WorldWideScience

Sample records for algorithm based optimization

  1. Smell Detection Agent Based Optimization Algorithm

    Science.gov (United States)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  2. Development of GPT-based optimization algorithm

    International Nuclear Information System (INIS)

    White, J.R.; Chapman, D.M.; Biswas, D.

    1985-01-01

    The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme

  3. Warehouse Optimization Model Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2013-01-01

    Full Text Available This paper takes Bao Steel logistics automated warehouse system as an example. The premise is to maintain the focus of the shelf below half of the height of the shelf. As a result, the cost time of getting or putting goods on the shelf is reduced, and the distance of the same kind of goods is also reduced. Construct a multiobjective optimization model, using genetic algorithm to optimize problem. At last, we get a local optimal solution. Before optimization, the average cost time of getting or putting goods is 4.52996 s, and the average distance of the same kinds of goods is 2.35318 m. After optimization, the average cost time is 4.28859 s, and the average distance is 1.97366 m. After analysis, we can draw the conclusion that this model can improve the efficiency of cargo storage.

  4. Genetic based optimization for multicast routing algorithm for MANET

    Indian Academy of Sciences (India)

    In this paper, a Hybrid Genetic Based Optimization for Multicast Routing algorithm is proposed. The proposed algorithm uses the best features of Genetic Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Simulations were conducted by varying number of mobile nodes and results compared with ...

  5. Adaptive Central Force Optimization Algorithm Based on the Stability Analysis

    Directory of Open Access Journals (Sweden)

    Weiyi Qian

    2015-01-01

    Full Text Available In order to enhance the convergence capability of the central force optimization (CFO algorithm, an adaptive central force optimization (ACFO algorithm is presented by introducing an adaptive weight and defining an adaptive gravitational constant. The adaptive weight and gravitational constant are selected based on the stability theory of discrete time-varying dynamic systems. The convergence capability of ACFO algorithm is compared with the other improved CFO algorithm and evolutionary-based algorithm using 23 unimodal and multimodal benchmark functions. Experiments results show that ACFO substantially enhances the performance of CFO in terms of global optimality and solution accuracy.

  6. Mixed-Integer Constrained Optimization Based on Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Y.C. Lin

    2013-04-01

    Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators with local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-based search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a memetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most of real-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order to effectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solve the mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on two benchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithm can find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposed memetic algorithm is a good approach to mixed-integer optimization problems.

  7. Optimization algorithm based on densification and dynamic canonical descent

    Science.gov (United States)

    Bousson, K.; Correia, S. D.

    2006-07-01

    Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.

  8. Mixed-Integer Constrained Optimization Based on Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Y. C. Lin

    2013-03-01

    Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied tomany complex optimization problems. However, EAs are frequently incapable of finding a convergence solution indefault of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators withlocal search methods. With global exploration and local exploitation in search space, MAs are capable of obtainingmore high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-basedsearch algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, amemetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most ofreal-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order toeffectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solvethe mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on twobenchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithmcan find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposedmemetic algorithm is a good approach to mixed-integer optimization problems.

  9. Teaching learning based optimization algorithm and its engineering applications

    CERN Document Server

    Rao, R Venkata

    2016-01-01

    Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.

  10. Analog Circuit Design Optimization Based on Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Mansour Barari

    2014-01-01

    Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.

  11. Genetic based optimization for multicast routing algorithm for MANET

    Indian Academy of Sciences (India)

    Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Sim- ulations were conducted by varying number of mobile nodes and results compared with Multicast AODV (MAODV) protocol, PSO based and GA based solution. The proposed optimization improves jitter, end to end delay and Packet Delivery ...

  12. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  13. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  14. Segment-based dose optimization using a genetic algorithm

    International Nuclear Information System (INIS)

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  15. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    Science.gov (United States)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  16. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  17. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  18. Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2008-01-01

    The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life

  19. CFSO3: A New Supervised Swarm-Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2013-01-01

    Full Text Available We present CFSO3, an optimization heuristic within the class of the swarm intelligence, based on a synergy among three different features of the Continuous Flock-of-Starlings Optimization. One of the main novelties is that this optimizer is no more a classical numerical algorithm since it now can be seen as a continuous dynamic system, which can be treated by using all the mathematical instruments available for managing state equations. In addition, CFSO3 allows passing from stochastic approaches to supervised deterministic ones since the random updating of parameters, a typical feature for numerical swam-based optimization algorithms, is now fully substituted by a supervised strategy: in CFSO3 the tuning of parameters is a priori designed for obtaining both exploration and exploitation. Indeed the exploration, that is, the escaping from a local minimum, as well as the convergence and the refinement to a solution can be designed simply by managing the eigenvalues of the CFSO state equations. Virtually in CFSO3, just the initial values of positions and velocities of the swarm members have to be randomly assigned. Both standard and parallel versions of CFSO3 together with validations on classical benchmarks are presented.

  20. Chaos Time Series Prediction Based on Membrane Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Meng Li

    2015-01-01

    Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.

  1. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    Science.gov (United States)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  2. Optimization of Pressurizer Based on Genetic-Simplex Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun [Harbin Engineering University, Harbin (China)

    2014-08-15

    Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design.

  3. Optimization of Pressurizer Based on Genetic-Simplex Algorithm

    International Nuclear Information System (INIS)

    Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun

    2014-01-01

    Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design

  4. Optimization of Catalysts Using Specific, Description-Based Genetic Algorithms

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Čukić, T.; Rodemerck, U.; Linke, D.

    2008-01-01

    Roč. 48, č. 2 (2008), s. 274-282 ISSN 1549-9596 R&D Projects: GA ČR GA201/08/1744 Institutional research plan: CEZ:AV0Z10300504 Keywords : optimization of catalytic materials * genetic algorithm s * mixed optimization * constrained optimization Subject RIV: IN - Informatics, Computer Science Impact factor: 3.643, year: 2008

  5. Optimization of wireless sensor networks based on chicken swarm optimization algorithm

    Science.gov (United States)

    Wang, Qingxi; Zhu, Lihua

    2017-05-01

    In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.

  6. Multiphase Return Trajectory Optimization Based on Hybrid Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2016-01-01

    Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.

  7. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.

    Science.gov (United States)

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-04-17

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.

  8. Compressive Sensing Image Fusion Based on Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Li, X.; Lv, J.; Jiang, S.; Zhou, H.

    2017-09-01

    In order to solve the problem that the spatial matching is difficult and the spectral distortion is large in traditional pixel-level image fusion algorithm. We propose a new method of image fusion that utilizes HIS transformation and the recently developed theory of compressive sensing that is called HIS-CS image fusion. In this algorithm, the particle swarm optimization algorithm is used to select the fusion coefficient ω. In the iterative process, the image fusion coefficient ω is taken as particle, and the optimal value is obtained by combining the optimal objective function. Then we use the compression-aware weighted fusion algorithm for remote sensing image fusion, taking the coefficient ω as the weight value. The algorithm ensures the optimal selection of fusion effect with a certain degree of self-adaptability. To evaluate the fused images, this paper uses five kinds of index parameters such as Entropy, Standard Deviation, Average Gradient, Degree of Distortion and Peak Signal-to-Noise Ratio. The experimental results show that the image fusion effect of the algorithm in this paper is better than that of traditional methods.

  9. Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Xiuli Wu

    2017-01-01

    Full Text Available Water wave optimization (WWO is a novel metaheuristic method that is based on shallow water wave theory, which has simple structure, easy realization, and good performance even with a small population. To improve the convergence speed and calculation precision even further, this paper on elite opposition-based strategy water wave optimization (EOBWWO is proposed, and it has been applied for function optimization and structure engineering design problems. There are three major optimization strategies in the improvement: elite opposition-based (EOB learning strategy enhances the diversity of population, local neighborhood search strategy is introduced to enhance local search in breaking operation, and improved propagation operator provides the improved algorithm with a better balance between exploration and exploitation. EOBWWO algorithm is verified by using 20 benchmark functions and two structure engineering design problems and the performance of EOBWWO is compared against those of the state-of-the-art algorithms. Experimental results show that the proposed algorithm has faster convergence speed, higher calculation precision, with the exact solution being even obtained on some benchmark functions, and a higher degree of stability than other comparative algorithms.

  10. Energy Optimal Control Strategy of PHEV Based on PMP Algorithm

    Directory of Open Access Journals (Sweden)

    Tiezhou Wu

    2017-01-01

    Full Text Available Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV, from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC, which is hybrid energy storage system (Li-SC HESS, working together with internal combustion engine (ICE to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.

  11. Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm

    International Nuclear Information System (INIS)

    Chaudhary, Kailash; Chaudhary, Himanshu

    2015-01-01

    In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).

  12. Arc Based Ant Colony Optimization Algorithm for optimal design of gravitational sewer networks

    Directory of Open Access Journals (Sweden)

    R. Moeini

    2017-06-01

    Full Text Available In this paper, constrained and unconstrained versions of a new formulation of Ant Colony Optimization Algorithm (ACOA named Arc Based Ant Colony Optimization Algorithm (ABACOA are augmented with the Tree Growing Algorithm (TGA and used for the optimal layout and pipe size design of gravitational sewer networks. The main advantages offered by the proposed ABACOA formulation are proper definition of heuristic information, a useful component of the ant-based algorithms, and proper trade-off between the two conflicting search attributes of exploration and exploitation. In both the formulations, the TGA is used to incrementally construct feasible tree-like layouts out of the base layout. In the first formulation, unconstrained version of ABACOA is used to determine the nodal cover depths of sewer pipes while in the second formulation, a constrained version of ABACOA is used to determine the nodal cover depths of sewer pipes which satisfy the pipe slopes constraint. Three different methods of cut determination are also proposed to complete the construction of a tree-like network containing all base layout pipes, here. The proposed formulations are used to solve three test examples of different scales and the results are presented and compared with other available results in the literature. Comparison of the results shows that best results are obtained using the third cutting method in both the formulations. In addition, the results indicate the ability of the proposed methods and in particular the constrained version of ABACOA equipped with TGA to solve sewer networks design optimization problem. To be specific, the constrained version of ABACOA has been able to produce results 0.1%, 1% and 2.1% cheaper than those obtained by the unconstrained version of ABACOA for the first, second and the third test examples, respectively.

  13. A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2013-01-01

    Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.

  14. Optimal Sensor Placement for Latticed Shell Structure Based on an Improved Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2014-01-01

    Full Text Available Optimal sensor placement is a key issue in the structural health monitoring of large-scale structures. However, some aspects in existing approaches require improvement, such as the empirical and unreliable selection of mode and sensor numbers and time-consuming computation. A novel improved particle swarm optimization (IPSO algorithm is proposed to address these problems. The approach firstly employs the cumulative effective modal mass participation ratio to select mode number. Three strategies are then adopted to improve the PSO algorithm. Finally, the IPSO algorithm is utilized to determine the optimal sensors number and configurations. A case study of a latticed shell model is implemented to verify the feasibility of the proposed algorithm and four different PSO algorithms. The effective independence method is also taken as a contrast experiment. The comparison results show that the optimal placement schemes obtained by the PSO algorithms are valid, and the proposed IPSO algorithm has better enhancement in convergence speed and precision.

  15. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  16. Parameters optimization of fabric finishing system of a textile industry using teaching–learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    Rajiv Kumar

    2017-07-01

    Full Text Available In the present work, a recently developed advanced optimization algorithm named as teaching–learning-based optimization (TLBO is used for the parameters optimization of fabric finishing system of a textile industry. Fabric Finishing System has four main subsystems, arranged in hybrid configuration. For performance modeling and analysis of availability, a performance evaluating model of fabric finishing system has been developed with the help of mathematical formulation based on Markov-Birth-Death process using Probabilistic Approach. Then, the overall performance of the concerned system has first analyzed and then, optimized by using teaching–learning-based optimization (TLBO. The results of optimization using the proposed algorithm are validated by comparing with those obtained by using the genetic algorithm (GA on the same system. Improvement in the results is obtained by the proposed algorithm. The results of effect of variation of the algorithm parameters on fitness values of the objective function are reported.

  17. Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm

    International Nuclear Information System (INIS)

    Rao, R. Venkata; Rai, Dhiraj P.

    2017-01-01

    Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).

  18. Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R. Venkata; Rai, Dhiraj P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)

    2017-05-15

    Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).

  19. An Optimal Seed Based Compression Algorithm for DNA Sequences

    Directory of Open Access Journals (Sweden)

    Pamela Vinitha Eric

    2016-01-01

    Full Text Available This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms.

  20. An Optimal Seed Based Compression Algorithm for DNA Sequences.

    Science.gov (United States)

    Eric, Pamela Vinitha; Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan

    2016-01-01

    This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms.

  1. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  2. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    Science.gov (United States)

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  3. Optimal PID Controller Tuning for Multivariable Aircraft Longitudinal Autopilot Based on Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mostafa Lotfi Forushani

    2012-04-01

    Full Text Available This paper presents an optimized controller around the longitudinal axis of multivariable system in one of the aircraft flight conditions. The controller is introduced in order to control the angle of attack from the pitch attitude angle independently (that is required for designing a set of direct force-modes for the longitudinal axis based on particle swarm optimization (PSO algorithm. The autopilot system for military or civil aircraft is an essential component and in this paper, the autopilot system via 6 degree of freedom model for the control and guidance of aircraft in which the autopilot design will perform based on defining the longitudinal and the lateral-directional axes are supposed. The effectiveness of the proposed controller is illustrated by considering HIMAT aircraft. The simulation results verify merits of the proposed controller.

  4. An intelligent scheduling method based on improved particle swarm optimization algorithm for drainage pipe network

    Science.gov (United States)

    Luo, Yaqi; Zeng, Bi

    2017-08-01

    This paper researches the drainage routing problem in drainage pipe network, and propose an intelligent scheduling method. The method relates to the design of improved particle swarm optimization algorithm, the establishment of the corresponding model from the pipe network, and the process by using the algorithm based on improved particle swarm optimization to find the optimum drainage route in the current environment.

  5. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    Science.gov (United States)

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  6. A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2014-01-01

    Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.

  7. An Enhanced Differential Evolution Based Algorithm with Simulated Annealing for Solving Multiobjective Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bili Chen

    2014-01-01

    Full Text Available An enhanced differential evolution based algorithm, named multi-objective differential evolution with simulated annealing algorithm (MODESA, is presented for solving multiobjective optimization problems (MOPs. The proposed algorithm utilizes the advantage of simulated annealing for guiding the algorithm to explore more regions of the search space for a better convergence to the true Pareto-optimal front. In the proposed simulated annealing approach, a new acceptance probability computation function based on domination is proposed and some potential solutions are assigned a life cycle to have a priority to be selected entering the next generation. Moreover, it incorporates an efficient diversity maintenance approach, which is used to prune the obtained nondominated solutions for a good distributed Pareto front. The feasibility of the proposed algorithm is investigated on a set of five biobjective and two triobjective optimization problems and the results are compared with three other algorithms. The experimental results illustrate the effectiveness of the proposed algorithm.

  8. Two Kinds of Classifications Based on Improved Gravitational Search Algorithm and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Hongping Hu

    2017-01-01

    Full Text Available Gravitational Search Algorithm (GSA is a widely used metaheuristic algorithm. Although fewer parameters in GSA were adjusted, GSA has a slow convergence rate. In this paper, we change the constant acceleration coefficients to be the exponential function on the basis of combination of GSA and PSO (PSO-GSA and propose an improved PSO-GSA algorithm (written as I-PSO-GSA for solving two kinds of classifications: surface water quality and the moving direction of robots. I-PSO-GSA is employed to optimize weights and biases of backpropagation (BP neural network. The experimental results show that, being compared with combination of PSO and GSA (PSO-GSA, single PSO, and single GSA for optimizing the parameters of BP neural network, I-PSO-GSA outperforms PSO-GSA, PSO, and GSA and has better classification accuracy for these two actual problems.

  9. The optimal extraction of feature algorithm based on KAZE

    Science.gov (United States)

    Yao, Zheyi; Gu, Guohua; Qian, Weixian; Wang, Pengcheng

    2015-10-01

    As a novel method of 2D features extraction algorithm over the nonlinear scale space, KAZE provide a special method. However, the computation of nonlinear scale space and the construction of KAZE feature vectors are more expensive than the SIFT and SURF significantly. In this paper, the given image is used to build the nonlinear space up to a maximum evolution time through the efficient Additive Operator Splitting (AOS) techniques and the variable conductance diffusion. Changing the parameter can improve the construction of nonlinear scale space and simplify the image conductivities for each dimension space, with the predigest computation. Then, the detection for points of interest can exhibit a maxima of the scale-normalized determinant with the Hessian response in the nonlinear scale space. At the same time, the detection of feature vectors is optimized by the Wavelet Transform method, which can avoid the second Gaussian smoothing in the KAZE Features and cut down the complexity of the algorithm distinctly in the building and describing vectors steps. In this way, the dominant orientation is obtained, similar to SURF, by summing the responses within a sliding circle segment covering an angle of π/3 in the circular area of radius 6σ with a sampling step of size σ one by one. Finally, the extraction in the multidimensional patch at the given scale, centered over the points of interest and rotated to align its dominant orientation to a canonical direction, is able to simplify the description of feature by reducing the description dimensions, just as the PCA-SIFT method. Even though the features are somewhat more expensive to compute than SIFT due to the construction of nonlinear scale space, but compared to SURF, the result revels a step forward in performance in detection, description and application against the previous ways by the following contrast experiments.

  10. Simulated Annealing-Based Krill Herd Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Gai-Ge Wang

    2013-01-01

    Full Text Available Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH, for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH method is proposed for optimization tasks. A new krill selecting (KS operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA. In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.

  11. Genetic based optimization for multicast routing algorithm for MANET

    Indian Academy of Sciences (India)

    (2010) used Artificial Bee Colony (ABC) Optimization techniques to find optimal tree solution. Zhufang (2010) used Ant Colony Optimization (ACO) to solve the tree optimization problem. Other heuristic techniques used include Group Search Optimization (GSO) used by Beena &. Sathya (2012) and Co Evolutionary ...

  12. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  13. Multimode fiber modal decomposition based on hybrid genetic global optimization algorithm

    Science.gov (United States)

    Li, Lei; Leng, Jinyong; Zhou, Pu; Chen, Jinbao

    2017-10-01

    Numerical modal decomposition (MD) is an effective approach to reveal modal characteristics in high power fiber lasers. The main challenge is to find a suitable multi-dimensional optimization algorithm to reveal exact superposition of eigenmodes, especially for multimode fiber. A novel hybrid genetic global optimization algorithm, named GA-SPGD, which combines the advantages of genetic algorithm (GA) and stochastic parallel gradient descent (SPGD) algorithm, is firstly proposed to reduce local minima possibilities from sensitivity initial values. Firstly, GA is applied to search the rough global optimization position based on near-far-field intensity distribution with high accuracy. Upon those initial values, SPGD algorithm is afterwards used to find the exact optimization values based on near-field intensity distribution with fast convergence speed. Numerical simulations validate the feasibility and reliability.

  14. Function Optimization and Parameter Performance Analysis Based on Gravitation Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-12-01

    Full Text Available The gravitational search algorithm (GSA is a kind of swarm intelligence optimization algorithm based on the law of gravitation. The parameter initialization of all swarm intelligence optimization algorithms has an important influence on the global optimization ability. Seen from the basic principle of GSA, the convergence rate of GSA is determined by the gravitational constant and the acceleration of the particles. The optimization performances on six typical test functions are verified by the simulation experiments. The simulation results show that the convergence speed of the GSA algorithm is relatively sensitive to the setting of the algorithm parameters, and the GSA parameter can be used flexibly to improve the algorithm’s convergence velocity and improve the accuracy of the solutions.

  15. An evolutionary algorithm for global optimization based on self-organizing maps

    Science.gov (United States)

    Barmada, Sami; Raugi, Marco; Tucci, Mauro

    2016-10-01

    In this article, a new population-based algorithm for real-parameter global optimization is presented, which is denoted as self-organizing centroids optimization (SOC-opt). The proposed method uses a stochastic approach which is based on the sequential learning paradigm for self-organizing maps (SOMs). A modified version of the SOM is proposed where each cell contains an individual, which performs a search for a locally optimal solution and it is affected by the search for a global optimum. The movement of the individuals in the search space is based on a discrete-time dynamic filter, and various choices of this filter are possible to obtain different dynamics of the centroids. In this way, a general framework is defined where well-known algorithms represent a particular case. The proposed algorithm is validated through a set of problems, which include non-separable problems, and compared with state-of-the-art algorithms for global optimization.

  16. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2017-01-01

    Full Text Available Quantum-behaved particle swarm optimization (QPSO algorithm is a variant of the traditional particle swarm optimization (PSO. The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA, because it is more like genetic algorithm (GA than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  17. Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP

    Directory of Open Access Journals (Sweden)

    Hisham A. Shehadeh

    2017-10-01

    Full Text Available In this paper, we propose an extended multi-objective version of single objective optimization algorithm called sperm swarm optimization algorithm. The proposed multi-objective optimization algorithm based on sperm fertilization procedure (MOSFP operates based on Pareto dominance and a crowding factor, that crowd and filter out the list of the best sperms (global best values. We divide the sperm swarm into three equal parts, after that, different types of turbulence (mutation operators are applied on these parts, such as uniform mutation, non-uniform mutation, and without any mutation. Our algorithm is compared against three well-known algorithms in the field of optimization. These algorithms are NSGA-II, SPEA2, and OMOPSO. These algorithms are compared using a very popular benchmark function suites called Zitzler-Deb-Thiele (ZDT and Walking-Fish-Group (WFG. We also adopt three quality metrics to compare the convergence, accuracy, and diversity of these algorithms, including, inverted generational distance (IGD, spread (SP, and epsilon (∈. The experimental results show that the performance of the proposed MOSFP is highly competitive, which outperformed OMOPSO in solving problems such as ZDT3, WFG5, and WFG8. In addition, the proposed MOSFP outperformed both of NSGA-II or SPEA2 algorithms in solving all the problems.

  18. A universal optimization strategy for ant colony optimization algorithms based on the Physarum-inspired mathematical model

    International Nuclear Information System (INIS)

    Zhang, Zili; Gao, Chao; Liu, Yuxin; Qian, Tao

    2014-01-01

    Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP. (paper)

  19. Optimization of segment weight using simulated dynamics algorithm for beamlet-based IMRT

    International Nuclear Information System (INIS)

    Chen Bingzhou; Hou Qing

    2007-01-01

    With accurate calculation algorithms in inverse planning for beamlet-based intensity modulated radiotherapy (IMRT), it takes time to calculate the dose matrix, which represents the dose distribution of each beamlet element to each voxel for unit fluence. To reduce the calculation time, coarse or approximate algorithms are often a choice, but this results in a final dose distribution that cannot reflect the real value. In addition, it is necessary to test if a coarse algorithm is capable of calculating the dose matrix of beamlets. In this work, simulated dynamics optimization algorithm was applied to optimize the segment weight to minish the dose error from the dose matrix calculation. After calculating the dose matrix by ray-tracing algorithm which takes into account just the primary component of absorbed dose, the original beam profile intensity distribution was optimized by using the simulated dynamics algorithm. Before segmentation, the even-spaced algorithm and genetic algorithm were applied in clustering. The dose distribution of every segment was calculated accurately by using convolution-superposition algorithm, and the weight of any voxel was in inverse proportion to the voxel number of the PTV or OAR it belonged. The segment weight was optimized by using the simulated dynamics algorithm. By comparing the dose distributions before and after optimization of segment weight, one finds that the dose distribution is improved obviously., It was also found that some segments which contained fewer beamlets or lower weight value could be omitted because the decay of dose distribution could be improved by re-optimizing the segment weight, and that some segments could be omitted by re-optimizing the segment weight during the process of beamlet-based IMRT. (authors)

  20. Research on bulbous bow optimization based on the improved PSO algorithm

    Science.gov (United States)

    Zhang, Sheng-long; Zhang, Bao-ji; Tezdogan, Tahsin; Xu, Le-ping; Lai, Yu-yang

    2017-08-01

    In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.

  1. Solution of optimal power flow using evolutionary-based algorithms

    African Journals Online (AJOL)

    Optimal power flow is a load flow analysis that uses optimization methods to adjust decision variables (control variables) to determine the best operating conditions of the power system. The control variables of OPF are the generator active power output, voltage of generating unit, tap-settings of the transformers, and shunt ...

  2. Optimization algorithms and applications

    CERN Document Server

    Arora, Rajesh Kumar

    2015-01-01

    Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc

  3. Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Baljit Singh Khehra

    2015-03-01

    Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.

  4. Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning

    Science.gov (United States)

    Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng

    2016-02-01

    Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.

  5. Voltage stability index based optimal placement of static VAR compensator and sizing using Cuckoo search algorithm

    Science.gov (United States)

    Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee

    2017-07-01

    This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.

  6. An algorithm for gradient-based dynamic optimization of UV flash processes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Gaspar, Jozsef

    2017-01-01

    This paper presents a novel single-shooting algorithm for gradient-based solution of optimal control problems with vapor-liquid equilibrium constraints. Such optimal control problems are important in several engineering applications, for instance in control of distillation columns, in certain two...

  7. Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization

    OpenAIRE

    Wu, Xiuli; Zhou, Yongquan; Lu, Yuting

    2017-01-01

    Water wave optimization (WWO) is a novel metaheuristic method that is based on shallow water wave theory, which has simple structure, easy realization, and good performance even with a small population. To improve the convergence speed and calculation precision even further, this paper on elite opposition-based strategy water wave optimization (EOBWWO) is proposed, and it has been applied for function optimization and structure engineering design problems. There are three major optimization s...

  8. Optimal design of feeding system in steel casting by constrained optimization algorithms based on InteCAST

    Directory of Open Access Journals (Sweden)

    Chang-chun Dong

    2016-11-01

    Full Text Available The traditional foundry industry has developed rapidly in recently years due to advancements in computer technology. Modifying and designing the feeding system has become more convenient with the help of the casting software, InteCAST. A common method of designing a feeding system is to first design the initial systems, run simulations with casting software, analyze the feedback, and then redesign. In this work, genetic, fruit fly, and interior point optimizer (IPOPT algorithms were introduced to guide the optimal riser design for the feeding system. The results calculated by the three optimal algorithms indicate that the riser volume has a weak relationship with the modulus constraint; while it has a close relationship with the volume constraint. Based on the convergence rate, the fruit fly algorithm was obviously faster than the genetic algorithm. The optimized riser was also applied during casting, and was simulated using InteCAST. The numerical simulation results reveal that with the same riser volume, the riser optimized by the genetic and fruit fly algorithms has a similar improvement on casting shrinkage. The IPOPT algorithm has the advantage of causing the smallest shrinkage porosities, compared to those of the genetic and fruit fly algorithms, which were almost the same.

  9. Optimization of C4.5 algorithm-based particle swarm optimization for breast cancer diagnosis

    Science.gov (United States)

    Muslim, M. A.; Rukmana, S. H.; Sugiharti, E.; Prasetiyo, B.; Alimah, S.

    2018-03-01

    Data mining has become a basic methodology for computational applications in the field of medical domains. Data mining can be applied in the health field such as for diagnosis of breast cancer, heart disease, diabetes and others. Breast cancer is most common in women, with more than one million cases and nearly 600,000 deaths occurring worldwide each year. The most effective way to reduce breast cancer deaths was by early diagnosis. This study aims to determine the level of breast cancer diagnosis. This research data uses Wisconsin Breast Cancer dataset (WBC) from UCI machine learning. The method used in this research is the algorithm C4.5 and Particle Swarm Optimization (PSO) as a feature option and to optimize the algorithm. C4.5. Ten-fold cross-validation is used as a validation method and a confusion matrix. The result of this research is C4.5 algorithm. The particle swarm optimization C4.5 algorithm has increased by 0.88%.

  10. Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences.

    Science.gov (United States)

    Guo, Y C; Wang, H; Wu, H P; Zhang, M Q

    2015-12-21

    Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.

  11. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  12. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    International Nuclear Information System (INIS)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok

    2015-01-01

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β h , chord angle β c , cascade solidity of chord σ c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design

  13. Analog Circuit Fault Diagnosis Approach Based on Improved Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ming-Fang WANG

    2014-07-01

    Full Text Available The basic thought of particle swarm optimization is introduced firstly, then particle swarm optimization algorithm model is established. The application of the improved particle swarm optimization algorithm to power supply system fault diagnosis is analyzed in accordance with problem of the algorithm, and migration strategy is added to particle swarm optimization algorithm. Finally the parameters of the wide area damping controller are adjusted by the improved particle swarm optimization algorithm.

  14. Optimal Sensor Placement in Bridge Structure Based on Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhen-Rui PENG

    2014-10-01

    Full Text Available For the problem of optimal sensor placement (OSP, this paper introduces immune genetic algorithm (IGA, which combines the advantages of genetic algorithm (GA and immune algorithm (IA, to minimize sensors placed in the structure and to obtain more information of structural characteristics. The OSP mode is formulated and integer coding method is proposed to code an antibody to reduce the computational complexity of affinity. Additionally, taking an arch bridge as an example, the results indicate that the problem can be achieved based on IGA method, and IGA has the ability to guarantee the higher calculation accuracy, compared with genetic algorithm (GA.

  15. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  16. Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms

    International Nuclear Information System (INIS)

    Milickovic, N.; Lahanas, M.; Papagiannopoulou, M.; Zamboglou, N.; Baltas, D.

    2002-01-01

    In high dose rate (HDR) brachytherapy, conventional dose optimization algorithms consider multiple objectives in the form of an aggregate function that transforms the multiobjective problem into a single-objective problem. As a result, there is a loss of information on the available alternative possible solutions. This method assumes that the treatment planner exactly understands the correlation between competing objectives and knows the physical constraints. This knowledge is provided by the Pareto trade-off set obtained by single-objective optimization algorithms with a repeated optimization with different importance vectors. A mapping technique avoids non-feasible solutions with negative dwell weights and allows the use of constraint free gradient-based deterministic algorithms. We compare various such algorithms and methods which could improve their performance. This finally allows us to generate a large number of solutions in a few minutes. We use objectives expressed in terms of dose variances obtained from a few hundred sampling points in the planning target volume (PTV) and in organs at risk (OAR). We compare two- to four-dimensional Pareto fronts obtained with the deterministic algorithms and with a fast-simulated annealing algorithm. For PTV-based objectives, due to the convex objective functions, the obtained solutions are global optimal. If OARs are included, then the solutions found are also global optimal, although local minima may be present as suggested. (author)

  17. Kinetic-molecular theory optimization algorithm based on Kent chaotic mapping

    Science.gov (United States)

    Gong, Huguang; Fan, Chaodong; Ouyang, Bo

    2017-08-01

    Aiming at the shortage that Kinetic-molecular theory optimization algorithm (KMTOA) is more likely to show premature convergence and the accuracy of searching for the optimum needs to be improved, a Kinetic-molecular theory optimization algorithm (KCKMTOA) based on Kent chaotic mapping was proposed. The algorithm utilizes the characteristics of chaotic algorithm, such as ergodicity, non-periodicity, randomness etc. When algorithm falls into the local optimum, Kent chaotic mapping is used to perform chaotic search around the local optimum to replace partial particles of original particle swarm in order to jump out from the local optimum to find the global optimum. As the algorithm is carried out, the radius of chaotic search decreases linearly, so as to ensure the precision of searching and speed of the algorithm. 20 classical test functions are taken into consideration in simulation experiments. After making a comprehensive comparison for the performance of searching for the optimum of DE, GA, QPSO, KMTOA and KCKMTOA in 20 classical test functions, the results of experiments show that this algorithm has obvious advantages in precision, speed and robustness optimization etc.

  18. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.

    Science.gov (United States)

    Huang, Shuqiang; Tao, Ming

    2017-01-22

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  19. An optimization algorithm based on Eigen-matrix in interference alignment for relay

    Directory of Open Access Journals (Sweden)

    YUAN Lili

    2015-02-01

    Full Text Available For MIMO two-way relay network system,the data flow is asymmetric among users,bystudying the users with antenna distribution relationship between the relay,this paper propose optimization algorithm based on Eigen-matrix and the feasibility of the scheme.At first,this algorithm use rule of Eigen-matrix,it design optimization scheme of interference alignment for each user,at second,based on the distributed iterative algorithm to deduce the optimum matrix of interference suppression.In order to achieve the effect that in the purpose of each client to eliminate interference with other users.Through the simulation results show that the proposed algorithm than the traditional relay forced zero method on the system total rate has increased significantly.

  20. Optimal Sensor Placement for Health Monitoring of High-Rise Structure Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ting-Hua Yi

    2011-01-01

    Full Text Available Optimal sensor placement (OSP technique plays a key role in the structural health monitoring (SHM of large-scale structures. Based on the criterion of the OSP for the modal test, an improved genetic algorithm, called “generalized genetic algorithm (GGA”, is adopted to find the optimal placement of sensors. The dual-structure coding method instead of binary coding method is proposed to code the solution. Accordingly, the dual-structure coding-based selection scheme, crossover strategy and mutation mechanism are given in detail. The tallest building in the north of China is implemented to demonstrate the feasibility and effectiveness of the GGA. The sensor placements obtained by the GGA are compared with those by exiting genetic algorithm, which shows that the GGA can improve the convergence of the algorithm and get the better placement scheme.

  1. Nuclear reactors project optimization based on neural network and genetic algorithm

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs

  2. An adaptive metamodel-based global optimization algorithm for black-box type problems

    Science.gov (United States)

    Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan

    2015-11-01

    In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.

  3. CLUSTERING CATEGORICAL DATA USING k-MODES BASED ON CUCKOO SEARCH OPTIMIZATION ALGORITHM

    Directory of Open Access Journals (Sweden)

    Lakshmi K

    2017-10-01

    Full Text Available Cluster analysis is the unsupervised learning technique that finds the interesting patterns in the data objects without knowing class labels. Most of the real world dataset consists of categorical data. For example, social media analysis may have the categorical data like the gender as male or female. The k-modes clustering algorithm is the most widely used to group the categorical data, because it is easy to implement and efficient to handle the large amount of data. However, due to its random selection of initial centroids, it provides the local optimum solution. There are number of optimization algorithms are developed to obtain global optimum solution. Cuckoo Search algorithm is the population based metaheuristic optimization algorithms to provide the global optimum solution. Methods: In this paper, k-modes clustering algorithm is combined with Cuckoo Search algorithm to obtain the global optimum solution. Results: Experiments are conducted with benchmark datasets and the results are compared with k-modes and Particle Swarm Optimization with k-modes to prove the efficiency of the proposed algorithm.

  4. The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-01-01

    Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.

  5. The Algorithm of Continuous Optimization Based on the Modified Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Oleg Evsutin

    2016-08-01

    Full Text Available This article is devoted to the application of the cellular automata mathematical apparatus to the problem of continuous optimization. The cellular automaton with an objective function is introduced as a new modification of the classic cellular automaton. The algorithm of continuous optimization, which is based on dynamics of the cellular automaton having the property of geometric symmetry, is obtained. The results of the simulation experiments with the obtained algorithm on standard test functions are provided, and a comparison between the analogs is shown.

  6. An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts.

    Science.gov (United States)

    Jiang, Shouyong; Yang, Shengxiang

    2016-02-01

    The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.

  7. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    Science.gov (United States)

    Saritha, R.; Vinod Chandra, S. S.

