Text Available Localization is one of the key issues in wireless sensor networks. Several algorithms and techniques have been introduced for localization. Localization is a procedural technique of estimating the sensor node location. In this paper, a novel three hybrid algorithms based on firefly is proposed for localization problem. Hybrid Genetic Algorithm-Firefly Localization Algorithm (GA-FFLA, Hybrid Differential Evolution-Firefly Localization Algorithm (DE-FFLA and Hybrid Particle Swarm Optimization -Firefly Localization Algorithm (PSO-FFLA are analyzed, designed and implemented to optimize the localization error. The localization algorithms are compared based on accuracy of estimation of location, time complexity and iterations required to achieve the accuracy. All the algorithms have hundred percent estimation accuracy but with variations in the number of firefliesr requirements, variation in time complexity and number of iteration requirements. Keywords: Localization; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization
Reactive power dispatch considering voltage stability with seeker optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Dai, Chaohua; Chen, Weirong; Zhang, Xuexia [The School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Yunfang [Department of Computer and Communication Engineering, E' mei Campus, Southwest Jiaotong University, E' mei 614202 (China)
2009-10-15
Optimal reactive power dispatch (ORPD) has a growing impact on secure and economical operation of power systems. This issue is well known as a non-linear, multi-modal and multi-objective optimization problem where global optimization techniques are required in order to avoid local minima. In the last decades, computation intelligence-based techniques such as genetic algorithms (GAs), differential evolution (DE) algorithms and particle swarm optimization (PSO) algorithms, etc., have often been used for this aim. In this work, a seeker optimization algorithm (SOA) based method is proposed for ORPD considering static voltage stability and voltage deviation. The SOA is based on the concept of simulating the act of human searching where search direction is based on the empirical gradient by evaluating the response to the position changes and step length is based on uncertainty reasoning by using a simple Fuzzy rule. The algorithm's performance is studied with comparisons of two versions of GAs, three versions of DE algorithms and four versions of PSO algorithms on the IEEE 57 and 118-bus power systems. The simulation results show that the proposed approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem. (author)
International Nuclear Information System (INIS)
Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo
2008-01-01
In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)
Optimizing Properties of Aluminum-Based Nanocomposites by Genetic Algorithm Method
Directory of Open Access Journals (Sweden)
M.R. Dashtbayazi
2015-07-01
Full Text Available Based on molecular dynamics simulation results, a model was developed for determining elastic properties of aluminum nanocomposites reinforced with silicon carbide particles. Also, two models for prediction of density and price of nanocomposites were suggested. Then, optimal volume fraction of reinforcement was obtained by genetic algorithm method for the least density and price, and the highest elastic properties. Based on optimization results, the optimum volume fraction of reinforcement was obtained equal to 0.44. For this optimum volume fraction, optimum Young’s modulus, shear modulus, the price and the density of the nanocomposite were obtained 165.89 GPa, 111.37 GPa, 8.75 $/lb and 2.92 gr/cm3, respectively.
Chemical optimization algorithm for fuzzy controller design
Astudillo, Leslie; Castillo, Oscar
2014-01-01
In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application
Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei
2014-04-01
Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.
Directory of Open Access Journals (Sweden)
Bima Sena Bayu Dewantara
2014-12-01
Full Text Available Fuzzy rule optimization is a challenging step in the development of a fuzzy model. A simple two inputs fuzzy model may have thousands of combination of fuzzy rules when it deals with large number of input variations. Intuitively and trial‐error determination of fuzzy rule is very difficult. This paper addresses the problem of optimizing Fuzzy rule using Genetic Algorithm to compensate illumination effect in face recognition. Since uneven illumination contributes negative effects to the performance of face recognition, those effects must be compensated. We have developed a novel algorithmbased on a reflectance model to compensate the effect of illumination for human face recognition. We build a pair of model from a single image and reason those modelsusing Fuzzy.Fuzzy rule, then, is optimized using Genetic Algorithm. This approachspendsless computation cost by still keepinga high performance. Based on the experimental result, we can show that our algorithm is feasiblefor recognizing desired person under variable lighting conditions with faster computation time. Keywords: Face recognition, harsh illumination, reflectance model, fuzzy, genetic algorithm
Genetic Optimization Algorithm for Metabolic Engineering Revisited
Directory of Open Access Journals (Sweden)
Tobias B. Alter
2018-05-01
Full Text Available To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research. A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted comprehensive parameter sensitivity analyses to study their impact on finding optimal strain designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i multiple, non-linear engineering objectives; (ii the identification of gene target-sets according to logical gene-protein-reaction associations; (iii minimization of the number of network perturbations; and (iv the insertion of non-native reactions, while employing genome-scale metabolic models. This framework adds a level of sophistication in terms of strain design robustness, which is exemplarily tested on succinate overproduction in Escherichia coli.
Using rapidly-exploring random tree-based algorithms to find smooth and optimal trajectories
CSIR Research Space (South Africa)
Matebese, B
2012-10-01
Full Text Available -exploring random tree-based algorithms to fi nd smooth and optimal trajectories B MATEBESE1, MK BANDA2 AND S UTETE1 1CSIR Modelling and Digital Science, PO Box 395, Pretoria, South Africa, 0001 2Department of Applied Mathematics, Stellenbosch University... and complex environments. The RRT algorithm is the most popular and has the ability to find a feasible solution faster than other algorithms. The drawback of using RRT is that, as the number of samples increases, the probability that the algorithm converges...
Scaling Sparse Matrices for Optimization Algorithms
Gajulapalli Ravindra S; Lasdon Leon S
2006-01-01
To iteratively solve large scale optimization problems in various contexts like planning, operations, design etc., we need to generate descent directions that are based on linear system solutions. Irrespective of the optimization algorithm or the solution method employed for the linear systems, ill conditioning introduced by problem characteristics or the algorithm or both need to be addressed. In [GL01] we used an intuitive heuristic approach in scaling linear systems that improved performan...
Optimization of C4.5 algorithm-based particle swarm optimization for breast cancer diagnosis
Muslim, M. A.; Rukmana, S. H.; Sugiharti, E.; Prasetiyo, B.; Alimah, S.
2018-03-01
Data mining has become a basic methodology for computational applications in the field of medical domains. Data mining can be applied in the health field such as for diagnosis of breast cancer, heart disease, diabetes and others. Breast cancer is most common in women, with more than one million cases and nearly 600,000 deaths occurring worldwide each year. The most effective way to reduce breast cancer deaths was by early diagnosis. This study aims to determine the level of breast cancer diagnosis. This research data uses Wisconsin Breast Cancer dataset (WBC) from UCI machine learning. The method used in this research is the algorithm C4.5 and Particle Swarm Optimization (PSO) as a feature option and to optimize the algorithm. C4.5. Ten-fold cross-validation is used as a validation method and a confusion matrix. The result of this research is C4.5 algorithm. The particle swarm optimization C4.5 algorithm has increased by 0.88%.
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
DEFF Research Database (Denmark)
Mozaffari, Ahmad; Gorji-Bandpy, Mofid; Samadian, Pendar
2013-01-01
Optimizing and controlling of complex engineering systems is a phenomenon that has attracted an incremental interest of numerous scientists. Until now, a variety of intelligent optimizing and controlling techniques such as neural networks, fuzzy logic, game theory, support vector machines...... and stochastic algorithms were proposed to facilitate controlling of the engineering systems. In this study, an extended version of mutable smart bee algorithm (MSBA) called Pareto based mutable smart bee (PBMSB) is inspired to cope with multi-objective problems. Besides, a set of benchmark problems and four...... well-known Pareto based optimizing algorithms i.e. multi-objective bee algorithm (MOBA), multi-objective particle swarm optimization (MOPSO) algorithm, non-dominated sorting genetic algorithm (NSGA-II), and strength Pareto evolutionary algorithm (SPEA 2) are utilized to confirm the acceptable...
Optimization in optical systems revisited: Beyond genetic algorithms
Gagnon, Denis; Dumont, Joey; Dubé, Louis
2013-05-01
Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Directory of Open Access Journals (Sweden)
Dębski Roman
2014-09-01
Full Text Available Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with reference to the problem taken from alpine ski racing (the presented solution is probably the most general one published so far. The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous optimization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming to find an approximation of the global solution. In the analyzed example it is the minimum-time ski line, represented as a piecewise-linear function (a method of elimination of unfeasible solutions is proposed. Serial and parallel versions of the basic optimization algorithm are presented in detail (pseudo-code, time and memory complexity. Possible extensions of the basic algorithm are also described. The implementation of these algorithms is based on OpenCL. The included experimental results show that contemporary heterogeneous computers can be treated as μ-HPC platforms-they offer high performance (the best speedup was equal to 128 while remaining energy and cost efficient (which is crucial in embedded systems, e.g., trajectory planners of autonomous robots. The presented algorithms can be applied to many trajectory optimization problems, including those having a black-box represented performance measure
Optimizing graph algorithms on pregel-like systems
Salihoglu, Semih
2014-03-01
We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high communication or computation cost, typically due to structural properties of the input graphs such as large diameters or skew in component sizes. We describe several optimization techniques to address these inefficiencies. Our most general technique is based on the idea of performing some serial computation on a tiny fraction of the input graph, complementing Pregel\\'s vertex-centric parallelism. We base our study on thorough implementations of several fundamental graph algorithms, some of which have, to the best of our knowledge, not been implemented on Pregel-like systems before. The algorithms and optimizations we describe are fully implemented in our open-source Pregel implementation. We present detailed experiments showing that our optimization techniques improve runtime significantly on a variety of very large graph datasets.
Genetic algorithms in loading pattern optimization
International Nuclear Information System (INIS)
Yilmazbayhan, A.; Tombakoglu, M.; Bekar, K. B.; Erdemli, A. Oe
2001-01-01
Genetic Algorithm (GA) based systems are used for the loading pattern optimization. The use of Genetic Algorithm operators such as regional crossover, crossover and mutation, and selection of initial population size for PWRs are discussed. Antithetic variates are used to generate the initial population. The performance of GA with antithetic variates is compared to traditional GA. The results of multi-cycle optimization are discussed for objective function taking into account cycle burn-up and discharge burn-up
Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang
2017-09-01
Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.
Engineering local optimality in quantum Monte Carlo algorithms
Pollet, Lode; Van Houcke, Kris; Rombouts, Stefan M. A.
2007-08-01
Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of bosonic models. Both algorithms work in the grand-canonical ensemble and can have a winding number larger than zero. However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide numerical examples for the soft-core Bose-Hubbard model and various spin- S models.
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
An Improved Routing Optimization Algorithm Based on Travelling Salesman Problem for Social Networks
Directory of Open Access Journals (Sweden)
Naixue Xiong
2017-06-01
Full Text Available A social network is a social structure, which is organized by the relationships or interactions between individuals or groups. Humans link the physical network with social network, and the services in the social world are based on data and analysis, which directly influence decision making in the physical network. In this paper, we focus on a routing optimization algorithm, which solves a well-known and popular problem. Ant colony algorithm is proposed to solve this problem effectively, but random selection strategy of the traditional algorithm causes evolution speed to be slow. Meanwhile, positive feedback and distributed computing model make the algorithm quickly converge. Therefore, how to improve convergence speed and search ability of algorithm is the focus of the current research. The paper proposes the improved scheme. Considering the difficulty about searching for next better city, new parameters are introduced to improve probability of selection, and delay convergence speed of algorithm. To avoid the shortest path being submerged, and improve sensitive speed of finding the shortest path, it updates pheromone regulation formula. The results show that the improved algorithm can effectively improve convergence speed and search ability for achieving higher accuracy and optimal results.
The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method
Directory of Open Access Journals (Sweden)
Liang Shen
2017-01-01
Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.
Optimization-Based Image Segmentation by Genetic Algorithms
Directory of Open Access Journals (Sweden)
Rosenberger C
2008-01-01
Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.
Optimization-Based Image Segmentation by Genetic Algorithms
Directory of Open Access Journals (Sweden)
H. Laurent
2008-05-01
Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.
Directory of Open Access Journals (Sweden)
Mahdi M. M. El-Arini
2013-01-01
Full Text Available In recent years, the solar energy has become one of the most important alternative sources of electric energy, so it is important to operate photovoltaic (PV panel at the optimal point to obtain the possible maximum efficiency. This paper presents a new optimization approach to maximize the electrical power of a PV panel. The technique which is based on objective function represents the output power of the PV panel and constraints, equality and inequality. First the dummy variables that have effect on the output power are classified into two categories: dependent and independent. The proposed approach is a multistage one as the genetic algorithm, GA, is used to obtain the best initial population at optimal solution and this initial population is fed to Lagrange multiplier algorithm (LM, then a comparison between the two algorithms, GA and LM, is performed. The proposed technique is applied to solar radiation measured at Helwan city at latitude 29.87°, Egypt. The results showed that the proposed technique is applicable.
International Nuclear Information System (INIS)
Lahanas, M; Baltas, D; Zamboglou, N
2003-01-01
Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives
Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms
Directory of Open Access Journals (Sweden)
Marcin Połomski
2013-03-01
Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.
Directory of Open Access Journals (Sweden)
Mohamed Zellagui
2017-09-01
Full Text Available The paper presents a new hybrid global optimization algorithm based on Chemical Reaction based Optimization (CRO and Di¤erential evolution (DE algorithm for nonlinear constrained optimization problems. This approach proposed for the optimal coordination and setting relays of directional overcurrent relays in complex power systems. In protection coordination problem, the objective function to be minimized is the sum of the operating time of all main relays. The optimization problem is subject to a number of constraints which are mainly focused on the operation of the backup relay, which should operate if a primary relay fails to respond to the fault near to it, Time Dial Setting (TDS, Plug Setting (PS and the minimum operating time of a relay. The hybrid global proposed optimization algorithm aims to minimize the total operating time of each protection relay. Two systems are used as case study to check the effeciency of the optimization algorithm which are IEEE 4-bus and IEEE 6-bus models. Results are obtained and presented for CRO and DE and hybrid CRO-DE algorithms. The obtained results for the studied cases are compared with those results obtained when using other optimization algorithms which are Teaching Learning-Based Optimization (TLBO, Chaotic Differential Evolution Algorithm (CDEA and Modiffied Differential Evolution Algorithm (MDEA, and Hybrid optimization algorithms (PSO-DE, IA-PSO, and BFOA-PSO. From analysing the obtained results, it has been concluded that hybrid CRO-DO algorithm provides the most optimum solution with the best convergence rate.
The Patch-Levy-Based Bees Algorithm Applied to Dynamic Optimization Problems
Directory of Open Access Journals (Sweden)
Wasim A. Hussein
2017-01-01
Full Text Available Many real-world optimization problems are actually of dynamic nature. These problems change over time in terms of the objective function, decision variables, constraints, and so forth. Therefore, it is very important to study the performance of a metaheuristic algorithm in dynamic environments to assess the robustness of the algorithm to deal with real-word problems. In addition, it is important to adapt the existing metaheuristic algorithms to perform well in dynamic environments. This paper investigates a recently proposed version of Bees Algorithm, which is called Patch-Levy-based Bees Algorithm (PLBA, on solving dynamic problems, and adapts it to deal with such problems. The performance of the PLBA is compared with other BA versions and other state-of-the-art algorithms on a set of dynamic multimodal benchmark problems of different degrees of difficulties. The results of the experiments show that PLBA achieves better results than the other BA variants. The obtained results also indicate that PLBA significantly outperforms some of the other state-of-the-art algorithms and is competitive with others.
Belief Propagation Algorithm for Portfolio Optimization Problems.
Shinzato, Takashi; Yasuda, Muneki
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Belief Propagation Algorithm for Portfolio Optimization Problems.
Directory of Open Access Journals (Sweden)
Takashi Shinzato
Full Text Available The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Improved Artificial Fish Algorithm for Parameters Optimization of PID Neural Network
Jing Wang; Yourui Huang
2013-01-01
In order to solve problems such as initial weights are difficult to be determined, training results are easy to trap in local minima in optimization process of PID neural network parameters by traditional BP algorithm, this paper proposed a new method based on improved artificial fish algorithm for parameters optimization of PID neural network. This improved artificial fish algorithm uses a composite adaptive artificial fish algorithm based on optimal artificial fish and nearest artificial fi...
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network
Directory of Open Access Journals (Sweden)
C. Vimalarani
2016-01-01
Full Text Available Wireless Sensor Network (WSN is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
Optimization algorithms and applications
Arora, Rajesh Kumar
2015-01-01
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc
Space mapping optimization algorithms for engineering design
DEFF Research Database (Denmark)
Koziel, Slawomir; Bandler, John W.; Madsen, Kaj
2006-01-01
A simple, efficient optimization algorithm based on space mapping (SM) is presented. It utilizes input SM to reduce the misalignment between the coarse and fine models of the optimized object over a region of interest, and output space mapping (OSM) to ensure matching of response and first...... to a benchmark problem. In comparison with SMIS, the models presented are simple and have a small number of parameters that need to be extracted. The new algorithm is applied to the optimization of coupled-line band-pass filter....
Directory of Open Access Journals (Sweden)
Jianzhou Wang
2015-01-01
Full Text Available This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP and optimized support vector regression (SVR. Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA, particle swarm optimization algorithm (PSO, and cuckoo optimization algorithm (COA. Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1 analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2 the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3 the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.
Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm
Directory of Open Access Journals (Sweden)
Wenping Zou
2011-01-01
Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
Optimization of IBF parameters based on adaptive tool-path algorithm
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
The Study on Food Sensory Evaluation based on Particle Swarm Optimization Algorithm
Hairong Wang; Huijuan Xu
2015-01-01
In this study, it explores the procedures and methods of the system for establishing food sensory evaluation based on particle swarm optimization algorithm, by means of explaining the interpretation of sensory evaluation and sensory analysis, combined with the applying situation of sensory evaluation in food industry.
Yang, Guo Sheng; Wang, Xiao Yang; Li, Xue Dong
2018-03-01
With the establishment of the integrated model of relay protection and the scale of the power system expanding, the global setting and optimization of relay protection is an extremely difficult task. This paper presents a kind of application in relay protection of global optimization improved particle swarm optimization algorithm and the inverse time current protection as an example, selecting reliability of the relay protection, selectivity, quick action and flexibility as the four requires to establish the optimization targets, and optimizing protection setting values of the whole system. Finally, in the case of actual power system, the optimized setting value results of the proposed method in this paper are compared with the particle swarm algorithm. The results show that the improved quantum particle swarm optimization algorithm has strong search ability, good robustness, and it is suitable for optimizing setting value in the relay protection of the whole power system.
Directory of Open Access Journals (Sweden)
Kiran Teeparthi
2017-04-01
Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.
Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-02-22
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.
Dynamic route guidance algorithm based algorithm based on artificial immune system
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To improve the performance of the K-shortest paths search in intelligent traffic guidance systems,this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the memphor mechanism of vertebrate immune systems.This algorithm,applied to the urban traffic network model established by the node-expanding method,can expediently realize K-shortest paths search in the urban traffic guidance systems.Because of the immune memory and global parallel search ability from artificial immune systems,K shortest paths can be found without any repeat,which indicates evidently the superiority of the algorithm to the conventional ones.Not only does it perform a better parallelism,the algorithm also prevents premature phenomenon that often occurs in genetic algorithms.Thus,it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications.A case study verifies the efficiency and the practicability of the algorithm aforementioned.
Directory of Open Access Journals (Sweden)
Ouafa Herbadji
2016-03-01
Full Text Available This paper proposes a new hybrid metaheuristique algorithm based on the hybridization of Biogeography-based optimization with the Differential Evolution for solving the optimal power flow problem with emission control. The biogeography-based optimization (BBO algorithm is strongly influenced by equilibrium theory of island biogeography, mainly through two steps: Migration and Mutation. Differential Evolution (DE is one of the best Evolutionary Algorithms for global optimization. The hybridization of these two methods is used to overcome traps of local optimal solutions and problems of time consumption. The objective of this paper is to minimize the total fuel cost of generation, total emission, total real power loss and also maintain an acceptable system performance in terms of limits on generator real power, bus voltages and power flow of transmission lines. In the present work, BBO/DE has been applied to solve the optimal power flow problems on IEEE 30-bus test system and the Algerian electrical network 114 bus. The results obtained from this method show better performances compared with DE, BBO and other well known metaheuristique and evolutionary optimization methods.