    2017-10-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  8. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  9. A Novel Hybrid Algorithm for Software Cost Estimation Based on Cuckoo Optimization and K-Nearest Neighbors Algorithms

    Directory of Open Access Journals (Sweden)

    E. E. Miandoab

    2016-06-01

    Full Text Available The inherent uncertainty to factors such as technology and creativity in evolving software development is a major challenge for the management of software projects. To address these challenges the project manager, in addition to examining the project progress, may cope with problems such as increased operating costs, lack of resources, and lack of implementation of key activities to better plan the project. Software Cost Estimation (SCE models do not fully cover new approaches. And this lack of coverage is causing problems in the consumer and producer ends. In order to avoid these problems, many methods have already been proposed. Model-based methods are the most familiar solving technique. But it should be noted that model-based methods use a single formula and constant values, and these methods are not responsive to the increasing developments in the field of software engineering. Accordingly, researchers have tried to solve the problem of SCE using machine learning algorithms, data mining algorithms, and artificial neural networks. In this paper, a hybrid algorithm that combines COA-Cuckoo optimization and K-Nearest Neighbors (KNN algorithms is used. The so-called composition algorithm runs on six different data sets and is evaluated based on eight evaluation criteria. The results show an improved accuracy of estimated cost.

  10. Guidelines for Interactive Reliability-Based Structural Optimization using Quasi-Newton Algorithms

    DEFF Research Database (Denmark)

    Pedersen, C.; Thoft-Christensen, Palle

    Guidelines for interactive reliability-based structural optimization problems are outlined in terms of modifications of standard quasi-Newton algorithms. The proposed modifications minimize the condition number of the approximate Hessian matrix in each iteration, restrict the relative and absolute...

  11. Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique

    OpenAIRE

    Po-Chen Cheng; Bo-Rei Peng; Yi-Hua Liu; Yu-Shan Cheng; Jia-Wei Huang

    2015-01-01

    In this paper, an asymmetrical fuzzy-logic-control (FLC)-based maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems is presented. Two membership function (MF) design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V) curve of solar cells under standard test conditions (STC). The second method uses the particl...

  12. Group leaders optimization algorithm

    Science.gov (United States)

    Daskin, Anmer; Kais, Sabre

    2011-03-01

    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.

  13. Multi-objective genetic algorithm based innovative wind farm layout optimization method

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Hua; He, Bang; Wang, Pengcheng; Jin, Kai

    2015-01-01

    Highlights: • Innovative optimization procedures for both regular and irregular shape wind farm. • Using real wind condition and commercial wind turbine parameters. • Using multiple-objective genetic algorithm optimization method. • Optimize the selection of different wind turbine types and their hub heights. - Abstract: Layout optimization has become one of the critical approaches to increase power output and decrease total cost of a wind farm. Previous researches have applied intelligent algorithms to optimizing the wind farm layout. However, those wind conditions used in most of previous research are simplified and not accurate enough to match the real world wind conditions. In this paper, the authors propose an innovative optimization method based on multi-objective genetic algorithm, and test it with real wind condition and commercial wind turbine parameters. Four case studies are conducted to investigate the number of wind turbines needed in the given wind farm. Different cost models are also considered in the case studies. The results clearly demonstrate that the new method is able to optimize the layout of a given wind farm with real commercial data and wind conditions in both regular and irregular shapes, and achieve a better result by selecting different type and hub height wind turbines.

  14. Optimal battery sizing in photovoltaic based distributed generation using enhanced opposition-based firefly algorithm for voltage rise mitigation.

    Science.gov (United States)

    Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul

    2014-01-01

    This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.

  15. Optimal Battery Sizing in Photovoltaic Based Distributed Generation Using Enhanced Opposition-Based Firefly Algorithm for Voltage Rise Mitigation

    Directory of Open Access Journals (Sweden)

    Ling Ai Wong

    2014-01-01

    Full Text Available This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.

  16. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  17. A New Optimization Approach for Maximizing the Photovoltaic Panel Power Based on Genetic Algorithm and Lagrange Multiplier Algorithm

    Directory of Open Access Journals (Sweden)

    Mahdi M. M. El-Arini

    2013-01-01

    Full Text Available In recent years, the solar energy has become one of the most important alternative sources of electric energy, so it is important to operate photovoltaic (PV panel at the optimal point to obtain the possible maximum efficiency. This paper presents a new optimization approach to maximize the electrical power of a PV panel. The technique which is based on objective function represents the output power of the PV panel and constraints, equality and inequality. First the dummy variables that have effect on the output power are classified into two categories: dependent and independent. The proposed approach is a multistage one as the genetic algorithm, GA, is used to obtain the best initial population at optimal solution and this initial population is fed to Lagrange multiplier algorithm (LM, then a comparison between the two algorithms, GA and LM, is performed. The proposed technique is applied to solar radiation measured at Helwan city at latitude 29.87°, Egypt. The results showed that the proposed technique is applicable.

  18. A study on a new algorithm to optimize ball mill system based on modeling and GA

    International Nuclear Information System (INIS)

    Wang Heng; Jia Minping; Huang Peng; Chen Zuoliang

    2010-01-01

    Aiming at the disadvantage of conventional optimization method for ball mill pulverizing system, a novel approach based on RBF neural network and genetic algorithm was proposed in the present paper. Firstly, the experiments and measurement for fill level based on vibration signals of mill shell was introduced. Then, main factors which affected the power consumption of ball mill pulverizing system were analyzed, and the input variables of RBF neural network were determined. RBF neural network was used to map the complex non-linear relationship between the electric consumption and process parameters and the non-linear model of power consumption was built. Finally, the model was optimized by genetic algorithm and the optimal work conditions of ball mill pulverizing system were determined. The results demonstrate that the method is reliable and practical, and can reduce the electric consumption obviously and effectively.

  19. Optimal Design for PID Controller Based on DE Algorithm in Omnidirectional Mobile Robot

    Directory of Open Access Journals (Sweden)

    Wu Peizhang

    2017-01-01

    Full Text Available This paper introduces a omnidirectional mobile robot based on Mecanum wheel, which is used for conveying heavy load in a small space of the automatic warehousing logistics center. Then analyzes and establishes the omnidirectional chassis inverse and forward kinematic model. In order to improve the performance of motion, the paper proposes the optimal PID controller based on differential evolution algorithm. Finally, through MATLAB simulation, the results show that the kinematic model of mobile robot chassis is correct, further more the controller optimized by the DE algorithm working better than the traditional Z-N PID tuned. So the optimal scheme is reasonable and feasible, which has a value for engineering applications.

  20. Method of transient identification based on a possibilistic approach, optimized by genetic algorithm

    International Nuclear Information System (INIS)

    Almeida, Jose Carlos Soares de

    2001-02-01

    This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)

  1. An Improved Fireworks Algorithm Based on Grouping Strategy of the Shuffled Frog Leaping Algorithm to Solve Function Optimization Problems

    Directory of Open Access Journals (Sweden)

    Yu-Feng Sun

    2016-04-01

    Full Text Available The fireworks algorithm (FA is a new parallel diffuse optimization algorithm to simulate the fireworks explosion phenomenon, which realizes the balance between global exploration and local searching by means of adjusting the explosion mode of fireworks bombs. By introducing the grouping strategy of the shuffled frog leaping algorithm (SFLA, an improved FA-SFLA hybrid algorithm is put forward, which can effectively make the FA jump out of the local optimum and accelerate the global search ability. The simulation results show that the hybrid algorithm greatly improves the accuracy and convergence velocity for solving the function optimization problems.

  2. Reactive Power Optimization for Distribution Network Based on Distributed Random Gradient-Free Algorithm

    Directory of Open Access Journals (Sweden)

    Jun Xie

    2018-03-01

    Full Text Available The increasing penetration of distributed energy resources in distribution systems has brought a number of network management and operational challenges; reactive power variation has been identified as one of the dominant effects. Enormous growth in a variety of controllable devices that have complex control requirements are integrated in distribution networks. The operation modes of traditional centralized control are difficult to tackle these problems with central controller. When considering the non-linear multi-objective functions with discrete and continuous optimization variables, the proposed random gradient-free algorithm is employed to the optimal operation of controllable devices for reactive power optimization. This paper presents a distributed reactive power optimization algorithm that can obtain the global optimum solution based on random gradient-free algorithm for distribution network without requiring a central coordinator. By utilizing local measurements and local communications among capacitor banks and distributed generators (DGs, the proposed reactive power control strategy can realize the overall network voltage optimization and power loss minimization simultaneously. Simulation studies on the modified IEEE-69 bus distribution systems demonstrate the effectiveness and superiority of the proposed reactive power optimization strategy.

  3. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    C. Vimalarani

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  4. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    Science.gov (United States)

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  5. Three-dimensional Path Planning for Underwater Vehicles Based on an Improved Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    L.Yang

    2015-12-01

    Full Text Available Three-dimensional path planning for underwater vehicles is an important problem that focuses on optimizing the route with consideration of various constraints in a complex underwater environment. In this paper, an improved ant colony optimization (IACO algorithm based on pheromone exclusion is proposed to solve the underwater vehicle 3D path planning problem. The IACO algorithm can balance the tasks of exploration and development in the ant search path, and enable the ants in the search process to explore initially and develop subsequently. Then, the underwater vehicle can find the safe path by connecting the chosen nodes of the 3D mesh while avoiding the threat area. This new approach can overcome common disadvantages of the basic ant colony algorithm, such as falling into local extremum, poor quality, and low accuracy. Experimental comparative results demonstrate that this proposed IACO method is more effective and feasible in underwater vehicle 3D path planning than the basic ACO model.

  6. Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm

    Science.gov (United States)

    Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei

    2018-01-01

    In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.

  7. A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems

    International Nuclear Information System (INIS)

    Huang, Chia-Ling

    2015-01-01

    This paper proposes a new swarm intelligence method known as the Particle-based Simplified Swarm Optimization (PSSO) algorithm while undertaking a modification of the Updating Mechanism (UM), called N-UM and R-UM, and simultaneously applying an Orthogonal Array Test (OA) to solve reliability–redundancy allocation problems (RRAPs) successfully. One difficulty of RRAP is the need to maximize system reliability in cases where the number of redundant components and the reliability of corresponding components in each subsystem are simultaneously decided with nonlinear constraints. In this paper, four RRAP benchmarks are used to display the applicability of the proposed PSSO that advances the strengths of both PSO and SSO to enable optimizing the RRAP that belongs to mixed-integer nonlinear programming. When the computational results are compared with those of previously developed algorithms in existing literature, the findings indicate that the proposed PSSO is highly competitive and performs well. - Highlights: • This paper proposes a particle-based simplified swarm optimization algorithm (PSSO) to optimize RRAP. • Furthermore, the UM and an OA are adapted to advance in optimizing RRAP. • Four systems are introduced and the results demonstrate the PSSO performs particularly well

  8. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  9. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  10. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    Directory of Open Access Journals (Sweden)

    Wee Loon Lim

    2016-01-01

    Full Text Available The quadratic assignment problem (QAP is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO, a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  11. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning.

    Science.gov (United States)

    Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-02-22

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

  12. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization

    Science.gov (United States)

    Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei

    2014-04-01

    Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.

  13. Genetic-algorithm-based optimization of a fuzzy logic resource manager for electronic attack

    Science.gov (United States)

    Smith, James F., III; Rhyne, Robert D., II

    2000-04-01

    A fuzzy logic based expert system has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar platforms. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper describes data mining activities related to development of the resource manager with a focus on genetic algorithm based optimization. A genetic algorithm requires the construction of a fitness function, a function that must be maximized to give optimal or near optimal results. The fitness functions are in general non- differentiable at many points and highly non-linear, neither property providing difficulty for a genetic algorithm. The fitness functions are constructed using insights from geometry, physics, engineering, and military doctrine. Examples are given as to how fitness functions are constructed including how the fitness function is averaged over a database of military scenarios. The use of a database of scenarios prevents the algorithm from having too narrow a range of behaviors, i.e., it creates a more robust solution.

  14. A new column-generation-based algorithm for VMAT treatment plan optimization

    International Nuclear Information System (INIS)

    Peng Fei; Epelman, Marina A; Romeijn, H Edwin; Jia Xun; Gu Xuejun; Jiang, Steve B

    2012-01-01

    We study the treatment plan optimization problem for volumetric modulated arc therapy (VMAT). We propose a new column-generation-based algorithm that takes into account bounds on the gantry speed and dose rate, as well as an upper bound on the rate of change of the gantry speed, in addition to MLC constraints. The algorithm iteratively adds one aperture at each control point along the treatment arc. In each iteration, a restricted problem optimizing intensities at previously selected apertures is solved, and its solution is used to formulate a pricing problem, which selects an aperture at another control point that is compatible with previously selected apertures and leads to the largest rate of improvement in the objective function value of the restricted problem. Once a complete set of apertures is obtained, their intensities are optimized and the gantry speeds and dose rates are adjusted to minimize treatment time while satisfying all machine restrictions. Comparisons of treatment plans obtained by our algorithm to idealized IMRT plans of 177 beams on five clinical prostate cancer cases demonstrate high quality with respect to clinical dose–volume criteria. For all cases, our algorithm yields treatment plans that can be delivered in around 2 min. Implementation on a graphic processing unit enables us to finish the optimization of a VMAT plan in 25–55 s. (paper)

  15. Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm

    International Nuclear Information System (INIS)

    Wang, Xinli; Cai, Wenjian; Lu, Jiangang; Sun, Youxian; Zhao, Lei

    2015-01-01

    This study presents a model-based optimization strategy for an actual chiller driven dehumidifier of liquid desiccant dehumidification system operating with lithium chloride solution. By analyzing the characteristics of the components, energy predictive models for the components in the dehumidifier are developed. To minimize the energy usage while maintaining the outlet air conditions at the pre-specified set-points, an optimization problem is formulated with an objective function, the constraints of mechanical limitations and components interactions. Model-based optimization strategy using genetic algorithm is proposed to obtain the optimal set-points for desiccant solution temperature and flow rate, to minimize the energy usage in the dehumidifier. Experimental studies on an actual system are carried out to compare energy consumption between the proposed optimization and the conventional strategies. The results demonstrate that energy consumption using the proposed optimization strategy can be reduced by 12.2% in the dehumidifier operation. - Highlights: • Present a model-based optimization strategy for energy saving in LDDS. • Energy predictive models for components in dehumidifier are developed. • The Optimization strategy are applied and tested in an actual LDDS. • Optimization strategy can achieve energy savings by 12% during operation

  16. Channel impulse response equalization scheme based on particle swarm optimization algorithm in mode division multiplexing

    Science.gov (United States)

    Yasear, Shaymah; Amphawan, Angela

    2017-11-01

    Mode division multiplexing (MDM) technique has been introduced as a promising solution to the rapid increase of data traffic. However, although MDM has the potential to increase transmission capacity and significantly reduce the cost and complexity of parallel systems, it also has its challenges. Along the optical fibre link, the deficient characteristics always exist. These characteristics, damage the orthogonality of the modes and lead to mode coupling, causing Inter-symbol interference (SI) which limit the capacity of MDM system. In order to mitigate the effects of mode coupling, an adaptive equalization scheme based on particle swarm optimization (PSO) algorithm has been proposed. Compared to other traditional algorithms that have been used in the equalization process on the MDM system such as least mean square (LMS) and recursive least squares (RLS) algorithms, simulation results demonstrate that the PSO algorithm has flexibility and higher convergence speed for mitigating the effects of nonlinear mode coupling.

  17. Efficient and accurate optimal linear phase FIR filter design using opposition-based harmony search algorithm.

    Science.gov (United States)

    Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P

    2013-01-01

    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  18. Efficient and Accurate Optimal Linear Phase FIR Filter Design Using Opposition-Based Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    S. K. Saha

    2013-01-01

    Full Text Available In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  19. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  20. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    Science.gov (United States)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  1. A hybrid algorithm for instant optimization of beam weights in anatomy-based intensity modulated radiotherapy: a performance evaluation study

    International Nuclear Information System (INIS)

    Vaitheeswaran, Ranganathan; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram

    2011-01-01

    The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) (∼ 2% - 5% improvement) and Homogeneity Index (HI) (∼ 4% - 10% improvement) as compared to GEM and FSA algorithms (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are

  2. The Patch-Levy-Based Bees Algorithm Applied to Dynamic Optimization Problems

    Directory of Open Access Journals (Sweden)

    Wasim A. Hussein

    2017-01-01

    Full Text Available Many real-world optimization problems are actually of dynamic nature. These problems change over time in terms of the objective function, decision variables, constraints, and so forth. Therefore, it is very important to study the performance of a metaheuristic algorithm in dynamic environments to assess the robustness of the algorithm to deal with real-word problems. In addition, it is important to adapt the existing metaheuristic algorithms to perform well in dynamic environments. This paper investigates a recently proposed version of Bees Algorithm, which is called Patch-Levy-based Bees Algorithm (PLBA, on solving dynamic problems, and adapts it to deal with such problems. The performance of the PLBA is compared with other BA versions and other state-of-the-art algorithms on a set of dynamic multimodal benchmark problems of different degrees of difficulties. The results of the experiments show that PLBA achieves better results than the other BA variants. The obtained results also indicate that PLBA significantly outperforms some of the other state-of-the-art algorithms and is competitive with others.

  3. Optimization of Consignment-Store-Based Supply Chain with Black Hole Algorithm

    Directory of Open Access Journals (Sweden)

    Ágota Bányai

    2017-01-01

    Full Text Available The globalization of economy and market led to increased networking in the field of manufacturing and services. These manufacturing and service processes including supply chain became more and more complex. The supply chain includes in many cases consignment stores. The design and operation of these complex supply chain processes can be described as NP-hard optimization problems. These problems can be solved using sophisticated models and methods based on metaheuristic algorithms. This research proposes an integrated supply model based on consignment stores. After a careful literature review, this paper introduces a mathematical model to formulate the problem of consignment-store-based supply chain optimization. The integrated model includes facility location and assignment problems to be solved. Next, an enhanced black hole algorithm dealing with multiobjective supply chain model is presented. The sensitivity analysis of the heuristic black hole optimization method is also described to check the efficiency of new operators to increase the convergence of the algorithm. Numerical results with different datasets demonstrate how the proposed model supports the efficiency, flexibility, and reliability of the consignment-store-based supply chain.

  4. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology - driven algorithm.

    Science.gov (United States)

    Boccaccio, Antonio; Fiorentino, Michele; Uva, Antonio E; Laghetti, Luca N; Monno, Giuseppe

    2018-02-01

    In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Study on the Algorithm for Train Operation Adjustment Based on Ordinal Optimization

    Directory of Open Access Journals (Sweden)

    Yong-jun Chen

    2013-01-01

    Full Text Available It is a crucial and difficult problem in railway transportation dispatch mechanism to automatically compile train operation adjustment (TOA plan with computer to ensure safe, fast, and punctual running of trains. Based on the proposed model of TOA under the conditions of railway network (RN, we take minimum travel time of train as objective function of optimization, and after fast preliminary evaluation calculation on it, we introduce the theory and method of ordinal optimization (OO to solve it. This paper discusses in detail the implementation steps of OO algorithm. A practical calculation example of Datong-Qinhuangdao (hereinafter referred to as Da-Qin heavy haul railway is performed with the proposed algorithm to prove that OO can ensure getting good enough solution with high probability. Particularly, for complex optimization problems with large amount of calculation, OO can greatly increase computational efficiency, and it can save at least one order of magnitude of calculation amount than general heuristic algorithm. Thus, the proposed algorithm can well satisfy the requirements in engineering.

  6. Optimizing Fuzzy Rule Base for Illumination Compensation in Face Recognition using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Bima Sena Bayu Dewantara

    2014-12-01

    Full Text Available Fuzzy rule optimization is a challenging step in the development of a fuzzy model. A simple two inputs fuzzy model may have thousands of combination of fuzzy rules when it deals with large number of input variations. Intuitively and trial‐error determination of fuzzy rule is very difficult. This paper addresses the problem of optimizing Fuzzy rule using Genetic Algorithm to compensate illumination effect in face recognition. Since uneven illumination contributes negative effects to the performance of face recognition, those effects must be compensated. We have developed a novel algorithmbased on a reflectance model to compensate the effect of illumination for human face recognition. We build a pair of model from a single image and reason those modelsusing Fuzzy.Fuzzy rule, then, is optimized using Genetic Algorithm. This approachspendsless computation cost by still keepinga high performance. Based on the experimental result, we can show that our algorithm is feasiblefor recognizing desired person under variable lighting conditions with faster computation time. Keywords: Face recognition, harsh illumination, reflectance model, fuzzy, genetic algorithm

  7. Research on Multiaircraft Cooperative Suppression Interference Array Based on an Improved Multiobjective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available For the problem of multiaircraft cooperative suppression interference array (MACSIA against the enemy air defense radar network in electronic warfare mission planning, firstly, the concept of route planning security zone is proposed and the solution to get the minimum width of security zone based on mathematical morphology is put forward. Secondly, the minimum width of security zone and the sum of the distance between each jamming aircraft and the center of radar network are regarded as objective function, and the multiobjective optimization model of MACSIA is built, and then an improved multiobjective particle swarm optimization algorithm is used to solve the model. The decomposition mechanism is adopted and the proportional distribution is used to maintain diversity of the new found nondominated solutions. Finally, the Pareto optimal solutions are analyzed by simulation, and the optimal MACSIA schemes of each jamming aircraft suppression against the enemy air defense radar network are obtained and verify that the built multiobjective optimization model is corrected. It also shows that the improved multiobjective particle swarm optimization algorithm for solving the problem of MACSIA is feasible and effective.

  8. Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco AtlasTM

    OpenAIRE

    Utsler, James

    2006-01-01

    A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM software. The output of the ATLASTM simulation runs served as the input to the genetic algorithm. The genetic algorithm was run as a diffusing computation on a network of eighteen dual processor nodes. Results showed that the genetic algorithm produced better power output optimizations when compared with the results obtained using the hill cli...

  9. Application of genetic algorithms to the maintenance scheduling optimization in a nuclear system basing on reliability

    International Nuclear Information System (INIS)

    Lapa, Celso M. Franklin; Pereira, Claudio M.N.A.; Mol, Antonio C. de Abreu

    1999-01-01

    This paper presents a solution based on genetic algorithm and probabilistic safety analysis that can be applied in the optimization of the preventive maintenance politic of nuclear power plant safety systems. The goal of this approach is to improve the average availability of the system through the optimization of the preventive maintenance scheduling politic. The auxiliary feed water system of a two loops pressurized water reactor is used as a sample case, in order to demonstrate the effectiveness of the proposed method. The results, when compared to those obtained by some standard maintenance politics, reveal quantitative gains and operational safety levels. (author)

  10. Transformer fault diagnosis based on chemical reaction optimization algorithm and relevance vector machine

    Directory of Open Access Journals (Sweden)

    Luo Wei

    2017-01-01

    Full Text Available Power transformer is one of the most important equipment in power system. In order to predict the potential fault of power transformer and identify the fault types correctly, we proposed a transformer fault intelligent diagnosis model based on chemical reaction optimization (CRO algorithm and relevance vector machine(RVM. RVM is a powerful machine learning method, which can solve nonlinear, high-dimensional classification problems with a limited number of samples. CRO algorithm has well global optimization and simple calculation, so it is suitable to solve parameter optimization problems. In this paper, firstly, a multi-layer RVM classification model was built by binary tree recognition strategy. Secondly, CRO algorithm was adopted to optimize the kernel function parameters which could enhance the performance of RVM classifiers. Compared with IEC three-ratio method and the RVM model, the CRO-RVM model not only overcomes the coding defect problem of IEC three-ratio method, but also has higher classification accuracy than the RVM model. Finally, the new method was applied to analyze a transformer fault case, Its predicted result accord well with the real situation. The research provides a practical method for transformer fault intelligent diagnosis and prediction.

  11. Optimal planning approaches with multiple impulses for rendezvous based on hybrid genetic algorithm and control method

    Directory of Open Access Journals (Sweden)

    JingRui Zhang

    2015-03-01

    Full Text Available In this article, we focus on safe and effective completion of a rendezvous and docking task by looking at planning approaches and control with fuel-optimal rendezvous for a target spacecraft running on a near-circular reference orbit. A variety of existent practical path constraints are considered, including the constraints of field of view, impulses, and passive safety. A rendezvous approach is calculated by using a hybrid genetic algorithm with those constraints. Furthermore, a control method of trajectory tracking is adopted to overcome the external disturbances. Based on Clohessy–Wiltshire equations, we first construct the mathematical model of optimal planning approaches of multiple impulses with path constraints. Second, we introduce the principle of hybrid genetic algorithm with both stronger global searching ability and local searching ability. We additionally explain the application of this algorithm in the problem of trajectory planning. Then, we give three-impulse simulation examples to acquire an optimal rendezvous trajectory with the path constraints presented in this article. The effectiveness and applicability of the tracking control method are verified with the optimal trajectory above as control objective through the numerical simulation.

  12. Multipoint and Multiobjective Optimization of a Centrifugal Compressor Impeller Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaojian Li

    2017-01-01

    Full Text Available The design of high efficiency, high pressure ratio, and wide flow range centrifugal impellers is a challenging task. The paper describes the application of a multiobjective, multipoint optimization methodology to the redesign of a transonic compressor impeller for this purpose. The aerodynamic optimization method integrates an improved nondominated sorting genetic algorithm II (NSGA-II, blade geometry parameterization based on NURBS, a 3D RANS solver, a self-organization map (SOM based data mining technique, and a time series based surge detection method. The optimization results indicate a considerable improvement to the total pressure ratio and isentropic efficiency of the compressor over the whole design speed line and by 5.3% and 1.9% at design point, respectively. Meanwhile, surge margin and choke mass flow increase by 6.8% and 1.4%, respectively. The mechanism behind the performance improvement is further extracted by combining the geometry changes with detailed flow analysis.

  13. Algorithm of axial fuel optimization based in progressive steps of turned search

    International Nuclear Information System (INIS)

    Martin del Campo, C.; Francois, J.L.

    2003-01-01

    The development of an algorithm for the axial optimization of fuel of boiling water reactors (BWR) is presented. The algorithm is based in a serial optimizations process in the one that the best solution in each stage is the starting point of the following stage. The objective function of each stage adapts to orient the search toward better values of one or two parameters leaving the rest like restrictions. Conform to it advances in those optimization stages, it is increased the fineness of the evaluation of the investigated designs. The algorithm is based on three stages, in the first one are used Genetic algorithms and in the two following Tabu Search. The objective function of the first stage it looks for to minimize the average enrichment of the one it assembles and to fulfill with the generation of specified energy for the operation cycle besides not violating none of the limits of the design base. In the following stages the objective function looks for to minimize the power factor peak (PPF) and to maximize the margin of shutdown (SDM), having as restrictions the one average enrichment obtained for the best design in the first stage and those other restrictions. The third stage, very similar to the previous one, it begins with the design of the previous stage but it carries out a search of the margin of shutdown to different exhibition steps with calculations in three dimensions (3D). An application to the case of the design of the fresh assemble for the fourth fuel reload of the Unit 1 reactor of the Laguna Verde power plant (U1-CLV) is presented. The obtained results show an advance in the handling of optimization methods and in the construction of the objective functions that should be used for the different design stages of the fuel assemblies. (Author)

  14. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  15. Knee Joint Optimization Design of Intelligent Bionic Leg Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2014-09-01

    Full Text Available Intelligent bionic leg (IBL is an advanced prosthesis which can maximum functionally simulate and approach the motion trajectory of human leg. Knee joint is the most important bone of human leg and its bionic design has great significance to prosthesis performance. The structural components of IBL are introduced and virtual prototype is given. The advantages of 4-bar knee joint are analyzed and are adopted in IBL design. The kinematics model of 4-bar knee joint is established. The objective function, constraint condition, parameters selection and setting of genetic algorithm are discussed in detail. Based on genetic algorithm, the optimization design of IBL knee joint is done. The optimization results indicate that the 4-bar mechanism can achieve better anthropomorphic characteristics of human knee joint.

  16. Damage detection of truss structures using two-stage optimization based on micro genetic algorithm

    International Nuclear Information System (INIS)

    Kim, Nam Il; Kim, Hyung Min; Lee, Jae Hong

    2014-01-01

    A simple and efficient two-stage optimization procedure is proposed to properly identify the sites and the extent of multiple damages in truss structures. In the first stage, the most potentially damaged elements are identified using an anti-optimization (AO) technique. In the second stage, a micro genetic algorithm (MGA) is performed to accurately determine the actual damage extents based on a priori knowledge from the first stage. The correctness and effectiveness of the proposed algorithm are proved by two illustrated test examples: the planar and space truss models with the numerically simulated data. The numerical results show the computational advantages of the proposed method to precisely determine the sites and the extent of multiple damages of truss structures.

  17. Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2012-03-01

    In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.

  18. Artificial Bee Colony Algorithm Based on K-Means Clustering for Multiobjective Optimal Power Flow Problem

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available An improved multiobjective ABC algorithm based on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II, the multiobjective particle swarm optimizer (MOPSO, and the multiobjective ABC (MOABC. Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.

  19. Optimization approaches to mpi and area merging-based parallel buffer algorithm

    Directory of Open Access Journals (Sweden)

    Junfu Fan

    Full Text Available On buffer zone construction, the rasterization-based dilation method inevitably introduces errors, and the double-sided parallel line method involves a series of complex operations. In this paper, we proposed a parallel buffer algorithm based on area merging and MPI (Message Passing Interface to improve the performances of buffer analyses on processing large datasets. Experimental results reveal that there are three major performance bottlenecks which significantly impact the serial and parallel buffer construction efficiencies, including the area merging strategy, the task load balance method and the MPI inter-process results merging strategy. Corresponding optimization approaches involving tree-like area merging strategy, the vertex number oriented parallel task partition method and the inter-process results merging strategy were suggested to overcome these bottlenecks. Experiments were carried out to examine the performance efficiency of the optimized parallel algorithm. The estimation results suggested that the optimization approaches could provide high performance and processing ability for buffer construction in a cluster parallel environment. Our method could provide insights into the parallelization of spatial analysis algorithm.

  20. An improved DPSO with mutation based on similarity algorithm for optimization of transmission lines loading

    International Nuclear Information System (INIS)

    Shayeghi, H.; Mahdavi, M.; Bagheri, A.

    2010-01-01

    Static transmission network expansion planning (STNEP) problem acquires a principal role in power system planning and should be evaluated carefully. Up till now, various methods have been presented to solve the STNEP problem. But only in one of them, lines adequacy rate has been considered at the end of planning horizon and the problem has been optimized by discrete particle swarm optimization (DPSO). DPSO is a new population-based intelligence algorithm and exhibits good performance on solution of the large-scale, discrete and non-linear optimization problems like STNEP. However, during the running of the algorithm, the particles become more and more similar, and cluster into the best particle in the swarm, which make the swarm premature convergence around the local solution. In order to overcome these drawbacks and considering lines adequacy rate, in this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using an improved DPSO algorithm. The proposed improved DPSO is a new conception, collectivity, which is based on similarity between the particle and the current global best particle in the swarm that can prevent the premature convergence of DPSO around the local solution. The proposed method has been tested on the Garver's network and a real transmission network in Iran, and compared with the DPSO based method for solution of the TNEP problem. The results show that the proposed improved DPSO based method by preventing the premature convergence is caused that with almost the same expansion costs, the network adequacy is increased considerably. Also, regarding the convergence curves of both methods, it can be seen that precision of the proposed algorithm for the solution of the STNEP problem is more than DPSO approach.

  1. On the efficiency of chaos optimization algorithms for global optimization

    International Nuclear Information System (INIS)

    Yang Dixiong; Li Gang; Cheng Gengdong

    2007-01-01

    Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions

  2. Geometric Distribution-Based Readers Scheduling Optimization Algorithm Using Artificial Immune System

    Directory of Open Access Journals (Sweden)

    Litian Duan

    2016-11-01

    Full Text Available In the multiple-reader environment (MRE of radio frequency identification (RFID system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.

  3. Adaptive Wavelet Threshold Denoising Method for Machinery Sound Based on Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2016-07-01

    Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.

  4. A Constraint programming-based genetic algorithm for capacity output optimization

    Directory of Open Access Journals (Sweden)

    Kate Ean Nee Goh

    2014-10-01

    Full Text Available Purpose: The manuscript presents an investigation into a constraint programming-based genetic algorithm for capacity output optimization in a back-end semiconductor manufacturing company.Design/methodology/approach: In the first stage, constraint programming defining the relationships between variables was formulated into the objective function. A genetic algorithm model was created in the second stage to optimize capacity output. Three demand scenarios were applied to test the robustness of the proposed algorithm.Findings: CPGA improved both the machine utilization and capacity output once the minimum requirements of a demand scenario were fulfilled. Capacity outputs of the three scenarios were improved by 157%, 7%, and 69%, respectively.Research limitations/implications: The work relates to aggregate planning of machine capacity in a single case study. The constraints and constructed scenarios were therefore industry-specific.Practical implications: Capacity planning in a semiconductor manufacturing facility need to consider multiple mutually influenced constraints in resource availability, process flow and product demand. The findings prove that CPGA is a practical and an efficient alternative to optimize the capacity output and to allow the company to review its capacity with quick feedback.Originality/value: The work integrates two contemporary computational methods for a real industry application conventionally reliant on human judgement.

  5. Setting value optimization method in integration for relay protection based on improved quantum particle swarm optimization algorithm

    Science.gov (United States)

    Yang, Guo Sheng; Wang, Xiao Yang; Li, Xue Dong

    2018-03-01

    With the establishment of the integrated model of relay protection and the scale of the power system expanding, the global setting and optimization of relay protection is an extremely difficult task. This paper presents a kind of application in relay protection of global optimization improved particle swarm optimization algorithm and the inverse time current protection as an example, selecting reliability of the relay protection, selectivity, quick action and flexibility as the four requires to establish the optimization targets, and optimizing protection setting values of the whole system. Finally, in the case of actual power system, the optimized setting value results of the proposed method in this paper are compared with the particle swarm algorithm. The results show that the improved quantum particle swarm optimization algorithm has strong search ability, good robustness, and it is suitable for optimizing setting value in the relay protection of the whole power system.

  6. Design of optimal input–output scaling factors based fuzzy PSS using bat algorithm

    Directory of Open Access Journals (Sweden)

    D.K. Sambariya

    2016-06-01

    Full Text Available In this article, a fuzzy logic based power system stabilizer (FPSS is designed by tuning its input–output scaling factors. Two input signals to FPSS are considered as change of speed and change in power, and the output signal is considered as a correcting voltage signal. The normalizing factors of these signals are considered as the optimization problem with minimization of integral of square error in single-machine and multi-machine power systems. These factors are optimally determined with bat algorithm (BA and considered as scaling factors of FPSS. The performance of power system with such a designed BA based FPSS (BA-FPSS is compared to that of response with FPSS, Harmony Search Algorithm based FPSS (HSA-FPSS and Particle Swarm Optimization based FPSS (PSO-FPSS. The systems considered are single-machine connected to infinite-bus, two-area 4-machine 10-bus and IEEE New England 10-machine 39-bus power systems for evaluating the performance of BA-FPSS. The comparison is carried out in terms of the integral of time-weighted absolute error (ITAE, integral of absolute error (IAE and integral of square error (ISE of speed response for systems with FPSS, HSA-FPSS and BA-FPSS. The superior performance of systems with BA-FPSS is established considering eight plant conditions of each system, which represents the wide range of operating conditions.

  7. Using rapidly-exploring random tree-based algorithms to find smooth and optimal trajectories

    CSIR Research Space (South Africa)

    Matebese, B

    2012-10-01

    Full Text Available feasible solution faster than other algorithms. The drawback of using RRT is that, as the number of samples increases, the probability that the algorithm converges to a sub-optimal solution increases. Furthermore, the path generated by this algorithm...

  8. Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm

    Science.gov (United States)

    Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.

    2017-03-01

    Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.

  9. Micro genetic algorithm based optimal gate positioning in injection molding design

    International Nuclear Information System (INIS)

    Lee, Jong Soo; Kim, Jong Hun

    2007-01-01

    The paper deals with the optimization of runner system in injection molding design. The design objective is to locate gate positions by minimizing both maximum injection pressure at the injection port and maximum pressure difference among all the gates on a product with constraints on shear stress and/or weld-line. The analysis of filling process is conducted by a finite element based program for polymer flow. Micro genetic algorithm (mGA) is used as a global optimization tool due to the nature of inherent nonlinearlity in flow analysis. Four different design applications in injection molds are explored to examine the proposed design strategies. The paper shows the effectiveness of mGA in the context of optimization of runner system in injection molding design

  10. A simulator-independent optimization tool based on genetic algorithm applied to nuclear reactor design

    International Nuclear Information System (INIS)

    Abreu Pereira, Claudio Marcio Nascimento do; Schirru, Roberto; Martinez, Aquilino Senra

    1999-01-01

    Here is presented an engineering optimization tool based on a genetic algorithm, implemented according to the method proposed in recent work that has demonstrated the feasibility of the use of this technique in nuclear reactor core designs. The tool is simulator-independent in the sense that it can be customized to use most of the simulators which have the input parameters read from formatted text files and the outputs also written from a text file. As the nuclear reactor simulators generally use such kind of interface, the proposed tool plays an important role in nuclear reactor designs. Research reactors may often use non-conventional design approaches, causing different situations that may lead the nuclear engineer to face new optimization problems. In this case, a good optimization technique, together with its customizing facility and a friendly man-machine interface could be very interesting. Here, the tool is described and some advantages are outlined. (author)

  11. HypE: an algorithm for fast hypervolume-based many-objective optimization.

    Science.gov (United States)

    Bader, Johannes; Zitzler, Eckart

    2011-01-01

    In the field of evolutionary multi-criterion optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set approximation entirely dominates another one, then the indicator value of the dominant set will also be better. This property is of high interest and relevance for problems involving a large number of objective functions. However, the high computational effort required for hypervolume calculation has so far prevented the full exploitation of this indicator's potential; current hypervolume-based search algorithms are limited to problems with only a few objectives. This paper addresses this issue and proposes a fast search algorithm that uses Monte Carlo simulation to approximate the exact hypervolume values. The main idea is not that the actual indicator values are important, but rather that the rankings of solutions induced by the hypervolume indicator. In detail, we present HypE, a hypervolume estimation algorithm for multi-objective optimization, by which the accuracy of the estimates and the available computing resources can be traded off; thereby, not only do many-objective problems become feasible with hypervolume-based search, but also the runtime can be flexibly adapted. Moreover, we show how the same principle can be used to statistically compare the outcomes of different multi-objective optimizers with respect to the hypervolume--so far, statistical testing has been restricted to scenarios with few objectives. The experimental results indicate that HypE is highly effective for many-objective problems in comparison to existing multi-objective evolutionary algorithms. HypE is available for download at http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.

  12. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  13. Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture

    International Nuclear Information System (INIS)

    Rattá, G.A.; Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.

    2016-01-01

    Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.

  14. Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture

    Energy Technology Data Exchange (ETDEWEB)

    Rattá, G.A., E-mail: giuseppe.ratta@ciemat.es [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Vega, J. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Murari, A. [Consorzio RFX, Associazione EURATOM/ENEA per la Fusione, Padua (Italy); Dormido-Canto, S. [Dpto. de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid (Spain); Moreno, R. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain)

    2016-11-15

    Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.

  15. OpenMP Parallelization and Optimization of Graph-based Machine Learning Algorithms

    Science.gov (United States)

    2016-05-01

    semi- supervised and unsupervised learning respectively. The GL functional is minimized using the MBO scheme [10], in which one alternates solving the...reaches almost ideal scaling. Keywords: semi- supervised , unsupervised , data, algorithms, OpenMP, optimization 1 Introduction We detail the OpenMP...and Unsupervised Algorithms We outline the semi- supervised and the unsupervised algorithms. For the semi- supervised algorithm, the fidelity (a small

  16. Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Tolba

    2018-01-01

    Full Text Available Integration of Renewable Distributed Generations (RDGs such as photovoltaic (PV systems and wind turbines (WTs in distribution networks can be considered a brilliant and efficient solution to the growing demand for energy. This article introduces new robust and effective techniques like hybrid Particle Swarm Optimization in addition to a Gravitational Search Algorithm (PSOGSA and Moth-Flame Optimization (MFO that are proposed to deduce the optimum location with convenient capacity of RDGs units for minimizing system power losses and operating cost while improving voltage profile and voltage stability. This paper describes two stages. First, the Loss Sensitivity Factors (LSFs are employed to select the most candidate buses for RDGs location. In the second stage, the PSOGSA and MFO are implemented to deduce the optimal location and capacity of RDGs from the elected buses. The proposed schemes have been applied on 33-bus and 69-bus IEEE standard radial distribution systems. To insure the suggested approaches validity, the numerical results have been compared with other techniques like Backtracking Search Optimization Algorithm (BSOA, Genetic Algorithm (GA, Particle Swarm Algorithm (PSO, Novel combined Genetic Algorithm and Particle Swarm Optimization (GA/PSO, Simulation Annealing Algorithm (SA, and Bacterial Foraging Optimization Algorithm (BFOA. The evaluated results have been confirmed the superiority with high performance of the proposed MFO technique to find the optimal solutions of RDGs units’ allocation. In this regard, the MFO is chosen to solve the problems of Egyptian Middle East distribution network as a practical case study with the optimal integration of RDGs.

  17. Risk-Based, genetic algorithm approach to optimize outage maintenance schedule

    International Nuclear Information System (INIS)

    Hadavi, S. Mohammad Hadi

    2008-01-01

    A huge number of components are typically scheduled for maintenance when a nuclear power plant is shut down for its planned outage. Among these components, a number of them are risk significant so that their operability as well as reliability is of prime concern. Lack of proper maintenance for such components during the outage would impose substantial risk on the nuclear power plant (NPP) operation. In this paper, a new approach based on genetic algorithm (GA) is presented for the optimization of the NPP maintenance schedule during plant outage/overhaul, and an optimizer is developed accordingly. The developed optimizer, coupled with the suggested risk-cost model, compromises the cost in favor of maintaining the risk imposed by each schedule below regulatory/industry set limits. The suggested cost model consists of two elements, one considering the cost incurred by maintenance activities and the other incorporating the loss of revenues if needed, but unscheduled component maintenance causes further plant shutdown. The optimizer is developed in such a way that any risk and/or cost models the user desires can be applied. The performance of the developed GA/optimizer is evaluated by comparing its predictions with Monte Carlo simulation results. It is shown that the GA/optimizer performs significantly better

  18. Optimization of steel casting feeding system based on BP neural network and genetic algorithm

    Directory of Open Access Journals (Sweden)

    Xue-dan Gong

    2016-05-01

    Full Text Available The trial-and-error method is widely used for the current optimization of the steel casting feeding system, which is highly random, subjective and thus inefficient. In the present work, both the theoretical and the experimental research on the modeling and optimization methods of the process are studied. An approximate alternative model is established based on the Back Propagation (BP neural network and experimental design. The process parameters of the feeding system are taken as the input, the volumes of shrinkage cavities and porosities calculated by simulation are simultaneously taken as the output. Thus, a mathematical model is established by the BP neural network to combine the input variables with the output response. Then, this model is optimized by the nonlinear optimization function of the genetic algorithm. Finally, a feeding system optimization of a steel traveling wheel is conducted. No shrinkage cavities and porosities are induced through the optimization. Compared to the initial design scheme, the process yield is increased by 4.1% and the volume of the riser is decreased by 5.48×106 mm3.

  19. Optimization of flapping-wing micro aircrafts based on the kinematic parameters using genetic algorithm method

    Directory of Open Access Journals (Sweden)

    Ebrahim BARATI

    2013-03-01

    Full Text Available In this paper the optimization of kinematics, which has great influence in performance of flapping foil propulsion, is investigated. The purpose of optimization is to design a flapping-wing micro aircraft with appropriate kinematics and aerodynamics features, making the micro aircraft suitable for transportation over large distance with minimum energy consumption. On the point of optimal design, the pitch amplitude, wing reduced frequency and phase difference between plunging and pitching are considered as given parameters and consumed energy, generated thrust by wings and lost power are computed using the 2D quasi-steady aerodynamic model and multi-objective genetic algorithm. Based on the thrust optimization, the increase in pitch amplitude reduces the power consumption. In this case the lost power increases and the maximum thrust coefficient is computed of 2.43. Based on the power optimization, the results show that the increase in pitch amplitude leads to power consumption increase. Additionally, the minimum lost power obtained in this case is 23% at pitch amplitude of 25°, wing reduced frequency of 0.42 and phase angle difference between plunging and pitching of 77°. Furthermore, the wing reduced frequency can be estimated using regression with respect to pitch amplitude, because reduced frequency variations with pitch amplitude is approximately a linear function.

  20. Optimizing Properties of Aluminum-Based Nanocomposites by Genetic Algorithm Method

    Directory of Open Access Journals (Sweden)

    M.R. Dashtbayazi

    2015-07-01

    Full Text Available Based on molecular dynamics simulation results, a model was developed for determining elastic properties of aluminum nanocomposites reinforced with silicon carbide particles. Also, two models for prediction of density and price of nanocomposites were suggested. Then, optimal volume fraction of reinforcement was obtained by genetic algorithm method for the least density and price, and the highest elastic properties. Based on optimization results, the optimum volume fraction of reinforcement was obtained equal to 0.44. For this optimum volume fraction, optimum Young’s modulus, shear modulus, the price and the density of the nanocomposite were obtained 165.89 GPa, 111.37 GPa, 8.75 $/lb and 2.92 gr/cm3, respectively.

  1. Application of Fuzzy C-Means Clustering Algorithm Based on Particle Swarm Optimization in Computer Forensics

    Science.gov (United States)

    Wang, Deguang; Han, Baochang; Huang, Ming

    Computer forensics is the technology of applying computer technology to access, investigate and analysis the evidence of computer crime. It mainly include the process of determine and obtain digital evidence, analyze and take data, file and submit result. And the data analysis is the key link of computer forensics. As the complexity of real data and the characteristics of fuzzy, evidence analysis has been difficult to obtain the desired results. This paper applies fuzzy c-means clustering algorithm based on particle swarm optimization (FCMP) in computer forensics, and it can be more satisfactory results.

  2. Enhanced Grey Wolf Optimizer based MPPT Algorithm of PV system under Partial Shaded Condition

    Directory of Open Access Journals (Sweden)

    Santhan Kumar Cherukuri

    2017-11-01

    Full Text Available Partial shading condition is one of the adverse phenomena which effects the power output of photovoltaic (PV systems due to inaccurate tracking of global maximum power point. Conventional Maximum Power Point Tracking (MPPT techniques like Perturb and Observe, Incremental Conductance and Hill Climbing can track the maximum power point effectively under uniform shaded condition, but fails under partial shaded condition. An attractive solution under partial shaded condition is application of meta-heuristic algorithms to operate at global maximum power point. Hence in this paper, an Enhanced Grey Wolf Optimizer (EGWO based maximum power point tracking algorithm is proposed to track the global maximum power point of PV system under partial shading condition. A Mathematical model of PV system is developed under partial shaded condition using single diode model and EGWO is applied to track global maximum power point. The proposed method is programmed in MATLAB environment and simulations are carried out on 4S and 2S2P PV configurations for dynamically changing shading patterns. The results of the proposed method are analyzed and compared with GWO and PSO algorithms. It is observed that proposed method is effective in tracking global maximum power point with more accuracy in less computation time compared to other methods. Article History: Received June 12nd 2017; Received in revised form August 13rd 2017; Accepted August 15th 2017; Available online How to Cite This Article: Kumar, C.H.S and Rao, R.S. (2017 Enhanced Grey Wolf Optimizer Based MPPT Algorithm of PV System Under Partial Shaded Condition. Int. Journal of Renewable Energy Development, 6(3, 203-212. https://doi.org/10.14710/ijred.6.3.203-212

  3. A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Santhan Kumar Cherukuri

    2016-11-01

    Full Text Available To harvest maximum amount of solar energy and to attain higher efficiency, photovoltaic generation (PVG systems are to be operated at their maximum power  point (MPP under both variable climatic and partial shaded condition (PSC. From literature most of conventional MPP tracking (MPPT methods are able to guarantee MPP successfully under uniform shading condition but fails to get global MPP as they may trap at local MPP under PSC, which adversely deteriorates the efficiency of Photovoltaic Generation (PVG system. In this paper a novel MPPT based on Whale Optimization Algorithm (WOA is proposed to analyze analytic modeling of PV system considering both series and shunt resistances for MPP tracking under PSC. The proposed algorithm is tested on 6S, 3S2P and 2S3P Photovoltaic array configurations for different shading patterns and results are presented. To compare the performance, GWO and PSO MPPT algorithms are also simulated and results are also presented.  From the results it is noticed that proposed MPPT method is superior to other MPPT methods with reference to accuracy and tracking speed. Article History: Received July 23rd 2016; Received in revised form September 15th 2016; Accepted October 1st 2016; Available online How to Cite This Article: Kumar, C.H.S and Rao, R.S. (2016 A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm. Int. Journal of Renewable Energy Development, 5(3, 225-232. http://dx.doi.org/10.14710/ijred.5.3.225-232

  4. Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.

    Science.gov (United States)

    Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo

    2016-01-01

    The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.

  5. High-performance simulation-based algorithms for an alpine ski racer’s trajectory optimization in heterogeneous computer systems

    OpenAIRE

    Dębski Roman

    2014-01-01

    Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with reference to the problem taken from alpine ski racing (the presented solution is probably the most general one published so far). The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous optimization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming to find an approxi...

  6. Optimal Allocation of Generalized Power Sources in Distribution Network Based on Multi-Objective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Li Ran

    2017-01-01

    Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.

  7. Genetic algorithm based approach to optimize phenotypical traits of virtual rice.

    Science.gov (United States)

    Ding, Weilong; Xu, Lifeng; Wei, Yang; Wu, Fuli; Zhu, Defeng; Zhang, Yuping; Max, Nelson

    2016-08-21

    How to select and combine good traits of rice to get high-production individuals is one of the key points in developing crop ideotype cultivation technologies. Existing cultivation methods for producing ideal plants, such as field trials and crop modeling, have some limits. In this paper, we propose a method based on a genetic algorithm (GA) and a functional-structural plant model (FSPM) to optimize plant types of virtual rice by dynamically adjusting phenotypical traits. In this algorithm, phenotypical traits such as leaf angles, plant heights, the maximum number of tiller, and the angle of tiller are considered as input parameters of our virtual rice model. We evaluate the photosynthetic output as a function of these parameters, and optimized them using a GA. This method has been implemented on GroIMP using the modeling language XL (eXtended L-System) and RGG (Relational Growth Grammar). A double haploid population of rice is adopted as test material in a case study. Our experimental results show that our method can not only optimize the parameters of rice plant type and increase the amount of light absorption, but can also significantly increase crop yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Optimal Management Of Renewable-Based Mgs An Intelligent Approach Through The Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mehdi Nafar

    2015-08-01

    Full Text Available Abstract- This article proposes a probabilistic frame built on Scenario fabrication to considerate the uncertainties in the finest action managing of Micro Grids MGs. The MG contains different recoverable energy resources such as Wind Turbine WT Micro Turbine MT Photovoltaic PV Fuel Cell FC and one battery as the storing device. The advised frame is based on scenario generation and Roulette wheel mechanism to produce different circumstances for handling the uncertainties of altered factors. It habits typical spreading role as a probability scattering function of random factors. The uncertainties which are measured in this paper are grid bid alterations cargo request calculating error and PV and WT yield power productions. It is well-intentioned to asset that solving the MG difficult for 24 hours of a day by considering diverse uncertainties and different constraints needs one powerful optimization method that can converge fast when it doesnt fall in local optimal topic. Simultaneously single Group Search Optimization GSO system is presented to vision the total search space globally. The GSO algorithm is instigated from group active of beasts. Also the GSO procedure one change is similarly planned for this algorithm. The planned context and way is applied o one test grid-connected MG as a typical grid.

  9. Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos

    International Nuclear Information System (INIS)

    Ghasemi, Mojtaba; Ghavidel, Sahand; Akbari, Ebrahim; Vahed, Ali Azizi

    2014-01-01

    Invasive Weed Optimization (IWO) algorithm is a simple but powerful algorithm which is capable of solving general multi-dimensional, linear and nonlinear optimization problems with appreciable efficiency. Recently IWO algorithm is being used in several engineering design owing to its superior performance in comparison with many other existing algorithms. This paper presents a Chaotic IWO (CIWO) algorithms based on chaos, and investigates its performance for optimal settings of Optimal Power Flow (OPF) control variables of OPF problem with non-smooth and non-convex generator fuel cost curves (non-smooth and non-convex OPF). The performance of CIWO algorithms are studied and evaluated on the standard IEEE 30-bus test system with different objective functions. The experimental results suggest that IWO algorithm holds immense promise to appear as an efficient and powerful algorithm for optimization in the power system. - Highlights: • OPF problem has been solved considering non-smooth and non-convex fuel cost curves. • CIWO algorithms have been used based on chaos for solving OPF problem. • A comparative study of the proposed algorithms has been presented comprehensively

  10. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    Science.gov (United States)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  11. New Optimization Algorithms in Physics

    CERN Document Server

    Hartmann, Alexander K

    2004-01-01

    Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.

  12. A Genetic Algorithms-based Approach for Optimized Self-protection in a Pervasive Service Middleware

    DEFF Research Database (Denmark)

    Zhang, Weishan; Ingstrup, Mads; Hansen, Klaus Marius

    2009-01-01

    the constraints of heterogeneous devices and networks. In this paper, we present a Genetic Algorithms-based approach for obtaining optimized security configurations at run time, supported by a set of security OWL ontologies and an event-driven framework. This approach has been realized as a prototype for self......With increasingly complex and heterogeneous systems in pervasive service computing, it becomes more and more important to provide self-protected services to end users. In order to achieve self-protection, the corresponding security should be provided in an optimized manner considering......-protection in the Hydra middleware, and is integrated with a framework for enforcing the computed solution at run time using security obligations. The experiments with the prototype on configuring security strategies for a pervasive service middleware show that this approach has acceptable performance, and could be used...

  13. An optimization iterative algorithm based on nonnegative constraint with application to Allan variance analysis technique

    Science.gov (United States)

    Lv, Hanfeng; Zhang, Liang; Wang, Dingjie; Wu, Jie

    2014-03-01

    It is well known that inertial integrated navigation systems can provide accurate navigation information. In these systems, inertial sensor random error often becomes the limiting factor to get a better performance. So it is imperative to have accurate characterization of the random error. Allan variance analysis technique has a good performance in analyzing inertial sensor random error, and it is always used to characterize various types of the random error terms. This paper proposes a new method named optimization iterative algorithm based on nonnegative constraint applied to Allan variance analysis technique to estimate parameters of the random error terms. The parameter estimates by this method are nonnegative and optimal, and the estimation process does not have matrix nearly singular issues. Testing with simulation data and the experimental data of a fiber optical gyro, the parameters estimated by the presented method are compared against other excellent methods with good agreement; moreover, the objective function has the minimum value.

  14. Subpixel displacement measurement method based on the combination of particle swarm optimization and gradient algorithm

    Science.gov (United States)

    Guang, Chen; Qibo, Feng; Keqin, Ding; Zhan, Gao

    2017-10-01

    A subpixel displacement measurement method based on the combination of particle swarm optimization (PSO) and gradient algorithm (GA) was proposed for accuracy and speed optimization in GA, which is a subpixel displacement measurement method better applied in engineering practice. An initial integer-pixel value was obtained according to the global searching ability of PSO, and then gradient operators were adopted for a subpixel displacement search. A comparison was made between this method and GA by simulated speckle images and rigid-body displacement in metal specimens. The results showed that the computational accuracy of the combination of PSO and GA method reached 0.1 pixel in the simulated speckle images, or even 0.01 pixels in the metal specimen. Also, computational efficiency and the antinoise performance of the improved method were markedly enhanced.

  15. A Novel Path Planning for Robots Based on Rapidly-Exploring Random Tree and Particle Swarm Optimizer Algorithm

    Directory of Open Access Journals (Sweden)

    Zhou Feng

    2013-09-01

    Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.

  16. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  17. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography.

    Science.gov (United States)

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn

    2016-03-04

    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up.

  18. A new method for multi-objective in core fuel management optimization using biogeography based algorithm

    International Nuclear Information System (INIS)

    Khoshahval, Farrokh; Zolfaghari, Ahmad; Minuchehr, Hamid

    2014-01-01

    Highlights: • BBO algorithm is capable of finding suitably optimized loading pattern. • It seems BBO reaches to better final parameter value in comparison with the PSO. • PSO exhibits faster convergence characteristics in comparison with BBO. • Even with same initial random patterns the BBO is found to outperform PSO. - Abstract: In this investigation, we developed a new optimization method, i.e., biogeography based optimization (BBO), for loading pattern optimization problem of pressurized water reactors. BBO is a novel stochastic force based on the science of biogeography. Biogeography is the schoolwork of geographical allotment of biological organisms. BBO make use of migration operator to share information between the problem solutions. The problem solutions are called as habitats and sharing of features is called migration. For the evaluation of the proposed method, we applied a multi-objective fitness function i.e., the maximization of reactivity at BOC and the flattening of power distribution are achieved efficiently and simultaneously. The neutronic calculation is done by CITATION and WIMS codes

  19. A Thrust Allocation Method for Efficient Dynamic Positioning of a Semisubmersible Drilling Rig Based on the Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Luman Zhao

    2015-01-01

    Full Text Available A thrust allocation method was proposed based on a hybrid optimization algorithm to efficiently and dynamically position a semisubmersible drilling rig. That is, the thrust allocation was optimized to produce the generalized forces and moment required while at the same time minimizing the total power consumption under the premise that forbidden zones should be taken into account. An optimization problem was mathematically formulated to provide the optimal thrust allocation by introducing the corresponding design variables, objective function, and constraints. A hybrid optimization algorithm consisting of a genetic algorithm and a sequential quadratic programming (SQP algorithm was selected and used to solve this problem. The proposed method was evaluated by applying it to a thrust allocation problem for a semisubmersible drilling rig. The results indicate that the proposed method can be used as part of a cost-effective strategy for thrust allocation of the rig.

  20. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system

    Directory of Open Access Journals (Sweden)

    Ahmed F. Mohamed

    2014-05-01

    Full Text Available One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC. The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.

  1. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system.

    Science.gov (United States)

    Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M

    2014-05-01

    One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.

  2. Optimization of high speed pipelining in FPGA-based FIR filter design using genetic algorithm

    Science.gov (United States)

    Meyer-Baese, Uwe; Botella, Guillermo; Romero, David E. T.; Kumm, Martin

    2012-06-01

    This paper compares FPGA-based full pipelined multiplierless FIR filter design options. Comparison of Distributed Arithmetic (DA), Common Sub-Expression (CSE) sharing and n-dimensional Reduced Adder Graph (RAG-n) multiplierless filter design methods in term of size, speed, and A*T product are provided. Since DA designs are table-based and CSE/RAG-n designs are adder-based, FPGA synthesis design data are used for a realistic comparison. Superior results of a genetic algorithm based optimization of pipeline registers and non-output fundamental coefficients are shown. FIR filters (posted as open source by Kastner et al.) for filters in the length from 6 to 151 coefficients are used.

  3. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    Science.gov (United States)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  4. Parameter Determination of Milling Process Using a Novel Teaching-Learning-Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zhibo Zhai

    2015-01-01

    Full Text Available Cutting parameter optimization dramatically affects the production time, cost, profit rate, and the quality of the final products, in milling operations. Aiming to select the optimum machining parameters in multitool milling operations such as corner milling, face milling, pocket milling, and slot milling, this paper presents a novel version of TLBO, TLBO with dynamic assignment learning strategy (DATLBO, in which all the learners are divided into three categories based on their results in “Learner Phase”: good learners, moderate learners, and poor ones. Good learners are self-motivated and try to learn by themselves; each moderate learner uses a probabilistic approach to select one of good learners to learn; each poor learner also uses a probabilistic approach to select several moderate learners to learn. The CEC2005 contest benchmark problems are first used to illustrate the effectiveness of the proposed algorithm. Finally, the DATLBO algorithm is applied to a multitool milling process based on maximum profit rate criterion with five practical technological constraints. The unit time, unit cost, and profit rate from the Handbook (HB, Feasible Direction (FD method, Genetic Algorithm (GA method, five other TLBO variants, and DATLBO are compared, illustrating that the proposed approach is more effective than HB, FD, GA, and five other TLBO variants.

  5. AUTOMATA PROGRAMS CONSTRUCTION FROM SPECIFICATION WITH AN ANT COLONY OPTIMIZATION ALGORITHM BASED ON MUTATION GRAPH

    Directory of Open Access Journals (Sweden)

    Daniil S. Chivilikhin

    2014-11-01

    Full Text Available The procedure of testing traditionally used in software engineering cannot guarantee program correctness; therefore verification is used at the excess requirements to programs reliability. Verification makes it possible to check certain properties of programs in all possible computational states; however, this process is very complex. In the model checking method a model of the program is built (often, manually and requirements in terms of temporal logic are formulated. Such temporal properties of the model can be checked automatically. The main issue in this framework is the gap between the program and its model. Automata-based programming paradigm gives the possibility to overcome this limitation. In this paradigm, program logic is represented using finite-state machines. The advantage of finite-state machines is that their models can be constructed automatically. The paper deals with the application of mutation-based ant colony optimization algorithm to the problem of finite-state machine construction from their specification, defined by test scenarios and temporal properties. The presented approach has been tested on the elevator doors control problem as well as on randomly generated data. Obtained results show the ant colony algorithm is two-three times faster than the previously used genetic algorithm. The proposed approach can be recommended for inferring control programs for critical systems.

  6. PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization

    Directory of Open Access Journals (Sweden)

    Shuangqing Chen

    2018-01-01

    Full Text Available Particle swarm optimization (PSO and fireworks algorithm (FWA are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems.

  7. An optimized outlier detection algorithm for jury-based grading of engineering design projects

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Espensen, Christina; Clemmensen, Line Katrine Harder

    2016-01-01

    This work characterizes and optimizes an outlier detection algorithm to identify potentially invalid scores produced by jury members while grading engineering design projects. The paper describes the original algorithm and the associated adjudication process in detail. The impact of the various...

  8. An efficient algorithm for function optimization: modified stem cells algorithm

    Science.gov (United States)

    Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad

    2013-03-01

    In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).

  9. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    Science.gov (United States)

    Li, R. N.; Liu, X.; Liu, S. J.

    2013-12-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.

  10. Potential Odor Intensity Grid Based UAV Path Planning Algorithm with Particle Swarm Optimization Approach

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available This paper proposes a potential odor intensity grid based optimization approach for unmanned aerial vehicle (UAV path planning with particle swarm optimization (PSO technique. Odor intensity is created to color the area in the searching space with highest probability where candidate particles may locate. A potential grid construction operator is designed for standard PSO based on different levels of odor intensity. The potential grid construction operator generates two potential location grids with highest odor intensity. Then the middle point will be seen as the final position in current particle dimension. The global optimum solution will be solved as the average. In addition, solution boundaries of searching space in each particle dimension are restricted based on properties of threats in the flying field to avoid prematurity. Objective function is redesigned by taking minimum direction angle to destination into account and a sampling method is introduced. A paired samples t-test is made and an index called straight line rate (SLR is used to evaluate the length of planned path. Experiments are made with other three heuristic evolutionary algorithms. The results demonstrate that the proposed method is capable of generating higher quality paths efficiently for UAV than any other tested optimization techniques.

  11. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2012-01-01

    Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.

  12. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    International Nuclear Information System (INIS)

    Li, R N; Liu, X; Liu, S J

    2013-01-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission

  13. Optimization of IBF parameters based on adaptive tool-path algorithm

    Science.gov (United States)

    Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi

    2018-03-01

    As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.

  14. A Modified Particle Swarm Optimization Algorithm

    OpenAIRE

    Jie He; Hui Guo

    2013-01-01

    In optimizing the particle swarm optimization (PSO) that inevitable existence problem of prematurity and the local convergence, this paper base on this aspects is put forward a kind of modified particle swarm optimization algorithm, take the gradient descent method (BP algorithm) as a particle swarm operator embedded in particle swarm algorithm, and at the same time use to attenuation wall (Damping) approach to make fly off the search area of the particles of size remain unchanged and avoid t...

  15. HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems.

    Directory of Open Access Journals (Sweden)

    Shouheng Tuo

    Full Text Available Harmony Search (HS and Teaching-Learning-Based Optimization (TLBO as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.

  16. Fault diagnosis of nuclear power plant based on invasive weed optimization algorithm

    International Nuclear Information System (INIS)

    Duan Mengqiang; Yuan Can

    2015-01-01

    It is not completely accordant for fault reasons to match up corresponding symptoms of the marine nuclear power plant. A kind of fault diagnosis method was proposed, which is about invasive weed optimization algorithm combined with probability causal model. The probability causal model likelihood function was used as fitness function of the invasive weed optimization algorithm, after that the fault diagnosis of complex systems can be converted to optimization problem. The simulation results show that the method can not only be used for the process of diagnosis of uncertainty, but also for the purpose of multiple symptoms to multiple faults diagnose with high reliability and practicability. (authors)

  17. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures

    International Nuclear Information System (INIS)

    Neylon, J.; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A.; Chen, Q.

    2014-01-01

    , respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems

  18. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.

    Science.gov (United States)

    Neylon, J; Sheng, K; Yu, V; Chen, Q; Low, D A; Kupelian, P; Santhanam, A

    2014-10-01

    . Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.

  19. Photoinjector optimization using a derivative-free, model-based trust-region algorithm for the Argonne Wakefield Accelerator

    Science.gov (United States)

    Neveu, N.; Larson, J.; Power, J. G.; Spentzouris, L.

    2017-07-01

    Model-based, derivative-free, trust-region algorithms are increasingly popular for optimizing computationally expensive numerical simulations. A strength of such methods is their efficient use of function evaluations. In this paper, we use one such algorithm to optimize the beam dynamics in two cases of interest at the Argonne Wakefield Accelerator (AWA) facility. First, we minimize the emittance of a 1 nC electron bunch produced by the AWA rf photocathode gun by adjusting three parameters: rf gun phase, solenoid strength, and laser radius. The algorithm converges to a set of parameters that yield an emittance of 1.08 μm. Second, we expand the number of optimization parameters to model the complete AWA rf photoinjector (the gun and six accelerating cavities) at 40 nC. The optimization algorithm is used in a Pareto study that compares the trade-off between emittance and bunch length for the AWA 70MeV photoinjector.

  20. Optimization of Multiple Traveling Salesman Problem Based on Simulated Annealing Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xu Mingji

    2017-01-01

    Full Text Available It is very effective to solve the multi variable optimization problem by using hierarchical genetic algorithm. This thesis analyzes both advantages and disadvantages of hierarchical genetic algorithm and puts forward an improved simulated annealing genetic algorithm. The new algorithm is applied to solve the multiple traveling salesman problem, which can improve the performance of the solution. First, it improves the design of chromosomes hierarchical structure in terms of redundant hierarchical algorithm, and it suggests a suffix design of chromosomes; Second, concerning to some premature problems of genetic algorithm, it proposes a self-identify crossover operator and mutation; Third, when it comes to the problem of weak ability of local search of genetic algorithm, it stretches the fitness by mixing genetic algorithm with simulated annealing algorithm. Forth, it emulates the problems of N traveling salesmen and M cities so as to verify its feasibility. The simulation and calculation shows that this improved algorithm can be quickly converged to a best global solution, which means the algorithm is encouraging in practical uses.

  1. Optimization of noise abatement aircraft terminal routes using a multi-objective evolutionary algorithm based on decomposition

    NARCIS (Netherlands)

    Ho Huu, V.; Hartjes, S.; Visser, H.G.; Curran, R.; Gherman, B.; Porumbel, I.

    2018-01-01

    Recently, a multi-objective evolutionary algorithm based on decomposition (MOEA/D) has emerged as a potential method for solving multi-objective optimization problems (MOPs) and attracted much attention from researchers. In MOEA/D, the MOPs are decomposed into a number of scalar optimization

  2. FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Evans BAIDOO

    2017-03-01

    Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.

  3. Combinatorial optimization theory and algorithms

    CERN Document Server

    Korte, Bernhard

    2018-01-01

    This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the fundamentals, covers the classical topics (paths, flows, matching, matroids, NP-completeness, approximation algorithms) in detail, and proceeds to advanced and recent topics, some of which have not appeared in a textbook before. Throughout, it contains complete but concise proofs, and also provides numerous exercises and references. This sixth edition has again been updated, revised, and significantly extended. Among other additions, there are new sections on shallow-light trees, submodular function maximization, smoothed analysis of the knapsack problem, the (ln 4+ɛ)-approximation for Steiner trees, and the VPN theorem. Thus, this book continues to represent the state of the art of combinatorial opti...

  4. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  5. Bus Timetabling as a Fuzzy Multiobjective Optimization Problem Using Preference-based Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Surafel Luleseged Tilahun

    2012-05-01

    Full Text Available Transportation plays a vital role in the development of a country and the car is the most commonly used means. However, in third world countries long waiting time for public buses is a common problem, especially when people need to switch buses. The problem becomes critical when one considers buses joining different villages and cities. Theoretically this problem can be solved by assigning more buses on the route, which is not possible due to economical problem. Another option is to schedule the buses so that customers who want to switch buses at junction cities need not have to wait long. This paper discusses how to model single frequency routes bus timetabling as a fuzzy multiobjective optimization problem and how to solve it using preference-based genetic algorithm by assigning appropriate fuzzy preference to the need of the customers. The idea will be elaborated with an example.

  6. Optimized Aircraft Electric Control System Based on Adaptive Tabu Search Algorithm and Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Saifullah Khalid

    2016-09-01

    Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.

  7. CSLM: Levenberg Marquardt based Back Propagation Algorithm Optimized with Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Nazri Mohd. Nawi

    2014-11-01

    Full Text Available Training an artificial neural network is an optimization task, since it is desired to find optimal weight sets for a neural network during training process. Traditional training algorithms such as back propagation have some drawbacks such as getting stuck in local minima and slow speed of convergence. This study combines the best features of two algorithms; i.e. Levenberg Marquardt back propagation (LMBP and Cuckoo Search (CS for improving the convergence speed of artificial neural networks (ANN training. The proposed CSLM algorithm is trained on XOR and OR datasets. The experimental results show that the proposed CSLM algorithm has better performance than other similar hybrid variants used in this study.

  8. An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2015-01-01

    Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.

  9. Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves

    Science.gov (United States)

    Tarano, Ana; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid

    2018-01-01

    An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.

  10. Modeling and optimizing electrodischarge machine process (EDM) with an approach based on genetic algorithm

    Science.gov (United States)

    Zabbah, Iman

    2012-01-01

    Electro Discharge Machine (EDM) is the commonest untraditional method of production for forming metals and the Non-Oxide ceramics. The increase of smoothness, the increase of the remove of filings, and also the decrease of proportional erosion tool has an important role in this machining. That is directly related to the choosing of input parameters.The complicated and non-linear nature of EDM has made the process impossible with usual and classic method. So far, some methods have been used based on intelligence to optimize this process. At the top of them we can mention artificial neural network that has modelled the process as a black box. The problem of this kind of machining is seen when a workpiece is composited of the collection of carbon-based materials such as silicon carbide. In this article, besides using the new method of mono-pulse technical of EDM, we design a fuzzy neural network and model it. Then the genetic algorithm is used to find the optimal inputs of machine. In our research, workpiece is a Non-Oxide metal called silicon carbide. That makes the control process more difficult. At last, the results are compared with the previous methods.