International Nuclear Information System (INIS)
Ranganathan, Vaitheeswaran; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Gupta, Kamlesh K.; Basu, Sumit; Maiya, Vikram; Joseph, Jolly; Nirhali, Amit
2010-01-01
This study aims to evaluate the performance of a new algorithm for optimization of beam weights in anatomy-based intensity modulated radiotherapy (IMRT). The algorithm uses a numerical technique called Gaussian-Elimination that derives the optimum beam weights in an exact or non-iterative way. The distinct feature of the algorithm is that it takes only fraction of a second to optimize the beam weights, irrespective of the complexity of the given case. The algorithm has been implemented using MATLAB with a Graphical User Interface (GUI) option for convenient specification of dose constraints and penalties to different structures. We have tested the numerical and clinical capabilities of the proposed algorithm in several patient cases in comparison with KonRad inverse planning system. The comparative analysis shows that the algorithm can generate anatomy-based IMRT plans with about 50% reduction in number of MUs and 60% reduction in number of apertures, while producing dose distribution comparable to that of beamlet-based IMRT plans. Hence, it is clearly evident from the study that the proposed algorithm can be effectively used for clinical applications. (author)
Application of colony complex algorithm to nuclear component optimization design
International Nuclear Information System (INIS)
Yan Changqi; Li Guijing; Wang Jianjun
2014-01-01
Complex algorithm (CA) has got popular application to the region of nuclear engineering. In connection with the specific features of the application of traditional complex algorithm (TCA) to the optimization design in engineering structures, an improved method, colony complex algorithm (CCA), was developed based on the optimal combination of many complexes, in which the disadvantages of TCA were overcame. The optimized results of benchmark function show that CCA has better optimizing performance than TCA. CCA was applied to the high-pressure heater optimization design, and the optimization effect is obvious. (authors)
Neveu, N.; Larson, J.; Power, J. G.; Spentzouris, L.
2017-07-01
Model-based, derivative-free, trust-region algorithms are increasingly popular for optimizing computationally expensive numerical simulations. A strength of such methods is their efficient use of function evaluations. In this paper, we use one such algorithm to optimize the beam dynamics in two cases of interest at the Argonne Wakefield Accelerator (AWA) facility. First, we minimize the emittance of a 1 nC electron bunch produced by the AWA rf photocathode gun by adjusting three parameters: rf gun phase, solenoid strength, and laser radius. The algorithm converges to a set of parameters that yield an emittance of 1.08 μm. Second, we expand the number of optimization parameters to model the complete AWA rf photoinjector (the gun and six accelerating cavities) at 40 nC. The optimization algorithm is used in a Pareto study that compares the trade-off between emittance and bunch length for the AWA 70MeV photoinjector.
Françoise Benz
2004-01-01
ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...
Directory of Open Access Journals (Sweden)
Zhou Feng
2013-09-01
Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.
Genetic Algorithm and its Application in Optimal Sensor Layout
Directory of Open Access Journals (Sweden)
Xiang-Yang Chen
2015-05-01
Full Text Available This paper aims at the problem of multi sensor station distribution, based on multi- sensor systems of different types as the research object, in the analysis of various types of sensors with different application background, different indicators of demand, based on the different constraints, for all kinds of multi sensor station is studied, the application of genetic algorithms as a tool for the objective function of the models optimization, then the optimal various types of multi sensor station distribution plan, improve the performance of the system, and achieved good military effect. In the field of application of sensor radar, track measuring instrument, the satellite, passive positioning equipment of various types, specific problem, use care indicators and station arrangement between the mathematical model of geometry, using genetic algorithm to get the optimization results station distribution, to solve a variety of practical problems provides useful help, but also reflects the improved genetic algorithm in electronic weapon system based on multi sensor station distribution on the applicability and effectiveness of the optimization; finally the genetic algorithm for integrated optimization of multi sensor station distribution using the good to the training exercise tasks based on actual in, and have achieved good military effect.
Directory of Open Access Journals (Sweden)
N. M. Okasha
2016-04-01
Full Text Available In this paper, an approach for conducting a Reliability-Based Design Optimization (RBDO of truss structures with linked-discrete design variables is proposed. The sections of the truss members are selected from the AISC standard tables and thus the design variables that represent the properties of each section are linked. Latin hypercube sampling is used in the evaluation of the structural reliability. The improved firefly algorithm is used for the optimization solution process. It was found that in order to use the improved firefly algorithm for efficiently solving problems of reliability-based design optimization with linked-discrete design variables; it needs to be modified as proposed in this paper to accelerate its convergence.
Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.
2009-01-01
We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by
Genetic algorithms and fuzzy multiobjective optimization
Sakawa, Masatoshi
2002-01-01
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...
COOMA: AN OBJECT-ORIENTED STOCHASTIC OPTIMIZATION ALGORITHM
Directory of Open Access Journals (Sweden)
Stanislav Alexandrovich Tavridovich
2017-09-01
Full Text Available Stochastic optimization methods such as genetic algorithm, particle swarm optimization algorithm, and others are successfully used to solve optimization problems. They are all based on similar ideas and need minimal adaptation when being implemented. But several factors complicate the application of stochastic search methods in practice: multimodality of the objective function, optimization with constraints, finding the best parameter configuration of the algorithm, the increasing of the searching space, etc. This paper proposes a new Cascade Object Optimization and Modification Algorithm (COOMA which develops the best ideas of known stochastic optimization methods and can be applied to a wide variety of real-world problems described in the terms of object-oriented models with practically any types of parameters, variables, and associations between objects. The objects of different classes are organized in pools and pools form the hierarchical structure according to the associations between classes. The algorithm is also executed according to the pool structure: the methods of the upper-level pools before changing their objects call the analogous methods of all their subpools. The algorithm starts with initialization step and then passes through a number of iterations during which the objects are modified until the stop criteria are satisfied. The objects are modified using movement, replication and mutation operations. Two-level version of COOMA realizes a built-in self-adaptive mechanism. The optimization statistics for a number of test problems shows that COOMA is able to solve multi-level problems (with objects of different associated classes, problems with multimodal fitness functions and systems of constraints. COOMA source code on Java is available on request.
Hybrid particle swarm optimization algorithm and its application in nuclear engineering
International Nuclear Information System (INIS)
Liu, C.Y.; Yan, C.Q.; Wang, J.J.
2014-01-01
Highlights: • We propose a hybrid particle swarm optimization algorithm (HPSO). • Modified Nelder–Mead simplex search method is applied in HPSO. • The algorithm has a high search precision and rapidly calculation speed. • HPSO can be used in the nuclear engineering optimization design problems. - Abstract: A hybrid particle swarm optimization algorithm with a feasibility-based rule for solving constrained optimization problems has been developed in this research. Firstly, the global optimal solution zone can be obtained through particle swarm optimization process, and then the refined search of the global optimal solution will be achieved through the modified Nelder–Mead simplex algorithm. Simulations based on two well-studied benchmark problems demonstrate the proposed algorithm will be an efficient alternative to solving constrained optimization problems. The vertical electrical heating pressurizer is one of the key components in reactor coolant system. The mathematical model of pressurizer has been established in steady state. The optimization design of pressurizer weight has been carried out through HPSO algorithm. The results show the pressurizer weight can be reduced by 16.92%. The thermal efficiencies of conventional PWR nuclear power plants are about 31–35% so far, which are much lower than fossil fueled plants based in a steam cycle as PWR. The thermal equilibrium mathematic model for nuclear power plant secondary loop has been established. An optimization case study has been conducted to improve the efficiency of the nuclear power plant with the proposed algorithm. The results show the thermal efficiency is improved by 0.5%
Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M
2014-05-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.
Directory of Open Access Journals (Sweden)
Ahmed F. Mohamed
2014-05-01
Full Text Available One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC. The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.
Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-01-01
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406
DEFF Research Database (Denmark)
Wang, Yong; Cai, Zixing; Zhou, Yuren
2009-01-01
A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...
Optimization of Algorithms Using Extensions of Dynamic Programming
AbouEisha, Hassan M.
2017-04-09
We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems. The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms. The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth
International Nuclear Information System (INIS)
Muda, Zakaria Che; Thiruchelvam, Sivadass; Mustapha, Kamal Nasharuddin; Omar, Rohayu Che; Usman, Fathoni; Alam, Md Ashrafu
2013-01-01
Optimization of transmission tower structures is traditionally based on either optimization of members sizes with fixed topographical shape or based on structural analysis modelling strategies without taking cognizance of fabrication and constructability issue facing the contractors . This paper look into an integrated optimum design approach strategies whereby size, shape and topology are combined together with the fabrication issues in the construction of the transmission tower. The topographical algorithm is based on changing the inclination degree of the legs of the tower at first with optimum individual members sizing and later rationalized member sizes are performed through member groupings for the ease fabrication and construction of the transmission tower. The optimum weight using topographical algorithm obtained for the transmission tower is 10,924 kg for singular members and 18,430 kg for element grouping at 10° inclination angle.
A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization
International Nuclear Information System (INIS)
Mahmoudi, S.M.; Aghaie, M.; Bahonar, M.; Poursalehi, N.
2016-01-01
Highlights: • The Gravitational Search Algorithm (GSA) is introduced. • The advantage of GSA is verified in Shekel’s Foxholes. • Reload optimizing in WWER-1000 and WWER-440 cases are performed. • Maximizing K eff , minimizing PPFs and flattening power density is considered. - Abstract: In-core fuel management optimization (ICFMO) is one of the most challenging concepts of nuclear engineering. In recent decades several meta-heuristic algorithms or computational intelligence methods have been expanded to optimize reactor core loading pattern. This paper presents a new method of using Gravitational Search Algorithm (GSA) for in-core fuel management optimization. The GSA is constructed based on the law of gravity and the notion of mass interactions. It uses the theory of Newtonian physics and searcher agents are the collection of masses. In this work, at the first step, GSA method is compared with other meta-heuristic algorithms on Shekel’s Foxholes problem. In the second step for finding the best core, the GSA algorithm has been performed for three PWR test cases including WWER-1000 and WWER-440 reactors. In these cases, Multi objective optimizations with the following goals are considered, increment of multiplication factor (K eff ), decrement of power peaking factor (PPF) and power density flattening. It is notable that for neutronic calculation, PARCS (Purdue Advanced Reactor Core Simulator) code is used. The results demonstrate that GSA algorithm have promising performance and could be proposed for other optimization problems of nuclear engineering field.
Directory of Open Access Journals (Sweden)
Li Ran
2017-01-01
Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.
A Novel Particle Swarm Optimization Algorithm for Global Optimization.
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms.
New Optimization Algorithms in Physics
Hartmann, Alexander K
2004-01-01
Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.
Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm
Energy Technology Data Exchange (ETDEWEB)
Oezcelik, Yavuz [Ege University, Bornova, Izmir (Turkey). Engineering Faculty, Chemical Engineering Department
2007-08-15
In the computer-based optimization, many thousands of alternative shell and tube heat exchangers may be examined by varying the high number of exchanger parameters such as tube length, tube outer diameter, pitch size, layout angle, baffle space ratio, number of tube side passes. In the present study, a genetic based algorithm was developed, programmed, and applied to estimate the optimum values of discrete and continuous variables of the MINLP (mixed integer nonlinear programming) test problems. The results of the test problems show that the genetic based algorithm programmed can estimate the acceptable values of continuous variables and optimum values of integer variables. Finally the genetic based algorithm was extended to make parametric studies and to find optimum configuration of heat exchangers by minimizing the sum of the annual capital cost and exergetic cost of the shell and tube heat exchangers. The results of the example problems show that the proposed algorithm is applicable to find optimum and near optimum alternatives of the shell and tube heat exchanger configurations. (author)
Directory of Open Access Journals (Sweden)
Dębski Roman
2016-06-01
Full Text Available A new dynamic programming based parallel algorithm adapted to on-board heterogeneous computers for simulation based trajectory optimization is studied in the context of “high-performance sailing”. The algorithm uses a new discrete space of continuously differentiable functions called the multi-splines as its search space representation. A basic version of the algorithm is presented in detail (pseudo-code, time and space complexity, search space auto-adaptation properties. Possible extensions of the basic algorithm are also described. The presented experimental results show that contemporary heterogeneous on-board computers can be effectively used for solving simulation based trajectory optimization problems. These computers can be considered micro high performance computing (HPC platforms-they offer high performance while remaining energy and cost efficient. The simulation based approach can potentially give highly accurate results since the mathematical model that the simulator is built upon may be as complex as required. The approach described is applicable to many trajectory optimization problems due to its black-box represented performance measure and use of OpenCL.
Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm
Directory of Open Access Journals (Sweden)
Kerim Guney
2015-01-01
Full Text Available An evolutionary method based on backtracking search optimization algorithm (BSA is proposed for linear antenna array pattern synthesis with prescribed nulls at interference directions. Pattern nulling is obtained by controlling only the amplitude, position, and phase of the antenna array elements. BSA is an innovative metaheuristic technique based on an iterative process. Various numerical examples of linear array patterns with the prescribed single, multiple, and wide nulls are given to illustrate the performance and flexibility of BSA. The results obtained by BSA are compared with the results of the following seventeen algorithms: particle swarm optimization (PSO, genetic algorithm (GA, modified touring ant colony algorithm (MTACO, quadratic programming method (QPM, bacterial foraging algorithm (BFA, bees algorithm (BA, clonal selection algorithm (CLONALG, plant growth simulation algorithm (PGSA, tabu search algorithm (TSA, memetic algorithm (MA, nondominated sorting GA-2 (NSGA-2, multiobjective differential evolution (MODE, decomposition with differential evolution (MOEA/D-DE, comprehensive learning PSO (CLPSO, harmony search algorithm (HSA, seeker optimization algorithm (SOA, and mean variance mapping optimization (MVMO. The simulation results show that the linear antenna array synthesis using BSA provides low side-lobe levels and deep null levels.
International Nuclear Information System (INIS)
Wang, Xinli; Cai, Wenjian; Lu, Jiangang; Sun, Youxian; Zhao, Lei
2015-01-01
This study presents a model-based optimization strategy for an actual chiller driven dehumidifier of liquid desiccant dehumidification system operating with lithium chloride solution. By analyzing the characteristics of the components, energy predictive models for the components in the dehumidifier are developed. To minimize the energy usage while maintaining the outlet air conditions at the pre-specified set-points, an optimization problem is formulated with an objective function, the constraints of mechanical limitations and components interactions. Model-based optimization strategy using genetic algorithm is proposed to obtain the optimal set-points for desiccant solution temperature and flow rate, to minimize the energy usage in the dehumidifier. Experimental studies on an actual system are carried out to compare energy consumption between the proposed optimization and the conventional strategies. The results demonstrate that energy consumption using the proposed optimization strategy can be reduced by 12.2% in the dehumidifier operation. - Highlights: • Present a model-based optimization strategy for energy saving in LDDS. • Energy predictive models for components in dehumidifier are developed. • The Optimization strategy are applied and tested in an actual LDDS. • Optimization strategy can achieve energy savings by 12% during operation
Design of an optimization algorithm for clinical use
International Nuclear Information System (INIS)
Gustafsson, Anders
1995-01-01
Radiation therapy optimization has received much attention in the past few years. In combination with biological objective functions, the different optimization schemes has shown a potential to considerably increase the treatment outcome. With improved radiobiological models and increased computer capacity, radiation therapy optimization has now reached a stage where implementation in a clinical treatment planning system is realistic. A radiation therapy optimization method has been investigated with respect to its feasibility as a tool in a clinical 3D treatment planning system. The optimization algorithm is a constrained iterative gradient method. Photon dose calculation is performed using the clinically validated pencil-beam based algorithm of the clinical treatment planning system. Dose calculation within the optimization scheme is very time consuming and measures are required to decrease the calculation time. Different methods for more effective dose calculation within the optimization scheme have been investigated. The optimization results for adaptive sampling of calculation points, and secondary effect approximations in the dose calculation algorithm are compared with the optimization result for accurate dose calculation in all voxels of interest
A comparison of three optimization algorithms for intensity modulated radiation therapy
International Nuclear Information System (INIS)
Pflugfelder, D.; Wilkens, J.J.; Nill, S.; Oelfke, U.
2008-01-01
In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%. (orig.)
Directory of Open Access Journals (Sweden)
Mitko Petrov
2005-12-01
Full Text Available A combined algorithm for static optimization is developed. The algorithm includes a method for random search of optimal an initial point and a method based on fuzzy sets theory, combined in order to be found for the best solution of the optimization problem. The application of the combined algorithm eliminates the main disadvantage of the used fuzzy optimization method, namely decreases the number of discrete values of control variables. In this way, the algorithm allows problems with larger scale to be solved. The combined algorithm is used for optimization of gas-liquid transition in dependence on some constructive and regime parameters of a laboratory scale stirred tank bioreactor. After the application of developed optimization algorithm significant increase of mass-transfer effectiveness, aeration and mixing processes in the bioreactor are observed.
Particle swarm optimization algorithm based low cost magnetometer calibration
Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.
2011-12-01
Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments
A chaos wolf optimization algorithm with self-adaptive variable step-size
Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun
2017-10-01
To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.
Design of optimal input–output scaling factors based fuzzy PSS using bat algorithm
Directory of Open Access Journals (Sweden)
D.K. Sambariya
2016-06-01
Full Text Available In this article, a fuzzy logic based power system stabilizer (FPSS is designed by tuning its input–output scaling factors. Two input signals to FPSS are considered as change of speed and change in power, and the output signal is considered as a correcting voltage signal. The normalizing factors of these signals are considered as the optimization problem with minimization of integral of square error in single-machine and multi-machine power systems. These factors are optimally determined with bat algorithm (BA and considered as scaling factors of FPSS. The performance of power system with such a designed BA based FPSS (BA-FPSS is compared to that of response with FPSS, Harmony Search Algorithm based FPSS (HSA-FPSS and Particle Swarm Optimization based FPSS (PSO-FPSS. The systems considered are single-machine connected to infinite-bus, two-area 4-machine 10-bus and IEEE New England 10-machine 39-bus power systems for evaluating the performance of BA-FPSS. The comparison is carried out in terms of the integral of time-weighted absolute error (ITAE, integral of absolute error (IAE and integral of square error (ISE of speed response for systems with FPSS, HSA-FPSS and BA-FPSS. The superior performance of systems with BA-FPSS is established considering eight plant conditions of each system, which represents the wide range of operating conditions.
Group leaders optimization algorithm
Daskin, Anmer; Kais, Sabre
2011-03-01
We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.
A Hybrid Genetic Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Sydulu Maheswarapu
2011-08-01
Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.
Stochastic quasi-gradient based optimization algorithms for dynamic reliability applications
International Nuclear Information System (INIS)
Bourgeois, F.; Labeau, P.E.
2001-01-01
On one hand, PSA results are increasingly used in decision making, system management and optimization of system design. On the other hand, when severe accidental transients are considered, dynamic reliability appears appropriate to account for the complex interaction between the transitions between hardware configurations, the operator behavior and the dynamic evolution of the system. This paper presents an exploratory work in which the estimation of the system unreliability in a dynamic context is coupled with an optimization algorithm to determine the 'best' safety policy. Because some reliability parameters are likely to be distributed, the cost function to be minimized turns out to be a random variable. Stochastic programming techniques are therefore envisioned to determine an optimal strategy. Monte Carlo simulation is used at all stages of the computations, from the estimation of the system unreliability to that of the stochastic quasi-gradient. The optimization algorithm is illustrated on a HNO 3 supply system
Directory of Open Access Journals (Sweden)
Liling Sun
2015-01-01
Full Text Available An improved multiobjective ABC algorithm based on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II, the multiobjective particle swarm optimizer (MOPSO, and the multiobjective ABC (MOABC. Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.
International Nuclear Information System (INIS)
He Dakuo; Dong Gang; Wang Fuli; Mao Zhizhong
2011-01-01
A chaotic sequence based differential evolution (DE) approach for solving the dynamic economic dispatch problem (DEDP) with valve-point effect is presented in this paper. The proposed method combines the DE algorithm with the local search technique to improve the performance of the algorithm. DE is the main optimizer, while an approximated model for local search is applied to fine tune in the solution of the DE run. To accelerate convergence of DE, a series of constraints handling rules are adopted. An initial population obtained by using chaotic sequence exerts optimal performance of the proposed algorithm. The combined algorithm is validated for two test systems consisting of 10 and 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. The proposed combined method outperforms other algorithms reported in literatures for DEDP considering valve-point effects.
Opposition-Based Adaptive Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Chibing Gong
2016-07-01
Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.
Ant colony search algorithm for optimal reactive power optimization
Directory of Open Access Journals (Sweden)
Lenin K.
2006-01-01
Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.
Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.
2009-01-01
A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.
Simulation optimization based ant colony algorithm for the uncertain quay crane scheduling problem
Directory of Open Access Journals (Sweden)
Naoufal Rouky
2019-01-01
Full Text Available This work is devoted to the study of the Uncertain Quay Crane Scheduling Problem (QCSP, where the loading /unloading times of containers and travel time of quay cranes are considered uncertain. The problem is solved with a Simulation Optimization approach which takes advantage of the great possibilities offered by the simulation to model the real details of the problem and the capacity of the optimization to find solutions with good quality. An Ant Colony Optimization (ACO meta-heuristic hybridized with a Variable Neighborhood Descent (VND local search is proposed to determine the assignments of tasks to quay cranes and the sequences of executions of tasks on each crane. Simulation is used inside the optimization algorithm to generate scenarios in agreement with the probabilities of the distributions of the uncertain parameters, thus, we carry out stochastic evaluations of the solutions found by each ant. The proposed optimization algorithm is tested first for the deterministic case on several well-known benchmark instances. Then, in the stochastic case, since no other work studied exactly the same problem with the same assumptions, the Simulation Optimization approach is compared with the deterministic version. The experimental results show that the optimization algorithm is competitive as compared to the existing methods and that the solutions found by the Simulation Optimization approach are more robust than those found by the optimization algorithm.