  11. Genetic Algorithm-based Optimization to Match Asteroid Energy Deposition Curves

    Science.gov (United States)

    Tarano, Ana Maria; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid

    2017-10-01

    An asteroid entering Earth’s atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and space-borne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid’s entry properties, such as diameter, density, strength, velocity, entry angle, ablation coefficient, and strength scaling, from simulations using FCM. The previous parameters’ fitness evaluation involves minimizing residuals and comparing the incremental energy deposited to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.

  12. Single Allocation Hub-and-spoke Networks Design Based on Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Pingle

    2014-10-01

    Full Text Available Capacitated single allocation hub-and-spoke networks can be abstracted as a mixed integer linear programming model equation with three variables. Introducing an improved ant colony algorithm, which has six local search operators. Meanwhile, introducing the "Solution Pair" concept to decompose and optimize the composition of the problem, the problem can become more specific and effectively meet the premise and advantages of using ant colony algorithm. Finally, location simulation experiment is made according to Australia Post data to demonstrate this algorithm has good efficiency and stability for solving this problem.

  13. Improvement of the fringe analysis algorithm for wavelength scanning interferometry based on filter parameter optimization.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian

    2018-03-20

    The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.

  14. Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia

    Directory of Open Access Journals (Sweden)

    Mijin Kim

    2018-01-01

    Full Text Available The Geostationary Environment Monitoring Spectrometer (GEMS is scheduled to be in orbit in 2019 onboard the GEO-KOMPSAT 2B satellite and will continuously monitor air quality over Asia. The GEMS will make measurements in the UV spectrum (300–500 nm with 0.6 nm resolution. In this study, an algorithm is developed to retrieve aerosol optical properties from UV-visible measurements for the future satellite instrument and is tested using 3 years of existing OMI L1B data. This algorithm provides aerosol optical depth (AOD, single scattering albedo (SSA and aerosol layer height (ALH using an optimized estimation method. The retrieved AOD shows good correlation with Aerosol Robotic Network (AERONET AOD with correlation coefficients of 0.83, 0.73 and 0.80 for heavy-absorbing fine (HAF particles, dust and non-absorbing (NA particles, respectively. However, regression tests indicate underestimation and overestimation of HAF and NA AOD, respectively. In comparison with AOD from the OMI/Aura Near-UV Aerosol Optical Depth and Single Scattering Albedo 1-orbit L2 Swath 13 km × 24 km V003 (OMAERUV algorithm, the retrieved AOD has a correlation coefficient of 0.86 and linear regression equation, AODGEMS = 1.18AODOMAERUV + 0.09. An uncertainty test based on a reference method, which estimates retrieval error by applying the algorithm to simulated radiance data, revealed that assumptions in the spectral dependency of aerosol absorptivity in the UV cause significant errors in aerosol property retrieval, particularly the SSA retrieval. Consequently, retrieved SSAs did not show good correlation with AERONET values. The ALH results were qualitatively compared with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP products and were found to be well correlated for highly absorbing aerosols. The difference between the attenuated-backscatter-weighted height from CALIOP and retrieved ALH were mostly closed to zero when the retrieved AOD is higher than 0.8 and

  15. Genetic Algorithm Based Optimization of a Two Link Planar Robot Manipulator

    Directory of Open Access Journals (Sweden)

    G. Chaitanyaa

    2016-12-01

    Full Text Available A two link revolute robotic arm is optimized for maximization of work space area covered by its end effector. A mathematical model for optimization is built considering singularities which influence the variation of design variables. Condition number which is the measure of output value (End effector position for a small change in input value (joint angles is modeled as the constraint. Joint angle between link2 and link1 and link lengths are considered as design variables. The mathematical model is initially optimized using semi infinite Programming technique. Genetic Algorithm using Roulette wheel selection is employed on the nonlinear optimization model for obtaining global optimum value for the objective function. The maximum value of objective function obtained from Genetic Algorithm is found to be considerably higher than the value obtained from semi infinite programming method

  16. Dermatology Disease Prediction Based on Two Step Cascade Genetic Algorithm Optimization of ANFIS Parameters.

    Science.gov (United States)

    Avdagic, Aja; Begic Fazlic, Lejla

    2017-01-01

    The aim of this study is to present novel algorithms for prediction of dermatological disease using only dermatological clinical features and diagnoses collected in real conditions. A combination of the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Genetic algorithm (GA) for ANFIS subtractive clustering parameter optimization has been suggested for the first level of fuzzy model optimization. After that, a genetic optimized ANFIS fuzzy structure is used as input in GA for the second level of fuzzy model optimization. We used double 2-fold Cross validation for generating different validation sets for model improvements. Our approach is performed in the MATLAB environment. We compared results with the other studies. The results confirm that the proposed model achieves accuracy rates which are higher than the one with the previous model.

  17. Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor

    Directory of Open Access Journals (Sweden)

    K. Premkumar

    2016-06-01

    Full Text Available In this paper, design of fuzzy proportional derivative controller and fuzzy proportional derivative integral controller for speed control of brushless direct current drive has been presented. Optimization of the above controllers design is carried out using nature inspired optimization algorithms such as particle swarm, cuckoo search, and bat algorithms. Time domain specifications such as overshoot, undershoot, settling time, recovery time, and steady state error and performance indices such as root mean squared error, integral of absolute error, integral of time multiplied absolute error and integral of squared error are measured and compared for the above controllers under different operating conditions such as varying set speed and load disturbance conditions. The precise investigation through simulation is performed using simulink toolbox. From the simulation test results, it is evident that bat optimized fuzzy proportional derivative controller has superior performance than the other controllers considered. Experimental test results have also been taken and analyzed for the optimal controller identified through simulation.

  18. High-performance simulation-based algorithms for an alpine ski racer’s trajectory optimization in heterogeneous computer systems

    Directory of Open Access Journals (Sweden)

    Dębski Roman

    2014-09-01

    Full Text Available Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with reference to the problem taken from alpine ski racing (the presented solution is probably the most general one published so far. The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous optimization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming to find an approximation of the global solution. In the analyzed example it is the minimum-time ski line, represented as a piecewise-linear function (a method of elimination of unfeasible solutions is proposed. Serial and parallel versions of the basic optimization algorithm are presented in detail (pseudo-code, time and memory complexity. Possible extensions of the basic algorithm are also described. The implementation of these algorithms is based on OpenCL. The included experimental results show that contemporary heterogeneous computers can be treated as μ-HPC platforms-they offer high performance (the best speedup was equal to 128 while remaining energy and cost efficient (which is crucial in embedded systems, e.g., trajectory planners of autonomous robots. The presented algorithms can be applied to many trajectory optimization problems, including those having a black-box represented performance measure

  19. Differential search algorithm-based parametric optimization of electrochemical micromachining processes

    Directory of Open Access Journals (Sweden)

    Debkalpa Goswami

    2014-01-01

    Full Text Available Electrochemical micromachining (EMM appears to be a very promising micromachining process for having higher machining rate, better precision and control, reliability, flexibility, environmental acceptability, and capability of machining a wide range of materials. It permits machining of chemically resistant materials, like titanium, copper alloys, super alloys and stainless steel to be used in biomedical, electronic, micro-electromechanical system and nano-electromechanical system applications. Therefore, the optimal use of an EMM process for achieving enhanced machining rate and improved profile accuracy demands selection of its various machining parameters. Various optimization tools, primarily Derringer’s desirability function approach have been employed by the past researchers for deriving the best parametric settings of EMM processes, which inherently lead to sub-optimal or near optimal solutions. In this paper, an attempt is made to apply an almost new optimization tool, i.e. differential search algorithm (DSA for parametric optimization of three EMM processes. A comparative study of optimization performance between DSA, genetic algorithm and desirability function approach proves the wide acceptability of DSA as a global optimization tool.

  20. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  1. Genetic Algorithms for the Optimization of Chemical Processes Based on Problem Descriptions

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Rodemerck, U.; Čukić, T.; Linke, D.; Dingerdissen, U.

    2007-01-01

    Roč. 6, č. 4 (2007), s. 615-621 ISSN 1109-2769 R&D Projects: GA ČR GA201/05/0325 Institutional research plan: CEZ:AV0Z10300504 Keywords : computer applications in chemistry * optimization methods * empirical objective function * genetic algorithms * problem-tailoring * formal description language * program generator Subject RIV: IN - Informatics, Computer Science

  2. Study on Parameter Optimization Design of Drum Brake Based on Hybrid Cellular Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2012-01-01

    Full Text Available In consideration of the significant role the brake plays in ensuring the fast and safe running of vehicles, and since the present parameter optimization design models of brake are far from the practical application, this paper proposes a multiobjective optimization model of drum brake, aiming at maximizing the braking efficiency and minimizing the volume and temperature rise of drum brake. As the commonly used optimization algorithms are of some deficiency, we present a differential evolution cellular multiobjective genetic algorithm (DECell by introducing differential evolution strategy into the canonical cellular genetic algorithm for tackling this problem. For DECell, the gained Pareto front could be as close as possible to the exact Pareto front, and also the diversity of nondominated individuals could be better maintained. The experiments on the test functions reveal that DECell is of good performance in solving high-dimension nonlinear multiobjective problems. And the results of optimizing the new brake model indicate that DECell obviously outperforms the compared popular algorithm NSGA-II concerning the number of obtained brake design parameter sets, the speed, and stability for finding them.

  3. Kriging-Based Parameter Estimation Algorithm for Metabolic Networks Combined with Single-Dimensional Optimization and Dynamic Coordinate Perturbation.

    Science.gov (United States)

    Wang, Hong; Wang, Xicheng; Li, Zheng; Li, Keqiu

    2016-01-01

    The metabolic network model allows for an in-depth insight into the molecular mechanism of a particular organism. Because most parameters of the metabolic network cannot be directly measured, they must be estimated by using optimization algorithms. However, three characteristics of the metabolic network model, i.e., high nonlinearity, large amount parameters, and huge variation scopes of parameters, restrict the application of many traditional optimization algorithms. As a result, there is a growing demand to develop efficient optimization approaches to address this complex problem. In this paper, a Kriging-based algorithm aiming at parameter estimation is presented for constructing the metabolic networks. In the algorithm, a new infill sampling criterion, named expected improvement and mutual information (EI&MI), is adopted to improve the modeling accuracy by selecting multiple new sample points at each cycle, and the domain decomposition strategy based on the principal component analysis is introduced to save computing time. Meanwhile, the convergence speed is accelerated by combining a single-dimensional optimization method with the dynamic coordinate perturbation strategy when determining the new sample points. Finally, the algorithm is applied to the arachidonic acid metabolic network to estimate its parameters. The obtained results demonstrate the effectiveness of the proposed algorithm in getting precise parameter values under a limited number of iterations.

  4. Optimization of Wireless Optical Communication System Based on Augmented Lagrange Algorithm

    International Nuclear Information System (INIS)

    He Suxiang; Meng Hongchao; Wang Hui; Zhao Yanli

    2011-01-01

    The optimal model for wireless optical communication system with Gaussian pointing loss factor is studied, in which the value of bit error probability (BEP) is prespecified and the optimal system parameters is to be found. For the superiority of augmented Lagrange method, the model considered is solved by using a classical quadratic augmented Lagrange algorithm. The detailed numerical results are reported. Accordingly, the optimal system parameters such as transmitter power, transmitter wavelength, transmitter telescope gain and receiver telescope gain can be established, which provide a scheme for efficient operation of the wireless optical communication system.

  5. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmet Demir

    2017-01-01

    Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions. 

  6. Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems

    DEFF Research Database (Denmark)

    Lissovoi, Andrei

    the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...

  7. Multidisciplinary Design Optimization of Crankshaft Structure Based on Cooptimization and Multi-Island Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2016-01-01

    Full Text Available The feasibility design method with multidisciplinary and multiobjective optimization is applied in the research of lightweight design and NVH performances of crankshaft in high-power marine reciprocating compressor. Opt-LHD is explored to obtain the experimental scheme and perform data sampling. The elliptical basis function neural network (EBFNN model considering modal frequency, static strength, torsional vibration angular displacement, and lightweight design of crankshaft is built. Deterministic optimization and reliability optimization for lightweight design of crankshaft are operated separately. Multi-island genetic algorithm (MIGA combined with multidisciplinary cooptimization method is used to carry out the multiobjective optimization of crankshaft structure. Pareto optimal set is obtained. Optimization results demonstrate that the reliability optimization which considers the uncertainties of production process can ensure product stability compared with deterministic optimization. The coupling and decoupling of structure mechanical properties, NVH, and lightweight design are considered during the multiobjective optimization of crankshaft structure. Designers can choose the optimization results according to their demands, which means the production development cycle and the costs can be significantly reduced.

  8. Design of Optimal Proportional Integral Derivative Based Power System Stabilizer Using Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Dhanesh K. Sambariya

    2016-01-01

    Full Text Available The design of a proportional, derivative, and integral (PID based power system stabilizer (PSS is carried out using the bat algorithm (BA. The design of proposed PID controller is considered with an objective function based on square error minimization to enhance the small signal stability of nonlinear power system for a wide range of operating conditions. Three benchmark power system models as single-machine infinite-bus (SMIB power system, two-area four-machine ten-bus power system, and IEEE New England ten-machine thirty-nine-bus power system are considered to examine the effectiveness of the designed controller. The BA optimized PID based PSS (BA-PID-PSS controller is applied to these benchmark systems, and the performance is compared with controllers reported in literature. The robustness is tested by considering eight plant conditions of each system, representing the wide range of operating conditions. It includes unlike loading conditions and system configurations to establish the superior performance with BA-PID-PSS over-the-counter controllers.

  9. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    Science.gov (United States)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  10. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-01-01

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives

  11. Modeling of pedestrian evacuation based on the particle swarm optimization algorithm

    Science.gov (United States)

    Zheng, Yaochen; Chen, Jianqiao; Wei, Junhong; Guo, Xiwei

    2012-09-01

    By applying the evolutionary algorithm of Particle Swarm Optimization (PSO), we have developed a new pedestrian evacuation model. In the new model, we first introduce the local pedestrian’s density concept which is defined as the number of pedestrians distributed in a certain area divided by the area. Both the maximum velocity and the size of a particle (pedestrian) are supposed to be functions of the local density. An attempt to account for the impact consequence between pedestrians is also made by introducing a threshold of injury into the model. The updating rule of the model possesses heterogeneous spatial and temporal characteristics. Numerical examples demonstrate that the model is capable of simulating the typical features of evacuation captured by CA (Cellular Automata) based models. As contrast to CA-based simulations, in which the velocity (via step size) of a pedestrian in each time step is a constant value and limited in several directions, the new model is more flexible in describing pedestrians’ velocities since they are not limited in discrete values and directions according to the new updating rule.

  12. Performance evaluation of an algorithm for fast optimization of beam weights in anatomy-based intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ranganathan, Vaitheeswaran; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Gupta, Kamlesh K.; Basu, Sumit; Maiya, Vikram; Joseph, Jolly; Nirhali, Amit

    2010-01-01

    This study aims to evaluate the performance of a new algorithm for optimization of beam weights in anatomy-based intensity modulated radiotherapy (IMRT). The algorithm uses a numerical technique called Gaussian-Elimination that derives the optimum beam weights in an exact or non-iterative way. The distinct feature of the algorithm is that it takes only fraction of a second to optimize the beam weights, irrespective of the complexity of the given case. The algorithm has been implemented using MATLAB with a Graphical User Interface (GUI) option for convenient specification of dose constraints and penalties to different structures. We have tested the numerical and clinical capabilities of the proposed algorithm in several patient cases in comparison with KonRad inverse planning system. The comparative analysis shows that the algorithm can generate anatomy-based IMRT plans with about 50% reduction in number of MUs and 60% reduction in number of apertures, while producing dose distribution comparable to that of beamlet-based IMRT plans. Hence, it is clearly evident from the study that the proposed algorithm can be effectively used for clinical applications. (author)

  13. Performance evaluation of an algorithm for fast optimization of beam weights in anatomy-based intensity modulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Ranganathan Vaitheeswaran

    2010-01-01

    Full Text Available This study aims to evaluate the performance of a new algorithm for optimization of beam weights in anatomy-based intensity modulated radiotherapy (IMRT. The algorithm uses a numerical technique called Gaussian-Elimination that derives the optimum beam weights in an exact or non-iterative way. The distinct feature of the algorithm is that it takes only fraction of a second to optimize the beam weights, irrespective of the complexity of the given case. The algorithm has been implemented using MATLAB with a Graphical User Interface (GUI option for convenient specification of dose constraints and penalties to different structures. We have tested the numerical and clinical capabilities of the proposed algorithm in several patient cases in comparison with KonRad® inverse planning system. The comparative analysis shows that the algorithm can generate anatomy-based IMRT plans with about 50% reduction in number of MUs and 60% reduction in number of apertures, while producing dose distribution comparable to that of beamlet-based IMRT plans. Hence, it is clearly evident from the study that the proposed algorithm can be effectively used for clinical applications.

  14. Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2014-10-01

    Full Text Available Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms.

  15. Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks

    Science.gov (United States)

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-01-01

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579

  16. Intersection signal control multi-objective optimization based on genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhanhong Zhou

    2014-04-01

    Full Text Available A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at an intersection. The optimization method combined the Paramics microscopic traffic simulation software, Comprehensive Modal Emissions Model (CMEM, and genetic algorithm. An intersection in Haizhu District, Guangzhou, was taken for a case study. The result of the case study shows the optimal timing scheme obtained from this method is better than the Webster timing scheme.

  17. Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2014-01-01

    Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate operation of the PV hybrid system. • Genetic algorithm was used to optimize the sizes of the hybrid system components. • The costs of the pollutant emissions were considered in the optimization. • It is cost effective to power houses in remote areas with such hybrid systems. - Abstract: A sizing optimization of a hybrid system consisting of photovoltaic (PV) panels, a backup source (microturbine or diesel), and a battery system minimizes the cost of energy production (COE), and a complete design of this optimized system supplying a small community with power in the Palestinian Territories is presented in this paper. A scenario that depends on a standalone PV, and another one that depends on a backup source alone were analyzed in this study. The optimization was achieved via the usage of genetic algorithm. The objective function minimizes the COE while covering the load demand with a specified value for the loss of load probability (LLP). The global warming emissions costs have been taken into account in this optimization analysis. Solar radiation data is firstly analyzed, and the tilt angle of the PV panels is then optimized. It was discovered that powering a small rural community using this hybrid system is cost-effective and extremely beneficial when compared to extending the utility grid to supply these remote areas, or just using conventional sources for this purpose. This hybrid system decreases both operating costs and the emission of pollutants. The hybrid system that realized these optimization purposes is the one constructed from a combination of these sources

  18. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

    Directory of Open Access Journals (Sweden)

    Weihua Jin

    2013-01-01

    Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

  19. Optimum Design of Power System Stabilizer based on Improved Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ruba AL-MulaHumadi

    2018-01-01

    Full Text Available This paper presents an improved technique on Ant Colony Optimization (ACO algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB system with power system stabilizer (PSS at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.

  20. Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Behrooz Attaran

    2015-01-01

    Full Text Available Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estimation values, which are derived from the vibration signals of test data. The results shows that the performance of the proposed optimized system is better than most previous studies, even though it uses only two features. Effectiveness of the above method is illustrated using obtained bearing vibration data.

  1. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  2. An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm.

    Science.gov (United States)

    Xue, Dingyü; Li, Tingxue

    2017-04-27

    The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Cognitive Development Optimization Algorithm Based Support Vector Machines for Determining Diabetes

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2016-03-01

    Full Text Available The definition, diagnosis and classification of Diabetes Mellitus and its complications are very important. First of all, the World Health Organization (WHO and other societies, as well as scientists have done lots of studies regarding this subject. One of the most important research interests of this subject is the computer supported decision systems for diagnosing diabetes. In such systems, Artificial Intelligence techniques are often used for several disease diagnostics to streamline the diagnostic process in daily routine and avoid misdiagnosis. In this study, a diabetes diagnosis system, which is formed via both Support Vector Machines (SVM and Cognitive Development Optimization Algorithm (CoDOA has been proposed. Along the training of SVM, CoDOA was used for determining the sigma parameter of the Gauss (RBF kernel function, and eventually, a classification process was made over the diabetes data set, which is related to Pima Indians. The proposed approach offers an alternative solution to the field of Artificial Intelligence-based diabetes diagnosis, and contributes to the related literature on diagnosis processes.

  4. A Novel Maximum Power Point Tracking Algorithm Based on Glowworm Swarm Optimization for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Wenhui Hou

    2016-01-01

    Full Text Available In order to extract the maximum power from PV system, the maximum power point tracking (MPPT technology has always been applied in PV system. At present, various MPPT control methods have been presented. The perturb and observe (P&O and conductance increment methods are the most popular and widely used under the constant irradiance. However, these methods exhibit fluctuations among the maximum power point (MPP. In addition, the changes of the environmental parameters, such as cloud cover, plant shelter, and the building block, will lead to the radiation change and then have a direct effect on the location of MPP. In this paper, a feasible MPPT method is proposed to adapt to the variation of the irradiance. This work applies the glowworm swarm optimization (GSO algorithm to determine the optimal value of a reference voltage in the PV system. The performance of the proposed GSO algorithm is evaluated by comparing it with the conventional P&O method in terms of tracking speed and accuracy by utilizing MATLAB/SIMULINK. The simulation results demonstrate that the tracking capability of the GSO algorithm is superior to that of the traditional P&O algorithm, particularly under low radiance and sudden mutation irradiance conditions.

  5. Optimal Power Flow Using the Jaya Algorithm

    Directory of Open Access Journals (Sweden)

    Warid Warid

    2016-08-01

    Full Text Available This paper presents application of a new effective metaheuristic optimization method namely, the Jaya algorithm to deal with different optimum power flow (OPF problems. Unlike other population-based optimization methods, no algorithm-particular controlling parameters are required for this algorithm. In this work, three goal functions are considered for the OPF solution: generation cost minimization, real power loss reduction, and voltage stability improvement. In addition, the effect of distributed generation (DG is incorporated into the OPF problem using a modified formulation. For best allocation of DG unit(s, a sensitivity-based procedure is introduced. Simulations are carried out on the modified IEEE 30-bus and IEEE 118-bus networks to determine the effectiveness of the Jaya algorithm. The single objective optimization cases are performed both with and without DG. For all considered cases, results demonstrate that Jaya algorithm can produce an optimum solution with rapid convergence. Statistical analysis is also carried out to check the reliability of the Jaya algorithm. The optimal solution obtained by the Jaya algorithm is compared with different stochastic algorithms, and demonstrably outperforms them in terms of solution optimality and solution feasibility, proving its effectiveness and potential. Notably, optimal placement of DGs results in even better solutions.

  6. Optimal design of FIR high pass filter based on L1 error approximation using real coded genetic algorithm

    Directory of Open Access Journals (Sweden)

    Apoorva Aggarwal

    2015-12-01

    Full Text Available In this paper, an optimal design of linear phase digital finite impulse response (FIR highpass (HP filter using the L1-norm based real-coded genetic algorithm (RCGA is investigated. A novel fitness function based on L1 norm is adopted to enhance the design accuracy. Optimized filter coefficients are obtained by defining the filter objective function in L1 sense using RCGA. Simulation analysis unveils that the performance of the RCGA adopting this fitness function is better in terms of signal attenuation ability of the filter, flatter passband and the convergence rate. Observations are made on the percentage improvement of this algorithm over the gradient-based L1 optimization approach on various factors by a large amount. It is concluded that RCGA leads to the best solution under specified parameters for the FIR filter design on account of slight unnoticeable higher transition width.

  7. Solving Bi-Objective Optimal Power Flow using Hybrid method of Biogeography-Based Optimization and Differential Evolution Algorithm: A case study of the Algerian Electrical Network

    Directory of Open Access Journals (Sweden)

    Ouafa Herbadji

    2016-03-01

    Full Text Available This paper proposes a new hybrid metaheuristique algorithm based on the hybridization of Biogeography-based optimization with the Differential Evolution for solving the optimal power flow problem with emission control. The biogeography-based optimization (BBO algorithm is strongly influenced by equilibrium theory of island biogeography, mainly through two steps: Migration and Mutation. Differential Evolution (DE is one of the best Evolutionary Algorithms for global optimization. The hybridization of these two methods is used to overcome traps of local optimal solutions and problems of time consumption. The objective of this paper is to minimize the total fuel cost of generation, total emission, total real power loss and also maintain an acceptable system performance in terms of limits on generator real power, bus voltages and power flow of transmission lines. In the present work, BBO/DE has been applied to solve the optimal power flow problems on IEEE 30-bus test system and the Algerian electrical network 114 bus. The results obtained from this method show better performances compared with DE, BBO and other well known metaheuristique and evolutionary optimization methods.

  8. On the Idea of a New Artificial Intelligence Based Optimization Algorithm Inspired From the Nature of Vortex

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2015-07-01

    Full Text Available In this paper, the idea of a new artificial intelligence based optimization algorithm, which is inspired from the nature of vortex, has been provided briefly. As also a bio-inspired computation algorithm, the idea is generally focused on a typical vortex flow / behavior in nature and inspires from some dynamics that are occurred in the sense of vortex nature. Briefly, the algorithm is also a swarm-oriented evolutional problem solution approach; because it includes many methods related to elimination of weak swarm members and trying to improve the solution process by supporting the solution space via new swarm members. In order have better idea about success of the algorithm; it has been tested via some benchmark functions. At this point, the obtained results show that the algorithm can be an alternative to the literature in terms of single-objective optimizationsolution ways. Vortex Optimization Algorithm (VOA is the name suggestion by the authors; for this new idea of intelligent optimization approach.

  9. Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm

    Science.gov (United States)

    Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian

    2018-03-01

    In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.

  10. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells

    International Nuclear Information System (INIS)

    Niu, Qun; Zhang, Letian; Li, Kang

    2014-01-01

    Highlights: • Solar cell and PEM fuel cell parameter estimations are investigated in the paper. • A new biogeography-based method (BBO-M) is proposed for cell parameter estimations. • In BBO-M, two mutation operators are designed to enhance optimization performance. • BBO-M provides a competitive alternative in cell parameter estimation problems. - Abstract: Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells

  11. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting

    International Nuclear Information System (INIS)

    Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo

    2008-01-01

    In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)

  12. Hybrid ANN optimized artificial fish swarm algorithm based classifier for classification of suspicious lesions in breast DCE-MRI

    Science.gov (United States)

    Janaki Sathya, D.; Geetha, K.

    2017-12-01

    Automatic mass or lesion classification systems are developed to aid in distinguishing between malignant and benign lesions present in the breast DCE-MR images, the systems need to improve both the sensitivity and specificity of DCE-MR image interpretation in order to be successful for clinical use. A new classifier (a set of features together with a classification method) based on artificial neural networks trained using artificial fish swarm optimization (AFSO) algorithm is proposed in this paper. The basic idea behind the proposed classifier is to use AFSO algorithm for searching the best combination of synaptic weights for the neural network. An optimal set of features based on the statistical textural features is presented. The investigational outcomes of the proposed suspicious lesion classifier algorithm therefore confirm that the resulting classifier performs better than other such classifiers reported in the literature. Therefore this classifier demonstrates that the improvement in both the sensitivity and specificity are possible through automated image analysis.

  13. Optimal Design of Hydrogen Based/Wind/Microhydro Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mochamad Ashari

    2012-12-01

    Full Text Available The target of stand-alone hybrid power generation system was to supply the load demand with high reliability and economically as possible. To design these criteria the optimal design of the proposed configuration should be done by using intelligent optimization technique. This study utilized Genetic Algorithm method to determine the optimal capacities of hydrogen, wind turbines and micro hydro unit according to the minimum cost objective functions that relate to these two factors. In this study, the cost objective function included the annual capital cost, annual operation maintenance cost, annual replacement cost and annual customer damage cost. The proposed method had been tested in the hybrid power generation system located in Leuwijawa village in Central Java of Indonesia. Simulation results showed that the optimum configuration can be achieved using 19.85 ton of hydrogen tanks, 21 x 100 kW wind turbines and 610 kW of micro hydro unit respectively.

  14. Algorithms for optimizing drug therapy

    Directory of Open Access Journals (Sweden)

    Martin Lene

    2004-07-01

    Full Text Available Abstract Background Drug therapy has become increasingly efficient, with more drugs available for treatment of an ever-growing number of conditions. Yet, drug use is reported to be sub optimal in several aspects, such as dosage, patient's adherence and outcome of therapy. The aim of the current study was to investigate the possibility to optimize drug therapy using computer programs, available on the Internet. Methods One hundred and ten officially endorsed text documents, published between 1996 and 2004, containing guidelines for drug therapy in 246 disorders, were analyzed with regard to information about patient-, disease- and drug-related factors and relationships between these factors. This information was used to construct algorithms for identifying optimum treatment in each of the studied disorders. These algorithms were categorized in order to define as few models as possible that still could accommodate the identified factors and the relationships between them. The resulting program prototypes were implemented in HTML (user interface and JavaScript (program logic. Results Three types of algorithms were sufficient for the intended purpose. The simplest type is a list of factors, each of which implies that the particular patient should or should not receive treatment. This is adequate in situations where only one treatment exists. The second type, a more elaborate model, is required when treatment can by provided using drugs from different pharmacological classes and the selection of drug class is dependent on patient characteristics. An easily implemented set of if-then statements was able to manage the identified information in such instances. The third type was needed in the few situations where the selection and dosage of drugs were depending on the degree to which one or more patient-specific factors were present. In these cases the implementation of an established decision model based on fuzzy sets was required. Computer programs

  15. Stochastic optimization algorithms for barrier dividend strategies

    Science.gov (United States)

    Yin, G.; Song, Q. S.; Yang, H.

    2009-01-01

    This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.

  16. Interval-value Based Particle Swarm Optimization algorithm for cancer-type specific gene selection and sample classification.

    Science.gov (United States)

    Ramyachitra, D; Sofia, M; Manikandan, P

    2015-09-01

    Microarray technology allows simultaneous measurement of the expression levels of thousands of genes within a biological tissue sample. The fundamental power of microarrays lies within the ability to conduct parallel surveys of gene expression using microarray data. The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high compared to the number of data samples. Thus the difficulty that lies with data are of high dimensionality and the sample size is small. This research work addresses the problem by classifying resultant dataset using the existing algorithms such as Support Vector Machine (SVM), K-nearest neighbor (KNN), Interval Valued Classification (IVC) and the improvised Interval Value based Particle Swarm Optimization (IVPSO) algorithm. Thus the results show that the IVPSO algorithm outperformed compared with other algorithms under several performance evaluation functions.

  17. Interval-value Based Particle Swarm Optimization algorithm for cancer-type specific gene selection and sample classification

    Directory of Open Access Journals (Sweden)

    D. Ramyachitra

    2015-09-01

    Full Text Available Microarray technology allows simultaneous measurement of the expression levels of thousands of genes within a biological tissue sample. The fundamental power of microarrays lies within the ability to conduct parallel surveys of gene expression using microarray data. The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high compared to the number of data samples. Thus the difficulty that lies with data are of high dimensionality and the sample size is small. This research work addresses the problem by classifying resultant dataset using the existing algorithms such as Support Vector Machine (SVM, K-nearest neighbor (KNN, Interval Valued Classification (IVC and the improvised Interval Value based Particle Swarm Optimization (IVPSO algorithm. Thus the results show that the IVPSO algorithm outperformed compared with other algorithms under several performance evaluation functions.

  18. Automatic generation control of multi-area power systems with diverse energy sources using Teaching Learning Based Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Rabindra Kumar Sahu

    2016-03-01

    Full Text Available This paper presents the design and analysis of Proportional-Integral-Double Derivative (PIDD controller for Automatic Generation Control (AGC of multi-area power systems with diverse energy sources using Teaching Learning Based Optimization (TLBO algorithm. At first, a two-area reheat thermal power system with appropriate Generation Rate Constraint (GRC is considered. The design problem is formulated as an optimization problem and TLBO is employed to optimize the parameters of the PIDD controller. The superiority of the proposed TLBO based PIDD controller has been demonstrated by comparing the results with recently published optimization technique such as hybrid Firefly Algorithm and Pattern Search (hFA-PS, Firefly Algorithm (FA, Bacteria Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and conventional Ziegler Nichols (ZN for the same interconnected power system. Also, the proposed approach has been extended to two-area power system with diverse sources of generation like thermal, hydro, wind and diesel units. The system model includes boiler dynamics, GRC and Governor Dead Band (GDB non-linearity. It is observed from simulation results that the performance of the proposed approach provides better dynamic responses by comparing the results with recently published in the literature. Further, the study is extended to a three unequal-area thermal power system with different controllers in each area and the results are compared with published FA optimized PID controller for the same system under study. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions in the range of ±25% from their nominal values to test the robustness.

  19. Power and Execution Time Optimization through Hardware Software Partitioning Algorithm for Core Based Embedded System

    Directory of Open Access Journals (Sweden)

    Siwar Ben Haj Hassine

    2017-01-01

    Full Text Available Shortening the marketing cycle of the product and accelerating its development efficiency have become a vital concern in the field of embedded system design. Therefore, hardware/software partitioning has become one of the mainstream technologies of embedded system development since it affects the overall system performance. Given today’s largest requirement for great efficiency necessarily accompanied by high speed, our new algorithm presents the best version that can meet such unpreceded levels. In fact, we describe in this paper an algorithm that is based on HW/SW partitioning which aims to find the best tradeoff between power and latency of a system taking into consideration the dark silicon problem. Moreover, it has been tested and has shown its efficiency compared to other existing heuristic well-known algorithms which are Simulated Annealing, Tabu search, and Genetic algorithms.

  20. Artificial Flora (AF Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Long Cheng

    2018-02-01

    Full Text Available Inspired by the process of migration and reproduction of flora, this paper proposes a novel artificial flora (AF algorithm. This algorithm can be used to solve some complex, non-linear, discrete optimization problems. Although a plant cannot move, it can spread seeds within a certain range to let offspring to find the most suitable environment. The stochastic process is easy to copy, and the spreading space is vast; therefore, it is suitable for applying in intelligent optimization algorithm. First, the algorithm randomly generates the original plant, including its position and the propagation distance. Then, the position and the propagation distance of the original plant as parameters are substituted in the propagation function to generate offspring plants. Finally, the optimal offspring is selected as a new original plant through the selection function. The previous original plant becomes the former plant. The iteration continues until we find out optimal solution. In this paper, six classical evaluation functions are used as the benchmark functions. The simulation results show that proposed algorithm has high accuracy and stability compared with the classical particle swarm optimization and artificial bee colony algorithm.

  1. An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems

    Directory of Open Access Journals (Sweden)

    Dębski Roman

    2016-06-01

    Full Text Available A new dynamic programming based parallel algorithm adapted to on-board heterogeneous computers for simulation based trajectory optimization is studied in the context of “high-performance sailing”. The algorithm uses a new discrete space of continuously differentiable functions called the multi-splines as its search space representation. A basic version of the algorithm is presented in detail (pseudo-code, time and space complexity, search space auto-adaptation properties. Possible extensions of the basic algorithm are also described. The presented experimental results show that contemporary heterogeneous on-board computers can be effectively used for solving simulation based trajectory optimization problems. These computers can be considered micro high performance computing (HPC platforms-they offer high performance while remaining energy and cost efficient. The simulation based approach can potentially give highly accurate results since the mathematical model that the simulator is built upon may be as complex as required. The approach described is applicable to many trajectory optimization problems due to its black-box represented performance measure and use of OpenCL.

  2. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm

    Science.gov (United States)

    Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao

    2018-03-01

    The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.

  3. Planning of distributed generation in distribution network based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng

    2018-02-01

    Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.

  4. A methodology based in particle swarm optimization algorithm for preventive maintenance focused in reliability and cost

    International Nuclear Information System (INIS)

    Luz, Andre Ferreira da

    2009-01-01

    In this work, a Particle Swarm Optimization Algorithm (PSO) is developed for preventive maintenance optimization. The proposed methodology, which allows the use flexible intervals between maintenance interventions, instead of considering fixed periods (as usual), allows a better adaptation of scheduling in order to deal with the failure rates of components under aging. Moreover, because of this flexibility, the planning of preventive maintenance becomes a difficult task. Motivated by the fact that the PSO has proved to be very competitive compared to other optimization tools, this work investigates the use of PSO as an alternative tool of optimization. Considering that PSO works in a real and continuous space, it is a challenge to use it for discrete optimization, in which scheduling may comprise variable number of maintenance interventions. The PSO model developed in this work overcome such difficulty. The proposed PSO searches for the best policy for maintaining and considers several aspects, such as: probability of needing repair (corrective maintenance), the cost of such repairs, typical outage times, costs of preventive maintenance, the impact of maintaining the reliability of systems as a whole, and the probability of imperfect maintenance. To evaluate the proposed methodology, we investigate an electro-mechanical system consisting of three pumps and four valves, High Pressure Injection System (HPIS) of a PWR. Results show that PSO is quite efficient in finding the optimum preventive maintenance policies for the HPIS. (author)

  5. An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis.

    Science.gov (United States)

    Zhang, Xin; Miao, Qiang; Liu, Zhiwen; He, Zhengjia

    2017-11-01

    Stochastic resonance (SR) is widely used as an enhanced signal detection method in machinery fault diagnosis. However, the system parameters have significant effects on the output results, which makes it difficult for SR method to achieve satisfactory analysis results. To solve this problem and improve the performance of SR method, this paper proposes an adaptive SR method based on grey wolf optimizer (GWO) algorithm for machinery fault diagnosis. Firstly, the SR system parameters are optimized by the GWO algorithm using a redefined signal-to-noise ratio (SNR) as optimization objective function. Then, the optimal SR output matching the input signal can be adaptively obtained using the optimized parameters. The proposed method is validated on a simulated signal detection and a rolling element bearing test bench, and then applied to the gear fault diagnosis of electric locomotive. Compared with the conventional fixed-parameter SR method, the adaptive SR method based on genetic algorithm (GA-SR) as well as the well-known fast kurtogram method, the proposed method can achieve a greater accuracy. The results indicated that the proposed method has great practical values in engineering. Copyright © 2017. Published by Elsevier Ltd.

  6. Scaling Sparse Matrices for Optimization Algorithms

    OpenAIRE

    Gajulapalli Ravindra S; Lasdon Leon S

    2006-01-01

    To iteratively solve large scale optimization problems in various contexts like planning, operations, design etc., we need to generate descent directions that are based on linear system solutions. Irrespective of the optimization algorithm or the solution method employed for the linear systems, ill conditioning introduced by problem characteristics or the algorithm or both need to be addressed. In [GL01] we used an intuitive heuristic approach in scaling linear systems that improved performan...

  7. Chemical optimization algorithm for fuzzy controller design

    CERN Document Server

    Astudillo, Leslie; Castillo, Oscar

    2014-01-01

    In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application

  8. Advances in metaheuristic algorithms for optimal design of structures

    CERN Document Server

    Kaveh, A

    2014-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  9. Advances in metaheuristic algorithms for optimal design of structures

    CERN Document Server

    Kaveh, A

    2017-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  10. Multi-objective teaching-learning-based optimization algorithm for reducing carbon emissions and operation time in turning operations

    Science.gov (United States)

    Lin, Wenwen; Yu, D. Y.; Wang, S.; Zhang, Chaoyong; Zhang, Sanqiang; Tian, Huiyu; Luo, Min; Liu, Shengqiang

    2015-07-01

    In addition to energy consumption, the use of cutting fluids, deposition of worn tools and certain other manufacturing activities can have environmental impacts. All these activities cause carbon emission directly or indirectly; therefore, carbon emission can be used as an environmental criterion for machining systems. In this article, a direct method is proposed to quantify the carbon emissions in turning operations. To determine the coefficients in the quantitative method, real experimental data were obtained and analysed in MATLAB. Moreover, a multi-objective teaching-learning-based optimization algorithm is proposed, and two objectives to minimize carbon emissions and operation time are considered simultaneously. Cutting parameters were optimized by the proposed algorithm. Finally, the analytic hierarchy process was used to determine the optimal solution, which was found to be more environmentally friendly than the cutting parameters determined by the design of experiments method.

  11. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    Science.gov (United States)

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms

    NARCIS (Netherlands)

    Zhao, J.; Basto, Fernandes V.; Jiao, L.; Yevseyeva, I.; Asep, Maulana A.; Li, R.; Bäck, T.H.W.; Tang, T.; Michael, Emmerich T. M.

    2016-01-01

    The receiver operating characteristic (ROC) and detection error tradeoff(DET) curves are frequently used in the machine learning community to analyze the performance of binary classifiers. Recently, the convex-hull-based multiobjective genetic programming algorithm was proposed and successfully

  13. Novel search space updating heuristics-based genetic algorithm for optimizing medium-scale airline crew pairing problems

    Directory of Open Access Journals (Sweden)

    Nihan Cetin Demirel

    2017-01-01

    Full Text Available This study examines the crew pairing problem, which is one of the most comprehensive problems encountered in airline planning, to generate a set of crew pairings that has minimal cost, covers all flight legs and fulfils legal criteria. In addition, this study examines current research related to crew pairing optimization. The contribution of this study is developing heuristics based on an improved dynamic-based genetic algorithm, a deadhead-minimizing pairing search and a partial solution approach (less-costly alternative pairing search. This study proposes genetic algorithm variants and a memetic algorithm approach. In addition, computational results based on real-world data from a local airline company in Turkey are presented. The results demonstrate that the proposed approach can successfully handle medium sets of crew pairings and generate higher-quality solutions than previous methods.

  14. A Direct Search Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Enrique Baeyens

    2016-06-01

    Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.

  15. Research on crude oil storage and transportation based on optimization algorithm

    Science.gov (United States)

    Yuan, Xuhua

    2018-04-01

    At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.

  16. A multiobjective optimization model and an orthogonal design-based hybrid heuristic algorithm for regional urban mining management problems.

    Science.gov (United States)

    Wu, Hao; Wan, Zhong

    2018-02-01

    In this paper, a multiobjective mixed-integer piecewise nonlinear programming model (MOMIPNLP) is built to formulate the management problem of urban mining system, where the decision variables are associated with buy-back pricing, choices of sites, transportation planning, and adjustment of production capacity. Different from the existing approaches, the social negative effect, generated from structural optimization of the recycling system, is minimized in our model, as well as the total recycling profit and utility from environmental improvement are jointly maximized. For solving the problem, the MOMIPNLP model is first transformed into an ordinary mixed-integer nonlinear programming model by variable substitution such that the piecewise feature of the model is removed. Then, based on technique of orthogonal design, a hybrid heuristic algorithm is developed to find an approximate Pareto-optimal solution, where genetic algorithm is used to optimize the structure of search neighborhood, and both local branching algorithm and relaxation-induced neighborhood search algorithm are employed to cut the searching branches and reduce the number of variables in each branch. Numerical experiments indicate that this algorithm spends less CPU (central processing unit) time in solving large-scale regional urban mining management problems, especially in comparison with the similar ones available in literature. By case study and sensitivity analysis, a number of practical managerial implications are revealed from the model. Since the metal stocks in society are reliable overground mineral sources, urban mining has been paid great attention as emerging strategic resources in an era of resource shortage. By mathematical modeling and development of efficient algorithms, this paper provides decision makers with useful suggestions on the optimal design of recycling system in urban mining. For example, this paper can answer how to encourage enterprises to join the recycling activities

  17. Identifying the optimal gene and gene set in hepatocellular carcinoma based on differential expression and differential co-expression algorithm.

    Science.gov (United States)

    Dong, Li-Yang; Zhou, Wei-Zhong; Ni, Jun-Wei; Xiang, Wei; Hu, Wen-Hao; Yu, Chang; Li, Hai-Yan

    2017-02-01

    The objective of this study was to identify the optimal gene and gene set for hepatocellular carcinoma (HCC) utilizing differential expression and differential co-expression (DEDC) algorithm. The DEDC algorithm consisted of four parts: calculating differential expression (DE) by absolute t-value in t-statistics; computing differential co-expression (DC) based on Z-test; determining optimal thresholds on the basis of Chi-squared (χ2) maximization and the corresponding gene was the optimal gene; and evaluating functional relevance of genes categorized into different partitions to determine the optimal gene set with highest mean minimum functional information (FI) gain (Δ*G). The optimal thresholds divided genes into four partitions, high DE and high DC (HDE-HDC), high DE and low DC (HDE-LDC), low DE and high DC (LDE‑HDC), and low DE and low DC (LDE-LDC). In addition, the optimal gene was validated by conducting reverse transcription-polymerase chain reaction (RT-PCR) assay. The optimal threshold for DC and DE were 1.032 and 1.911, respectively. Using the optimal gene, the genes were divided into four partitions including: HDE-HDC (2,053 genes), HED-LDC (2,822 genes), LDE-HDC (2,622 genes), and LDE-LDC (6,169 genes). The optimal gene was microtubule‑associated protein RP/EB family member 1 (MAPRE1), and RT-PCR assay validated the significant difference between the HCC and normal state. The optimal gene set was nucleoside metabolic process (GO\\GO:0009116) with Δ*G = 18.681 and 24 HDE-HDC partitions in total. In conclusion, we successfully investigated the optimal gene, MAPRE1, and gene set, nucleoside metabolic process, which may be potential biomarkers for targeted therapy and provide significant insight for revealing the pathological mechanism underlying HCC.

  18. Fractional Order PID Controller Design for Level Control of Three Tank System Based on Improved Cuckoo Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Meysam Gheisarnezhad

    2015-01-01

    Full Text Available Fractional-order PID (FOPID controller is a generalization of standard PID controller using fractional calculus. Compared with the Standard PID controller, two adjustable variables “differential order” and “integral order” are added to the PID controller.Three tank system is a nonlinear multivariable process that is a good prototype of chemical industrial processes. Cuckoo Optimization Algorithm (COA, that was recently introduced has shown its good performance in optimization problems. In this study, Improved Cuckoo Optimization Algorithm (ICOA has been presented. The aim of the paper is to compare different controllers tuned with a Improved Cuckoo Optimization Algorithm (ICOA for Three Tank System. In order to compare the performance of the optimized FOPID controller with other controllers, Genetic Algorithm(GA, Particle swarm optimization (PSO, Cuckoo Optimization Algorithm (COA and Imperialist Competitive Algorithm (ICA.

  19. Adaptive Digital Watermarking Scheme Based on Support Vector Machines and Optimized Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyi Zhou

    2018-01-01

    Full Text Available Digital watermarking is an effective solution to the problem of copyright protection, thus maintaining the security of digital products in the network. An improved scheme to increase the robustness of embedded information on the basis of discrete cosine transform (DCT domain is proposed in this study. The embedding process consisted of two main procedures. Firstly, the embedding intensity with support vector machines (SVMs was adaptively strengthened by training 1600 image blocks which are of different texture and luminance. Secondly, the embedding position with the optimized genetic algorithm (GA was selected. To optimize GA, the best individual in the first place of each generation directly went into the next generation, and the best individual in the second position participated in the crossover and the mutation process. The transparency reaches 40.5 when GA’s generation number is 200. A case study was conducted on a 256 × 256 standard Lena image with the proposed method. After various attacks (such as cropping, JPEG compression, Gaussian low-pass filtering (3,0.5, histogram equalization, and contrast increasing (0.5,0.6 on the watermarked image, the extracted watermark was compared with the original one. Results demonstrate that the watermark can be effectively recovered after these attacks. Even though the algorithm is weak against rotation attacks, it provides high quality in imperceptibility and robustness and hence it is a successful candidate for implementing novel image watermarking scheme meeting real timelines.

  20. An ILP based Algorithm for Optimal Customer Selection for Demand Response in SmartGrids

    Energy Technology Data Exchange (ETDEWEB)

    Kuppannagari, Sanmukh R. [Univ. of Southern California, Los Angeles, CA (United States); Kannan, Rajgopal [Louisiana State Univ., Baton Rouge, LA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)

    2015-12-07

    Demand Response (DR) events are initiated by utilities during peak demand periods to curtail consumption. They ensure system reliability and minimize the utility’s expenditure. Selection of the right customers and strategies is critical for a DR event. An effective DR scheduling algorithm minimizes the curtailment error which is the absolute difference between the achieved curtailment value and the target. State-of-the-art heuristics exist for customer selection, however their curtailment errors are unbounded and can be as high as 70%. In this work, we develop an Integer Linear Programming (ILP) formulation for optimally selecting customers and curtailment strategies that minimize the curtailment error during DR events in SmartGrids. We perform experiments on real world data obtained from the University of Southern California’s SmartGrid and show that our algorithm achieves near exact curtailment values with errors in the range of 10-7 to 10-5, which are within the range of numerical errors. We compare our results against the state-of-the-art heuristic being deployed in practice in the USC SmartGrid. We show that for the same set of available customer strategy pairs our algorithm performs 103 to 107 times better in terms of the curtailment errors incurred.

  1. An Improved Tabu Search Algorithm Based on Grid Search Used in the Antenna Parameters Optimization

    OpenAIRE

    He, Di; Hong, Yunlv

    2015-01-01

    In the mobile system covering big areas, many small cells are often used. And the base antenna’s azimuth angle, vertical down angle, and transmit power are the most important parameters to affect the coverage of an antenna. This paper makes mathematical model and analyzes different algorithm’s performance in model. Finally we propose an improved Tabu search algorithm based on grid search, to get the best parameters of antennas, which can maximize the coverage area and minimize the interferenc...

  2. Design of the fractional-order PIλDµ controllers based on the optimization with self-organizing migrating algorithm

    Directory of Open Access Journals (Sweden)

    Ľubomír Dorčák

    2007-12-01

    Full Text Available Design of fractional-order controllers based on optimization methods is one of the intensively developed trends of the present time. There are several quality control criterions to evaluate the controller performance and to design the controller parameters by optimization. All of these objective functions are almost always multimodal in this case - so they have too complex geometric surface with many local extrema. In this context the choice of the optimization method is very important. In this paper we present a synthesis method for the design of fractional-order PIλDµ controllers based on an intelligent optimization method with so called self-organizing migrating algorithm utilizing the principles of artificial intelligence. Along with the mathematical description we will present also simulation results on illustrative examples to demonstrate the advantages of this method and advantages of the fractional-order PIλDµ controllers in comparison with traditional PID controllers.

  3. A Lifetime Optimization Algorithm Limited by Data Transmission Delay and Hops for Mobile Sink-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2017-01-01

    Full Text Available To improve the lifetime of mobile sink-based wireless sensor networks and considering that data transmission delay and hops are limited in actual system, a lifetime optimization algorithm limited by data transmission delay and hops (LOA_DH for mobile sink-based wireless sensor networks is proposed. In LOA_DH, some constraints are analyzed, and an optimization model is proposed. Maximum capacity path routing algorithm is used to calculate the energy consumption of communication. Improved genetic algorithm which modifies individuals to meet all constraints is used to solve the optimization model. The optimal solution of sink node’s sojourn grid centers and sojourn times which maximizes network lifetime is obtained. Simulation results show that, in three node distribution scenes, LOA_DH can find the movement solution of sink node which covers all sensor nodes. Compared with MCP_RAND, MCP_GMRE, and EASR, the solution improves network lifetime and reduces average amount of node discarded data and average energy consumption of nodes.

  4. Study on the Algorithm for Train Operation Adjustment Based on Ordinal Optimization

    OpenAIRE

    Yong-jun Chen; Ji-an Yu; Lei-shan Zhou; Qing Tao

    2013-01-01

    It is a crucial and difficult problem in railway transportation dispatch mechanism to automatically compile train operation adjustment (TOA) plan with computer to ensure safe, fast, and punctual running of trains. Based on the proposed model of TOA under the conditions of railway network (RN), we take minimum travel time of train as objective function of optimization, and after fast preliminary evaluation calculation on it, we introduce the theory and method of ordinal optimization (OO) to so...

  5. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    Energy Technology Data Exchange (ETDEWEB)

    Sadegjian, Rasou [Dept. of Electrical, Biomedical, and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, QazvinI (Iran, Islamic Republic of); Masouleh, Mehdi Tale [Human and Robot Interaction Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-11-15

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time.

  6. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    International Nuclear Information System (INIS)

    Sadegjian, Rasou; Masouleh, Mehdi Tale

    2016-01-01

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time

  7. Optimal clustering of MGs based on droop controller for improving reliability using a hybrid of harmony search and genetic algorithms.

    Science.gov (United States)

    Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M

    2016-03-01

    This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Science.gov (United States)

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  9. Space mapping optimization algorithms for engineering design

    DEFF Research Database (Denmark)

    Koziel, Slawomir; Bandler, John W.; Madsen, Kaj

    2006-01-01

    -order derivatives between the mapped coarse model and the fine model at the current iteration point. We also consider an enhanced version in which the input SM coefficients are frequency dependent. The performance of our new algorithms is comparable with the recently published SMIS algorithm when applied......A simple, efficient optimization algorithm based on space mapping (SM) is presented. It utilizes input SM to reduce the misalignment between the coarse and fine models of the optimized object over a region of interest, and output space mapping (OSM) to ensure matching of response and first...

  10. Species co-evolutionary algorithm: a novel evolutionary algorithm based on the ecology and environments for optimization

    DEFF Research Database (Denmark)

    Li, Wuzhao; Wang, Lei; Cai, Xingjuan

    2015-01-01

    and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...

  11. SVM-based synthetic fingerprint discrimination algorithm and quantitative optimization strategy.

    Science.gov (United States)

    Chen, Suhang; Chang, Sheng; Huang, Qijun; He, Jin; Wang, Hao; Huang, Qiangui

    2014-01-01

    Synthetic fingerprints are a potential threat to automatic fingerprint identification systems (AFISs). In this paper, we propose an algorithm to discriminate synthetic fingerprints from real ones. First, four typical characteristic factors-the ridge distance features, global gray features, frequency feature and Harris Corner feature-are extracted. Then, a support vector machine (SVM) is used to distinguish synthetic fingerprints from real fingerprints. The experiments demonstrate that this method can achieve a recognition accuracy rate of over 98% for two discrete synthetic fingerprint databases as well as a mixed database. Furthermore, a performance factor that can evaluate the SVM's accuracy and efficiency is presented, and a quantitative optimization strategy is established for the first time. After the optimization of our synthetic fingerprint discrimination task, the polynomial kernel with a training sample proportion of 5% is the optimized value when the minimum accuracy requirement is 95%. The radial basis function (RBF) kernel with a training sample proportion of 15% is a more suitable choice when the minimum accuracy requirement is 98%.

  12. Biomarker Discovery Based on Hybrid Optimization Algorithm and Artificial Neural Networks on Microarray Data for Cancer Classification.

    Science.gov (United States)

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud

    2015-01-01

    The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets.

  13. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

  14. Image Watermarking Algorithm Based on Multiobjective Ant Colony Optimization and Singular Value Decomposition in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Khaled Loukhaoukha

    2013-01-01

    Full Text Available We present a new optimal watermarking scheme based on discrete wavelet transform (DWT and singular value decomposition (SVD using multiobjective ant colony optimization (MOACO. A binary watermark is decomposed using a singular value decomposition. Then, the singular values are embedded in a detailed subband of host image. The trade-off between watermark transparency and robustness is controlled by multiple scaling factors (MSFs instead of a single scaling factor (SSF. Determining the optimal values of the multiple scaling factors (MSFs is a difficult problem. However, a multiobjective ant colony optimization is used to determine these values. Experimental results show much improved performances of the proposed scheme in terms of transparency and robustness compared to other watermarking schemes. Furthermore, it does not suffer from the problem of high probability of false positive detection of the watermarks.

  15. Optimization of Consumed Power in Two Different DC Motors Coupled Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mehrdad Jafarboland

    2011-01-01

    Full Text Available A single DC motor can be substituted by two different couple DC motors in submarines. By this way, by varying the speed of submarine, the power of propellant and subsequently the mechanical power of these motors would vary. One important promlem in controlling the mechanical coupling of these motors is the power sharing between them. In the previous reports the mechanical power was shared between them in nonoptimized manner. In this paper an optimized cantroller is indroduced that optimize the efficiency of the system. The power sharing between these motors would vary according to their speed. The proposed controller is based on Genetic Algoritm and is able to share the mechanical power between the motors in an optimized manner at different speeds. The simutation results shows the well behavior of system and also the optimize power sharing.

  16. Discrete Teaching-learning-based optimization Algorithm for Traveling Salesman Problems

    Directory of Open Access Journals (Sweden)

    Wu Lehui

    2017-01-01

    Full Text Available In this paper, a discrete variant of TLBO (DTLBO is proposed for solving the traveling salesman problem (TSP. In the proposed method, an effective learner representation scheme is redefined based on the characteristics of TSP problem. Moreover, all learners are randomly divided into several sub-swarms with equal amounts of learners so as to increase the diversity of population and reduce the probability of being trapped in local optimum. In each sub-swarm, the new positions of learners in the teaching phase and the learning phase are generated by the crossover operation, the legality detection and mutation operation, and then the offspring learners are determined based on greedy selection. Finally, to verify the performance of the proposed algorithm, benchmark TSP problems are examined and the results indicate that DTLBO is effective compared with other algorithms used for TSP problems.

  17. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve.

    Science.gov (United States)

    Xu, Lili; Luo, Shuqian

    2010-01-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  18. Research on magnetorheological damper suspension with permanent magnet and magnetic valve based on developed FOA-optimal control algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Ping; Gao, Hong [Anhui Polytechnic University, Wuhu (China); Niu, Limin [Anhui University of Technology, Maanshan (China)

    2017-07-15

    Due to the fail safe problem, it was difficult for the existing Magnetorheological damper (MD) to be widely applied in automotive suspensions. Therefore, permanent magnets and magnetic valves were introduced to existing MDs so that fail safe problem could be solved by the magnets and damping force could be adjusted easily by the magnetic valve. Thus, a new Magnetorheological damper with permanent magnet and magnetic valve (MDPMMV) was developed and MDPMMV suspension was studied. First of all, mechanical structure of existing magnetorheological damper applied in automobile suspensions was redesigned, comprising a permanent magnet and a magnetic valve. In addition, prediction model of damping force was built based on electromagnetics theory and Bingham model. Experimental research was onducted on the newly designed damper and goodness of fit between experiment results and simulated ones by models was high. On this basis, a quarter suspension model was built. Then, fruit Fly optimization algorithm (FOA)-optimal control algorithm suitable for automobile suspension was designed based on developing normal FOA. Finally, simulation experiments and bench tests with input surface of pulse road and B road were carried out and the results indicated that working erformance of MDPMMV suspension based on FOA-optimal control algorithm was good.

  19. Memetic Algorithm with Local Search as Modified Swine Influenza Model-Based Optimization and Its Use in ECG Filtering

    Directory of Open Access Journals (Sweden)

    Devidas G. Jadhav

    2014-01-01

    Full Text Available The Swine Influenza Model Based Optimization (SIMBO family is a newly introduced speedy optimization technique having the adaptive features in its mechanism. In this paper, the authors modified the SIMBO to make the algorithm further quicker. As the SIMBO family is faster, it is a better option for searching the basin. Thus, it is utilized in local searches in developing the proposed memetic algorithms (MAs. The MA has a faster speed compared to SIMBO with the balance in exploration and exploitation. So, MAs have small tradeoffs in convergence velocity for comprehensively optimizing the numerical standard benchmark test bed having functions with different properties. The utilization of SIMBO in the local searching is inherently the exploitation of better characteristics of the algorithms employed for the hybridization. The developed MA is applied to eliminate the power line interference (PLI from the biomedical signal ECG with the use of adaptive filter whose weights are optimized by the MA. The inference signal required for adaptive filter is obtained using the selective reconstruction of ECG from the intrinsic mode functions (IMFs of empirical mode decomposition (EMD.

  20. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    Directory of Open Access Journals (Sweden)

    Zhaocai Wang

    2015-10-01

    Full Text Available The unbalanced assignment problem (UAP is to optimally resolve the problem of assigning n jobs to m individuals (m < n, such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation.

  1. Protein Tertiary Structure Prediction Based on Main Chain Angle Using a Hybrid Bees Colony Optimization Algorithm

    Science.gov (United States)

    Mahmood, Zakaria N.; Mahmuddin, Massudi; Mahmood, Mohammed Nooraldeen

    Encoding proteins of amino acid sequence to predict classified into their respective families and subfamilies is important research area. However for a given protein, knowing the exact action whether hormonal, enzymatic, transmembranal or nuclear receptors does not depend solely on amino acid sequence but on the way the amino acid thread folds as well. This study provides a prototype system that able to predict a protein tertiary structure. Several methods are used to develop and evaluate the system to produce better accuracy in protein 3D structure prediction. The Bees Optimization algorithm which inspired from the honey bees food foraging method, is used in the searching phase. In this study, the experiment is conducted on short sequence proteins that have been used by the previous researches using well-known tools. The proposed approach shows a promising result.

  2. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    Science.gov (United States)

    Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  3. Loading pattern optimization using ant colony algorithm

    International Nuclear Information System (INIS)

    Hoareau, Fabrice

    2008-01-01

    Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)

  4. Developing a Novel Hybrid Biogeography-Based Optimization Algorithm for Multilayer Perceptron Training under Big Data Challenge

    Directory of Open Access Journals (Sweden)

    Xun Pu

    2018-01-01

    Full Text Available A Multilayer Perceptron (MLP is a feedforward neural network model consisting of one or more hidden layers between the input and output layers. MLPs have been successfully applied to solve a wide range of problems in the fields of neuroscience, computational linguistics, and parallel distributed processing. While MLPs are highly successful in solving problems which are not linearly separable, two of the biggest challenges in their development and application are the local-minima problem and the problem of slow convergence under big data challenge. In order to tackle these problems, this study proposes a Hybrid Chaotic Biogeography-Based Optimization (HCBBO algorithm for training MLPs for big data analysis and processing. Four benchmark datasets are employed to investigate the effectiveness of HCBBO in training MLPs. The accuracy of the results and the convergence of HCBBO are compared to three well-known heuristic algorithms: (a Biogeography-Based Optimization (BBO, (b Particle Swarm Optimization (PSO, and (c Genetic Algorithms (GA. The experimental results show that training MLPs by using HCBBO is better than the other three heuristic learning approaches for big data processing.

  5. An Improved Tabu Search Algorithm Based on Grid Search Used in the Antenna Parameters Optimization

    Directory of Open Access Journals (Sweden)

    Di He

    2015-01-01

    Full Text Available In the mobile system covering big areas, many small cells are often used. And the base antenna’s azimuth angle, vertical down angle, and transmit power are the most important parameters to affect the coverage of an antenna. This paper makes mathematical model and analyzes different algorithm’s performance in model. Finally we propose an improved Tabu search algorithm based on grid search, to get the best parameters of antennas, which can maximize the coverage area and minimize the interference.

  6. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    Science.gov (United States)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  7. Comparison of echocardiography and device based algorithm for atrio-ventricular delay optimization in heart block patients.

    Science.gov (United States)

    Vijayvergiya, Rajesh; Gupta, Ankur

    2015-11-26

    To compare the atrio-ventricular (AV/PV) delay optimization by echocardiography and intra-cardiac electrocardiogram (IEGM) based QuickOpt algorithm in complete heart block (CHB) patients, implanted with a dual chamber pacemaker. We prospectively enrolled 20 patients (age 59.45 ± 18.1 years; male: 65%) with CHB, who were implanted with a dual chamber pacemaker. The left ventricular outflow tract velocity time-integral was measured after AV/PV delay optimization by both echocardiography and QuickOpt algorithm method. Bland-Altman analysis was used for agreement between the two techniques. The optimal AV and PV delay determined by echocardiography was 155.5 ± 14.68 ms and 122.5 ± 17.73 ms (P < 0.0001), respectively and by QuickOpt method was 167.5 ± 16.73 and 117.5 ms ± 9.10 ms (P < 0.0001), respectively. A good agreement was observed between optimal AV and PV delay as measured by two methods. However, the correlation of the optimal AV (r = 0.0689, P = 0.77) and PV (r = 0.2689, P = 0.25) intervals measured by the two techniques was poor. The time required for AV/PV optimization was 45.26 ± 1.73 min by echocardiography and 0.44 ± 0.08 min by QuickOpt method (P < 0.0001). The programmer based IEGM method is an automated, quick, easier and reliable alternative to echocardiography for the optimization of AV/PV delay in CHB patients, implanted with a dual chamber pacemaker.

  8. Optimization-Based Artificial Bee Colony Algorithm for Data Collection in Large-Scale Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yinggao Yue

    2016-01-01

    Full Text Available Data collection is a fundamental operation in various mobile wireless sensor networks (MWSN applications. The energy of nodes around the Sink can be untimely depleted owing to the fact that sensor nodes must transmit vast amounts of data, readily forming a bottleneck in energy consumption; mobile wireless sensor networks have been designed to address this issue. In this study, we focused on a large-scale and intensive MWSN which allows a certain amount of data latency by investigating mobile Sink balance from three aspects: data collection maximization, mobile path length minimization, and network reliability optimization. We also derived a corresponding formula to represent the MWSN and proved that it represents an NP-hard problem. Traditional data collection methods only focus on increasing the amount data collection or reducing the overall network energy consumption, which is why we designed the proposed heuristic algorithm to jointly consider cluster head selection, the routing path from ordinary nodes to the cluster head node, and mobile Sink path planning optimization. The proposed data collection algorithm for mobile Sinks is, in effect, based on artificial bee colony. Simulation results show that, in comparison with other algorithms, the proposed algorithm can effectively reduce data transmission, save energy, improve network data collection efficiency and reliability, and extend the network lifetime.

  9. Improved Hybrid Fireworks Algorithm-Based Parameter Optimization in High-Order Sliding Mode Control of Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaomeng Yin

    2018-01-01

    Full Text Available With respect to the nonlinear hypersonic vehicle (HV dynamics, achieving a satisfactory tracking control performance under uncertainties is always a challenge. The high-order sliding mode control (HOSMC method with strong robustness has been applied to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA- based parameter optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other algorithms.

  10. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey

    International Nuclear Information System (INIS)

    Kıran, Mustafa Servet; Özceylan, Eren; Gündüz, Mesut; Paksoy, Turan

    2012-01-01

    Highlights: ► PSO and ACO algorithms are hybridized for forecasting energy demands of Turkey. ► Linear and quadratic forms are developed to meet the fluctuations of indicators. ► GDP, population, export and import have significant impacts on energy demand. ► Quadratic form provides better fit solution than linear form. ► Proposed approach gives lower estimation error than ACO and PSO, separately. - Abstract: This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.

  11. Icing Forecasting for Power Transmission Lines Based on a Wavelet Support Vector Machine Optimized by a Quantum Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Tiannan Ma

    2016-02-01

    Full Text Available Icing on power transmission lines is a serious threat to the security and stability of the power grid, and it is necessary to establish a forecasting model to make accurate predictions of icing thickness. In order to improve the forecasting accuracy with regard to icing thickness, this paper proposes a combination model based on a wavelet support vector machine (w-SVM and a quantum fireworks algorithm (QFA for prediction. First, this paper uses the wavelet kernel function to replace the Gaussian wavelet kernel function and improve the nonlinear mapping ability of the SVM. Second, the regular fireworks algorithm is improved by combining it with a quantum optimization algorithm to strengthen optimization performance. Lastly, the parameters of w-SVM are optimized using the QFA model, and the QFA-w-SVM icing thickness forecasting model is established. Through verification using real-world examples, the results show that the proposed method has a higher forecasting accuracy and the model is effective and feasible.

  12. Algorithms for worst-case tolerance optimization

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Madsen, Kaj

    1979-01-01

    New algorithms are presented for the solution of optimum tolerance assignment problems. The problems considered are defined mathematically as a worst-case problem (WCP), a fixed tolerance problem (FTP), and a variable tolerance problem (VTP). The basic optimization problem without tolerances...... is denoted the zero tolerance problem (ZTP). For solution of the WCP we suggest application of interval arithmetic and also alternative methods. For solution of the FTP an algorithm is suggested which is conceptually similar to algorithms previously developed by the authors for the ZTP. Finally, the VTP...... is solved by a double-iterative algorithm in which the inner iteration is performed by the FTP- algorithm. The application of the algorithm is demonstrated by means of relatively simple numerical examples. Basic properties, such as convergence properties, are displayed based on the examples....

  13. Optimization of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic algorithm

    International Nuclear Information System (INIS)

    Cai, Zhiqiang; Si, Shubin; Sun, Shudong; Li, Caitao

    2016-01-01

    The optimization of linear consecutive-k-out-of-n (Lin/Con/k/n) is to find an optimal component arrangement where n components are assigned to n positions to maximize the system reliability. With the interchangeability of components in practical systems, the optimization of Lin/Con/k/n systems is becoming widely applied in engineering practice, which is also a typical component assignment problem concerned by many researchers. This paper proposes a Birnbaum importance-based genetic algorithm (BIGA) to search the near global optimal solution for Lin/Con/k/n systems. First, the operation procedures and corresponding execution methods of BIGA are described in detail. Then, comprehensive simulation experiments are implemented on both small and large systems to evaluate the performance of the BIGA by comparing with the Birnbaum importance-based two-stage approach and Birnbaum importance-based genetic local search algorithm. Thirdly, further experiments are provided to discuss the applicability of BIGA for Lin/Con/k/n system with different k and n. Finally, the case study on oil transportation system is implemented to demonstrate the application of BIGA in the optimization of Lin/Con/k/n system. - Highlights: • BIGA integrates BI and GA to solve the Lin/Con/k/n systems optimization problems. • The experiment results show that the BIGA performs well in most conditions. • Suggestions are given for the application of BIGA and BITA with different k and n. • The application procedure of BIGA is demonstrated by the oil transportation system.

  14. Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Fengqi Si; Carlos E. Romero; Zheng Yao; Eugenio Schuster; Zhigao Xu; Robert L. Morey; Barry N. Liebowitz [Southeast University, Nanjing (China). School of Energy and Environment

    2009-05-15

    An integrated combustion optimization approach is presented for the combined considering the trade offs in optimization of coal-fired boiler and selective catalyst reaction (SCR) system, to balance the unit thermal efficiency, SCR reagent consumption and NOx emissions. Field tests were performed at a 160 MW coal-fired unit to investigate the relationships between process controllable variables, and optimization targets and constraints. Based on the test data, a modified on-line support vector regression model was proposed for characteristic function approximation, in which the model parameters can be continuously adapted for changes in coal quality and other conditions of plant equipment. The optimization scheme was implemented by a genetic algorithm in two stages. Firstly, the multi-objective combustion optimization problem was solved to achieve an optimal Pareto front, which contains optimal solutions for lowest unit heat rate and lowest NOx emissions. Secondly, best operating settings for the boiler, and SCR system and air preheater were obtained for lowest operating cost under the constraints of NOx emissions limit and air preheater ammonium bisulfate deposition depth. 31 refs., 9 figs., 5 tabs.