Multi-machine power system stabilizers design using chaotic optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-07-15
In this paper, a multiobjective design of the multi-machine power system stabilizers (PSSs) using chaotic optimization algorithm (COA) is proposed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The PSSs parameters tuning problem is converted to an optimization problem which is solved by a chaotic optimization algorithm based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Two different objective functions are proposed in this study for the PSSs design problem. The first objective function is the eigenvalues based comprising the damping factor, and the damping ratio of the lightly damped electro-mechanical modes, while the second is the time domain-based multi-objective function. The robustness of the proposed COA-based PSSs (COAPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed COAPSS are demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices. In addition, the potential and superiority of the proposed method over the classical approach and genetic algorithm is demonstrated.
Optimization of an Accelerometer and Gyroscope-Based Fall Detection Algorithm
Directory of Open Access Journals (Sweden)
Quoc T. Huynh
2015-01-01
Full Text Available Falling is a common and significant cause of injury in elderly adults (>65 yrs old, often leading to disability and death. In the USA, one in three of the elderly suffers from fall injuries annually. This study’s purpose is to develop, optimize, and assess the efficacy of a falls detection algorithm based upon a wireless, wearable sensor system (WSS comprised of a 3-axis accelerometer and gyroscope. For this study, the WSS is placed at the chest center to collect real-time motion data of various simulated daily activities (i.e., walking, running, stepping, and falling. Tests were conducted on 36 human subjects with a total of 702 different movements collected in a laboratory setting. Half of the dataset was used for development of the fall detection algorithm including investigations of critical sensor thresholds and the remaining dataset was used for assessment of algorithm sensitivity and specificity. Experimental results show that the algorithm detects falls compared to other daily movements with a sensitivity and specificity of 96.3% and 96.2%, respectively. The addition of gyroscope information enhances sensitivity dramatically from results in the literature as angular velocity changes provide further delineation of a fall event from other activities that may also experience high acceleration peaks.
Directory of Open Access Journals (Sweden)
Utku Kose
2015-07-01
Full Text Available In this paper, the idea of a new artificial intelligence based optimization algorithm, which is inspired from the nature of vortex, has been provided briefly. As also a bio-inspired computation algorithm, the idea is generally focused on a typical vortex flow / behavior in nature and inspires from some dynamics that are occurred in the sense of vortex nature. Briefly, the algorithm is also a swarm-oriented evolutional problem solution approach; because it includes many methods related to elimination of weak swarm members and trying to improve the solution process by supporting the solution space via new swarm members. In order have better idea about success of the algorithm; it has been tested via some benchmark functions. At this point, the obtained results show that the algorithm can be an alternative to the literature in terms of single-objective optimizationsolution ways. Vortex Optimization Algorithm (VOA is the name suggestion by the authors; for this new idea of intelligent optimization approach.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
Directory of Open Access Journals (Sweden)
Zhihong Yan
2018-01-01
Full Text Available With the deepening discrepancy between water supply and demand caused by water shortages, alleviating water shortages by optimizing water resource allocation has received extensive attention. How to allocate water resources optimally, rapidly, and effectively has become a challenging problem. Thus, this study employs a meta-heuristic swarm-based algorithm, the whale optimization algorithm (WOA. To overcome drawbacks like relatively low convergence precision and convergence rates, when applying the WOA algorithm to complex optimization problems, logistic mapping is used to initialize swarm location, and inertia weighting is employed to improve the algorithm. The resulting ameliorative whale optimization algorithm (AWOA shows substantially enhanced convergence rates and precision than the WOA and particle swarm optimization algorithms, demonstrating relatively high reliability and applicability. A water resource allocation optimization model with optimal economic efficiency and least total water shortage volume is established for Handan, China, and solved by the AWOA. The allocation results better reflect actual water usage in Handan. In 2030, the p = 50% total water shortage is forecast as 404.34 × 106 m3 or 14.8%. The shortage is mainly in the primary agricultural sector. The allocation results provide a reference for regional water resources management.
A chaos wolf optimization algorithm with self-adaptive variable step-size
Directory of Open Access Journals (Sweden)
Yong Zhu
2017-10-01
Full Text Available To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as “winner-take-all” and the update mechanism as “survival of the fittest” were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.
Directory of Open Access Journals (Sweden)
Yourong Chen
2017-01-01
Full Text Available To improve the lifetime of mobile sink-based wireless sensor networks and considering that data transmission delay and hops are limited in actual system, a lifetime optimization algorithm limited by data transmission delay and hops (LOA_DH for mobile sink-based wireless sensor networks is proposed. In LOA_DH, some constraints are analyzed, and an optimization model is proposed. Maximum capacity path routing algorithm is used to calculate the energy consumption of communication. Improved genetic algorithm which modifies individuals to meet all constraints is used to solve the optimization model. The optimal solution of sink node’s sojourn grid centers and sojourn times which maximizes network lifetime is obtained. Simulation results show that, in three node distribution scenes, LOA_DH can find the movement solution of sink node which covers all sensor nodes. Compared with MCP_RAND, MCP_GMRE, and EASR, the solution improves network lifetime and reduces average amount of node discarded data and average energy consumption of nodes.
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
Chen, Shuangqing; Wei, Lixin; Guan, Bing
2018-01-01
Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036
Directory of Open Access Journals (Sweden)
Xiaomeng Yin
2018-01-01
Full Text Available With respect to the nonlinear hypersonic vehicle (HV dynamics, achieving a satisfactory tracking control performance under uncertainties is always a challenge. The high-order sliding mode control (HOSMC method with strong robustness has been applied to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA- based parameter optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other algorithms.
Fitness Estimation Based Particle Swarm Optimization Algorithm for Layout Design of Truss Structures
Directory of Open Access Journals (Sweden)
Ayang Xiao
2014-01-01
Full Text Available Due to the fact that vastly different variables and constraints are simultaneously considered, truss layout optimization is a typical difficult constrained mixed-integer nonlinear program. Moreover, the computational cost of truss analysis is often quite expensive. In this paper, a novel fitness estimation based particle swarm optimization algorithm with an adaptive penalty function approach (FEPSO-AP is proposed to handle this problem. FEPSO-AP adopts a special fitness estimate strategy to evaluate the similar particles in the current population, with the purpose to reduce the computational cost. Further more, a laconic adaptive penalty function is employed by FEPSO-AP, which can handle multiple constraints effectively by making good use of historical iteration information. Four benchmark examples with fixed topologies and up to 44 design dimensions were studied to verify the generality and efficiency of the proposed algorithm. Numerical results of the present work compared with results of other state-of-the-art hybrid algorithms shown in the literature demonstrate that the convergence rate and the solution quality of FEPSO-AP are essentially competitive.
Optimally stopped variational quantum algorithms
Vinci, Walter; Shabani, Alireza
2018-04-01
Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2015-01-01
Full Text Available For predicting the key technology indicators (concentrate grade and tailings recovery rate of flotation process, a feed-forward neural network (FNN based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO algorithm and gravitational search algorithm (GSA is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process.
Algorithms for worst-case tolerance optimization
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans; Madsen, Kaj
1979-01-01
New algorithms are presented for the solution of optimum tolerance assignment problems. The problems considered are defined mathematically as a worst-case problem (WCP), a fixed tolerance problem (FTP), and a variable tolerance problem (VTP). The basic optimization problem without tolerances...... is denoted the zero tolerance problem (ZTP). For solution of the WCP we suggest application of interval arithmetic and also alternative methods. For solution of the FTP an algorithm is suggested which is conceptually similar to algorithms previously developed by the authors for the ZTP. Finally, the VTP...... is solved by a double-iterative algorithm in which the inner iteration is performed by the FTP- algorithm. The application of the algorithm is demonstrated by means of relatively simple numerical examples. Basic properties, such as convergence properties, are displayed based on the examples....
Directory of Open Access Journals (Sweden)
Rabindra Kumar Sahu
2016-03-01
Full Text Available This paper presents the design and analysis of Proportional-Integral-Double Derivative (PIDD controller for Automatic Generation Control (AGC of multi-area power systems with diverse energy sources using Teaching Learning Based Optimization (TLBO algorithm. At first, a two-area reheat thermal power system with appropriate Generation Rate Constraint (GRC is considered. The design problem is formulated as an optimization problem and TLBO is employed to optimize the parameters of the PIDD controller. The superiority of the proposed TLBO based PIDD controller has been demonstrated by comparing the results with recently published optimization technique such as hybrid Firefly Algorithm and Pattern Search (hFA-PS, Firefly Algorithm (FA, Bacteria Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and conventional Ziegler Nichols (ZN for the same interconnected power system. Also, the proposed approach has been extended to two-area power system with diverse sources of generation like thermal, hydro, wind and diesel units. The system model includes boiler dynamics, GRC and Governor Dead Band (GDB non-linearity. It is observed from simulation results that the performance of the proposed approach provides better dynamic responses by comparing the results with recently published in the literature. Further, the study is extended to a three unequal-area thermal power system with different controllers in each area and the results are compared with published FA optimized PID controller for the same system under study. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions in the range of ±25% from their nominal values to test the robustness.
DEFF Research Database (Denmark)
Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar
2017-01-01
India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
A study on a new algorithm to optimize ball mill system based on modeling and GA
International Nuclear Information System (INIS)
Wang Heng; Jia Minping; Huang Peng; Chen Zuoliang
2010-01-01
Aiming at the disadvantage of conventional optimization method for ball mill pulverizing system, a novel approach based on RBF neural network and genetic algorithm was proposed in the present paper. Firstly, the experiments and measurement for fill level based on vibration signals of mill shell was introduced. Then, main factors which affected the power consumption of ball mill pulverizing system were analyzed, and the input variables of RBF neural network were determined. RBF neural network was used to map the complex non-linear relationship between the electric consumption and process parameters and the non-linear model of power consumption was built. Finally, the model was optimized by genetic algorithm and the optimal work conditions of ball mill pulverizing system were determined. The results demonstrate that the method is reliable and practical, and can reduce the electric consumption obviously and effectively.
International Nuclear Information System (INIS)
Berrazouane, S.; Mohammedi, K.
2014-01-01
Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller
Optimization on Trajectory of Stanford Manipulator based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Han Xi
2017-01-01
Full Text Available The optimization of robot manipulator’s trajectory has become a hot topic in academic and industrial fields. In this paper, a method for minimizing the moving distance of robot manipulators is presented. The Stanford Manipulator is used as the research object and the inverse kinematics model is established with Denavit-Hartenberg method. Base on the initial posture matrix, the inverse kinematics model is used to find the initial state of each joint. In accordance with the given beginning moment, cubic polynomial interpolation is applied to each joint variable and the positive kinematic model is used to calculate the moving distance of end effector. Genetic algorithm is used to optimize the sequential order of each joint and the time difference between different starting time of joints. Numerical applications involving a Stanford manipulator are presented.
Directory of Open Access Journals (Sweden)
Luman Zhao
2015-01-01
Full Text Available A thrust allocation method was proposed based on a hybrid optimization algorithm to efficiently and dynamically position a semisubmersible drilling rig. That is, the thrust allocation was optimized to produce the generalized forces and moment required while at the same time minimizing the total power consumption under the premise that forbidden zones should be taken into account. An optimization problem was mathematically formulated to provide the optimal thrust allocation by introducing the corresponding design variables, objective function, and constraints. A hybrid optimization algorithm consisting of a genetic algorithm and a sequential quadratic programming (SQP algorithm was selected and used to solve this problem. The proposed method was evaluated by applying it to a thrust allocation problem for a semisubmersible drilling rig. The results indicate that the proposed method can be used as part of a cost-effective strategy for thrust allocation of the rig.
Research on application of complex-genetic algorithm in nuclear component optimal design
International Nuclear Information System (INIS)
He Shijing; Yan Changqi; Wang Jianjun; Wang Meng
2010-01-01
Complex algorithm is one of the most commonly used methods in the mechanical design optimization, such as the optimization of nuclear component. An improved method,complex-genetic algorithm(CGA), is developed based on traditional complex algorithm(TCA), in which the disadvantages of TCA have been overcome. An optimal calculation,which represents the pressurizer, is carried out in order to analyze the optimization capability of CGA. The results show that CGA has better optimizing performance than TCA. (authors)
Françoise Benz
2004-01-01
ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
A Novel Chaotic Particle Swarm Optimization Algorithm for Parking Space Guidance
Directory of Open Access Journals (Sweden)
Na Dong
2016-01-01
Full Text Available An evolutionary approach of parking space guidance based upon a novel Chaotic Particle Swarm Optimization (CPSO algorithm is proposed. In the newly proposed CPSO algorithm, the chaotic dynamics is combined into the position updating rules of Particle Swarm Optimization to improve the diversity of solutions and to avoid being trapped in the local optima. This novel approach, that combines the strengths of Particle Swarm Optimization and chaotic dynamics, is then applied into the route optimization (RO problem of parking lots, which is an important issue in the management systems of large-scale parking lots. It is used to find out the optimized paths between any source and destination nodes in the route network. Route optimization problems based on real parking lots are introduced for analyzing and the effectiveness and practicability of this novel optimization algorithm for parking space guidance have been verified through the application results.
Method of transient identification based on a possibilistic approach, optimized by genetic algorithm
International Nuclear Information System (INIS)
Almeida, Jose Carlos Soares de
2001-02-01
This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)
Chaotically encoded particle swarm optimization algorithm and its applications
International Nuclear Information System (INIS)
Alatas, Bilal; Akin, Erhan
2009-01-01
This paper proposes a novel particle swarm optimization (PSO) algorithm, chaotically encoded particle swarm optimization algorithm (CENPSOA), based on the notion of chaos numbers that have been recently proposed for a novel meaning to numbers. In this paper, various chaos arithmetic and evaluation measures that can be used in CENPSOA have been described. Furthermore, CENPSOA has been designed to be effectively utilized in data mining applications.
International Nuclear Information System (INIS)
Shayeghi, H.; Mahdavi, M.; Bagheri, A.
2010-01-01
Static transmission network expansion planning (STNEP) problem acquires a principal role in power system planning and should be evaluated carefully. Up till now, various methods have been presented to solve the STNEP problem. But only in one of them, lines adequacy rate has been considered at the end of planning horizon and the problem has been optimized by discrete particle swarm optimization (DPSO). DPSO is a new population-based intelligence algorithm and exhibits good performance on solution of the large-scale, discrete and non-linear optimization problems like STNEP. However, during the running of the algorithm, the particles become more and more similar, and cluster into the best particle in the swarm, which make the swarm premature convergence around the local solution. In order to overcome these drawbacks and considering lines adequacy rate, in this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using an improved DPSO algorithm. The proposed improved DPSO is a new conception, collectivity, which is based on similarity between the particle and the current global best particle in the swarm that can prevent the premature convergence of DPSO around the local solution. The proposed method has been tested on the Garver's network and a real transmission network in Iran, and compared with the DPSO based method for solution of the TNEP problem. The results show that the proposed improved DPSO based method by preventing the premature convergence is caused that with almost the same expansion costs, the network adequacy is increased considerably. Also, regarding the convergence curves of both methods, it can be seen that precision of the proposed algorithm for the solution of the STNEP problem is more than DPSO approach.
Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves
Tarano, Ana; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid
2018-01-01
An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.
Stochastic Recursive Algorithms for Optimization Simultaneous Perturbation Methods
Bhatnagar, S; Prashanth, L A
2013-01-01
Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from sim...
A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm
Directory of Open Access Journals (Sweden)
Santhan Kumar Cherukuri
2016-11-01
Full Text Available To harvest maximum amount of solar energy and to attain higher efficiency, photovoltaic generation (PVG systems are to be operated at their maximum power point (MPP under both variable climatic and partial shaded condition (PSC. From literature most of conventional MPP tracking (MPPT methods are able to guarantee MPP successfully under uniform shading condition but fails to get global MPP as they may trap at local MPP under PSC, which adversely deteriorates the efficiency of Photovoltaic Generation (PVG system. In this paper a novel MPPT based on Whale Optimization Algorithm (WOA is proposed to analyze analytic modeling of PV system considering both series and shunt resistances for MPP tracking under PSC. The proposed algorithm is tested on 6S, 3S2P and 2S3P Photovoltaic array configurations for different shading patterns and results are presented. To compare the performance, GWO and PSO MPPT algorithms are also simulated and results are also presented. From the results it is noticed that proposed MPPT method is superior to other MPPT methods with reference to accuracy and tracking speed. Article History: Received July 23rd 2016; Received in revised form September 15th 2016; Accepted October 1st 2016; Available online How to Cite This Article: Kumar, C.H.S and Rao, R.S. (2016 A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm. Int. Journal of Renewable Energy Development, 5(3, 225-232. http://dx.doi.org/10.14710/ijred.5.3.225-232
Optimization of heat transfer utilizing graph based evolutionary algorithms
International Nuclear Information System (INIS)
Bryden, Kenneth M.; Ashlock, Daniel A.; McCorkle, Douglas S.; Urban, Gregory L.
2003-01-01
This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm
Institute of Scientific and Technical Information of China (English)
Haidong Xu; Mingyan Jiang; Kun Xu
2015-01-01
The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert
2018-05-01
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.
Lifecycle-Based Swarm Optimization Method for Numerical Optimization
Directory of Open Access Journals (Sweden)
Hai Shen
2014-01-01
Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.
Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco AtlasTM
Utsler, James
2006-01-01
A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM software. The output of the ATLASTM simulation runs served as the input to the genetic algorithm. The genetic algorithm was run as a diffusing computation on a network of eighteen dual processor nodes. Results showed that the genetic algorithm produced better power output optimizations when compared with the results obtained using the hill cli...
Directory of Open Access Journals (Sweden)
Hailong Wang
2018-01-01
Full Text Available The backtracking search optimization algorithm (BSA is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.
Combinatorial optimization theory and algorithms
Korte, Bernhard
2018-01-01
This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the fundamentals, covers the classical topics (paths, flows, matching, matroids, NP-completeness, approximation algorithms) in detail, and proceeds to advanced and recent topics, some of which have not appeared in a textbook before. Throughout, it contains complete but concise proofs, and also provides numerous exercises and references. This sixth edition has again been updated, revised, and significantly extended. Among other additions, there are new sections on shallow-light trees, submodular function maximization, smoothed analysis of the knapsack problem, the (ln 4+ɛ)-approximation for Steiner trees, and the VPN theorem. Thus, this book continues to represent the state of the art of combinatorial opti...
Boccaccio, Antonio; Fiorentino, Michele; Uva, Antonio E; Laghetti, Luca N; Monno, Giuseppe
2018-02-01
In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2017 Elsevier B.V. All rights reserved.
The PBIL algorithm applied to a nuclear reactor design optimization
Energy Technology Data Exchange (ETDEWEB)
Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto [Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ-RJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoracao de Processos]. E-mails: marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; alan@lmp.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
The PBIL algorithm applied to a nuclear reactor design optimization
International Nuclear Information System (INIS)
Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto
2007-01-01
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
Directory of Open Access Journals (Sweden)
Ahmed R. Abdelaziz
2015-08-01
Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.
Energy Technology Data Exchange (ETDEWEB)
Rattá, G.A., E-mail: giuseppe.ratta@ciemat.es [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Vega, J. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Murari, A. [Consorzio RFX, Associazione EURATOM/ENEA per la Fusione, Padua (Italy); Dormido-Canto, S. [Dpto. de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid (Spain); Moreno, R. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain)
2016-11-15
Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.
International Nuclear Information System (INIS)
Rattá, G.A.; Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.
2016-01-01
Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
A fast optimization algorithm for multicriteria intensity modulated proton therapy planning
International Nuclear Information System (INIS)
Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.
2010-01-01
Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.
A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.
Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T
2010-09-01
To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.
Opposition-Based Adaptive Fireworks Algorithm
Chibing Gong
2016-01-01
A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...
Research reactor loading pattern optimization using estimation of distribution algorithms
International Nuclear Information System (INIS)
Jiang, S.; Ziver, K.; Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H.; Franklin, S. J.; Phillips, H. J.
2006-01-01
A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K eff ) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K eff with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)
Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm
International Nuclear Information System (INIS)
Rao, R.V.; More, K.C.
2017-01-01
Highlights: • Self-adaptive Jaya algorithm is proposed for optimal design of thermal devices. • Optimization of heat pipe, cooling tower, heat sink and thermo-acoustic prime mover is presented. • Results of the proposed algorithm are better than the other optimization techniques. • The proposed algorithm may be conveniently used for the optimization of other devices. - Abstract: The present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of selected thermal devices viz; heat pipe, cooling tower, honeycomb heat sink and thermo-acoustic prime mover. Four different optimization case studies of the selected thermal devices are presented. The researchers had attempted the same design problems in the past using niched pareto genetic algorithm (NPGA), response surface method (RSM), leap-frog optimization program with constraints (LFOPC) algorithm, teaching-learning based optimization (TLBO) algorithm, grenade explosion method (GEM) and multi-objective genetic algorithm (MOGA). The results achieved by using self-adaptive Jaya algorithm are compared with those achieved by using the NPGA, RSM, LFOPC, TLBO, GEM and MOGA algorithms. The self-adaptive Jaya algorithm is proved superior as compared to the other optimization methods in terms of the results, computational effort and function evalutions.