  15. Optimal energy consumption algorithm based on speed reference generation for urban electric vehicles

    OpenAIRE

    Flores, Carlos; Milanés, Vicente; Pérez, Joshué; González, David; Nashashibi, Fawzi

    2015-01-01

    International audience; Power consumption and battery life are two of the key aspect when it comes to improve electric transportation systems autonomy. This paper describes the design, development and implementation of a speed profile generation based on the calculation of the optimal energy consumption for electric Cybercar vehicles for each of the stretches that are covering. The proposed system considers a commuter daily route that is already known. It divides the pre-defined route into se...

  16. A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics.

    Science.gov (United States)

    Askari, Ehsan; Flores, Paulo; Silva, Filipe

    2018-01-01

    The thermal residual stresses (TRSs) generated owing to the cooling down from the processing temperature in layered ceramic systems can lead to crack formation as well as influence the bending stress distribution and the strength of the structure. The purpose of this study is to minimize the thermal residual and bending stresses in dental ceramics to enhance their strength as well as to prevent the structure failure. Analytical parametric models are developed to evaluate thermal residual stresses in zirconia-porcelain multi-layered and graded discs and to simulate the piston-on-ring test. To identify optimal designs of zirconia-based dental restorations, a particle swarm optimizer is also developed. The thickness of each interlayer and compositional distribution are referred to as design variables. The effect of layers number constituting the interlayer between two based materials on the performance of graded prosthetic systems is also investigated. The developed methodology is validated against results available in literature and a finite element model constructed in the present study. Three different cases are considered to determine the optimal design of graded prosthesis based on minimizing (a) TRSs; (b) bending stresses; and (c) both TRS and bending stresses. It is demonstrated that each layer thickness and composition profile have important contributions into the resulting stress field and magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Simulation-based optimization of the design and settings of ultrasonic phased-array transducers with an evolutionary algorithm

    International Nuclear Information System (INIS)

    Puel, B.; Chatillon, S.; Calmon, P.; Lesselier, D.

    2011-01-01

    The design of an ultrasonic array and its settings for a specific inspection involves multiple parameters and is the result of a compromise between different requirements and limitations. Parametric studies based on simulation tools are often performed to ensure that the transducer has suitable performances in terms of detection of the defects sought. An automatic optimization tool, based on an evolutionary algorithm driving CIVA's simulation data, is proposed and tested in realistic applications to design inspection parameters (designing, positioning and/or setting the transducer). (authors)

  18. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-02-01

    Full Text Available Due to their special environment, Underwater Wireless Sensor Networks (UWSNs are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  19. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei

    2016-02-06

    Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  20. A Pathological Brain Detection System based on Extreme Learning Machine Optimized by Bat Algorithm.

    Science.gov (United States)

    Lu, Siyuan; Qiu, Xin; Shi, Jianping; Li, Na; Lu, Zhi-Hai; Chen, Peng; Yang, Meng-Meng; Liu, Fang-Yuan; Jia, Wen-Juan; Zhang, Yudong

    2017-01-01

    It is beneficial to classify brain images as healthy or pathological automatically, because 3D brain images can generate so much information which is time consuming and tedious for manual analysis. Among various 3D brain imaging techniques, magnetic resonance (MR) imaging is the most suitable for brain, and it is now widely applied in hospitals, because it is helpful in the four ways of diagnosis, prognosis, pre-surgical, and postsurgical procedures. There are automatic detection methods; however they suffer from low accuracy. Therefore, we proposed a novel approach which employed 2D discrete wavelet transform (DWT), and calculated the entropies of the subbands as features. Then, a bat algorithm optimized extreme learning machine (BA-ELM) was trained to identify pathological brains from healthy controls. A 10x10-fold cross validation was performed to evaluate the out-of-sample performance. The method achieved a sensitivity of 99.04%, a specificity of 93.89%, and an overall accuracy of 98.33% over 132 MR brain images. The experimental results suggest that the proposed approach is accurate and robust in pathological brain detection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    Science.gov (United States)

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front.

  2. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network

    International Nuclear Information System (INIS)

    Yu, Feng; Xu, Xiaozhong

    2014-01-01

    Highlights: • A detailed data processing will make more accurate results prediction. • Taking a full account of more load factors to improve the prediction precision. • Improved BP network obtains higher learning convergence. • Genetic algorithm optimized by chaotic cat map enhances the global search ability. • The combined GA–BP model improved by modified additional momentum factor is superior to others. - Abstract: This paper proposes an appropriate combinational approach which is based on improved BP neural network for short-term gas load forecasting, and the network is optimized by the real-coded genetic algorithm. Firstly, several kinds of modifications are carried out on the standard neural network to accelerate the convergence speed of network, including improved additional momentum factor, improved self-adaptive learning rate and improved momentum and self-adaptive learning rate. Then, it is available to use the global search capability of optimized genetic algorithm to determine the initial weights and thresholds of BP neural network to avoid being trapped in local minima. The ability of GA is enhanced by cat chaotic mapping. In light of the characteristic of natural gas load for Shanghai, a series of data preprocessing methods are adopted and more comprehensive load factors are taken into account to improve the prediction accuracy. Such improvements facilitate forecasting efficiency and exert maximum performance of the model. As a result, the integration model improved by modified additional momentum factor gets more ideal solutions for short-term gas load forecasting, through analyses and comparisons of the above several different combinational algorithms

  3. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    Science.gov (United States)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  4. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm

    Directory of Open Access Journals (Sweden)

    Joon Heo

    2009-06-01

    Full Text Available Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  5. Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the bnlearn R Package

    Directory of Open Access Journals (Sweden)

    Marco Scutari

    2017-03-01

    Full Text Available It is well known in the literature that the problem of learning the structure of Bayesian networks is very hard to tackle: Its computational complexity is super-exponential in the number of nodes in the worst case and polynomial in most real-world scenarios. Efficient implementations of score-based structure learning benefit from past and current research in optimization theory, which can be adapted to the task by using the network score as the objective function to maximize. This is not true for approaches based on conditional independence tests, called constraint-based learning algorithms. The only optimization in widespread use, backtracking, leverages the symmetries implied by the definitions of neighborhood and Markov blanket. In this paper we illustrate how backtracking is implemented in recent versions of the bnlearn R package, and how it degrades the stability of Bayesian network structure learning for little gain in terms of speed. As an alternative, we describe a software architecture and framework that can be used to parallelize constraint-based structure learning algorithms (also implemented in bnlearn and we demonstrate its performance using four reference networks and two real-world data sets from genetics and systems biology. We show that on modern multi-core or multiprocessor hardware parallel implementations are preferable over backtracking, which was developed when single-processor machines were the norm.

  6. Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approach

    Directory of Open Access Journals (Sweden)

    Mantra Prasad Satpathy

    2015-12-01

    Full Text Available Ultrasonic welding has been used in the market over the past twenty years and serving to the manufacturing industries like aviation, medical, microelectronics and many more due to various hurdles faced by conventional fusion welding process. It takes very short time (less than one second to weld materials, thus it can be used for mass production. But many times, the problems faced by industries due to this process are the poor weld quality and strength of the joints. In fact, the quality and success of the welding depend upon its control parameters. In this present study, the control parameters like vibration amplitude, weld pressure and weld time are considered for the welding of dissimilar metals like aluminum (AA1100 and brass (UNS C27000 sheet of 0.3 mm thickness. Experiments are conducted according to the full factorial design with four replications to obtain the responses like tensile shear stress, T-peel stress and weld area. All these data are utilized to develop a non-linear second order regression model between the responses and predictors. As the quality is an important issue in these manufacturing industries, the optimal combinations of these process parameters are found out by using fuzzy logic approach and genetic algorithm (GA approach. During experiments, the temperature measurement of the weld zone has also been performed to study its effect on different quality characteristics. From the confirmatory test, it has been observed that, the fuzzy logic yields better output results than GA. A variety of weld quality levels, such as “under weld”, “good weld” and “over weld” have also been defined by performing micro structural analysis.

  7. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Osman Özkaraca

    2017-10-01

    Full Text Available Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP and its components in the aspects of thermodynamic modeling, exergy analysis and optimization processes. In-depth information is obtained about the exergy (maximum work a system can make, exergy losses and destruction at the power plant and its components. Thus the performance of the power plant may be predicted with reasonable accuracy and better understanding is gained for the physical process to be used in improving the performance of the power plant. The results of the exergy analysis show that total exergy production rate and exergy efficiency of the GPP are 21 MW and 14.52%, respectively, after removing parasitic loads. The highest amount of exergy destruction occurs, respectively, in condenser 2, vaporizer HH2, condenser 1, pumps 1 and 2 as components requiring priority performance improvement. To maximize the system exergy efficiency, the artificial bee colony (ABC is applied to the model that simulates the actual GPP. Under all the optimization conditions, the maximum exergy efficiency for the GPP and its components is obtained. Two of these conditions such as Case 4 related to the turbine and Case 12 related to the condenser have the best performance. As a result, the ABC optimization method provides better quality information than exergy analysis. Based on the guidance of this study, the performance of power plants based on geothermal energy and other energy resources may be improved.

  8. Optimization of the reflux ratio for a stage distillation column based on an improved particle swarm algorithm

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2010-01-01

    the searching ability of basic particle swarm algorithm significantly. An example of utilizing the improved algorithm to solve the mathematical model was demonstrated; the result showed that it is efficient and convenient to optimize the reflux ratio for a distillation column by using the mathematical model......A mathematical model relating operation profits with reflux ratio of a stage distillation column was established. In order to optimize the reflux ratio by solving the nonlinear objective function, an improved particle swarm algorithm was developed and has been proved to be able to enhance...... and improved particle swarm algorithm....

  9. Simulated Annealing-Based Ant Colony Algorithm for Tugboat Scheduling Optimization

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2012-01-01

    Full Text Available As the “first service station” for ships in the whole port logistics system, the tugboat operation system is one of the most important systems in port logistics. This paper formulated the tugboat scheduling problem as a multiprocessor task scheduling problem (MTSP after analyzing the characteristics of tugboat operation. The model considers factors of multianchorage bases, different operation modes, and three stages of operations (berthing/shifting-berth/unberthing. The objective is to minimize the total operation times for all tugboats in a port. A hybrid simulated annealing-based ant colony algorithm is proposed to solve the addressed problem. By the numerical experiments without the shifting-berth operation, the effectiveness was verified, and the fact that more effective sailing may be possible if tugboats return to the anchorage base timely was pointed out; by the experiments with the shifting-berth operation, one can see that the objective is most sensitive to the proportion of the shifting-berth operation, influenced slightly by the tugboat deployment scheme, and not sensitive to the handling operation times.

  10. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system

    International Nuclear Information System (INIS)

    Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina

    2016-01-01

    Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.

  11. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-01-01

    Full Text Available For predicting the key technology indicators (concentrate grade and tailings recovery rate of flotation process, a feed-forward neural network (FNN based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO algorithm and gravitational search algorithm (GSA is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process.

  12. A Memetic Differential Evolution Algorithm Based on Dynamic Preference for Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Ning Dong

    2014-01-01

    functions are executed, and comparisons with five state-of-the-art algorithms are made. The results illustrate that the proposed algorithm is competitive with and in some cases superior to the compared ones in terms of the quality, efficiency, and the robustness of the obtained results.

  13. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Directory of Open Access Journals (Sweden)

    Muhammad Hashim

    2017-05-01

    Full Text Available Purpose:  The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM. Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM with fuzzy coefficients constructed in present research should be helpful for

  14. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.

    2017-07-01

    The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world

  15. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    International Nuclear Information System (INIS)

    Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.

    2017-01-01

    The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world

  16. Optimization-Based Channel Constrained Data Aggregation Routing Algorithms in Multi-Radio Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hong-Hsu Yen

    2009-06-01

    Full Text Available In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other’s interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user’s delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these

  17. Target tracking algorithm based on Kalman filter and optimization MeanShift

    Science.gov (United States)

    Wu, Heng; Han, Tao; Zhang, Jie

    2017-11-01

    Background change ,shape change and target covering will all cause target tracking failure. Real-time and accuracy in target tracking is the problem that must be considered. This paper first presents the Mean Shift algorithm, then the Mean Shift algorithm iterative weight is modified with main information more prominent, secondary information suppressed, avoiding the tedious root, improving the real-time and effectiveness of target tracking. The target template updating algorithm is present to solve change of background and target shape change. Then a Kalman filter in the horizontal position and the vertical position is established to solve the problem of target tracking completely covered. Simulation results show that target tracking algorithm on the condition of target template update has higher tracking accuracy , higher real-time property and at the same time is robust than the traditional Mean Shift tracking algorithm .

  18. Near optimal power allocation algorithm for OFDM-based cognitive using adaptive relaying strategy

    KAUST Repository

    Soury, Hamza

    2012-01-01

    Relayed transmission increases the coverage and achievable capacity of communication systems. Adaptive relaying scheme is a relaying technique by which the benefits of the amplifying or decode and forward techniques can be achieved by switching the forwarding technique according to the quality of the signal. A cognitive Orthogonal Frequency-Division Multiplexing (OFDM) based adaptive relaying protocol is considered in this paper. The objective is to maximize the capacity of the cognitive radio system while ensuring that the interference introduced to the primary user is below the tolerated limit. A Near optimal power allocation in the source and the relay is presented for two pairing techniques such that the matching and random pairing. The simulation results confirm the efficiency of the proposed adaptive relaying protocol, and the consequence of choice of pairing technique. © 2012 ICST.

  19. Evaluation of the selection methods used in the exIWO algorithm based on the optimization of multidimensional functions

    Science.gov (United States)

    Kostrzewa, Daniel; Josiński, Henryk

    2016-06-01

    The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version inspired by dynamic growth of weeds colony. The authors of the present paper have modified the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals' selection. The goal of the project was to evaluate the modified exIWO by testing its usefulness for multidimensional numerical functions optimization. The optimized functions: Griewank, Rastrigin, and Rosenbrock are frequently used as benchmarks because of their characteristics.

  20. Composite Structure Optimization with Genetic Algorithm

    Science.gov (United States)

    Deslandes, Olivier

    2014-06-01

    In the frame of optimization studies in CNES launcher directorate structure, thermic and material department, the need of an optimization tool based on metaheuristic and finite element models for composite structural dimensioning was underlined.Indeed, composite structures need complex optimization methodologies in order to be really compared to metallic structures with regard to mass, static strength and stiffness constraints (metallic structures using optimization methods better known).After some bibliography research, the use of a genetic algorithm coupled with design of experiment to generate the initial population was chosen. Academic functions were used to validate the optimization process and then it was applied to an industrial study aiming to optimize an interstage skirt with regard to its mass, stiffness and stability (global buckling).

  1. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mehran Tamjidy

    2017-05-01

    Full Text Available The development of Friction Stir Welding (FSW has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ, a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS and Shannon’s entropy.

  2. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm.

    Science.gov (United States)

    Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz

    2017-05-15

    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.

  3. Distributed Algorithms for Time Optimal Reachability Analysis

    DEFF Research Database (Denmark)

    Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand

    2016-01-01

    Time optimal reachability analysis is a novel model based technique for solving scheduling and planning problems. After modeling them as reachability problems using timed automata, a real-time model checker can compute the fastest trace to the goal states which constitutes a time optimal schedule....... We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...

  4. Fault Diagnosis of Plunger Pump in Truck Crane Based on Relevance Vector Machine with Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Wenliao Du

    2013-01-01

    Full Text Available Promptly and accurately dealing with the equipment breakdown is very important in terms of enhancing reliability and decreasing downtime. A novel fault diagnosis method PSO-RVM based on relevance vector machines (RVM with particle swarm optimization (PSO algorithm for plunger pump in truck crane is proposed. The particle swarm optimization algorithm is utilized to determine the kernel width parameter of the kernel function in RVM, and the five two-class RVMs with binary tree architecture are trained to recognize the condition of mechanism. The proposed method is employed in the diagnosis of plunger pump in truck crane. The six states, including normal state, bearing inner race fault, bearing roller fault, plunger wear fault, thrust plate wear fault, and swash plate wear fault, are used to test the classification performance of the proposed PSO-RVM model, which compared with the classical models, such as back-propagation artificial neural network (BP-ANN, ant colony optimization artificial neural network (ANT-ANN, RVM, and support vectors, machines with particle swarm optimization (PSO-SVM, respectively. The experimental results show that the PSO-RVM is superior to the first three classical models, and has a comparative performance to the PSO-SVM, the corresponding diagnostic accuracy achieving as high as 99.17% and 99.58%, respectively. But the number of relevance vectors is far fewer than that of support vector, and the former is about 1/12–1/3 of the latter, which indicates that the proposed PSO-RVM model is more suitable for applications that require low complexity and real-time monitoring.

  5. An optimization based on simulation approach to the patient admission scheduling problem using a linear programing algorithm.

    Science.gov (United States)

    Granja, C; Almada-Lobo, B; Janela, F; Seabra, J; Mendes, A

    2014-12-01

    As patient's length of stay in waiting lists increases, governments are looking for strategies to control the problem. Agreements were created with private providers to diminish the workload in the public sector. However, the growth of the private sector is not following the demand for care. Given this context, new management strategies have to be considered in order to minimize patient length of stay in waiting lists while reducing the costs and increasing (or at least maintaining) the quality of care. Appointment scheduling systems are today known to be proficient in the optimization of health care services. Their utilization is focused on increasing the usage of human resources, medical equipment and reducing the patient waiting times. In this paper, a simulation-based optimization approach to the Patient Admission Scheduling Problem is presented. Modeling tools and simulation techniques are used in the optimization of a diagnostic imaging department. The proposed techniques have demonstrated to be effective in the evaluation of diagnostic imaging workflows. A simulated annealing algorithm was used to optimize the patient admission sequence towards minimizing the total completion and total waiting of patients. The obtained results showed average reductions of 5% on the total completion and 38% on the patients' total waiting time. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm

    Science.gov (United States)

    Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue

    2016-01-01

    A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.

  7. Optimization model research on efficacy in treatment of chronic urticaria by Chinese and Western medicine based on a genetic algorithm.

    Science.gov (United States)

    Yan, Macheng; Ye, Fuyuan; Zhang, Yuquan; Cai, Xi; Fu, Yanhua; Yang, Xuming

    2013-02-01

    To investigate the potential rules and knowledge of Traditional Chinese Medicine (TCM) and Western Medicine (WM) treatment on chronic urticaria (CU) based on data-mining methods. Sixty patients with chronic urticaria, treated with TCM and WM, were selected. Gray correlation analyses were adopted to determine therapeutic efficacy. Association algorithms were utilized to ascertain the correlation between the disease course and treatment results. A genetic algorithm was applied to discover the optimization model in the TCM and WM treatment on CU. The total symptom scores after 4 weeks and 8 weeks of treatment in the TCM spleen-strengthening group correlated highly with the pretreatment total symptom score. The duration of treatment showed the greatest impact on the total symptom score. A quartic equation was established (y = - 1.6403 x 10 - 6 x(4) + 0.00025576x(3) + 0.0012819 x2 - 1.024x + 79.5879, and x = 106.9518, y = 83.0036) using the genetic algorithm. TCM treatment had a better effect in the later stage, whereas WM was better in the early stage. The duration of disease course had an impact on the effects of treatment. If the average total symptom score before treatment was < or = 83.0036, TCM or WM treatment could achieve better efficacy.

  8. A new accurate curvature matching and optimal tool based five-axis machining algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Than; Lee, Jae Woo [Konkuk University, Seoul (Korea, Republic of); Bohez, Erik L. J. [Asian Institute of Technology, Bangkok (Thailand)

    2009-10-15

    Free-form surfaces are widely used in CAD systems to describe the part surface. Today, the most advanced machining of free from surfaces is done in five-axis machining using a flat end mill cutter. However, five-axis machining requires complex algorithms for gouging avoidance, collision detection and powerful computer-aided manufacturing (CAM) systems to support various operations. An accurate and efficient method is proposed for five-axis CNC machining of free-form surfaces. The proposed algorithm selects the best tool and plans the tool path autonomously using curvature matching and integrated inverse kinematics of the machine tool. The new algorithm uses the real cutter contact tool path generated by the inverse kinematics and not the linearized piecewise real cutter location tool path

  9. Identification of fast-steering mirror based on chicken swarm optimization algorithm

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Zhang, Chao; Mao, Yao

    2017-06-01

    According to the transfer function identification method of fast steering mirror exists problems which estimate the initial value is complicated in the process of using, put forward using chicken swarm algorithm to simplify the identification operation, reducing the workload of identification. chicken swarm algorithm is a meta heuristic intelligent population algorithm, which shows global convergence is efficient in the identification experiment, and the convergence speed is fast. The convergence precision is also high. Especially there are many parameters are needed to identificate in the transfer function without considering the parameters estimation problem. Therefore, compared with the traditional identification methods, the proposed approach is more convenient, and greatly achieves the intelligent design of fast steering mirror control system in enginerring application, shorten time of controller designed.

  10. Optimization and Improvement in Robot-Based Assembly Line System by Hybrid Genetic Algorithm

    Science.gov (United States)

    Lin, Lin; Gen, Mitsuo; Gao, Jie

    In the real world, there are a lot of scenes from which the product is made by using the robot, which needs different assembly times to perform a given task, because of its capabilities and specialization. For a robotic assembly line balancing (rALB) problem, a set of tasks have to be assigned to stations, and each station needs to select one robot to process the assigned tasks. In this paper, we propose a hybrid genetic algorithm (hGA) for solving this problem. In the hGA, we use new representation method. Advanced genetic operators adapted to the specific chromosome structure and the characteristics of the rALB problem are used. In order to strengthen the search ability, a local search procedure is integrated under the framework the genetic algorithm. Some practical test instances demonstrate the effectiveness and efficiency of the proposed algorithm.

  11. The index-based subgraph matching algorithm (ISMA): fast subgraph enumeration in large networks using optimized search trees.

    Science.gov (United States)

    Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet

    2013-01-01

    Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/.

  12. The index-based subgraph matching algorithm (ISMA: fast subgraph enumeration in large networks using optimized search trees.

    Directory of Open Access Journals (Sweden)

    Sofie Demeyer

    Full Text Available Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA, a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/.

  13. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  14. Antenna Design by Means of the Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Lucas Polo-López

    2018-01-01

    Full Text Available In this work a heuristic optimization algorithm known as the Fruit fly Optimization Algorithm is applied to antenna design problems. The original formulation of the algorithm is presented and it is adapted to array factor and horn antenna optimization problems. Specifically, it is applied to the array factor synthesis of uniformly-fed, non-equispaced arrays and to the profile optimization of multimode horn antennas. Several numerical examples are presented and the obtained results are compared with those provided by a deterministic optimization based on a simplex method and another well-known heuristic approach, the Genetic Algorithm.

  15. A New Algorithm for Determining Ultimate Pit Limits Based on Network Optimization

    Directory of Open Access Journals (Sweden)

    Ali Asghar Khodayari

    2013-12-01

    Full Text Available One of the main concerns of the mining industry is to determine ultimate pit limits. Final pit is a collection of blocks, which can be removed with maximum profit while following restrictions on the slope of the mine’s walls. The size, location and final shape of an open-pit are very important in designing the location of waste dumps, stockpiles, processing plants, access roads and other surface facilities as well as in developing a production program. There are numerous methods for designing ultimate pit limits. Some of these methods, such as floating cone algorithm, are heuristic and do not guarantee to generate optimum pit limits. Other methods, like Lerchs–Grossmann algorithm, are rigorous and always generate the true optimum pit limits. In this paper, a new rigorous algorithm is introduced. The main logic in this method is that only positive blocks, which can pay costs of their overlying non-positive blocks, are able to appear in the final pit. Those costs may be paid either by positive block itself or jointly with other positive blocks, which have the same overlying negative blocks. This logic is formulated using a network model as a Linear Programming (LP problem. This algorithm can be applied to two- and three-dimension block models. Since there are many commercial programs available for solving LP problems, pit limits in large block models can be determined easily by using this method.

  16. Performance optimization of the power user electric energy data acquire system based on MOEA/D evolutionary algorithm

    Science.gov (United States)

    Ding, Zhongan; Gao, Chen; Yan, Shengteng; Yang, Canrong

    2017-10-01

    The power user electric energy data acquire system (PUEEDAS) is an important part of smart grid. This paper builds a multi-objective optimization model for the performance of the PUEEADS from the point of view of the combination of the comprehensive benefits and cost. Meanwhile, the Chebyshev decomposition approach is used to decompose the multi-objective optimization problem. We design a MOEA/D evolutionary algorithm to solve the problem. By analyzing the Pareto optimal solution set of multi-objective optimization problem and comparing it with the monitoring value to grasp the direction of optimizing the performance of the PUEEDAS. Finally, an example is designed for specific analysis.

  17. Three-dimensional trajectory design for horizontal well based on optimal switching algorithms.

    Science.gov (United States)

    Wu, Xiang; Zhang, Kanjian

    2015-09-01

    This paper considers a three-dimensional trajectory design problem for horizontal well. The problem is formulated as an optimal control problem of switched systems with continuous state inequality constraints. Since the complexity of such constraints and the switching instants is unknown, it is difficult to solve the problem by standard optimization techniques. To overcome the difficulty, by a time-scaling transformation, a smoothing technique and a penalty function method, an efficient computational method is proposed for solving this problem. Convergence results show that, for a sufficiently large penalty parameter, any local optimal solution of the approximate problem is also a local optimal solution of the original problem. Two numerical examples are presented to illustrate the efficiency of the approach proposed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Intersection signal control multi-objective optimization based on genetic algorithm

    OpenAIRE

    Zhanhong Zhou; Ming Cai

    2014-01-01

    A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at ...

  19. Investigating preferences for color-shape combinations with gaze driven optimization method based on evolutionary algorithms

    OpenAIRE

    Holmes, Tim; Zanker, Johannes M.

    2013-01-01

    Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was ...

  20. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    Science.gov (United States)

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  1. A New Logistic Dynamic Particle Swarm Optimization Algorithm Based on Random Topology

    Directory of Open Access Journals (Sweden)

    Qingjian Ni

    2013-01-01

    Full Text Available Population topology of particle swarm optimization (PSO will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  2. Workspace Analysis and Optimization of 3-PUU Parallel Mechanism in Medicine Base on Genetic Algorithm.

    Science.gov (United States)

    Hou, Yongchao; Zhao, Yang

    2015-01-01

    A novel 3-PUU parallel robot was put forward, on which kinematic analysis was conducted to obtain its inverse kinematics solution, and on this basis, the limitations of the sliding pair and the Hooke joint on the workspace were analyzed. Moreover, the workspace was solved through the three dimensional limit search method, and then optimization analysis was performed on the workspace of this parallel robot, which laid the foundations for the configuration design and further analysis of the parallel mechanism, with the result indicated that this type of robot was equipped with promising application prospect. In addition that, the workspace after optimization can meet more requirements of patients.

  3. Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Electric power is a kind of unstorable energy concerning the national welfare and the people’s livelihood, the stability of which is attracting more and more attention. Because the short-term power load is always interfered by various external factors with the characteristics like high volatility and instability, a single model is not suitable for short-term load forecasting due to low accuracy. In order to solve this problem, this paper proposes a new model based on wavelet transform and the least squares support vector machine (LSSVM which is optimized by fruit fly algorithm (FOA for short-term load forecasting. Wavelet transform is used to remove error points and enhance the stability of the data. Fruit fly algorithm is applied to optimize the parameters of LSSVM, avoiding the randomness and inaccuracy to parameters setting. The result of implementation of short-term load forecasting demonstrates that the hybrid model can be used in the short-term forecasting of the power system.

  4. Study on Vibration of Heavy-Precision Robot Cantilever Based on Time-varying Glowworm Swarm Optimization Algorithm

    Science.gov (United States)

    Luo, T. H.; Liang, S.; Miao, C. B.

    2017-12-01

    A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.

  5. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    CERN Document Server

    Parasuraman, Ramviyas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide red...

  6. Privacy preserving mechanisms for optimizing cross-organizational collaborative decisions based on the Karmarkar algorithm

    NARCIS (Netherlands)

    Zhu, H.; Liu, H.W.; Ou, Carol; Davison, R.M.; Yang, Z.R.

    2017-01-01

    Cross-organizational collaborative decision-making involves a great deal of private information which companies are often reluctant to disclose, even when they need to analyze data collaboratively. The lack of effective privacy-preserving mechanisms for optimizing cross-organizational collaborative

  7. A multi-level set gradient based algorithm for buckling optimization of blended composite structures

    NARCIS (Netherlands)

    Farzan Nasab, Farshad; Geijselaers, Hubertus J.M.; de Boer, Andries

    2016-01-01

    An approach is presented for the optimization of stiffened composite skins, which guarantees the continuity (blending) of plies over all individual panels. To fulfill design guidelines with respect to symmetry, balance, contiguity, disorientation and percentage rule of the layup, first a stacking

  8. Optimal algorithmic trading and market microstructure

    OpenAIRE

    Labadie , Mauricio; Lehalle , Charles-Albert

    2010-01-01

    The efficient frontier is a core concept in Modern Portfolio Theory. Based on this idea, we will construct optimal trading curves for different types of portfolios. These curves correspond to the algorithmic trading strategies that minimize the expected transaction costs, i.e. the joint effect of market impact and market risk. We will study five portfolio trading strategies. For the first three (single-asset, general multi-asseet and balanced portfolios) we will assume that the underlyings fo...

  9. Genetic algorithms and fuzzy multiobjective optimization

    CERN Document Server

    Sakawa, Masatoshi

    2002-01-01

    Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...

  10. Fast Algorithms for Earth Mover Distance Based on Optimal Transport and L1 Regularization II

    Science.gov (United States)

    2016-09-01

    can be obtained as a limit of systems of equations which have an interesting fluid dynamics interpretation. A similar transport problem has been...involves very simple formulae . Our algorithm is roughly 10 times faster for EMD with an L1 ground metric than that with a Euclidean ground metric. This is...this issue, we consider a small quadratic perturbation, through which we pick up a unique solution for a modified problem: minimize m ‖m‖1 + 2 ‖m‖22

  11. Test scheduling optimization for 3D network-on-chip based on cloud evolutionary algorithm of Pareto multi-objective

    Science.gov (United States)

    Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan

    2018-03-01

    In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.

  12. Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers

    Science.gov (United States)

    Kumar, Gaurav; Kumar, Ashok

    2017-11-01

    Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure

  13. Production process parameter optimization with a new model based on a genetic algorithm and ABC classification method

    Directory of Open Access Journals (Sweden)

    Milan Eric

    2016-08-01

    Full Text Available The difference between the production cost and selling price of the products may be viewed as a criterion that determines an organization’s competitiveness and market success. In such circumstances, it is necessary to impact these criteria in order to maximize this difference. The selling products’ price, in modern market conditions, is a category which may not be significantly affected. So organizations have one option, which is the production cost reduction. This is the motive for business organizations and the imperative of each organization. The key parameters that influence the costs of production and therefore influence the competitiveness of organizations are the parameters of production machines and processes used to create products. To define optimal parameter values for production machines and processes that will reduce production costs and increase competitiveness of production organizations, the authors have developed a new mathematical model. The model is based on application of the ABC classification method to classify production line processes based on their costs and an application of a genetic algorithm to find the optimal values of production machine parameters used in these processes. It has been applied in three different modern production line processes; the costs obtained by the model application have been compared with the real production costs.

  14. A Novel Idea for Optimizing Condition-Based Maintenance Using Genetic Algorithms and Continuous Event Simulation Techniques

    Directory of Open Access Journals (Sweden)

    Mansoor Ahmed Siddiqui

    2017-01-01

    Full Text Available Effective maintenance strategies are of utmost significance for system engineering due to their direct linkage with financial aspects and safety of the plants’ operation. At a point where the state of a system, for instance, level of its deterioration, can be constantly observed, a strategy based on condition-based maintenance (CBM may be affected; wherein upkeep of the system is done progressively on the premise of monitored state of the system. In this article, a multicomponent framework is considered that is continuously kept under observation. In order to decide an optimal deterioration stage for the said system, Genetic Algorithm (GA technique has been utilized that figures out when its preventive maintenance should be carried out. The system is configured into a multiobjective problem that is aimed at optimizing the two desired objectives, namely, profitability and accessibility. For the sake of reality, a prognostic model portraying the advancements of deteriorating system has been employed that will be based on utilization of continuous event simulation techniques. In this regard, Monte Carlo (MC simulation has been shortlisted as it can take into account a wide range of probable options that can help in reducing uncertainty. The inherent benefits proffered by the said simulation technique are fully utilized to display various elements of a deteriorating system working under stressed environment. The proposed synergic model (GA and MC is considered to be more effective due to the employment of “drop-by-drop approach” that permits successful drive of the related search process with regard to the best optimal solutions.

  15. A PMBGA to Optimize the Selection of Rules for Job Shop Scheduling Based on the Giffler-Thompson Algorithm

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2012-01-01

    Full Text Available Most existing research on the job shop scheduling problem has been focused on the minimization of makespan (i.e., the completion time of the last job. However, in the fiercely competitive market nowadays, delivery punctuality is more important for maintaining a high service reputation. So in this paper, we aim at solving job shop scheduling problems with the total weighted tardiness objective. Several dispatching rules are adopted in the Giffler-Thompson algorithm for constructing active schedules. It is noticeable that the rule selections for scheduling consecutive operations are not mutually independent but actually interrelated. Under such circumstances, a probabilistic model-building genetic algorithm (PMBGA is proposed to optimize the sequence of selected rules. First, we use Bayesian networks to model the distribution characteristics of high-quality solutions in the population. Then, the new generation of individuals is produced by sampling the established Bayesian network. Finally, some elitist individuals are further improved by a special local search module based on parameter perturbation. The superiority of the proposed approach is verified by extensive computational experiments and comparisons.

  16. Speed control of switched reluctance motor using genetic algorithm and ant colony based on optimizing PID controller

    Directory of Open Access Journals (Sweden)

    El-Sayed Ahmed Ibrahim Hassan

    2018-01-01

    Full Text Available Proportional-Integral-Derivative control is the most used kind of control which provides the simplest and most effective solution to different kinds of control engineering applications. But until now PID controller is poorly tuned in real life and online applications. While most of PID tuning is done manually. Switched reluctance motor (SRM has highly nonlinear characteristics since the developed/produced torque of the motor has a nonlinear function on both phase current and rotor position. These nonlinearities of the SRM drives make the conventional PID (proportional + integral + Derivative controller a poor choice for application where high dynamic performance is desired under all motor operating conditions. research paper comes up with two artificial and hybrid techniques involving Genetic Algorithm (GA and Ant Colony Optimization (ACO. Those techniques where used to tune the PID parameters for the switched reluctance motor (SRM and its performance were compared with the conventional method of “Ziegler Nichols. The results obtained reflects that, the use of those algorithms based controller improves the performance of the whole process in terms of a fast set point tracking and regulatory changes and also provides an optimum stability for the system itself with a minimum overshoot on the output signal.

  17. Wind farm optimization using evolutionary algorithms

    Science.gov (United States)

    Ituarte-Villarreal, Carlos M.

    In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a

  18. Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-06-01

    Full Text Available Affected by various environmental factors, wind speed presents high fluctuation, nonlinear and non-stationary characteristics. To evaluate wind energy properly and efficiently, this paper proposes a modified fast ensemble empirical model decomposition (FEEMD-bat algorithm (BA-least support vector machines (LSSVM (FEEMD-BA-LSSVM model combined with input selected by deep quantitative analysis. The original wind speed series are first decomposed into a limited number of intrinsic mode functions (IMFs with one residual series. Then a LSSVM is built to forecast these sub-series. In order to select input from environment variables, Cointegration and Granger causality tests are proposed to check the influence of temperature with different leading lengths. Partial correlation is applied to analyze the inner relationships between the historical speeds thus to select the LSSVM input. The parameters in LSSVM are fine-tuned by BA to ensure the generalization of LSSVM. The forecasting results suggest the hybrid approach outperforms the compared models.

  19. Trajectory metaheuristic algorithms to optimize problems combinatorics

    Directory of Open Access Journals (Sweden)

    Natalia Alancay

    2016-12-01

    Full Text Available The application of metaheuristic algorithms to optimization problems has been very important during the last decades. The main advantage of these techniques is their flexibility and robustness, which allows them to be applied to a wide range of problems. In this work we concentrate on metaheuristics based on Simulated Annealing, Tabu Search and Variable Neighborhood Search trajectory whose main characteristic is that they start from a point and through the exploration of the neighborhood vary the current solution, forming a trajectory. By means of the instances of the selected combinatorial problems, a computational experimentation is carried out that illustrates the behavior of the algorithmic methods to solve them. The main objective of this work is to perform the study and comparison of the results obtained for the selected trajectories metaheuristics in its application for the resolution of a set of academic problems of combinatorial optimization.

  20. A Novel Hybrid Firefly Algorithm for Global Optimization.

    Science.gov (United States)

    Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao

    Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate.

  1. Multi response optimization of sheet forming of Kenaf-Polypropylene composites using grey based fuzzy algorithm

    Science.gov (United States)

    Oktariani, Erfina; Istikowati, Rita; Tomo, Hendro Sat Setijo; Rizal, Rafliansyah; Pratama, Yosea

    2018-02-01

    Composites from natural fiber reinforcement are developed as the alternative sheet materials of plastic composite for small-size bodywork parts in automotive industries. Kenaf fiber is selected as the reinforcement of plastic composite. Press forming of Kenaf-Polypropylene is experimentally produced in this study. The aim of this study is to obtain the optimal factor of the process of sheet forming of Kenaf-Polypropylene. The Kenaf delignified is cut into 5 cm lengths and distributed on the surface of Polypropylene sheet for 3 and 5 ply layers. The layers of Kenaf-Polypropylene then pressed by hot press at 190 and 210°C, 40 and 50 bar, for 3 and 5 minutes. However, there are limitations in handling multi responses in design of experiments. The application of the fuzzy logic theory to the grey relational analysis may further develop its performance in solving multi-response problems for process parameter optimization. The layer of Kenaf and Polypropylene, temperature, the duration of hot press and pressure are factors that affect the process. The result of experimental investigation and as well as analysis, shows that the best combination values were 3 ply layer, 210°C, 5 minutes of hot press and 50 bar.

  2. Simulated annealing algorithm for optimal capital growth

    Science.gov (United States)

    Luo, Yong; Zhu, Bo; Tang, Yong

    2014-08-01

    We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.

  3. Daily Peak Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Shuyu Dai

    2018-01-01

    Full Text Available Daily peak load forecasting is an important part of power load forecasting. The accuracy of its prediction has great influence on the formulation of power generation plan, power grid dispatching, power grid operation and power supply reliability of power system. Therefore, it is of great significance to construct a suitable model to realize the accurate prediction of the daily peak load. A novel daily peak load forecasting model, CEEMDAN-MGWO-SVM (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, is proposed in this paper. Firstly, the model uses the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN algorithm to decompose the daily peak load sequence into multiple sub sequences. Then, the model of modified grey wolf optimization and support vector machine (MGWO-SVM is adopted to forecast the sub sequences. Finally, the forecasting sequence is reconstructed and the forecasting result is obtained. Using CEEMDAN can realize noise reduction for non-stationary daily peak load sequence, which makes the daily peak load sequence more regular. The model adopts the grey wolf optimization algorithm improved by introducing the population dynamic evolution operator and the nonlinear convergence factor to enhance the global search ability and avoid falling into the local optimum, which can better optimize the parameters of the SVM algorithm for improving the forecasting accuracy of daily peak load. In this paper, three cases are used to test the forecasting accuracy of the CEEMDAN-MGWO-SVM model. We choose the models EEMD-MGWO-SVM (Ensemble Empirical Mode Decomposition and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, MGWO-SVM (Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, GWO-SVM (Support Vector Machine Optimized by Grey Wolf Optimization Algorithm, SVM (Support Vector

  4. Genetic Algorithm-Based Optimization Methodology of Bézier Curves to Generate a DCI Microscale-Model

    Directory of Open Access Journals (Sweden)

    Jesus A. Basurto-Hurtado

    2017-11-01

    Full Text Available The aim of this article is to develop a methodology that is capable of generating micro-scale models of Ductile Cast Irons, which have the particular characteristic to preserve the smoothness of the graphite nodules contours that are lost by discretization errors when the contours are extracted using image processing. The proposed methodology uses image processing to extract the graphite nodule contours and a genetic algorithm-based optimization strategy to select the optimal degree of the Bézier curve that best approximate each graphite nodule contour. To validate the proposed methodology, a Finite Element Analysis (FEA was carried out using models that were obtained through three methods: (a using a fixed Bézier degree for all of the graphite nodule contours, (b the present methodology, and (c using a commercial software. The results were compared using the relative error of the equivalent stresses computed by the FEA, where the proposed methodology results were used as a reference. The present paper does not have the aim to define which models are the correct and which are not. However, in this paper, it has been shown that the errors generated in the discretization process should not be ignored when developing geometric models since they can produce relative errors of up to 35.9% when an estimation of the mechanical behavior is carried out.

  5. The use of the SCEM-UA optimization algorithm in the calibration of the physically based hydrological model SWAP

    Science.gov (United States)

    Rienzner, Michele; Facchi, Arianna; Cesari de Maria, Sandra; Gandolfi, Claudio

    2013-04-01

    experimentation as well as the exact irrigation amount in each IMPs in 2010. These variables were estimated using an automatic calibration procedure based on the optimization algorithm SCEM-UA (Shuffled Complex Evolution Metropolis, Vrugt et al, 2003), one of the most powerful algorithms for the search of the global optimum currently available. SCEM-UA is available as a set of MATLAB functions (i.e. a toolbox) and has been designed to optimize models working within the MATLAB environment. The need to optimize a stand-alone executable code (SWAP.exe), whose parameters are controlled by means of a text file, required the development of an interface between SWAP and SCEM-UA. The calibration procedure as well as the simulation results will be presented and discussed.

  6. [Reconstruction of Vehicle-human Crash Accident and Injury Analysis Based on 3D Laser Scanning, Multi-rigid-body Reconstruction and Optimized Genetic Algorithm].

    Science.gov (United States)

    Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J

    2017-12-01

    To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents.

  7. Investigating preferences for color-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    Science.gov (United States)

    Holmes, Tim; Zanker, Johannes M

    2013-01-01

    Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the

  8. Investigating preferences for colour-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    Directory of Open Access Journals (Sweden)

    Tim eHolmes

    2013-12-01

    Full Text Available Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioural measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA, which has been used as a tool to identify aesthetic preferences (Holmes & Zanker, 2012. In the present study, the GDEA was used to investigate the preferred combination of colour and shape which have been promoted in the Bauhaus arts school. We used the same 3 shapes (square, circle, triangle used by Kandinsky (1923, with the 3 colour palette from the original experiment (A, an extended 7 colour palette (B, and 8 different shape orientation (C. Participants were instructed to look for their preferred circle, triangle or square in displays with 8 stimuli of different shapes, colours and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested 6 participants extensively on the different conditions and found consistent preferences for individuals, but little evidence at the group level for preference consistent with Kandinsky’s claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of colour and shapes, but also that these associations are robust within a single individual. These individual differences go some way towards challenging the claims of the universal preference for colour/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the vast potential of the GDEA in experimental aesthetics

  9. Optical flow optimization using parallel genetic algorithm

    Science.gov (United States)

    Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe

    2011-06-01

    A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.

  10. Genetic-Algorithm-Based Optimization of a Peptidic Scaffold for Sequestration and Hydration of CO2.

    Science.gov (United States)

    Brunk, Elizabeth; Perez, Marta A S; Athri, Prashanth; Rothlisberger, Ursula

    2016-12-05

    Biomimicry is a strategy that makes practical use of evolution to find efficient and sustainable ways to produce chemical compounds or engineer products. Exploring the natural machinery of enzymes for the production of desired compounds is a highly profitable investment, but the design of efficient biomimetic systems remains a considerable challenge. An ideal biomimetic system self-assembles in solution, binds a desired range of substrates and catalyzes reactions with turnover rates similar to the native system. To this end, tailoring catalytic functionality in engineered peptides generally requires site-directed mutagenesis or the insertion of additional amino acids, which entails an intensive search across chemical and sequence space. Here we discuss a novel strategy for the computational design of biomimetic compounds and processes that consists of a) characterization of the wild-type and biomimetic systems; b) identification of key descriptors for optimization; c) an efficient search through sequence and chemical space to tailor the catalytic capabilities of the biomimetic system. Through this proof-of-principle study, we are able to decisively understand and identify whether a given scaffold is useful, appropriate and tailorable for a given, desired task. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of a versatile algorithm for optimization of radiation therapy

    International Nuclear Information System (INIS)

    Gustafsson, Anders.

    1996-12-01

    A flexible iterative gradient algorithm for radiation therapy optimization has been developed. The algorithm is based on dose calculation using the pencil-beam description of external radiation beams in uniform and heterogeneous patients. The properties of the algorithm are described, including its ability to treat variable bounds and linear constraints, its efficiency in gradient calculation, its convergence properties and termination criteria. 116 refs

  12. Teaching learning algorithm based optimization of kerf deviations in pulsed Nd:YAG laser cutting of Kevlar-29 composite laminates

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Kevlar is the most popular aramid fiber and most commonly used in different technologically advanced industries for various applications. But the precise cutting of Kevlar composite laminates is a difficult task. The conventional cutting methods face various defects such as delamination, burr formation, fiber pullout with poor surface quality and their mechanical performance is greatly affected by these defects. The laser beam machining may be an alternative of the conventional cutting processes due to its non-contact nature, requirement of low specific energy with higher production rate. But this process also faces some problems that may be minimized by operating the machine at optimum parameters levels. This research paper examines the effective utilization of the Nd:YAG laser cutting system on difficult-to-cut Kevlar-29 composite laminates. The objective of the proposed work is to find the optimum process parameters settings for getting the minimum kerf deviations at both sides. The experiments have been conducted on Kevlar-29 composite laminates having thickness 1.25 mm by using Box-Benkhen design with two center points. The experimental data have been used for the optimization by using the proposed methodology. For the optimization, Teaching learning Algorithm based approach has been employed to obtain the minimum kerf deviation at bottom and top sides. A self coded Matlab program has been developed by using the proposed methodology and this program has been used for the optimization. Finally, the confirmation tests have been performed to compare the experimental and optimum results obtained by the proposed methodology. The comparison results show that the machining performance in the laser beam cutting process has been remarkably improved through proposed approach. Finally, the influence of different laser cutting parameters such as lamp current, pulse frequency, pulse width, compressed air pressure and cutting speed on top kerf deviation and bottom kerf

  13. A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization

    Directory of Open Access Journals (Sweden)

    Soroor Sarafrazi

    2015-07-01

    Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.

  14. Nuclear reactors project optimization based on neural network and genetic algorithm; Otimizacao em projetos de reatores nucleares baseada em rede neural e algoritmo genetico

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Schirru, Roberto; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1997-12-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs.

  15. The hybrid MPC-MINLP algorithm for optimal operation of coal-fired power plants with solvent based post-combustion CO2 capture

    Directory of Open Access Journals (Sweden)

    Norhuda Abdul Manaf

    2017-03-01

    Full Text Available This paper presents an algorithm that combines model predictive control (MPC with MINLP optimization and demonstrates its application for coal-fired power plants retrofitted with solvent based post-combustion CO2 capture (PCC plant. The objective function of the optimization algorithm works at a primary level to maximize plant economic revenue while considering an optimal carbon capture profile. At a secondary level, the MPC algorithm is used to control the performance of the PCC plant. Two techno-economic scenarios based on fixed (capture rate is constant and flexible (capture rate is variable operation modes are developed using actual electricity prices (2011 with fixed carbon prices ($AUD 5, 25, 50/tonne-CO2 for 24 h periods. Results show that fixed operation mode can bring about a ratio of net operating revenue deficit at an average of 6% against the superior flexible operation mode.

  16. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    Science.gov (United States)

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  17. Optimized Data Indexing Algorithms for OLAP Systems

    Directory of Open Access Journals (Sweden)

    Lucian BORNAZ

    2010-12-01

    Full Text Available The need to process and analyze large data volumes, as well as to convey the information contained therein to decision makers naturally led to the development of OLAP systems. Similarly to SGBDs, OLAP systems must ensure optimum access to the storage environment. Although there are several ways to optimize database systems, implementing a correct data indexing solution is the most effective and less costly. Thus, OLAP uses indexing algorithms for relational data and n-dimensional summarized data stored in cubes. Today database systems implement derived indexing algorithms based on well-known Tree, Bitmap and Hash indexing algorithms. This is because no indexing algorithm provides the best performance for any particular situation (type, structure, data volume, application. This paper presents a new n-dimensional cube indexing algorithm, derived from the well known B-Tree index, which indexes data stored in data warehouses taking in consideration their multi-dimensional nature and provides better performance in comparison to the already implemented Tree-like index types.

  18. An Efficient Algorithm for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Sergio Gerardo de-los-Cobos-Silva

    2015-01-01

    Full Text Available This paper presents an original and efficient PSO algorithm, which is divided into three phases: (1 stabilization, (2 breadth-first search, and (3 depth-first search. The proposed algorithm, called PSO-3P, was tested with 47 benchmark continuous unconstrained optimization problems, on a total of 82 instances. The numerical results show that the proposed algorithm is able to reach the global optimum. This work mainly focuses on unconstrained optimization problems from 2 to 1,000 variables.

  19. Optimal Fungal Space Searching Algorithms.

    Science.gov (United States)

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  20. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    Science.gov (United States)

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  1. Transonic Wing Shape Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  2. A multi-sensor RSS spatial sensing-based robust stochastic optimization algorithm for enhanced wireless tethering.

    Science.gov (United States)

    Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-12-12

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the "server-relay-client" framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  3. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    Directory of Open Access Journals (Sweden)

    Ramviyas Parasuraman

    2014-12-01

    Full Text Available The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS. When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities, there is a possibility that some electronic components may fail randomly (due to radiation effects, which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  4. Honey Bees Inspired Optimization Method: The Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Ernesto Mastrocinque

    2013-11-01

    Full Text Available Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

  5. A Novel Pareto-Based Meta-Heuristic Algorithm to Optimize Multi-Facility Location-Allocation Problem

    OpenAIRE

    Vahid Hajipour; Samira V. Noshafagh; Reza Tavakkoli-Moghaddam

    2013-01-01

    This article proposes a novel Pareto-based multiobjective meta-heuristic algorithm named non-dominated ranking genetic algorithm (NRGA) to solve multi-facility location-allocation problem. In NRGA, a fitness value representing rank is assigned to each individual of the population. Moreover, two features ranked based roulette wheel selection including select the fronts and choose solutions from the fronts, are utilized. The proposed solving methodology is validated using s...

  6. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm.

    Science.gov (United States)

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun

    2015-10-01

    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  7. DOA Estimation of Low Altitude Target Based on Adaptive Step Glowworm Swarm Optimization-multiple Signal Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Zhou Hao

    2015-06-01

    Full Text Available The traditional MUltiple SIgnal Classification (MUSIC algorithm requires significant computational effort and can not be employed for the Direction Of Arrival (DOA estimation of targets in a low-altitude multipath environment. As such, a novel MUSIC approach is proposed on the basis of the algorithm of Adaptive Step Glowworm Swarm Optimization (ASGSO. The virtual spatial smoothing of the matrix formed by each snapshot is used to realize the decorrelation of the multipath signal and the establishment of a fullorder correlation matrix. ASGSO optimizes the function and estimates the elevation of the target. The simulation results suggest that the proposed method can overcome the low altitude multipath effect and estimate the DOA of target readily and precisely without radar effective aperture loss.

  8. Inverse Modeling of Soil Hydraulic Parameters Based on a Hybrid of Vector-Evaluated Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2018-01-01

    Full Text Available The accurate estimation of soil hydraulic parameters (θs, α, n, and Ks of the van Genuchten–Mualem model has attracted considerable attention. In this study, we proposed a new two-step inversion method, which first estimated the hydraulic parameter θs using objective function by the final water content, and subsequently estimated the soil hydraulic parameters α, n, and Ks, using a vector-evaluated genetic algorithm and particle swarm optimization (VEGA-PSO method based on objective functions by cumulative infiltration and infiltration rate. The parameters were inversely estimated for four types of soils (sand, loam, silt, and clay under an in silico experiment simulating the tension disc infiltration at three initial water content levels. The results indicated that the method is excellent and robust. Because the objective function had multilocal minima in a tiny range near the true values, inverse estimation of the hydraulic parameters was difficult; however, the estimated soil water retention curves and hydraulic conductivity curves were nearly identical to the true curves. In addition, the proposed method was able to estimate the hydraulic parameters accurately despite substantial measurement errors in initial water content, final water content, and cumulative infiltration, proving that the method was feasible and practical for field application.

  9. Engineering local optimality in quantum Monte Carlo algorithms

    Science.gov (United States)

    Pollet, Lode; Van Houcke, Kris; Rombouts, Stefan M. A.

    2007-08-01

    Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of bosonic models. Both algorithms work in the grand-canonical ensemble and can have a winding number larger than zero. However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide numerical examples for the soft-core Bose-Hubbard model and various spin- S models.

  10. Advanced metaheuristic algorithms for laser optimization

    International Nuclear Information System (INIS)

    Tomizawa, H.

    2010-01-01

    A laser is one of the most important experimental tools. In synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for Xray-FELs, a laser has important roles as a seed light source or photo-cathode-illuminating light source to generate a high brightness electron bunch. The controls of laser pulse characteristics are required for many kinds of experiments. However, the laser should be tuned and customized for each requirement by laser experts. The automatic tuning of laser is required to realize with some sophisticated algorithms. The metaheuristic algorithm is one of the useful candidates to find one of the best solutions as acceptable as possible. The metaheuristic laser tuning system is expected to save our human resources and time for the laser preparations. I have shown successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles and a hill climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each experimental requirement. (author)

  11. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification.

    Science.gov (United States)

    Hariharan, M; Sindhu, R; Vijean, Vikneswaran; Yazid, Haniza; Nadarajaw, Thiyagar; Yaacob, Sazali; Polat, Kemal

    2018-03-01

    Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. The experimental

  12. Genetic algorithms applied to nuclear reactor design optimization

    International Nuclear Information System (INIS)

    Pereira, C.M.N.A.; Schirru, R.; Martinez, A.S.

    2000-01-01

    A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)

  13. Evaluation of dose prediction errors and optimization convergence errors of deliverable-based head-and-neck IMRT plans computed with a superposition/convolution dose algorithm

    International Nuclear Information System (INIS)

    Mihaylov, I. B.; Siebers, J. V.

    2008-01-01

    The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater

  14. A Study on the Optimization of Chain Supermarkets’ Distribution Route Based on the Quantum-Inspired Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Bi Liang

    2017-01-01

    Full Text Available The chain supermarket has become a major part of China’s retail industry, and the optimization of chain supermarkets’ distribution route is an important issue that needs to be considered for the distribution center, because for a chain supermarket it affects the logistics cost and the competition in the market directly. In this paper, analyzing the current distribution situation of chain supermarkets both at home and abroad and studying the quantum-inspired evolutionary algorithm (QEA, we set up the mathematical model of chain supermarkets’ distribution route and solve the optimized distribution route throughout QEA. At last, we take Hongqi Chain Supermarket in Chengdu as an example to perform the experiment and compare QEA with the genetic algorithm (GA in the fields of the convergence, the optimal solution, the search ability, and so on. The experiment results show that the distribution route optimized by QEA behaves better than that by GA, and QEA has stronger global search ability for both a small-scale chain supermarket and a large-scale chain supermarket. Moreover, the success rate of QEA in searching routes is higher than that of GA.

  15. Investigating the optimal passive and active vibration controls of adjacent buildings based on performance indices using genetic algorithms

    Science.gov (United States)

    Hadi, Muhammad N. S.; Uz, Mehmet E.

    2015-02-01

    This study proposes the optimal passive and active damper parameters for achieving the best results in seismic response mitigation of coupled buildings connected to each other by dampers. The optimization to minimize the H2 and H∞ norms in the performance indices is carried out by genetic algorithms (GAs). The final passive and active damper parameters are checked for adjacent buildings connected to each other under El Centro NS 1940 and Kobe NS 1995 excitations. Using real coded GA in H∞ norm, the optimal controller gain is obtained by different combinations of the measurement as the feedback for designing the control force between the buildings. The proposed method is more effective than other metaheuristic methods and more feasible, although the control force increased. The results in the active control system show that the response of adjacent buildings is reduced in an efficient manner.

  16. Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Xia

    2015-10-01

    Full Text Available The installation of stationary super-capacitor energy storage system (ESS in metro systems can recycle the vehicle braking energy and improve the pantograph voltage profile. This paper aims to optimize the energy management, location, and size of stationary super-capacitor ESSes simultaneously and obtain the best economic efficiency and voltage profile of metro systems. Firstly, the simulation platform of an urban rail power supply system, which includes trains and super-capacitor energy storage systems, is established. Then, two evaluation functions from the perspectives of economic efficiency and voltage drop compensation are put forward. Ultimately, a novel optimization method that combines genetic algorithms and a simulation platform of urban rail power supply system is proposed, which can obtain the best energy management strategy, location, and size for ESSes simultaneously. With actual parameters of a Chinese metro line applied in the simulation comparison, certain optimal scheme of ESSes’ energy management strategy, location, and size obtained by a novel optimization method can achieve much better performance of metro systems from the perspectives of two evaluation functions. The simulation result shows that with the increase of weight coefficient, the optimal energy management strategy, locations and size of ESSes appear certain regularities, and the best compromise between economic efficiency and voltage drop compensation can be obtained by a novel optimization method, which can provide a valuable reference to subway company.

  17. OPC recipe optimization using genetic algorithm

    Science.gov (United States)

    Asthana, Abhishek; Wilkinson, Bill; Power, Dave

    2016-03-01

    Optimization of OPC recipes is not trivial due to multiple parameters that need tuning and their correlation. Usually, no standard methodologies exist for choosing the initial recipe settings, and in the keyword development phase, parameters are chosen either based on previous learning, vendor recommendations, or to resolve specific problems on particular special constructs. Such approaches fail to holistically quantify the effects of parameters on other or possible new designs, and to an extent are based on the keyword developer's intuition. In addition, when a quick fix is needed for a new design, numerous customization statements are added to the recipe, which make it more complex. The present work demonstrates the application of Genetic Algorithm (GA) technique for optimizing OPC recipes. GA is a search technique that mimics Darwinian natural selection and has applications in various science and engineering disciplines. In this case, GA search heuristic is applied to two problems: (a) an overall OPC recipe optimization with respect to selected parameters and, (b) application of GA to improve printing and via coverage at line end geometries. As will be demonstrated, the optimized recipe significantly reduced the number of ORC violations for case (a). For case (b) line end for various features showed significant printing and filling improvement.

  18. Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm.

    Science.gov (United States)

    Herman, Matthew R; Nejadhashemi, A Pouyan; Daneshvar, Fariborz; Abouali, Mohammad; Ross, Dennis M; Woznicki, Sean A; Zhang, Zhen

    2016-10-01

    The emission of greenhouse gases continues to amplify the impacts of global climate change. This has led to the increased focus on using renewable energy sources, such as biofuels, due to their lower impact on the environment. However, the production of biofuels can still have negative impacts on water resources. This study introduces a new strategy to optimize bioenergy landscapes while improving stream health for the region. To accomplish this, several hydrological models including the Soil and Water Assessment Tool, Hydrologic Integrity Tool, and Adaptive Neruro Fuzzy Inference System, were linked to develop stream health predictor models. These models are capable of estimating stream health scores based on the Index of Biological Integrity. The coupling of the aforementioned models was used to guide a genetic algorithm to design watershed-scale bioenergy landscapes. Thirteen bioenergy managements were considered based on the high probability of adaptation by farmers in the study area. Results from two thousand runs identified an optimum bioenergy crops placement that maximized the stream health for the Flint River Watershed in Michigan. The final overall stream health score was 50.93, which was improved from the current stream health score of 48.19. This was shown to be a significant improvement at the 1% significant level. For this final bioenergy landscape the most often used management was miscanthus (27.07%), followed by corn-soybean-rye (19.00%), corn stover-soybean (18.09%), and corn-soybean (16.43%). The technique introduced in this study can be successfully modified for use in different regions and can be used by stakeholders and decision makers to develop bioenergy landscapes that maximize stream health in the area of interest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A New Optimized GA-RBF Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Weikuan Jia

    2014-01-01

    Full Text Available When confronting the complex problems, radial basis function (RBF neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm, which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer’s neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.

  20. Shape Optimization of Cochlear Implant Electrode Array Using Genetic Algorithms

    National Research Council Canada - National Science Library

    Choi, Charles

    2001-01-01

    .... Genetic algorithms are then applied in conjunction with the finite element analysis to optimize the shape of cochlear implant electrode array based on the energy deposited in the spiral ganglion cells region...

  1. Real-time seizure prediction using RLS filtering and interpolated histogram feature based on hybrid optimization algorithm of Bayesian classifier and Hunting search.

    Science.gov (United States)

    Behnam, Morteza; Pourghassem, Hossein

    2016-08-01

    Epileptic seizure prediction using EEG signal analysis is an important application for drug therapy and pediatric patient monitoring. Time series estimation to obtain the future samples of EEG signal has vital role for detecting seizure attack. In this paper, a novel density-based real-time seizure prediction algorithm based on a trained offline seizure detection algorithm is proposed. In the offline seizure detection procedure, after signal preprocessing, histogram-based statistical features are extracted from signal probability distribution. By defining a deterministic polynomial model on the normalized histogram, a novel syntactic feature that is named Interpolated Histogram Feature (IHF) is proposed. Moreover, with this feature, Seizure Distribution Model (SDM) as a descriptor of the seizure and non-seizure signals is presented. By using a novel hybrid optimization algorithm based on Bayesian classifier and Hunting Search (HuS) algorithm, the optimal features are selected. To detect the seizure attacks in the online mode, a Multi-Layer Perceptron (MLP) classifier is trained with the optimal features in the offline procedure. For online prediction, the enhanced Recursive Least Square (RLS) filter is applied to estimate sample-by-sample of the EEG signal. Also, a density-based signal tracking scenario is introduced to update and tune the parameters of RLS filtering algorithm. Our prediction algorithm is evaluated on 104 hours of EEG signals recorded from 23 pediatric patients. Our online signal prediction algorithm provides the accuracy rate of 86.56% and precision rate of 86.53% simultaneously using the trained MLP classifier from the offline mode. The recall rate of seizure prediction is 97.27% and the false prediction rate of 0.00215 per hour is achieved as well. Ultimately, the future samples of EEG signal are estimated, and the time of seizure signal prediction is also converged to 6.64 seconds. In our proposed real-time algorithm, by implementing a density-based

  2. A New Hybrid Model Based on Data Preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available The establishment of electrical power system cannot only benefit the reasonable distribution and management in energy resources, but also satisfy the increasing demand for electricity. The electrical power system construction is often a pivotal part in the national and regional economic development plan. This paper constructs a hybrid model, known as the E-MFA-BP model, that can forecast indices in the electrical power system, including wind speed, electrical load, and electricity price. Firstly, the ensemble empirical mode decomposition can be applied to eliminate the noise of original time series data. After data preprocessing, the back propagation neural network model is applied to carry out the forecasting. Owing to the instability of its structure, the modified firefly algorithm is employed to optimize the weight and threshold values of back propagation to obtain a hybrid model with higher forecasting quality. Three experiments are carried out to verify the effectiveness of the model. Through comparison with other traditional well-known forecasting models, and models optimized by other optimization algorithms, the experimental results demonstrate that the hybrid model has the best forecasting performance.

  3. Pareto front–based multi-objective real-time traffic signal control model for intersections using particle swarm optimization algorithm

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2016-08-01

    Full Text Available Real-time traffic control is very important for urban transportation systems. Due to conflicts among different optimization objectives, the existing multi-objective models often convert into single-objective problems through weighted sum method. To obtain real-time signal parameters and evaluation indices, this article puts forward a Pareto front–based multi-objective traffic signal control model using particle swarm optimization algorithm. The article first formulates a control model for intersections based on detected real-time link volumes, with minimum delay time, minimum number of stops, and maximum effective capacity as three objectives. Moreover, this article designs a step-by-step particle swarm optimization algorithm based on Pareto front for solution. Pareto dominance relation and density distance are employed for ranking, tournament selection is used to select and weed out particles, and Pareto front for the signal timing plan is then obtained, including time-varying cycle length and split. Finally, based on actual survey data, scenario analyses determine the optimal parameters of the particle swarm algorithm, comparisons with the current situation and existing models demonstrate the excellent performances, and the experiments incorporating outliers in the input data or total failure of detectors further prove the robustness. Generally, the proposed methodology is effective and robust enough for real-time traffic signal control.

  4. PSO Algorithm for an Optimal Power Controller in a Microgrid

    Science.gov (United States)

    Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.

    2017-07-01

    This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.

  5. Lunar Habitat Optimization Using Genetic Algorithms

    Science.gov (United States)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  6. Optimal dose reduction algorithm using an attenuation-based tube current modulation method for cone-beam CT imaging.

    Directory of Open Access Journals (Sweden)

    Kihong Son

    Full Text Available To reduce the radiation dose given to patients, a tube current modulation (TCM method has been widely used in diagnostic CT systems. However, the TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate if a TCM method would be desirable in a kV-CBCT system for image-guided radiation therapy (IGRT or not. We have developed an attenuation-based TCM method using prior knowledge from planning CT images of patients. The TCM method can provide optimized dose reductions without degrading image quality for kV-CBCT imaging. Here, we investigate whether or not our suggested TCM method is desirable to use in kV-CBCT systems to confirm and revise the exact position of a patient for IGRT. Patients go through diagnostic CT scans for RT planning; therefore, using information from prior CT images can enable estimations of the total X-ray attenuation through a patient's body in a CBCT setting for radiation treatment. Having this planning CT image allows to use the proposed TCM method in RT. The proposed TCM method provides a minimal amount of current for each projection, as well as total current, required to reconstruct the current modulated CBCT image with an image quality similar to that of CBCT. After applying a calculated TCM current for each projection, projection images were acquired and the current modulated CBCT image was reconstructed using a FDK algorithm. To validate the proposed approach, we used a numerical XCAT phantom and a real ATOM phantom and evaluated the performance of the proposed method via visual and quantitative image quality metrics. The organ dose due to imaging radiation was calculated in both cases and compared using the GATE simulation toolkit. As shown in the quantitative evaluation, normalized noise and SSIM values of the TCM were similar to those of conventional CBCT images. In addition, the proposed TCM method yielded comparable image quality to that of conventional

  7. A flexibility-based method via the iterated improved reduction system and the cuckoo optimization algorithm for damage quantification with limited sensors

    International Nuclear Information System (INIS)

    Zare Hosseinzadeh, Ali; Ghodrati Amiri, Gholamreza; Bagheri, Abdollah; Koo, Ki-Young

    2014-01-01

    In this paper, a novel and effective damage diagnosis algorithm is proposed to localize and quantify structural damage using incomplete modal data, considering the existence of some limitations in the number of attached sensors on structures. The damage detection problem is formulated as an optimization problem by computing static displacements in the reduced model of a structure subjected to a unique static load. The static responses are computed through the flexibility matrix of the damaged structure obtained based on the incomplete modal data of the structure. In the algorithm, an iterated improved reduction system method is applied to prepare an accurate reduced model of a structure. The optimization problem is solved via a new evolutionary optimization algorithm called the cuckoo optimization algorithm. The efficiency and robustness of the presented method are demonstrated through three numerical examples. Moreover, the efficiency of the method is verified by an experimental study of a five-story shear building structure on a shaking table considering only two sensors. The obtained damage identification results for the numerical and experimental studies show the suitable and stable performance of the proposed damage identification method for structures with limited sensors. (paper)

  8. Algorithms for optimal dyadic decision trees

    Energy Technology Data Exchange (ETDEWEB)

    Hush, Don [Los Alamos National Laboratory; Porter, Reid [Los Alamos National Laboratory

    2009-01-01

    A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.

  9. An algorithm for online optimization of accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Safranek, James [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Juhao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2013-10-01

    We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.

  10. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    Directory of Open Access Journals (Sweden)

    Gonglin Yuan

    Full Text Available Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1 βk ≥ 0 2 the search direction has the trust region property without the use of any line search method 3 the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  11. Heterogeneous architecture to process swarm optimization algorithms

    Directory of Open Access Journals (Sweden)

    Maria A. Dávila-Guzmán

    2014-01-01

    Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.

  12. Food processing optimization using evolutionary algorithms | Enitan ...

    African Journals Online (AJOL)

    Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...

  13. Glowworm swarm optimization theory, algorithms, and applications

    CERN Document Server

    Kaipa, Krishnanand N

    2017-01-01

    This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...

  14. Opposition-Based Adaptive Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Chibing Gong

    2016-07-01

    Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.

  15. Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search algorithms

    International Nuclear Information System (INIS)

    Mahdad, Belkacem; Srairi, K.

    2015-01-01

    Highlights: • A generalized optimal security power system planning strategy for blackout risk prevention is proposed. • A Grey Wolf Optimizer dynamically coordinated with Pattern Search algorithm is proposed. • A useful optimized database dynamically generated considering margin loading stability under severe faults. • The robustness and feasibility of the proposed strategy is validated in the standard IEEE 30 Bus system. • The proposed planning strategy will be useful for power system protection coordination and control. - Abstract: Developing a flexible and reliable power system planning strategy under critical situations is of great importance to experts and industrials to minimize the probability of blackouts occurrence. This paper introduces the first stage of this practical strategy by the application of Grey Wolf Optimizer coordinated with pattern search algorithm for solving the security smart grid power system management under critical situations. The main objective of this proposed planning strategy is to prevent the practical power system against blackout due to the apparition of faults in generating units or important transmission lines. At the first stage the system is pushed to its margin stability limit, the critical loads shedding are selected using voltage stability index. In the second stage the generator control variables, the reactive power of shunt and dynamic compensators are adjusted in coordination with minimization the active and reactive power at critical loads to maintain the system at security state to ensure service continuity. The feasibility and efficiency of the proposed strategy is applied to IEEE 30-Bus test system. Results are promising and prove the practical efficiency of the proposed strategy to ensure system security under critical situations

  16. Gems of combinatorial optimization and graph algorithms

    CERN Document Server

    Skutella, Martin; Stiller, Sebastian; Wagner, Dorothea

    2015-01-01

    Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory?  Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar?  Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science?   Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas.  Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks.   This ...