A new improved artificial bee colony algorithm for ship hull form optimization
Huang, Fuxin; Wang, Lijue; Yang, Chi
2016-04-01
The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.
Directory of Open Access Journals (Sweden)
Jing Li
2017-01-01
Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.
Directory of Open Access Journals (Sweden)
Jianwen Guo
2016-01-01
Full Text Available All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO and cuckoo search (CS algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test functions show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search. Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to solve the PMPOM problem.
A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.
Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model
Directory of Open Access Journals (Sweden)
Mi-Yuan Shan
2013-01-01
Full Text Available We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO in vague sets (IVSs is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable.
Search and optimization by metaheuristics techniques and algorithms inspired by nature
Du, Ke-Lin
2016-01-01
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...
A Hybrid Algorithm for Optimizing Multi- Modal Functions
Institute of Scientific and Technical Information of China (English)
Li Qinghua; Yang Shida; Ruan Youlin
2006-01-01
A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.
Realization and optimization of AES algorithm on the TMS320DM6446 based on DaVinci technology
Jia, Wen-bin; Xiao, Fu-hai
2013-03-01
The application of AES algorithm in the digital cinema system avoids video data to be illegal theft or malicious tampering, and solves its security problems. At the same time, in order to meet the requirements of the real-time, scene and transparent encryption of high-speed data streams of audio and video in the information security field, through the in-depth analysis of AES algorithm principle, based on the hardware platform of TMS320DM6446, with the software framework structure of DaVinci, this paper proposes the specific realization methods of AES algorithm in digital video system and its optimization solutions. The test results show digital movies encrypted by AES128 can not play normally, which ensures the security of digital movies. Through the comparison of the performance of AES128 algorithm before optimization and after, the correctness and validity of improved algorithm is verified.
A homotopy algorithm for digital optimal projection control GASD-HADOC
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.
2016-05-01
One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.
Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm
Directory of Open Access Journals (Sweden)
Peng Li
2016-01-01
Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.
An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm
Directory of Open Access Journals (Sweden)
Kai Hu
2015-01-01
Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.
Performance indices and evaluation of algorithms in building energy efficient design optimization
International Nuclear Information System (INIS)
Si, Binghui; Tian, Zhichao; Jin, Xing; Zhou, Xin; Tang, Peng; Shi, Xing
2016-01-01
Building energy efficient design optimization is an emerging technique that is increasingly being used to design buildings with better overall performance and a particular emphasis on energy efficiency. To achieve building energy efficient design optimization, algorithms are vital to generate new designs and thus drive the design optimization process. Therefore, the performance of algorithms is crucial to achieving effective energy efficient design techniques. This study evaluates algorithms used for building energy efficient design optimization. A set of performance indices, namely, stability, robustness, validity, speed, coverage, and locality, is proposed to evaluate the overall performance of algorithms. A benchmark building and a design optimization problem are also developed. Hooke–Jeeves algorithm, Multi-Objective Genetic Algorithm II, and Multi-Objective Particle Swarm Optimization algorithm are evaluated by using the proposed performance indices and benchmark design problem. Results indicate that no algorithm performs best in all six areas. Therefore, when facing an energy efficient design problem, the algorithm must be carefully selected based on the nature of the problem and the performance indices that matter the most. - Highlights: • Six indices of algorithm performance in building energy optimization are developed. • For each index, its concept is defined and the calculation formulas are proposed. • A benchmark building and benchmark energy efficient design problem are proposed. • The performance of three selected algorithms are evaluated.
Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms
Li, Jie; Fan, Ding; Sreeram, Victor
2012-03-01
In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.
Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai
2018-01-01
In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.
Directory of Open Access Journals (Sweden)
JingRui Zhang
2015-03-01
Full Text Available In this article, we focus on safe and effective completion of a rendezvous and docking task by looking at planning approaches and control with fuel-optimal rendezvous for a target spacecraft running on a near-circular reference orbit. A variety of existent practical path constraints are considered, including the constraints of field of view, impulses, and passive safety. A rendezvous approach is calculated by using a hybrid genetic algorithm with those constraints. Furthermore, a control method of trajectory tracking is adopted to overcome the external disturbances. Based on Clohessy–Wiltshire equations, we first construct the mathematical model of optimal planning approaches of multiple impulses with path constraints. Second, we introduce the principle of hybrid genetic algorithm with both stronger global searching ability and local searching ability. We additionally explain the application of this algorithm in the problem of trajectory planning. Then, we give three-impulse simulation examples to acquire an optimal rendezvous trajectory with the path constraints presented in this article. The effectiveness and applicability of the tracking control method are verified with the optimal trajectory above as control objective through the numerical simulation.
PSO Algorithm for an Optimal Power Controller in a Microgrid
Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.
2017-07-01
This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.
Optimal hydrogenerator governor tuning with a genetic algorithm
International Nuclear Information System (INIS)
Lansberry, J.E.; Wozniak, L.; Goldberg, D.E.
1992-01-01
Many techniques exist for developing optimal controllers. This paper investigates genetic algorithms as a means of finding optimal solutions over a parameter space. In particular, the genetic algorithm is applied to optimal tuning of a governor for a hydrogenerator plant. Analog and digital simulation methods are compared for use in conjunction with the genetic algorithm optimization process. It is shown that analog plant simulation provides advantages in speed over digital plant simulation. This speed advantage makes application of the genetic algorithm in an actual plant environment feasible. Furthermore, the genetic algorithm is shown to possess the ability to reject plant noise and other system anomalies in its search for optimizing solutions
Research reactor loading pattern optimization using estimation of distribution algorithms
Energy Technology Data Exchange (ETDEWEB)
Jiang, S. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Ziver, K. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); AMCG Group, RM Consultants, Abingdon (United Kingdom); Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Franklin, S. J.; Phillips, H. J. [Imperial College, Reactor Centre, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7TE (United Kingdom)
2006-07-01
A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)
Directory of Open Access Journals (Sweden)
Meiping Wang
2016-01-01
Full Text Available We developed an effective intelligent model to predict the dynamic heat supply of heat source. A hybrid forecasting method was proposed based on support vector regression (SVR model-optimized particle swarm optimization (PSO algorithms. Due to the interaction of meteorological conditions and the heating parameters of heating system, it is extremely difficult to forecast dynamic heat supply. Firstly, the correlations among heat supply and related influencing factors in the heating system were analyzed through the correlation analysis of statistical theory. Then, the SVR model was employed to forecast dynamic heat supply. In the model, the input variables were selected based on the correlation analysis and three crucial parameters, including the penalties factor, gamma of the kernel RBF, and insensitive loss function, were optimized by PSO algorithms. The optimized SVR model was compared with the basic SVR, optimized genetic algorithm-SVR (GA-SVR, and artificial neural network (ANN through six groups of experiment data from two heat sources. The results of the correlation coefficient analysis revealed the relationship between the influencing factors and the forecasted heat supply and determined the input variables. The performance of the PSO-SVR model is superior to those of the other three models. The PSO-SVR method is statistically robust and can be applied to practical heating system.
Algorithms for optimal sequencing of dynamic multileaf collimators
Energy Technology Data Exchange (ETDEWEB)
Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)
2004-01-07
Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves.
Algorithms for optimal sequencing of dynamic multileaf collimators
International Nuclear Information System (INIS)
Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay
2004-01-01
Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves
Bio Inspired Algorithms in Single and Multiobjective Reliability Optimization
DEFF Research Database (Denmark)
Madsen, Henrik; Albeanu, Grigore; Burtschy, Bernard
2014-01-01
Non-traditional search and optimization methods based on natural phenomena have been proposed recently in order to avoid local or unstable behavior when run towards an optimum state. This paper describes the principles of bio inspired algorithms and reports on Migration Algorithms and Bees...
Buddala, Raviteja; Mahapatra, Siba Sankar
2017-11-01
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
A superlinear interior points algorithm for engineering design optimization
Herskovits, J.; Asquier, J.
1990-01-01
We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.
Low emittance lattice optimization using a multi-objective evolutionary algorithm
International Nuclear Information System (INIS)
Gao Weiwei; Wang Lin; Li Weimin; He Duohui
2011-01-01
A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)
On benchmarking Stochastic Global Optimization Algorithms
Hendrix, E.M.T.; Lancinskas, A.
2015-01-01
A multitude of heuristic stochastic optimization algorithms have been described in literature to obtain good solutions of the box-constrained global optimization problem often with a limit on the number of used function evaluations. In the larger question of which algorithms behave well on which
A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Daqing Wu
2012-01-01
Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.
DEFF Research Database (Denmark)
Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe
2010-01-01
determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....
Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm
Directory of Open Access Journals (Sweden)
Jianyong Liu
2015-01-01
Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.
Miró, Anton; Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Egea, Jose A; Jiménez, Laureano
2012-05-10
The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.
A global optimization algorithm inspired in the behavior of selfish herds.
Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián
2017-10-01
In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm
Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.
2017-03-01
Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.
Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng
2009-07-01
Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.
Bioinspired computation in combinatorial optimization: algorithms and their computational complexity
DEFF Research Database (Denmark)
Neumann, Frank; Witt, Carsten
2012-01-01
Bioinspired computation methods, such as evolutionary algorithms and ant colony optimization, are being applied successfully to complex engineering and combinatorial optimization problems, and it is very important that we understand the computational complexity of these algorithms. This tutorials...... problems. Classical single objective optimization is examined first. They then investigate the computational complexity of bioinspired computation applied to multiobjective variants of the considered combinatorial optimization problems, and in particular they show how multiobjective optimization can help...... to speed up bioinspired computation for single-objective optimization problems. The tutorial is based on a book written by the authors with the same title. Further information about the book can be found at www.bioinspiredcomputation.com....
A Cooperative Harmony Search Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Gang Li
2014-01-01
Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.
International Nuclear Information System (INIS)
Li Guoli; Song Gang; Wu Yican
2007-01-01
Inverse treatment planning for radiation therapy is a multi-objective optimization process. The hybrid multi-objective optimization algorithm is studied by combining the simulated annealing(SA) and genetic algorithm(GA). Test functions are used to analyze the efficiency of algorithms. The hybrid multi-objective optimization SA algorithm, which displacement is based on the evolutionary strategy of GA: crossover and mutation, is implemented in inverse planning of external beam radiation therapy by using two kinds of objective functions, namely the average dose distribution based and the hybrid dose-volume constraints based objective functions. The test calculations demonstrate that excellent converge speed can be achieved. (authors)
A hybrid neural network – world cup optimization algorithm for melanoma detection
Directory of Open Access Journals (Sweden)
Razmjooy Navid
2018-03-01
Full Text Available One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN. World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.
Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam
2016-03-01
A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.
Thiruvenkadam, T; Karthikeyani, V
2014-01-01
Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...
Bare-Bones Teaching-Learning-Based Optimization
Directory of Open Access Journals (Sweden)
Feng Zou
2014-01-01
Full Text Available Teaching-learning-based optimization (TLBO algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms.
Directory of Open Access Journals (Sweden)
Chen Zhou
2018-02-01
Full Text Available Two cylinders arranged symmetrically on a frame have become a major form of steering mechanism for articulated off-road vehicles (AORVs. However, the differences of stroke and arm lead to pressure fluctuation, vibration noise, and a waste of torque. In this paper, the differences of stroke and arm are reduced based on a genetic algorithm (GA. First, the mathematical model of the steering mechanism is put forward. Then, the difference of stroke and arm are optimized using a GA. Finally, a FW50GLwheel loader is used as an example to demonstrate the proposed GA-based optimization method, and its effectiveness is verified by means of automatic dynamic analysis of mechanical systems (ADAMS. The stroke difference of the steering hydraulic cylinders was reduced by 92% and the arm difference reached a decrease of 78% through GA optimization, in comparison with unoptimized structures. The simulation result shows that the steering mechanism optimized by GA behaved better than by previous methods.
Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao
2018-03-01
The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.
Algorithms for optimizing drug therapy
Directory of Open Access Journals (Sweden)
Martin Lene
2004-07-01
Full Text Available Abstract Background Drug therapy has become increasingly efficient, with more drugs available for treatment of an ever-growing number of conditions. Yet, drug use is reported to be sub optimal in several aspects, such as dosage, patient's adherence and outcome of therapy. The aim of the current study was to investigate the possibility to optimize drug therapy using computer programs, available on the Internet. Methods One hundred and ten officially endorsed text documents, published between 1996 and 2004, containing guidelines for drug therapy in 246 disorders, were analyzed with regard to information about patient-, disease- and drug-related factors and relationships between these factors. This information was used to construct algorithms for identifying optimum treatment in each of the studied disorders. These algorithms were categorized in order to define as few models as possible that still could accommodate the identified factors and the relationships between them. The resulting program prototypes were implemented in HTML (user interface and JavaScript (program logic. Results Three types of algorithms were sufficient for the intended purpose. The simplest type is a list of factors, each of which implies that the particular patient should or should not receive treatment. This is adequate in situations where only one treatment exists. The second type, a more elaborate model, is required when treatment can by provided using drugs from different pharmacological classes and the selection of drug class is dependent on patient characteristics. An easily implemented set of if-then statements was able to manage the identified information in such instances. The third type was needed in the few situations where the selection and dosage of drugs were depending on the degree to which one or more patient-specific factors were present. In these cases the implementation of an established decision model based on fuzzy sets was required. Computer programs
Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A
2014-09-22
We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.
International Nuclear Information System (INIS)
Li Yongjie; Yao Dezhong; Yao, Jonathan; Chen Wufan
2005-01-01
Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated
International Nuclear Information System (INIS)
Cai, Zhiqiang; Si, Shubin; Sun, Shudong; Li, Caitao
2016-01-01
The optimization of linear consecutive-k-out-of-n (Lin/Con/k/n) is to find an optimal component arrangement where n components are assigned to n positions to maximize the system reliability. With the interchangeability of components in practical systems, the optimization of Lin/Con/k/n systems is becoming widely applied in engineering practice, which is also a typical component assignment problem concerned by many researchers. This paper proposes a Birnbaum importance-based genetic algorithm (BIGA) to search the near global optimal solution for Lin/Con/k/n systems. First, the operation procedures and corresponding execution methods of BIGA are described in detail. Then, comprehensive simulation experiments are implemented on both small and large systems to evaluate the performance of the BIGA by comparing with the Birnbaum importance-based two-stage approach and Birnbaum importance-based genetic local search algorithm. Thirdly, further experiments are provided to discuss the applicability of BIGA for Lin/Con/k/n system with different k and n. Finally, the case study on oil transportation system is implemented to demonstrate the application of BIGA in the optimization of Lin/Con/k/n system. - Highlights: • BIGA integrates BI and GA to solve the Lin/Con/k/n systems optimization problems. • The experiment results show that the BIGA performs well in most conditions. • Suggestions are given for the application of BIGA and BITA with different k and n. • The application procedure of BIGA is demonstrated by the oil transportation system.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Optimal Management Of Renewable-Based Mgs An Intelligent Approach Through The Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Mehdi Nafar
2015-08-01
Full Text Available Abstract- This article proposes a probabilistic frame built on Scenario fabrication to considerate the uncertainties in the finest action managing of Micro Grids MGs. The MG contains different recoverable energy resources such as Wind Turbine WT Micro Turbine MT Photovoltaic PV Fuel Cell FC and one battery as the storing device. The advised frame is based on scenario generation and Roulette wheel mechanism to produce different circumstances for handling the uncertainties of altered factors. It habits typical spreading role as a probability scattering function of random factors. The uncertainties which are measured in this paper are grid bid alterations cargo request calculating error and PV and WT yield power productions. It is well-intentioned to asset that solving the MG difficult for 24 hours of a day by considering diverse uncertainties and different constraints needs one powerful optimization method that can converge fast when it doesnt fall in local optimal topic. Simultaneously single Group Search Optimization GSO system is presented to vision the total search space globally. The GSO algorithm is instigated from group active of beasts. Also the GSO procedure one change is similarly planned for this algorithm. The planned context and way is applied o one test grid-connected MG as a typical grid.
Directory of Open Access Journals (Sweden)
Narinder Singh
2018-03-01
Full Text Available The quest for an efficient nature-inspired optimization technique has continued over the last few decades. In this paper, a hybrid nature-inspired optimization technique has been proposed. The hybrid algorithm has been constructed using Mean Grey Wolf Optimizer (MGWO and Whale Optimizer Algorithm (WOA. We have utilized the spiral equation of Whale Optimizer Algorithm for two procedures in the Hybrid Approach GWO (HAGWO algorithm: (i firstly, we used the spiral equation in Grey Wolf Optimizer algorithm for balance between the exploitation and the exploration process in the new hybrid approach; and (ii secondly, we also applied this equation in the whole population in order to refrain from the premature convergence and trapping in local minima. The feasibility and effectiveness of the hybrid algorithm have been tested by solving some standard benchmarks, XOR, Baloon, Iris, Breast Cancer, Welded Beam Design, Pressure Vessel Design problems and comparing the results with those obtained through other metaheuristics. The solutions prove that the newly existing hybrid variant has higher stronger stability, faster convergence rate and computational accuracy than other nature-inspired metaheuristics on the maximum number of problems and can successfully resolve the function of constrained nonlinear optimization in reality.
Directory of Open Access Journals (Sweden)
Debkalpa Goswami
2015-03-01
Full Text Available Ultrasonic machining (USM is a mechanical material removal process used to erode holes and cavities in hard or brittle workpieces by using shaped tools, high-frequency mechanical motion and an abrasive slurry. Unlike other non-traditional machining processes, such as laser beam and electrical discharge machining, USM process does not thermally damage the workpiece or introduce significant levels of residual stress, which is important for survival of materials in service. For having enhanced machining performance and better machined job characteristics, it is often required to determine the optimal control parameter settings of an USM process. The earlier mathematical approaches for parametric optimization of USM processes have mostly yielded near optimal or sub-optimal solutions. In this paper, two almost unexplored non-conventional optimization techniques, i.e. gravitational search algorithm (GSA and fireworks algorithm (FWA are applied for parametric optimization of USM processes. The optimization performance of these two algorithms is compared with that of other popular population-based algorithms, and the effects of their algorithm parameters on the derived optimal solutions and computational speed are also investigated. It is observed that FWA provides the best optimal results for the considered USM processes.
Configurable intelligent optimization algorithm design and practice in manufacturing
Tao, Fei; Laili, Yuanjun
2014-01-01
Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit
International Nuclear Information System (INIS)
Coelho, Leandro dos Santos; Mariani, Viviana Cocco
2007-01-01
Global optimization based on evolutionary algorithms can be used as the important component for many engineering optimization problems. Evolutionary algorithms have yielded promising results for solving nonlinear, non-differentiable and multi-modal optimization problems in the power systems area. Differential evolution (DE) is a simple and efficient evolutionary algorithm for function optimization over continuous spaces. It has reportedly outperformed search heuristics when tested over both benchmark and real world problems. This paper proposes improved DE algorithms for solving economic load dispatch problems that take into account nonlinear generator features such as ramp rate limits and prohibited operating zones in the power system operation. The DE algorithms and its variants are validated for two test systems consisting of 6 and 15 thermal units. Various DE approaches outperforms other state of the art algorithms reported in the literature in solving load dispatch problems with generator constraints
International Nuclear Information System (INIS)
Ahmadi, Mohamadreza; Mojallali, Hamed
2012-01-01
Highlights: ► A new meta-heuristic optimization algorithm. ► Integration of invasive weed optimization and chaotic search methods. ► A novel parameter identification scheme for chaotic systems. - Abstract: This paper introduces a novel hybrid optimization algorithm by taking advantage of the stochastic properties of chaotic search and the invasive weed optimization (IWO) method. In order to deal with the weaknesses associated with the conventional method, the proposed chaotic invasive weed optimization (CIWO) algorithm is presented which incorporates the capabilities of chaotic search methods. The functionality of the proposed optimization algorithm is investigated through several benchmark multi-dimensional functions. Furthermore, an identification technique for chaotic systems based on the CIWO algorithm is outlined and validated by several examples. The results established upon the proposed scheme are also supplemented which demonstrate superior performance with respect to other conventional methods.
Directory of Open Access Journals (Sweden)
Jing Xu
2016-07-01
Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.
Directory of Open Access Journals (Sweden)
Huan Zhang
2017-01-01
Full Text Available For the problem of multiaircraft cooperative suppression interference array (MACSIA against the enemy air defense radar network in electronic warfare mission planning, firstly, the concept of route planning security zone is proposed and the solution to get the minimum width of security zone based on mathematical morphology is put forward. Secondly, the minimum width of security zone and the sum of the distance between each jamming aircraft and the center of radar network are regarded as objective function, and the multiobjective optimization model of MACSIA is built, and then an improved multiobjective particle swarm optimization algorithm is used to solve the model. The decomposition mechanism is adopted and the proportional distribution is used to maintain diversity of the new found nondominated solutions. Finally, the Pareto optimal solutions are analyzed by simulation, and the optimal MACSIA schemes of each jamming aircraft suppression against the enemy air defense radar network are obtained and verify that the built multiobjective optimization model is corrected. It also shows that the improved multiobjective particle swarm optimization algorithm for solving the problem of MACSIA is feasible and effective.
Directory of Open Access Journals (Sweden)
Elahe Fallah Mehdipour
2012-12-01
Full Text Available Optimal operation of multipurpose reservoirs is one of the complex and sometimes nonlinear problems in the field of multi-objective optimization. Evolutionary algorithms are optimization tools that search decision space using simulation of natural biological evolution and present a set of points as the optimum solutions of problem. In this research, application of multi-objective particle swarm optimization (MOPSO in optimal operation of Bazoft reservoir with different objectives, including generating hydropower energy, supplying downstream demands (drinking, industry and agriculture, recreation and flood control have been considered. In this regard, solution sets of the MOPSO algorithm in bi-combination of objectives and compromise programming (CP using different weighting and power coefficients have been first compared that the MOPSO algorithm in all combinations of objectives is more capable than the CP to find solution with appropriate distribution and these solutions have dominated the CP solutions. Then, ending points of solution set from the MOPSO algorithm and nonlinear programming (NLP results have been compared. Results showed that the MOPSO algorithm with 0.3 percent difference from the NLP results has more capability to present optimum solutions in the ending points of solution set.
Asaithambi, Sasikumar; Rajappa, Muthaiah
2018-05-01
In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.
An Efficient Algorithm for Unconstrained Optimization
Directory of Open Access Journals (Sweden)
Sergio Gerardo de-los-Cobos-Silva
2015-01-01
Full Text Available This paper presents an original and efficient PSO algorithm, which is divided into three phases: (1 stabilization, (2 breadth-first search, and (3 depth-first search. The proposed algorithm, called PSO-3P, was tested with 47 benchmark continuous unconstrained optimization problems, on a total of 82 instances. The numerical results show that the proposed algorithm is able to reach the global optimum. This work mainly focuses on unconstrained optimization problems from 2 to 1,000 variables.
Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220
Discrete bat algorithm for optimal problem of permutation flow shop scheduling.
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.
Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm
Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui
2017-05-01
The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.
DE and NLP Based QPLS Algorithm
Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo
As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.
Biogeography-Based Optimization with Orthogonal Crossover
Directory of Open Access Journals (Sweden)
Quanxi Feng
2013-01-01
Full Text Available Biogeography-based optimization (BBO is a new biogeography inspired, population-based algorithm, which mainly uses migration operator to share information among solutions. Similar to crossover operator in genetic algorithm, migration operator is a probabilistic operator and only generates the vertex of a hyperrectangle defined by the emigration and immigration vectors. Therefore, the exploration ability of BBO may be limited. Orthogonal crossover operator with quantization technique (QOX is based on orthogonal design and can generate representative solution in solution space. In this paper, a BBO variant is presented through embedding the QOX operator in BBO algorithm. Additionally, a modified migration equation is used to improve the population diversity. Several experiments are conducted on 23 benchmark functions. Experimental results show that the proposed algorithm is capable of locating the optimal or closed-to-optimal solution. Comparisons with other variants of BBO algorithms and state-of-the-art orthogonal-based evolutionary algorithms demonstrate that our proposed algorithm possesses faster global convergence rate, high-precision solution, and stronger robustness. Finally, the analysis result of the performance of QOX indicates that QOX plays a key role in the proposed algorithm.
Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
Application of genetic algorithms to in-core nuclear fuel management optimization
International Nuclear Information System (INIS)
Poon, P.W.; Parks, G.T.
1993-01-01
The search for an optimal arrangement of fresh and burnt fuel and control material within the core of a PWR represents a formidable optimization problem. The approach of combining the robust optimization capabilities of the Simulated Annealing (SA) algorithm with the computational speed of a Generalized Perturbation Theory (GPT) based evaluation methodology in the code FORMOSA has proved to be very effective. In this paper, we show that the incorporation of another stochastic search technique, a Genetic Algorithm, results in comparable optimization performance on serial computers and offers substantially superior performance on parallel machines. (orig.)
A Novel Spectrum Scheduling Scheme with Ant Colony Optimization Algorithm
Directory of Open Access Journals (Sweden)
Liping Liu
2018-01-01
Full Text Available Cognitive radio is a promising technology for improving spectrum utilization, which allows cognitive users access to the licensed spectrum while primary users are absent. In this paper, we design a resource allocation framework based on graph theory for spectrum assignment in cognitive radio networks. The framework takes into account the constraints that interference for primary users and possible collision among cognitive users. Based on the proposed model, we formulate a system utility function to maximize the system benefit. Based on the proposed model and objective problem, we design an improved ant colony optimization algorithm (IACO from two aspects: first, we introduce differential evolution (DE process to accelerate convergence speed by monitoring mechanism; then we design a variable neighborhood search (VNS process to avoid the algorithm falling into the local optimal. Simulation results demonstrate that the improved algorithm achieves better performance.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
International Nuclear Information System (INIS)
Palmu, Kirsi; Vanhatalo, Sampsa; Stevenson, Nathan; Wikström, Sverre; Hellström-Westas, Lena; Palva, J Matias
2010-01-01
We propose here a simple algorithm for automated detection of spontaneous activity transients (SATs) in early preterm electroencephalography (EEG). The parameters of the algorithm were optimized by supervised learning using a gold standard created from visual classification data obtained from three human raters. The generalization performance of the algorithm was estimated by leave-one-out cross-validation. The mean sensitivity of the optimized algorithm was 97% (range 91–100%) and specificity 95% (76–100%). The optimized algorithm makes it possible to systematically study brain state fluctuations of preterm infants. (note)
Automatic Circuit Design and Optimization Using Modified PSO Algorithm
Directory of Open Access Journals (Sweden)
Subhash Patel
2016-04-01
Full Text Available In this work, we have proposed modified PSO algorithm based optimizer for automatic circuit design. The performance of the modified PSO algorithm is compared with two other evolutionary algorithms namely ABC algorithm and standard PSO algorithm by designing two stage CMOS operational amplifier and bulk driven OTA in 130nm technology. The results show the robustness of the proposed algorithm. With modified PSO algorithm, the average design error for two stage op-amp is only 0.054% in contrast to 3.04% for standard PSO algorithm and 5.45% for ABC algorithm. For bulk driven OTA, average design error is 1.32% with MPSO compared to 4.70% with ABC algorithm and 5.63% with standard PSO algorithm.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Ping; Gao, Hong [Anhui Polytechnic University, Wuhu (China); Niu, Limin [Anhui University of Technology, Maanshan (China)
2017-07-15
Due to the fail safe problem, it was difficult for the existing Magnetorheological damper (MD) to be widely applied in automotive suspensions. Therefore, permanent magnets and magnetic valves were introduced to existing MDs so that fail safe problem could be solved by the magnets and damping force could be adjusted easily by the magnetic valve. Thus, a new Magnetorheological damper with permanent magnet and magnetic valve (MDPMMV) was developed and MDPMMV suspension was studied. First of all, mechanical structure of existing magnetorheological damper applied in automobile suspensions was redesigned, comprising a permanent magnet and a magnetic valve. In addition, prediction model of damping force was built based on electromagnetics theory and Bingham model. Experimental research was onducted on the newly designed damper and goodness of fit between experiment results and simulated ones by models was high. On this basis, a quarter suspension model was built. Then, fruit Fly optimization algorithm (FOA)-optimal control algorithm suitable for automobile suspension was designed based on developing normal FOA. Finally, simulation experiments and bench tests with input surface of pulse road and B road were carried out and the results indicated that working erformance of MDPMMV suspension based on FOA-optimal control algorithm was good.
Intersection signal control multi-objective optimization based on genetic algorithm
Directory of Open Access Journals (Sweden)
Zhanhong Zhou
2014-04-01
Full Text Available A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at an intersection. The optimization method combined the Paramics microscopic traffic simulation software, Comprehensive Modal Emissions Model (CMEM, and genetic algorithm. An intersection in Haizhu District, Guangzhou, was taken for a case study. The result of the case study shows the optimal timing scheme obtained from this method is better than the Webster timing scheme.
Queue and stack sorting algorithm optimization and performance analysis
Qian, Mingzhu; Wang, Xiaobao
2018-04-01
Sorting algorithm is one of the basic operation of a variety of software development, in data structures course specializes in all kinds of sort algorithm. The performance of the sorting algorithm is directly related to the efficiency of the software. A lot of excellent scientific research queue is constantly optimizing algorithm, algorithm efficiency better as far as possible, the author here further research queue combined with stacks of sorting algorithms, the algorithm is mainly used for alternating operation queue and stack storage properties, Thus avoiding the need for a large number of exchange or mobile operations in the traditional sort. Before the existing basis to continue research, improvement and optimization, the focus on the optimization of the time complexity of the proposed optimization and improvement, The experimental results show that the improved effectively, at the same time and the time complexity and space complexity of the algorithm, the stability study corresponding research. The improvement and optimization algorithm, improves the practicability.
International Nuclear Information System (INIS)
Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim
2012-01-01
A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.
Directory of Open Access Journals (Sweden)
Yuksel Celik
2013-01-01
Full Text Available Marriage in honey bees optimization (MBO is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm’s performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.
Cost optimization model and its heuristic genetic algorithms
International Nuclear Information System (INIS)
Liu Wei; Wang Yongqing; Guo Jilin
1999-01-01
Interest and escalation are large quantity in proportion to the cost of nuclear power plant construction. In order to optimize the cost, the mathematics model of cost optimization for nuclear power plant construction was proposed, which takes the maximum net present value as the optimization goal. The model is based on the activity networks of the project and is an NP problem. A heuristic genetic algorithms (HGAs) for the model was introduced. In the algorithms, a solution is represented with a string of numbers each of which denotes the priority of each activity for assigned resources. The HGAs with this encoding method can overcome the difficulty which is harder to get feasible solutions when using the traditional GAs to solve the model. The critical path of the activity networks is figured out with the concept of predecessor matrix. An example was computed with the HGAP programmed in C language. The results indicate that the model is suitable for the objectiveness, the algorithms is effective to solve the model
International Nuclear Information System (INIS)
Aubry, Jean-Francois; Beaulieu, Frederic; Sevigny, Caroline; Beaulieu, Luc; Tremblay, Daniel
2006-01-01
Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented
Heterogeneous architecture to process swarm optimization algorithms
Directory of Open Access Journals (Sweden)
Maria A. Dávila-Guzmán
2014-01-01
Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.
Optimization of Wireless Optical Communication System Based on Augmented Lagrange Algorithm
International Nuclear Information System (INIS)
He Suxiang; Meng Hongchao; Wang Hui; Zhao Yanli
2011-01-01
The optimal model for wireless optical communication system with Gaussian pointing loss factor is studied, in which the value of bit error probability (BEP) is prespecified and the optimal system parameters is to be found. For the superiority of augmented Lagrange method, the model considered is solved by using a classical quadratic augmented Lagrange algorithm. The detailed numerical results are reported. Accordingly, the optimal system parameters such as transmitter power, transmitter wavelength, transmitter telescope gain and receiver telescope gain can be established, which provide a scheme for efficient operation of the wireless optical communication system.
Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.
Chang, Joshua; Paydarfar, David
2014-12-01
Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.
Directory of Open Access Journals (Sweden)
Imam Ahmad Ashari
2016-11-01
Full Text Available Scheduling problems at the university is a complex type of scheduling problems. The scheduling process should be carried out at every turn of the semester's. The core of the problem of scheduling courses at the university is that the number of components that need to be considered in making the schedule, some of the components was made up of students, lecturers, time and a room with due regard to the limits and certain conditions so that no collision in the schedule such as mashed room, mashed lecturer and others. To resolve a scheduling problem most appropriate technique used is the technique of optimization. Optimization techniques can give the best results desired. Metaheuristic algorithm is an algorithm that has a lot of ways to solve the problems to the very limit the optimal solution. In this paper, we use a genetic algorithm and ant colony optimization algorithm is an algorithm metaheuristic to solve the problem of course scheduling. The two algorithm will be tested and compared to get performance is the best. The algorithm was tested using data schedule courses of the university in Semarang. From the experimental results we conclude that the genetic algorithm has better performance than the ant colony optimization algorithm in solving the case of course scheduling.
Exergetic optimization of turbofan engine with genetic algorithm method
Energy Technology Data Exchange (ETDEWEB)
Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr
2011-07-01
With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.
Algorithms for optimal dyadic decision trees
Energy Technology Data Exchange (ETDEWEB)
Hush, Don [Los Alamos National Laboratory; Porter, Reid [Los Alamos National Laboratory
2009-01-01
A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.
Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm
Zhou, Qiongyang
2018-04-01
In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.
A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures
Kaveh, A.; Ilchi Ghazaan, M.
2018-02-01
In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.
Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie
2018-05-04
Particle swarm optimization is a powerful metaheuristic population-based global optimization algorithm. However, when applied to non-separable objective functions its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant particle swarm optimization algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates a superior performance across several nonlinear, multimodal benchmark functions compared to the rotation-invariant Particle Swam Optimization (PSO) algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in ReaxFF-lg reactive force field is carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents a better performance compared to a Genetic Algorithm optimization method in the optimization of a ReaxFF-lg correction model parameters. The computational framework is implemented in a standalone C++ code that allows a straightforward development of ReaxFF reactive force fields.
Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox
Li, R. N.; Liu, X.; Liu, S. J.
2013-12-01
In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.
Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox
International Nuclear Information System (INIS)
Li, R N; Liu, X; Liu, S J
2013-01-01
In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission
Directory of Open Access Journals (Sweden)
Zhenhua Wang
2016-04-01
Full Text Available In this article, the cutting parameters optimization method for aluminum alloy AlMn1Cu in high-speed milling was studied in order to properly select the high-speed cutting parameters. First, a back propagation neural network model for predicting surface roughness of AlMn1Cu was proposed. The prediction model can improve the prediction accuracy and well work out the higher-order nonlinear relationship between surface roughness and cutting parameters. Second, considering the constraints of technical requirements on surface roughness, a mathematical model for optimizing cutting parameters based on the Bayesian neural network prediction model of surface roughness was established so as to obtain the maximum machining efficiency. The genetic algorithm adopting the homogeneous design to initialize population as well as steady-state reproduction without duplicates was also presented. The application indicates that the algorithm can effectively avoid precocity, strengthen global optimization, and increase the calculation efficiency. Finally, a case was presented on the application of the proposed cutting parameters optimization algorithm to optimize the cutting parameters.
Jiang, Hai Ming; Xie, Kang; Wang, Ya Fei
2011-11-01
In this work, a novel metaheuristic named artificial fish school algorithm is introduced into the optimization of pump parameters for the design of gain flattened Raman fiber amplifiers for the first time. Artificial fish school algorithm emulates three simple social behaviors of a fish in a school, namely, preying, swarming and following, to optimize a target function. In this algorithm the pump wavelengths and power levels are mapped respectively to the state of a fish in a school, and the gain of a Raman fiber amplifier is mapped to the concentration of a food source for the fish school to search. Application of this algorithm to the design of a C-band gain flattened Raman fiber amplifier leads to an optimized amplifier that produces a flat gain spectrum with 0.63 dB in band ripple for given conditions. This result demonstrates that the artificial fish school algorithm is efficient for the optimization of pump parameters of gain flattened Raman fiber amplifiers.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Directory of Open Access Journals (Sweden)
Gonglin Yuan
Full Text Available Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1 βk ≥ 0 2 the search direction has the trust region property without the use of any line search method 3 the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Optimization of Multiple Traveling Salesman Problem Based on Simulated Annealing Genetic Algorithm
Directory of Open Access Journals (Sweden)
Xu Mingji
2017-01-01
Full Text Available It is very effective to solve the multi variable optimization problem by using hierarchical genetic algorithm. This thesis analyzes both advantages and disadvantages of hierarchical genetic algorithm and puts forward an improved simulated annealing genetic algorithm. The new algorithm is applied to solve the multiple traveling salesman problem, which can improve the performance of the solution. First, it improves the design of chromosomes hierarchical structure in terms of redundant hierarchical algorithm, and it suggests a suffix design of chromosomes; Second, concerning to some premature problems of genetic algorithm, it proposes a self-identify crossover operator and mutation; Third, when it comes to the problem of weak ability of local search of genetic algorithm, it stretches the fitness by mixing genetic algorithm with simulated annealing algorithm. Forth, it emulates the problems of N traveling salesmen and M cities so as to verify its feasibility. The simulation and calculation shows that this improved algorithm can be quickly converged to a best global solution, which means the algorithm is encouraging in practical uses.
Parallel Algorithms for Graph Optimization using Tree Decompositions
Energy Technology Data Exchange (ETDEWEB)
Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL; Groer, Christopher S [ORNL
2012-06-01
Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.
Surface roughness optimization in machining of AZ31 magnesium alloy using ABC algorithm
Directory of Open Access Journals (Sweden)
Abhijith
2018-01-01
Full Text Available Magnesium alloys serve as excellent substitutes for materials traditionally used for engine block heads in automobiles and gear housings in aircraft industries. AZ31 is a magnesium alloy finds its applications in orthopedic implants and cardiovascular stents. Surface roughness is an important parameter in the present manufacturing sector. In this work optimization techniques namely firefly algorithm (FA, particle swarm optimization (PSO and artificial bee colony algorithm (ABC which are based on swarm intelligence techniques, have been implemented to optimize the machining parameters namely cutting speed, feed rate and depth of cut in order to achieve minimum surface roughness. The parameter Ra has been considered for evaluating the surface roughness. Comparing the performance of ABC algorithm with FA and PSO algorithm, which is a widely used optimization algorithm in machining studies, the results conclude that ABC produces better optimization when compared to FA and PSO for optimizing surface roughness of AZ 31.
Simulated annealing algorithm for optimal capital growth
Luo, Yong; Zhu, Bo; Tang, Yong
2014-08-01
We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.
Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P
2010-10-30
Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy. Copyright © 2010 Elsevier B.V. All rights reserved.
Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms
Cao, Ming; Lu, Ming; Zhang, Jian-Ping
2004-01-01
This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation
A new evolutionary algorithm with LQV learning for combinatorial problems optimization
International Nuclear Information System (INIS)
Machado, Marcelo Dornellas; Schirru, Roberto
2000-01-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for combinatorial problems optimization. In this work, a new learning mode, to be used by the population-based incremental learning algorithm, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process known as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors, in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problems. Due to the fact that the reload problem is a combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)
Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking
Poluyan, Sergey; Ershov, Nikolay
2018-02-01
In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.
Diyana Rosli, Anis; Adenan, Nur Sabrina; Hashim, Hadzli; Ezan Abdullah, Noor; Sulaiman, Suhaimi; Baharudin, Rohaiza
2018-03-01
This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit’s skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample’s surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.
Time Optimized Algorithm for Web Document Presentation Adaptation
DEFF Research Database (Denmark)
Pan, Rong; Dolog, Peter
2010-01-01
Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...... content-optimized and time-optimized algorithms for information presentation adaptation for different devices based on its hierarchical model. The model is formalized in order to experiment with different algorithms.......Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...
Optimization of source pencil deployment based on plant growth simulation algorithm
International Nuclear Information System (INIS)
Yang Lei; Liu Yibao; Liu Yujuan
2009-01-01
A plant growth simulation algorithm was proposed for optimizing source pencil deployment for a 60 Co irradiator. A method used to evaluate the calculation results was presented with the objective function defined by relative standard deviation of the exposure rate at the reference points, and the method to transform two kinds of control variables, i.e., position coordinates x j and y j of source pencils in the source plaque, into proper integer variables was also analyzed and solved. The results show that the plant growth simulation algorithm, which possesses both random and directional search mechanism, has good global search ability and can be used conveniently. The results are affected a little by initial conditions, and improve the uniformity in the irradiation fields. It creates a dependable field for the optimization of source bars arrangement at irradiation facility. (authors)
Decoherence in optimized quantum random-walk search algorithm
International Nuclear Information System (INIS)
Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun
2015-01-01
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. (paper)
Energy Optimal Control Strategy of PHEV Based on PMP Algorithm
Directory of Open Access Journals (Sweden)
Tiezhou Wu
2017-01-01
Full Text Available Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV, from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC, which is hybrid energy storage system (Li-SC HESS, working together with internal combustion engine (ICE to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.
An Improved Fruit Fly Optimization Algorithm Inspired from Cell Communication Mechanism
Directory of Open Access Journals (Sweden)
Chuncai Xiao
2015-01-01
Full Text Available Fruit fly optimization algorithm (FOA invented recently is a new swarm intelligence method based on fruit fly’s foraging behaviors and has been shown to be competitive with existing evolutionary algorithms, such as particle swarm optimization (PSO algorithm. However, there are still some disadvantages in the FOA, such as low convergence precision, easily trapped in a local optimum value at the later evolution stage. This paper presents an improved FOA based on the cell communication mechanism (CFOA, by considering the information of the global worst, mean, and best solutions into the search strategy to improve the exploitation. The results from a set of numerical benchmark functions show that the CFOA outperforms the FOA and the PSO in most of the experiments. Further, the CFOA is applied to optimize the controller for preoxidation furnaces in carbon fibers production. Simulation results demonstrate the effectiveness of the CFOA.
Optimization of tokamak plasma equilibrium shape using parallel genetic algorithms
International Nuclear Information System (INIS)
Zhulin An; Bin Wu; Lijian Qiu
2006-01-01
In the device of non-circular cross sectional tokamaks, the plasma equilibrium shape has a strong influence on the confinement and MHD stability. The plasma equilibrium shape is determined by the configuration of the poloidal field (PF) system. Usually there are many PF systems that could support the specified plasma equilibrium, the differences are the number of coils used, their positions, sizes and currents. It is necessary to find the optimal choice that meets the engineering constrains, which is often done by a constrained optimization. The Genetic Algorithms (GAs) based method has been used to solve the problem of the optimization, but the time complexity limits the algorithms to become widely used. Due to the large search space that the optimization has, it takes several hours to get a nice result. The inherent parallelism in GAs can be exploited to enhance their search efficiency. In this paper, we introduce a parallel genetic algorithms (PGAs) based approach which can reduce the computational time. The algorithm has a master-slave structure, the slave explore the search space separately and return the results to the master. A program is also developed, and it can be running on any computers which support massage passing interface. Both the algorithm and the program are detailed discussed in the paper. We also include an application that uses the program to determine the positions and currents of PF coils in EAST. The program reach the target value within half an hour and yield a speedup rate of 5.21 on 8 CPUs. (author)
Directory of Open Access Journals (Sweden)
D. Ramyachitra
2015-09-01
Full Text Available Microarray technology allows simultaneous measurement of the expression levels of thousands of genes within a biological tissue sample. The fundamental power of microarrays lies within the ability to conduct parallel surveys of gene expression using microarray data. The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high compared to the number of data samples. Thus the difficulty that lies with data are of high dimensionality and the sample size is small. This research work addresses the problem by classifying resultant dataset using the existing algorithms such as Support Vector Machine (SVM, K-nearest neighbor (KNN, Interval Valued Classification (IVC and the improvised Interval Value based Particle Swarm Optimization (IVPSO algorithm. Thus the results show that the IVPSO algorithm outperformed compared with other algorithms under several performance evaluation functions.
Ramyachitra, D; Sofia, M; Manikandan, P
2015-09-01
Microarray technology allows simultaneous measurement of the expression levels of thousands of genes within a biological tissue sample. The fundamental power of microarrays lies within the ability to conduct parallel surveys of gene expression using microarray data. The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high compared to the number of data samples. Thus the difficulty that lies with data are of high dimensionality and the sample size is small. This research work addresses the problem by classifying resultant dataset using the existing algorithms such as Support Vector Machine (SVM), K-nearest neighbor (KNN), Interval Valued Classification (IVC) and the improvised Interval Value based Particle Swarm Optimization (IVPSO) algorithm. Thus the results show that the IVPSO algorithm outperformed compared with other algorithms under several performance evaluation functions.
Solving the wind farm layout optimization problem using random search algorithm
DEFF Research Database (Denmark)
Feng, Ju; Shen, Wen Zhong
2015-01-01
, in which better results than the genetic algorithm (GA) and the old version of the RS algorithm are obtained. Second it is applied to the Horns Rev 1 WF, and the optimized layouts obtain a higher power production than its original layout, both for the real scenario and for two constructed scenarios......Wind farm (WF) layout optimization is to find the optimal positions of wind turbines (WTs) inside a WF, so as to maximize and/or minimize a single objective or multiple objectives, while satisfying certain constraints. In this work, a random search (RS) algorithm based on continuous formulation....... In this application, it is also found that in order to get consistent and reliable optimization results, up to 360 or more sectors for wind direction have to be used. Finally, considering the inevitable inter-annual variations in the wind conditions, the robustness of the optimized layouts against wind condition...
Directory of Open Access Journals (Sweden)
Yi Zhang
2012-01-01
Full Text Available In consideration of the significant role the brake plays in ensuring the fast and safe running of vehicles, and since the present parameter optimization design models of brake are far from the practical application, this paper proposes a multiobjective optimization model of drum brake, aiming at maximizing the braking efficiency and minimizing the volume and temperature rise of drum brake. As the commonly used optimization algorithms are of some deficiency, we present a differential evolution cellular multiobjective genetic algorithm (DECell by introducing differential evolution strategy into the canonical cellular genetic algorithm for tackling this problem. For DECell, the gained Pareto front could be as close as possible to the exact Pareto front, and also the diversity of nondominated individuals could be better maintained. The experiments on the test functions reveal that DECell is of good performance in solving high-dimension nonlinear multiobjective problems. And the results of optimizing the new brake model indicate that DECell obviously outperforms the compared popular algorithm NSGA-II concerning the number of obtained brake design parameter sets, the speed, and stability for finding them.
Directory of Open Access Journals (Sweden)
Wei Sun
2015-01-01
Full Text Available Electric power is a kind of unstorable energy concerning the national welfare and the people’s livelihood, the stability of which is attracting more and more attention. Because the short-term power load is always interfered by various external factors with the characteristics like high volatility and instability, a single model is not suitable for short-term load forecasting due to low accuracy. In order to solve this problem, this paper proposes a new model based on wavelet transform and the least squares support vector machine (LSSVM which is optimized by fruit fly algorithm (FOA for short-term load forecasting. Wavelet transform is used to remove error points and enhance the stability of the data. Fruit fly algorithm is applied to optimize the parameters of LSSVM, avoiding the randomness and inaccuracy to parameters setting. The result of implementation of short-term load forecasting demonstrates that the hybrid model can be used in the short-term forecasting of the power system.
An extension theory-based maximum power tracker using a particle swarm optimization algorithm
International Nuclear Information System (INIS)
Chao, Kuei-Hsiang
2014-01-01
Highlights: • We propose an adaptive maximum power point tracking (MPPT) approach for PV systems. • Transient and steady state performances in tracking process are improved. • The proposed MPPT can automatically tune tracking step size along a P–V curve. • A PSO algorithm is used to determine the weighting values of extension theory. - Abstract: The aim of this work is to present an adaptive maximum power point tracking (MPPT) approach for photovoltaic (PV) power generation system. Integrating the extension theory as well as the conventional perturb and observe method, an maximum power point (MPP) tracker is made able to automatically tune tracking step size by way of the category recognition along a P–V characteristic curve. Accordingly, the transient and steady state performances in tracking process are improved. Furthermore, an optimization approach is proposed on the basis of a particle swarm optimization (PSO) algorithm for the complexity reduction in the determination of weighting values. At the end of this work, a simulated improvement in the tracking performance is experimentally validated by an MPP tracker with a programmable system-on-chip (PSoC) based controller
Application of particle swarm optimization algorithm in the heating system planning problem.
Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi
2013-01-01
Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem.
Multi-Objective Two-Dimensional Truss Optimization by using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Harun Alrasyid
2011-05-01
Full Text Available During last three decade, many mathematical programming methods have been develop for solving optimization problems. However, no single method has been found to be entirely efficient and robust for the wide range of engineering optimization problems. Most design application in civil engineering involve selecting values for a set of design variables that best describe the behavior and performance of the particular problem while satisfying the requirements and specifications imposed by codes of practice. The introduction of Genetic Algorithm (GA into the field of structural optimization has opened new avenues for research because they have been successful applied while traditional methods have failed. GAs is efficient and broadly applicable global search procedure based on stochastic approach which relies on “survival of the fittest” strategy. GAs are search algorithms that are based on the concepts of natural selection and natural genetics. On this research Multi-objective sizing and configuration optimization of the two-dimensional truss has been conducted using a genetic algorithm. Some preliminary runs of the GA were conducted to determine the best combinations of GA parameters such as population size and probability of mutation so as to get better scaling for rest of the runs. Comparing the results from sizing and sizing– configuration optimization, can obtained a significant reduction in the weight and deflection. Sizing–configuration optimization produces lighter weight and small displacement than sizing optimization. The results were obtained by using a GA with relative ease (computationally and these results are very competitive compared to those obtained from other methods of truss optimization.
Directory of Open Access Journals (Sweden)
Norhuda Abdul Manaf
2017-03-01
Full Text Available This paper presents an algorithm that combines model predictive control (MPC with MINLP optimization and demonstrates its application for coal-fired power plants retrofitted with solvent based post-combustion CO2 capture (PCC plant. The objective function of the optimization algorithm works at a primary level to maximize plant economic revenue while considering an optimal carbon capture profile. At a secondary level, the MPC algorithm is used to control the performance of the PCC plant. Two techno-economic scenarios based on fixed (capture rate is constant and flexible (capture rate is variable operation modes are developed using actual electricity prices (2011 with fixed carbon prices ($AUD 5, 25, 50/tonne-CO2 for 24 h periods. Results show that fixed operation mode can bring about a ratio of net operating revenue deficit at an average of 6% against the superior flexible operation mode.
Privacy Preservation in Distributed Subgradient Optimization Algorithms
Lou, Youcheng; Yu, Lean; Wang, Shouyang
2015-01-01
Privacy preservation is becoming an increasingly important issue in data mining and machine learning. In this paper, we consider the privacy preserving features of distributed subgradient optimization algorithms. We first show that a well-known distributed subgradient synchronous optimization algorithm, in which all agents make their optimization updates simultaneously at all times, is not privacy preserving in the sense that the malicious agent can learn other agents' subgradients asymptotic...
Glowworm swarm optimization theory, algorithms, and applications
Kaipa, Krishnanand N
2017-01-01
This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.
A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices
International Nuclear Information System (INIS)
Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene
2016-01-01
Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.
International Nuclear Information System (INIS)
Kastanya, Doddy
2012-01-01
Highlights: ► ADORE is an algorithm for CANDU ROP Detector Layout Optimization. ► ADORE-GA is a Genetic Algorithm variant of the ADORE algorithm. ► Robustness test of ADORE-GA algorithm is presented in this paper. - Abstract: The regional overpower protection (ROP) systems protect CANDU® reactors against overpower in the fuel that could reduce the safety margin-to-dryout. The overpower could originate from a localized power peaking within the core or a general increase in the global core power level. The design of the detector layout for ROP systems is a challenging discrete optimization problem. In recent years, two algorithms have been developed to find a quasi optimal solution to this detector layout optimization problem. Both of these algorithms utilize the simulated annealing (SA) algorithm as their optimization engine. In the present paper, an alternative optimization algorithm, namely the genetic algorithm (GA), has been implemented as the optimization engine. The implementation is done within the ADORE algorithm. Results from evaluating the effects of using various mutation rates and crossover parameters are presented in this paper. It has been demonstrated that the algorithm is sufficiently robust in producing similar quality solutions.
Optical flow optimization using parallel genetic algorithm
Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe
2011-06-01
A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.
Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad
2008-04-01
To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology
Multiobjective Optimal Algorithm for Automatic Calibration of Daily Streamflow Forecasting Model
Directory of Open Access Journals (Sweden)
Yi Liu
2016-01-01
Full Text Available Single-objection function cannot describe the characteristics of the complicated hydrologic system. Consequently, it stands to reason that multiobjective functions are needed for calibration of hydrologic model. The multiobjective algorithms based on the theory of nondominate are employed to solve this multiobjective optimal problem. In this paper, a novel multiobjective optimization method based on differential evolution with adaptive Cauchy mutation and Chaos searching (MODE-CMCS is proposed to optimize the daily streamflow forecasting model. Besides, to enhance the diversity performance of Pareto solutions, a more precise crowd distance assigner is presented in this paper. Furthermore, the traditional generalized spread metric (SP is sensitive with the size of Pareto set. A novel diversity performance metric, which is independent of Pareto set size, is put forward in this research. The efficacy of the new algorithm MODE-CMCS is compared with the nondominated sorting genetic algorithm II (NSGA-II on a daily streamflow forecasting model based on support vector machine (SVM. The results verify that the performance of MODE-CMCS is superior to the NSGA-II for automatic calibration of hydrologic model.
A hybrid reliability algorithm using PSO-optimized Kriging model and adaptive importance sampling
Tong, Cao; Gong, Haili
2018-03-01
This paper aims to reduce the computational cost of reliability analysis. A new hybrid algorithm is proposed based on PSO-optimized Kriging model and adaptive importance sampling method. Firstly, the particle swarm optimization algorithm (PSO) is used to optimize the parameters of Kriging model. A typical function is fitted to validate improvement by comparing results of PSO-optimized Kriging model with those of the original Kriging model. Secondly, a hybrid algorithm for reliability analysis combined optimized Kriging model and adaptive importance sampling is proposed. Two cases from literatures are given to validate the efficiency and correctness. The proposed method is proved to be more efficient due to its application of small number of sample points according to comparison results.
Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm
Directory of Open Access Journals (Sweden)
D.B. Prakash
2017-12-01
Full Text Available In present days, continuous effort is being made in bringing down the line losses of the electrical distribution networks. Therefore proper allocation of capacitors is of utmost importance because, it will help in reducing the line losses and maintaining the bus voltage. This in turn results in improving the stability and reliability of the system. In this paper Whale Optimization Algorithm (WOA is used to find optimal sizing and placement of capacitors for a typical radial distribution system. Multi objectives such as operating cost reduction and power loss minimization with inequality constraints on voltage limits are considered and the proposed algorithm is validated by applying it on standard radial systems: IEEE-34 bus and IEEE-85 bus radial distribution test systems. The results obtained are compared with those of existing algorithms. The results show that the proposed algorithm is more effective in bringing down the operating costs and in maintaining better voltage profile. Keywords: Whale Optimization Algorithm (WOA, Optimal allocation and sizing of capacitors, Power loss reduction and voltage stability improvement, Radial distribution system, Operating cost minimization
Savsani, Vimal; Patel, Vivek; Gadhvi, Bhargav; Tawhid, Mohamed
2017-01-01
Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS) algorithm, which is based on the search technique of heat transfer search (HTS) algorithm. MOHTS employs the elitist nondominated sorting and crowding dis...
Modified artificial bee colony algorithm for reactive power optimization
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-05-01
Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.
Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades
Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang
2017-12-01
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.
Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms
International Nuclear Information System (INIS)
Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.
2003-01-01
A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed
A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization
Directory of Open Access Journals (Sweden)
Qingyang Xu
2014-01-01
Full Text Available Estimation of distribution algorithm (EDA is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
Optimization in engineering models and algorithms
Sioshansi, Ramteen
2017-01-01
This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...
Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm
T. Vigneswari; M. A. Maluk Mohamed
2015-01-01
Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...
Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm.
Pickett, Stephen D; Green, Darren V S; Hunt, David L; Pardoe, David A; Hughes, Ian
2011-01-13
Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure-activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods.
Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants
Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo
2017-10-01
Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.
Optimized Data Indexing Algorithms for OLAP Systems
Directory of Open Access Journals (Sweden)
Lucian BORNAZ
2010-12-01
Full Text Available The need to process and analyze large data volumes, as well as to convey the information contained therein to decision makers naturally led to the development of OLAP systems. Similarly to SGBDs, OLAP systems must ensure optimum access to the storage environment. Although there are several ways to optimize database systems, implementing a correct data indexing solution is the most effective and less costly. Thus, OLAP uses indexing algorithms for relational data and n-dimensional summarized data stored in cubes. Today database systems implement derived indexing algorithms based on well-known Tree, Bitmap and Hash indexing algorithms. This is because no indexing algorithm provides the best performance for any particular situation (type, structure, data volume, application. This paper presents a new n-dimensional cube indexing algorithm, derived from the well known B-Tree index, which indexes data stored in data warehouses taking in consideration their multi-dimensional nature and provides better performance in comparison to the already implemented Tree-like index types.
Mahalakshmi; Murugesan, R.
2018-04-01
This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.
Directory of Open Access Journals (Sweden)
Vimal Savsani
2017-01-01
Full Text Available Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS algorithm, which is based on the search technique of heat transfer search (HTS algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA, and combined PSO-GA based MOEA.
Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis
Directory of Open Access Journals (Sweden)
Sen Zhang
2015-01-01
Full Text Available One heuristic evolutionary algorithm recently proposed is the grey wolf optimizer (GWO, inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature. This paper presents an extended GWO algorithm based on Powell local optimization method, and we call it PGWO. PGWO algorithm significantly improves the original GWO in solving complex optimization problems. Clustering is a popular data analysis and data mining technique. Hence, the PGWO could be applied in solving clustering problems. In this study, first the PGWO algorithm is tested on seven benchmark functions. Second, the PGWO algorithm is used for data clustering on nine data sets. Compared to other state-of-the-art evolutionary algorithms, the results of benchmark and data clustering demonstrate the superior performance of PGWO algorithm.
Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data
Martins, Fabio J. W. A.; Foucaut, Jean-Marc; Thomas, Lionel; Azevedo, Luis F. A.; Stanislas, Michel
2015-08-01
Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time.
Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data
International Nuclear Information System (INIS)
Martins, Fabio J W A; Foucaut, Jean-Marc; Stanislas, Michel; Thomas, Lionel; Azevedo, Luis F A
2015-01-01
Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time. (paper)
Directory of Open Access Journals (Sweden)
A. P. Karpenko
2014-01-01
Full Text Available We consider a class of stochastic search algorithms of global optimization which in various publications are called behavioural, intellectual, metaheuristic, inspired by the nature, swarm, multi-agent, population, etc. We use the last term.Experience in using the population algorithms to solve challenges of global optimization shows that application of one such algorithm may not always effective. Therefore now great attention is paid to hybridization of population algorithms of global optimization. Hybrid algorithms unite various algorithms or identical algorithms, but with various values of free parameters. Thus efficiency of one algorithm can compensate weakness of another.The purposes of the work are development of hybrid algorithm of global optimization based on known algorithms of harmony search (HS and swarm of particles (PSO, software implementation of algorithm, study of its efficiency using a number of known benchmark problems, and a problem of dimensional optimization of truss structure.We set a problem of global optimization, consider basic algorithms of HS and PSO, give a flow chart of the offered hybrid algorithm called PSO HS , present results of computing experiments with developed algorithm and software, formulate main results of work and prospects of its development.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures
Energy Technology Data Exchange (ETDEWEB)
Neylon, J., E-mail: jneylon@mednet.ucla.edu; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A. [Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095 (United States); Chen, Q. [Department of Radiation Oncology, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, California 22908 (United States)
2014-10-15
, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures
International Nuclear Information System (INIS)
Neylon, J.; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A.; Chen, Q.
2014-01-01
, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems
Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun
2018-03-01
Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.
A Modularity Degree Based Heuristic Community Detection Algorithm
Directory of Open Access Journals (Sweden)
Dongming Chen
2014-01-01
Full Text Available A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection.
GENETIC ALGORITHM IN OPTIMIZATION DESIGN OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR
Directory of Open Access Journals (Sweden)
Phuong Le Ngo
2017-01-01
Full Text Available Classical method of designing electric motors help to achieve functional motor, but doesn’t ensure minimal cost in manufacturing and operating. Recently optimization is becoming an important part in modern electric motor design process. The objective of the optimization process is usually to minimize cost, energy loss, mass, or maximize torque and efficiency. Most of the requirements for electrical machine design are in contradiction to each other (reduction in volume or mass, improvement in efficiency etc.. Optimization in design permanent magnet synchronous motor (PMSM is a multi-objective optimization problem. There are two approaches for solving this problem, one of them is evolution algorithms, which gain a lot of attentions recently. For designing PMSM, evolution algorithms are more attractive approach. Genetic algorithm is one of the most common. This paper presents components and procedures of genetic algorithms, and its implementation on computer. In optimization process, analytical and finite element method are used together for better performance and precision. Result from optimization process is a set of solutions, from which engineer will choose one. This method was used to design a permanent magnet synchronous motor based on an asynchronous motor type АИР112МВ8.
A Novel Quad Harmony Search Algorithm for Grid-Based Path Finding
Directory of Open Access Journals (Sweden)
Saso Koceski
2014-09-01
Full Text Available A novel approach to the problem of grid-based path finding has been introduced. The method is a block-based search algorithm, founded on the bases of two algorithms, namely the quad-tree algorithm, which offered a great opportunity for decreasing the time needed to compute the solution, and the harmony search (HS algorithm, a meta-heuristic algorithm used to obtain the optimal solution. This quad HS algorithm uses the quad-tree decomposition of free space in the grid to mark the free areas and treat them as a single node, which greatly improves the execution. The results of the quad HS algorithm have been compared to other meta-heuristic algorithms, i.e., ant colony, genetic algorithm, particle swarm optimization and simulated annealing, and it was proved to obtain the best results in terms of time and giving the optimal path.
An experimental analysis of design choices of multi-objective ant colony optimization algorithms
Lopez-Ibanez, Manuel; Stutzle, Thomas
2012-01-01
There have been several proposals on how to apply the ant colony optimization (ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs). This paper proposes a new formulation of these multi-objective ant colony optimization (MOACO) algorithms. This formulation is based on adding specific algorithm components for tackling multiple objectives to the basic ACO metaheuristic. Examples of these components are how to represent multiple objectives using pheromone and heuris...
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Directory of Open Access Journals (Sweden)
Dengying Jiang
Full Text Available To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
Swarm algorithms with chaotic jumps for optimization of multimodal functions
Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro
2011-11-01
In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).
A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization
Directory of Open Access Journals (Sweden)
Zhijun Luo
2014-01-01
Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.
International Nuclear Information System (INIS)
Jaafar, Hazriq Izzuan; Ali, Nursabillilah Mohd; Selamat, Nur Asmiza; Kassim, Anuar Mohamed; Mohamed, Z; Abidin, Amar Faiz Zainal; Jamian, J J
2013-01-01
This paper presents development of an optimal PID and PD controllers for controlling the nonlinear gantry crane system. The proposed Binary Particle Swarm Optimization (BPSO) algorithm that uses Priority-based Fitness Scheme is adopted in obtaining five optimal controller gains. The optimal gains are tested on a control structure that combines PID and PD controllers to examine system responses including trolley displacement and payload oscillation. The dynamic model of gantry crane system is derived using Lagrange equation. Simulation is conducted within Matlab environment to verify the performance of system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). This proposed technique demonstrates that implementation of Priority-based Fitness Scheme in BPSO is effective and able to move the trolley as fast as possible to the various desired position
Advanced metaheuristic algorithms for laser optimization
International Nuclear Information System (INIS)
Tomizawa, H.
2010-01-01
A laser is one of the most important experimental tools. In synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for Xray-FELs, a laser has important roles as a seed light source or photo-cathode-illuminating light source to generate a high brightness electron bunch. The controls of laser pulse characteristics are required for many kinds of experiments. However, the laser should be tuned and customized for each requirement by laser experts. The automatic tuning of laser is required to realize with some sophisticated algorithms. The metaheuristic algorithm is one of the useful candidates to find one of the best solutions as acceptable as possible. The metaheuristic laser tuning system is expected to save our human resources and time for the laser preparations. I have shown successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles and a hill climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each experimental requirement. (author)
Genetic Algorithm Optimizes Q-LAW Control Parameters
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
International Nuclear Information System (INIS)
Mazurowski, Maciej A; Habas, Piotr A; Zurada, Jacek M; Tourassi, Georgia D
2008-01-01
This paper presents an optimization framework for improving case-based computer-aided decision (CB-CAD) systems. The underlying hypothesis of the study is that each example in the knowledge database of a medical decision support system has different importance in the decision making process. A new decision algorithm incorporating an importance weight for each example is proposed to account for these differences. The search for the best set of importance weights is defined as an optimization problem and a genetic algorithm is employed to solve it. The optimization process is tailored to maximize the system's performance according to clinically relevant evaluation criteria. The study was performed using a CAD system developed for the classification of regions of interests (ROIs) in mammograms as depicting masses or normal tissue. The system was constructed and evaluated using a dataset of ROIs extracted from the Digital Database for Screening Mammography (DDSM). Experimental results show that, according to receiver operator characteristic (ROC) analysis, the proposed method significantly improves the overall performance of the CAD system as well as its average specificity for high breast mass detection rates
Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong
2018-01-01
Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.
Directory of Open Access Journals (Sweden)
Y. Gholipour
Full Text Available This paper focuses on a metamodel-based design optimization algorithm. The intention is to improve its computational cost and convergence rate. Metamodel-based optimization method introduced here, provides the necessary means to reduce the computational cost and convergence rate of the optimization through a surrogate. This algorithm is a combination of a high quality approximation technique called Inverse Distance Weighting and a meta-heuristic algorithm called Harmony Search. The outcome is then polished by a semi-tabu search algorithm. This algorithm adopts a filtering system and determines solution vectors where exact simulation should be applied. The performance of the algorithm is evaluated by standard truss design problems and there has been a significant decrease in the computational effort and improvement of convergence rate.
Pixel-based OPC optimization based on conjugate gradients.
Ma, Xu; Arce, Gonzalo R
2011-01-31
Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.
Reactive power and voltage control based on general quantum genetic algorithms
DEFF Research Database (Denmark)
Vlachogiannis, Ioannis (John); Østergaard, Jacob
2009-01-01
This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....
MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming
Directory of Open Access Journals (Sweden)
Yuteng Xiao
2017-01-01
Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.
A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.
Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing
2017-01-01
An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.
Directory of Open Access Journals (Sweden)
Chae Young Lee
Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.
Saborido, Rubén; Ruiz, Ana B; Luque, Mariano
2017-01-01
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
International Nuclear Information System (INIS)
Gong Zhaohu; Wang Kan; Yao Dong
2011-01-01
Highlights: → We present a new Loading Pattern Optimization method - Interval Bound Algorithm (IBA). → IBA directly uses the reactivity of fuel assemblies and burnable poison. → IBA can optimize fuel assembly orientation in a coupled way. → Numerical experiment shows that IBA outperforms genetic algorithm and engineers. → We devise DDWF technique to deal with multiple objectives and constraints. - Abstract: In order to optimize the core loading pattern in Nuclear Power Plants, the paper presents a new optimization method - Interval Bound Algorithm (IBA). Similar to the typical population based algorithms, e.g. genetic algorithm, IBA maintains a population of solutions and evolves them during the optimization process. IBA acquires the solution by statistical learning and sampling the control variable intervals of the population in each iteration. The control variables are the transforms of the reactivity of fuel assemblies or the worth of burnable poisons, which are the crucial heuristic information for loading pattern optimization problems. IBA can deal with the relationship between the dependent variables by defining the control variables. Based on the IBA algorithm, a parallel Loading Pattern Optimization code, named IBALPO, has been developed. To deal with multiple objectives and constraints, the Dynamic Discontinuous Weight Factors (DDWF) for the fitness function have been used in IBALPO. Finally, the code system has been used to solve a realistic reloading problem and a better pattern has been obtained compared with the ones searched by engineers and genetic algorithm, thus the performance of the code is proved.
National Research Council Canada - National Science Library
Milickovic, Natasa
2001-01-01
In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider the multiple objectives in the form of an aggregate function which combines individual objectives into a single utility value...
International Nuclear Information System (INIS)
Machnes, S.; Sander, U.; Glaser, S. J.; Schulte-Herbrueggen, T.; Fouquieres, P. de; Gruslys, A.; Schirmer, S.
2011-01-01
For paving the way to novel applications in quantum simulation, computation, and technology, increasingly large quantum systems have to be steered with high precision. It is a typical task amenable to numerical optimal control to turn the time course of pulses, i.e., piecewise constant control amplitudes, iteratively into an optimized shape. Here, we present a comparative study of optimal-control algorithms for a wide range of finite-dimensional applications. We focus on the most commonly used algorithms: GRAPE methods which update all controls concurrently, and Krotov-type methods which do so sequentially. Guidelines for their use are given and open research questions are pointed out. Moreover, we introduce a unifying algorithmic framework, DYNAMO (dynamic optimization platform), designed to provide the quantum-technology community with a convenient matlab-based tool set for optimal control. In addition, it gives researchers in optimal-control techniques a framework for benchmarking and comparing newly proposed algorithms with the state of the art. It allows a mix-and-match approach with various types of gradients, update and step-size methods as well as subspace choices. Open-source code including examples is made available at http://qlib.info.
Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review
Directory of Open Access Journals (Sweden)
M. K. Sakharov
2015-01-01
Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of
International Nuclear Information System (INIS)
Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.
2014-01-01
Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment
A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions
Fowkes, Jaroslav M.
2012-06-21
We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation techniques to the objective function within an overlapping branch and bound algorithm for convex constrained global optimization. Unlike other branch and bound algorithms, lower bounds are obtained via nonconvex underestimators of the function. For a numerical example, we apply the proposed branch and bound algorithm to radial basis function approximations. © 2012 Springer Science+Business Media, LLC.
Directory of Open Access Journals (Sweden)
Peng Wang
2013-01-01
Full Text Available This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO. The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter.
Lin, Jie; Zhao, Hongyang; Ma, Yuan; Tan, Jiubin; Jin, Peng
2016-05-16
The binary phase filters have been used to achieve an optical needle with small lateral size. Designing a binary phase filter is still a scientific challenge in such fields. In this paper, a hybrid genetic particle swarm optimization (HGPSO) algorithm is proposed to design the binary phase filter. The HGPSO algorithm includes self-adaptive parameters, recombination and mutation operations that originated from the genetic algorithm. Based on the benchmark test, the HGPSO algorithm has achieved global optimization and fast convergence. In an easy-to-perform optimizing procedure, the iteration number of HGPSO is decreased to about a quarter of the original particle swarm optimization process. A multi-zone binary phase filter is designed by using the HGPSO. The long depth of focus and high resolution are achieved simultaneously, where the depth of focus and focal spot transverse size are 6.05λ and 0.41λ, respectively. Therefore, the proposed HGPSO can be applied to the optimization of filter with multiple parameters.
Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo
2017-01-01
In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human
Directory of Open Access Journals (Sweden)
Georgios E. Stavroulakis
2013-10-01
Full Text Available This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped−free and clamped−clamped beam problems are presented.
Performance evaluation of Genetic Algorithms on loading pattern optimization of PWRs
International Nuclear Information System (INIS)
Tombakoglu, M.; Bekar, K.B.; Erdemli, A.O.
2001-01-01
Genetic Algorithm (GA) based systems are used for search and optimization problems. There are several applications of GAs in literature successfully applied for loading pattern optimization problems. In this study, we have selected loading pattern optimization problem of Pressurised Water Reactor (PWR). The main objective of this work is to evaluate the performance of Genetic Algorithm operators such as regional crossover, crossover and mutation, and selection and construction of initial population and its size for PWR loading pattern optimization problems. The performance of GA with antithetic variates is compared to traditional GA. Antithetic variates are used to generate the initial population and its use with GA operators are also discussed. Finally, the results of multi-cycle optimization problems are discussed for objective function taking into account cycle burn-up and discharge burn-up.(author)
A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications
Directory of Open Access Journals (Sweden)
Yudong Zhang
2015-01-01
Full Text Available Particle swarm optimization (PSO is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO, population topology (as fully connected, von Neumann, ring, star, random, etc., hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization, extensions (to multiobjective, constrained, discrete, and binary optimization, theoretical analysis (parameter selection and tuning, and convergence analysis, and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms. On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms.
Energy Technology Data Exchange (ETDEWEB)
Beltran, C; Kamal, H [Mayo Clinic, Rochester, MN (United States)
2016-06-15
Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.
International Nuclear Information System (INIS)
Beltran, C; Kamal, H
2016-01-01
Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.
Optimal algorithmic trading and market microstructure
Labadie , Mauricio; Lehalle , Charles-Albert
2010-01-01
The efficient frontier is a core concept in Modern Portfolio Theory. Based on this idea, we will construct optimal trading curves for different types of portfolios. These curves correspond to the algorithmic trading strategies that minimize the expected transaction costs, i.e. the joint effect of market impact and market risk. We will study five portfolio trading strategies. For the first three (single-asset, general multi-asseet and balanced portfolios) we will assume that the underlyings fo...
Some Studies on Forming Optimization with Genetic Algorithm
Directory of Open Access Journals (Sweden)
Ganesh Marotrao KAKANDIKAR
2012-07-01
Full Text Available Forming is a compression-tension process involving wide spectrum of operations andflow conditions. The result of the process depends on the large number of parameters and theirinterdependence. The selection of various parameters is still based on trial and error methods. In thispaper the authors present a new approach to optimize the geometry parameters of circularcomponents, process parameters such as blank holder pressure and coefficient of friction etc. Theoptimization problem has been formulated with the objective of optimizing the maximum formingload required in Forming. Genetic algorithm is used as a tool for the optimization: to optimize thedrawing load and to optimize the process parameters. A finite element analysis simulation softwareFast Form Advanced is used for the validations of the results after optimization with prior results.
Design of Wire Antennas by Using an Evolved Particle Swarm Optimization Algorithm
Lepelaars, E.S.A.M.; Zwamborn, A.P.M.; Rogovic, A.; Marasini, C.; Monorchio, A.
2007-01-01
A Particle Swarm Optimization (PSO) algorithm has been used in conjunction with a full-wave numerical code based on the Method of Moments (MoM) to design and optimize wire antennas. The PSO is a robust stochastic evolutionary numerical technique that is very effective in optimizing multidimensional
Constrained optimization of test intervals using a steady-state genetic algorithm
International Nuclear Information System (INIS)
Martorell, S.; Carlos, S.; Sanchez, A.; Serradell, V.
2000-01-01
There is a growing interest from both the regulatory authorities and the nuclear industry to stimulate the use of Probabilistic Risk Analysis (PRA) for risk-informed applications at Nuclear Power Plants (NPPs). Nowadays, special attention is being paid on analyzing plant-specific changes to Test Intervals (TIs) within the Technical Specifications (TSs) of NPPs and it seems to be a consensus on the need of making these requirements more risk-effective and less costly. Resource versus risk-control effectiveness principles formally enters in optimization problems. This paper presents an approach for using the PRA models in conducting the constrained optimization of TIs based on a steady-state genetic algorithm (SSGA) where the cost or the burden is to be minimized while the risk or performance is constrained to be at a given level, or vice versa. The paper encompasses first with the problem formulation, where the objective function and constraints that apply in the constrained optimization of TIs based on risk and cost models at system level are derived. Next, the foundation of the optimizer is given, which is derived by customizing a SSGA in order to allow optimizing TIs under constraints. Also, a case study is performed using this approach, which shows the benefits of adopting both PRA models and genetic algorithms, in particular for the constrained optimization of TIs, although it is also expected a great benefit of using this approach to solve other engineering optimization problems. However, care must be taken in using genetic algorithms in constrained optimization problems as it is concluded in this paper
Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian
2018-03-20
The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.
Directory of Open Access Journals (Sweden)
Saleh LAshkari
2016-06-01
Full Text Available Selecting optimal features based on nature of the phenomenon and high discriminant ability is very important in the data classification problems. Since it doesn't require any assumption about stationary condition and size of the signal and the noise in Recurrent Quantification Analysis (RQA, it may be useful for epileptic seizure Detection. In this study, RQA was used to discriminate ictal EEG from the normal EEG where optimal features selected by combination of algorithm genetic and Bayesian Classifier. Recurrence plots of hundred samples in each two categories were obtained with five distance norms in this study: Euclidean, Maximum, Minimum, Normalized and Fixed Norm. In order to choose optimal threshold for each norm, ten threshold of ε was generated and then the best feature space was selected by genetic algorithm in combination with a bayesian classifier. The results shown that proposed method is capable of discriminating the ictal EEG from the normal EEG where for Minimum norm and 0.1˂ε˂1, accuracy was 100%. In addition, the sensitivity of proposed framework to the ε and the distance norm parameters was low. The optimal feature presented in this study is Trans which it was selected in most feature spaces with high accuracy.
Novel Verification Method for Timing Optimization Based on DPSO
Directory of Open Access Journals (Sweden)
Chuandong Chen
2018-01-01
Full Text Available Timing optimization for logic circuits is one of the key steps in logic synthesis. Extant research data are mainly proposed based on various intelligence algorithms. Hence, they are neither comparable with timing optimization data collected by the mainstream electronic design automation (EDA tool nor able to verify the superiority of intelligence algorithms to the EDA tool in terms of optimization ability. To address these shortcomings, a novel verification method is proposed in this study. First, a discrete particle swarm optimization (DPSO algorithm was applied to optimize the timing of the mixed polarity Reed-Muller (MPRM logic circuit. Second, the Design Compiler (DC algorithm was used to optimize the timing of the same MPRM logic circuit through special settings and constraints. Finally, the timing optimization results of the two algorithms were compared based on MCNC benchmark circuits. The timing optimization results obtained using DPSO are compared with those obtained from DC, and DPSO demonstrates an average reduction of 9.7% in the timing delays of critical paths for a number of MCNC benchmark circuits. The proposed verification method directly ascertains whether the intelligence algorithm has a better timing optimization ability than DC.
Optimal Economic Operation of Islanded Microgrid by Using a Modified PSO Algorithm
Directory of Open Access Journals (Sweden)
Yiwei Ma
2015-01-01
Full Text Available An optimal economic operation method is presented to attain a joint-optimization of cost reduction and operation strategy for islanded microgrid, which includes renewable energy source, the diesel generator, and battery storage system. The optimization objective is to minimize the overall generating cost involving depreciation cost, operation cost, emission cost, and economic subsidy available for renewable energy source, while satisfying various equality and inequality constraints. A novel dynamic optimization process is proposed based on two different operation control modes where diesel generator or battery storage acts as the master unit to maintain the system frequency and voltage stability, and a modified particle swarm optimization algorithm is applied to get faster solution to the practical economic operation problem of islanded microgrid. With the example system of an actual islanded microgrid in Dongao Island, China, the proposed models, dynamic optimization strategy, and solution algorithm are verified and the influences of different operation strategies and optimization algorithms on the economic operation are discussed. The results achieved demonstrate the effectiveness and feasibility of the proposed method.
Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm
Directory of Open Access Journals (Sweden)
V. Rajinikanth
2012-01-01
Full Text Available An enhanced bacteria foraging optimization (EBFO algorithm-based Proportional + integral + derivative (PID controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.
Multi-objective optimal design of sandwich panels using a genetic algorithm
Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow
2017-10-01
In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.
Single Allocation Hub-and-spoke Networks Design Based on Ant Colony Optimization Algorithm
Directory of Open Access Journals (Sweden)
Yang Pingle
2014-10-01
Full Text Available Capacitated single allocation hub-and-spoke networks can be abstracted as a mixed integer linear programming model equation with three variables. Introducing an improved ant colony algorithm, which has six local search operators. Meanwhile, introducing the "Solution Pair" concept to decompose and optimize the composition of the problem, the problem can become more specific and effectively meet the premise and advantages of using ant colony algorithm. Finally, location simulation experiment is made according to Australia Post data to demonstrate this algorithm has good efficiency and stability for solving this problem.
Directory of Open Access Journals (Sweden)
Yue Wu
2017-01-01
Full Text Available Firefly Algorithm (FA, for short is inspired by the social behavior of fireflies and their phenomenon of bioluminescent communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization for trusses with discrete design variables. Firstly, development of structural topology optimization method and the basic principle of standard FA are introduced in detail. Then, in order to apply the algorithm to optimization problems with discrete variables, the initial positions of fireflies and the position updating formula are discretized. By embedding the random-weight and enhancing the attractiveness, the performance of this algorithm is improved, and thus an Improved Firefly Algorithm (IFA, for short is proposed. Furthermore, using size variables which are capable of including topology variables and size and topology optimization for trusses with discrete variables is formulated based on the Ground Structure Approach. The essential techniques of variable elastic modulus technology and geometric construction analysis are applied in the structural analysis process. Subsequently, an optimization method for the size and topological design of trusses based on the IFA is introduced. Finally, two numerical examples are shown to verify the feasibility and efficiency of the proposed method by comparing with different deterministic methods.
Algorithm comparison for schedule optimization in MR fingerprinting.
Cohen, Ouri; Rosen, Matthew S
2017-09-01
In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.
Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm
Hasançebi, O.; Kazemzadeh Azad, S.
2014-01-01
This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.
An algorithm for online optimization of accelerators
Energy Technology Data Exchange (ETDEWEB)
Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Safranek, James [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Juhao [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2013-10-01
We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.
Optimal reservoir operation policies using novel nested algorithms
Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri
2015-04-01
Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.
Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu
2018-06-01
An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.
Directory of Open Access Journals (Sweden)
P. Αhmadi
2017-10-01
Full Text Available This paper deals with optimal resources planning in a residential complex energy system, including FC (fuel cell, PV (Photovoltaic panels and the battery. A day-ahead energy management system (EMS based on invasive weed optimization (IWO algorithm is defined for managing different resources to determine an optimal operation schedule for the energy resources at each time interval to minimize the operation cost of a smart residential complex energy system. Moreover, in this paper the impacts of the sell to grid and purchase from grid are also considered. All practical constraints of the each energy resources and utility policies are taken into account. Moreover, sensitivity analysis are conducted on electricity prices and sell to grid factor (SGF, in order to improve understanding the impact of key parameters on residential CHP systems economy. It is shown that proposed system can meet all electrical and thermal demands with economic point of view. Also enhancement of electricity price leads to substantial growth in utilization of proposed CHP system.
Directory of Open Access Journals (Sweden)
P.-Y. Chen
2009-01-01
Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Schirru, Roberto; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia
1997-12-01
This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs.
PWR loading pattern optimization using Harmony Search algorithm
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.
2013-01-01
Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems
Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm
Directory of Open Access Journals (Sweden)
V. D. Sulimov
2014-01-01
Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search
Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-03-01
Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality of wolf is possessing both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .
Development of Base Transceiver Station Selection Algorithm for ...
African Journals Online (AJOL)
TEMS) equipment was carried out on the existing BTSs, and a linear algorithm optimization program based on the spectral link efficiency of each BTS was developed, the output of this site optimization gives the selected number of base station sites ...
Optimization of wind farm turbines layout using an evolutive algorithm
International Nuclear Information System (INIS)
Gonzalez, Javier Serrano; Santos, Jesus Riquelme; Payan, Manuel Burgos; Gonzalez Rodriguez, Angel G.; Mora, Jose Castro
2010-01-01
The optimum wind farm configuration problem is discussed in this paper and an evolutive algorithm to optimize the wind farm layout is proposed. The algorithm's optimization process is based on a global wind farm cost model using the initial investment and the present value of the yearly net cash flow during the entire wind-farm life span. The proposed algorithm calculates the yearly income due to the sale of the net generated energy taking into account the individual wind turbine loss of production due to wake decay effects and it can deal with areas or terrains with non-uniform load-bearing capacity soil and different roughness length for every wind direction or restrictions such as forbidden areas or limitations in the number of wind turbines or the investment. The results are first favorably compared with those previously published and a second collection of test cases is used to proof the performance and suitability of the proposed evolutive algorithm to find the optimum wind farm configuration. (author)
International Nuclear Information System (INIS)
Mihaylov, I. B.; Siebers, J. V.
2008-01-01
The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Multi-objective optimization with estimation of distribution algorithm in a noisy environment.
Shim, Vui Ann; Tan, Kay Chen; Chia, Jun Yong; Al Mamun, Abdullah
2013-01-01
Many real-world optimization problems are subjected to uncertainties that may be characterized by the presence of noise in the objective functions. The estimation of distribution algorithm (EDA), which models the global distribution of the population for searching tasks, is one of the evolutionary computation techniques that deals with noisy information. This paper studies the potential of EDAs; particularly an EDA based on restricted Boltzmann machines that handles multi-objective optimization problems in a noisy environment. Noise is introduced to the objective functions in the form of a Gaussian distribution. In order to reduce the detrimental effect of noise, a likelihood correction feature is proposed to tune the marginal probability distribution of each decision variable. The EDA is subsequently hybridized with a particle swarm optimization algorithm in a discrete domain to improve its search ability. The effectiveness of the proposed algorithm is examined via eight benchmark instances with different characteristics and shapes of the Pareto optimal front. The scalability, hybridization, and computational time are rigorously studied. Comparative studies show that the proposed approach outperforms other state of the art algorithms.
A modified teaching–learning based optimization for multi-objective optimal power flow problem
International Nuclear Information System (INIS)
Shabanpour-Haghighi, Amin; Seifi, Ali Reza; Niknam, Taher
2014-01-01
Highlights: • A new modified teaching–learning based algorithm is proposed. • A self-adaptive wavelet mutation strategy is used to enhance the performance. • To avoid reaching a large repository size, a fuzzy clustering technique is used. • An efficiently smart population selection is utilized. • Simulations show the superiority of this algorithm compared with other ones. - Abstract: In this paper, a modified teaching–learning based optimization algorithm is analyzed to solve the multi-objective optimal power flow problem considering the total fuel cost and total emission of the units. The modified phase of the optimization algorithm utilizes a self-adapting wavelet mutation strategy. Moreover, a fuzzy clustering technique is proposed to avoid extremely large repository size besides a smart population selection for the next iteration. These techniques make the algorithm searching a larger space to find the optimal solutions while speed of the convergence remains good. The IEEE 30-Bus and 57-Bus systems are used to illustrate performance of the proposed algorithm and results are compared with those in literatures. It is verified that the proposed approach has better performance over other techniques
MICRONEEDLE STRUCTURE DESIGN AND OPTIMIZATION USING GENETIC ALGORITHM
N. A. ISMAIL; S. C. NEOH; N. SABANI; B. N. TAIB
2015-01-01
This paper presents a Genetic Algorithm (GA) based microneedle design and analysis. GA is an evolutionary optimization technique that mimics the natural biological evolution. The design of microneedle structure considers the shape of microneedle, material used, size of the array, the base of microneedle, the lumen base, the height of microneedle, the height of the lumen, and the height of the drug container or reservoir. The GA is executed in conjunction with ANSYS simulation system to assess...
International Nuclear Information System (INIS)
Lapa, Celso M. Franklin; Pereira, Claudio M.N.A.; Mol, Antonio C. de Abreu
1999-01-01
This paper presents a solution based on genetic algorithm and probabilistic safety analysis that can be applied in the optimization of the preventive maintenance politic of nuclear power plant safety systems. The goal of this approach is to improve the average availability of the system through the optimization of the preventive maintenance scheduling politic. The auxiliary feed water system of a two loops pressurized water reactor is used as a sample case, in order to demonstrate the effectiveness of the proposed method. The results, when compared to those obtained by some standard maintenance politics, reveal quantitative gains and operational safety levels. (author)
Directory of Open Access Journals (Sweden)
Shao-Fei Jiang
2014-01-01
Full Text Available Optimization techniques have been applied to structural health monitoring and damage detection of civil infrastructures for two decades. The standard particle swarm optimization (PSO is easy to fall into the local optimum and such deficiency also exists in the multiparticle swarm coevolution optimization (MPSCO. This paper presents an improved MPSCO algorithm (IMPSCO firstly and then integrates it with Newmark’s algorithm to localize and quantify the structural damage by using the damage threshold proposed. To validate the proposed method, a numerical simulation and an experimental study of a seven-story steel frame were employed finally, and a comparison was made between the proposed method and the genetic algorithm (GA. The results show threefold: (1 the proposed method not only is capable of localization and quantification of damage, but also has good noise-tolerance; (2 the damage location can be accurately detected using the damage threshold proposed in this paper; and (3 compared with the GA, the IMPSCO algorithm is more efficient and accurate for damage detection problems in general. This implies that the proposed method is applicable and effective in the community of damage detection and structural health monitoring.
Directory of Open Access Journals (Sweden)
Marco Scutari
2017-03-01
Full Text Available It is well known in the literature that the problem of learning the structure of Bayesian networks is very hard to tackle: Its computational complexity is super-exponential in the number of nodes in the worst case and polynomial in most real-world scenarios. Efficient implementations of score-based structure learning benefit from past and current research in optimization theory, which can be adapted to the task by using the network score as the objective function to maximize. This is not true for approaches based on conditional independence tests, called constraint-based learning algorithms. The only optimization in widespread use, backtracking, leverages the symmetries implied by the definitions of neighborhood and Markov blanket. In this paper we illustrate how backtracking is implemented in recent versions of the bnlearn R package, and how it degrades the stability of Bayesian network structure learning for little gain in terms of speed. As an alternative, we describe a software architecture and framework that can be used to parallelize constraint-based structure learning algorithms (also implemented in bnlearn and we demonstrate its performance using four reference networks and two real-world data sets from genetics and systems biology. We show that on modern multi-core or multiprocessor hardware parallel implementations are preferable over backtracking, which was developed when single-processor machines were the norm.
Optimal Quadratic Programming Algorithms
Dostal, Zdenek
2009-01-01
Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers
Cloud Service Scheduling Algorithm Research and Optimization
Directory of Open Access Journals (Sweden)
Hongyan Cui
2017-01-01
Full Text Available We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS. In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective function and use an Ant Colony Optimization (ACO and a Genetic Algorithm (GA to solve the problem of cloud task scheduling. Simulation results show that the convergence speed and output performance of our Genetic Algorithm-Chaos Ant Colony Optimization (GA-CACO are optimal.
Gems of combinatorial optimization and graph algorithms
Skutella, Martin; Stiller, Sebastian; Wagner, Dorothea
2015-01-01
Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory? Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar? Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science? Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas. Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks. This ...
International Nuclear Information System (INIS)
Abreu Pereira, Claudio Marcio Nascimento do; Schirru, Roberto; Martinez, Aquilino Senra
1999-01-01
Here is presented an engineering optimization tool based on a genetic algorithm, implemented according to the method proposed in recent work that has demonstrated the feasibility of the use of this technique in nuclear reactor core designs. The tool is simulator-independent in the sense that it can be customized to use most of the simulators which have the input parameters read from formatted text files and the outputs also written from a text file. As the nuclear reactor simulators generally use such kind of interface, the proposed tool plays an important role in nuclear reactor designs. Research reactors may often use non-conventional design approaches, causing different situations that may lead the nuclear engineer to face new optimization problems. In this case, a good optimization technique, together with its customizing facility and a friendly man-machine interface could be very interesting. Here, the tool is described and some advantages are outlined. (author)
Directory of Open Access Journals (Sweden)
Zhihao Zhao
2016-08-01
Full Text Available In this paper, an optimization method is proposed for the energy link in a wireless power transfer grid, which is a regional smart microgrid comprised of distributed devices equipped with wireless power transfer technology in a certain area. The relevant optimization model of the energy link is established by considering the wireless power transfer characteristics and the grid characteristics brought in by the device repeaters. Then, a concentration adaptive genetic algorithm (CAGA is proposed to optimize the energy link. The algorithm avoided the unification trend by introducing the concentration mechanism and a new crossover method named forward order crossover, as well as the adaptive parameter mechanism, which are utilized together to keep the diversity of the optimization solution groups. The results show that CAGA is feasible and competitive for the energy link optimization in different situations. This proposed algorithm performs better than its counterparts in the global convergence ability and the algorithm robustness.
Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm
Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda
2017-04-01
Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.
International Nuclear Information System (INIS)
Kefayat, M.; Lashkar Ara, A.; Nabavi Niaki, S.A.
2015-01-01
Highlights: • A probabilistic optimization framework incorporated with uncertainty is proposed. • A hybrid optimization approach combining ACO and ABC algorithms is proposed. • The problem is to deal with technical, environmental and economical aspects. • A fuzzy interactive approach is incorporated to solve the multi-objective problem. • Several strategies are implemented to compare with literature methods. - Abstract: In this paper, a hybrid configuration of ant colony optimization (ACO) with artificial bee colony (ABC) algorithm called hybrid ACO–ABC algorithm is presented for optimal location and sizing of distributed energy resources (DERs) (i.e., gas turbine, fuel cell, and wind energy) on distribution systems. The proposed algorithm is a combined strategy based on the discrete (location optimization) and continuous (size optimization) structures to achieve advantages of the global and local search ability of ABC and ACO algorithms, respectively. Also, in the proposed algorithm, a multi-objective ABC is used to produce a set of non-dominated solutions which store in the external archive. The objectives consist of minimizing power losses, total emissions produced by substation and resources, total electrical energy cost, and improving the voltage stability. In order to investigate the impact of the uncertainty in the output of the wind energy and load demands, a probabilistic load flow is necessary. In this study, an efficient point estimate method (PEM) is employed to solve the optimization problem in a stochastic environment. The proposed algorithm is tested on the IEEE 33- and 69-bus distribution systems. The results demonstrate the potential and effectiveness of the proposed algorithm in comparison with those of other evolutionary optimization methods
International Nuclear Information System (INIS)
Dutta, Rajdeep; Ganguli, Ranjan; Mani, V
2011-01-01
Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures
A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision
Directory of Open Access Journals (Sweden)
loubna benchikhi
2017-10-01
Full Text Available Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO, reinforcement learning (RL and ant colony optimization (ACO show the efficiency of this novel method.
Characteristic statistic algorithm (CSA) for in-core loading pattern optimization
International Nuclear Information System (INIS)
Liu Zhihong; Hu Yongming; Shi Gong
2007-01-01
To solve the problem of PWR in-core loading pattern optimization, a more suitable global optimization algorithm, i.e., Characteristic statistic algorithm (CSA), is used. The searching process of this algorithm and how to apply it to this problem are presented. Loading pattern optimization code SCYCLE is developed. Two different problems on real PWR models are calculated and the results are compared with other algorithms. It is shown that SCYCLE has high efficiency and good global performance on this problem. (authors)
An Algorithm for Global Optimization Inspired by Collective Animal Behavior
Directory of Open Access Journals (Sweden)
Erik Cuevas
2012-01-01
Full Text Available A metaheuristic algorithm for global optimization called the collective animal behavior (CAB is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.
Directory of Open Access Journals (Sweden)
Mangal Singh
2017-12-01
Full Text Available This paper considers the use of the Partial Transmit Sequence (PTS technique to reduce the Peak‐to‐Average Power Ratio (PAPR of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search‐based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2017-02-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
International Nuclear Information System (INIS)
Coban, Ramazan
2011-01-01
Research highlights: → A closed-loop fuzzy logic controller based on the particle swarm optimization algorithm was proposed for controlling the power level of nuclear research reactors. → The proposed control system was tested for various initial and desired power levels, and it could control the reactor successfully for most situations. → The proposed controller is robust against the disturbances. - Abstract: In this paper, a closed-loop fuzzy logic controller based on the particle swarm optimization algorithm is proposed for controlling the power level of nuclear research reactors. The principle of the fuzzy logic controller is based on the rules constructed from numerical experiments made by means of a computer code for the core dynamics calculation and from human operator's experience and knowledge. In addition to these intuitive and experimental design efforts, consequent parts of the fuzzy rules are optimally (or near optimally) determined using the particle swarm optimization algorithm. The contribution of the proposed algorithm to a reactor control system is investigated in details. The performance of the controller is also tested with numerical simulations in numerous operating conditions from various initial power levels to desired power levels, as well as under disturbance. It is shown that the proposed control system performs satisfactorily under almost all operating conditions, even in the case of very small initial power levels.
A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters
Wang, Zhihao; Yi, Jing
2016-01-01
For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291
Directory of Open Access Journals (Sweden)
Heba Ahmed Hassan
2017-01-01
Full Text Available This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO algorithm for Optimal Power Flow (OPF of two-terminal High Voltage Direct Current (HVDC electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm.
Directory of Open Access Journals (Sweden)
Rasoul Rajabpour
2017-01-01
Full Text Available Recent decades have witnessed growing applications of metaheuristic techniques as efficient tools for solving complex engineering problems. One such method is the JPSO algorithm. In this study, innovative modifications were made in the nature of the jump algorithm JPSO to make it capable of coping with graph-based solutions, which led to the development of a new algorithm called ‘G-JPSO’. The new algorithm was then used to solve the Fletcher-Powell optimal control problem and its application to optimal control of pumps in water distribution networks was evaluated. Optimal control of pumps consists in an optimum operation timetable (on and off for each of the pumps at the desired time interval. Maximum number of on and off positions for each pump was introduced into the objective function as a constraint such that not only would power consumption at each node be reduced but such problem requirements as the minimum pressure required at each node and minimum/maximum storage tank heights would be met. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The model proposed by van Zyl was used to determine the optimal operation of the distribution network. Finally, the results obtained from the proposed algorithm were compared with those obtained from ant colony, genetic, and JPSO algorithms to show the robustness of the proposed algorithm in finding near-optimum solutions at reasonable computation costs.
Simulation-based optimization parametric optimization techniques and reinforcement learning
Gosavi, Abhijit
2003-01-01
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...
Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding
Directory of Open Access Journals (Sweden)
Linguo Li
2017-01-01
Full Text Available The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO, which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur’s entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO, the differential evolution (DE, the Artifical Bee Colony (ABC, and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability.
Directory of Open Access Journals (Sweden)
Shuyu Dai
2018-01-01
Full Text Available Daily peak load forecasting is an important part of power load forecasting. The accuracy of its prediction has great influence on the formulation of power generation plan, power grid dispatching, power grid operation and power supply reliability of power system. Therefore, it is of great significance to construct a suitable model to realize the accurate prediction of the daily peak load. A novel daily peak load forecasting model, CEEMDAN-MGWO-SVM (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, is proposed in this paper. Firstly, the model uses the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN algorithm to decompose the daily peak load sequence into multiple sub sequences. Then, the model of modified grey wolf optimization and support vector machine (MGWO-SVM is adopted to forecast the sub sequences. Finally, the forecasting sequence is reconstructed and the forecasting result is obtained. Using CEEMDAN can realize noise reduction for non-stationary daily peak load sequence, which makes the daily peak load sequence more regular. The model adopts the grey wolf optimization algorithm improved by introducing the population dynamic evolution operator and the nonlinear convergence factor to enhance the global search ability and avoid falling into the local optimum, which can better optimize the parameters of the SVM algorithm for improving the forecasting accuracy of daily peak load. In this paper, three cases are used to test the forecasting accuracy of the CEEMDAN-MGWO-SVM model. We choose the models EEMD-MGWO-SVM (Ensemble Empirical Mode Decomposition and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, MGWO-SVM (Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, GWO-SVM (Support Vector Machine Optimized by Grey Wolf Optimization Algorithm, SVM (Support Vector
Optimization of reconstruction algorithms using Monte Carlo simulation
International Nuclear Information System (INIS)
Hanson, K.M.
1989-01-01
A method for optimizing reconstruction algorithms is presented that is based on how well a specified task can be performed using the reconstructed images. Task performance is numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate to the desired application, subsequent data taking, reconstruction, and performance of the stated task based on the final image. The use of this method is demonstrated through the optimization of the Algebraic Reconstruction Technique (ART), which reconstructs images from their projections by a iterative procedure. The optimization is accomplished by varying the relaxation factor employed in the updating procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, in which a nonnegativity constraint is invoked, can vastly increase the detectability of objects. There is little improvement attained for unconstrained ART. The general method presented may be applied to the problem of designing neutron-diffraction spectrometers. 11 refs., 6 figs., 2 tabs
Optimization of reconstruction algorithms using Monte Carlo simulation
International Nuclear Information System (INIS)
Hanson, K.M.
1989-01-01
A method for optimizing reconstruction algorithms is presented that is based on how well a specified task can be performed using the reconstructed images. Task performance is numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate to the desired application, subsequent data taking, reconstruction, and performance of the stated task based on the final image. The use of this method is demonstrated through the optimization of the Algebraic Reconstruction Technique (ART), which reconstructs images from their projections by an iterative procedure. The optimization is accomplished by varying the relaxation factor employed in the updating procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, in which a non-negativity constraint is invoked, can vastly increase the detectability of objects. There is little improvement attained for unconstrained ART. The general method presented may be applied to the problem of designing neutron-diffraction spectrometers. (author)
AntStar: Enhancing Optimization Problems by Integrating an Ant System and A⁎ Algorithm
Directory of Open Access Journals (Sweden)
Mohammed Faisal
2016-01-01
Full Text Available Recently, nature-inspired techniques have become valuable to many intelligent systems in different fields of technology and science. Among these techniques, Ant Systems (AS have become a valuable technique for intelligent systems in different fields. AS is a computational system inspired by the foraging behavior of ants and intended to solve practical optimization problems. In this paper, we introduce the AntStar algorithm, which is swarm intelligence based. AntStar enhances the optimization and performance of an AS by integrating the AS and A⁎ algorithm. Applying the AntStar algorithm to the single-source shortest-path problem has been done to ensure the efficiency of the proposed AntStar algorithm. The experimental result of the proposed algorithm illustrated the robustness and accuracy of the AntStar algorithm.
Genetic algorithm trajectory plan optimization for EAMA: EAST Articulated Maintenance Arm
Energy Technology Data Exchange (ETDEWEB)
Wu, Jing, E-mail: wujing@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd., Hefei, Anhui (China); Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland); Wu, Huapeng [Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland); Song, Yuntao; Cheng, Yong; Zhao, Wenglong [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd., Hefei, Anhui (China); Wang, Yongbo [Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland)
2016-11-01
Highlights: • A redundant 10-DOF serial-articulated robot for EAST assembly and maintains is presented. • A trajectory optimization algorithm of the robot is developed. • A minimum jerk objective is presented to suppress machining vibration of the robot. - Abstract: EAMA (EAST Articulated Maintenance Arm) is an articulated serial manipulator with 7 degrees of freedom (DOF) articulated arm followed by 3-DOF gripper, total length is 8.867 m, works in experimental advanced superconductor tokamak (EAST) vacuum vessel (VV) to perform blanket inspection and remote maintenance tasks. This paper presents a trajectory optimization method which aims to pursue the 7-DOF articulated arm a stable movement, which keeps the mounted inspection camera anti-vibration. Based on dynamics analysis, trajectory optimization algorithm adopts multi-order polynomial interpolation in joint space and high order geometry Jacobian transform. The object of optimization algorithm is to suppress end-effector movement vibration by minimizing jerk RMS (root mean square) value. The proposed solution has such characteristics which can satisfy kinematic constraints of EAMA’s motion and ensure the arm running under the absolute values of velocity, acceleration and jerk boundaries. GA (genetic algorithm) is employed to find global and robust solution for this problem.
Directory of Open Access Journals (Sweden)
B. Y. Qu
2017-01-01
Full Text Available Portfolio optimization problems involve selection of different assets to invest in order to maximize the overall return and minimize the overall risk simultane