  17. Optimization in engineering models and algorithms

    CERN Document Server

    Sioshansi, Ramteen

    2017-01-01

    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  18. The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm

    International Nuclear Information System (INIS)

    Zhu, G J; Guo, P C; Luo, X Q; Feng, J J

    2012-01-01

    The present paper describes a hydrodynamic optimization technique for horizontal-axial marine current turbine. The pitch angle distribution is important to marine current turbine. In this paper, the pitch angle distribution curve is parameterized as four control points by Bezier curve method. The coordinates of the four control points are chosen as optimization variables, and the sample space are structured according to the Box-Behnken experimental design method (BBD). Then the power capture coefficient and axial thrust coefficient in design tip-speed ratio is obtained for all the elements in the sample space by CFD numerical simulation. The power capture coefficient and axial thrust are chosen as objective function, and quadratic polynomial regression equations are constructed to fit the relationship between the optimization variables and each objective function according to response surface model. With the obtained quadratic polynomial regression equations as performance prediction model, the marine current turbine is optimized using the NSGA-II multi-objective genetic algorithm, which finally offers an improved marine current turbine.

  19. Study on high-speed cutting parameters optimization of AlMn1Cu based on neural network and genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhenhua Wang

    2016-04-01

    Full Text Available In this article, the cutting parameters optimization method for aluminum alloy AlMn1Cu in high-speed milling was studied in order to properly select the high-speed cutting parameters. First, a back propagation neural network model for predicting surface roughness of AlMn1Cu was proposed. The prediction model can improve the prediction accuracy and well work out the higher-order nonlinear relationship between surface roughness and cutting parameters. Second, considering the constraints of technical requirements on surface roughness, a mathematical model for optimizing cutting parameters based on the Bayesian neural network prediction model of surface roughness was established so as to obtain the maximum machining efficiency. The genetic algorithm adopting the homogeneous design to initialize population as well as steady-state reproduction without duplicates was also presented. The application indicates that the algorithm can effectively avoid precocity, strengthen global optimization, and increase the calculation efficiency. Finally, a case was presented on the application of the proposed cutting parameters optimization algorithm to optimize the cutting parameters.

  20. Bio Inspired Algorithms in Single and Multiobjective Reliability Optimization

    DEFF Research Database (Denmark)

    Madsen, Henrik; Albeanu, Grigore; Burtschy, Bernard

    2014-01-01

    Non-traditional search and optimization methods based on natural phenomena have been proposed recently in order to avoid local or unstable behavior when run towards an optimum state. This paper describes the principles of bio inspired algorithms and reports on Migration Algorithms and Bees...

  1. A generic optimization algorithm for the allocation of DP actuators

    NARCIS (Netherlands)

    van Daalen, E.F.G.; Cozijn, J.L.; Loussouarn, C.; Hemker, P.W.

    2011-01-01

    In this paper we present a generic optimization algorithm for the allocation of dynamic positioning actuators, such as azimuthing thrusters and fixed thrusters. The algorithm is based on the well-known Lagrange multipliers method. In the present approach the Lagrangian functional represents not only

  2. Tabu search algorithms for water network optimization

    OpenAIRE

    Cunha, Maria da Conceição; Ribeiro, Luísa

    2004-01-01

    In this paper we propose a tabu search algorithm to find the least-cost design of looped water distribution networks. The mathematical nature of this optimization problem, a nonlinear mixed integer problem, is at the origin of a multitude of contributions to the literature in the last 25 years. In fact, exact optimization methods have not been found for this type of problem, and, in the past, classical optimization methods, like linear and nonlinear programming, were tried at the cost of dras...

  3. Opposition-Based Adaptive Fireworks Algorithm

    OpenAIRE

    Chibing Gong

    2016-01-01

    A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...

  4. New algorithms for binary wavefront optimization

    Science.gov (United States)

    Zhang, Xiaolong; Kner, Peter

    2015-03-01

    Binary amplitude modulation promises to allow rapid focusing through strongly scattering media with a large number of segments due to the faster update rates of digital micromirror devices (DMDs) compared to spatial light modulators (SLMs). While binary amplitude modulation has a lower theoretical enhancement than phase modulation, the faster update rate should more than compensate for the difference - a factor of π2 /2. Here we present two new algorithms, a genetic algorithm and a transmission matrix algorithm, for optimizing the focus with binary amplitude modulation that achieve enhancements close to the theoretical maximum. Genetic algorithms have been shown to work well in noisy environments and we show that the genetic algorithm performs better than a stepwise algorithm. Transmission matrix algorithms allow complete characterization and control of the medium but require phase control either at the input or output. Here we introduce a transmission matrix algorithm that works with only binary amplitude control and intensity measurements. We apply these algorithms to binary amplitude modulation using a Texas Instruments Digital Micromirror Device. Here we report an enhancement of 152 with 1536 segments (9.90%×N) using a genetic algorithm with binary amplitude modulation and an enhancement of 136 with 1536 segments (8.9%×N) using an intensity-only transmission matrix algorithm.

  5. Ant colony search algorithm for optimal reactive power optimization

    Directory of Open Access Journals (Sweden)

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  6. Time Optimized Algorithm for Web Document Presentation Adaptation

    DEFF Research Database (Denmark)

    Pan, Rong; Dolog, Peter

    2010-01-01

    Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...... content-optimized and time-optimized algorithms for information presentation adaptation for different devices based on its hierarchical model. The model is formalized in order to experiment with different algorithms....

  7. A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Zhijun Luo

    2014-01-01

    Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.

  8. BRAIN Journal - Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    OpenAIRE

    Ahmet Demir; Utku Kose

    2016-01-01

    ABSTRACT In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Sc...

  9. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    OpenAIRE

    Ahmet Demir; Utku kose

    2017-01-01

    In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an...

  10. Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-03-01

    Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .

  11. Genetic algorithm-based optimization of testing and maintenance under uncertain unavailability and cost estimation: A survey of strategies for harmonizing evolution and accuracy

    International Nuclear Information System (INIS)

    Villanueva, J.F.; Sanchez, A.I.; Carlos, S.; Martorell, S.

    2008-01-01

    This paper presents the results of a survey to show the applicability of an approach based on a combination of distribution-free tolerance interval and genetic algorithms for testing and maintenance optimization of safety-related systems based on unavailability and cost estimation acting as uncertain decision criteria. Several strategies have been checked using a combination of Monte Carlo (simulation)--genetic algorithm (search-evolution). Tolerance intervals for the unavailability and cost estimation are obtained to be used by the genetic algorithms. Both single- and multiple-objective genetic algorithms are used. In general, it is shown that the approach is a robust, fast and powerful tool that performs very favorably in the face of noise in the output (i.e. uncertainty) and it is able to find the optimum over a complicated, high-dimensional nonlinear space in a tiny fraction of the time required for enumeration of the decision space. This approach reduces the computational effort by means of providing appropriate balance between accuracy of simulation and evolution; however, negative effects are also shown when a not well-balanced accuracy-evolution couple is used, which can be avoided or mitigated with the use of a single-objective genetic algorithm or the use of a multiple-objective genetic algorithm with additional statistical information

  12. Firefly Mating Algorithm for Continuous Optimization Problems

    Directory of Open Access Journals (Sweden)

    Amarita Ritthipakdee

    2017-01-01

    Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

  13. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns.

    Science.gov (United States)

    Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio

    2013-09-01

    Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.

  14. A Hybrid Model Based on Ensemble Empirical Mode Decomposition and Fruit Fly Optimization Algorithm for Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Zongxi Qu

    2016-01-01

    Full Text Available As a type of clean and renewable energy, the superiority of wind power has increasingly captured the world’s attention. Reliable and precise wind speed prediction is vital for wind power generation systems. Thus, a more effective and precise prediction model is essentially needed in the field of wind speed forecasting. Most previous forecasting models could adapt to various wind speed series data; however, these models ignored the importance of the data preprocessing and model parameter optimization. In view of its importance, a novel hybrid ensemble learning paradigm is proposed. In this model, the original wind speed data is firstly divided into a finite set of signal components by ensemble empirical mode decomposition, and then each signal is predicted by several artificial intelligence models with optimized parameters by using the fruit fly optimization algorithm and the final prediction values were obtained by reconstructing the refined series. To estimate the forecasting ability of the proposed model, 15 min wind speed data for wind farms in the coastal areas of China was performed to forecast as a case study. The empirical results show that the proposed hybrid model is superior to some existing traditional forecasting models regarding forecast performance.

  15. Thèse d'habilitation à diriger des recherches "Analysis of Comparison-based Stochastic Continuous Black-Box Optimization Algorithms"

    OpenAIRE

    Auger, Anne

    2016-01-01

    This manuscript presents a large part of my research since the end of my PhD. Most of mywork is related to numerical (also referred to as continuous) optimization, at the exception of onecontribution done during my postdoc in Zurich introducing a new stochastic algorithm to simulatechemical or biochemical systems [23].The optimization algorithms at the core of my work are adaptive derivative-free stochastic (orrandomized) optimization methods. The algorithms are tailored to tackle dificult nu...

  16. Evaluation of a Particle Swarm Algorithm For Biomechanical Optimization

    Science.gov (United States)

    Schutte, Jaco F.; Koh, Byung; Reinbolt, Jeffrey A.; Haftka, Raphael T.; George, Alan D.; Fregly, Benjamin J.

    2006-01-01

    Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can be affected by scaling to account for design variables with different length scales or units. In this study we evaluate a recently-developed version of the particle swarm optimization (PSO) algorithm to address these problems. The algorithm’s global search capabilities were investigated using a suite of difficult analytical test problems, while its scale-independent nature was proven mathematically and verified using a biomechanical test problem. For comparison, all test problems were also solved with three off-the-shelf optimization algorithms—a global genetic algorithm (GA) and multistart gradient-based sequential quadratic programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the PSO algorithm was successful on the majority of the problems. When compared to previously published results for the same problems, PSO was more robust than a global simulated annealing algorithm but less robust than a different, more complex genetic algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being highly sensitive. The proposed PSO algorithm provides a new off-the-shelf global optimization option for difficult biomechanical problems, especially those utilizing design variables with different length scales or units. PMID:16060353

  17. Algorithm of axial fuel optimization based in progressive steps of turned search; Algoritmo de optimizacion axial de combustible basado en etapas progresivas de busqueda de entorno

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, C.; Francois, J.L. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, FI-UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)

    2003-07-01

    The development of an algorithm for the axial optimization of fuel of boiling water reactors (BWR) is presented. The algorithm is based in a serial optimizations process in the one that the best solution in each stage is the starting point of the following stage. The objective function of each stage adapts to orient the search toward better values of one or two parameters leaving the rest like restrictions. Conform to it advances in those optimization stages, it is increased the fineness of the evaluation of the investigated designs. The algorithm is based on three stages, in the first one are used Genetic algorithms and in the two following Tabu Search. The objective function of the first stage it looks for to minimize the average enrichment of the one it assembles and to fulfill with the generation of specified energy for the operation cycle besides not violating none of the limits of the design base. In the following stages the objective function looks for to minimize the power factor peak (PPF) and to maximize the margin of shutdown (SDM), having as restrictions the one average enrichment obtained for the best design in the first stage and those other restrictions. The third stage, very similar to the previous one, it begins with the design of the previous stage but it carries out a search of the margin of shutdown to different exhibition steps with calculations in three dimensions (3D). An application to the case of the design of the fresh assemble for the fourth fuel reload of the Unit 1 reactor of the Laguna Verde power plant (U1-CLV) is presented. The obtained results show an advance in the handling of optimization methods and in the construction of the objective functions that should be used for the different design stages of the fuel assemblies. (Author)

  18. Optimized Bayesian dynamic advising theory and algorithms

    CERN Document Server

    Karny, Miroslav

    2006-01-01

    Written by one of the world's leading groups in the area of Bayesian identification, control, and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising. Starting from abstract ideas and formulations, and culminating in detailed algorithms, the book comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modelling by dynamic mixture models

  19. Image reconstruction for an electrical capacitance tomography system based on a least-squares support vector machine and a self-adaptive particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Chen, Xia; Hu, Hong-li; Liu, Fei; Gao, Xiang Xiang

    2011-01-01

    The task of image reconstruction for an electrical capacitance tomography (ECT) system is to determine the permittivity distribution and hence the phase distribution in a pipeline by measuring the electrical capacitances between sets of electrodes placed around its periphery. In view of the nonlinear relationship between the permittivity distribution and capacitances and the limited number of independent capacitance measurements, image reconstruction for ECT is a nonlinear and ill-posed inverse problem. To solve this problem, a new image reconstruction method for ECT based on a least-squares support vector machine (LS-SVM) combined with a self-adaptive particle swarm optimization (PSO) algorithm is presented. Regarded as a special small sample theory, the SVM avoids the issues appearing in artificial neural network methods such as difficult determination of a network structure, over-learning and under-learning. However, the SVM performs differently with different parameters. As a relatively new population-based evolutionary optimization technique, PSO is adopted to realize parameters' effective selection with the advantages of global optimization and rapid convergence. This paper builds up a 12-electrode ECT system and a pneumatic conveying platform to verify this image reconstruction algorithm. Experimental results indicate that the algorithm has good generalization ability and high-image reconstruction quality

  20. Optimizing graph algorithms on pregel-like systems

    KAUST Repository

    Salihoglu, Semih

    2014-03-01

    We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high communication or computation cost, typically due to structural properties of the input graphs such as large diameters or skew in component sizes. We describe several optimization techniques to address these inefficiencies. Our most general technique is based on the idea of performing some serial computation on a tiny fraction of the input graph, complementing Pregel\\'s vertex-centric parallelism. We base our study on thorough implementations of several fundamental graph algorithms, some of which have, to the best of our knowledge, not been implemented on Pregel-like systems before. The algorithms and optimizations we describe are fully implemented in our open-source Pregel implementation. We present detailed experiments showing that our optimization techniques improve runtime significantly on a variety of very large graph datasets.

  1. Rethinking exchange market models as optimization algorithms

    Science.gov (United States)

    Luquini, Evandro; Omar, Nizam

    2018-02-01

    The exchange market model has mainly been used to study the inequality problem. Although the human society inequality problem is very important, the exchange market models dynamics until stationary state and its capability of ranking individuals is interesting in itself. This study considers the hypothesis that the exchange market model could be understood as an optimization procedure. We present herein the implications for algorithmic optimization and also the possibility of a new family of exchange market models

  2. Optimization-based control of constrained nonlinear systems with continuous-time models: Adaptive time-grid refinement algorithms

    Science.gov (United States)

    Fontes, Fernando A. C. C.; Paiva, Luís T.

    2016-10-01

    We address optimal control problems for nonlinear systems with pathwise state-constraints. These are challenging non-linear problems for which the number of discretization points is a major factor determining the computational time. Also, the location of these points has a major impact in the accuracy of the solutions. We propose an algorithm that iteratively finds an adequate time-grid to satisfy some predefined error estimate on the obtained trajectories, which is guided by information on the adjoint multipliers. The obtained results show a highly favorable comparison against the traditional equidistant-spaced time-grid methods, including the ones using discrete-time models. This way, continuous-time plant models can be directly used. The discretization procedure can be automated and there is no need to select a priori the adequate time step. Even if the optimization procedure is forced to stop in an early stage, as might be the case in real-time problems, we can still obtain a meaningful solution, although it might be a less accurate one. The extension of the procedure to a Model Predictive Control (MPC) context is proposed here. By defining a time-dependent accuracy threshold, we can generate solutions that are more accurate in the initial parts of the receding horizon, which are the most relevant for MPC.

  3. Academic Training: Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms - Lecture series

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...

  4. The General Regression Neural Network Based on the Fruit Fly Optimization Algorithm and the Data Inconsistency Rate for Transmission Line Icing Prediction

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2017-12-01

    Full Text Available Accurate and stable prediction of icing thickness on transmission lines is of great significance for ensuring the safe operation of the power grid. In order to improve the accuracy and stability of icing prediction, an innovative prediction model based on the generalized regression neural network (GRNN and the fruit fly optimization algorithm (FOA is proposed. Firstly, a feature selection method based on the data inconsistency rate (IR is adopted to select the optimal feature, which aims to reduce redundant input vectors. Then, the fruit FOA is utilized for optimization of smoothing factor for the GRNN. Lastly, the icing forecasting method FOA-IR-GRNN is established. Two cases in different locations and different months are selected to validate the proposed model. The results indicate that the new hybrid FOA-IR-GRNN model presents better accuracy, robustness, and generality in icing forecasting.

  5. Algorithm 896: LSA: Algorithms for Large-Scale Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Projects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse problems * partially separable problems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior -point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009

  6. Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis

    Science.gov (United States)

    Salvador, Raymond; Radua, Joaquim; Canales-Rodríguez, Erick J.; Solanes, Aleix; Sarró, Salvador; Goikolea, José M.; Valiente, Alicia; Monté, Gemma C.; Natividad, María del Carmen; Guerrero-Pedraza, Amalia; Moro, Noemí; Fernández-Corcuera, Paloma; Amann, Benedikt L.; Maristany, Teresa; Vieta, Eduard; McKenna, Peter J.; Pomarol-Clotet, Edith

    2017-01-01

    A relatively large number of studies have investigated the power of structural magnetic resonance imaging (sMRI) data to discriminate patients with schizophrenia from healthy controls. However, very few of them have also included patients with bipolar disorder, allowing the clinically relevant discrimination between both psychotic diagnostics. To assess the efficacy of sMRI data for diagnostic prediction in psychosis we objectively evaluated the discriminative power of a wide range of commonly used machine learning algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier, regularized discriminant analysis, random forests and a Gaussian process classifier) on main sMRI features including grey and white matter voxel-based morphometry (VBM), vertex-based cortical thickness and volume, region of interest volumetric measures and wavelet-based morphometry (WBM) maps. All possible combinations of algorithms and data features were considered in pairwise classifications of matched samples of healthy controls (N = 127), patients with schizophrenia (N = 128) and patients with bipolar disorder (N = 128). Results show that the selection of feature type is important, with grey matter VBM (without data reduction) delivering the best diagnostic prediction rates (averaging over classifiers: schizophrenia vs. healthy 75%, bipolar disorder vs. healthy 63% and schizophrenia vs. bipolar disorder 62%) whereas algorithms usually yielded very similar results. Indeed, those grey matter VBM accuracy rates were not even improved by combining all feature types in a single prediction model. Further multi-class classifications considering the three groups simultaneously made evident a lack of predictive power for the bipolar group, probably due to its intermediate anatomical features, located between those observed in healthy controls and those found in patients with schizophrenia. Finally, we provide MRIPredict (https

  7. Optimization Of Feature Weight TheVoting Feature Intervals 5 Algorithm Using Partical Swarm Optimization Algorithm

    Science.gov (United States)

    Hayana Hasibuan, Eka; Mawengkang, Herman; Efendi, Syahril

    2017-12-01

    The use of Partical Swarm Optimization Algorithm in this research is to optimize the feature weights on the Voting Feature Interval 5 algorithm so that we can find the model of using PSO algorithm with VFI 5. Optimization of feature weight on Diabetes or Dyspesia data is considered important because it is very closely related to the livelihood of many people, so if there is any inaccuracy in determining the most dominant feature weight in the data will cause death. Increased accuracy by using PSO Algorithm ie fold 1 from 92.31% to 96.15% increase accuracy of 3.8%, accuracy of fold 2 on Algorithm VFI5 of 92.52% as well as generated on PSO Algorithm means accuracy fixed, then in fold 3 increase accuracy of 85.19% Increased to 96.29% Accuracy increased by 11%. The total accuracy of all three trials increased by 14%. In general the Partical Swarm Optimization algorithm has succeeded in increasing the accuracy to several fold, therefore it can be concluded the PSO algorithm is well used in optimizing the VFI5 Classification Algorithm.

  8. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    Science.gov (United States)

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  9. Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms.

    Science.gov (United States)

    Martinek, Radek; Kahankova, Radana; Nazeran, Homer; Konecny, Jaromir; Jezewski, Janusz; Janku, Petr; Bilik, Petr; Zidek, Jan; Nedoma, Jan; Fajkus, Marcel

    2017-05-19

    This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order N ) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.

  10. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    International Nuclear Information System (INIS)

    Sathiya, P.; Ajith, P. M.; Soundararajan, R.

    2013-01-01

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  11. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sathiya, P. [National Institute of Technology Tiruchirappalli (India); Ajith, P. M. [Department of Mechanical Engineering Rajiv Gandhi Institute of Technology, Kottayam (India); Soundararajan, R. [Sri Krishna College of Engineering and Technology, Coimbatore (India)

    2013-08-15

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  12. An efficient algorithm to identify the optimal one-bit perturbation based on the basin-of-state size of Boolean networks.

    Science.gov (United States)

    Hu, Mingxiao; Shen, Liangzhong; Zan, Xiangzhen; Shang, Xuequn; Liu, Wenbin

    2016-05-19

    Boolean networks are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behavior of systems. In this paper, we investigate the less-studied one-bit perturbation, which falls under the category of structural intervention. Previous works focused on finding the optimal one-bit perturbation to maximally alter the steady-state distribution (SSD) of undesirable states through matrix perturbation theory. However, the application of the SSD is limited to Boolean networks with about ten genes. In 2007, Xiao et al. proposed to search the optimal one-bit perturbation by altering the sizes of the basin of attractions (BOAs). However, their algorithm requires close observation of the state-transition diagram. In this paper, we propose an algorithm that efficiently determines the BOA size after a perturbation. Our idea is that, if we construct the basin of states for all states, then the size of the BOA of perturbed networks can be obtained just by updating the paths of the states whose transitions have been affected. Results from both synthetic and real biological networks show that the proposed algorithm performs better than the exhaustive SSD-based algorithm and can be applied to networks with about 25 genes.

  13. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment

    Science.gov (United States)

    Wang, Hang; Zhu, Yan; Li, Wenlong; Cao, Weixing; Tian, Yongchao

    2014-01-01

    A regional rice (Oryza sativa) grain yield prediction technique was proposed by integration of ground-based and spaceborne remote sensing (RS) data with the rice growth model (RiceGrow) through a new particle swarm optimization (PSO) algorithm. Based on an initialization/parameterization strategy (calibration), two agronomic indicators, leaf area index (LAI) and leaf nitrogen accumulation (LNA) remotely sensed by field spectra and satellite images, were combined to serve as an external assimilation parameter and integrated with the RiceGrow model for inversion of three model management parameters, including sowing date, sowing rate, and nitrogen rate. Rice grain yield was then predicted by inputting these optimized parameters into the reinitialized model. PSO was used for the parameterization and regionalization of the integrated model and compared with the shuffled complex evolution-University of Arizona (SCE-UA) optimization algorithm. The test results showed that LAI together with LNA as the integrated parameter performed better than each alone for crop model parameter initialization. PSO also performed better than SCE-UA in terms of running efficiency and assimilation results, indicating that PSO is a reliable optimization method for assimilating RS information and the crop growth model. The integrated model also had improved precision for predicting rice grain yield.

  14. Population resizing on fitness improvement genetic algorithm to optimize promotion visit route based on android and google maps API

    Science.gov (United States)

    Listyorini, Tri; Muzid, Syafiul

    2017-06-01

    The promotion team of Muria Kudus University (UMK) has done annual promotion visit to several senior high schools in Indonesia. The visits were done to numbers of schools in Kudus, Jepara, Demak, Rembang and Purwodadi. To simplify the visit, each visit round is limited to 15 (fifteen) schools. However, the team frequently faces some obstacles during the visit, particularly in determining the route that they should take toward the targeted school. It is due to the long distance or the difficult route to reach the targeted school that leads to elongated travel duration and inefficient fuel cost. To solve these problems, the development of a certain application using heuristic genetic algorithm method based on the dynamic of population size or Population Resizing on Fitness lmprovement Genetic Algorithm (PRoFIGA), was done. This android-based application was developed to make the visit easier and to determine a shorter route for the team, hence, the visiting period will be effective and efficient. The result of this research was an android-based application to determine the shortest route by combining heuristic method and Google Maps Application Programming lnterface (API) that display the route options for the team.

  15. An optimized BP neural network based on genetic algorithm for static decoupling of a six-axis force/torque sensor

    Science.gov (United States)

    Fu, Liyue; Song, Aiguo

    2018-02-01

    In order to improve the measurement precision of 6-axis force/torque sensor for robot, BP decoupling algorithm optimized by GA (GA-BP algorithm) is proposed in this paper. The weights and thresholds of a BP neural network with 6-10-6 topology are optimized by GA to develop decouple a six-axis force/torque sensor. By comparison with other traditional decoupling algorithm, calculating the pseudo-inverse matrix of calibration and classical BP algorithm, the decoupling results validate the good decoupling performance of GA-BP algorithm and the coupling errors are reduced.

  16. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    Science.gov (United States)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  17. Academic Training: Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms - Lecture serie

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...

  18. Method of transient identification based on a possibilistic approach, optimized by genetic algorithm; Metodo de identificacao de transientes com abordagem possibilistica, otimizado por algoritmo genetico

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jose Carlos Soares de

    2001-02-01

    This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)

  19. Submillisievert Computed Tomography of the Chest Using Model-Based Iterative Algorithm: Optimization of Tube Voltage With Regard to Patient Size.

    Science.gov (United States)

    Deák, Zsuzsanna; Maertz, Friedrich; Meurer, Felix; Notohamiprodjo, Susan; Mueck, Fabian; Geyer, Lucas L; Reiser, Maximilian F; Wirth, Stefan

    The aim of this study was to define optimal tube potential for soft tissue and vessel visualization in dose-reduced chest CT protocols using model-based iterative algorithm in average and overweight patients. Thirty-six patients receiving chest CT according to 3 protocols (120 kVp/noise index [NI], 60; 100 kVp/NI, 65; 80 kVp/NI, 70) were included in this prospective study, approved by the ethics committee. Patients' physical parameters and dose descriptors were recorded. Images were reconstructed with model-based algorithm. Two radiologists evaluated image quality and lesion conspicuity; the protocols were intraindividually compared with preceding control CT reconstructed with statistical algorithm (120 kVp/NI, 20). Mean and standard deviation of attenuation of the muscle and fat tissues and signal-to-noise ratio of the aorta were measured. Diagnostic images (lesion conspicuity, 95%-100%) were acquired in average and overweight patients at 1.34, 1.02, and 1.08 mGy and at 3.41, 3.20, and 2.88 mGy at 120, 100, and 80 kVp, respectively. Data are given as CT dose index volume values. Model-based algorithm allows for submillisievert chest CT in average patients; the use of 100 kVp is recommended.

  20. Shape optimization for the subsidence resistance of an interbody device using simulation-based genetic algorithms and experimental validation.

    Science.gov (United States)

    Hsu, Ching-Chi

    2013-07-01

    Subsidence of interbody devices into the vertebral body might result in serious clinical problems, especially when the devices are not well designed and analyzed. Recently, some novel designs were proposed to reduce the risk of subsidence, but those designs are based on the researcher's experience. The purpose of this study was to discover the interbody device design with excellent subsidence resistance by changing the device's shape. The three-dimensional nonlinear finite element models, which consisted of the interbody device and vertebral body, were created first. Then, the simulation-based genetic algorithm, which combined the finite element model and the searching algorithm, was developed by using ANSYS® Parametric Design Language. Finally, the numerical results were carefully validated with the use of biomechanical tests. The optimum shape design obtained in this study looks like a flower with many petals and it has excellent subsidence resistance when compared with the other designs provided by the past studies. The results of the present study could help surgeons to understand the subsidence resistance of interbody devices in terms of their shapes and has directly provided the design rationales to engineers. Copyright © 2013 Orthopaedic Research Society.

  1. Applying a multi-criteria genetic algorithm framework for brownfield reuse optimization: improving redevelopment options based on stakeholder preferences.

    Science.gov (United States)

    Morio, Maximilian; Schädler, Sebastian; Finkel, Michael

    2013-11-30

    The reuse of underused or abandoned contaminated land, so-called brownfields, is increasingly seen as an important means for reducing the consumption of land and natural resources. Many existing decision support systems are not appropriate because they focus mainly on economic aspects, while neglecting sustainability issues. To fill this gap, we present a framework for spatially explicit, integrated planning and assessment of brownfield redevelopment options. A multi-criteria genetic algorithm allows us to determine optimal land use configurations with respect to assessment criteria and given constraints on the composition of land use classes, according to, e.g., stakeholder preferences. Assessment criteria include sustainability indicators as well as economic aspects, including remediation costs and land value. The framework is applied to a case study of a former military site near Potsdam, Germany. Emphasis is placed on the trade-off between possibly conflicting objectives (e.g., economic goals versus the need for sustainable development in the regional context of the brownfield site), which may represent different perspectives of involved stakeholders. The economic analysis reveals the trade-off between the increase in land value due to reuse and the costs for remediation required to make reuse possible. We identify various reuse options, which perform similarly well although they exhibit different land use patterns. High-cost high-value options dominated by residential land use and low-cost low-value options with less sensitive land use types may perform equally well economically. The results of the integrated analysis show that the quantitative integration of sustainability may change optimal land use patterns considerably. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-04-01

    Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases.  The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.

  3. A superlinear interior points algorithm for engineering design optimization

    Science.gov (United States)

    Herskovits, J.; Asquier, J.

    1990-01-01

    We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.

  4. Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting

    Directory of Open Access Journals (Sweden)

    Xuejiao Ma

    2016-08-01

    Full Text Available Big data mining, analysis, and forecasting play vital roles in modern economic and industrial fields, especially in the energy system. Inaccurate forecasting may cause wastes of scarce energy or electricity shortages. However, forecasting in the energy system has proven to be a challenging task due to various unstable factors, such as high fluctuations, autocorrelation and stochastic volatility. To forecast time series data by using hybrid models is a feasible alternative of conventional single forecasting modelling approaches. This paper develops a group of hybrid models to solve the problems above by eliminating the noise in the original data sequence and optimizing the parameters in a back propagation neural network. One of contributions of this paper is to integrate the existing algorithms and models, which jointly show advances over the present state of the art. The results of comparative studies demonstrate that the hybrid models proposed not only satisfactorily approximate the actual value but also can be an effective tool in the planning and dispatching of smart grids.

  5. Optimization of Algorithms Using Extensions of Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.

    2017-04-09

    We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems. The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms. The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth

  6. Biokinetic model-based multi-objective optimization of Dunaliella tertiolecta cultivation using elitist non-dominated sorting genetic algorithm with inheritance.

    Science.gov (United States)

    Sinha, Snehal K; Kumar, Mithilesh; Guria, Chandan; Kumar, Anup; Banerjee, Chiranjib

    2017-10-01

    Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO 3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO 3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Novel Power Flow Problem Solutions Method’s Based on Genetic Algorithm Optimization for Banks Capacitor Compensation Using an Fuzzy Logic Rule Bases for Critical Nodal Detections

    Directory of Open Access Journals (Sweden)

    Nasri Abdelfatah

    2011-01-01

    Full Text Available The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s  cause’s active power transmission reduction, power losses decreasing, and  the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC algorithm for critical nodal detection and gentic algorithm  optimization (GAO algorithm for optimal seizing capacitor.GAO method is more efficient in combinatory problem solutions. The proposed approach has been examined and tested on the standard IEEE 57-bus the resulats show the power loss minimization denhancement, voltage profile, and stability improvement. The proposed approach results have been compared to those that reported in the literature recently. The results are promising and show the effectiveness and robustness of the proposed approach.

  8. Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Marcin Połomski

    2013-03-01

    Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.

  9. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    Directory of Open Access Journals (Sweden)

    Xiang-ming Gao

    2017-01-01

    Full Text Available Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD and support vector machine (SVM optimized with an artificial bee colony (ABC algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  10. A solution quality assessment method for swarm intelligence optimization algorithms.

    Science.gov (United States)

    Zhang, Zhaojun; Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua

    2014-01-01

    Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.

  11. A Solution Quality Assessment Method for Swarm Intelligence Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Zhaojun Zhang

    2014-01-01

    Full Text Available Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of “value performance,” the “ordinal performance” is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and “good enough” set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO, particle swarm optimization (PSO, and artificial fish swarm algorithm (AFS were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.

  12. Financial security evaluation of the electric power industry in China based on a back propagation neural network optimized by genetic algorithm

    International Nuclear Information System (INIS)

    Sun, Wei; Xu, Yanfeng

    2016-01-01

    Recently security issues like investment and financing in China's power industry have become increasingly prominent, bringing serious challenges to the financial security of the domestic power industry. Thus, it deserves to develop financial safety evaluation towards the Chinese power industry and is of practical significance. In this paper, the GA (genetic algorithm) is used to optimize the connection weights and thresholds of the traditional BPNN (back propagation neural network) so the new model of BPNN based on GA is established, hereinafter referred to as GA-BPNN (back propagation neural network based on genetic algorithm). Then, an empirical example of the electric power industry in China during the period 2003–2010 was selected to verify the proposed algorithm. By comparison with three other algorithms, the results indicate the model can be applied to evaluate the financial security of China's power industry effectively. Then index values of the financial security of China's power industry in 2011 were obtained according to the tested prediction model and the comprehensive safety scores and grades are calculated by the weighted algorithm. Finally, we analyzed the reasons and throw out suggestions based on the results. The work of this paper will provide a reference for the financial security evaluation of the energy industry in the future. - Highlights: • GA-BPNN model is applied to assess the financial security of China's power industry. • 12 indexes of 3 major categories are selected to build the evaluation index system. • The GA-BPNN is superior to the models of GM (1,1), BPNN and LSSVM on the whole. • Predicted financial safety status of China's power industry in 2011 is basic safe. • Reasons and suggestions are proposed based on the forecast results.

  13. Novel power flow problem solutions method’s based on genetic algorithm optimization for banks capacitor compensation using an fuzzy logic rule bases for critical nodal detections

    OpenAIRE

    Abdelfatah, Nasri; Brahim, Gasbaoui

    2011-01-01

    The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s  cause’s active power transmission reduction, power losses decreasing, and  the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF) combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC) algorithm for critical nodal de...

  14. Heuristic algorithms for joint optimization of unicast and anycast traffic in elastic optical network–based large–scale computing systems

    Directory of Open Access Journals (Sweden)

    Markowski Marcin

    2017-09-01

    Full Text Available In recent years elastic optical networks have been perceived as a prospective choice for future optical networks due to better adjustment and utilization of optical resources than is the case with traditional wavelength division multiplexing networks. In the paper we investigate the elastic architecture as the communication network for distributed data centers. We address the problems of optimization of routing and spectrum assignment for large-scale computing systems based on an elastic optical architecture; particularly, we concentrate on anycast user to data center traffic optimization. We assume that computational resources of data centers are limited. For this offline problems we formulate the integer linear programming model and propose a few heuristics, including a meta-heuristic algorithm based on a tabu search method. We report computational results, presenting the quality of approximate solutions and efficiency of the proposed heuristics, and we also analyze and compare some data center allocation scenarios.

  15. Design of an optimization algorithm for clinical use

    International Nuclear Information System (INIS)

    Gustafsson, Anders

    1995-01-01

    Radiation therapy optimization has received much attention in the past few years. In combination with biological objective functions, the different optimization schemes has shown a potential to considerably increase the treatment outcome. With improved radiobiological models and increased computer capacity, radiation therapy optimization has now reached a stage where implementation in a clinical treatment planning system is realistic. A radiation therapy optimization method has been investigated with respect to its feasibility as a tool in a clinical 3D treatment planning system. The optimization algorithm is a constrained iterative gradient method. Photon dose calculation is performed using the clinically validated pencil-beam based algorithm of the clinical treatment planning system. Dose calculation within the optimization scheme is very time consuming and measures are required to decrease the calculation time. Different methods for more effective dose calculation within the optimization scheme have been investigated. The optimization results for adaptive sampling of calculation points, and secondary effect approximations in the dose calculation algorithm are compared with the optimization result for accurate dose calculation in all voxels of interest

  16. Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

    OpenAIRE

    T. Vigneswari; M. A. Maluk Mohamed

    2015-01-01

    Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...

  17. Configurable intelligent optimization algorithm design and practice in manufacturing

    CERN Document Server

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallel