WorldWideScience

Sample records for alginates

  1. Alginate oligosaccharides

    DEFF Research Database (Denmark)

    Falkeborg, Mia; Cheong, Ling-Zhi; Gianfico, Carlo

    2014-01-01

    Alginate oligosaccharides (AOs) prepared from alginate, by alginate lyase-mediated depolymerization, were structurally characterized by mass spectrometry, infrared spectrometry and thin layer chromatography. Studies of their antioxidant activities revealed that AOs were able to completely (100...... the presence of the conjugated alkene acid structure formed during enzymatic depolymerization. According to the resonance hybrid theory, the parent radicals of AOs are delocalized through allylic rearrangement, and as a consequence, the reactive intermediates are stabilized. AOs were weak ferrous ion chelators....... This work demonstrated that AOs obtained from a facile enzymatic treatment of abundant alginate is an excellent natural antioxidant, which may find applications in the food industry....

  2. Preparation methods of alginate nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2014-01-01

    This article reviews available methods for the formation of alginate nano-aggregates, nanocapsules and nanospheres. Primarily, alginate nanoparticles are being prepared by two methods. In the “complexation method”, complex formation on the interface of an oil droplet is used to form alginate

  3. 21 CFR 184.1610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    .... 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate is prepared by the neutralization of purified alginic acid with appropriate pH...

  4. 21 CFR 184.1133 - Ammonium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium alginate. 184.1133 Section 184.1133 Food... Specific Substances Affirmed as GRAS § 184.1133 Ammonium alginate. (a) Ammonium alginate (CAS Reg. No. 9005... accordance with § 184.1(b)(2), the ingredient is used in food only within the following specific limitations...

  5. 21 CFR 184.1011 - Alginic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal, hydrophilic...

  6. Efficient functionalization of alginate biomaterials.

    Science.gov (United States)

    Dalheim, Marianne Ø; Vanacker, Julie; Najmi, Maryam A; Aachmann, Finn L; Strand, Berit L; Christensen, Bjørn E

    2016-02-01

    Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Nonlinear elasticity of alginate gels

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  8. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  9. Thermostable Alginate degrading enzymes and their methods of use

    NARCIS (Netherlands)

    Hreggvidsson, Gudmundur Oli; Jonsson, Oskar W.J.; Bjornsdottir, Bryndis; Fridjonsson, Hedinn O; Altenbuchner, Josef; Watzlawick, Hildegard; Dobruchowska, Justyna; Kamerling, Johannis

    2015-01-01

    The present invention relates to the identification, production and use of thermostable alginate lyase enzymes that can be used to partially degrade alginate to yield oligosaccharides or to give complete degradation of alginate to yield (unsaturated) mono-uronates.

  10. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C{sup -0.68}, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  11. Formulation of Sodium Alginate Nanospheres Containing ...

    African Journals Online (AJOL)

    Purpose: The aim of this work was to formulate sodium alginate nanospheres of amphotericin B by controlled gellification method and to evaluate the role of the nanospheres as a “passive carrier” in targeted antifungal therapy. Methods: Sodium alginate nanospheres of amphotericin B were prepared by controlled ...

  12. Technological Advance for Alginate Production in Mexico

    Directory of Open Access Journals (Sweden)

    Hernández-Carmona G.

    2012-04-01

    Full Text Available Alginates are polysaccharides extracted from brown seaweeds. They are used in food industry, pharmaceutical, textile, among other, because of their properties to give high viscous solution and gel forming. This review describes the optimized process at pilot plant level for alginate production. The process includes washing the algae with HCl at pH 4, extraction of the alginate in Na2CO3 solution at pH 10 and heating to 80oC, dilution of the paste and filtrate with a vacuum rotary filter. Alginate precipitation is carried out by adding CaCl2 filtration. The fibers obtained are treated with HCl to obtain alginic acid. The product is neutralized with Na2CO3 to obtain sodium alginate. The product is dried with hot air, milled, and screened at different mesh sizes. We described the different products obtained and their physical and chemical properties. Finally, costs and barriers found that limit the alginate production at commercial level in Mexico are discussed, including the lack of the industrial design, the international cost of the alginates, the policy to give the seaweeds beds concessions, and the role of the investors.

  13. Alginate-modifying enzymes: Biological roles and biotechnological uses

    Directory of Open Access Journals (Sweden)

    Helga eErtesvåg

    2015-05-01

    Full Text Available Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M and α-L-guluronic acid (G. The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g. gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG and an alginate acetylase (AlgX are integral parts of the protein complex necessary for alginate polymerisation and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. One enzyme with alginate deacetylase activity from Pseudomonas syringae has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and

  14. fibrin–chitosan–sodium alginate composite sheet

    Indian Academy of Sciences (India)

    sodium alginate composite (F–C–SA) in sheet form. F–C–SA composite was prepared and characterized for its physicochemical properties like water absorption capacity, surface morphology, FTIR spectra and mechanical properties.

  15. PLGA/alginate composite microspheres for hydrophilic protein delivery

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X.B.; Schreyer, David J.

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  16. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  17. Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium.

    Science.gov (United States)

    Kita, Akihisa; Miura, Toyokazu; Kawata, Satoshi; Yamaguchi, Takeshi; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nishio, Naomichi; Nakashimada, Yutaka

    2016-03-01

    Methane fermentation is one of the effective approaches for utilization of brown algae; however, this process is limited by the microbial capability to degrade alginate, a main polysaccharide found in these algae. Despite its potential, little is known about anaerobic microbial degradation of alginate. Here we constructed a bacterial consortium able to anaerobically degrade alginate. Taxonomic classification of 16S rRNA gene, based on high-throughput sequencing data, revealed that this consortium included two dominant strains, designated HUA-1 and HUA-2; these strains were related to Clostridiaceae bacterium SK082 (99%) and Dysgonomonas capnocytophagoides (95%), respectively. Alginate lyase activity and metagenomic analyses, based on high-throughput sequencing data, revealed that this bacterial consortium possessed putative genes related to a predicted alginate metabolic pathway. However, HUA-1 and 2 did not grow on agar medium with alginate by using roll-tube method, suggesting the existence of bacterial interactions like symbiosis for anaerobic alginate degradation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Enzymatic Hydrolysis of Alginate to Produce Oligosaccharides by a New Purified Endo-Type Alginate Lyase

    Directory of Open Access Journals (Sweden)

    Benwei Zhu

    2016-06-01

    Full Text Available Enzymatic hydrolysis of sodium alginate to produce alginate oligosaccharides has drawn increasing attention due to its advantages of containing a wild reaction condition, excellent gel properties and specific products easy for purification. However, the efficient commercial enzyme tools are rarely available. A new alginate lyase with high activity (24,038 U/mg has been purified from a newly isolated marine strain, Cellulophaga sp. NJ-1. The enzyme was most active at 50 °C and pH 8.0 and maintained stability at a broad pH range (6.0–10.0 and temperature below 40 °C. It had broad substrate specificity toward sodium alginate, heteropolymeric MG blocks (polyMG, homopolymeric M blocks (polyM and homopolymeric G blocks (polyG, and possessed higher affinity toward polyG (15.63 mM as well as polyMG (23.90 mM than polyM (53.61 mM and sodium alginate (27.21 mM. The TLC and MS spectroscopy analysis of degradation products suggested that it completely hydrolyzed sodium alginate into oligosaccharides of low degrees of polymerization (DPs. The excellent properties would make it a promising tool for full use of sodium alginate to produce oligosaccharides.

  19. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection

    OpenAIRE

    Aras Rafiee; Mohammad Hossein Alimohammadian; TaranehGazori; Farhad Riazi-rad; Seyed Mohammad Reza Fatemi; Amirabbas Parizadeh; Ismaeil Haririan; Mohammad Havaskary

    2014-01-01

    Objective: To to compare the chitosan/alginate, chitosan and alginate nanoparticles as plasmid vectors, to determine the morphological characteristics, size and physicochemical properties of nanoparticle-pEGFP complexes and to evaluate the potential of these nanoparticles in transfection of pEGFP plasmid in to a cultured the human embryonic kidney cell line (HEK 293 cells). Methods: Nanoparticles comprising chitosan, alginate and both chitosan-alginate polymers were formed t...

  20. Storage duration effect on deformation recovery of repacked alginates

    Directory of Open Access Journals (Sweden)

    Siti Sunarintyas

    2009-09-01

    Full Text Available Background: Manufacturers supply alginate impression materials as a powder that is packaged in bulk and in individual container. Some Indonesian dental suppliers often repackage the bulk alginate into individual plastic packages which are not tied tightly and stored in the display room without air conditioner. It is known that critical factors to the shelf life of alginate includer avoidance of moisture contamination which may lead to premature setting of the alginate and avoidance of high temperature which may cause depolymerization of the alginate. Purpose: The aim of this study was to determine storage duration effect of repacked alginates on deformation recovery. Methods: Two brands of alginates (Tulip®TU, and Aroma Fine DF III®AF were repacked into 120 plastic containers. The samples were stored in room condition (temperature 29° C ± 1° C, relative humidity 60% ± 10% for 1, 2, 3, 4 and 5 weeks. The alginates setting time and recovery from deformation were measured according to the ANSI/ADA specification number 18 (ISO 1563. result: The results revealed that there was decreased setting time during 5 weeks but there was slight decreased in deformation recovery after 3 weeks storage. The ANOVA showed there was no significant difference of alginates deformation recovery among the storage times (p > 0.05. Conclusion: Storage duration of repacked alginates in plastic containers during 5 weeks in room condition do not influence the alginate deformation recovery.

  1. Physicochemical properties of marine collagen-alginate biomaterial

    Science.gov (United States)

    Soon, K. S.; Hii, S. L.; Wong, C. L.; Leong, L. K.; Woo, K. K.

    2017-12-01

    Collagen base biomaterials are widely applied in the field of tissue engineering. However, these fibrous proteins in animal connective tissues are insufficient to fulfill the mechanical properties for such applications. Therefore, alginate as a natural polysaccharide was incorporated. In this study, Smooth wolf herring skins was collected from the local fish ball processing industry for collagen extraction using acid solubilisation method. On the other hand, alginate from brown seaweed (Sargassum polycystum) was extracted with calcium carbonate at 50 °C. The composite films of different collagen and alginate ratio were prepared by lyophilisation with pure collagen film as control. The effects of alginate on swelling behaviour, porosity, collagenase degradation and tensile strength of the composite films were investigated. Swelling behaviour increased with alginate content, 50 % alginate film achieved 1254.75 % swelling after 24 h. All composite films achieved more than 80 % porosity except the film with 80 % collagen (65.41 %). Porosity was highest in 100 % alginate (94.30 %). Highest tensile strength (1585.87 kPa) and young modulus (27.05 MPa) was found in 50 % alginate film. In addition, resistance to collagenase degradation was improved with alginate content, lowest degradation rate was determined in 80 % alginate film. Results indicated alginate is efficient in improving some mechanical properties of the composite film.

  2. Self-disinfecting Alginate vs Conventional Alginate: Effect on Surface Hardness of Gypsum Cast-An in vitro Study.

    Science.gov (United States)

    Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay

    2017-11-01

    For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.

  3. Rusip with Alginate Addition as Seasoning

    Directory of Open Access Journals (Sweden)

    Dyah Koesoemawardani

    2017-02-01

    Full Text Available AbstractRusip was a fermented food of fish that have a distinctive aroma so that potential to be developed into instant seasoning. This research was aimed to optimize powder processing of rusip with the addition of alginate. The treatments were concentration of alginate (5% , 10% , 15% and 20% w/w and the heating temperature (50oC, 60oC , 70oC and 80oC. Data was analyzed using advanced test Honestly Significant Difference (HSD at 5% level. The results showed that the best rusip powder was alginate 5% with heating at 50oC and 70°C . The character were 5.98% and 7.57% water content; pH 5.69 and 5.85; 7.77% and 8.77% salt content; 28% and 27.65% protein content, respectively. This study proves that the addition of alginate 5% (w/w, heating at a temperature of 50oC and 70°C can trap volatile compounds formed during fermentation in rusip processing into powder.

  4. Characterization of Alginate/Perlite Particles

    Directory of Open Access Journals (Sweden)

    Hasan TÜRE

    2017-09-01

    Full Text Available In this study alginate/perlite composite particles obtained by ionic gelation method were characterized and their usability on the removal of Pb (II and Ni (II ions from aqueous solutions was tested. The effects of pH, contact time, initial metal ion level and perlite concentration on the adsorption capacity of particles were investigated in a batch system. Desorption of tested heavy metal ions from particles and reusability of particles were also investigated. Optical microscopy analysis showed that diameters of wet and dried particles were between 2.5-2.8 mm and 1.8-1.9 mm, respectively. Incorporation of perlite decreased the swelling degree of the particles. SEM and SEM-EDX analysis indicated that perlite appeared as thin plates and mainly composed of silica. SEM-EDX also indicated that alginate/perlite particles were composed of C, O, Na, Al, Si, and K. XRD analysis indicated that perlite had amorphous structure and distributed in the alginate matrix. According to TGA analysis, perlite improved the thermal properties of particles. The optimum pH value varied between 6 and 7 for the removal of Pb (II and Ni (II. The adsorption efficiency of particles reached maximum level while the perlite/alginate (wt. /wt. ratio was 2.

  5. Development of sodium alginate and konkoli gumgrafted ...

    African Journals Online (AJOL)

    This experiment is a continuation of our effort to develop a blend membrane of sodium alginate and “konkoli” gum-g-polyacrylamide (KG-g-PAAm) for bioremediation of wastewater. The effect of graft reaction conditions on the percentage graft yield in the graft copolymerization was investigated. It was observed that grafting ...

  6. Alginate dressings for treating pressure ulcers

    Directory of Open Access Journals (Sweden)

    Jo C. Dumville

    Full Text Available ABSTRACT BACKGROUND: Pressure ulcers, also known as bedsores, decubitus ulcers and pressure injuries, are localised areas of injury to the skin or the underlying tissue, or both. Dressings are widely used to treat pressure ulcers and there are many options to choose from including alginate dressings. A clear and current overview of current evidence is required to facilitate decision-making regarding dressing use for the treatment of pressure ulcers. This review is part of a suite of Cochrane reviews investigating the use of dressings in the treatment of pressure ulcers. Each review will focus on a particular dressing type. OBJECTIVES: To assess the effects of alginate dressings for treating pressure ulcers in any care setting. METHODS: Search methods: For this review, in April 2015 we searched the following databases the Cochrane Wounds Group Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL (The Cochrane Library; Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations; Ovid EMBASE; and EBSCO CINAHL. There were no restrictions based on language or date of publication. Selection criteria: Published or unpublished randomised controlled trials (RCTs comparing the effects of alginate with alternative wound dressings or no dressing in the treatment of pressure ulcers (stage II or above. Data collection and analysis: Two review authors independently performed study selection, risk of bias assessment and data extraction. MAIN RESULTS: We included six studies (336 participants in this review; all studies had two arms. The included studies compared alginate dressings with six other interventions that included: hydrocolloid dressings, silver containing alginate dressings, and radiant heat therapy. Each of the six comparisons included just one study and these had limited participant numbers and short follow-up times. All the evidence was of low or very low quality. Where data were available there was no evidence

  7. Radiation protection by ascorbic acid in sodium alginate solutions

    International Nuclear Information System (INIS)

    Aliste, A.J.; Mastro, N.L. Del

    2004-01-01

    Alginates are gelling hydrocolloids extracted from brown seaweed used widely in the nourishing and pharmaceutical industries. As alginic acid gellification retard food entrance in the stomach alginate is an additive used in diets. The objective of this work was to study the protective action of the ascorbic acid in alginate solutions against the action of 60 Co gamma radiation. One % (w/v) solutions of alginate had been used and concentrations of ascorbic acid varied from 0 to 2.5% (w/v). The solutions were irradiated with doses up to 10 kGy. Viscosity/dose relationship and the p H of the solutions at 25 Centigrade were determined. Ascorbic acid behaved as an antioxidant against radiation oxidative shock in this model system of an irradiated viscous solution. Besides its radiation protective role on alginate solutions ascorbic acid promoted a viscosity increase in the range of concentrations employed. (Author)

  8. Radiation protection by ascorbic acid in sodium alginate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aliste, A.J.; Mastro, N.L. Del [Center of Radiation Technology, IPEN/CNEN/SP, University City, 05508-000 Sao Paulo (Brazil)]. E-mail: ajaliste@ipen.br

    2004-07-01

    Alginates are gelling hydrocolloids extracted from brown seaweed used widely in the nourishing and pharmaceutical industries. As alginic acid gellification retard food entrance in the stomach alginate is an additive used in diets. The objective of this work was to study the protective action of the ascorbic acid in alginate solutions against the action of {sup 60} Co gamma radiation. One % (w/v) solutions of alginate had been used and concentrations of ascorbic acid varied from 0 to 2.5% (w/v). The solutions were irradiated with doses up to 10 kGy. Viscosity/dose relationship and the p H of the solutions at 25 Centigrade were determined. Ascorbic acid behaved as an antioxidant against radiation oxidative shock in this model system of an irradiated viscous solution. Besides its radiation protective role on alginate solutions ascorbic acid promoted a viscosity increase in the range of concentrations employed. (Author)

  9. Variations in Calcium and Alginate Ions Concentration in Relation to the Properties of Calcium Alginate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hamed Daemi

    2013-05-01

    Full Text Available Alginate belongs to a group of natural polymers called polysaccharides. They have carboxylic functional groups beside hydroxyls which are common in all polysaccharides. These materials show interesting properties due to theirfunctional groups. One of these properties is the ability of this polymer as a suitable carrier of protecting and transferring drugs and biomolecules. The particle sizes of these polymers are very important for their applications, so different techniques were used for preparation of these materials. In this way polymeric nanoparticles of calcium alginate which are excellent carriers in drug delivery systems were prepared by addition of calcium chloride solution to dilute solution of sodium alginate. Investigation of the size and distribution of nanoparticles were analyzed by SEM method. The concentration effects of both alginate and calcium ions on the size and distribution of  nanoparticles were studied in this research. Results showed that the size of nanoparticles obviously decreased with decreasing polymeric alginate concentration because of lower active sites in polymer chain. On the other hand, thesize and distribution of nanoparticles are significantly improved with increase of calcium cation concentrations. The mean particle size 40-70 nm and spherical shape are the main characteristics of the prepared nanoparticles.

  10. Physical- chemical changes in irradiated sodium alginate algimar

    International Nuclear Information System (INIS)

    Rapado Paneque, Manuel; Alazanes, Sonia; Sainz Vidal, Dianelys; Wandrey, Christine

    2003-01-01

    The effect of gamma radiation on the physical-chemical properties of sodium alginate Algimar has been investigated. dilution viscometric, densitometry FTIR spectroscopy served to identify modifications. Decreasing intrinsic, viscosities clearly revealed chain cleavage for both solid alginate indicate that chain degradation occurs without significant change of the chemical structure, The obtained results have practical implication change of the chemical structure. The obtained results have practical implication in the field of radiation modification and sterilization of sodium alginate used for microcapsule formation

  11. Biosorption of americium by alginate beads

    International Nuclear Information System (INIS)

    Borba, Tania Regina de; Marumo, Julio Takehiro; Goes, Marcos Maciel de; Ferreira, Rafael Vicente de Padua; Sakata, Solange Kazumi

    2009-01-01

    The use of biotechnology to remove heavy metals from wastes plays great potential in treatment of radioactive wastes and therefore the aim of this study was to evaluate the biosorption of americium by alginate beads. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. The calcium alginate beads as biosorbent were prepared and analyzed for americium uptaking. The experiments were performed in different solution activity concentrations, pH and exposure time. The results suggest that biosorption process is more efficient at pH 4 and for 75, 150, 300 Bq/mL and 120 minutes were necessary to remove almost 100% of the americium-241 from the solution. (author)

  12. Microencapsulation of probiotics using sodium alginate

    Directory of Open Access Journals (Sweden)

    Mariana de Araújo Etchepare

    2015-07-01

    Full Text Available The consumption of probiotics is constantly growing due to the numerous benefits conferred on the health of consumers. In this context, Microencapsulation is a technology that favors the viability of probiotic cultures in food products, mainly by the properties of protection against adverse environmental conditions and controlled release. Currently there are different procedures for microencapsulation using polymers of various types of natural and synthetic origin. The use of sodium alginate polymers is one of the largest potential application in the encapsulation of probiotics because of their versatility, biocompatibility and toxicity exemption. The aim of this review is to present viable encapsulation techniques of probiotics with alginate, emphasizing the internal ionic gelation and external ionic gelation, with the possibility of applying, as well as promising for improving these techniques.

  13. Injectable, Tough Alginate Cryogels as Cancer Vaccines.

    Science.gov (United States)

    Shih, Ting-Yu; Blacklow, Serena O; Li, Aileen W; Freedman, Benjamin R; Bencherif, Sidi; Koshy, Sandeep T; Darnell, Max C; Mooney, David J

    2018-02-14

    A covalently crosslinked methacrylated (MA)-alginate cryogel vaccine has been previously shown to generate a potent response against murine melanoma, but is not mechanically robust and requires a large 16G needle for delivery. Here, covalent and ionic crosslinking of cryogels are combined with the hypothesis that this will result in a tough MA-alginate cryogel with improved injectability. All tough cryogels can be injected through a smaller, 18G needle without sustaining any damage, while covalently crosslinked-only cryogels break after injection. Cytosine-phosphodiester-guanine (CpG)-delivering tough cryogels effectively activate dendritic cells (DCs). Granulocyte macrophage colony-stimulating factor releasing tough cryogels recruit four times more DCs than blank gels by day 7 in vivo. The tough cryogel vaccine induces strong antigen-specific cytotoxic T-lymphocyte and humoral responses. These vaccines prevent tumor formation in 80% of mice inoculated with HER2/neu-overexpressing DD breast cancer cells. The MA-alginate tough cryogels provide a promising minimally invasive delivery platform for cancer vaccinations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of a Novel Alginate-Based Pleural Sealant

    Science.gov (United States)

    2017-09-01

    of 3% methacrylated alginate and 3% cysteine conjugated alginate. The polymer blend was extruded onto a collagen burst testing substrate prior to...hydrogels and characterize material properties. Subtask 1: Synthesize and chemically characterize AA-MA polymer formulations. Subtask 2: Quantify...material properties. Subtask 1: Synthesize and chemically characterize AA-MA polymer formulations. Subtask 2: Quantify the viscosity and shear mechanical

  15. 21 CFR 172.858 - Propylene glycol alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  16. A Controlled Drug-Delivery Experiment Using Alginate Beads

    Science.gov (United States)

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  17. Properties of advanced (reduced) graphene oxide-alginate biopolymer films

    NARCIS (Netherlands)

    Vilcinskas, K.

    2016-01-01

    In this work, properties of Calcium alginate-reduced graphene oxide and Barium alginate‐reduced graphene oxide composite films are explored. In addition, the properties of the divalent metal ion-cross-linked alginate composite films are compared to the analogous properties of uncross‐linked Sodium

  18. Underwater Contact Behavior of Alginate and Catechol-Conjugated Alginate Hydrogel Beads.

    Science.gov (United States)

    Cholewinski, Aleksander; Yang, Fut K; Zhao, Boxin

    2017-08-29

    Modifying hydrogels with catechol functionality is a promising approach for improving their mechanical and interfacial properties in water, particularly in biological environments. However, the effects of this modification on hydrogels' contact behavior with soft tissues are not well-studied due to the complexity of hydrogels and lack of suitable techniques to probe this behavior. In addition, modification can alter the mechanical properties of hydrogels, resulting in consequences for adhesive strength as well. In this work, we report an investigation of the contact behavior of alginate hydrogels with and without conjugation of catechol functionality, aiming to elucidate the role of catechol modification on wet adhesion of alginates to a model tissue-like material, gelatin. To directly characterize this soft-on-soft contact, which has commonly been a challenge, we developed an indentation-based contact adhesion measurement using alginate hydrogel beads as the testing probe. We found that <3% conjugation of catechol can significantly improve the adhesion of alginate to gelatin by half an order of magnitude, with this adhesion depending heavily on contact time and pH. In contrast, the reduced elastic modulus from modification resulted in lower adhesive strength on rigid substrates. These findings provide valuable insight into the effects of catechol modification of hydrogels, especially in their interaction with tissue-like soft substrates, as well as a simple method for the direct measurement of time- and pH-dependent hydrogel adhesion behavior underwater.

  19. Synthesis of Chitosan /Alginate/ Silver Nanoparticles Hydrogel Scaffold

    Directory of Open Access Journals (Sweden)

    Ramli Roslinda Hani

    2016-01-01

    Full Text Available This work reports the preparation of silver nanoparticles (AgNPs and synthesis of natural based hydrogel scaffold with an inclusion of AgNPs, chitosan/alginate/silver nanoparticles. The synthesised hydrogel scaffolds were characterised by using Fourier Transform Infrared Resonance Spectroscopy (FTIR. The FTIR result revealed that the shifting of the three peaks of 3252.95 cm−1 (–OH and –NH2 stretching, 1591.33 cm−1 (C=O stretching and 1411.88 cm−1 (N–H stretching of chitosan/alginate/silver nanoparticles in compared to chitosan/alginate hydrogel indicating the presence of electrostatic interaction of –NH3+ in chitosan reacted with the – COO– group of alginate and binding of the silver (Ag. These results indicated that chitosan/alginate/silver nanoparticles were consolidated in the composite system.

  20. Dimensional changes of alginate dental impression materials.

    Science.gov (United States)

    Nallamuthu, N; Braden, M; Patel, M P

    2006-12-01

    The weight loss and corresponding dimensional changes of two dental alginate impression materials have been studied. The weight loss kinetics indicate this to be a diffusion controlled process, but with a boundary condition at the surface of the concentration decreasing exponentially with time. This is in marked contrast to most desorption processes, where the surface concentration becomes instantaneously zero. The appropriate theory has been developed for an exponential boundary condition, and its predictions compared with experimental data; the agreement was satisfactory. The diffusion coefficients for two thicknesses of the same material were not identical as predicted by theory; the possible reasons for this are discussed.

  1. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection

    Directory of Open Access Journals (Sweden)

    Aras Rafiee

    2014-10-01

    Full Text Available Objective: To to compare the chitosan/alginate, chitosan and alginate nanoparticles as plasmid vectors, to determine the morphological characteristics, size and physicochemical properties of nanoparticle-pEGFP complexes and to evaluate the potential of these nanoparticles in transfection of pEGFP plasmid in to a cultured the human embryonic kidney cell line (HEK 293 cells. Methods: Nanoparticles comprising chitosan, alginate and both chitosan-alginate polymers were formed through pregel preparation method. The ability of plasmid-complexes in preventing DNA migration were assessed by the agarose gel assay. The efficiency of nanoparticles in transfection of pEGFP plasmid in the cultured HEK 293 cells was measured by flow cytometry. The effect of the nanoparticle-plasmid complexes on the cell viability was determined using cytotoxicity assay. Results: Chitosan, alginate and alginate/chitosan nanoparticles had a mean Z-average diameter of 620 nm, 235.8 nm and 161.8 nm and mean zeta potential of 45 mV, -18.6 mV and 29.3 mV, respectively. Chitosan and chitosan/alginate nanoparticles have greater capacity to maintain plasmid than alginate nanoparticles. Alginate nanoparticles had the greater transfection in comparison to the others. Cell viability assays indicated that nanoparticles had no toxic effect on HEK 293 cells after 4 h or 24 h. Conclusions: The combination of particle surface, hydrophobicity size and zeta potential can influence on transfection efficiency and the cellular uptake of the nanoparticles. Our suitable candidate for gene delivery would be alginate/chitosan nanoparticles.

  2. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  3. Preparation and microscopy examination of alginate-poly-L-lysine-alginate microcapsules.

    Science.gov (United States)

    Fu, Hong-Xing; Li, Hui; Wu, Lan-Lan; Zhao, Ying-Zheng; Xu, Yan-Yan; Zhu, Yan-Lin; Xue, Shen-Liu; Wang, Da-Wang; Liu, Cheng-Yang; Yang, Shu-Lin; Li, Xiao-Kun

    2014-11-01

    Ca-alginate-poly-l-lysine-alginate (APA-Ca) and Ba-alginate-poly-l-lysine-alginate (APA-Ba) microcapsules were prepared and their thickness and surface were examined by light microscopy and scanning electron microscopy. Specifically, light microscopy with frozen section was used to visualize and quantify the thickness of APA membrane, and monitor temporal changes in the thickness of microcapsules during a month long culture in vitro. The section graph of APA microcapsule represents the accurate measurement of layer thickness of APA-Ca with diameter 900 ± 100 and 500 ± 100 μm at 6.01 ± 1.02 and 9.54 ± 2.42 μm (p microcapsules. The microcapsule was stable during the culture for 30 days in vitro. Field emission scanning electron microscopy with freeze drying method was used to detect the surface and thickness of dried microcapsules. From the results, the outer surface of APA-Ca and APA-Ba membrane were smooth and dense, the film thickness of the APA-Ca was about 450-690 nm, while the APA-Ba was approximately 335 nm. In vivo experiment, little significant difference was seen in the change of film thickness of microcapsules in intrapertioneal site for 30 days after transplantation (p > 0.05), except that the recovery of APA-Ba was higher than the APA-Ca microcapsules. The paper showed an easy method to prepare APA-Ca and APA-Ba, and examine their thickness and surface, which could be utilized to study other types of microcapsules.

  4. The influence of storage duration on the setting time of type 1 alginate impression material

    Science.gov (United States)

    Rahmadina, A.; Triaminingsih, S.; Irawan, B.

    2017-08-01

    Alginate is one of the most commonly used dental impression materials; however, its setting time is subject to change depending on storage conditions and duration. This creates problems because consumer carelessness can affect alginate shelf life and quality. In the present study, the setting times of two groups of type I alginate with different expiry dates was tested. The first group consisted of 11 alginate specimens that had not yet passed the expiry date, and the second group consisted of alginates that had passed the expiry date. The alginate powder was mixed with distilled water, poured into a metal ring, and tested with a polished rod of poly-methyl methacrylate. Statistical analysis showed a significant difference (p<0.05) between the setting times of the alginate that had not passed the expiry date (157 ± 3 seconds) and alginate that had passed the expiry date (144 ± 2 seconds). These findings indicate that storage duration can affect alginate setting time.

  5. Mechanical and microstructural properties of "wet" alginate and composite films containing various carbohydrates.

    Science.gov (United States)

    Harper, B Allison; Barbut, Shai; Smith, Alexandra; Marcone, Massimo F

    2015-01-01

    Composite "wet" alginate films were manufactured from alginate-carbohydrate solutions containing 5% alginate and 0.25% pectin, carrageenan (kappa or iota), potato starch (modified or unmodified), gellan gum, or cellulose (extracted or commercial). The "wet" alginate films were used as a model to understand co-extruded alginate sausage casings that are currently being used by several sausage manufacturers. The mechanical, optical, and microstructural properties of the calcium cross-linked composite films were explored. In addition, the water holding capacity and textural profile analysis properties of the alginate-carbohydrate gels were studied. The results indicate that the mechanical properties of "wet" alginate films/casings can be modified by adding various carbohydrates to them. Alginate films with pectin, carrageenan, and modified potato starch had significantly (P < 0.05) greater elongation values than pure alginate films. The alginate-pectin films also had greater (P < 0.05) tensile strengths than the pure alginate films. Alginate films with extracted cellulose, commercial cellulose, and modified potato starch had lower (P < 0.05) puncture force, distance, and work values than the alginate control films. Transmission electron microscopy images showed a very uniform alginate network in the control films. Several large cellulose fibers were visible in the films with extracted cellulose, while the cellulose fibers in the films with commercial cellulose were difficult to distinguish. Despite these apparent differences in cellulose fiber length, the 2 cellulose films had similar puncture and tensile properties. © 2014 Institute of Food Technologists®

  6. Ca alginate as scaffold for iron oxide nanoparticles synthesis

    Directory of Open Access Journals (Sweden)

    P. V. Finotelli

    2008-12-01

    Full Text Available Recently, nanotechnology has developed to a stage that makes it possible to process magnetic nanoparticles for the site-specific delivery of drugs. To this end, it has been proposed as biomaterial for drug delivery system in which the drug release rates would be activated by a magnetic external stimuli. Alginate has been used extensively in the food, pharmaceutical and biomedical industries for their gel forming properties in the presence of multivalent cations. In this study, we produced iron oxide nanoparticles by coprecipitation of Fe(III and Fe(II. The nanoparticles were entrapped in Ca alginate beads before and after alginate gelation. XRD analysis showed that particles should be associated to magnetite or maghemite with crystal size of 9.5 and 4.3 nm, respectively. Studies using Mössbauer spectroscopy corroborate the superparamagnetic behavior. The combination of magnetic properties and the biocompatibility of alginate suggest that this biomaterial may be used as biomimetic system.

  7. Understanding Alginate Gel Development for Bioclogging and Biogeophysical Experiments

    Science.gov (United States)

    Brown, I.; Atekwana, E. A.; Abdel Aal, G. Z.; Atekwana, E. A.; Sarkisova, S.; Patrauchan, M.

    2012-12-01

    Bioremediation strategies to mitigate the transport of heavy metals and radionuclides in subsurface sediments have largely targeted to increase the mobility and/or solubility of these compounds by the stimulation of biogeochemical activity of the metal- and sulfate-reducing bacteria. The latter secrete and/or release out diverse biochemical molecule including, first of all, organic acids and biopolymers such as alginic acid, proteins and DNA. Alginate gel is one of the major components determining the structure of biofilm which causes clogging in porous media. Biopolymers composing biofilm having, at least, two main functions: to be a scaffold for a microbial biofilm, and to regulate the exchange of metabolites and ions between an environment and bacterial cells. Additionally, the accumulation of biopolymers and a matured biofilm within porous media was shown to contribute to a detectable biogeophysical signal, spectral induced polarization (SIP), in particular. Our objective is to understand the role of different biofilm components on the SIP response as the latter has been proposed as a non-invasive tool to monitor biofilm development and rate of clogging in the subsurface. Understanding the process of alginate gel development may aid in the understanding of the fate and transport of mineralized heavy metals and radionuclides in contaminated soils. Here we describe the reciprocal relationship between environmental chemistry and alginate gel development. Commercial (Sigma) alginic acid (AA) was used as a substratum for the preparation of a model gel. AA was solubilized by adjusting solutions with pH up to 4 with 0.1 NaOH. Both Ca(OH)2 or CaCl2 were used to initiate the gelation of alginate. pH, fluid conductivity, soluble Ca2+ concentration, and a yield of gelated alginate were monitored in both liquid and porous media after the interaction of calcium compounds with alginate. This study confirms the critical role of Ca2+ for alginate gelation, biofilm development

  8. A novel wound dressing material—fibrin–chitosan–sodium alginate ...

    Indian Academy of Sciences (India)

    sodium alginate composite (F–C–SA) in sheet form. F–C–SA composite was prepared and characterized for its physicochemical properties like water absorption capacity, surface morphology, FTIR spectra and mechanical properties.

  9. Role of alginate in antibacterial finishing of textiles.

    Science.gov (United States)

    Li, Jiwei; He, Jinmei; Huang, Yudong

    2017-01-01

    Antibacterial finishing of textiles has been introduced as a necessary process for various purposes especially creating a fabric with antimicrobial activities. Currently, the textile industry continues to look for textiles antimicrobial finishing process based on sustainable biopolymers from the viewpoints of environmental friendliness, industrialization, and economic concerns. This paper reviews the role of alginate, a sustainable biopolymer, in the development of antimicrobial textiles, including both basic physicochemical properties of alginate such as preparation, chemical structure, molecular weight, solubility, viscosity, and sol-gel transformation property. Then different processing routes (e.g. nanocomposite coating, ionic cross-linking coating, and Layer-by-Layer coating) for the antibacterial finishing of textiles by using alginate are revised in some detail. The achievements in this area have increased our knowledge of alginate application in the field of textile industry and promoted the development of green textile finishing. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Extra thin alginate film: an efficient technique for protoplast culture.

    Science.gov (United States)

    Pati, P K; Sharma, Madhu; Ahuja, Paramvir Singh

    2005-12-01

    This paper reports an efficient protoplast culture technique, the "extra thin alginate film" technique. The development of this improved method of protoplast culture was an outcome of an assessment of the efficiency and shortcomings of various protoplast culture techniques. The efficiency of this technique was evaluated with two model plant systems, viz., Nicotiana tabacum and Lotus corniculatus, and a comparison was made with the "thin alginate layer" technique, another efficient protoplast culture system. Results indicate that the culture technique with extra thin alginate film is as efficient as the technique with thin alginate layer, with many additional advantages. The present innovation overcomes most of the limitations of protoplast culture techniques described so far and can now be applied to a wide variety of crops to check its general applicability.

  11. Structural Properties of Zinc Sulfide Polymer Nanocomposite with Alginate

    OpenAIRE

    A.M. Mieshkov; T.O. Berestok; L.F. Sukhodub; А.S. Оpanasyuk

    2015-01-01

    The comparison of structural and substructural characteristics of pure zinc sulfide and biopolymer based on ZnS composite with alginate was held by scanning electron microscopy, diffraction and X-ray fluorescence spectrometry. Films and nanostructures of zinc sulfide were obtained by chemical bath deposition from an aqueous solution of zinc nitrate, sodium alginate and tiaourea at 90 °C and synthesis time of 30-120 min. It is established that growth occurs through the formation of condensate ...

  12. Alginate prevention of internal irradiation with 90Sr

    International Nuclear Information System (INIS)

    Korzun, V.N.; Voronova, Yu.G.; Parats, A.N.; Podkorytova, A.V.; Rogal'skaya, L.A.; Saglo, V.I.; Skorikova, A.I.

    1992-01-01

    Recipes of foodstaffs (meat and vegetable preserves, bread, pastry, dairy products, etc.) containing sodium or calcium alginates in doses 0.5-3.0 g have been developed. Experiments with white rats have demonstrated that addition of such products to daily radions of these animals reduced 2-4-fold the accumulation of radioactive Sr taken daily with food for 30 days. Alginates and Crambe added to food preserve their ability to reduce the accumulation of radioactive Sr

  13. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function

    DEFF Research Database (Denmark)

    Hentzer, Morten; Teitzel, G.M.; Balzer, G.J.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant com......During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic...

  14. Ag/alginate nanofiber membrane for flexible electronic skin

    Science.gov (United States)

    Hu, Wei-Peng; Zhang, Bin; Zhang, Jun; Luo, Wei-Ling; Guo, Ya; Chen, Shao-Juan; Yun, Mao-Jin; Ramakrishna, Seeram; Long, Yun-Ze

    2017-11-01

    Flexible electronic skin has stimulated significant interest due to its widespread applications in the fields of human-machine interactivity, smart robots and health monitoring. As typical elements of electrical skin, the fabrication process of most pressure sensors combined nanomaterials and PDMS films are redundant, expensive and complicated, and their unknown biological toxicity could not be widely used in electronic skin. Hence, we report a novel, cost-effective and antibacterial approach to immobilizing silver nanoparticles into-electrospun Na-alginate nanofibers. Due to the unique role of carboxyl and hydroxyl groups in Na-alginate, the silver nanopaticles with 30 nm size in diameter were uniformly distributed inside and outside the alginate nanofibers, which obtained pressure sensor shows stable response, including an ultralow detection limited (1 pa) and high durability (>1000 cycles). Notably, the pressure sensor fabricated by these Ag/alginate nanofibers could not only follow human respiration but also accurately distinguish words like ‘Nano’ and ‘Perfect’ spoke by a tester. Interestingly, the pixelated sensor arrays based on these Ag/alginate nanofibers could monitor distribution of objects and reflect their weight by measuring the different current values. Moreover, these Ag/alginate nanofibers exhibit great antibacterial activity, implying the great potential application in artificial electronic skin.

  15. Radiation-induced degradation of polysaccharide sodium alginate

    International Nuclear Information System (INIS)

    Yang Jiaxia; Li Xiaoyan

    2013-01-01

    The radiation-induced degradation of sodium alginate by 60 Co γ-rays was investigated in air at ambient temperature, and the change in their molecular weights was measured by multi-angle laser light scattering detector equipped with gel permeation chromatography (MALLS/GPC). The molecular weight of sodium alginate decreases with the increase of absorbed dose in the range of 0-60 kGy at the dose rate of 80 Gy/ min. The dispersion of molecular weight distribution of sodium alginate becomes narrow along with the absorbed dose. The weight-average molecular weight (M w ) changes from 321596.5 to 10024 when the absorbed dose increases from o kGy to 60 kGy. It is found that the degraded sodium alginate with molecular weight peak of 6000 is 83.22% of cumulative weight fraction. Anyway, the sodium alginate may have comprehensive application in the fields of agriculture, medicine and cosmetology as it can be absorbed well by biological tissue, if its weight-average molecular weight is below 10000. It is also found that new components will be contained in the products of sodium alginate degraded by irradiation. The further study dealing with the checking the biological safety and purification shall be performed. (authors)

  16. Release Kinetics of Nisin from Chitosan-Alginate Complex Films.

    Science.gov (United States)

    Chandrasekar, Vaishnavi; Coupland, John N; Anantheswaran, Ramaswamy C

    2016-10-01

    Understanding the release kinetics of antimicrobials from polymer films is important in the design of effective antimicrobial packaging films. The release kinetics of nisin (30 mg/film) from chitosan-alginate polyelectric complex films prepared using various fractions of alginate (33%, 50%, and 66%) was investigated into an aqueous release medium. Films containing higher alginate fractions showed significantly lower (P < 0.05) degree of swelling in water. Total amount of nisin released from films into an aqueous system decreased significantly (P < 0.05) with an increase in alginate concentration. The mechanism of diffusion of nisin from all films was found to be Fickian, and diffusion coefficients varied from 0.872 × 10 -9 to 8.034 ×10 -9 cm 2 /s. Strong complexation was confirmed between chitosan and alginate polymers within the films using isothermal titration calorimetry and viscosity studies, which affects swelling of films and subsequent nisin release. Complexation was also confirmed between nisin and alginate, which limited the amount of free nisin available for diffusion from films. These low-swelling biopolymer complexes have potential to be used as antimicrobial packaging films with sustained nisin release characteristics. © 2016 Institute of Food Technologists®.

  17. Alginate gel-coated oil-entrapped alginate-tamarind gum-magnesium stearate buoyant beads of risperidone.

    Science.gov (United States)

    Bera, Hriday; Boddupalli, Shashank; Nandikonda, Sridhar; Kumar, Sanoj; Nayak, Amit Kumar

    2015-01-01

    A novel alginate gel-coated oil-entrapped calcium-alginate-tamarind gum (TG)-magnesium stearate (MS) composite floating beads was developed for intragastric risperidone delivery with a view to improving its oral bioavailability. The TG-blended alginate core beads containing olive oil and MS as low-density materials were accomplished by ionotropic gelation technique. Effects of polymer-blend ratio (sodium alginate:TG) and crosslinker (CaCl2) concentration on drug entrapment efficiency (DEE, %) and cumulative drug release after 8 h (Q8h, %) were studied to optimize the core beads by a 3(2) factorial design. The optimized beads (F-O) exhibited DEE of 75.19±0.75% and Q8h of 78.04±0.38% with minimum errors in prediction. The alginate gel-coated optimized beads displayed superior buoyancy and sustained drug release property. The drug release profiles of the drug-loaded uncoated and coated beads were best fitted in Higuchi kinetic model with Fickian and anomalous diffusion driven mechanisms, respectively. The optimized beads yielded a notable sustained drug release profile as compared to marketed immediate release preparation. The uncoated and coated Ca-alginate-TG-MS beads were also characterized by SEM, FTIR and P-XRD analyses. Thus, the newly developed alginate-gel coated oil-entrapped alginate-TG-MS composite beads are suitable for intragastric delivery of risperidone over a prolonged period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: Bio-inspired for sequential nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Walid [MAScIR Foundation, INANOTECH, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat (Morocco); Abdelouahdi, Karima [Centre National pour la Recherche Scientifique et Technique (CNRST), Division UATRS, Angle Allal Fassi/FAR, B.P. 8027, Hay Riad, 10000 Rabat (Morocco); Ramananarivo, Hugo Ronald; Fihri, Aziz; El Achaby, Mounir [MAScIR Foundation, INANOTECH, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat (Morocco); Zahouily, Mohamed [Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Mohammedia B.P. 146, 20650 (Morocco); Barakat, Abdellatif [SUPAGRO-INRA-CIRAD-UMR IATE 1208, Ingenierie des Agropolymères et Technologies Emergentes, 2, Place Pierre Viala-Bât 31, 34060 Montpellier cedex 1 (France); Djessas, Kamal [CNRS-PROMES Tecnosud, F-66100 Perpignan (France); Clark, James [Green Chemistry, Centre of Excellence, University of York, York YO10 5DD (United Kingdom); Solhy, Abderrahim, E-mail: a.solhy@mascir.com [MAScIR Foundation, INANOTECH, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat (Morocco)

    2014-02-01

    In this report new hybrid materials based on brushite-alginate and monetite-alginate were prepared by self-assembling alginate chains and phosphate source ions via a gelation process with calcium ions. The alginate served as nanoreactor for nucleation and growth of brushite or/and monetite due to its gelling and swelling properties. The alginate gel framework, the crystalline phase and morphology of formed hybrid biomaterials were shown to be strongly dependent upon the concentration of the phosphate precursors. These materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX). - Graphical abstract: A new class of hybrid materials based on brushite{sub a}lginate and monetite{sub a}lginate were prepared for the first time by adopting a soft and clean route. Thanks to their gelling and swelling properties, alginate porous polysaccharide microspheres behave as nanoreactors for nucleating, growing and hosting of the phosphate cements such as brushite or monetite. - Highlights: • New structured hybrid materials are prepared from biopolymer and phosphates. • Evidence for a new route for the synthesis of hybrid materials alginate-brushite and alginate-monetite via ionotropic gel of alginate. • The concentration of phosphate has a role crucial for selectivity to monetite or brushite.

  19. In vitro adhesion of human dermal fibroblasts on iron cross-linked alginate films

    International Nuclear Information System (INIS)

    Machida-Sano, Ikuko; Namiki, Hideo; Matsuda, Yasushi

    2009-01-01

    We evaluated the potential of alginate film incorporating ferric ions as a gelling agent (Fe-alginate) in comparison with that incorporating calcium ions (Ca-alginate) as a scaffold for culturing normal human dermal fibroblasts (NHDF). NHDF adhered to Fe-alginate and proliferated well, but no growth of the cells was observed on Ca-alginate. Since vitronectin and fibronectin play pivotal roles in cellular adhesion, their participation in NHDF behavior on alginate surfaces was investigated. We found that vitronectin was a critical element for initial attachment and spreading of NHDF on Fe-alginate. The surface properties of both alginate films were characterized in terms of protein adsorption ability and surface wettability, and it was revealed that Fe-alginate film adsorbed a significantly higher amount of proteins, including vitronectin and fibronectin, and had a higher surface hydrophobicity than Ca-alginate film. Moreover, under serum-free conditions, only a small number of NHDF were able to attach to the surface of Fe-alginate. Fe-alginate appeared to provide an appropriate surface for cellular attachment by adsorption of serum proteins such as vitronectin. These results suggest that Fe-alginate can serve as a scaffold for human fibroblasts and may be useful for tissue engineering research and other biomedical applications.

  20. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    Directory of Open Access Journals (Sweden)

    R. T. De Silva

    2017-01-01

    Full Text Available Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol (PVA polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm at a predetermined concentration (10% (w/w, is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P<0.05. In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

  1. Cytotoxicity of alginate for orthodontic use

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2012-12-01

    Full Text Available OBJECTIVE: To evaluate the cytotoxicity of three different alginate impression materials for orthodontic use. METHODS: Three different brands of alginate were divided into three groups, namely, Group JCO (Jeltrate Chromatic Ortho, OP (Orthoprint and CO (Cavex Orthotrace. Three control groups were also included: Group C+ (positive control, consisting of detergent Tween 80; Group C- (negative control, consisting of PBS, and Group CC (cell control, consisting of cells not exposed to any material. After manipulating the materials according to the respective manufacturer instructions, samples were made with the use of silicon rings. Then the samples were immersed in Eagle's minimum essential medium (MEM for 2 minutes. The supernatants were then removed and brought into direct contact with L929 fibroblasts. After exposure to the medium, the cells were incubated for 24 hours. Then 100 µl of 0.01% neutral red dye were added. The cells were incubated again for 3 hours so that the dye could be absorbed. After this 3-hour period, the cells were fixed to perform the viable cell count, using a spectrophotometer (BioTek, Winooski, Vermont, USA at a wavelength of 492 nm. RESULTS: Statistical differences were found when Groups CC and C- were compared with the other experimental groups. Group JCO had the highest cytotoxicity, followed by Groups OP and CO. CONCLUSION: Based on the results obtained in this work, it was concluded that all alginate impression materials are potentially cytotoxic.OBJETIVO: avaliar a citotoxicidade de três diferentes alginatos de uso ortodôntico. MÉTODOS: foram avaliados três diferentes alginatos divididos em três grupos, denominados grupo JCO (Jeltrate Chromatic Ortho, OP (Orthoprint e CO (Carrex Orthotrace. Três grupos controle também participaram: controle + (C+, constituído pelo detergente celular Tween 80; controle - (C- PBS; e controle de célula (CC onde as células não foram expostas a nenhum material. Após manipula

  2. The Utilization of Additional Cassava Starch (Manihot Utilisima) for Alginate Dental Impression Material

    OpenAIRE

    Ali Noerdin; Bambang Irawan; Mirna Febriani

    2003-01-01

    In Indonesia alginate which is a common impression material used in dentistry is still imported. Since the economic crisis in 1998 the alginate price becoming four times more expensive. This situation resulted in efforts to modify the commercial alginate as had been conducted by a dentist in South Sumatera province in Indonesia. He who had added cassava starch into the commercial alginate used to make partial denture impression. The aim of this research is to investigate the effect of additio...

  3. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sem; Song, Minsoo, E-mail: minsoosong00@gmail.com; Lee, Eun-Jung; Shin, Ueon Sang, E-mail: usshin12@dankook.ac.kr

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H{sub 3}PO{sub 4}/P{sub 2}O{sub 5}/Et{sub 3}PO{sub 4} followed by acid–base reaction with Ca(OAc){sub 2} to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for {sup 1}H, and {sup 31}P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2 w/v%) with NaAlg solution (2 w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO{sub 4} or CaCl{sub 2} were added externally. The gelation was completed within about 3–40 min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤ 6.7 kPa for compressive strength at break and about 8.4 kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100–800 μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. - Highlights: • Preparation of water-soluble alginic acid complexes with calcium phosphate • Self-assembly of the phosphorylated alginic acid calcium complexes with sodium alginate • Preparation of injectable hydrogels with diverse gelation times within about 3–40 min.

  4. A VERSATILE ALGINATE DROPLET GENERATOR APPLICABLE FOR MICROENCAPSULATION OF PANCREATIC-ISLETS

    NARCIS (Netherlands)

    WOLTERS, GHJ; FRITSCHY, WM; GERRITS, D; VANSCHILFAGAARDE, R

    1992-01-01

    Alginate beads for immunoisolation of pancreatic islets by microencapsulation should be small, smooth, and spherical in order to ensure that around the islets a strong alginate-polylysine-alginate capsule will be formed with optimal biocompatibility and diffusion of nutrients and hormones. However,

  5. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets

    NARCIS (Netherlands)

    DeVos, P; DeHaan, BJ; Wolters, GHJ; Strubbe, JH; VanSchilfgaarde, R; van Schilfgaarde, P.

    Graft failure of alginate-polylysine microencapsulated islets is often interpreted as the consequence of a non-specific foreign body reaction against the microcapsules, initiated by impurities present in crude alginate. The aim of the present study was to investigate if purification of the alginate

  6. Microwave-Assisted Synthesis of Alginate-Stabilized Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Foliatini Foliatini

    2014-12-01

    Full Text Available An efficient and rapid method for preparation of Au nanoparticles (Au-NP has been developed by direct microwave irradiation of metal precursor and alginate mixed solution in a single step. Here, alginate molecules act as both the reducing and stabilizing agents of Au-NP. The obtained nanoparticles were characterized by ultraviolet-visible (UV-Vis spectroscopy, particle size analyzer, fourier transform infrared spectroscopy, and transmission electron microscopy. The nanoparticles have a spherical form and perfectly capped with alginate when using alginate and chloro auric acid (HAuCl4 precursor in the concentration range of 0.50 to 0.75% (w/v and 0.40 mM, respectively. The use of a lower concentration of alginate and/or higher concentration of HAuCl4 caused agglomeration to occur, thereby resulting in a bigger size of Au-NP and red shifting of surface plasmon resonance (SPR peak to a higher wavelength.

  7. Applications of Alginate-Based Bioinks in 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Eneko Axpe

    2016-11-01

    Full Text Available Three-dimensional (3D bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine.

  8. Nanostructured magnetic alginate composites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bedê, Pedro Marins; Silva, Marcelo Henrique Prado da; Figueiredo, André Ben-Hur da Silva, E-mail: marceloprado@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Finotelli, Priscilla Vanessa [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Faculdade de Farmácia

    2017-07-01

    This is a study of the preparation and characterization of polymeric-magnetic nanoparticles. The nanoparticles used were magnetite (Fe{sub 3}O{sub 4} ) and the chosen polymers were alginate and chitosan. Two types of samples were prepared: uncoated magnetic nanoparticles and magnetic nanoparticles encapsulated in polymeric matrix. The samples were analyzed by XRD, light scattering techniques, TEM, and magnetic SQUID. The XRD patterns identified magnetite (Fe{sub 3}O{sub 4} ) as the only crystalline phase. TEM analyses showed particle sizes between 10 and 20nm for magnetite, and 15 and 30nm for the encapsulated magnetite. The values of magnetization ranged from 75 to 100emu/g for magnetite nanoparticles, and 8 to 12emu/g for coated with chitosan, at different temperatures of 20K and 300K. The saturation of both samples was in the range of 49 to 50KOe. Variations of results between the two kinds of samples were attributed to the encapsulation of magnetic nanoparticles by the polymers. (author)

  9. Nanostructured magnetic alginate composites for biomedical applications

    Directory of Open Access Journals (Sweden)

    Pedro Marins Bedê

    Full Text Available Abstract This is a study of the preparation and characterization of polymeric-magnetic nanoparticles. The nanoparticles used were magnetite (Fe3O4 and the chosen polymers were alginate and chitosan. Two types of samples were prepared: uncoated magnetic nanoparticles and magnetic nanoparticles encapsulated in polymeric matrix. The samples were analyzed by XRD, light scattering techniques, TEM, and magnetic SQUID. The XRD patterns identified magnetite (Fe3O4 as the only crystalline phase. TEM analyses showed particle sizes between 10 and 20nm for magnetite, and 15 and 30nm for the encapsulated magnetite. The values of magnetization ranged from 75 to 100emu/g for magnetite nanoparticles, and 8 to 12emu/g for coated with chitosan, at different temperatures of 20K and 300K. The saturation of both samples was in the range of 49 to 50KOe. Variations of results between the two kinds of samples were attributed to the encapsulation of magnetic nanoparticles by the polymers.

  10. Application of neutral electrolyzed water to disinfection of alginate impression.

    Science.gov (United States)

    Nagamatsu, Yuki; Chen, Ker-Kong; Nagamatsu, Hiroshi; Kozono, Yoshio; Shimizu, Hiroshi

    2016-01-01

    Neutral electrolyzed water was developed with new concepts of long-term good durability and minimum corrosiveness to metal in addition to its excellent bactericidal activities similar to acid type of electrolyzed waters. The present study examined the bactericidal effects of the neutral electrolyzed water on disinfection of the alginate impression of a dental arch model contaminated by bacteria. Only 1-min immersion in neutral electrolyzed water could sufficiently disinfect the alginate impression including the metallic tray under ultrasonic with no significant differences from acid electrolyzed waters. No bactericidal effects were found in any electrolyzed water when used as mixing water. Considering the advantages and disadvantages of each electrolyzed water in a comprehensive way, it was suggested that neutral electrolyzed water may be the most appropriate for the disinfection of alginate impression.

  11. Alginate based polyurethanes: A review of recent advances and perspective.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zia, Fatima; Zuber, Mohammad; Rehman, Saima; Ahmad, Mirza Nadeem

    2015-08-01

    The trend of using biopolymers in combination with synthetic polymers was increasing rapidly from last two or three decades. Polysaccharide based biopolymers especially starch, cellulose, chitin, chitosan, alginate, etc. found extensive applications for different industrial uses, as they are biocompatible, biodegradable, bio-renewable resources and chiefly environment friendly. Segment block copolymer character of polyurethanes that endows them a broad range of versatility in terms of tailoring their properties was employed in conjunction with various natural polymers resulted in modified biomaterials. Alginate is biodegradable, biocompatible, bioactive, less toxic and low cost anionic polysaccharide, as a part of structural component of bacteria and brown algae (sea weed) is quite abundant in nature. It is used in combination with polyurethanes to form elastomers, nano-composites, hydrogels, etc. that especially revolutionized the food and biomedical industries. The review summarized the development in alginate based polyurethanes with their potential applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Removable colored coatings based on calcium alginate hydrogels.

    Science.gov (United States)

    Kobaslija, Muris; McQuade, D Tyler

    2006-08-01

    This article describes the creation of a nontoxic, biodegradable coating using calcium alginate and FD&C approved dyes. The coating is robust but is rapidly removed upon treatment with disodium ethylenediamine tetraacetate (EDTA). Dye leaching from calcium alginate films was studied, and it was determined that the efficiency of dye retention is proportional to the degree of cross-linking. Degradation rates were studied on calcium alginate beads serving as a model for a coating. We determined that degradation rates depend on the gel's cross-linking and on the amount of EDTA used. Bead size also influenced the degradation rates; smaller beads degraded faster than larger beads. We show that the coating can be used as an easily removable and environmentally friendly logotype on an artificial turf surface. Applications of these coatings can be extended to food, cosmetic, medicinal, and textile uses and to wherever nontoxic, easily removable colored coating is desired.

  13. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application

    International Nuclear Information System (INIS)

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping

    2016-01-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials. - Highlights: • The pH-sensitive composite alginate beads incorporating Sr-doped HA microspheres (SrHA) have been prepared. • The incorporation of the SrHA enhanced the drug loading and release properties of the alginate microspheres. • The composite microspheres showed excellent osteogenic effect by releasing osteogenic Sr ions.

  14. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping, E-mail: wdpshk@tongji.edu.cn

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials. - Highlights: • The pH-sensitive composite alginate beads incorporating Sr-doped HA microspheres (SrHA) have been prepared. • The incorporation of the SrHA enhanced the drug loading and release properties of the alginate microspheres. • The composite microspheres showed excellent osteogenic effect by releasing osteogenic Sr ions.

  15. The Use of Alginate in Lemon Extract Effervescent Powder Production

    Directory of Open Access Journals (Sweden)

    Murdinah

    2015-11-01

    Full Text Available Study on the use of alginate in lemon (Citrus medica var lemon extract effervescent powder production has conducted. The aims of the research are to determine the optimum concentration of alginate used in lemon extract effervescent powder to produced best product and acceptance consumen.The lemon extract effervescent powder formula consisted of lemon extract powder, sucrose, aspartame, salt and effervescent mix (citric acid-tartrat acid-sodium bicarbonat. The alginate used in this study was extracted from Sargassum filipendula sea weed. The concentration of alginate used in lemon effervescent powder production was varied from 1; 2; 3 and 4%. The parameters observed to see the quality of the product were moisture content, ash content, pH, viscosity and organoleptic value (flavor, taste, viscosity, effec effervescent, effect sparkle and acceptance. Analysis of dietary fiber, sugar content, vitamin C content, total titratable acids, TPC and E.Coli to the best product. The result showed that the higher the concentration of alginate used in lemon effervescent powder production, the higher viscousness and the lower the organoleptic value. The optimum concentration of alginate used in the lemon extract effervescent powder processing was 1%. The characteristic this product 7.60% moisture content, 0.86% insoluble dietary fiber , 7.92% soluble dietary fiber, 3.74% sugar content, 55,26 mg/100 g vitamin C, 134.15 mL 0.1 NaOH/100 mL total titratable acids, 20 cPs viscosity, <2.5x102 coloni/mL TPC and E.Coli negative.

  16. Production, deformation and mechanical investigation of magnetic alginate capsules

    Science.gov (United States)

    Zwar, Elena; Kemna, Andre; Richter, Lena; Degen, Patrick; Rehage, Heinz

    2018-02-01

    In this article we investigated the deformation of alginate capsules in magnetic fields. The sensitivity to magnetic forces was realised by encapsulating an oil in water emulsion, where the oil droplets contained dispersed magnetic nanoparticles. We solved calcium ions in the aqueous emulsion phase, which act as crosslinking compounds for forming thin layers of alginate membranes. This encapsulating technique allows the production of flexible capsules with an emulsion as the capsule core. It is important to mention that the magnetic nanoparticles were stable and dispersed throughout the complete process, which is an important difference to most magnetic alginate-based materials. In a series of experiments, we used spinning drop techniques, capsule squeezing experiments and interfacial shear rheology in order to determine the surface Young moduli, the surface Poisson ratios and the surface shear moduli of the magnetically sensitive alginate capsules. In additional experiments, we analysed the capsule deformation in magnetic fields. In spinning drop and capsule squeezing experiments, water droplets were pressed out of the capsules at elevated values of the mechanical load. This phenomenon might be used for the mechanically triggered release of water-soluble ingredients. After drying the emulsion-filled capsules, we produced capsules, which only contained a homogeneous oil phase with stable suspended magnetic nanoparticles (organic ferrofluid). In the dried state, the thin alginate membranes of these particles were rather rigid. These dehydrated capsules could be stored at ambient conditions for several months without changing their properties. After exposure to water, the alginate membranes rehydrated and became flexible and deformable again. During this swelling process, water diffused back in the capsule. This long-term stability and rehydration offers a great spectrum of different applications as sensors, soft actuators, artificial muscles or drug delivery systems.

  17. Use of 111In-labeled alginate to study the pH dependence of alginic acid anti-esophageal reflux barrier

    International Nuclear Information System (INIS)

    Knight, L.C.; Maurer, A.H.; Ammar, I.A.; Siegel, J.A.; Fisher, R.S.; Malmud, L.S.; Temple Univ., Philadelphia, PA

    1988-01-01

    Mixtures of alginic acid and antacid, when given orally, react with gastric acid to form a viscous barrier (raft) which floats on the surface of the gastric contents. 111 In was used to label magnesium alginate in order to study the effect of gastric acidity on the extent of formation of the raft. In vitro, acid concentrations less than 0.05 N diminished raft formation. In vivo, raft formation was significantly better in normal subjects who ingested dilute acid with the labeled alginate/antacid than in subjects who ingested the labeled alginate/antacid with plain water. Gastric emptying of the labeled alginate was also slowed by the presence of acidified gastric contents. These results suggest that the formation of an effective alginic acid antireflux barrier requires acidic gastric contents. (author)

  18. Alginate Biosynthesis in Azotobacter vinelandii: Overview of Molecular Mechanisms in Connection with the Oxygen Availability

    Directory of Open Access Journals (Sweden)

    Ivette Pacheco-Leyva

    2016-01-01

    Full Text Available The Gram-negative bacterium Azotobacter vinelandii can synthetize the biopolymer alginate that has material properties appropriate for plenty of applications in industry as well as in medicine. In order to settle the foundation for improving alginate production without compromising its quality, a better understanding of the polymer biosynthesis and the mechanism of regulation during fermentation processes is necessary. This knowledge is crucial for the development of novel production strategies. Here, we highlight the key aspects of alginate biosynthesis that can lead to producing an alginate with specific material properties with particular focus on the role of oxygen availability linked with the molecular mechanisms involved in the alginate production.

  19. Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent

    Science.gov (United States)

    Helmiyati; Aprilliza, M.

    2017-04-01

    Sodium alginate obtained from the extraction of brown algae is used as the backbone for the synthesis of superabsorbent nanocomposite copolymerization. The first stage of extraction is the demineralization process using 0.1 M HCl solution and then 2% Na2CO3 solution for 2 hours at 60°C. The rendement of sodium alginate obtained was 44.32% with molecular weight of 40680 g/mol with measurement of the intrinsic viscosity. FTIR spectra of sodium alginate showed mannuronic acid functional group at wavenumber 884 cm-1 and the uronic acid at wavenumber 939 cm-1, OH functional group at wavenumber 3200-3400 cm-1, and CH2 stretching at wavenumber 2928 cm-1. The diffraction pattern of isolated sodium alginate has specific 2θ at 13.068 and 21.096, amorphous intensity found specific 2θ at 18.058, and the obtained crystallinity degree of the sodium alginate is equal to 29.292% from the XRD analysis. The morphological analysis by SEM shows fibrils of isolated sodium alginate. The success isolation of sodium alginate from brown algae is supported by DSC which shows the decomposition temperature of pure sodium alginate and isolated alginate have close values, namely 251.12°C for pure sodium alginate and 229.90°C for isolated sodium alginate.

  20. Effects of Composition of Iron-Cross-Linked Alginate Hydrogels for Cultivation of Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ikuko Machida-Sano

    2012-01-01

    Full Text Available We investigated the suitability of ferric-ion-cross-linked alginates (Fe-alginate with various proportions of L-guluronic acid (G and D-mannuronic acid (M residues as a culture substrate for human dermal fibroblasts. High-G and high-M Fe-alginate gels showed comparable efficacy in promoting initial cell adhesion and similar protein adsorption capacities, but superior cell proliferation was observed on high-G than on high-M Fe-alginate as culture time progressed. During immersion in culture medium, high-G Fe-alginate showed little change in gel properties in terms of swelling and polymer content, but the properties of high-M Fe-alginate gel were altered due to loss of ion cross-linking. However, the degree of cell proliferation on high-M Fe-alginate gel was improved after it had been stabilized by immersion in culture medium until no further changes occurred. These results suggest that the mode of cross-linkage between ferric ions and alginate differs depending on alginate composition and that the major factor giving rise to differences in cell growth on the two types of Fe-alginate films is gel stability during culture, rather than swelling of the original gel, polymer content, or protein adsorption ability. Our findings may be useful for extending the application of Fe-alginate to diverse biomedical fields.

  1. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel

    DEFF Research Database (Denmark)

    Larsen, Bjarke Follin; Juhl, Morten; Cohen, Smadar

    2015-01-01

    BACKGROUND AIMS: Clinical trials have documented beneficial effects of mesenchymal stromal cells from bone marrow and adipose tissue (ASCs) as treatment in patients with ischemic heart disease. However, retention of transplanted cells is poor. One potential way to increase cell retention...... is to inject the cells in an in situ cross-linked alginate hydrogel. METHODS: ASCs from abdominal human tissue were embedded in alginate hydrogel and alginate hydrogel modified with Arg-Gly-Asp motifs (RGD-alginate) and cultured for 1 week. Cell viability, phenotype, immunogenicity and paracrine activity were...... determined by confocal microscopy, dendritic cell co-culture, flow cytometry, reverse transcriptase quantitative polymerase chain reaction, Luminex multiplex, and lymphocyte proliferation experiments. RESULTS: ASCs performed equally well in alginate and RGD-alginate. After 1 week of alginate culture, cell...

  2. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants.

    Science.gov (United States)

    Lan, Shih-Feng; Kehinde, Timilehin; Zhang, Xiangming; Khajotia, Sharukh; Schmidtke, David W; Starly, Binil

    2013-06-01

    Dental implants provide support for dental crowns and bridges by serving as abutments for the replacement of missing teeth. To prevent bacterial accumulation and growth at the site of implantation, solutions such as systemic antibiotics and localized delivery of bactericidal agents are often employed. The objective of this study was to demonstrate a novel method of controlled localized delivery of antibacterial agents to an implant site using a biodegradable custom fabricated ring. The study involved incorporating a model antibacterial agent (metronidazole) into custom designed poly-ε-caprolactone/alginate (PCL/alginate) composite rings to produce the intended controlled release profile. The rings can be designed to fit around the body of any root form dental implants of various diameters, shapes and sizes. In vitro release studies indicate that pure (100%) alginate rings exhibited an expected burst release of metronidazole in the first few hours, whereas Alginate/PCL composite rings produced a medium burst release followed by a sustained release for a period greater than 4 weeks. By varying the PCL/alginate weight ratios, we have shown that we can control the amount of antibacterial agents released to provide the minimal inhibitory concentration (MIC) needed for adequate protection. The fabricated composite rings have achieved a 50% antibacterial agent release profile over the first 48 h and the remaining amount slowly released over the remainder of the study period. The PCL/alginate agent release characteristic fits the Ritger-Peppas model indicating a diffusion-based mechanism during the 30-day study period. The developed system demonstrates a controllable drug release profile and the potential for the ring to inhibit bacterial biofilm growth for the prevention of diseases such as peri-implantitis resulting from bacterial infection at the implant site. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    OpenAIRE

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin; Hwang, Hyeon-Shik

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions wer...

  4. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su In; Kim, Hee Sook [Kyungsung Univ., Busan (Korea, Republic of). Dept. of Food Science and Biotechnology; Choi, Sung Hee; Lee, Eun Yeol [Kyung Hee Univ., Gyeonggi-do (Korea, Republic of). Dept. of Chemical Engineering

    2012-09-15

    A gene for a polyMG-specific alginate lyase possessing a novel structure was identified and cloned from Stenotrophomas maltophilia KJ-2 by using PCR with homologous nucleotide sequences-based primers. The recombinant alginate lyase consisting of 475 amino acids was purified on Ni-Sepharose column and exhibited the highest activity at pH 8 and 40 C. Interestingly, the recombinant alginate lyase was expected to have a similar catalytic active site of chondroitin B lyase but did not show chondroitin lyase activity. In the test of substrate specificity, the recombinant alginate lyase preferentially degraded the glycosidic bond of polyMG-block than polyM-block and polyG-block. The chemical structures of the degraded alginate oligosaccharides were elucidated to have mannuronate (M) at the reducing end on the basis of NMR analysis, supporting that KJ-2 polyMG-specific alginate lyase preferably degraded the glycosidic bond in M-G linkage than that in G-M linkage. The KJ-2 polyMG-specific alginate lyase can be used in combination with other alginate lyases for a synergistic saccharification of alginate. (orig.)

  5. Alginate microbeads are coagulation compatible, while alginate microcapsules activate coagulation secondary to complement or directly through FXII.

    Science.gov (United States)

    Gravastrand, Caroline; Hamad, Shamal; Fure, Hilde; Steinkjer, Bjørg; Ryan, Liv; Oberholzer, Josè; Lambris, John D; Lacík, Igor; Mollnes, Tom Eirik; Espevik, Terje; Brekke, Ole-Lars; Rokstad, Anne Mari

    2017-08-01

    Alginate microspheres are presently under evaluation for future cell-based therapy. Their ability to induce harmful host reactions needs to be identified for developing the most suitable devices and efficient prevention strategies. We used a lepirudin based human whole blood model to investigate the coagulation potentials of alginate-based microspheres: alginate microbeads (Ca/Ba Beads), alginate poly-l-lysine microcapsules (APA and AP microcapsules) and sodium alginate-sodium cellulose sulfate-poly(methylene-co-cyanoguanidine) microcapsules (PMCG microcapsules). Coagulation activation measured by prothrombin fragments 1+2 (PTF1.2) was rapidly and markedly induced by the PMCG microcapsules, delayed and lower induced by the APA and AP microcapsules, and not induced by the Ca/Ba Beads. Monocytes tissue factor (TF) expression was similarly activated by the microcapsules, whereas not by the Ca/Ba Beads. PMCG microcapsules-induced PTF1.2 was abolished by FXII inhibition (corn trypsin inhibitor), thus pointing to activation through the contact pathway. PTF1.2 induced by the AP and APA microcapsules was inhibited by anti-TF antibody, pointing to a TF driven coagulation. The TF induced coagulation was inhibited by the complement inhibitors compstatin (C3 inhibition) and eculizumab (C5 inhibition), revealing a complement-coagulation cross-talk. This is the first study on the coagulation potentials of alginate microspheres, and identifies differences in activation potential, pathways and possible intervention points. Alginate microcapsules are prospective candidate materials for cell encapsulation therapy. The material surface must be free of host cell adhesion to ensure free diffusion of nutrition and oxygen to the encapsulated cells. Coagulation activation is one gateway to cellular overgrowth through deposition of fibrin. Herein we used a physiologically relevant whole blood model to investigate the coagulation potential of alginate microcapsules and microbeads. The

  6. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads

    Directory of Open Access Journals (Sweden)

    Bárbara M. Bonine

    2014-01-01

    Full Text Available This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg and poly(vinyl alcohol (PVA. We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C.

  7. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingxian [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China); Dai, Libing [Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital Medical College, Jinan University, Guangzhou 510220 (China); Shi, Huizhe; Xiong, Sheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China)

    2015-04-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100–200 μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. - Highlights: • We fabricated HNTs reinforced alginate composite scaffolds for biomedical applications. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate scaffold. • The scaffolds exhibit a highly porous structure with interconnected pores. • HNTs can improve the cell attachment and proliferation on alginate.

  8. Bioinspired preparation of alginate nanoparticles using microbubble bursting.

    Science.gov (United States)

    Elsayed, Mohamed; Huang, Jie; Edirisinghe, Mohan

    2015-01-01

    Nanoparticles are considered to be one of the most advanced tools for drug delivery applications. In this research, alginate (a model hydrophilic polymer) nanoparticles 80 to 200 nm in diameter were obtained using microbubble bursting. The natural process of bubble bursting occurs through a number of stages, which consequently produce nano- and microsized droplets via two main production mechanisms, bubble shell disintegration and a jetting process. In this study, nano-sized droplets/particles were obtained by promoting the disintegrating mechanism and suppressing (limiting) the formation of larger microparticles resulting from the jetting mechanism. A T-junction microfluidic device was used to prepare alginate microbubbles with different sizes in a well-controlled manner. The size of the bubbles was varied by controlling two processing parameters, the solution flow rate and the bubbling pressure. Crucially, the bubble size was found to be the determining factor for inducing (or limiting) the bubble shell disintegration mechanism and the size needed to promote this process was influenced by the properties of the solution used for preparing the bubbles, particularly the viscosity. The size of alginate nanoparticles produced via the disintegration mechanism was found to be directly proportional to the viscosity of the alginate solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. the potential of alginic acid and polygal for soil stabilization

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... ped-size and structure also reflect in the liquid and plastic limits of the soil. Such a change can be caused by mixing the soil with an additive. [8,9) such as the alginic acid and polygal and the results of such an investigation are reported in this paper. Atterberg limits, compaction and strength properties are ...

  10. Comparison Of The Dimensional Stability Of Alginate Impressions ...

    African Journals Online (AJOL)

    Methodology: Alginate impressions of a master model of truncated metal cones were made and disinfected with 1% sodium hypochlorite constituted from 3.5% household bleach using the spray and immersion technique for 10;20 and 30 minutes. Impressions were cast in dental stone and the linear dimensional differences ...

  11. Development of Alginate/Chitosan Microparticles for Dust Mite Allerge

    African Journals Online (AJOL)

    The highest allergen content (0.30 ± 0.07 mg/g) was obtained with 2.5 % initial allergen loading in chitosan- triphosphate (CS-TPP) microparticles. Sustained allergen release (approx. 50 % over 24 h) was observed from alginate-coated chitosan microparticles. Allergen incorporation method and initial drug-loading could ...

  12. Structural basis for alginate secretion across the bacterial outer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  13. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    Energy Technology Data Exchange (ETDEWEB)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  14. Adsorption studies of phosphate ions on alginate-calcium carbonate ...

    African Journals Online (AJOL)

    Alginate-calcium carbonate composite beads was prepared by the sol-gel method and characterized by Fourier transform infra-red spectroscopy (FT-IR) and scanning electron microscope (SEM) instruments. Adsorption potential of phosphate ions have been studied on laboratory scale. The effects of contact time, adsorbent ...

  15. Continuous removal and recovery of lead by alginate beads, free ...

    African Journals Online (AJOL)

    This study examines the possibility of using Chlorella vulgaris cells in repeated lead adsorption/desorption cycles. Alginate beads and immobilized with algal cells were more effective and suitable than free cells. Consistently high lead removal (>90%) and recovery (about 100%) were achieved. Lead adsorption was mainly ...

  16. Insulin-loaded alginic acid nanoparticles for sublingual delivery.

    Science.gov (United States)

    Patil, Nilam H; Devarajan, Padma V

    2016-01-01

    Alginic acid nanoparticles (NPs) containing insulin, with nicotinamide as permeation enhancer were developed for sublingual delivery. The lower concentration of proteolytic enzymes, lower thickness and enhanced retention due to bioadhesive property, were relied on for enhanced insulin absorption. Insulin-loaded NPs were prepared by mild and aqueous based nanoprecipitation process. NPs were negatively charged and had a mean size of ∼200 nm with low dispersity index. Insulin loading capacities of >95% suggested a high association of insulin with alginic acid. Fourier Transform Infra-Red Spectroscopy (FTIR) spectra and DSC (Differential Scanning Calorimetry) thermogram of insulin-loaded NPs revealed the association of insulin with alginic acid. Circular dichroism (CD) spectra confirmed conformational stability, while HPLC analysis confirmed chemical stability of insulin in the NPs. Sublingually delivered NPs with nicotinamide exhibited high pharmacological availability (>100%) and bioavailability (>80%) at a dose of 5 IU/kg. The high absolute pharmacological availability of 20.2% and bioavailability of 24.1% in comparison with subcutaneous injection at 1 IU/kg, in the streptozotocin-induced diabetic rat model, suggest the insulin-loaded alginic acid NPs as a promising sublingual delivery system of insulin.

  17. In vitro propagation of Acacia hybrid through alginate-encapsulated ...

    African Journals Online (AJOL)

    Seed collected from Acacia hybrid trees yields highly variable and poorly performing offspring and are not commonly used in regeneration. The present study described the incapsulation of Acacia hybrid shoots and axillary buds in the calcium alginate gel. The aim of the study was to evaluate the germination of the buds in ...

  18. Use of antacids, alginates and proton pump inhibitors

    DEFF Research Database (Denmark)

    Lødrup, Anders; Reimer, Christine; Bytzer, Peter

    2014-01-01

    OBJECTIVE: Both over-the-counter medicine, such as antacids or alginates, and proton pump inhibitors (PPI) are used for treating acid-related disorders. We sought to describe what characterizes users of these different medicines, including long-term PPI users within the general population. METHOD...

  19. Adsorption studies of phosphate ions on alginate- calcium ...

    African Journals Online (AJOL)

    user

    Alginate-calcium carbonate composite beads was prepared by the sol-gel method and characterized by. Fourier transform infra-red spectroscopy (FT-IR) and scanning electron microscope (SEM) instruments. Adsorption potential of phosphate ions have been studied on laboratory scale. The effects of contact.

  20. Transformation of brushite to hydroxyapatite and effects of alginate additives

    Science.gov (United States)

    Ucar, Seniz; Bjørnøy, Sindre H.; Bassett, David C.; Strand, Berit L.; Sikorski, Pawel; Andreassen, Jens-Petter

    2017-06-01

    Phase transformations are important processes during mineral formation in both in vivo and in vitro model systems and macromolecules are influential in regulating the mineralization processes. Calcium phosphate mineralized alginate hydrogels are potential candidates for hard tissue engineering applications and transformation of the resorbable calcium phosphate phases to apatitic bone mineral in vivo enhances the success of these composite materials. Here, the transformation of brushite to hydroxyapatite (HA) and the effects of alginate additives on this process are studied by the investigation of supersaturation profiles with HA-seeded and unseeded experiments. This experimental design allows for detailed kinetic interpretation of the transformation reactions and deduction of information on the nucleation stage of HA by evaluating the results of seeded and unseeded experiments together. In the experimental conditions of this work, transformation was controlled by HA growth until the point of near complete brushite dissolution where the growth and dissolution rates were balanced. The presence of alginate additives at low concentration were not highly influential on transformation rates during the growth dominated region but their retardant effect became more pronounced as the dissolution and growth rates reached an equilibrium where both reactions were effective on transformation kinetics. Decoupling of seeded and unseeded transformation experiments suggested that alginate additives retard HA nucleation and this was most evident in the presence of G-block oligomers.

  1. Magnetic alginate microparticles for purification of .alpha.-amylases

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Roy, I.; Gupta, M. N.; Šafařík, Ivo

    2003-01-01

    Roč. 105, - (2003), s. 255-260 ISSN 0168-1656 R&D Projects: GA MŠk OC 523.80; GA AV ČR IBS6087204 Institutional research plan: CEZ:AV0Z6087904 Keywords : alginate * ferrofluid * amalyses Subject RIV: CE - Biochemistry Impact factor: 2.543, year: 2003

  2. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications.

    Science.gov (United States)

    Müller, Michael; Öztürk, Ece; Arlov, Øystein; Gatenholm, Paul; Zenobi-Wong, Marcy

    2017-01-01

    One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.

  3. Binding and leakage of barium in alginate microbeads.

    Science.gov (United States)

    Mørch, Yrr A; Qi, Meirigeng; Gundersen, Per Ole M; Formo, Kjetil; Lacik, Igor; Skjåk-Braek, Gudmund; Oberholzer, Jose; Strand, Berit L

    2012-11-01

    Microbeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared with high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. To reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. Copyright © 2012 Wiley Periodicals, Inc.

  4. Survey of Bacterial and Fungal Contaminations in Iranian Alginate, Foreign Alginate and Speedex Used for Impression in Dentistry

    Directory of Open Access Journals (Sweden)

    Abbas Falah Tafti

    2012-02-01

    Full Text Available Background and Aims: Since impression materials usually contact with saliva, blood, and oral soft tissues, their microbial contamination are harmful in immunocompromised patients. The aim of the present study was to determine the bacterial and fungal contamination in common impression materials. Materials and Methods: In current lab trial study, 5 different samples from each 4 impression materials were homogenized in 1 ml Tween 80 and then 100µl of each sample were cultured onto blood agar, EMB, or sabouraud dextrose agar. Bacterial and fungal cultures were incubated at 37º C and 30º C, respectively. The isolated bacterial and fungal colonies were enumerated and identified using specific diagnostic media and tests. Data were analyzed using Kruskal-Wallis test. Results: Totally 75% of samples had one or several bacterial contaminations. Iranian alginate and Speedex (putty were the most contaminated samples. On the other hand, Speedex (light body and foreign alginate showed lower contamination. Species of Micrococcus, Staphylococcus, Bacilluses, Corynebacteria, gram negative Citrobacter, Actinomycetes and Neisseria were isolated from the analyzed impression materials. Aspergillus, Penicillium, Alternaria, Cladosporium and Sepdonium were the fungi isolated from impression materials. Statistical significant difference was shown between bacterial contamination of Iranian and foreign alginates (P=0.001. There was no statistical significant differences between the bacterial and fungal isolated colonies (CFU/gr of 4 tested impression materials (P=0.21. Conclusion: Several opportunistic bacteria and fungi were isolated from impression materials especially from Iranian alginate and Speedex putty which indicated their contamination.

  5. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota

    Science.gov (United States)

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D.; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn’t affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar. PMID:28170428

  6. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Science.gov (United States)

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  7. Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions.

    Science.gov (United States)

    Díaz-Barrera, Alvaro; Maturana, Nataly; Pacheco-Leyva, Ivette; Martínez, Irene; Altamirano, Claudia

    2017-07-01

    Alginate production and gene expression of genes involved in alginate biosynthesis were evaluated in continuous cultures under dissolved oxygen tension (DOT) controlled conditions. Chemostat at 8% DOT showed an increase in the specific oxygen uptake rate [Formula: see text] from 10.9 to 45.3 mmol g -1  h -1 by changes in the dilution rate (D) from 0.06 to 0.10 h -1 , whereas under 1% DOT the [Formula: see text] was not affected. Alginate molecular weight was not affected by DOT. However, chemostat at 1% DOT showed a downregulation up to 20-fold in genes encoding both the alginate polymerase (alg8, alg44), alginate acetylases (algV, algI) and alginate lyase AlgL. alyA1 and algE7 lyases gene expressions presented an opposite behavior by changing the DOT, suggesting that A. vinelandii can use specific depolymerases depending on the oxygen level. Overall, the DOT level have a differential effect on genes involved in alginate synthesis, thus a gene expression equilibrium determines the production of alginates of similar molecular weight under DOT controlled.

  8. Synthesis of alginate oligomers by gamma irradiation and to investigate its antioxidant and prebiotic activity

    International Nuclear Information System (INIS)

    Bhoir, S.A.; Chawla, S.P.

    2016-01-01

    Alginate oligomers formed by alginate lyase have been reported to possess antioxidant activity as well as prebiotic activity. Hence, utility of gamma radiation to depolymerise alginate in its aqueous solution was investigated and its antioxidant and prebiotic activities were screened. 1% aqueous solution of sodium alginate was subjected to gamma irradiation and it's reducing power and ability to scavenge DPPH . and O 2 ..- , chelate iron and prevent heat induced β-carotene bleaching was determined. Prebiotic activity was determined by using alginate oligomers to promote prebiotic activity of Lactobacillus plantarum against E coli. Gamma radiation induced depolymerisation of alginate resulted in formation of oligomers with antioxidant and prebiotic activity. These polymers are potential candidates for utilization as natural preservatives and functional foods

  9. Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Marta Szekalska

    2016-01-01

    Full Text Available Over the last decades, alginates, natural multifunctional polymers, have increasingly drawn attention as attractive compounds in the biomedical and pharmaceutical fields due to their unique physicochemical properties and versatile biological activities. The focus of the paper is to describe biological and pharmacological activity of alginates and to discuss the present use and future possibilities of alginates as a tool in drug formulation. The recent technological advancements with using alginates, issues related to alginates suitability as matrix for three-dimensional tissue cultures, adjuvants of antibiotics, and antiviral agents in cell transplantation in diabetes or neurodegenerative diseases treatment, and an update on the antimicrobial and antiviral therapy of the alginate based drugs are also highlighted.

  10. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel.

    Directory of Open Access Journals (Sweden)

    Bapi Sarker

    Full Text Available Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.

  11. Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel

    Science.gov (United States)

    Silva, Raquel; Roether, Judith A.; Kaschta, Joachim; Detsch, Rainer; Schubert, Dirk W.; Cicha, Iwona; Boccaccini, Aldo R.

    2014-01-01

    Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL) hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA) with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration. PMID:25268892

  12. Determination of bound and unbound water in dental alginate irreversible hydrocolloid by nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Fellows, C M; Thomas, G A

    2009-04-01

    Alginate materials are considered unsuitable for precise fixed prosthetic rehabilitation due to their tendency to undergo spontaneous syneresis. Commercial alginate impression materials were investigated using Nuclear Magnetic Resonance (NMR) Spectroscopy to probe the relation between changes in the microscopic water environment and dimensional change to obtain a better understanding of spontaneous syneresis. NMR was used to measure the spin-lattice relaxation times (T(1)) of (1)H nuclei in water in alginate matrices to characterize changes in gel structure over time. These results were related to the dimensional stabilities of the alginate impression materials, their chemical compositions, and the Moisture Sorption Isotherms (MSI) obtained by incubation at fixed relative humidities. The rate of change of T(1) with time was found to be a better predictor of dimensional stability than MSI. The greatest dimensional stability for the alginate powders investigated was associated with a high filler:alginate ratio and a high Ca:Na ratio. Nuclear magnetic resonance spectroscopy may used to measure changes in alginate impression materials under conditions where no dimensional change can be observed directly. Changes occurred rapidly even at 100% humidity, suggesting the dimensional stability of alginate impression materials is partially independent of the rate of dehydration. The results may open a way to formulate alginate impression materials more suitable for precise fabrication of dental prostheses.

  13. Effects of disinfecting alginate impressions on the scratch hardness of stone models.

    Science.gov (United States)

    Hiraguchi, Hisako; Nakagawa, Hisami; Wakashima, Mitsuru; Miyanaga, Kohichi; Saigo, Masataka; Nishiyama, Minoru

    2006-03-01

    This study investigated the effects of disinfecting alginate impressions on the scratch depth of resultant stone models. Eleven brands of alginate impression material and two disinfectants, 1% sodium hypochlorite and 2% glutaraldehyde, were used. Impressions were immersed in disinfectant solutions or stored in sealed bags after spraying with disinfectants, and then poured with a type V dental stone. The scratch depth of the stone model obtained from disinfected impression was measured. The storage of alginate impressions after spraying with disinfectants did not increase the scratch depth of resultant stone models. However, the effect of immersion in disinfectants on scratch depth varied with the brand of the alginate impression material.

  14. Sustained-release alginate-chitosan pellets prepared by melt pelletization technique.

    Science.gov (United States)

    Wong, Tin Wui; Nurulaini, Harjoh

    2012-12-01

    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution. This study aimed to design sustained-release alginate pellets through rapid in situ matrix coacervation by chitosan during dissolution. Pellets made of alginate with chitosan and/or calcium acetate were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed such reaction to occur only in dissolution phase. Drug release was retarded in pH 2.2 medium when pellets were formulated with calcium acetate or chitosan till a change in medium pH to 6.8. The sustained-release characteristics of calcium alginate pellets were attributed to pellet dispersion and rapid cross-linking by soluble Ca(2+) during dissolution. The slow drug release characteristics of alginate-chitosan pellets were attributed to polyelectrolyte complexation and pellet aggregation into swollen structures with reduced erosion. The drug release was, however, not retarded when both calcium acetate and chitosan coexisted in the same matrix as a result of chitosan shielding of Ca(2+) to initiate alginate cross-linkages and rapid in situ solvation of calcium acetate induced fast pellet dispersion and chitosan losses from matrix. Similar to calcium alginate pellets, alginate-chitosan pellets demonstrated sustained drug release property though via different mechanisms. Combination of alginate, chitosan and calcium acetate in the same matrix nevertheless failed to retard drug release via complementary drug release pattern.

  15. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A.

    Directory of Open Access Journals (Sweden)

    Steven M Swift

    Full Text Available Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates.

  16. Effects of Composition of Iron-Cross-Linked Alginate Hydrogels for Cultivation of Human Dermal Fibroblasts

    OpenAIRE

    Machida-Sano, Ikuko; Ogawa, Sakito; Ueda, Hiroyuki; Kimura, Yoshitaka; Satoh, Nao; Namiki, Hideo

    2012-01-01

    We investigated the suitability of ferric-ion-cross-linked alginates (Fe-alginate) with various proportions of L-guluronic acid (G) and D-mannuronic acid (M) residues as a culture substrate for human dermal fibroblasts. High-G and high-M Fe-alginate gels showed comparable efficacy in promoting initial cell adhesion and similar protein adsorption capacities, but superior cell proliferation was observed on high-G than on high-M Fe-alginate as culture time progressed. During immersion in culture...

  17. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels

    International Nuclear Information System (INIS)

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-01-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe 3+ , Al 3+ , Ca 2+ , Ba 2+ and Sr 2+ )-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. (paper)

  18. Drug release, preclinical and clinical pharmacokinetics relationships of alginate pellets prepared by melt technology.

    Science.gov (United States)

    Bose, Anirbandeep; Harjoh, Nurulaini; Pal, Tapan Kumar; Dan, Shubhasis; Wong, Tin Wui

    2016-01-01

    Alginate pellets prepared by the aqueous agglomeration technique experience fast drug dissolution due to the porous pre-formed calcium alginate microstructure. This study investigated in vitro drug release, preclinical and clinical pharmacokinetics relationships of intestinal-specific calcium acetate-alginate pellets against calcium-free and calcium carbonate-alginate pellets. Alginate pellets were prepared by solvent-free melt pelletization instead of aqueous agglomeration technique using chlorpheniramine maleate as model drug. A fast in situ calcium acetate dissolution in pellets resulted in rapid pellet breakup, soluble Ca(2+) crosslinking of alginate fragments and drug dissolution retardation at pH 1.2, which were not found in other pellet types. The preclinical drug absorption rate was lower with calcium acetate loaded than calcium-free alginate pellets. In human subjects, however, the extent and the rate of drug absorption were higher from calcium acetate-loaded pellets than calcium-free alginate pellets. The fine, dispersible and weakly gastric mucoadhesive calcium alginate pellets underwent fast human gastrointestinal transit. They released the drug at a greater rate than calcium-free pellets in the intestine, thereby promoting drug bioavailability. Calcium acetate was required as a disintegrant more than as a crosslinking agent clinically to promote pellet fragmentation, fast gastrointestinal transit and drug release in intestinal medium, and intestinal-specific drug bioavailability.

  19. Biocomposite cellulose-alginate films: promising packaging materials.

    Science.gov (United States)

    Sirviö, Juho Antti; Kolehmainen, Aleksi; Liimatainen, Henrikki; Niinimäki, Jouko; Hormi, Osmo E O

    2014-05-15

    Biocomposite films based on cellulose and alginate were produced using unmodified birch pulp, microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC) and birch pulp derivate, nanofibrillated anionic dicarboxylic acid cellulose (DCC), having widths of fibres ranging from 19.0 μm to 25 nm as cellulose fibre materials. Ionically cross-linked biocomposites were produced using Ca(2+) cross-linking. Addition of micro- and nanocelluloses as a reinforcement increased the mechanical properties of the alginate films remarkably, e.g. addition of 15% of NFC increased a tensile strength of the film from 70.02 to 97.97 MPa. After ionic cross-linking, the tensile strength of the film containing 10% of DCC was increased from 69.63 to 125.31 MPa. The biocomposite films showed excellent grease barrier properties and reduced water vapour permeability (WVP) after the addition of cellulose fibres, except when unmodified birch pulp was used. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Characteristics of Immobilized Urease on Grafted Alginate Bead Systems

    Directory of Open Access Journals (Sweden)

    Enas N. Danial

    2015-04-01

    Full Text Available This study evaluated the biological importance of immobilized urease enzyme over the free urease. The support material used for urease immobilization was alginate. Generally, the immobilization of urease in alginate gel showed a marked increase in Km and Vmax. However, the immobilized urease showed higher thermal stability than that of free enzyme. The rate of thermal inactivation of the immobilized enzyme decreased due to entrapment in gel matrix. Also, the activity of the immobilized urease was more stable in retention than that of the free enzyme during the storage in solution, although the activity of the immobilized enzyme was lower in comparison with the free enzyme. A stable immobilized system and long storage life are convenient for applications that would not be feasible with a soluble enzyme system. These results highlighted the technical and biochemical benefits of immobilized urease over the free enzyme.

  1. Novel Osteointegrative Sr-Substituted Apatitic Cements Enriched with Alginate

    Directory of Open Access Journals (Sweden)

    Simone Sprio

    2016-09-01

    Full Text Available The present work describes the synthesis of novel injectable, self-setting bone cements made of strontium-substituted hydroxyapatite (Sr-HA, obtained by single-phase calcium phosphate precursors doped with different amounts of strontium and enriched with alginate. The addition of alginate improved the injectability, cohesion, and compression strength of the cements, without affecting the hardening process. A Sr-HA cement exhibiting adequate hardening times and mechanical strength for clinical applications was further tested in vivo in a rabbit model, in comparison with a commercial calcium phosphate cement, revealing the maintenance of biomimetic composition and porous microstructure even after one month in vivo, as well as enhanced ability to induce new bone formation and penetration.

  2. Isolation of protoplasts from undaria pinnatifida by alginate lyase digestion

    Science.gov (United States)

    Xiaoke, Hu; Xiaolu, Jiang; Huashi, Guan

    2003-04-01

    The aim of this study is to isolate protoplasts from Undaria pinnatifida. Protoplasts of the alga were isolated enzymatically by using alginate lyase, which was prepared by fermenting culture of a strain Vibrio sp. 510. Monofacterial method was applied for optimizing digestion condition. The optimum condition for protoplast preparation is enzymatic digestion at 28°C for 2h using alginate lyase at the concentration of 213.36 U (8 mL) every 0.5g fresh thalline with NaCl 50 and at the shaking speed of 150 r min-1 during digestion. The protoplast yield can reach 2.62±0.09 million per 0.5 g fresh leave under the optimum condition. The enzyme activity is inhibited by Ca2+ and slightly enhanced by Fe2+ and Mn2+ at concentrations of 0.05, 0.08 and 0.10 mol L-1.

  3. Fabrication of cationic chitin nanofiber/alginate composite materials.

    Science.gov (United States)

    Sato, Koki; Tanaka, Kohei; Takata, Yusei; Yamamoto, Kazuya; Kadokawa, Jun-Ichi

    2016-10-01

    We have already found that an amidinated chitin, which was prepared by the reaction of a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, was converted into an amidinium chitin bicarbonate with nanofiber morphology by CO2 gas bubbling and ultrasonic treatments in water. In this study, we performed the fabrication of composite materials of such cationic chitin nanofibers with an anionic polysaccharide, sodium alginate, by ion exchange. When the amidinium chitin bicarbonate nanofiber aqueous dispersion was added to an aqueous solution of sodium alginate, the composite material was agglomerated, which was isolated by centrifugation, filtration, and lyophilization, to form a manipulatable sheet. The morphology of the resulting sheet at nano-scale was evaluated by SEM measurement. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels.

    Science.gov (United States)

    Leppiniemi, Jenni; Lahtinen, Panu; Paajanen, Antti; Mahlberg, Riitta; Metsä-Kortelainen, Sini; Pinomaa, Tatu; Pajari, Heikki; Vikholm-Lundin, Inger; Pursula, Pekka; Hytönen, Vesa P

    2017-07-05

    We describe herein a nanocellulose-alginate hydrogel suitable for 3D printing. The composition of the hydrogel was optimized based on material characterization methods and 3D printing experiments, and its behavior during the printing process was studied using computational fluid dynamics simulations. The hydrogel was biofunctionalized by the covalent coupling of an enhanced avidin protein to the cellulose nanofibrils. Ionic cross-linking of the hydrogel using calcium ions improved the performance of the material. The resulting hydrogel is suitable for 3D printing, its mechanical properties indicate good tissue compatibility, and the hydrogel absorbs water in moist conditions, suggesting potential in applications such as wound dressings. The biofunctionalization potential was shown by attaching a biotinylated fluorescent protein and a biotinylated fluorescent small molecule via avidin and monitoring the material using confocal microscopy. The 3D-printable bioactivated nanocellulose-alginate hydrogel offers a platform for the development of biomedical devices, wearable sensors, and drug-releasing materials.

  5. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    Science.gov (United States)

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  6. A Clinical and Laboratory Comparison of Alginate Impression Techniques,

    Science.gov (United States)

    1981-09-04

    impression would be inaccurate, and if these casts were to be used for the fabrication of a partial denture framework, the framework would be clinically...partially edentulous arches (referred tu --s standards) were made using a combination of metal and acrylic . Landmarks (machined indentations) in the second...with the alginate material, custom acrylic trays were made and polysulfide rubber was used to prepare 20 impressions of the maxillary and mandibular

  7. Characterization of alginate-brushite in-situ hydrogel composites

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, Seyed Mohammad Hossein [Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa (Italy); Lagazzo, Alberto; Barberis, Fabrizio [Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa (Italy); Farokhi, Mehdi [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Finochio, Elisabetta [Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa (Italy); Pastorino, Laura [Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa (Italy)

    2016-10-01

    In the present study alginate-brushite composite hydrogels were in-situ synthetized and characterized with respect to preparation parameters. Specifically, the influence of initial pH value and initial concentration of phosphate precursor on the in-situ fabrication of the composite hydrogel were taken into account. The composite hydrogels were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric (TGA, DTG) and differential thermal analysis (DTA). Finally, the cell viability tests were carried out (MTT) over the incubation time period of 3, 7, and 14 days. The results revealed that the formation and the crystalline stability of brushite were highly dependent on the initial pH value. It was shown that as the pH reached to the value of 6, characteristics peaks of brushite appeared in the FTIR spectra. Besides, the XRD and thermal analysis results were in a good accordance with those of FTIR. In addition, the SEM images demonstrated that the plate like brushite was formed inside the alginate matrix. Also, a considerable impact of pH variation on the biocompatibility of samples was noticed so that the majority of samples especially those prepared in the acidic conditions were toxic. - Highlights: • Alginate-brushite hydrogel composites were obtained through an in-situ process • The brushite crystals started forming at pH value of 6 • The increase in the initial concentration of phosphate precursor resulted in more crystalline structure • Samples prepared at pH value of 8 had the most stable crystalline structure • Brushite crystals promoted the biocompatibility of alginate.

  8. Controlled fabrication of multi-core alginate microcapsules.

    Science.gov (United States)

    Eqbal, Md Danish; Gundabala, Venkat

    2017-12-01

    In this work, we present a robust microfluidic platform for controlled and complete on-chip generation of alginate microcapsules with single and double liquid cores. A combined Coflow and T-junction configuration implemented in a hybrid glass-PDMS (Polydimethylsiloxane) device is used for the generation of microcapsules with oil as liquid core. Frequency matching of oil-alginate double emulsion generation with that of aqueous Calcium chloride droplet generation allows for controlled merging of the two, resulting in reliable production of microcapsules. Confocal imaging of microcapsule cross-section reveals presence of intact liquid core. In the case of double core microcapsules, the two cores are well separated by alginate layer ensuring their long term stability. The current approach is expected to have advantages over existing techniques for liquid core microcapsule generation in terms of continuity of the process, control over core stability, and non-damage to cells when used for cell encapsulation applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. IN VITRO EVALUATION OF FLUORIDE RELEASE OF JELTRATE® DENTAL ALGINATE

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2009-04-01

    Full Text Available Objective: To evaluate of fluoride release from Jeltrate alginate®. Materials and Methods: Four Trademarks of alginate were divided in four groups: conventional Jeltrate®, Plus Jeltrate®, Chromatic Jeltrate® and Chromatic Ortho Jeltrate®. The alginates were handled following the guidelines of the manufacturers. After this was followed by the construction of evidence bodies using silicone molds of the dimensions of 4 mm in diameter and 4mm in height. After take prey, the evidence bodies were removed from the molds and placed in container with 10 ml of ultra purified water, for 2 min. The fluoride release was measured by selective ion electrode connected to an analyzer of ions. Results: The Plus Jeltrate® showed a higher releasing fluoride 247.85 µg/cm2 followed by Chromatic Ortho Jeltrate® (217.83 µg/cm2, Chromatic Jeltrate ® (138.21 µg/cm2 and Jeltrate® (79.61 µg/cm2. Conclusion: Plus Jeltrate® had the best performance in releasing fluoride, followed by Chromatic Ortho Jeltrate®, Chromatic Jeltrate® and conventional Jeltrate®..

  10. Controlled antiseptic release by alginate polymer films and beads.

    Science.gov (United States)

    Liakos, Ioannis; Rizzello, Loris; Bayer, Ilker S; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-30

    Biodegradable polymeric materials based on blending aqueous dispersions of natural polymer sodium alginate (NaAlg) and povidone iodine (PVPI) complex, which allow controlled antiseptic release, are presented. The developed materials are either free standing NaAlg films or Ca(2+)-cross-linked alginate beads, which properly combined with PVPI demonstrate antibacterial and antifungal activity, suitable for therapeutic applications, such as wound dressing. Glycerol was used as the plasticizing agent. Film morphology was studied by optical and atomic force microscopy. It was found that PVPI complex forms well dispersed circular micro-domains within the NaAlg matrix. The beads were fabricated by drop-wise immersion of NaAlg/PVPI/glycerol solutions into aqueous calcium chloride solutions to form calcium alginate beads encapsulating PVPI solution (CaAlg/PVPI). Controlled release of PVPI was possible when the composite films and beads were brought into direct contact with water or with moist media. Bactericidal and fungicidal properties of the materials were tested against Escherichia coli bacteria and Candida albicans fungi. The results indicated very efficient antibacterial and antifungal activity within 48 h. Controlled release of PVPI into open wounds is highly desired in clinical applications to avoid toxic doses of iodine absorption by the wound. A wide variety of applications are envisioned such as external and internal wound dressings with controlled antiseptic release, hygienic and protective packaging films for medical devices, and polymer beads as water disinfectants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Alginate Immobilization of Metabolic Enzymes (AIME) for High ...

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti

  12. Growth and morphology of thermophilic dairy starters in alginate beads.

    Science.gov (United States)

    Lamboley, Laurence; St-Gelais, Daniel; Champagne, Claude P; Lamoureux, Maryse

    2003-06-01

    The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.

  13. ENTRAPMENT OF FLUORESCENT E. COLI CELLS IN ALGINATE GEL

    Directory of Open Access Journals (Sweden)

    V. IGNA

    2009-05-01

    Full Text Available By this experiment we will demonstrate the possibility to obtain genetically modifiedmicrobial strains that can be used as markers in different studies. The traittransferred in this study is the fluorescence in UV light expressed by a gene isolatedfrom jellyfish. This gene was insered into a plasmid carrying ampiciline resistanceand in the operon for arabinose fermentation. The plasmid was called pGLO. E coliHB101 K-12, ampicillin resistant colonies has been obtained. The colonies on theLB/amp/ara plate fluoresce green under UV light and the transformed colonies cangrow on ampicillin. Transformation efficiency = 362 transformed colonies/ μg DNA.The cells where immobilized by entrapment in alginate gel to study the phenomenoninvolved in cells immobilization. After immobilization in alginate gel, 5x104 cells ofE. coli pGLO / capsule and 1,4 x 105 cells of E. coli HB101/capsule has been found.Fluorescent microscopy revealed the presence of pGLO carrying cells into thecapsules. After cultivation of alginate capsules containing E. coli in LB broth, andfluorescent microscopy of the capsule sections, several observations of thephenomenon involved in continuous fermentation using biocatalysts in has beenmade. These cells grow and migrate to the cortical part of the matrix where they areimmobilized.

  14. ENTRAPMENT OF FLUORESCENT E. COLI CELLS IN ALGINATE GEL

    Directory of Open Access Journals (Sweden)

    T. VINTILA

    2009-05-01

    Full Text Available By this experiment we will demonstrate the possibility to obtain genetically modified microbial strains that can be used as markers in different studies. The trait transferred in this study is the fluorescence in UV light expressed by a gene isolated from jellyfish. This gene was insered into a plasmid carrying ampiciline resistance and in the operon for arabinose fermentation. The plasmid was called pGLO. E coli HB101 K-12, ampicillin resistant colonies has been obtained. The colonies on the LB/amp/ara plate fluoresce green under UV light and the transformed colonies can grow on ampicillin. Transformation efficiency = 362 transformed colonies/ μg DNA. The cells where immobilized by entrapment in alginate gel to study the phenomenon involved in cells immobilization. After immobilization in alginate gel, 5x104 cells of E. coli pGLO / capsule and 1,4 x 105 cells of E. coli HB101/capsule has been found. Fluorescent microscopy revealed the presence of pGLO carrying cells into the capsules. After cultivation of alginate capsules containing E. coli in LB broth, and fluorescent microscopy of the capsule sections, several observations of the phenomenon involved in continuous fermentation using biocatalysts in has been made. These cells grow and migrate to the cortical part of the matrix where they are immobilized.

  15. Silk fibroin and sodium alginate blend: Miscibility and physical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Agostini de Moraes, Mariana; Silva, Mariana Ferreira; Weska, Raquel Farias; Beppu, Marisa Masumi, E-mail: beppu@feq.unicamp.br

    2014-07-01

    Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing. - Highlights: • Blend films of fibroin and alginate were prepared with microscopic phase separation; • Self-assembled globular microdomains were mainly composed by fibroin; • It was possible to obtain a film with better mechanical and physical properties; • Blend films of fibroin and alginate represent a novel material in biomaterials field.

  16. From alginate impressions to digital virtual models: accuracy and reproducibility.

    Science.gov (United States)

    Dalstra, Michel; Melsen, Birte

    2009-03-01

    To compare the accuracy and reproducibility of measurements performed on digital virtual models with those taken on plaster casts from models poured immediately after the impression was taken, the 'gold standard', and from plaster models poured following a 3-5 day shipping procedure of the alginate impression. Direct comparison of two measuring techniques. The study was conducted at the Department of Orthodontics, School of Dentistry, University of Aarhus, Denmark in 2006/2007. Twelve randomly selected orthodontic graduate students with informed consent. Three sets of alginate impressions were taken from the participants within 1 hour. Plaster models were poured immediately from two of the sets, while the third set was kept in transit in the mail for 3-5 days. Upon return a plaster model was poured as well. Finally digital models were made from the plaster models. A number of measurements were performed on the plaster casts with a digital calliper and on the corresponding digital models using the virtual measuring tool of the accompanying software. Afterwards these measurements were compared statistically. No statistical differences were found between the three sets of plaster models. The intra- and inter-observer variability are smaller for the measurements performed on the digital models. Sending alginate impressions by mail does not affect the quality and accuracy of plaster casts poured from them afterwards. Virtual measurements performed on digital models display less variability than the corresponding measurements performed with a calliper on the actual models.

  17. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery.

    Science.gov (United States)

    Liu, Jie; Zhang, Qian; Wu, Zhan-Yu; Wu, Jiao-Hong; Li, Jun-Tao; Huang, Ling; Sun, Shi-Gang

    2014-06-18

    An alginate hydrogel binder is prepared through the cross linking effect of Na alginate with Ca(2+) ions, which leads to a remarkable improvement in the electrochemical performance of the Si/C anode of a Li-ion battery.

  18. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    Science.gov (United States)

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  19. Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase

    Directory of Open Access Journals (Sweden)

    Lorena Segale

    2016-01-01

    Full Text Available In this work alginate and alginate-chitosan beads containing celecoxib solubilized into a self-emulsifying phase were developed in order to obtain a drug delivery system for oral administration, able to delay the drug release in acidic environment and to promote it in the intestinal compartment. The rationale of this work was linked to the desire to improve celecoxib therapeutic effectiveness reducing its gastric adverse effects and to favor its use in the prophylaxis of colon cancer and as adjuvant in the therapy of familial polyposis. The systems were prepared by ionotropic gelation using needles with different diameters (400 and 600 μm. Morphology, particle size, swelling behavior, and in vitro drug release performance of the beads in aqueous media with different pH were investigated. The experimental results demonstrated that the presence of chitosan in the formulation caused an increase of the mechanical resistance of the bead structure and, as a consequence, a limitation of the bead swelling ability and a decrease of the drug release rate at neutral pH. Alginate-chitosan beads could be a good tool to guarantee a celecoxib colon delivery.

  20. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions

    DEFF Research Database (Denmark)

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García Moreno, Pedro Jesús

    2018-01-01

    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50–70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein...

  1. Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection

    International Nuclear Information System (INIS)

    Zhang, Shiwen; Xu, Kaige; Darabi, Mohammad Ali; Yuan, Quan; Xing, Malcolm

    2016-01-01

    Alginate hydrogels have been used in cell encapsulation for many years but a prevalent issue with pure alginates is that they are unable to provide enough bioactive properties to interact with mammalian cells. This paper discusses the modification of alginate with mussel-inspired dopamine for cell loading and anti-infection. Mouse bone marrow stem cells were immobilized into alginate and alginate-dopamine beads and fibers. Through live-dead and MTT assay, alginates modified by dopamine promoted cell viability and proliferation. In vitro cell differentiation results showed that such an alginate-dopamine gel can promote the osteogenic differentiation of mesenchymal stem cell after PCR and ALP assays. In addition to that, the adhesive prosperities of dopamine allowed for coating the surface of alginate-dopamine gel with silver nanoparticles, which provided the gel with significant antibacterial characteristics. Overall, these results demonstrate that a dopamine-modified alginate gel can be a great tool for cell encapsulation to promote cell proliferation and can be applied to bone regeneration, especially in contaminated bone defects. - Highlights: • Dopamine modified alginate bead and fiber promote cell viability and proliferation. • Alginate-dopamine gel promotes osteogenic differentiation of MSCs. • Dopamine reduced nanosilver for anti-infection. • Alginate-dopamine bead and fiber for delivery of mesenchymal stem cells (MSCs)

  2. Hollow fiber dead-end ultrafiltration: Influence of ionic environment on filtration of alginates

    NARCIS (Netherlands)

    van de Ven, W.J.C.; van 't Sant, K.; Punt, Ineke G.M.; Zwijnenburg, A.; Kemperman, Antonius J.B.; van der Meer, Walterus Gijsbertus Joseph; Wessling, Matthias

    2008-01-01

    We analyze the filterability of sodium alginate solutions in different ionic environments as a function of the operational flux. The alginates serve as a model component for polysaccharides in feed water. Next to filtration characteristics, the fouling reversibility was studied by employing strictly

  3. Evaluation of setting time and flow properties of self-synthesize alginate impressions

    Science.gov (United States)

    Halim, Calista; Cahyanto, Arief; Sriwidodo, Harsatiningsih, Zulia

    2018-02-01

    Alginate is an elastic hydrocolloid dental impression materials to obtain negative reproduction of oral mucosa such as to record soft-tissue and occlusal relationships. The aim of the present study was to synthesize alginate and to determine the setting time and flow properties. There were five groups of alginate consisted of fifty samples self-synthesize alginate and commercial alginate impression product. Fifty samples were divided according to two tests, each twenty-five samples for setting time and flow test. Setting time test was recorded in the s unit, meanwhile, flow test was recorded in the mm2 unit. The fastest setting time result was in the group three (148.8 s) and the latest was group fours). The highest flow test result was in the group three (69.70 mm2) and the lowest was group one (58.34 mm2). Results were analyzed statistically by one way ANOVA (α= 0.05), showed that there was a statistical significance of setting time while no statistical significance of flow properties between self-synthesize alginate and alginate impression product. In conclusion, the alginate impression was successfully self-synthesized and variation composition gives influence toward setting time and flow properties. The most resemble setting time of control group is group three. The most resemble flow of control group is group four.

  4. In vitro investigation of the integration depth of oral fluids and disinfectants into alginate impressions.

    Science.gov (United States)

    Surna, Rimas; Junevicius, Jonas; Rutkauskas, Evaldas

    2009-01-01

    The objective of this work is to prove that oral cavity fluids diffuse into alginate mass of impressions. In addition, the information is presented on the subject that disinfectants used for alginate impressions disinfection not only diffuse into alginate mass but penetrate deeper than oral cavity fluids. Three examination groups were formed for the research, the results of which evidenced how deeply oral cavity fluids and disinfectants 'Alpha Guard GF' and 'Orbis' could possibly diffuse into alginate impression material 'Kromopan 100'. In the first examination group ten impressions from the upper jaw dental arch and mucosa were taken, firstly colouring oral cavity fluids with a special colouring tablet MIRA-2-TON (Hager Werken). Cuts were randomly selected from impressions and scanned aiming to establish the depth of the coloured oral cavity fluid penetration. In the second and the third examination groups taken alginate impressions were accordingly soaked in 'Alpha Guard GF' and 'Orbis' with pigment and later randomly selected cuts were scanned in the same manner as in the first research group. RESULTS. The research results establish that coloured dental cavity fluids maximum diffuse into alginate impression is up to 540 microm with the presence of 95% of discolouring while disinfectants 'Alpha Guard GF' and 'Orbis' accordingly diffuse into alginate mass up to 710 microm and 870 microm with the presence of 95% of discolouring. CONCLUSIONS. The results obtained show that disinfectants using them according to the recommendations of a manufacturer, diffuse into alginate mass deeper than oral cavity fluids at the time of impressions taking.

  5. Cultivable Alginate Lyase-Excreting Bacteria Associated with the Arctic Brown Alga Laminaria

    Directory of Open Access Journals (Sweden)

    Yu-Zhong Zhang

    2012-11-01

    Full Text Available Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65, Psychromonas (10/65 and Polaribacter (8/65 were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21, Psedoalteromonas (6/21 and Polaribacter (4/21 are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases.

  6. Cultivable alginate lyase-excreting bacteria associated with the Arctic brown alga Laminaria.

    Science.gov (United States)

    Dong, Sheng; Yang, Jie; Zhang, Xi-Ying; Shi, Mei; Song, Xiao-Yan; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2012-11-06

    Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65), Psychromonas (10/65) and Polaribacter (8/65) were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21), Psedoalteromonas (6/21) and Polaribacter (4/21) are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases.

  7. Ultrapure alginate anti-adhesion gel does not impair colon anastomotic strength

    NARCIS (Netherlands)

    Chaturvedi, A.A.; Lomme, R.M.L.M.; Hendriks, T.; Goor, H. van

    2014-01-01

    BACKGROUND: Ultrapure alginate gel is promising in terms of adhesion prevention. Because anti-adhesive barriers have been shown to disturb healing of bowel anastomoses, the effect of ultrapure alginate gel on the repair of colon anastomoses was studied. MATERIALS AND METHODS: In 102 male Wistar

  8. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis.

    Science.gov (United States)

    Coates, Emily E; Riggin, Corinne N; Fisher, John P

    2013-07-01

    Ionic crosslinking of alginate via divalent cations allows for high viability of an encapsulated cell population, and is an effective biomaterial for supporting a spherical chondrocyte morphology. However, such crosslinking chemistry does not allow for injectable and stable hydrogels which are more appropriate for clinical applications. In this study, the addition of methacrylate groups to the alginate polymer chains was utilized so as to allow the free radical polymerization initiated by a photoinitiator during UV light exposure. This approach establishes covalent crosslinks between methacrylate groups instead of the ionic crosslinks formed by the calcium in unmodified alginate. Although this approach has been well described in the literature, there are currently no reports of stem cell differentiation and subsequent chondrocyte gene expression profiles in photocrosslinked alginate. In this study, we demonstrate the utility of photocrosslinked alginate hydrogels containing interpenetrating hyaluronic acid chains to support stem cell chondrogenesis. We report high cell viability and no statistical difference in metabolic activity between mesenchymal stem cells cultured in calcium crosslinked alginate and photocrosslinked alginate for up to 10 days of culture. Furthermore, chondrogenic gene markers are expressed throughout the study, and indicate robust differentiation up to the day 14 time point. At early time points, days 1 and 7, the addition of hyaluronic acid to the photocrosslinked scaffolds upregulates gene markers for both the chondrocyte and the superficial zone chondrocyte phenotype. Taken together, we show that photocrosslinked, injectable alginate shows significant potential as a delivery mechanism for cell-based cartilage repair therapies. Copyright © 2012 Wiley Periodicals, Inc.

  9. Screening of alginate lyase-excreting microorganisms from the surface of brown algae.

    Science.gov (United States)

    Wang, Mingpeng; Chen, Lei; Zhang, Zhaojie; Wang, Xuejiang; Qin, Song; Yan, Peisheng

    2017-12-01

    Alginate lyase is a biocatalyst that degrades alginate to produce oligosaccharides, which have many bioactive functions and could be used as renewable biofuels. Here we report a simple and sensitive plate assay for screening alginate lyase-excreting microorganisms from brown algae. Brown algae Laminaria japonica, Sargassum horneri and Sargassum siliquatrum were cultured in sterile water. Bacteria growing on the surface of seaweeds were identified and their capacity of excreting alginate lyase was analyzed. A total of 196 strains were recovered from the three different algae samples and 12 different bacterial strains were identified capable of excreting alginate lyases. Sequence analysis of the 16S rRNA gene revealed that these alginate lyase-excreting strains belong to eight genera: Paenibacillus (4/12), Bacillus (2/12), Leclercia (1/12), Isoptericola (1/12), Planomicrobium (1/12), Pseudomonas (1/12), Lysinibacillus (1/12) and Sphingomonas (1/12). Further analysis showed that the LJ-3 strain (Bacillus halosaccharovorans) had the highest enzyme activity. To our best knowledge, this is the first report regarding alginate lyase-excreting strains in Paenibacillus, Planomicrobium and Leclercia. We believe that our method used in this study is relatively easy and reliable for large-scale screening of alginate lyase-excreting microorganisms.

  10. Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp

    DEFF Research Database (Denmark)

    Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Ajalloueian, Fatemeh

    2017-01-01

    Alginates of four locally harvested Ghanaian brown seaweeds from the Sargassum and Padina genus were assessed for their rheological and chemical characteristics. The seaweeds contained 16–30% by weight of alginate assessed as the sum of d-mannuronic acid (M) and l-guluronic acid (G). In compariso...

  11. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment.

    Science.gov (United States)

    Md Ramli, Siti Hajar; Wong, Tin Wui; Naharudin, Idanawati; Bose, Anirbandeep

    2016-11-05

    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The effect of chitosan molecular weight on the properties of alginate ...

    African Journals Online (AJOL)

    Purpose: The aim of the present study was to investigate the effect of chitosan molecular weight on size, size distribution, release rate, mucoadhesive properties and electrostatic bonding of alginate/chitosan microparticles containing prednisolone. Methods: Three mucoadhesive alginate/chitosan microparticle formulations, ...

  13. Adsorption of human immunoglobulin to implantable alginate-poly-L-lysine microcapsules : Effect of microcapsule composition

    NARCIS (Netherlands)

    Tam, Susan K.; de Haan, Bart J.; Faas, Marijke M.; Halle, Jean-Pierre; Yahia, L'Hocine; de Vos, Paul

    2009-01-01

    Alginate-poly-L-lysine-alginate (APA) microcapsules continue to be the most widely Studied device for the immuno-protection of transplanted therapeutic cells. Producing APA microcapsules having a reproducible and high level of biocompatibility requires an understanding of the mechanisms of the

  14. Three Alginate Lyases from Marine Bacterium Pseudomonas fluorescens HZJ216: Purification and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Liyan, Li [Ocean University of China, Qingdao, PRC; Jiang, Xiaolu [Ocean University of China, Qingdao, PRC; Wang, Peng [Ocean University of China, Qingdao, PRC; Guan, Huashi [Ocean University of China, Qingdao, PRC; Guo, Hong [ORNL

    2010-01-01

    Three alginate lyases (A, B, and C) from an alginate-degrading marine bacterium strain HZJ216 isolated from brown seaweed in the Yellow Sea of China and identified preliminarily as Pseudomonas fluorescens are purified, and their biochemical properties are described. Molecular masses of the three enzymes are determined by SDS-PAGE to be 60.25, 36, and 23 kDa with isoelectric points of 4, 4.36, and 4.59, respectively. Investigations of these enzymes at different pH and temperatures show that they are most active at pH 7.0 and 35 C. Alginate lyases A and B are stable in the pH range of 5.0 9.0, while alginate lyase C is stable in the pH range of 5.0 7.0. Among the metal ions tested, additions of Na+, K+, and Mg2+ ions can enhance the enzyme activities while Fe2+, Fe3+, Ba2+, and Zn2+ ions show inhibitory effects. The substrate specificity results demonstrate that alginate lyase C has the specificity for G block while alginate lyases A and B have the activities for both M and G blocks. It is the first report about extracellular alginate lyases with high alginate-degrading activity from P. fluorescens.

  15. Bacterial alginate production: an overview of its biosynthesis and potential industrial production.

    Science.gov (United States)

    Urtuvia, Viviana; Maturana, Nataly; Acevedo, Fernando; Peña, Carlos; Díaz-Barrera, Alvaro

    2017-10-07

    Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1-4)-β-D-mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties. Currently, these polysaccharides are commercially extracted from seaweed but can also be produced by Azotobacter vinelandii and Pseudomonas spp. as an extracellular polymer. One strategy to produce alginates with different molecular weights and with reproducible physicochemical characteristics is through the manipulation of the culture conditions during fermentation. This mini-review provides a comparative analysis of the metabolic pathways and molecular mechanisms involved in alginate polymerization from A. vinelandii and Pseudomonas spp. Different fermentation strategies used to produce alginates at a bioreactor laboratory scale are described.

  16. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    Science.gov (United States)

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  17. Physical and chemical characterization of titanium-alginate samples for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Morani, L.M.; Ribeiro, A.A.; Oliveira, M.V. de; Dantas, F.M.L., E-mail: marize.varella@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Leao, M.H.M.R. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2010-07-01

    The sol-gel technique combined with powder metallurgy may be an alternative to produce titanium parts for bioengineering, with the advantage of eliminating the powder compaction step, which may introduce defects. The present work introduces a system consisted of titanium powder and sodium alginate suspension, which undergoes reticulation in contact with a calcium salt solution, obtaining titanium/calcium alginate hydrogel with granule morphology. The characterization of the raw materials and granules of calcium alginate and titanium/calcium alginate was performed by x-ray fluorescence spectroscopy and thermogravimetric analysis. The granules topography was analyzed by scanning electron microscopy/EDS. Titanium and sodium alginate chemical composition were adequate for use as raw materials, showing that the methodology used is suitable for processing titanium samples for further consolidation by sintering, in order to produce titanium parts. (author)

  18. Genipin Cross-Linked Polymeric Alginate-Chitosan Microcapsules for Oral Delivery: In-Vitro Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Chen

    2009-01-01

    Full Text Available We have previously reported the preparation of the genipin cross-linked alginate-chitosan (GCAC microcapsules composed of an alginate core with a genipin cross-linked chitosan membrane. This paper is the further investigation on their structural and physical characteristics. Results showed that the GCAC microcapsules had a smooth and dense surface and a networked interior. Cross-linking by genipin substantially reduced swelling and physical disintegration of microcapsules induced by nongelling ions and calcium sequestrants. Strong resistance to mechanical shear forces and enzymatic degradation was observed. Furthermore, the GCAC membranes were permeable to bovine serum albumin and maintained a molecular weight cutoff at 70 KD, analogous to the widely studied alginate-chitosan, and alginate-poly-L-lysine-alginate microcapsules. The release features and the tolerance of the GCAC microcapsules in the stimulated gastrointestinal environment were also investigated. This GCAC microcapsule formulation offers significant potential as a delivery vehicle for many biomedical applications.

  19. Calcium alginate dressings promote healing of split skin graft donor sites.

    LENUS (Irish Health Repository)

    O'Donoghue, J M

    2012-02-03

    A prospective controlled trial was carried out to assess the healing efficacy of calcium alginate and paraffin gauze on split skin graft donor sites. Thirty patients were randomised to the calcium alginate group and 21 to the paraffin gauze group. The donor sites were assessed at 10 days post harvesting to determine if they were completely healed (100%) or not. Twenty one of the 30 patients dressed with calcium alginate were completely healed at day 10, while only 7\\/21 in the paraffin gauze group were healed (p < 0.05). There were two infections in the study, both occurring in the alginate group while there was no difference in dressing slippage between the two groups. Calcium alginate dressings provide a significant improvement in healing split skin graft donor sites.

  20. Review: Efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors

    DEFF Research Database (Denmark)

    Jensen, Morten Georg; Pedersen, C; Kristensen, Mette Bredal

    2013-01-01

    This review provides a critical update on human and animal studies investigating the effect of alginate supplementation on appetite regulation, glycaemic and insulinemic responses, and lipid metabolism with discussion of the evidence on potential mechanisms, efficacy and tolerability. Dependent...... on vehicle applied for alginate supplementation, the majority of animal and human studies suggest that alginate consumption does suppress satiety and to some extent energy intake. Only one long-term intervention trial found effects on weight loss. In addition, alginates seem to exhibit beneficial influence...... on postprandial glucose absorption and insulin response in animals and humans. However, alginate supplementation was only found to have cholesterol-lowering properties in animals. Several mechanisms have been suggested for the positive effect observed, which involve delayed gastric emptying, increased viscosity...

  1. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingquan [Trinity College, Dublin (Ireland); Rouse, Sarah L. [University of Oxford, South Parks Road, Oxford (United Kingdom); Li, Dianfan; Pye, Valerie E.; Vogeley, Lutz; Brinth, Alette R.; El Arnaout, Toufic [Trinity College, Dublin (Ireland); Whitney, John C.; Howell, P. Lynne [The Hospital for Sick Children, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada); Sansom, Mark S. P. [University of Oxford, South Parks Road, Oxford (United Kingdom); Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College, Dublin (Ireland)

    2014-08-01

    Crystal structures of the β-barrel porin AlgE reveal a mechanism whereby alginate is exported from P. aeruginosa for biofilm formation. The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common β-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gate (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE.

  2. Two kinds of ketoprofen enteric gel beads (CA and CS-SA using biopolymer alginate

    Directory of Open Access Journals (Sweden)

    Bingchao Cheng

    2018-03-01

    Full Text Available To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer–Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosan-alginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastro-intestinal tract and prolong the drug's action time. Keywords: Gel beads, Enteric rapid-release, Enteric sustained-release, Ketoprofen

  3. Sustained release of verapamil hydrochloride from sodium alginate microcapsules.

    Science.gov (United States)

    Farhana, S Ayesha; Shantakumar, S M; Shyale, Somashekar; Shalam, Md; Narasu, Laxmi

    2010-04-01

    The objective of the present study was to develop sustained release microcapsules of verapamil hydrochloride (VH) using biodegradable polymers. For this purpose microcapsules embedded verapamil hydrochloride were prepared using sodium alginate alone and also by incorporating some co polymers like methyl cellulose (MC), sodium carboxy methyl cellulose (SCMC) , poly vinyl pyrollidone (PVP) and xanthan gum by employing complex emulsion method of microencapsulation. Microcapsules were prepared in various core: coat ratios to know the effect of polymer and co polymers on drug release. Overall ten formulations were prepared and evaluated for flow behaviour, sieve analysis, drug entrapment efficiency, in vitro dissolution studies, stability studies, including scanning electron microscopy and DSC. The resulting microcapsules were discrete, large, spherical and also free flowing. The drug content in all the batches of microcapsules was found to be uniform. The release was depended on core: coat ratio and nature of the polymers. FTIR analysis revealed chemical integrity between Verapamil hydrochloride (VH), sodium alginate and between the copolymers. Among the four copolymers used methyl cellulose retarded the drug release more than the other three, hence the same formulation was subjected for in vivo studies. The drug release from the microcapsules was found to be following non fickian diffusion. Mechanism of drug release was diffusion controlled first order kinetics. Drug diffusion co efficient and correlation co efficient were also assessed by using various mathematical models. In vivo result analysis of pharmacokinetic parameters revealed that t max of reference and test formulations were almost same. From the study it was concluded that, sustained release Verapamil hydro chloride microcapsules could be achieved with success using sodium alginate alone and also in combination with other biodegradable polymers.

  4. Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin

    Czech Academy of Sciences Publication Activity Database

    Brezaniova, I.; Trousil, Jiří; Černochová, Zulfiya; Král, V.; Hrubý, Martin; Štěpánek, Petr; Šlouf, Miroslav

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1259-1270 ISSN 0303-402X R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GA16-02870S; GA MZd(CZ) NV15-25781A; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : chitosan * sodium alginate * temoporfin Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.723, year: 2016

  5. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Akiyama, Kentaro; Ansari, Sahar; Xu, Xingtian; Chee, Winston W; Schricker, Scott R; Shi, Songtao

    2012-12-01

    The objectives of this study were to: (1) develop an injectable and biodegradable scaffold based on oxidized alginate microbeads encapsulating periodontal ligament (PDLSCs) and gingival mesenchymal stem cells (GMSCs); and (2) investigate the stem cell viability, and osteogenic differentiation of the stem cells in vitro. Stem cells were encapsulated using alginate hydrogel. The stem cell viability, proliferation and differentiation to adipogenic and osteogenic tissues were studied. To investigate the expression of both adipogenesis and ontogenesis related genes, the RNA was extracted and RT-PCR was performed. The degradation behavior of hydrogel based on oxidized sodium alginate with different degrees of oxidation was studied in PBS at 37 °C as a function of time by monitoring the changes in weight loss. The swelling kinetics of alginate hydrogel was also investigated. The results showed that alginate is a promising candidate as a non-toxic scaffold for PDLSCs and GMSCs. It also has the ability to direct the differentiation of these stem cells to osteogenic and adipogenic tissues as compared to the control group in vitro. The encapsulated stem cells remained viable in vitro and both osteo-differentiated and adipo-differentiated after 4 weeks of culturing in the induction media. It was found that the degradation profile and swelling kinetics of alginate hydrogel strongly depends on the degree of oxidation showing its tunable chemistry and degradation rate. These findings demonstrate for the first time that immobilization of PDLSCs and GMSCs in the alginate microspheres provides a promising strategy for bone tissue engineering.

  6. Accuracy and dimensional stability of extended-pour and conventional alginate impression materials.

    Science.gov (United States)

    Imbery, Terence A; Nehring, Joshua; Janus, Charles; Moon, Peter C

    2010-01-01

    The authors conducted a study to determine if two irreversible hydrocolloid impression materials (Cavex ColorChange, Cavex Holland BV, Haarlem, Netherlands; Jeltrate Plus Antimicrobial Dustless Alginate Impression Material, Dentsply Caulk, Milford, Del.) stored for five days were dimensionally accurate. The authors modified Ivorine teeth (Columbia Dentoform, Long Island City, N.Y.) on a Dentoform model (1560 series model, Columbia Dentoform) to allow measurements of tooth and arch width. They made impressions and generated casts immediately and at five additional times. They recorded tooth and arch widths on the casts and compared the measurements with those for the standard model. Compared with measurements for the model, the greatest measured difference in casts was 0.003 inches for Cavex ColorChange (extended-pour alginate) and 0.005 inches for Jeltrate Plus Antimicrobial Dustless Alginate Impression Material (conventional alginate). The percentage of dimensional change ranged from -0.496 to 0.161 percent for the extended-pour alginate and from -0.174 to 0.912 percent for the conventional alginate. Results of analysis of variance and paired t tests indicated that when generated immediately and at day 5, casts produced from both impression materials were not statistically different from the standard model (P alginate materials can produce accurate impressions at day 5 for diagnostic casts and for fabrication of acrylic appliances.

  7. In vitro evaluation of calcium alginate gels as matrix for iontophoresis electrodes.

    Science.gov (United States)

    Haida, Haruka; Ando, Shizuka; Ogami, Saori; Wakita, Ryo; Kohase, Hikaru; Saito, Norio; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Tanaka, Junzo; Umino, Masahiro; Fukayama, Haruhisa

    2012-03-13

    Calcium alginate gel has some unique properties, such as the capability to keep the drugs, bioadhesiveness, safety, and low cost. The purpose of this study is to determine whether calcium alginate gel can be used as a matrix of electrodes for iontophoresis (IOP). We measured the concentration of lidocaine transported from calcium alginate gels with various concentrations of alginic acid using an in vitro experimental cell with square-wave alternating current (AC) application. Temperature and pH changes were also determined during AC-IOP. The results revealed that lidocaine was released from calcium alginate gels at concentrations nearly 1.71-fold larger at 5 V, 60 min after AC application than in the case of passive diffusion. Lidocaine transport depended on the alginic acid concentration in the gels. Although there were slight increases in temperature and pH, chemical and thermal burns were not severe enough to be a concern. In conclusion, the calcium alginate gel can be used as a possible matrix for IOP electrodes.

  8. Comparison of antimicrobial activities and compressive strength of alginate impression materials following disinfection procedure.

    Science.gov (United States)

    Alwahab, Zahraa

    2012-07-01

    This study investigated the effectiveness of disinfecting solution when incorporated into alginate powder instead of water against some microorganisms and on compressive strength of alginate. For measuring antimicrobial activity of alginate, 60 alginate specimens were prepared and divided into two groups: One with water incorporated in the mix (control) and the other with 0.2% chlorhexidine digluconate incorporated in the mix instead of water. The tested microorganisms were: gram +ve cocci, gram -ve bacilli and yeast (each group 10 samples). For measuring compressive strength, 20 specimens of alginate were divided into two groups: One with water incorporated in the mix (control) and the other with chlorhexidine incorporated in the mix. The statistical analysis of antimicrobial efficacy of alginate was performed with Mann-Whitney U-test, which revealed very high significant difference when comparing among groups (p 0.05). The incorporation of disinfecting agents into impression materials could serve an important role in dental laboratory infection control and it had no adverse effect on compressive strength of the hydrocolloid alginate. The risk of transmitting pathogenic microorganisms to dental laboratories via impression has been considered a topic of importance for a number of years.

  9. Highly Concentrated Alginate-Gellan Gum Composites for 3D Plotting of Complex Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Ashwini Rahul Akkineni

    2016-04-01

    Full Text Available In tissue engineering, additive manufacturing (AM technologies have brought considerable progress as they allow the fabrication of three-dimensional (3D structures with defined architecture. 3D plotting is a versatile, extrusion-based AM technology suitable for processing a wide range of biomaterials including hydrogels. In this study, composites of highly concentrated alginate and gellan gum were prepared in order to combine the excellent printing properties of alginate with the favorable gelling characteristics of gellan gum. Mixtures of 16.7 wt % alginate and 2 or 3 wt % gellan gum were found applicable for 3D plotting. Characterization of the resulting composite scaffolds revealed an increased stiffness in the wet state (15%–20% higher Young’s modulus and significantly lower volume swelling in cell culture medium compared to pure alginate scaffolds (~10% vs. ~23%. Cytocompatibility experiments with human mesenchymal stem cells (hMSC revealed that cell attachment was improved—the seeding efficiency was ~2.5–3.5 times higher on the composites than on pure alginate. Additionally, the composites were shown to support hMSC proliferation and early osteogenic differentiation. In conclusion, print fidelity of highly concentrated alginate-gellan gum composites was comparable to those of pure alginate; after plotting and crosslinking, the scaffolds possessed improved qualities regarding shape fidelity, mechanical strength, and initial cell attachment making them attractive for tissue engineering applications.

  10. The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels.

    Science.gov (United States)

    Yao, Yongchang; Zeng, Lei; Huang, Yuyang

    2016-07-01

    In our previous work, we have developed an effective microcavitary alginate hydrogel for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we investigated whether microcavitary alginate hydrogel could promote the chondrogenesis of progenitor cells. Moreover, we attempted to further optimize this system by incorporating synthetic Arg-Gly-Asp peptide. ATDC5 cells were seeded into microcavitary alginate hydrogel with or without Arg-Gly-Asp immobilization. Cell Counting Kit-8 and live/dead staining were conducted to analyze cell proliferation. Real-time polymerase chain reaction (RT-PCR), hematoxylin and eosin, and Toluidine blue O staining as well as Western blot assay was performed to evaluate the cartilaginous markers at transcriptional level and at protein level, respectively. The obtained data demonstrated that Arg-Gly-Asp-immobilized microcavitary alginate hydrogel was preferable to promote the cell proliferation. Also, Arg-Gly-Asp-immobilized microcavitary alginate hydrogel improved the expression of chondrocytic genes including Collagen II and Aggrecan when compared with microcavitary alginate hydrogel. The results suggested that microcavitary alginate hydrogel could promote the chondrogenesis. And Arg-Gly-Asp would be promising to ameliorate this culture system for cartilage tissue engineering. © The Author(s) 2016.

  11. Crystallization and preliminary X-ray analysis of alginate importer from Sphingomonas sp. A1

    International Nuclear Information System (INIS)

    Maruyama, Yukie; Itoh, Takafumi; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2012-01-01

    Alginate importer from Sphingomonas sp. A1 is a member of the ABC transporter superfamily that directly transports alginate polysaccharide into the cytoplasm. Crystals of alginate importer in complex with the periplasmic binding protein AlgQ2 diffracted X-rays to 3.3 Å resolution. Sphingomonas sp. A1 directly incorporates alginate polysaccharides through a ‘superchannel’ comprising a pit on the cell surface, alginate-binding proteins in the periplasm and an ABC transporter (alginate importer) in the inner membrane. Alginate importer, consisting of four subunits, AlgM1, AlgM2 and two molecules of AlgS, was crystallized in the presence of the binding protein AlgQ2. Preliminary X-ray analysis showed that the crystal diffracted to 3.3 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 72.5, b = 136.8, c = 273.3 Å, suggesting the presence of one complex in the asymmetric unit

  12. Terminal sterilization of alginate hydrogels: efficacy and impact on mechanical properties.

    Science.gov (United States)

    Stoppel, Whitney L; White, Joseph C; Horava, Sarena D; Henry, Anna C; Roberts, Susan C; Bhatia, Surita R

    2014-05-01

    Terminal, or postprocessing, sterilization of composite biomaterials is crucial for their use in wound healing and tissue-engineered devices. Recent research has focused on optimizing traditional biomaterial formulations to create better products for commercial and academic use which incorporate hydrophobic compounds or secondary gel networks. To use a hydrogel in a clinical setting, terminal sterilization is necessary to ensure patient safety. Lyophilization, gamma-irradiation, and ethylene oxide treatment all have negative consequences when applied to alginate scaffolds for clinical use. Here, we aim to find alternative terminal sterilization methods for alginate and alginate-based composite hydrogels which maintain the structure of composite alginate networks for use in biomedical applications. A thorough investigation of the effect of common sterilization methods on swollen alginate-based hydrogels has not been reported and therefore, this work examines autoclaving, ethanol washing, and ultraviolet light as sterilization techniques for alginate and alginate/Pluronic® F68 composite hydrogels. Preservation of structural integrity is evaluated using shear rheology and analysis of water retention, and efficacy of sterilization is determined via bacterial persistence within the hydrogel. Results indicate that ethanol sterilization is the best method of those investigated because ethanol washing results in minimal effects on mechanical properties and water retention and eliminates bacterial persistence. Furthermore, this study suggests that ethanol treatment is an efficacious method for terminally sterilizing interpenetrating networks or other composite hydrogel systems. Copyright © 2013 Wiley Periodicals, Inc.

  13. Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    Çiğdem Kıvılcımdan Moral

    2016-01-01

    Full Text Available Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely, Azotobacter and Pseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.

  14. Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration.

    Science.gov (United States)

    Chae, Taesik; Yang, Heejae; Leung, Victor; Ko, Frank; Troczynski, Tom

    2013-08-01

    Hydroxyapatite/alginate nanocomposite fibrous scaffolds were fabricated via electrospinning and a novel in situ synthesis of hydroxyapatite (HAp) that mimics mineralized collagen fibrils in bone tissue. Poorly crystalline HAp nanocrystals, as confirmed by X-ray diffractometer peak approximately at 2θ = 32° and Fourier transform infrared spectroscopy spectrum with double split bands of PO4(v 4) at 564 and 602 cm(-1), were induced to nucleate and grow at the [-COO(-)]-Ca(2+)-[-COO(-)] linkage sites on electrospun alginate nanofibers impregnated with PO4 (3-) ions. This novel process resulted in a uniform deposition of HAp nanocrystals on the nanofibers, overcoming the severe agglomeration of HAp nanoparticles processed by the conventional mechanical blending/electrospinning method. Preliminary in vitro cell study showed that rat calvarial osteoblasts attached more stably on the surface of the HAp/alginate scaffolds than on the pure alginate scaffold. In general, the osteoblasts were stretched and elongated into a spindle-shape on the HAp/alginate scaffolds, whereas the cells had a round-shaped morphology on the alginate scaffold. The unique nanofibrous topography combined with the hybridization of HAp and alginate can be advantageous in bone tissue regenerative medicine applications.

  15. Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification.

    Science.gov (United States)

    Wu, Zongmei; Wu, Jie; Zhang, Ruling; Yuan, Shichao; Lu, Qingliang; Yu, Yueqin

    2018-02-01

    Micelle properties of hydrophobic modified alginate (HM-alginate) in various dispersion media have been studied by surface tension, ζ-potential, and viscosity measurements. Effect of salt on micelle properties showed that the presence of counter ion weakened the repulsive interaction between surfactant ions, decreased the critical micelle concentration (CMC) value of the HM-alginate, reduced the effective volume dimensions of HM-alginate and hence viscosity, which coincide with the corresponding ζ-potential values. Soy oil-in-water emulsions, stabilized solely by HM-alginate, were produced in high speed homogenization conditions and their stability properties were studied by visual inspection, optical microscopy and droplet size measurements. The results showed that emulsions (oil-water ratio was 1:7) containing 15mg/mL HM-alginate presented better stability during 15days storage, which stating clearly that HM-alginate is an effective emulsifier to stabilize oil-in-water emulsions. The herein presented homogeneous method for preparation of emulsion has the potential to be used in food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Encapsulation of Lactobacillus kefiri in alginate microbeads using a double novel aerosol technique.

    Science.gov (United States)

    Demitri, Christian; Lamanna, Leonardo; De Benedetto, Egidio; Damiano, Fabrizio; Cappello, Maria Stella; Siculella, Luisa; Sannino, Alessandro

    2017-08-01

    Alginate micro beads containing Lactobacillus kefiri (the principal bacteria present in the kefir probiotic drink) were produced by a novel technique based on dual aerosols spaying of alginate based solution and CaCl 2 as cross linking agent. Carboxymethylcellulose (CMC) has been also added to the alginate in order to change the physic-chemical properties (viscosity and permeability) of the microbeads. Calcium alginate and CMC are biopolymers that can be used for developing oral drug-delivery systems. These biopolymers have been reported to show a pH-dependent swelling behaviour. Calcium alginate and CMC have also been known to possess an excellent mucoadhesive property. The loaded microbeads have been characterized in terms of morphology, chemical composition and stability in different conditions mimicking the gastric environment. In this study, we demonstrate the feasibility of a continuous fabrication of alginate microbeads in a range of 50-70μm size, encapsulating L. kefiri as active ingredient. The technique involves the use of a double aerosols of alginate based solution and CaCl 2 as crosslinking agent. Moreover, the encapsulation process was proved to be effective and not detrimental to bacteria viability. At the same time, it was verified the protective efficacy of the microcapsules against the gastric environment using both SGF pH1.2 (fasted state) and pH2.2 (feed state). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Study of Alginate-Supported Ionic Liquid and Pd Catalysts

    Directory of Open Access Journals (Sweden)

    Eric Guibal

    2012-01-01

    Full Text Available New catalytic materials, based on palladium immobilized in ionic liquid supported on alginate, were elaborated. Alginate was associated with gelatin for the immobilization of ionic liquids (ILs and the binding of palladium. These catalytic materials were designed in the form of highly porous monoliths (HPMs, in order to be used in a column reactor. The catalytic materials were tested for the hydrogenation of 4-nitroaniline (4-NA in the presence of formic acid as hydrogen donor. The different parameters for the elaboration of the catalytic materials were studied and their impact analyzed in terms of microstructures, palladium sorption properties and catalytic performances. The characteristics of the biopolymer (proportion of β-D-mannuronic acid (M and α-L-guluronic acid (G in the biopolymer defined by the M/G ratio, the concentration of the porogen agent, and the type of coagulating agent significantly influenced catalytic performances. The freezing temperature had a significant impact on structural properties, but hardly affected the catalytic rate. Cellulose fibers were incorporated as mechanical strengthener into the catalytic materials, and allowed to enhance mechanical properties and catalytic efficiency but required increasing the amount of hydrogen donor for catalysis.

  18. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  19. Analysis of filler particle levels and sizes in dental alginates

    Directory of Open Access Journals (Sweden)

    Hugo Lemes Carlo

    2010-06-01

    Full Text Available The aim of this study was to determine the inorganic filler fractions and sizes of commercially alginates. The inorganic particles volumetric fractions of five alginates - Jeltrate(J, Jeltrate Plus(JP, Jeltrate Chromatic Ortho(JC, Hydrogum(H and Ezact Krom(E were accessed by weighing a previously determined mass of each material in water before and after burning samples at 450 °C for 3 hours. Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers' morphology and size. The results for the volumetric inorganic particle content were (%: J - 48.33, JP - 48.33, JC - 33.79, H - 37.55 and E - 40.55. The fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. The mean values for fillers size were (μm: J - 12.91, JP - 13.67, JC - 13.44, E - 14.59 and H - 9 (diameter, 8.81 (length. The results of this study revealed differences in filler characteristics that could lead to different results when testing mechanical properties.

  20. Sequestration studies of algins for important radionuclide contaminants

    International Nuclear Information System (INIS)

    Sander, W.; Wase, A.W.; Baird, J.

    1987-01-01

    The health risk of internal radionuclide contamination is probably equal to, if not greater than, the biohazardous effects of external radiation exposure. Internal radiation dose effects are insidious and persist over long periods of time before overt disease manifestations/abnormalities are detectable. In addition to good radiological health practices, some prophylactic measure(s) would be most useful to reduce and confine the exposure from ingested or inhaled radioactive nuclides. A totally safe, nontoxic, nonmetabolizeable, low-cost prophylactic agent, easily administered, would be a boon as a health safeguard for workers in the nuclear industry and the world population at large. Our studies with the algins from macrocytis pyrifera indicate their ability to sequester important radionuclides, and thus they are a prime candidate for a universal prophylactic agent. Their nontoxicity and palatability are substantiated by its wide usage in the food industry. It has become important to device reliable methods to determine the binding capacity of algins for important radionuclides generated by fallout and heavy Z isotopes like 238 U and 234 Th. Results of an approach which employed stable isotopes that appear in fallout are described

  1. Albumin-crosslinked alginate hydrogels as sustained drug release carrier

    International Nuclear Information System (INIS)

    Tada, Daisuke; Tanabe, Toshizumi; Tachibana, Akira; Yamauchi, Kiyoshi

    2007-01-01

    To take advantage of the drug-binding ability of albumin as a component of drug delivery system, we have prepared hydrogels consisting of alginic acid (AL) and recombinant human serum albumin (rHSA) by dehydrating condensation using N-hydroxysuccininimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. As rHSA content increased, the swelling ratio of the hydrogel decreased, indicating rHSA functioned as a crosslinker. In fact, trypsin treatment solubilized the hydrogel. Salicylic acid, which has high affinity for rHSA, was loaded most on the hydrogel of the highest rHSA content despite the lowest swelling ratio. Meanwhile, drugs with less affinity for HSA such as o-anisic acid and benzoic acid were preferably loaded on the hydrogel having the highest swelling ratio but the lowest HSA content. The release of salicylic acid from the hydrogel sustained longer than o-anisic acid and benzoic acid, reflecting the affinity of the drug for HSA. Furthermore, the hydrogel could carry much of positively charged dibucaine by the interaction with anionic alginic acid and showed highly sustained release. Since the safety of AL and rHSA in medical use is guaranteed, rHSA-crosslinked AL hydrogel is expected to use as a sustained drug release carrier for drugs having affinity for HSA and those with cationic charge

  2. New alginic acid–atenolol microparticles for inhalatory drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ceschan, Nazareth Eliana; Bucalá, Verónica [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca (Argentina); Ramírez-Rigo, María Verónica, E-mail: vrrigo@plapiqui.edu.ar [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca (Argentina)

    2014-08-01

    The inhalatory route allows drug delivery for local or systemic treatments in a noninvasively way. The current tendency of inhalable systems is oriented to dry powder inhalers due to their advantages in terms of stability and efficiency. In this work, microparticles of atenolol (AT, basic antihypertensive drug) and alginic acid (AA, acid biocompatible polyelectrolyte) were obtained by spray drying. Several formulations, varying the relative composition AT/AA and the total solid content of the atomized dispersions, were tested. The powders were characterized by: Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Powder X-ray Diffraction, while also the following properties were measured: drug load efficiency, flow properties, particles size and density, moisture content, hygroscopicity and morphology. The ionic interaction between AA and AT was demonstrated, then the new chemical entity could improve the drug targeting to the respiratory membrane and increase its time residence due to the mucoadhesive properties of the AA polymeric chains. Powders exhibited high load efficiencies, low moisture contents, adequate mean aerodynamic diameters and high cumulative fraction of respirable particles (lower than 10 μm). - Highlights: • Novel particulate material to target atenolol to the respiratory membrane was developed. • Crumbled microparticles were obtained by spray drying of alginic–atenolol dispersions. • Ionic interaction between alginic acid and atenolol was demonstrated in the product. • Amorphous solids with low moisture content and high load efficiency were produced. • Relationships between the feed formulation and the product characteristics were found.

  3. Oral vaccination of animals with antigens encapsulated in alginate microspheres.

    Science.gov (United States)

    Bowersock, T L; HogenEsch, H; Suckow, M; Guimond, P; Martin, S; Borie, D; Torregrosa, S; Park, H; Park, K

    1999-03-26

    Most infectious diseases begin at a mucosal surface. Prevention of infection must therefore consider ways to enhance local immunity to prevent the attachment and invasion of microbes. Despite this understanding, most vaccines depend on parenterally administered vaccines that induce a circulating immune response that often does not cross to mucosal sites. Administration of vaccines to mucosal sites induces local immunity. To be effective requires that antigen be administered often. This is not always practical depending on the site where protection is needed, nor comfortable to the patient. Not all mucosal sites have inductive lymphoid tissue present as well. Oral administration is easy to do, is well accepted by humans and animals and targets the largest inductive lymphoid tissue in the body in the intestine. Oral administration of antigen requires protection of antigen from the enzymes and pH of the stomach. Polymeric delivery systems are under investigation to deliver vaccines to the intestine while protecting them from adverse conditions that could adversely affect the antigens. They also can enhance delivery of antigen specifically to the inductive lymphoid tissue. Sodium alginate is a readily available, inexpensive polymer that can be used to encapsulate a wide variety of antigens under mild conditions. Orally administered alginate microspheres containing antigen have successfully induced immunity in mice to enteric (rotavirus) pathogens and in the respiratory tract in cattle with a model antigen (ovalbumin). This delivery system offers a safe, effective means of orally vaccinating large numbers of animals (and perhaps humans) to a variety of infectious agents.

  4. Enhanced stability and mechanical strength of sodium alginate composite films.

    Science.gov (United States)

    Liu, Sijun; Li, Yong; Li, Lin

    2017-03-15

    This work aims to study how three kinds of nanofillers: graphene oxide (GO), ammonia functionalized graphene oxide (AGO), and triethoxylpropylaminosilane functionalized silica, can affect stability and mechanical strength of sodium alginate (SA) composite films. The filler/sodium alginate (SA) solutions were first studied by rheology to reveal effects of various fillers on zero shear viscosity η 0 . SA composite films were then prepared by a solution mixing-evaporation method. The structure, morphology and properties of SA composite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), contact angle and mechanical testing. Compared to GO and silica, the presence of AGO significantly improved the interaction between AGO and SA, which led to the increase in stability and mechanical strength of the resulting SA composite films. The tensile strength and elongation at break of AGO/SA composite film at 3wt% AGO loading were increased by 114.9% and 194.4%, respectively, in contrast to pure SA film. Furthermore, the stability of AGO/SA composite films at high temperatures and in a wet environment were better than that of silica/SA and GO/SA composite films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. GOLD NANOPARTICLES ENCAPSULATED IN A POLYMERIC MATRIX OF SODIUM ALGINATE

    Directory of Open Access Journals (Sweden)

    Oana Lelia POP

    2016-11-01

    Full Text Available Plasmonic nanoparticles can be used as building blocks for the design of multifunctional systems based on polymeric capsules. The use of functionalised particles in therapeutics and imaging and understanding their effect on the cell functions are among the current challenges in nanobiotechnology and nanomedicine. The aim of the study was to manufacture and characterize polymeric microstructures by encapsulating plasmonic gold nanoparticles in biocompatible matrix of sodium alginate. The gold nanoparticles were obtained by reduction of tetracluoroauric acid with sodium citrate. To characterize the microcapsules, UV-Vis and FTIR spectroscopy, optical and confocal microscopy experiments were performed. In vitro cytotoxicity tests on HFL-1 cells were also performed. The capsules have spherical shape and 120 μm diameter. The presence of encapsulated gold nanoparticles is also shown by confocal microscopy. In vitro tests show that the microcapsules are not cytotoxic upon 24 h of cells exposure to microcapsules concentrations ranging from 2.5 to 25 capsules per cell. The obtained microcapsules of sodium alginate loaded with plasmonic gold nanoparticles could potentially be considered as release systems for biologically relevant molecules.

  6. Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.

    Science.gov (United States)

    Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O

    2012-01-01

    To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (palginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible

  7. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads

    International Nuclear Information System (INIS)

    Rosales, E.; Iglesias, O.; Pazos, M.; Sanromán, M.A.

    2012-01-01

    Highlights: ► Catalytic activity of Fe alginate gel beads for the remediation of wastewater was tested. ► New electro-Fenton process for the remediation of polluted wastewater. ► Continuous dye treatment without operational problem with high removal. - Abstract: This study focuses on the application of electro-Fenton technique by use of catalytic activity of Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes. The Fe alginate gel beads were evaluated for decolourisation of two typical dyes, Lissamine Green B and Azure B under electro-Fenton process. After characterization of Fe alginate gel beads, the pH effect on the process with Fe alginate beads and a comparative study of the electro-Fenton process with free Fe and Fe alginate bead was done. The results showed that the use of Fe alginate beads increases the efficiency of the process; moreover the developed particles show a physical integrity in a wide range of pH (2–8). Around 98–100% of dye decolourisation was obtained for both dyes by electro-Fenton process in successive batches. Therefore, the process was performed with Fe alginate beads in a bubble continuous reactor. High color removal (87–98%) was attained for both dyes operating at a residence time of 30 min, without operational problems and maintaining particle shapes throughout the oxidation process. Consequently, the stable performance of Fe alginate beads opens promising perspectives for fast and economical treatment of wastewater polluted by dyes or similar organic contaminants.

  8. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, E.; Iglesias, O.; Pazos, M. [Department of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende 36310, Vigo (Spain); Sanroman, M.A., E-mail: sanroman@uvigo.es [Department of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende 36310, Vigo (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Catalytic activity of Fe alginate gel beads for the remediation of wastewater was tested. Black-Right-Pointing-Pointer New electro-Fenton process for the remediation of polluted wastewater. Black-Right-Pointing-Pointer Continuous dye treatment without operational problem with high removal. - Abstract: This study focuses on the application of electro-Fenton technique by use of catalytic activity of Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes. The Fe alginate gel beads were evaluated for decolourisation of two typical dyes, Lissamine Green B and Azure B under electro-Fenton process. After characterization of Fe alginate gel beads, the pH effect on the process with Fe alginate beads and a comparative study of the electro-Fenton process with free Fe and Fe alginate bead was done. The results showed that the use of Fe alginate beads increases the efficiency of the process; moreover the developed particles show a physical integrity in a wide range of pH (2-8). Around 98-100% of dye decolourisation was obtained for both dyes by electro-Fenton process in successive batches. Therefore, the process was performed with Fe alginate beads in a bubble continuous reactor. High color removal (87-98%) was attained for both dyes operating at a residence time of 30 min, without operational problems and maintaining particle shapes throughout the oxidation process. Consequently, the stable performance of Fe alginate beads opens promising perspectives for fast and economical treatment of wastewater polluted by dyes or similar organic contaminants.

  9. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.

    Science.gov (United States)

    Castilho, Miguel; Rodrigues, Jorge; Pires, Inês; Gouveia, Barbara; Pereira, Manuel; Moseke, Claus; Groll, Jürgen; Ewald, Andrea; Vorndran, Elke

    2015-01-06

    The development of polymer-calcium phosphate composite scaffolds with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the functional performance of brittle ceramic scaffolds by developing a promising biopolymer-ceramic network. For this purpose, two strategies, namely, direct printing of a powder composition consisting of a 60:40 mixture of α/β-tricalcium phosphate (TCP) powder and alginate powder or vacuum infiltration of printed TCP scaffolds with an alginate solution, were tracked. Results of structural characterization revealed that the scaffolds printed with 2.5 wt% alginate-modified TCP powders presented a uniformly distributed and interfusing alginate TCP network. Mechanical results indicated a significant increase in strength, energy to failure and reliability of powder-modified scaffolds with an alginate content in the educts of 2.5 wt% when compared to pure TCP, as well as to TCP scaffolds containing 5 wt% or 7.5 wt% in the educts, in both dry and wet states. Culture of human osteoblast cells on these scaffolds also demonstrated a great improvement of cell proliferation and cell viability. While in the case of powder-mixed alginate TCP scaffolds, isolated alginate gels were formed between the calcium phosphate crystals, the vacuum-infiltration strategy resulted in the covering of the surface and internal pores of the TCP scaffold with a thin alginate film. Furthermore, the prediction of the scaffolds' critical fracture conditions under more complex stress states by the applied Mohr fracture criterion confirmed the potential of the powder-modified scaffolds with 2.5 wt% alginate in the educts as structural biomaterial for bone tissue engineering.

  10. A Technology Platform to Test the Efficacy of Purification of Alginate

    Directory of Open Access Journals (Sweden)

    Genaro A. Paredes-Juarez

    2014-03-01

    Full Text Available Alginates are widely used in tissue engineering technologies, e.g., in cell encapsulation, in drug delivery and various immobilization procedures. The success rates of these studies are highly variable due to different degrees of tissue response. A cause for this variation in success is, among other factors, its content of inflammatory components. There is an urgent need for a technology to test the inflammatory capacity of alginates. Recently, it has been shown that pathogen-associated molecular patterns (PAMPs in alginate are potent immunostimulatories. In this article, we present the design and evaluation of a technology platform to assess (i the immunostimulatory capacity of alginate or its contaminants, (ii where in the purification process PAMPs are removed, and (iii which Toll-like receptors (TLRs and ligands are involved. A THP1 cell-line expressing pattern recognition receptors (PRRs and the co-signaling molecules CD14 and MD2 was used to assess immune activation of alginates during the different steps of purification of alginate. To determine if this activation was mediated by TLRs, a THP1-defMyD88 cell-line was applied. This cell-line possesses a non-functional MyD88 coupling protein, necessary for activating NF-κB via TLRs. To identify the specific TLRs being activated by the PAMPs, we use different human embryonic kidney (HEK cell-line that expresses only one specific TLR. Finally, specific enzyme-linked immunosorbent assays (ELISAs were applied to identify the specific PAMP. By applying this three-step procedure, we can screen alginate in a manner, which is both labor and cost efficient. The efficacy of the platform was evaluated with an alginate that did not pass our quality control. We demonstrate that this alginate was immunostimulatory, even after purification due to reintroduction of the TLR5 activating flagellin. In addition, we tested two commercially available purified alginates. Our experiments show that these commercial

  11. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    Science.gov (United States)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  12. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering

    Science.gov (United States)

    Zhou, Hongzhi; Xu, Hockin H. K.

    2011-01-01

    Stem cell-encapsulating hydrogel microbeads of several hundred microns in size suitable for injection, that could quickly degrade to release the cells, are currently unavailable. The objectives of this study were to: (1) develop oxidized alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs); (2) investigate microbead degradation, cell release, and osteogenic differentiation of the released cells for the first time. Three types of microbeads were fabricated to encapsulate hUCMSCs: (1) Alginate microbeads; (2) oxidized alginate microbeads; (3) oxidized alginate-fibrin microbeads. Microbeads with sizes of about 100–500 µm were fabricated with 1×106 hUCMSCs/mL of alginate. For the alginate group, there was little microbead degradation, with very few cells released at 21 d. For oxidized alginate, the microbeads started to slightly degrade at 14 d. In contrast, the oxidized alginate-fibrin microbeads started to degrade at 4 d and released the cells. At 7 d, the number of released cells greatly increased and showed a healthy polygonal morphology. At 21 d, the oxidized alginate-fibrin group had a live cell density that was 4-fold that of the oxidized alginate group, and 15-fold that of the alginate group. The released cells had osteodifferentiation, exhibiting highly elevated bone marker gene expressions of ALP, OC, collagen I, and Runx2. Alizarin staining confirmed the synthesis of bone minerals by hUCMSCs, with the mineral concentration at 21 d being 10-fold that at 7 d. In conclusion, fast-degradable alginate-fibrin microbeads with hUCMSC encapsulation were developed that could start to degrade and release the cells at 4 d. The released hUCMSCs had excellent proliferation, osteodifferentiation, and bone mineral synthesis. The alginate-fibrin microbeads are promising to deliver stem cells inside injectable scaffolds to promote tissue regeneration. PMID:21757229

  13. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases.

    Science.gov (United States)

    Wang, Da Mao; Kim, Hee Taek; Yun, Eun Ju; Kim, Do Hyoung; Park, Yong-Cheol; Woo, Hee Chul; Kim, Kyoung Heon

    2014-10-01

    Algae are considered as third-generation biomass, and alginate is the main component of brown macroalgae. Alginate can be enzymatically depolymerized by alginate lyases into uronate monomers, such as mannuronic acid and guluronic acid, which are further nonenzymatically converted to 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). We have optimized an enzymatic saccharification process using two recombinant alginate lyases, endo-type Alg7D and exo-type Alg17C, for the efficient production of DEH from alginate. When comparing the sequential and simultaneous additions of Alg7D and Alg17C, it was found that the final yield of DEH was significantly higher when the enzymes were added sequentially. The progress of saccharification reactions and production of DEH were verified by thin layer chromatography and gas chromatography-mass spectrometry, respectively. Our results showed that the two recombinant enzymes could be exploited for the efficient production of DEH that is the key substrate for producing biofuels from brown macro algal biomass.

  14. Alginate-based pellets prepared by extrusion/spheronization: effect of the amount and type of sodium alginate and calcium salts.

    Science.gov (United States)

    Sriamornsak, Pornsak; Nunthanid, Jurairat; Luangtana-anan, Manee; Weerapol, Yossanun; Puttipipatkhachorn, Satit

    2008-05-01

    Pellets containing microcrystalline cellulose (MCC), a model drug (theophylline) and a range of levels of sodium alginate (i.e., 10-50% w/w) were prepared by extrusion/spheronization. Two types of sodium alginate were evaluated with and without the addition of either calcium acetate or calcium carbonate (0, 0.3, 3 and 10% w/w). The effects of amount and type of sodium alginate and calcium salts on pellet properties, e.g., size, shape, morphology and drug release behavior, were investigated. Most pellet formulations resulted in pellets of a sufficient quality with respect to size, size distribution and shape. The results showed that the amounts of sodium alginate and calcium salts influenced the size and shape of the obtained pellets. However, different types of sodium alginate and calcium salt responded to modifications to a different extent. A cavity was observed in the pellet structure, as seen in the scanning electron micrographs, resulting from the forces involved in the spheronization process. Most of pellet formulations released about 75-85% drug within 60 min. Incorporation of calcium salts in the pellet formulations altered the drug release, depending on the solubility of the calcium salts used. The drug release data showed a good fit into both Higuchi and Korsmeyer-Peppas equations.

  15. Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads

    Directory of Open Access Journals (Sweden)

    Uzaşçı Sesil

    2014-07-01

    Full Text Available Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, contrary to the traditional calcium alginate beads. The adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h and the removal efficiency of chromium (VI was found as 95%. The adsorption data fit well with Langmuir and Freundlich isotherms. The maximum chromium (VI adsorption capacity determined from Langmuir isotherm was 36.5 mg/g dry alginate beads. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium (VI from contaminated waters.

  16. Effect of fluoride addition on the properties of dental alginate impression materials.

    Science.gov (United States)

    Lee, Yong-Keun; Lim, Bum-Soon; Kim, Cheol-We

    2004-03-01

    Fluoride-containing dental alginate impression materials can exert a considerable reduction in enamel solubility. The objective was to evaluate the effects of fluoride addition in the alginate impression materials on the properties and subsequent release of fluoride. Four experimental alginate impression materials were studied. Materials were mixed with distilled water (control) or 100-ppm fluoride solution. One or two percent NaF, or 1% SnF2 was added to the materials, which were mixed with distilled water. Fluoride release, flexibility, recovery from deformation, setting time, compressive strength and elastic modulus were determined in accordance with the ISO 1563 and ANSI/ADA Spec. 18. Fluoride release increased after addition of fluoride, and the released amount was 0.762-14.761 ppm. Addition of NaF or SnF2 resulted in higher fluoride release than the control group (p alginate impression material may result in effective release of fluoride without deteriorating the properties of material itself.

  17. Synthesis of collagen by bovine chondrocytes cultured in alginate; posttranslational modifications and cell-matrix interaction

    NARCIS (Netherlands)

    Beekman, B.; Verzijl, N.; Bank, R.A.; Von Der Mark, K.; TeKoppele, J.M.

    1997-01-01

    The extracellular matrix synthesized by articular chondrocytes cultured in alginate beads was investigated. Collagen levels increased sigmoidally with time and remained constant after 2 weeks of culture. The presence of cartilage-specific type II collagen was confirmed immunohistochemically.

  18. Physicochemical characterization and biocompatibility of alginate-polycation microcapsules designed for islet transplantation

    Science.gov (United States)

    Tam, Susan Kimberly

    Microencapsulation represents a method for immunoprotecting transplanted therapeutic cells or tissues from graft rejection using a physical barrier. This approach is advantageous in that it eliminates the need to induce long-term immunosuppression and allows the option of transplanting non-cadaveric cell sources, such as animal cells and stem cell-derived tissues. The microcapsules that we have investigated are designed to immunoprotect islets of Langerhans (i.e. clusters of insulin-secreting cells), with the goal of treating insulin-dependent diabetes. With the aid of techniques for physicochemical analysis, this research focused on understanding which properties of the microcapsule are the most important for determining its biocompatibility. The objective of this work was to elucidate correlations between the chemical make-up, physicochemical properties, and in vivo biocompatibility of alginate-based microcapsules. Our approach was based on the hypothesis that the immune response to the microcapsules is governed by, and can therefore be controlled by, specific physicochemical properties of the microcapsule and its material components. The experimental work was divided into five phases, each associated with a specific aim : (1) To prove that immunoglobulins adsorb to the surface of alginate-polycation microcapsules, and to correlate this adsorption with the microcapsule chemistry. (2) To test interlaboratory reproducibility in making biocompatible microcapsules, and evaluate the suitability of our materials and fabrication protocols for subsequent studies. (3) To determine which physicochemical properties of alginates affect the in vivo biocompatibility of their gels. (4) To determine which physiochemical properties of alginate-polycation microcapsules are most important for determining their in vivo biocompatibility (5) To determine whether a modestly immunogenic membrane hinders or helps the ability of the microcapsule to immunoprotect islet xenografts in

  19. Investigation the influence of dietary fiber on the rheological properties of alginate beads

    Directory of Open Access Journals (Sweden)

    Z. Manev

    2015-03-01

    Full Text Available Abstract. During the current investigation experiments for the preparation of alginate beads with aqueous solutions of sodium alginate, calcium lactate or calcium dichloride and dietary fiber in different concentrations: inulin with varying degrees of polymerization, wheat bran and amidated apple pectin were carried out. The sodium alginate solutions were at constant concentration 3%, while calcium salts in 7% were applied for bead formation. It was proven that the rupture force of alginate beads was always higher than the pure model system regardless of the chemical structure of dietary fibers used. In the result of the carried research the dependence at a certain concentration was established at which the rupture force and deformation of the beads increased gradually.

  20. Biosorption of strontium ions from aqueous solution using Ca-alginate biopolymer beads

    International Nuclear Information System (INIS)

    Goek, C.; Aytas, S.; Gerstmann, U.

    2009-01-01

    Biosorption of strontium ions from aqueous solution onto calcium alginate biopolymer beads was investigated in a batch system. Ca-alginate biopolymer beads were prepared from Na-alginate via cross-linking with divalent calcium ions according to the egg box model. Optimum biosorption conditions were determined as a function of initial solution pH, initial Sr concentration, contact time, biomass dosage and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of Sr ions by Ca-alginate biopolymer beads. The thermodynamic parameters (ΔH, ΔS, ΔG) for Sr sorption onto biosorbent were also determined from the temperature dependence. The results indicate that this biosorbent has a good potential for removal of Sr ions from dilute aqueous solution.

  1. Inert Reassessment Document for Propylene glycol alginate - CAS No. 9005-37-2

    Science.gov (United States)

    As an inert pesticide ingredient, propylene glycol alginate is exempt from the requirement for a tolerance when used as a deforming agent in pesticide formulations applies to growing crops, or to raw agricultural commodities after harvest.

  2. Synthesis and characterization of chitosan impregnated calcium alginate beads for removal of uranium from aquatic stream

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Manisha, V.; Reddy, A.V.R.; Sawant, Manjiri; Kamane, Suman

    2015-01-01

    The present study was conducted to study the feasibility of chitosan impregnated calcium alginate beads (Cal-Alg-Chi) to sorb the excess uranium from the aquatic stream. Chitosan is a linear polysaccharide composed of randomly distributed β-(1-4)-linked D glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). The optimal composition of calcium alginate chitosan beads is 4 % (wt/vol) alginate gel having 5% loading of chitosan. The nature and morphology of pure and uranium sorbed calcium alginate chitosan beads were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance Fourier transform infrared spectroscopy (ATRFTIR). The results of batch sorption experiments suggest that Cal-Alg-Chi beads are very effective for removal of uranium in the pH range of 2.0-5.0 and sorption is more than 80 % in the concentration range of 1-100 mgL -1

  3. Alginate-pomegranate peels' polyphenols beads: effects of formulation parameters on loading efficiency

    Directory of Open Access Journals (Sweden)

    Wissam Zam

    2014-12-01

    Full Text Available Calcium alginate beads containing pomegranate peels' polyphenol extract were encapsulated by ionic gelation method. The effects of various formulation factors (sodium alginate concentration, calcium chloride concentration, calcium chloride exposure time, gelling bath time maintaining, and extract concentration on the efficiency of extract loading were investigated. The formulation containing an extract of 1 g pomegranate peels in 100 mL distilled water encapsulated with 3 % of sodium alginate cured in 0.05 M calcium chloride for 20 minutes and kept in a gelling bath for 15 minutes was chosen as the best formula regarding the loading efficiency. These optimized conditions allowed the encapsulation of 43.90% of total extracted polyphenols and 46.34 % of total extracted proanthocyanidins. Microencapsulation of pomegranate peels' extract in calcium alginate beads is a promising technique for pharmaceutical and food supplementation with natural antioxidants.

  4. Effect of alginate chemical disinfection on bacterial count over gypsum cast

    OpenAIRE

    Haralur, Satheesh B.; Al-Dowah, Omir S.; Gana, Naif S.; Al-Hytham, Abdullah

    2012-01-01

    PURPOSE To evaluate the efficacy of sodium hypochlorite (1 : 10) and iodophor disinfectants on alginate impressions along with their effect on the survived bacterium count on the gypsum cast. MATERIALS AND METHODS Four alginate impression on each dentate patients were made, of which Group I were not washed or disinfected, Group II impressions were merely washed with water, Group III were disinfected by spraying with sodium hypochlorite (1 : 10), Group IV were disinfected with iodophor (1 : 21...

  5. Chitosan/alginate based multilayers to control drug release fromophthalmic lens

    OpenAIRE

    Silva, Diana; Pinto, Luís F. V.; Bozukova, Dimitriya; Santos, Luís F.; Serro, Ana Paula; Saramago, Benilde

    2016-01-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (algin...

  6. The visualisation and speed of kill of wound isolates on a silver alginate dressing.

    Science.gov (United States)

    Hooper, Samuel J; Percival, Steven L; Hill, Katja E; Thomas, David W; Hayes, A J; Williams, David W

    2012-12-01

    In chronic wound management, alginate dressings are used to absorb exudate and reduce the microbial burden. Silver alginate offers the added benefit of an additional antimicrobial pressure on contaminating microorganisms. This present study compares the antimicrobial activity of a RESTORE silver alginate dressing with a silver-free control dressing using a combination of in vitro culture and imaging techniques. The wound pathogens examined included Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, β-haemolytic Streptococcus, and strictly anaerobic bacteria. The antimicrobial efficacy of the dressings was assessed using log(10) reduction and 13-day corrected zone of inhibition (CZOI) time-course assays. Confocal laser scanning microscopy (CLSM) was used to visualise the relative proportions of live/dead microorganisms sequestered into the dressings over 24 hours and estimate the comparative speed of kill. The RESTORE silver alginate dressing showed significantly greater log(10) reductions and CZOIs for all microorganisms compared with the control, indicating the antimicrobial effect of ionic silver. Antimicrobial activity was evident against all test organisms for up to 5 days and, in some cases, up to 12 days following an on-going microbial challenge. Imaging bacteria sequestered in the silver-free dressing showed that each microbial species aggregated in the dressing and remained viable for more than 20 hours. Growth was not observed inside of the dressing, indicating a possible microbiostatic effect of the alginate fibres. In comparison, organisms in the RESTORE silver alginate dressing were seen to lose viability at a considerably greater rate. After 16 hours of contact with the RESTORE silver alginate dressing, >90% of cells of all bacteria and yeast were no longer viable. In conclusion, collectively, the data highlights the rapid speed of kill and antimicrobial suitability of this RESTORE silver alginate dressing on wound

  7. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

    Science.gov (United States)

    Venkatesan, Jayachandran; Lee, Jin-Young; Kang, Dong Seop; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk; Kim, Dong Gyu

    2017-05-01

    The main aim of this study was to obtain porous antimicrobial composites consisting of chitosan, alginate, and biosynthesized silver nanoparticles (AgNPs). Chitosan and alginate were used owing to their pore-forming capacity, while AgNPs were used for their antimicrobial property. The developed porous composites of chitosan-alginate-AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The FT-IR results revealed the presence of a strong chemical interaction between chitosan and alginate due to polyelectrolyte complex; whereas, the XRD results confirmed the presence of AgNPs in the composites. The dispersion of AgNPs in the porous membrane was uniform with a pore size of 50-500μm. Antimicrobial activity of the composites was checked with Escherichia coli and Staphylococcus aureus. The developed composites resulted in the formation of a zone of inhibition of 11±1mm for the Escherichia coli, and 10±1mm for Staphylococcus aureus. The bacterial filtration efficiency of chitosan-alginate-AgNPs was 1.5-times higher than that of the chitosan-alginate composite. The breast cancer cell line MDA-MB-231 was used to test the anticancer activity of the composites. The IC 50 value of chitosan-alginate-AgNPs on MDA-MB-231 was 4.6mg. The developed chitosan-alginate-AgNPs composite showed a huge potential for its applications in antimicrobial filtration and cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Immobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes

    OpenAIRE

    Mogharabi, Mehdi; Nassiri-Koopaei, Nasser; Bozorgi-Koushalshahi, Maryam; Nafissi-Varcheh, Nastaran; Bagherzadeh, Ghodsieh; Faramarzi, Mohammad Ali

    2012-01-01

    Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl2 solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability...

  9. Process engineering of high voltage alginate encapsulation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany); Pogozhykh, Denys, E-mail: pogozhykh@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany); Zernetsch, Holger, E-mail: zernetsch@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany); Hofmann, Nicola, E-mail: hofmann@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany); Mueller, Thomas, E-mail: mueller.thomas@mh-hannover.de [Institute for Transfusion Medicine, Medical School Hannover, D-30625 Hannover (Germany); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany)

    2014-03-01

    Encapsulation of stem cells in alginate beads is promising as a sophisticated drug delivery system in treatment of a wide range of acute and chronic diseases. However, common use of air flow encapsulation of cells in alginate beads fails to produce beads with narrow size distribution, intact spherical structure and controllable sizes that can be scaled up. Here we show that high voltage encapsulation (≥ 15 kV) can be used to reproducibly generate spherical alginate beads (200–400 μm) with narrow size distribution (± 5–7%) in a controlled manner under optimized process parameters. Flow rate of alginate solution ranged from 0.5 to 10 ml/h allowed producing alginate beads with a size of 320 and 350 μm respectively, suggesting that this approach can be scaled up. Moreover, we found that applied voltages (15–25 kV) did not alter the viability and proliferation of encapsulated mesenchymal stem cells post-encapsulation and cryopreservation as compared to air flow. We are the first who employed a comparative analysis of electro-spraying and air flow encapsulation to study the effect of high voltage on alginate encapsulated cells. This report provides background in application of high voltage to encapsulate living cells for further medical purposes. Long-term comparison and work on alginate–cell interaction within these structures will be forthcoming. - Highlights: • High voltage alginate encapsulation of mesenchymal stem cells (MSCs) was designed. • Reproducible and spherical alginate beads were generated via high voltage. • Air flow encapsulation was utilized as a comparative approach to high voltage. • High voltage did not alter the viability and proliferation of encapsulated MSCs. • High voltage encapsulation can be scaled up and applied in cell-based therapy.

  10. Progesterone release from magnetic alginate/chitosan microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Melina Vasconcelos; Castro, Mayara de Freitas e; Sanchez Rodriguez, Ruben J., E-mail: sanchez@uenf.br [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil); Rojas-Ayala, Chachi; Baggio-Saitovitch, Elisa Maria [Centro Brasileiro de Pesquisa Fisicas (CBPF), Rio de Janeir, RJ (Brazil)

    2015-07-01

    Magnetite nanoparticles (Fe{sub 3}O{sub 4}) were prepared using the hydrothermal method (160°C) in a closed system and characterized with the aid of the techniques of X-ray Diffraction patterns (DRX), Mössbauer spectroscopy and Vibrating Sample Magnetometer (VSM). The Fe{sub 3}O{sub 4} phase showed high crystallinity and medium crystallite size of 19nm with superparamagnetic properties, reversible behavior and saturation magnetization of 43 emu g{sup -1}. The nanoparticles coated with alginate / chitosan were characterized morphologically by Scanning and Transmission Electron Microscope. The microcapsules have a regular spherical shape with the main contribution of the size distribution in the range of 34-53μm. The progesterone released was 14% higher when external magnetic field was applied. (author)

  11. Progesterone release from magnetic alginate/chitosan microcapsules

    International Nuclear Information System (INIS)

    Leite, Melina Vasconcelos; Castro, Mayara de Freitas e; Sanchez Rodriguez, Ruben J.; Rojas-Ayala, Chachi; Baggio-Saitovitch, Elisa Maria

    2015-01-01

    Magnetite nanoparticles (Fe 3 O 4 ) were prepared using the hydrothermal method (160°C) in a closed system and characterized with the aid of the techniques of X-ray Diffraction patterns (DRX), Mössbauer spectroscopy and Vibrating Sample Magnetometer (VSM). The Fe 3 O 4 phase showed high crystallinity and medium crystallite size of 19nm with superparamagnetic properties, reversible behavior and saturation magnetization of 43 emu g -1 . The nanoparticles coated with alginate / chitosan were characterized morphologically by Scanning and Transmission Electron Microscope. The microcapsules have a regular spherical shape with the main contribution of the size distribution in the range of 34-53μm. The progesterone released was 14% higher when external magnetic field was applied. (author)

  12. Modelling of proton and metal exchange in the alginate biopolymer.

    Science.gov (United States)

    De Stefano, Concetta; Gianguzza, Antonio; Piazzese, Daniela; Sammartano, Silvio

    2005-10-01

    Acid-base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1titration calorimetric data were expressed as a function of the dissociation degree (alpha) using different models (Henderson-Hasselbalch modified, Högfeldt three parameters and linear equations). The dependence on ionic strength of the protonation constants was taken into account by a modified specific interaction theory model. Differences among different media were explained in terms of the interaction between polyanion and metal cations of the supporting electrolytes. Quantitative information on the proton-binding capacity, together with the stabilities of different species formed, is reported. Protonation thermodynamic parameters, at alpha=0.5, are log K H=3.686+/-0.005, DeltaG 0=-21.04+/-0.03 kJ mol(-1), DeltaH 0=4.8+/-0.2 kJ mol(-1) and TDeltaS 0=35.7+/-0.3 kJ mol(-1), at infinite dilution. Protonation enthalpies indicate that the main contribution to proton binding arises from the entropy term. A strict correlation between DeltaG and TDeltaS was found, TDeltaS=-9.5-1.73 DeltaG. Results are reported in light of building up a chemical complexation model of general validity to explain the binding ability of naturally occurring polycarboxylate polymers and biopolymers. Speciation profiles of alginate in the presence of sodium and magnesium ions, naturally occurring cations in natural waters, are also reported.

  13. Transport of biological molecules in surfactant-alginate composite hydrogels.

    Science.gov (United States)

    Stoppel, Whitney L; White, Joseph C; Horava, Sarena D; Bhatia, Surita R; Roberts, Susan C

    2011-11-01

    Obstructed transport of biological molecules can result in improper release of pharmaceuticals or biologics from biomedical devices. Recent studies have shown that nonionic surfactants, such as Pluronic® F68 (F68), positively alter biomaterial properties such as mesh size and microcapsule diameter. To further understand the effect of F68 (incorporated at concentrations well above the critical micelle concentration (CMC)) in traditional biomaterials, the transport properties of BSA and riboflavin were investigated in F68-alginate composite hydrogels, formed by both internal and external cross-linking with divalent cations. Results indicate that small molecule transport (represented by riboflavin) was not significantly hindered by F68 in homogeneously (internally) cross-linked hydrogels (up to an 11% decrease in loading capacity and 14% increase in effective diffusion coefficient, D(eff)), while protein transport in homogeneously cross-linked hydrogels (represented by BSA) was significantly affected (up to a 43% decrease in loading capacity and 40% increase in D(eff)). For inhomogeneously cross-linked hydrogels (externally cross-linked by CaCl(2) or BaCl(2)), the D(eff) increased up to 50 and 83% for small molecules and proteins, respectively. Variation in the alginate gelation method was shown to affect transport through measurable changes in swelling ratio (30% decrease) and observable changes in cross-linking structure as well as up to a 3.6- and 11.8-fold difference in D(eff) for riboflavin and BSA, respectively. Aside from the expected significant changes due to the cross-linking method utilized, protein transport properties were altered due to mesh size restrictions (10-25 nm estimated by mechanical properties) and BSA-F68 interaction (DLS). Taken as a whole, these results show that incorporation of a nonionic surfactant at concentrations above the CMC can affect device functionality by impeding the transport of large biological molecules. Copyright © 2011

  14. CRYOPRESERVATION EFFECTS ON RECOMBINANT MYOBLASTS ENCAPSULATED IN ADHESIVE ALGINATE HYDROGELS

    Science.gov (United States)

    Ahmad, Hajira F.; Sambanis, Athanassios

    2013-01-01

    Cell encapsulation in hydrogels is widely used in tissue engineering applications, including encapsulation of islets or other insulin-secreting cells in pancreatic substitutes. Use of adhesive, bio-functionalized hydrogels is receiving increasing attention, as cell-matrix interactions in 3-D can be important for various cell processes. With pancreatic substitutes, studies have indicated benefits of 3-D adhesion on the viability and/or function of insulin-secreting cells. As long-term storage of microencapsulated cells is critical for their clinical translation, cryopreservation of cells in hydrogels is actively being investigated. Previous studies have examined the cryopreservation response of cells encapsulated in non-adhesive hydrogels using conventional freezing and/or vitrification (ice-free cryopreservation), however, none have systematically compared the two cryopreservation methods with cells encapsulated within an adhesive 3-D environment. The latter would be significant, as evidence suggests adhesion influences cellular response to cryopreservation. Thus, the objective of this study was to determine the response to conventional freezing and vitrification of insulin-secreting cells encapsulated in an adhesive biomimetic hydrogel. Recombinant insulin-secreting C2C12 myoblasts were encapsulated in oxidized RGD-alginate and cultured 1 or 4 days post-encapsulation, cryopreserved, and assessed up to 3 days post-warming for metabolic activity and insulin secretion, and one day post-warming for cell morphology. Besides certain transient differences of the vitrified group relative to the Fresh control, both conventional freezing and vitrification maintained metabolism, secretion and morphology of the recombinant C2C12 cells. Thus, due to a simpler procedure and slightly superior results, conventional freezing is recommended over vitrification for the cryopreservation of C2C12 cells in oxidized RGD-modified alginate. PMID:23499987

  15. Development of PVA-alginate as a matrix for enzymatic decolorization of textile dye in bioreactor system

    Science.gov (United States)

    Yanto, Dede Heri Yuli; Zahara, Syifa; Laksana, Raden Permana Budi; Anita, Sita Heris; Oktaviani, Maulida; Sari, Fahriya Puspita

    2017-01-01

    An immobilization technique using polyvinyl alcohol (PVA) crosslinked with sodium alginate as a matrix has been developed for textile dyes decolorization. Textiles use dye as an addition to the aesthetic value of the product. Dyes are generally used is a textile dye where the waste will be released directly into the waters around 2-20%. Therefore, it is important to develop an enzyme immobilization method using PVA-Alginate as a matrix. Based on the results of the study showed that the PVA-Alginate beads produced high decolorization percent compared to beads which contains only Ca-alginate alone and formula matrix is optimum at PVA 6% and alginate 1.5%. Encapsulation with boric acid at 7% showed optimum decolorization and reduction for enzyme leakage during decolorization. This study suggested that immobilization of enzymes into PVA-alginate matrix might be used as a biodecolorating agent.

  16. Drying process of sodium alginate edible films forming solutions studied by LF NMR.

    Science.gov (United States)

    Xiao, Qian

    2018-06-01

    The dynamics of water in sodium alginate film-forming solutions during drying were investigated by low-field nuclear magnetic resonance. At the beginning of drying, three transverse relaxation times at around 1.74, 28.48 and 305.38 ms were assigned to the tightly bound, moderately bound, and free water, respectively. Moreover, the free water was evaporated, followed by the formation of water cluster in the entangled alginate chains network as the drying process continued (beyond 840 min of drying time). Towards the third stage of drying process, water clusters in alginate samples was disappeared, resulting that loosely bonded waters were constrained within the weak-gel network. The observed three relaxation times revealed the multi-exponential relaxation behavior of water in alginate, which indicated that this polymer exhibited spatial heterogeneity during drying. On the basis of diffusive exchange theory, the dimension range of alginate network decreased from 1.94-23.99 to 1.83-6.62 µm as the alginate films solidified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    Science.gov (United States)

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø; Sikorski, Pawel; Strand, Berit L; Standal, Therese

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  18. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    Directory of Open Access Journals (Sweden)

    Marita Westhrin

    Full Text Available Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST and dental matrix protein-1 (DMP1, markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  19. Production of a calcium silicate cement material from alginate impression material.

    Science.gov (United States)

    Washizawa, Norimasa; Narusawa, Hideaki; Tamaki, Yukimichi; Miyazaki, Takashi

    2012-01-01

    The purpose of this study was to synthesize biomaterials from daily dental waste. Since alginate impression material contains silica and calcium salts, we aimed to synthesize calcium silicate cement from alginate impression material. Gypsum-based investment material was also investigated as control. X-ray diffraction analyses revealed that although firing the set gypsum-based and modified investment materials at 1,200°C produced calcium silicates, firing the set alginate impression material did not. However, we succeeded when firing the set blend of pre-fired set alginate impression material and gypsum at 1,200°C. SEM observations of the powder revealed that the featured porous structures of diatomite as an alginate impression material component appeared useful for synthesizing calcium silicates. Experimentally fabricated calcium silicate powder was successfully mixed with phosphoric acid solution and set by depositing the brushite. Therefore, we conclude that the production of calcium silicate cement material is possible from waste alginate impression material.

  20. Effect of alginate chemical disinfection on bacterial count over gypsum cast.

    Science.gov (United States)

    Haralur, Satheesh B; Al-Dowah, Omir S; Gana, Naif S; Al-Hytham, Abdullah

    2012-05-01

    To evaluate the efficacy of sodium hypochlorite (1 : 10) and iodophor disinfectants on alginate impressions along with their effect on the survived bacterium count on the gypsum cast. Four alginate impression on each dentate patients were made, of which Group I were not washed or disinfected, Group II impressions were merely washed with water, Group III were disinfected by spraying with sodium hypochlorite (1 : 10), Group IV were disinfected with iodophor (1 : 213). Gypsum cast (type III) were made from all the impression. Impressions and gypsum cast were swabbed in mid palatal region for bacterial culture. Bacterial colony counting done after 3 days of incubation at 37℃ in blood agar media. The data obtained was analyzed by one way ANOVA test at a significant difference level of 0.05. Group I and Group II showed significantly more bacteria compared to Group III and Group IV. Bacterial colonies on the alginate impression and gypsum cast in group disinfected with Sodium hypochlorite (1 : 10) were 0.18, 0.82 respectively compared to group treated with iodophor (1 : 213). There was an increase in bacterial count on dental cast compared to source alginate impressions. Sodium hypochlorite (1 : 10) was found to be better disinfectant for alginate impression. There was an indication of increase in number of bacteria from alginate impression to making of dental cast. Additional gypsum cast disinfectant procedures need to be encouraged to completely eliminate cross infection to dental laboratory.

  1. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material.

    Science.gov (United States)

    Golafshan, Nasim; Rezahasani, R; Tarkesh Esfahani, M; Kharaziha, M; Khorasani, S N

    2017-11-15

    The aim of this study was to develop a novel nanohybrid interpenetrating network hydrogel composed of laponite:polyvinyl alcohol (PVA)-alginate (LAP:PVA-Alginate) with adjustable mechanical, physical and biological properties for wound healing application. Results demonstrated that compared to PVA-Alginate, mechanical strength of LAP:PVA-Alginate significantly enhanced (upon 2 times). Moreover, incorporation of 2wt.% laponite reduced swelling ability (3 times) and degradation ratio (1.2 times) originating from effective enhancement of crosslinking density in the nanohybrid hydrogels. Furthermore, nanohybrid hydrogels revealed admirable biocompatibility against MG63 and fibroblast cells. Noticeably, MTT assay demonstrated that fibroblast proliferation significantly enhanced on 0.5wt.% LAP:PVA-alginate compared to PVA-alginate. Moreover, hemolysis and clotting tests indicated that the nanohybrid hydrogels promoted hemostasis which could be helpful in the wound dressing. Therefore, the synergistic effects of the nanohybrid hydrogels such as superior mechanical properties, adjustable degradation rate and admirable biocompatibility and hemolysis make them a desirable candidate for wound healing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions.

    Science.gov (United States)

    Kessler, Martina; Esser, Eva; Groll, Jürgen; Tessmar, Jörg

    2016-11-01

    A bilateral barrier membrane for the prevention of postsurgical adhesions was developed. Thereby, a smooth PLA side was supposed to keep the affected tissues glidingly separated, while a mucoadhesive side made of alginate was meant to keep the barrier resident on the site of injury so that suturing becomes redundant or at least the membrane stays long enough to facilitate surgical handling. Because hydrophilic alginate and lipophilic PLA films show only low cohesion, solution electrospun meshes of PLA and PLA-PEG-PLA triblock copolymers with varying poly(ethylene glycol) [PEG] content were investigated as cohesion promoter to avoid an easy separation of the functionally different layers. Using direct electrospinning onto the PLA film, a modified contact surface of the mesh was created, which allowed the tested alginate solutions (3%, 5%) to infiltrate to different extents. Thereby, an increasing content of hydrophilic PEG within the mesh copolymer and a lower alginate concentration facilitated the infiltration. As a result, the PLA film with a PLA35k-PEG10k-PLA35k (racemic PLA chains) mesh and an alginate layer cast from a 3% alginate solution appeared to be the most effective combination as examined by means of a t peel test, a mucoadhesion test, a tensile test and optical evaluations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1563-1570, 2016. © 2015 Wiley Periodicals, Inc.

  4. A new alginate-based rapid method for determining coliforms in milk.

    Science.gov (United States)

    Chang, Su-sen; Gray, Peter M; Woo, Gun-Jo; Kang, Dong-Hyun

    2003-11-01

    A new rapid method for monitoring coliforms was developed on the basis of the instant gelling effects of alginate and calcium. The effectiveness of this new method in the detection of coliforms was evaluated. Tests involving Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, total coliforms in milk, cold-injured coliforms, and total coliforms in raw milk were carried out. The bacterial samples were diluted in 0.2% peptone water containing 90 mM CaCl2 and added into test tubes containing modified purple broth base medium. Coliform concentrations were determined on the basis of the time of color change and gas production in the alginate tubes. All results obtained by the alginate method correlated strongly with those obtained by the conventional violet red bile agar (VRBA) plating method. The alginate method reduced detection time by 12 to 14 h compared with the conventional VRBA plating method. The alginate method can be applied in field studies more easily than melted-agar systems can. The results of this study indicate that the alginate method is an accurate, rapid, simple, and economical way to monitor and estimate concentrations of total coliforms in food.

  5. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.

    Science.gov (United States)

    Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M

    2017-06-01

    This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.

  6. Synergistic effect of divalent cations in improving technological properties of cross-linked alginate beads.

    Science.gov (United States)

    Cerciello, Andrea; Del Gaudio, Pasquale; Granata, Veronica; Sala, Marina; Aquino, Rita P; Russo, Paola

    2017-08-01

    Gelling solution parameters are some of the most important variables in ionotropic gelation and consequently influence the technological characteristics of the product. To date, only a few studies have focused on the simultaneous use of multiple cations as gelling agents. With the aim to deeply explore this possibility, in this research we investigated the effect of two divalent cations (Ca 2+ and Zn 2+ ) on alginate beads formation and properties. Alginate beads containing prednisolone (P) as model drug were prepared by prilling technique. The main critical variables of the ionotropic gelation process i.e. composition of the aqueous feed solutions (sodium alginate and prednisolone concentration) and cross-linking conditions (Ca 2+ , Zn 2+ or Ca 2+ +Zn 2+ ), were studied. The obtained beads were characterized and their in vitro release performances were assessed in conditions simulating the gastrointestinal environment. Results evidenced a synergistic effect of the two cations, affecting positively both the encapsulation efficiency and the ability of the alginate polymeric matrix to control the drug release. A Ca 2+ /Zn 2+ ratio of 4:1, in fact, exploited the Ca 2+ ability of establish quicker electrostatic interactions with guluronic groups of alginate and the Zn 2+ ability to establish covalent-like bonds with carboxylate groups of both guluronic and mannuronic moieties of alginate. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings

    International Nuclear Information System (INIS)

    Klinkajon, Wimonwan; Supaphol, Pitt

    2014-01-01

    The incorporation of a metal ion, with antimicrobial activity, into an alginate dressing is an attractive approach to minimize infection in a wound. In this work, copper (II) cross-linked alginate hydrogels were successfully prepared using a two-step cross-linking procedure. In the first step, solid alginate films were prepared using a solvent-casting method from soft gels of alginate solutions that had been lightly cross-linked using a copper (II) (Cu 2+ ) sulfate solution. In the second step, the films were further cross-linked in a corresponding Cu 2+ sulfate solution using a dipping method to further improve their dimensional stability. Alginate solution (at 2%w/v) and Cu 2+ sulfate solution (at 2%w/v) in acetate buffer at a low pH provided soft films with excellent swelling behavior. An increase in either Cu 2+ ion concentration or cross-linking time led to hydrogels with more densely-cross-linked networks that limited water absorption. The hydrogels clearly showed antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis and Streptococcus pyogenes, which was proportional to the Cu 2+ ion concentration. Blood coagulation studies showed that the tested copper (II) cross-linked alginate hydrogels had a tendency to coagulate fibrin, and possibly had an effect on pro-thrombotic coagulation and platelet activation. Conclusively, the prepared films are likely candidates as antibacterial wound dressings. (paper)

  8. Radiation-induced degradation of sodium alginate and its plant growth promotion effect

    Directory of Open Access Journals (Sweden)

    H.L. Abd El-Mohdy

    2017-02-01

    Full Text Available Alginate was irradiated as a solid with 60Co gamma rays in the dose range of 20–100 kGy to investigate the effect of radiation on alginates. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses which occurs with addition of chemical initiator to NaAlg during irradiation process that leads to a synergistic effect, which remarkably increases the degradation efficiency of alginate. The factors affecting the degradation process such as irradiation dose and potassium per-sulfate (KPS addition were studied. The average molecular weight of the irradiated alginate was investigated in detail by using several complementary techniques such as chromatography and viscometry. The lowest molecular weight of alginate resulted at 100 kGy and added KPS, whereas the highest one at 20 kGy in absence of KPS. Characterization of the oligoalginates obtained by radiation degradation was performed by FT-IR and UV–vis spectroscopy, XRD and TGA. The effect of water-soluble radiation-induced alginate fractions on the growth promotion of Faba bean plant was studied. The highest plant growth and seed yield compared with control occurred for plants sprayed with low molecular weight NaAlg fractions (treated with 100 kGy and added KPS.

  9. Polymerization Induced Self-Assembly of Alginate Based Amphiphilic Graft Copolymers Synthesized by Single Electron Transfer Living Radical Polymerization.

    Science.gov (United States)

    Kapishon, Vitaliy; Whitney, Ralph A; Champagne, Pascale; Cunningham, Michael F; Neufeld, Ronald J

    2015-07-13

    Alginate-based amphiphilic graft copolymers were synthesized by single electron transfer living radical polymerization (SET-LRP), forming stable micelles during polymerization induced self-assembly (PISA). First, alginate macroinitiator was prepared by partial depolymerization of native alginate, solubility modification and attachment of initiator. Depolymerized low molecular weight alginate (∼12 000 g/mol) was modified with tetrabutylammonium, enabling miscibility in anhydrous organic solvents, followed by initiator attachment via esterification yielding a macroinitiator with a degree of substitution of 0.02, or 1-2 initiator groups per alginate chain. Then, methyl methacrylate was polymerized from the alginate macroinitiator in mixtures of water and methanol, forming poly(methyl methacrylate) grafts, prior to self-assembly, of ∼75 000 g/mol and polydispersity of 1.2. PISA of the amphiphilic graft-copolymer resulted in the formation of micelles with diameters of 50-300 nm characterized by light scattering and electron microscopy. As the first reported case of LRP from alginate, this work introduces a synthetic route to a preparation of alginate-based hybrid polymers with a precise macromolecular architecture and desired functionalities. The intended application is the preparation of micelles for drug delivery; however, LRP from alginate can also be applied in the field of biomaterials to the improvement of alginate-based hydrogel systems such as nano- and microhydrogel particles, islet encapsulation materials, hydrogel implants, and topical applications. Such modified alginates can also improve the function and application of native alginates in food and agricultural applications.

  10. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Parinaz Ghadam

    2017-05-01

    Full Text Available Objective(s: Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Alginate lyase gene (algl is a member of alginate producing operon which by glycosidase activity produces primer for other enzymes in this cluster. Also this activity can destroy the extracellular alginate; therefore this enzyme participates in alginate production and destruction pathway. Alginate lyase causes detachment of a biofilm by reducing its adhesion to the surfaces, and increases phagocytosis and antibiotic susceptibility. In this study, alginate lyase was purified in just one step and its properties were investigated. Materials and Methods: The purification was done by affinity chromatography, analysed by SDS-PAGE, and its effect on P. aeruginosa biofilms was surveyed by micro titer plate assay and SEM. The substrate specificity of the enzyme was determined by PCR. Results: Alginate lyase from isolate 48 was purified in one step. It is more thermally resistant than alginate lyase from Pseudomonas aeruginosa PAO1 and poly M, poly G and poly MG alginate were the substrate of this enzyme. Moreover, it has an eradication effect on biofilms from P. aeruginosa 48 and PAO1. Conclusion: In this study an alginate lyase with many characteristics suitable in medicine such as thermal stability, effective on poly M alginate, and bacterial biofilm destructive was introduced and purified.

  11. Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii.

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Barrera

    Full Text Available Alginates are polysaccharides used as food additives and encapsulation agents in biotechnology, and their functional properties depend on its molecular weight. In this study, different steady-states in continuous cultures of A. vinelandii were established to determine the effect of the dilution rate (D and the agitation rate on alginate production and expression of genes involved in alginate polymerization and depolymerization. Both, the agitation and dilution rates, determined the partitioning of the carbon utilization from sucrose into alginate and CO2 under oxygen-limiting conditions. A low D (0.07 h(-1 and 500 rpm resulted in the highest carbon utilization into alginate (25%. Quantitative real-time polymerase chain reaction was used to determine the transcription level of six genes involved in alginate polymerization and depolymerization. In chemostat cultures at 0.07 h(-1, the gene expression was affected by changes in the agitation rate. By increasing the agitation rate from 400 to 600 rpm, the algE7 gene expression decreased tenfold, whereas alyA1, algL and alyA2 gene expression increased between 1.5 and 2.8 times under similar conditions evaluated. Chemostat at 0.07 h(-1 showed a highest alginate molecular weight (580 kDa at 500 rpm whereas similar molecular weights (480 kDa were obtained at 400 and 600 rpm. The highest molecular weight was not explained by changes in the expression of alg8 and alg44 (genes involved in alginate polymerization. Nonetheless, a different expression pattern observed for lyases could explain the highest alginate molecular weight obtained. Overall, the results suggest that the control of alginate molecular weight in A. vinelandii cells growing in continuous mode is determined by a balance between the gene expression of intracellular and extracellular lyases in response to oxygen availability. These findings better our understanding of the biosynthesis of bacterial alginate and help us progress toward obtain

  12. Effect of Storage Time of Extended-Pour and Conventional Alginate Impressions on Dimensional Accuracy of Casts

    OpenAIRE

    Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza

    2014-01-01

    Objectives: Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. Materials and Methods: In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions...

  13. Utilizing Fibrin-Alginate and Matrigel-Alginate for Mouse Follicle Development in Three-Dimensional Culture Systems.

    Science.gov (United States)

    Sadr, Seyedeh Zeynab; Fatehi, Roya; Maroufizadeh, Saman; Amorim, Christiani Andrade; Ebrahimi, Bita

    2018-01-24

    In vitro culture of ovarian follicles is a new technique in reproductive technology, which helps in understanding the process of folliculogenesis. The in vitro culture of follicles could be carried out using three-dimensional (3D) natural scaffolds that mimic the ovarian tissue stroma. Selection of the right matrix and culture media in these scaffolds could increase the survival and maturation of the follicles. In this work, the applicability of matrigel-alginate (MA) and fibrin-alginate (FA) 3D scaffolds for folliculogenesis was assessed. The ovaries of 13-day-old Naval Medical Research Institute (NMRI) mice were isolated and distributed into control and vitrification groups. Preantral follicles (mean diameter: 120-140 μm) were mechanically isolated from control and vitrified-warmed ovaries, encapsulated in MA or FA scaffold and cultured for 12 days. Follicle survival, growth, maturation, and quantitative expression of oocyte maturation genes (Gdf9, Bmp15, Fgf8, KitL, Kit, and Amh) and proteins (GDF9 and BMP15) were assessed. Survival rate of culture preantral follicles in control groups was found to be significantly higher than vitrified follicles. Antrum formation was similar in all groups. Follicle diameters were significantly increased in all groups during culture period. A decreasing pattern of gene expression was seen for all genes in all groups. This trend was verified through evaluation of protein expression, during which there was strong staining in antral follicles from all groups in the last day of in vitro culture. The better survival and maturation rate of follicles in the MA compared to FA scaffold indicates that the MA matrix, being rich in extracellular matrix components, could mimic the ovarian condition better and presents a good environment for follicle development.

  14. Feasibility of Marine Microalgae Immobilization in Alginate Bead for Marine Water Treatment: Bead Stability, Cell Growth, and Ammonia Removal

    Directory of Open Access Journals (Sweden)

    Chen-Lin Soo

    2017-01-01

    Full Text Available Sodium alginate is the most commonly used polymer matrix in microalgae immobilization for water treatment. However, the susceptibility of alginate matrixes to cation chelating agents and antigelling cation limits the use of alginates in estuarine and marine systems. Hence, the present study aims to investigate the stability of alginate bead in marine water and the feasibility of microalgae to grow when immobilized in alginate bead for marine water treatment. Different concentrations of alginate and hardening cation calcium were used to formulate beads. The beads were incubated in Guillard’s f/2 medium and shaken vigorously by using orbital shaker for 15 days. The results indicated that bead stability was enhanced by increasing alginate and CaCl2 concentrations. Subsequently, the marine microalga, Nannochloropsis sp., was immobilized in calcium alginate bead. The growth and ammoniacal-nitrogen (NH4+-N uptake by immobilized cell were compared with free cell culture in f/2 medium. Specific growth rate of immobilized cell (0.063 hr−1 was significantly higher than free cell (0.027 hr−1. There was no significant difference on specific uptake rate of free cell and immobilized cell; but immobilized cell removed significantly more NH4+-N (82.2% than free cell (47.3% culture at the end of the experiment. The present study demonstrated the potential use of alginate immobilization technique in marine microalgae culture and water treatment simultaneously.

  15. Alginate hydrogel protects encapsulated hepatic HuH-7 cells against hepatitis C virus and other viral infections.

    Directory of Open Access Journals (Sweden)

    Nhu-Mai Tran

    Full Text Available Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV infection for a hepatic cell line (HuH-7 normally permissive to the virus. Our results showed that alginate hydrogel protects HuH-7 cells against HCV when the supernatant was loaded with HCV. In addition, alginate hydrogel blocked HCV particle release out of the beads when the HuH-7 cells were previously infected and encapsulated. There was evidence of interaction between the molecules of alginate hydrogel and HCV, which was dose- and incubation time-dependent. The protective efficiency of alginate hydrogel towards HCV infection was confirmed against a variety of viruses, whether or not they were enveloped. This promising interaction between an alginate matrix and viruses, whose chemical mechanisms are discussed, is of great interest for further medical therapeutic applications based on tissue engineering.

  16. Controlled release of carbofuran from an alginate-bentonite formulation: water release kinetics and soil mobility.

    Science.gov (United States)

    Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E; Martinez-López, F; Flores-Céspedes, F

    2000-03-01

    The insecticide-nematicide carbofuran was incorporated in alginate-based granules to obtain controlled-release (CR) properties. The basic formulation [sodium alginate (1.61%)-carbofuran (0. 59%)-water] was modified by addition of sorbents. The effect on carbofuran release rate, caused by the incorporation of natural and acid-treated bentonite (0.5 and 1.0 M H(2)SO(4)) in alginate formulation, was studied by immersion of the granules in water under shaking. The time taken for 50% of the active ingredient to be released into water, t(50), was longer for those formulations containing natural bentonite (6.1 h) or acid-treated bentonite (9.0 and 11.7 h for 0.5 and 1.0 M H(2)SO(4) treatments, respectively) than for the preparation without bentonite (4.7 h). It appears from the results that the release of carbofuran from the various formulations is controlled by a diffusion mechanism according to the n values obtained, which were close to 0.5 in all cases. The mobility of carbofuran from alginate-based CR formulations was investigated by using soil columns packed with a clay soil (53% clay and 0.08% organic matter). Two alginate-based CR formulations containing natural bentonite or acid-treated bentonite (0.5 M H(2)SO(4)) were compared to technical grade carbofuran. The use of alginate-based CR formulations resulted in a reduction of the leached amount of carbofuran compared with the total amount of pesticide leached using the technical product (50 and 75% for CR granules containing natural and acid-treated bentonite, respectively). Alginate-bentonite CR formulations might be efficient systems for reducing carbofuran leaching in clay soils, which would reduce the risk of groundwater pollution.

  17. Physical properties and compatibility with dental stones of current alginate impression materials.

    Science.gov (United States)

    Murata, H; Kawamura, M; Hamada, T; Chimori, H; Nikawa, H

    2004-11-01

    This study examined physical properties and compatibility with dental stones of two types of alginate impression materials. Five powder-type alginate impression materials (Alginoplast EM, Aroma Fine, Algiace Z, Coe Alginate, Jeltrate Plus) and a paste-type alginate impression material (Tokuso AP-1) were used. The dynamic viscosity immediately after mixing was measured by means of a controlled-stress rheometer. The gelation times were determined according to Japanese Industrial Standards (JIS) T6505, and recovery from deformation, strain in compression and compressive strength were determined according to the International Organization for Standardization (ISO) specification 1563. Detail reproduction and surface roughness of type III dental stones (New Plastone, New Sunstone) and a type IV dental stone (Die Stone) were evaluated using a ruled test block as specified in the ISO specification 1563 and a profilometer, respectively. The alginate impression materials evaluated in this study were all in compliance with the ISO specification 1563 and JIS T6505. The alginate impression materials had similar mechanical properties after gelation, whilst a wide range of dynamic viscosity immediately after being mixed, gelation times and compatibility with dental stones were found among the materials. The paste-type material had a higher dynamic viscosity and a shorter gelation time than the powder-type materials. The best surface quality was obtained with the paste-type material/type III dental stone cast combinations. The materials should be selected in consideration of initial flow, setting characteristics and compatibility with dental stones. The results suggested that a paste-type material would better meet the requirements of an alginate impression material.

  18. Functional relationship of room temperature and setting time of alginate impression material

    Directory of Open Access Journals (Sweden)

    Dyah Irnawati

    2009-09-01

    Full Text Available Background: Indonesia is a tropical country with temperature variation. A lot of dental clinics do not use air conditioner. The room temperature influences water temperature for mixing alginate impression materials. Purpose: The aim of this study was to investigate the functional relationship of room temperature and initial setting time of alginate impression materials. Methods: The New Kromopan® alginate (normal and fast sets were used. The initial setting time were tested at 23 (control, 24, 25, 26, 27, 28, 29, 30 and 31 degrees Celcius room temperatures (n = 5. The initial setting time was tested based on ANSI/ADA Specification no. 18 (ISO 1563. The alginate powder was mixed with distilled water (23/50 ratio, put in the metal ring mould, and the initial setting time was measured by test rod. Data were statistically analyzed by linear regression (α = 0.05. result: The initial setting times were 149.60 ± 0.55 (control and 96.40 ± 0.89 (31° C seconds for normal set, and 122.00 ± 1.00 (control and 69.60 ± 0.55 (31° C seconds for fast set. The coefficient of determination of room temperature to initial setting time of alginate were R2 = 0.74 (normal set and R2 = 0.88 (fast set. The regression equation for normal set was Y = 257.6 – 5.5 X (p < 0.01 and fast set was Y = 237.7 – 5.6 X (p < 0.01. Conclusions: The room temperature gave high contribution and became a strength predictor for initial setting time of alginates. The share contribution to the setting time was 0.74% for normal set and 0.88% for fast set alginates.

  19. The effect of disinfecting solutions on the dimensional stability of dental alginate impression materials.

    Science.gov (United States)

    Muzaffar, Danish; Braden, Michael; Parker, Sandra; Patel, Mangala P

    2012-07-01

    Dimensional changes occur in set dental alginate impression materials when immersed in disinfecting solutions. In this contribution the dimensional changes of two alginates in two disinfecting solutions, and for two specimen thicknesses, have been studied. The results were analyzed theoretically. The dimensional changes of two commercial alginates (Blueprint Cremix and Hydrogum), have been measured, in distilled water and two disinfecting solutions (Perform ID/sodium hypochlorite), using a traveling microscope, at 5 min intervals over a period of 1h. Samples of simple geometry have been studied, namely rectangular strips with thicknesses of 1.5 and 3mm, respectively. In all cases, both alginates continuously shrank with time, in the three immersion liquids, over the hour of measurement, indicating transfer of water from the alginate into the external water or disinfecting solution. The t(1/2) shrinkage plots were generally linear, but with an intercept on the t(1/2) axis, indicating the possibility of an initial expansion at very short times. In most cases, the ratios of slopes for both thicknesses were 1.33-1.54, in contrast to the theoretical value of 2. Perform ID however gave anomalous results for the 1.5mm thick samples. At 10 min their shrinkage was 1.34-1.72%, compared with -0.42% to 0.67% in the other two media. The effects of thickness observed were not in accord with simple Fickian theory because of the various ions diffusing into and out of the alginate. Moreover, the water content of the alginate decreased consequent on the cross-linking process. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Drug release characterization and preparation of Ca-Alginate microparticle drug carrier using membrane emulsification method

    Energy Technology Data Exchange (ETDEWEB)

    You, Jin Oh; Park, Seong Bae; Park, Ham Yong; Haam, Seung Joo; Kim, Jung Hyun; Kim, Woo Sik [Dept. of Chemical Engineering, Yonsei University, Seoul (Korea)

    1999-10-01

    Conventional alginate bead has been limited to be used as a drug carrier because of its large size. To overcome the disadvantages of conventional large-size alginate drug beads, Ca-alginate microparticles were prepared using membrane emulsification method controlled with the sodium alginate concentration and the pressure of reactor. The optimal monodispersed microparticles were obtained with the concentration of 2 wt % alginate solution and the pressure of 0.4*10{sup 5} Pa. The mean size of our prepared microparticles was about 4 {gamma}m. As the drug solutions, lidocaine{center_dot}HCI(cationic), sodium salicylate(anionic) and 4-acetamidophenol(nonionic) were selected. These three different drugs were loaded in the drug carrier of prepared alginate microparticles. Drug releases were performed in the sodium phosphate buffers of pH 2 and pH 7 and ionic strength of 0.2. The release behavior with the variation of drug charge shoed that of the cationic drug release was retarded more than anionic one due to the ionic interaction between carboxyl group of alginates and positive charge of cationic drug. >From the comparison experiments of the buffers of pH 2 and pH 7, the release was much retarded at pH 2 buffer due to the ionic repulsive force or ionic attractive force between the carboxyl group and the hydroxy or sodium ion in the buffer. Conclusively, the usage of small-size pH sensitive microparticle as a drug carrier has a high potential for the application of drug delivery systems. 19 refs., 9 figs.

  1. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii

    Directory of Open Access Journals (Sweden)

    Espín Guadalupe

    2007-02-01

    Full Text Available Abstract Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. One of these mutants has been shown to produce the alginate with the highest mean molecular mass so far reported. Recent work has also shed light on the factors determining molecular mass distribution; the most important of these being identified as; dissolved oxygen tension and specific growth rate. The use of specific mutants has been very useful for the correct analysis and interpretation of the factors affecting polymerization. Recent scale-up/down work on alginate production has shown that oxygen limitation is crucial for producing alginate of high molecular mass, a condition which is optimized in shake flasks and which can now be reproduced in stirred fermenters. It is clear that the phenotypes of mutants grown on plates are not necessarily reproducible when the strains are tested in lab or bench scale fermenters. In the case of PHB, A. vinelandii has shown itself able to produce relatively large amounts of this polymer of high molecular weight on cheap substrates, even allowing for simple extraction processes. The development of fermentation strategies has also shown promising results in terms of improving productivity. The understanding of the regulatory mechanisms involved in the control of PHB synthesis, and of its metabolic relationships, has increased considerably, making way for new potential strategies for the further improvement of PHB production. Overall, the use of a multidisciplinary approach, integrating molecular and bioengineering aspects is a necessity for optimizing alginate and PHB production in A. vinelandii.

  2. Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance.

    Science.gov (United States)

    Hong, Hye-Jin; Kim, Byoung-Gyu; Ryu, Jungho; Park, In-Su; Chung, Kang-Sup; Lee, Sang Moon; Lee, Jin-Bae; Jeong, Hyeon Su; Kim, Hyunchul; Ryu, Taegong

    2018-01-01

    Alginate bead is a promising strontium (Sr) adsorbent in seawater, but highly concentrated Na ions caused over-swelling and damaged the hydrogel bead. To improve the mechanical stability of alginate bead, flexible foam-type zeolite-alginate composite was synthesized and Sr adsorption performance was evaluated in seawater; 1-10% zeolite immobilized alginate foams were prepared by freeze-dry technique. Immobilization of zeolite into alginate foam converted macro-pores to meso-pores which lead to more compact structure. It resulted in less swollen composite in seawater medium and exhibited highly improved mechanical stability compared with alginate bead. Besides, Sr adsorption efficiency and selectivity were enhanced by immobilization of zeolite in alginate foam due to the increase of Sr binding sites (zeolite). In particular, Sr selectivity against Na was highly improved. The 10% zeolite-alginate foam exhibited a higher log K d of 3.3, while the pure alginate foam exhibited 2.7 in the presence of 0.1 M Na. Finally, in the real seawater, the 10% zeolite-alginate foam exhibited 1.5 times higher Sr adsorption efficiency than the pure alginate foam. This result reveals that zeolite-alginate foam composite is appropriate material for Sr removal in seawater due to its swelling resistance as well as improved Sr adsorption performance in complex media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Improved Water Barrier Properties of Calcium Alginate Capsules Modified by Silicone Oil

    Directory of Open Access Journals (Sweden)

    Brian G. Zukas

    2016-04-01

    Full Text Available Calcium alginate films generally offer poor diffusion resistance to water. In this study, we present a technique for encapsulating aqueous drops in a modified calcium alginate membrane made from an emulsion of silicone oil and aqueous alginate solution and explore its effect on the loss of water from the capsule cores. The capsule membrane storage modulus increases as the initial concentration of oil in the emulsion is increased. The water barrier properties of the fabricated capsules were determined by observing the mass loss of capsules in a controlled environment. It was found that capsules made with emulsions containing 50 wt% silicone oil were robust while taking at least twice the time to dry completely as compared to capsules made from only an aqueous alginate solution. The size of the oil droplets in the emulsion also has an effect on the water barrier properties of the fabricated capsules. This study demonstrates a facile method of producing aqueous core alginate capsules with a modified membrane that improves the diffusion resistance to water and can have a wide range of applications.

  4. Insights in Behavior of Variably Formulated Alginate-Based Microcapsules for Cell Transplantation

    Science.gov (United States)

    Montanucci, Pia; Terenzi, Silvia; Pennoni, Ilaria; Basta, Giuseppe; Calafiore, Riccardo

    2015-01-01

    Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation, in vitro and in vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules' basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others. PMID:26078974

  5. The Synthesis of Alginate-Capped Silver Nanoparticles under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Foliatini

    2015-03-01

    Full Text Available Synthesis of silver nanoparticles (Ag-NP was successfully performed within a few minutes by microwave irradiation of the precursor salt (AgNO3 and alginate mixed solution in one pot. Herein, alginate molecules acted as both a reducing and stabilizing agent for the preparation of the silver nanoparticles. The obtained nanoparticles were characterized by ultraviolet-visible (UV-Vis spectroscopy, particle size analysis (PSA, Fourier transform infrared spectroscopy (FTIR, and transmission electron microscopy (TEM. The pH and concentration ratio of the alginate/metal precursor salt greatly influenced the particle size and its distribution of Ag-NP. The higher the pH the higher the nucleation rate and the larger the electrostatic stabilization, while both of them were responsible for producing a smaller particle size and a narrower size distribution. A higher concentration ratio also yielded a smaller particle size and a narrower size distribution, but above the optimum ratio, the trend was conversely changed due to the reducing capability of the alginate, which was dominant above the optimum ratio, thus creating a high density of nuclei, allowing aggregation to occur. A lower ratio not only led to a higher tendency to produce larger particles, but also a higher probability of anisotropic particle shape formation due to the lack of reducing capability of the alginates.

  6. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    Science.gov (United States)

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  7. Drug-Loadable Calcium Alginate Hydrogel System for Use in Oral Bone Tissue Repair.

    Science.gov (United States)

    Chen, Luyuan; Shen, Renze; Komasa, Satoshi; Xue, Yanxiang; Jin, Bingyu; Hou, Yepo; Okazaki, Joji; Gao, Jie

    2017-05-06

    This study developed a drug-loadable hydrogel system with high plasticity and favorable biological properties to enhance oral bone tissue regeneration. Hydrogels of different calcium alginate concentrations were prepared. Their swelling ratio, degradation time, and bovine serum albumin (BSA) release rate were measured. Human periodontal ligament cells (hPDLCs) and bone marrow stromal cells (BMSCs) were cultured with both calcium alginate hydrogels and polylactic acid (PLA), and then we examined the proliferation of cells. Inflammatory-related factor gene expressions of hPDLCs and osteogenesis-related gene expressions of BMSCs were observed. Materials were implanted into the subcutaneous tissue of rabbits to determine the biosecurity properties of the materials. The materials were also implanted in mandibular bone defects and then scanned using micro-CT. The calcium alginate hydrogels caused less inflammation than the PLA. The number of mineralized nodules and the expression of osteoblast-related genes were significantly higher in the hydrogel group compared with the control group. When the materials were implanted in subcutaneous tissue, materials showed favorable biocompatibility. The calcium alginate hydrogels had superior osteoinductive bone ability to the PLA. The drug-loadable calcium alginate hydrogel system is a potential bone defect reparation material for clinical dental application.

  8. Characterization of a Long-Lived Alginate Lyase Derived from Shewanella Species YH1

    Directory of Open Access Journals (Sweden)

    Hisashi Yagi

    2017-12-01

    Full Text Available Polysaccharides from seaweeds are widely used in various fields, including the food, biomedical material, cosmetic, and biofuel industries. Alginate, which is a major polysaccharide in brown algae, and the products of its degradation (oligosaccharides have been used in stabilizers, thickeners, and gelling agents, especially in the food industry. Discovering novel alginate lyases with unique characteristics for the efficient production of oligosaccharides may be relevant for the food and pharmaceutical fields. In this study, we identified a unique alginate lyase derived from an alginate-utilizing bacterium, Shewanella species YH1. The recombinant enzyme (rAlgSV1-PL7 was produced in an Escherichia coli system and it was classified in the Polysaccharide Lyase family 7. The optimal temperature and pH for rAlgSV1-PL7 activity were around 45 °C and 8, respectively. Interestingly, we observed that rAlgSV1-PL7 retained over 80% of its enzyme activity after incubation at 30 °C for at least 20 days, indicating that rAlgSV1-PL7 is a long-lived enzyme. Moreover, the degradation of alginate by rAlgSV1-PL7 produced one to four sugars because of the broad substrate specificity of this enzyme. Our findings suggest that rAlgSV1-PL7 may represent a new commercially useful enzyme.

  9. Characterization of a Long-Lived Alginate Lyase Derived from Shewanella Species YH1.

    Science.gov (United States)

    Yagi, Hisashi; Isobe, Natsuki; Itabashi, Narumi; Fujise, Asako; Ohshiro, Takashi

    2017-12-27

    Polysaccharides from seaweeds are widely used in various fields, including the food, biomedical material, cosmetic, and biofuel industries. Alginate, which is a major polysaccharide in brown algae, and the products of its degradation (oligosaccharides) have been used in stabilizers, thickeners, and gelling agents, especially in the food industry. Discovering novel alginate lyases with unique characteristics for the efficient production of oligosaccharides may be relevant for the food and pharmaceutical fields. In this study, we identified a unique alginate lyase derived from an alginate-utilizing bacterium, Shewanella species YH1. The recombinant enzyme (rAlgSV1-PL7) was produced in an Escherichia coli system and it was classified in the Polysaccharide Lyase family 7. The optimal temperature and pH for rAlgSV1-PL7 activity were around 45 °C and 8, respectively. Interestingly, we observed that rAlgSV1-PL7 retained over 80% of its enzyme activity after incubation at 30 °C for at least 20 days, indicating that rAlgSV1-PL7 is a long-lived enzyme. Moreover, the degradation of alginate by rAlgSV1-PL7 produced one to four sugars because of the broad substrate specificity of this enzyme. Our findings suggest that rAlgSV1-PL7 may represent a new commercially useful enzyme.

  10. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    Science.gov (United States)

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles.

    Science.gov (United States)

    Gómez Chabala, Luisa Fernanda; Cuartas, Claudia Elena Echeverri; López, Martha Elena Londoño

    2017-10-24

    Aloe vera is a perennial plant employed for medical, pharmaceutical and cosmetic purposes that is rich in amino acids, enzymes, vitamins and polysaccharides, which are responsible for its therapeutic properties. Incorporating these properties into a biopolymer film obtained from alginate and chitosan allowed the development of a novel wound dressing with antibacterial capacity and healing effects to integrate the antibacterial capacity of silver nanoparticles with the healing and emollient properties of Aloe vera gel. Three alginate-chitosan matrices were obtained through blending methods using different proportions of alginate, chitosan, the Aloe vera (AV) gel and silver nanoparticles (AgNps), which were incorporated into the polymeric system through immersion methods. Physical, chemical and antibacterial characteristics were evaluated in each matrix. Interaction between alginate and chitosan was identified using the Fourier transform infrared spectroscopy technique (FTIR), porosity was studied using scanning electron microscopy (SEM), swelling degree was calculated by difference in weight, Aloe vera gel release capacity was estimated by applying a drug model (Peppas) and finally antibacterial capacity was evaluated against S. Aureus and P. aeruginosa . Results show that alginate-chitosan (A (1:3 Chit 1/Alg 1); B (1:3 Chit 1.5/Alg 1) and C (3:1 Chit 1/Alg 1/B12)) matrices with Aloe vera (AV) gel and silver nanoparticles (AgNps) described here displayed antibacterial properties and absorption and Aloe vera release capacity making it a potential wound dressing for minor injuries.

  12. Synthesis of Thermal Polymerizable Alginate-GMA Hydrogel for Cell Encapsulation

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2015-01-01

    Full Text Available Alginate is a negative ionic polysaccharide that is found abundantly in nature. Calcium is usually used as a cross-linker for alginate. However, calcium cross-linked alginate is used only for in vitro culture. In the present work, alginate was modified with glycidyl methacrylate (GMA to produce a thermal polymerizable alginate-GMA (AA-GMA macromonomer. The molecular structure and methacrylation (%DM of the macromonomer were determined by 1H NMR. After mixing with the correct amount of initiator, the AA-GMA aqueous solution can be polymerized at physiological temperature. The AA-GMA hydrogels exhibited a three-dimensional porous structure with an average pore size ranging from 50 to 200 μm, directly depending on the macromonomer concentration. Biocompatibility of the AA-GMA hydrogel was determined by in vivo muscle injection and cell encapsulation. Muscle injection in vivo showed that the AA-GMA solution mixed with initiator could form a hydrogel in situ and had a mild inflammatory effect. Human umbilical vein endothelial cells (HUVECs were encapsulated in the AA-GMA hydrogels in situ at 37°C. Cell viability and proliferation were unaffected by macromonomer concentrations, which suggests that AA-GMA has a potential application in the field of tissue engineering, especially for myocardial repair.

  13. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin.

    Science.gov (United States)

    Huq, Tanzina; Fraschini, Carole; Khan, Avik; Riedl, Bernard; Bouchard, Jean; Lacroix, Monique

    2017-07-15

    Probiotic (Lactobacillus rhamnosus ATCC 9595) was encapsulated in alginate-CNC-lecithin microbeads to produce nutraceutical microcapsules. Addition of CNC and lecithin in alginate microbeads (ACL-1) improved the viability of L. rhamnosus during gastric passage and storage. The compression strength of the freeze-dried ACL-1 microbeads improved 40% compared to alginate microbeads alone. Swelling studies revealed that addition of CNC and lecithin in alginate microbeads decreased (around 47%) the gastric fluid absorption but increased the dissolution time by 20min compared to alginate microbeads (A-0). During transition through the gastric passage, the viability of L. rhamnosus in dried ACL-1 microbeads was increased 37% as compared to A-0 based beads. At 25 and 4°C storage conditions, the viability of L. rhamnosus encapsulated in ACL-1 microbeads decreased by 1.23 and 1.08 log respectively, whereas the encapsulation with A-0 microbeads exhibited a 3.17 and 1.93 log reduction respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The effectiveness of alginates to reduce the transfer of radiostrontium to the milk of dairy goats

    International Nuclear Information System (INIS)

    Beresford, N.A.; Mayes, R.W.; MacEachern, P.J.; Dodd, B.A.; Lamb, C.S.

    1999-01-01

    In the event of a nuclear accident the radiation dose to human populations arising from radiostrontium ingested as contaminated milk is a major cause of concern. We report a study to determine if calcium alginate incorporated into the diet can be used as an effective countermeasure to reduce radiostrontium transfer to the milk of dairy goats. When Ca-alginate was included into a pelleted ration at 5% dry weight the transfer of radiostrontium to the milk of the goats was reduced by approximately 50%. No effects on diet palatability or the absorption of iron or calcium were observed. Ca-alginate was readily fermentable and hence its potential binding capacity is likely to be reduced in ruminants compared to monogastrics. The Ca-alginate also supplied additional calcium to the diet in an amount which may explain the observed reduction in radiostrontium transfer to milk. Therefore, currently, we cannot be certain if the effect we observed was due to alginate or calcium. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    Science.gov (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    Science.gov (United States)

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    Science.gov (United States)

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  18. Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Luisa Fernanda Gómez Chabala

    2017-10-01

    Full Text Available Aloe vera is a perennial plant employed for medical, pharmaceutical and cosmetic purposes that is rich in amino acids, enzymes, vitamins and polysaccharides, which are responsible for its therapeutic properties. Incorporating these properties into a biopolymer film obtained from alginate and chitosan allowed the development of a novel wound dressing with antibacterial capacity and healing effects to integrate the antibacterial capacity of silver nanoparticles with the healing and emollient properties of Aloe vera gel. Three alginate-chitosan matrices were obtained through blending methods using different proportions of alginate, chitosan, the Aloe vera (AV gel and silver nanoparticles (AgNps, which were incorporated into the polymeric system through immersion methods. Physical, chemical and antibacterial characteristics were evaluated in each matrix. Interaction between alginate and chitosan was identified using the Fourier transform infrared spectroscopy technique (FTIR, porosity was studied using scanning electron microscopy (SEM, swelling degree was calculated by difference in weight, Aloe vera gel release capacity was estimated by applying a drug model (Peppas and finally antibacterial capacity was evaluated against S. Aureus and P. aeruginosa. Results show that alginate-chitosan (A (1:3 Chit 1/Alg 1; B (1:3 Chit 1.5/Alg 1 and C (3:1 Chit 1/Alg 1/B12 matrices with Aloe vera (AV gel and silver nanoparticles (AgNps described here displayed antibacterial properties and absorption and Aloe vera release capacity making it a potential wound dressing for minor injuries.

  19. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    Science.gov (United States)

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  20. Fabrication of large size alginate beads for three-dimensional cell-cluster culture

    Science.gov (United States)

    Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang

    2017-08-01

    We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.

  1. Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin.

    Science.gov (United States)

    Aluani, Denitsa; Tzankova, Virginia; Kondeva-Burdina, Magdalena; Yordanov, Yordan; Nikolova, Elena; Odzhakov, Feodor; Apostolov, Alexandar; Markova, Tzvetanka; Yoncheva, Krassimira

    2017-10-01

    The present study deals with development and evaluation of the safety profile of chitosan/alginate nanoparticles as a platform for delivery of a natural antioxidant quercetin. The nanoparticles were prepared by varying the ratios between both biopolymers giving different size and charge of the formulations. The biocompatibility was explored in vitro in cells from different origin: cultivated HepG2 cells, isolated primary rat hepatocytes, isolated murine spleen lymphocytes and macrophages. In vivo toxicological evaluation was performed after repeated 14-day oral administration to rats. The study revealed that chitosan/alginate nanoparticles did not change body weight, the relative weight of rat livers, liver histology, hematology and biochemical parameters. The protective effects of quercetin-loaded nanoparticles were investigated in the models of iron/ascorbic acid (Fe 2+ /AA) induced lipid peroxidation in microsomes and tert-butyl hydroperoxide oxidative stress in isolated rat hepatocytes. Interesting finding was that the empty chitosan/alginate nanoparticles possessed protective activity themselves. The antioxidant effects of quercetin loaded into the nanoparticles formulated with higher concentration of chitosan were superior compared to quercetin encapsulated in nanoparticles with higher amount of sodium alginate. In conclusion, chitosan/alginate nanoparticles can be considered appropriate carrier for quercetin, combining safety profile and improved protective activity of the encapsulated antioxidant. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics.

    Science.gov (United States)

    Zheng, Wen Jiang; An, Ning; Yang, Jian Hai; Zhou, Jinxiong; Chen, Yong Mei

    2015-01-28

    Tough Al-alginate/poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been synthesized by introducing an interpenetrating network with hybrid physically cross-linked alginate and chemically cross-linked PNIPAM. Varying the concentration of AlCl3 regulates the mechanical properties of the tough hydrogel and tunes its lower critical solution temperature (LCST) as well. The tough Al-alginate/PNIPAM exhibits 6.3 ± 0.3 MPa of compressive stress and 9.95 of uniaxial stretch. Tunability of LCST is also achieved in a wide range within 22.5-32 °C. A bending beam actuator and a four-arm gripper made of bilayer (Na-alginate/PNIPAM)/(Al-alginate/PNIPAM) hydrogel as prototype of all-hydrogel soft robotics are demonstrated. A finite element (FE) simulation model is developed to simulate the deformation of the soft robotics. The FE simulation not only reproduces the deformation process of performed experiments but also predicts more complicated devices that can be explored in the future. This work broadens the application of temperature-responsive PNIPAM-based hydrogels.

  3. Morphology, molecular dynamics and electric conductivity of carbohydrate polymer films based on alginic acid and benzimidazole.

    Science.gov (United States)

    Rachocki, Adam; Pogorzelec-Glaser, Katarzyna; Pawlaczyk, Czesław; Tritt-Goc, Jadwiga

    2011-12-13

    The present paper describes a preparation method and molecular investigations of new biodegradable proton-conducting carbohydrate polymer films based on alginic acid and benzimidazole. Electric conductivity was studied in a wide temperature range in order to check the potential application of these compounds as membranes for electrochemical devices. Compared to pure alginic acid powder or its film, the biodegradable film of alginic acid with an addition of benzimidazole exhibits considerably higher conductivity in the range above water boiling temperature (up to approximately 10(-3) S/cm at 473 K). Due to this important feature the obtained films can be considered as candidates for application in high-temperature electrochemical devices. The microscopic nature and mechanism of the conduction in alginate based materials were studied by proton nuclear magnetic resonance (NMR). The results show specific changes in morphology and molecular dynamics between pure alginate powders and the films obtained without and with the addition of benzimidazole molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    SUSIANY LOPES

    2017-08-01

    Full Text Available ABSTRACT This paper describes the preparation and characterization of alginate beads coated with gelatin and containing Lactobacillus rhamnosus. Capsules were obtained by extrusion method using CaCl2 as cross linker. An experimental design was performed using alginate and gelatin concentrations as the variables investigated, while the response variable was the concentration of viable cells. Beads were characterized in terms of size, morphology, scanning electron microscopy (SEM, moisture content, Fourier Transform Infrared Spectrometry (FTIR, thermal behavior and cell viability during storage. The results showed that the highest concentration of viable cells (4.2 x 109 CFU/g was obtained for 1 % w/v of alginate and 0.1 % w/v of gelatin. Capsules were predominantly spherical with a rough surface, a narrow size distribution ranging from 1.53 to 1.90 mm and a moisture content of 97.70 ± 0.03 %. Furthermore, FTIR and thermogravimetric analysis indicated an interaction between alginate-gelatin. Cell concentration of alginate/gelatin microcapsules was 105 CFU/g after 4 months of storage at 8 oC.

  5. Insights in Behavior of Variably Formulated Alginate-Based Microcapsules for Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Pia Montanucci

    2015-01-01

    Full Text Available Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation, in vitro and in vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.

  6. Development of edible films and coatings from alginates and carrageenans.

    Science.gov (United States)

    Tavassoli-Kafrani, Elham; Shekarchizadeh, Hajar; Masoudpour-Behabadi, Mahdieh

    2016-02-10

    The use of renewable resources, which can reduce waste disposal problems, is being explored to produce biopolymer films and coatings. Renewability, degradability, and edibility make such films particularly suitable for food and nonfood packaging applications. Edible films and coatings play an important role in the quality, safety, transportation, storage, and display of a wide range of fresh and processed foods. They can diminish main alteration by avoiding moisture losses and decreasing adverse chemical reaction rates. Also, they can prevent spoilage and microbial contamination of foods. Additionally, nanomaterials and food additives, such as flavors, antimicrobials, antioxidants, and colors, can be incorporated into edible films and coatings in order to extend their applications. Water-soluble hydrocolloids like polysaccharides usually impart better mechanical properties to edible films and coatings than do hydrophobic substances. They also are excellent barriers to oxygen and carbon dioxide. Recently, there has been much attention on carrageenan and alginate as sources of film-forming materials. Thus, this review highlights production and characteristics of these films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Encapsulation of sorbitan ester-based organogels in alginate microparticles.

    Science.gov (United States)

    Sagiri, Sai S; Pal, Kunal; Basak, Piyali; Rana, Usman Ali; Shakir, Imran; Anis, Arfat

    2014-10-01

    Leaching of the internal apolar phase from the biopolymeric microparticles during storage is a great concern as it undoes the beneficial effects of encapsulation. In this paper, a novel formulation was prepared by encapsulating the sunflower oil-based organogels in alginate microparticles. Salicylic acid and metronidazole were used as the model drugs. The microparticles were prepared by double emulsion methodology. Physico-chemical characterization of the microparticles was done by microscopy, FTIR, XRD, and DSC studies. Oil leaching studies, biocompatibility, mucoadhesivity, in vitro drug release, and the antimicrobial efficiency of the microparticles were also performed. The microparticles were found to be spherical in shape. Gelation of the sunflower oil prevented leaching of the internal phase from the microparticles. Release of drugs from the microparticles followed Fickian kinetics and non-Fickian kinetics in gastric and intestinal environments, respectively. Microparticles showed good antimicrobial activity against both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. The results suggested that the developed formulations hold promise to carry oils without leakage of the internal phase. Encapsulation of organogels within the microparticles has improved the drug entrapment efficiency and improved characteristics for controlled delivery applications.

  8. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel.

    Science.gov (United States)

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-03-20

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

  9. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Ahasan Habib

    2018-03-01

    Full Text Available Three-dimensional (3D bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

  10. Drug delivery matrices based on scleroglucan/alginate/borax gels.

    Science.gov (United States)

    Matricardi, Pietro; Onorati, Ilenia; Coviello, Tommasina; Alhaique, Franco

    2006-06-19

    The aim of this work is to obtain a new drug delivery matrix, especially designed for protein delivery, based on biodegradable and biocompatible polymers, and to describe its main physico-chemical properties. A polysaccharide based semi-interpenetrating polymer network (semi-IPN) was built up, composed by sodium alginate chains interspersed into a scleroglucan/borax hydrogel network. Tablets were obtained by compression of the resulting freeze-dried hydrogel. The different release and physico-chemical properties possessed by the two starting polymers in various aqueous media were combined in the new matrix. In this work, description is given of the in vitro ability of the matrix to deliver in a controlled manner a protein, Myoglobin, in distilled water, simulated gastric fluid and simulated intestinal fluid; the release, simulating a gastric passage, followed by an enteric delivery, was also carried out. Water uptake data, colorimetric experiments and scanning electron microscopy images are given for the characterization of this new solid dosage form; the importance of the borax presence is also discussed.

  11. Simulation of Enzyme Catalysis in Calcium Alginate Beads

    Directory of Open Access Journals (Sweden)

    Ameel M. R. Al-Mayah

    2012-01-01

    Full Text Available A general mathematical model for a fixed bed immobilized enzyme reactor was developed to simulate the process of diffusion and reaction inside the biocatalyst particle. The modeling and simulation of starch hydrolysis using immobilized α-amylase were used as a model for this study. Corn starch hydrolysis was carried out at a constant pH of 5.5 and temperature of . The substrate flow rate was ranging from 0.2 to 5.0 mL/min, substrate initial concentrations 1 to 100 g/L. α-amylase was immobilized on to calcium alginate hydrogel beads of 2 mm average diameter. In this work Michaelis-Menten kinetics have been considered. The effect of substrate flow rate (i.e., residence time and initial concentration on intraparticle diffusion have been taken into consideration. The performance of the system is found to be affected by the substrate flow rate and initial concentrations. The reaction is controlled by the reaction rate. The model equation was a nonlinear second order differential equation simulated based on the experimental data for steady state condition. The simulation was achieved numerically using FINITE ELEMENTS in MATLAB software package. The simulated results give satisfactory results for substrate and product concentration profiles within the biocatalyst bead.

  12. Tailored freestanding multilayered membranes based on chitosan and alginate.

    Science.gov (United States)

    Silva, Joana M; Duarte, Ana Rita C; Caridade, Sofia G; Picart, Catherine; Reis, Rui L; Mano, João F

    2014-10-13

    Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL(-1) or 5 mg·mL(-1). Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.

  13. Polymeric microcapsules poduction from sodium alginic acid for cell therapy

    Directory of Open Access Journals (Sweden)

    Ana Carolina Vale Campos Lisboa

    2007-12-01

    Full Text Available Development of polymeric materials has been increasingly emphasized in Biomedicine. Here, we evaluate the use of microcapsules made of Biodritin®, a biocompatible polymer compound which contains sodium alginic acid, a natural polymer extracted from algae, and Cis-Chondroitin sulfate, a glycosaminoglycan from the extracellular matrix. Gelation of this polymer into microcapsules is achieved by dropping the compound into BaCl2 or CaCl2 gelling solutions. A functional microcapsule is dependent on its permeability, mechanical stability, immunoisolation capacity and biocompatibility. The mechanical stability of Biodritin-barium and Biodritin-calcium microcapsules was investigated after rotational stress upon in vitro culture and in vivo implantation. Viability studies of encapsulated cells were also performed to assess other functional parameters of the microcapsules. When subject to rotational stress, Biodritin-barium microcapsules exhibited breaks, whereas the Biodritin-calcium microcapsules did not. Both kinds of Biodritin® microcapsules proved to be mechanically resistant in in vitro and in vivo studies. However, the Biodritin-calcium material was found to be more elastic while the Biodritin-barium microcapsules displayed a more plastic behavior. These properties seem to be determinant for viability of the encapsulated cell’s, since the Biodritin-calcium microcapsules presented more viable cells than the Biodritin-barium microcapsules.

  14. Alginate submicron beads prepared through w/o emulsification and gelation with CaCl2 nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2013-01-01

    A simple method for preparing gelled alginate beads with a diameter smaller than 5 µm is described. A 1% alginate solution and a medium chain triglyceride (MCT) oil are used to prepare a water-in-oil (w/o) emulsion, stabilized by polyglycerol polyricinoleate. CaCl2 nanoparticles with dimensions in

  15. Draft Genome Sequence of Falsirhodobacter sp. Strain alg1, an Alginate-Degrading Bacterium Isolated from Fermented Brown Algae.

    Science.gov (United States)

    Mori, Tetsushi; Takahashi, Mami; Tanaka, Reiji; Shibata, Toshiyuki; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2014-08-21

    Falsirhodobacter sp. alg1 is an alginate-degrading bacterium, the second species from the nonphototrophic bacterial genus Falsirhodobacter. We report the first draft genome of a bacterium from this genus and point out possible important features related to alginate assimilation and its evolutionary aspects. Copyright © 2014 Mori et al.

  16. Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3

    NARCIS (Netherlands)

    Paques, J.P.; Sagis, L.M.C.; Rijn, van C.J.M.; Linden, van der E.

    2014-01-01

    Gelled nanospheres of alginate are prepared through a single step technique involving emulsification and gelation. CaCO3 nanoparticles, together with glucono delta-lactone (GDL), are dispersed in an alginate solution, which is subsequently dispersed in an oil phase and followed by gelation of the

  17. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Badita, C. R., E-mail: ramona@tandem.nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, ramona@tandem.nipne.ro, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, ramona@tandem.nipne.ro, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Anitas, E. M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, ramona@tandem.nipne.ro, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca{sup 2+} ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca{sup 2+} concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.

  18. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Badita, C. R.; Aranghel, D.; Radulescu, A.; Anitas, E. M.

    2016-01-01

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca 2+ ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca 2+ concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.

  19. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    Science.gov (United States)

    Badita, C. R.; Aranghel, D.; Radulescu, A.; Anitas, E. M.

    2016-03-01

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca2+ ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca2+ concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.

  20. Highly stable and magnetically separable alginate/Fe3O4 composite for the removal of strontium (Sr) from seawater.

    Science.gov (United States)

    Hong, Hye-Jin; Jeong, Hyeon Su; Kim, Byoung-Gyu; Hong, Jeongsik; Park, In-Su; Ryu, Taegong; Chung, Kang-Sup; Kim, Hyuncheol; Ryu, Jungho

    2016-12-01

    In this study, a highly stable alginate/Fe 3 O 4 composite was synthesized, and systematically investigated for the practical application of strontium (Sr) removal in complex media, such as seawater and radioactive wastewater. To overcome the drawbacks of the use of alginate microspheres, high contents of alginic acid and Fe 3 O 4 were used to provide a more rigid structure with little swelling and facile separation, respectively. The synthesized composite was optimized for particle sizes of seawater spiked with 50 mg/L of Sr, the alginate/Fe 3 O 4 composite showed 12.5 mg/g of Sr uptake, despite the highly concentrated ions in seawater. The adsorption experiment for radio-active 90 Sr revealed a removal efficiency of 67% in real seawater, demonstrating the reliability of the alginate/Fe 3 O 4 composite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities

    DEFF Research Database (Denmark)

    Mazumder, Anupriya; Holdt, Susan Løvstad; De Francisci, Davide

    2016-01-01

    extraction were evaluated for total polyphenols and its antioxidant capacity. The extracted alginate was further characterized using fluorescence spectrophotometer and nuclear magnetic resonance spectroscopy. The 1H NMR data revealed that extracted alginate has an M/G ratio of 1.08 and η ...In the present study, alginate extraction from the brown seaweed Sargassum muticum was studied using single factor analysis. Response Surface Methodology-Central Composite Rotatary design (RSM-CCRD) was performed to reduce and optimize extraction temperature, alkali concentration, and consumption...... of solvent. Different interaction effect of three extraction factors of temperature (60–100 °C), alkali (1–5 %), and aqueous ethanol (70–100 %) were studied to reduce residual waste. The result showed that the optimum extraction yield (13.57 %) was obtained with 86 °C temperature, 3 % alkali, and 93...

  2. A study of sodium alginate and calcium chloride interaction through films for intervertebral disc regeneration uses

    International Nuclear Information System (INIS)

    Laia, Andreia Grossi Santos de; Costa Junior, Ezequiel de Souza; Costa, Hermes de Souza

    2014-01-01

    The injured intervertebral disc (IVD) requires some measures in order to promote its regeneration. The sodium alginate in conjunction with CaCl 2 forms a net, potentiating its mechanical properties so it may be an alternative for IVD treatment. In this work, the viability of films of sodium alginate crosslinked with CaCl 2 and submitted to variations in their solutions' preparations is verified, comparing the effects of the addition of CaCl 2 through their immersions, before and after drying the films. The films had their physicochemical properties analyzed by FTIR, DSC and XRD. The results indicated that films with a greater proportion of CaCl 2 were more stable in the DSC analysis when compared to films with smaller proportions of CaCl 2 . These results indicate alginate's modulation capacity which may be useful for IVD regeneration. (author)

  3. Alginate-based microcapsules with galactosylated chitosan internal for primary hepatocyte applications.

    Science.gov (United States)

    Lou, Ruyun; Xie, Hongguo; Zheng, Huizhen; Ren, Ying; Gao, Meng; Guo, Xin; Song, Yizhe; Yu, Weiting; Liu, Xiudong; Ma, Xiaojun

    2016-12-01

    Alginate-galactosylated chitosan/polylysine (AGCP) microcapsules with excellent stability and high permeability were developed and employed in primary hepatocyte applications. The galactosylated chitosan (GC), synthesized via the covalent coupling of lactobionic acid (LA) with low molecular weight and water-soluble chitosan (CS), was ingeniously introduced into the core of alginate microcapsules by regulating the pH of gelling bath. The internal GC of the microcapsules simultaneously provided a large number of binding sites for the hepatocytes and further promoted the hepatocyte-matrix interactions via the recognition of asialoglycoprotein receptors (ASGPRs) on the hepatocyte surface, and afforded the AGCP microcapsules an excellent stability via the electrostatic interactions with alginate. As a consequence, primary hepatocytes in AGCP microcapsules demonstrated enhanced viability, urea synthesis, albumin secretion, and P-450 enzyme activity, showing great prospects for hepatocyte applications in microcapsule system. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of disinfection of combined agar/alginate impressions on the dimensional accuracy of stone casts.

    Science.gov (United States)

    Hiraguchi, Hisako; Nakagawa, Hisami; Kaketani, Masahiro; Hirose, Hideharu; Nishiyama, Minoru

    2007-05-01

    This study investigated the effects of disinfection of combined agar/alginate impressions on the dimensional accuracy of resultant stone casts. Impressions of a master cast designed to simulate an abutment tooth were prepared by combining each of two brands of cartridge-form agar impression materials with an alginate impression material. The impressions were immersed in 1% sodium hypochlorite for 10 minutes or 2% glutaraldehyde for 30 minutes. The remaining impressions were sprayed with these two disinfectants and then stored in sealed bags for 10, 30, 60, and 120 minutes. Stone casts obtained from the non-disinfected impressions were also prepared as control. Changes in diameter of the stone casts were then measured. Results indicated that storage for 10 minutes after spraying with 1% sodium hypochlorite was an appropriate disinfection method for combined agar/alginate impressions, as well as immersion in 1% sodium hypochlorite for 10 minutes.

  5. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  6. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks.

    Science.gov (United States)

    Martins, Evandro; Poncelet, Denis; Rodrigues, Ramila Cristiane; Renard, Denis

    2017-12-01

    Oils are used in agriculture, nutrition, food and cosmetics; however, these substances are oxidisable and may readily lose their properties. To reduce their degradation or to mask certain undesirable aspects, one strategy consists in encapsulating the oil in inert structures (capsules). The capsules are classified according to the morphology, the number of cores and size, can be produced by several techniques: jet-cutting, vibrating jet, spray-drying, dispersion and milli-microfluidic. Among the polymers used as a membrane in the capsules, alginates are used in oil encapsulation because of their high gelling capacity, biocompatibility and low toxicity. In the presence of calcium ions, the alginate macromolecules crosslink to form a three-dimensional network called hydrogel. The oil encapsulation using alginate as encapsulating material can be carried out using technologies based on the external, internal or inverse gelation mechanisms. These capsules can found applications in areas as cosmetics, textile, foods and veterinary, for example.

  7. Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery

    Directory of Open Access Journals (Sweden)

    Timothy W. Yeung

    2016-04-01

    Full Text Available Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions.

  8. Effect of chitosan-coated alginate microspheres on the permeability of Caco-2 cell monolayers.

    Science.gov (United States)

    Silva, Catarina M; Veiga, Francisco; Ribeiro, António J; Zerrouk, Naïma; Arnaud, Philippe

    2006-10-01

    Alginate microspheres were prepared by emulsification/internal gelation and coated with chitosan. The ability of chitosan-coated alginate microspheres to increase the paracellular transport across Caco-2 cell monolayers was evaluated in comparison to uncoated microspheres and chitosan solutions. Transport studies were performed by using a permeability marker, Lucifer Yellow (LY), and by measuring the transepithelial electric resistance (TEER) variations. Furthermore, the occurrence of cytotoxic effects was assessed by evaluating neutral red uptake in viable cells and lactate dehydrogenase (LDH) release from damaged cells. A 3-fold increase on LY permeability was obtained for coated microspheres when compared to chitosan solutions. TEER variations were in agreement with permeability results. Chitosan solutions exhibited a dose-dependent toxicity, but coated microspheres did not decrease the viability of cells. Chitosan-coated alginate microspheres have potential to be used as carriers of poorly absorbable hydrophilic drugs to the intestinal epithelia and possibly increase their oral bioavailability.

  9. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    -overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...... that the production of alginate is not critical for biofilm formation. Observation over a period of 5 days indicated a three-stage development pattern consisting of initiation, establishment and maturation. Furthermore, this study showed that phenotypically distinguishable biofilms can be quantitatively...

  10. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae

    DEFF Research Database (Denmark)

    Laue, H.; Schenk, A.; Li, H.

    2006-01-01

    Exopolysaccharides (EPSs) play important roles in the attachment of bacterial cells to a surface and/or in building and maintaining the three-dimensional, complex structure of bacterial biofilms. To elucidate the spatial distribution and function of the EPSs levan and alginate during biofilm...... formation, biofilms of Pseudomonas syringae strains with different EPS patterns were compared. The mucoid strain PG4180.muc, which produces levan and alginate, and its levan- and/or alginate-deficient derivatives all formed biofilms in the wells of microtitre plates and in flow chambers. Confocal laser...... scanning microscopy with fluorescently labelled lectins was applied to investigate the spatial distribution of levan and an additional as yet unknown EPS in flow-chamber biofilms. Concanavalin A (ConA) bound specifically to levan and accumulated in cell-depleted voids in the centres of microcolonies...

  11. The role of alginates in regulation of food intake and glycemia: a gastroenterological perspective.

    Science.gov (United States)

    El Khoury, D; Goff, H D; Anderson, G H

    2015-01-01

    Regulation of food intake through modulation of gastrointestinal responses to ingested foods is an ever-growing component of the therapeutic approaches targeting the obesity epidemic. Alginates, viscous and gel-forming soluble fibers isolated from the cell wall of brown seaweeds and some bacteria, are recently receiving considerable attention because of their potential role in satiation, satiety, and food intake regulation in the short term. Enhancement of gastric distension, delay of gastric emptying, and attenuation of postprandial glucose responses may constitute the basis of their physiological benefits. Offering physical, chemical, sensorial, and physiological advantages over other viscous and gel-forming fibers, alginates constitute promising functional food ingredients for the food industry. Therefore, the current review explores the role of alginates in food intake and glycemic regulation, their underlying modes of action and their potential in food applications.

  12. Investigating the weight ratio variation of alginate-hydroxyapatite composites for vertebroplasty method bone filler material

    Science.gov (United States)

    Lestari, Gusti Ruri; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    One of the newly developed methods for curing spinal fracture due to osteoporosis is vertebroplasty. The method is basically based on injection of special material directly to the fractured spine in order to commence the formation of new bone. Therefore, appropriate injectable materials are very important to the curing success. In this study, injectable alginate-hydroxyapatite (HA) composites were fabricated varying the weight percentage of alginate upon synthesis procedure. The result of injection capability and compressive tests as well as Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) suggested that bone filler composite containing 60 wt% alginate is the optimum composition obtaining a compressive modulus up to 0.15 MPa, injection capability of more than 85% and morphology with uniform porous and fibrous structure. This injectable composite fabrication process can be used for the development of injectable materials system for vertebroplasty method.

  13. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    -overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles......Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  14. Influence of Codium tomentosum Extract in the Properties of Alginate and Chitosan Edible Films

    Directory of Open Access Journals (Sweden)

    Ana Augusto

    2018-04-01

    Full Text Available The growing search for natural alternatives to synthetic food packaging materials and additives has increased, and seaweed extracts’ bioactivity has made them suitable candidates for incorporation in novel edible films. This study aims to investigate the effect of Codium tomentosum seaweed extract (SE incorporation in alginate and chitosan edible films. Alginate- and chitosan-based films with and without the incorporation of 0.5% SE were characterized according to their physical, optical, mechanical, and thermal properties. Seaweed extract incorporation in chitosan films resulted in an increase of film solubility (50%, elasticity (18%, and decrease of puncture strength (27% and energy at break (39%. In alginate films, the extract incorporation significantly decreased film solubility (6%, water vapour permeability (46%, and elasticity (24%, and had no effect on thermal properties. Depending on the type of application, the addition of SE in edible films can bring advantages for food conservation.

  15. Using Wheat Flour and Alginate In Mozzarella Cheese Making On Physical and Sensory Quality

    Directory of Open Access Journals (Sweden)

    Purwadi Purwadi

    2014-12-01

    Full Text Available The purpose of this research was to know the best combination of using wheat flour and alginate on physical and sensory quality of Mozzarella cheese. The method that used in this research was factorial experiment with completely randomized design by using twelve treatments and three times repeatation. The variable measured was hardness, cutting point and sensory. The obtained data was analized by using analysis of variance continued by honesty significant difference (HSD. The result of this research showed that the used of wheat flour and alginate did not give a significance different interaction (P > 0,05 on the average of hardness, cutting point and sensory quality (colour, texture, and taste of Mozzarella cheese, but used of wheat flour give a different significance effect (P < 0,05 on hardness and cutting point of Mozzarella cheese. The highest value was the treatment of T4A3, that was the combination of 7,5 % wheat flour and 1 % alginate.

  16. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton

    2016-01-01

    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions.

  17. Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex.

    Science.gov (United States)

    Wang, Lixia; Yang, Shiwei; Cao, Jinli; Zhao, Shaohua; Wang, Wuwei

    2016-01-01

    The coacervation between gelatin and sodium alginate for ginger volatile oil (GVO) microencapsulation as functions of mass ratio, pH and concentration of wall material and core material load was evaluated. The microencapsulation was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and thermal gravimetric analysis (TGA). SEM and FT-IR studies indicated the formation of polyelectrolyte complexation between gelatin and sodium alginate and successful encapsulation of GVO into the microcapsules. Thermal property study showed that the crosslinked microparticles exhibited higher thermal stability than the neat GVO, gelatin, and sodium alginate. The stability of microencapsulation of GVO in a simulated gastric and an intestinal situation in vitro was also studied. The stability results indicated that the release of GVO from microcapsules was much higher in simulated intestinal fluid, compared with that in simulated-gastric fluid.

  18. Acute effect of alginate-based preload on satiety feelings, energy intake, and gastric emptying rate in healthy subjects.

    Science.gov (United States)

    Georg Jensen, Morten; Kristensen, Mette; Belza, Anita; Knudsen, Jes C; Astrup, Arne

    2012-09-01

    Viscous dietary fibers such as sodium alginate extracted from brown seaweed have received much attention lately for their potential role in energy regulation through the inhibition of energy intake and increase of satiety feelings. The aim of our study was to investigate the effect on postprandial satiety feelings, energy intake, and gastric emptying rate (GER), by the paracetamol method, of two different volumes of an alginate-based preload in normal-weight subjects. In a four-way placebo-controlled, double-blind, crossover trial, 20 subjects (age: 25.9 ± 3.4 years; BMI: 23.5 ± 1.7 kg/m(2)) were randomly assigned to receive a 3% preload concentration of either low volume (LV; 9.9 g alginate in 330 ml) or high volume (HV; 15.0 g alginate in 500 ml) alginate-based beverage, or an iso-volume placebo beverage. The preloads were ingested 30 min before a fixed breakfast and again before an ad libitum lunch. Consumption of LV-alginate preload induced a significantly lower (8.0%) energy intake than the placebo beverage (P = 0.040) at the following lunch meal, without differences in satiety feelings or paracetamol concentrations. The HV alginate significantly increased satiety feelings (P = 0.038), reduced hunger (P = 0.042) and the feeling of prospective food consumption (P = 0.027), and reduced area under the curve (iAUC) paracetamol concentrations compared to the placebo (P = 0.05). However, only a 5.5% reduction in energy intake was observed for HV alginate (P = 0.20). Although they are somewhat contradictory, our results suggest that alginate consumption does affect satiety feelings and energy intake. However, further investigation on the volume of alginate administered is needed before inferring that this fiber has a possible role in short-term energy regulation.

  19. Considerations in binding diblock copolymers on hydrophilic alginate beads for providing an immunoprotective membrane

    Science.gov (United States)

    Spasojevic, Milica; Bhujbal, Swapnil; Paredes, Genaro; de Haan, Bart J; Schouten, Arend J; de Vos, Paul

    2014-01-01

    Alginate-based microcapsules are being proposed for treatment of many types of diseases. A major obstacle however in the successes is that these capsules are having large lab-to-lab variations. To make the process more reproducible, we propose to cover the surface of alginate capsules with diblock polymers that can form polymer brushes. In the present study, we describe the stepwise considerations for successful application of diblock copolymer of polyethylene glycol (PEG) and poly-l-lysine (PLL) on the surface of alginate beads. Special procedures had to be designed as alginate beads are hydrophilic and most protocols are designed for hydrophobic biomaterials. The successful attachment of diblock copolymer and the presence of PEG blocks on the surface of the capsules were studied by fluorescence microscopy. Longer time periods, that is, 30–60 min, are required to achieve saturation of the surface. The block lengths influenced the strength of the capsules. Shorter PLL blocks resulted in less stable capsules. Adequate permeability of the capsules was achieved with poly(ethylene glycol)-block-poly(l-lysine hydrochloride) (PEG454-b-PLL100) diblock copolymers. The capsules were a barrier for immunoglobulin G. The PEG454-b-PLL100 capsules have similar mechanical properties as PLL capsules. Minor immune activation of nuclear factor κB in THP-1 monocytes was observed with both PLL and PEG454-b-PLL100 capsules prepared from purified alginate. Our results show that we can successfully apply block copolymers on the surface of hydrophilic alginate beads without interfering with the physicochemical properties. PMID:23853069

  20. Radiation effects on agar, alginates and carrageenan to be used as food additives

    Science.gov (United States)

    Aliste, A. J. A. J.; Vieira, F. F. F. F.; Del Mastro, N. L. N. L.

    2000-03-01

    Agar, alginates and carrageenan are hydrocolloids that induce stabilization of physical properties of the food product during shelf life and prevention of undesirable changes such as moisture migration, gas cell coalescence or textural profile changes. In this work, agar, alginates and carrageenan was irradiated as powder with different doses (0-10 kGy) of Co-60 and the rheological functional performance of water solutions of these irradiated additives was studied. The results are analyzed taking in account the future applications of those additives in irradiated foods.

  1. Optimized spray drying process for preparation of one-step calcium-alginate gel microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Popeski-Dimovski, Riste [Department of physic, Faculty of Natural Sciences and Mathematics, “ss. Cyril and Methodius” University, Arhimedova 3, 1000 Skopje, R. Macedonia (Macedonia, The Former Yugoslav Republic of)

    2016-03-25

    Calcium-alginate micro particles have been used extensively in drug delivery systems. Therefore we establish a one-step method for preparation of internally gelated micro particles with spherical shape and narrow size distribution. We use four types of alginate with different G/M ratio and molar weight. The size of the particles is measured using light diffraction and scanning electron microscopy. Measurements showed that with this method, micro particles with size distribution around 4 micrometers can be prepared, and SEM imaging showed that those particles are spherical in shape.

  2. Microwave based synthesis of polymethyl methacrylate grafted sodium alginate: its application as flocculant.

    Science.gov (United States)

    Rani, Priti; Mishra, Sumit; Sen, Gautam

    2013-01-16

    Polymethyl methacrylate grafted sodium alginate (SAG-g-PMMA) was synthesized by microwave assisted method. The grafting of the PMMA chains on the polysaccharide backbone was confirmed through intrinsic viscosity study, FTIR spectroscopy, elemental analysis (C, H, N, O and Na), SEM and TGA study. The intrinsic viscosity of sodium alginate appreciably improved on grafting of PMMA chains, thus resulting grafted product with potential application as superior viscosifier. Further, flocculation efficacy of the graft copolymer was studied in coal fine suspension through jar test procedure, toward possible application as flocculant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Investigation of radiation gamma-sterilization effect on sodium alginate hydrogels

    International Nuclear Information System (INIS)

    Valueva, M.I.; Oltarzhevskaya, N.D.; Maksimova, Yu.S.; Fenin, A.A.

    2012-01-01

    The effect of gamma-radiation in doses ensuring materials sterility (6-15 kGy) on alginate hydrogels is studied. For conservation of polymer solutions viscosity after sterilization it is necessary to introduce in polymer matrix different additives inhibiting the radiolysis process. Substances-antioxidants (aqueous extracts of sea-buckthorn and blueberry), polyvinylpyrrolidone, pectin, polyethylene oxides with molecular mass from 400 to 40000 have been studied as the additives. The additives selected have the positive effect on the result of alginate hydrogels sterilization. It is established, that the problem of human tissue radiation protection is closely connected with the problem of biopolymer hydrogels radiation protection [ru

  4. Effect of calcium chloride concentration on output force in electrical actuator made of sodium alginate gel

    Science.gov (United States)

    Wu, Yuda; Zhao, Gang; Wei, Chengye; Liu, Shuang; Fu, Yu; Liu, Xvxiong

    2018-01-01

    As a kind of artificial muscle intelligent material, the biological gel electric driver has the advantages of low driving voltage, large strain, good biological compatibility, good flexibility, low price, etc. The application prospect is broad and it has high academic value. Alginate, as a common substance in sea, has characteristics of low cost, green and pollution-free. Therefore,this paper obtains biological gel electric actuator by sodium alginate and calcium chloride. Effects on output force of the electric actuator is researched by changing the crosslinking of calcium chloride concentration and the output force enhancement mechanism is analyzed in this paper.

  5. Formulation of essential oil-loaded chitosan–alginate nanocapsules

    Directory of Open Access Journals (Sweden)

    Dheebika Natrajan

    2015-09-01

    Full Text Available Naturally occurring polymers such as alginate (AL and chitosan (CS are widely used in biomedical and pharmaceutical fields in various forms such as nanoparticles, capsules, and emulsions. These polymers have attractive applications in drug delivery because of their biodegradability, biocompatibility, and nontoxic nature. The pharmaceutical applications of essential oils such as turmeric oil and lemongrass oil are well-known, and their active components, ar-turmerone and citral, respectively, are known for their antibacterial, antifungal, antioxidant, antimutagenic, and anticarcinogenic properties. However, these essential oils are unstable, volatile, and insoluble in water, which limits their use for new formulations. Therefore, this study focuses on developing a CS–AL nanocarrier for the encapsulation of essential oils. The effects of process parameters such as the effect of heat and the concentrations of AL and CS were investigated. Various physicochemical characterization techniques such as scanning electron microscopy, Fourier transform infrared spectroscopy, and ultraviolet–visible spectroscopy were performed. Results of characterization studies showed that 0.3 mg/mL AL and 0.6 mg/mL CS produced minimum-sized particles (<300 nm with good stability. It was also confirmed that the oil-loaded nanocapsules were hemocompatible, suggesting their use for future biomedical and pharmaceutical applications. Furthermore, the antiproliferative activity of turmeric oil- and lemongrass oil-loaded nanocapsules was estimated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay in A549 cell lines and it was found that both the nanoformulations had significant antiproliferative properties than the bare oil.

  6. Immobilized Lactobacillus acidophilus produced from whey and alginate

    Directory of Open Access Journals (Sweden)

    P. R. Rosa

    2013-06-01

    Full Text Available An analysis was made of the use of whey fermentation by Lactobacillus acidophilus LA-5 for encapsulated probiotic bacteria cell production. Fermentation was done in a 2-liter Biostat B Fermentor at 28±1 ºC without air supply and agitation maintained at 200 rpm. Different processing conditions were studied using Center Composite Design applied to Surface Response Methodology. Maximum cell yield (2.7 x10(10 NMP/mL for 36 hours was achieved with 30.85 g/L of lactose, a pH value of 6.45 and 1.04 g/L of inoculum. Cell growth was evaluated using reconstituted and fresh whey after 144 hours of fermentation in pre-optimized conditions. Cell concentration after fermentation was 10(10 MPN/mL in all the assays. The Verhulst model proved to be satisfactory to fit the experimental results, providing a stationary cell concentration of 6.0 g/L and a specific growth rate of 0.09 h-1. Cells were collected by centrifugation at 15000g for 5 minutes at 4 ºC, immobilized in 2% alginate, and dried to a constant weight at 50 ºC. Immobilized probiotic cells presented 10(11 MPN/g, a time required to kill 90% of the organisms (D value of 18 h (70 ºC, an activation energy of 76.04 kJ/mol for thermal inactivation, and an in vitro resistance to low pH (D value of 62.5 min at 37 ºC, pH 2.5.

  7. Brown adipogenesis of mouse embryonic stem cells in alginate microstrands

    Science.gov (United States)

    Unser, Andrea Mannarino

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes in treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells and brown preadipocytes as a positive control. The effect of hydrogel formation parameters on brown adipogenesis was studied, leading to the establishment of "Brown-Fat-in-Microstrands". Brown adipocyte differentiation within microstrands was confirmed by lipid droplet accumulation, immunocytochemistry and qPCR analysis of gene expression of brown adipocyte marker uncoupling protein 1 (UCP1) in addition to adipocyte marker expression. Compared to a 2D approach, 3D differentiated "Brown-Fat-in-Microstrands" exhibited higher level of brown adipocyte marker expression. The functional analysis of "Brown-Fat-in-Microstrands" was attempted by measuring the mitochondrial activity of ESC-differentiated brown adipocytes in 3D using Seahorse XF24 3 Extracellular Flux Analyzer. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  8. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions.

    Science.gov (United States)

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin; Hwang, Hyeon-Shik

    2016-05-01

    To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken.

  9. Application of Response Surface Methodology to study the effect of different calcium sources in fish muscle-alginate restructured products

    Directory of Open Access Journals (Sweden)

    Helena María Moreno

    2011-03-01

    Full Text Available Sodium alginate needs the presence of calcium ions to gelify. For this reason, the contribution of the calcium source in a fish muscle mince added by sodium alginate, makes gelification possible, resulting a restructured fish product. The three different calcium sources considered were: Calcium Chloride (CC; Calcium Caseinate (CCa; and Calcium lactate (CLa. Several physical properties were analyzed, including mechanical properties, colour and cooking loss. Response Surface Methodology (RSM was used to determine the contribution of different calcium sources to a restructured fish muscle. The calcium source that modifies the system the most is CC. A combination of CC and sodium alginate weakened mechanical properties as reflected in the negative linear contribution of sodium alginate. Moreover, CC by itself increased lightness and cooking loss. The mechanical properties of restructured fish muscle elaborated were enhanced by using CCa and sodium alginate, as reflected in the negative linear contribution of sodium alginate. Also, CCa increased cooking loss. The role of CLa combined with sodium alginate was not so pronounced in the system discussed here.

  10. Effect of alginate and chitosan on viability and release behavior of Bifidobacterium pseudocatenulatum G4 in simulated gastrointestinal fluid.

    Science.gov (United States)

    Kamalian, Nikoo; Mirhosseini, Hamed; Mustafa, Shuhaimi; Manap, Mohd Yazid Abd

    2014-10-13

    The main aim of this study was to investigate the effect of different coating materials (i.e. Na-alginate and chitosan) on the viability and release behavior of Bifidobacterium pseudocatenulatum G4 in the simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). This study reports the viability of encapsulated B. pseudocatenulatum G4 coated using different alginate (2-4 g/100mL) and chitosan (0.2-0.8 g/100mL) concentrations. The results indicated that the highest concentration of alginate (4.4142 g/100mL) along with 0.5578 g/100mL chitosan resulted in the highest viability of B. pseudocatenulatum G4. The release behavior of the encapsulated probiotics in SGF (pH 1.5) in 2h followed by 4h in SIF (pH 7.4) was also assessed. The resistance rate of alginate-chitosan capsule in SGF was higher than SIF. The alginate-chitosan encapsulated cells had also more resistance than alginate capsules. The current study revealed that alginate encapsulated B. Pseudocatenulatum G4 exhibited longer survival than its free cells (control). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE

    Directory of Open Access Journals (Sweden)

    D. V. Grizay

    2015-01-01

    Full Text Available Aim. To study the therapeutic potential of cryopreserved fetal liver cells seeded into macroporous alginategelatin scaffolds after implantation to omentum of rats with hepatic failure.Materials and methods.Hepatic failure was simulated by administration of 2-acetyl aminofl uorene followed partial hepatectomy. Macroporous alginate-gelatin scaffolds, seeded with allogenic cryopreserved fetal liver cells (FLCs were implanted into rat omentum. To prevent from colonization of host cells scaffolds were coated with alginate gel shell. Serum transaminase activity, levels of albumin and bilirubin as markers of hepatic function were determined during 4 weeks after failure model formation and scaffold implantation. Morphology of liver and scaffolds after implantation were examined histologically. Results. Macroporous alginate-gelatin scaffolds after implantation to healthy rats were colonized by host cells. Additional formation of alginate gel shell around scaffolds prevented the colonization. Implantation of macroporous scaffolds seeded with cryopreserved rat FLCs and additionally coated with alginate gel shell into omentum of rats with hepatic failure resulted in signifi cant improvement of hepatospecifi c parameters of the blood serum and positive changes of liver morphology. The presence of cells with their extracellular matrix within the scaffolds was confi rmed after 4 weeks post implantation.Conclusion. The data above indicate that macroporous alginate-gelatin scaffolds coated with alginate gel shell are promising cell carriers for the development of bioengineered liver equivalents.

  12. Subcutaneous administration of sodium alginate oligosaccharides prevents salt-induced hypertension in Dahl salt-sensitive rats.

    Science.gov (United States)

    Moriya, Chikako; Shida, Yui; Yamane, Yuki; Miyamoto, Yuki; Kimura, Midori; Huse, Naomi; Ebisawa, Kaori; Kameda, Yuki; Nishi, Ayaka; Du, DongDong; Yoshinaga, Mariko; Murota, Itsuki; Sato, Nobuyuki; Uehara, Yoshio

    2013-01-01

    We investigated the mechanism of antihypertensive effects of sodium alginate oligosaccharides, which are enzymatic products of high-molecular-weight natural alginate from seaweeds, in Dahl salt-sensitive (Dahl S) rats. Dahl S rats fed a high-salt (4% NaCl) diet were subcutaneously administered sodium alginate oligosaccharides (60 mg/day using a continuous osmotic mini-pump) for 14 days. Systolic blood pressure (SBP) was measured using the tail-cuff method, and we determined the influence of the alginate treatment on the metabolism of sodium by measuring sodium excretions in the feces and urine. SBP increased in an age-dependent manner in the untreated Dahl S rats. Sodium alginate oligosaccharide treatment via the subcutaneous route almost completely abolished salt-induced hypertension in Dahl S rats fed a high-salt diet. The level of fecal or urinary sodium excretion did not significantly change during the treatment period with the alginate oligosaccharides. The reduction in SBP rapidly recovered after cessation of the treatment. Moreover, the level of urinary protein excretion was lower in the treated Dahl S rats than in the untreated rats during the experimental period. Our results suggest that sodium alginate oligosaccharides attenuate salt-induced hypertension in Dahl S rats not through reducing salt absorption, but probably through a direct action on vascular vessels.

  13. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    Science.gov (United States)

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. Results All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. Conclusions The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken. PMID:27226958

  14. Alginate inhibits iron absorption from ferrous gluconate in a randomized controlled trial and reduces iron uptake into Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Anna A Wawer

    Full Text Available Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n = 15 were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p = 0.003. Sub-group B (n = 9 consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p = 0.014, and from alginate beads by 37%, from 8.3% to 5.2% (p = 0.009. In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p = 0.009 and 35% (p = 0.003 respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p < 0.001 of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification.ClinicalTrials.gov NCT01528644.

  15. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa

    KAUST Repository

    Wang, Yajie

    2015-04-29

    Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121–124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis. © 2015 Springer-Verlag Berlin Heidelberg

  16. A novel wound dressing material — fibrin–chitosan–sodium alginate ...

    Indian Academy of Sciences (India)

    FTIR spectrum confirmed the interaction between amino groups of chitosan, fibrin and sodium alginate and SEM studies revealed composite nature of the ... ous forms of types I and II collagen-based biomaterials, in the form of scaffold matrices ... Fibrin, a blood plasma protein, is a minor component which is essential for clot ...

  17. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    Science.gov (United States)

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The effect of hydration on the material and mechanical properties of cellulose nanocrystal-alginate composites.

    Science.gov (United States)

    Smyth, Megan; M'Bengue, Marie-Stella; Terrien, Maxime; Picart, Catherine; Bras, Julien; Foster, E Johan

    2018-01-01

    Alginate is commonly used in the form of hydrogels in biomedical applications. It is known to be highly sensitive to liquid exposure and can degrade or solubilize easily. This study attempts to improve the mechanical and material properties in various humidity conditions and in liquid immersion of thin alginate films with the addition of unmodified and oxidized cellulose nanocrystals (CNCs, CNC-Ts). CNCs and CNC-Ts were added to alginate composites in varying amounts, and the material and mechanical properties were measured in dry, humid, and liquid conditions. It was shown that the properties can be enhanced with the addition of nanocellulose as tested by liquid uptake, and mechanical testing. These results suggest that the addition of TEMPO-oxidized nanocellulose crystals improves the performance and longevity of alginate when exposed to phosphate buffer solution (PBS) compared to deionized water. This improved performance was shown to have a limited effect on the adhesion of mesenchymal stem cells (MSCs) to the surface of the nanocomposites. Published by Elsevier Ltd.

  19. Clinical Fit of Partial Removable Dental Prostheses Based on Alginate or Polyvinyl Siloxane Impressions.

    Science.gov (United States)

    Fokkinga, Wietske A; Witter, Dick J; Bronkhorst, Ewald M; Creugers, Nico H

    The aim of this study was to analyze the clinical fit of metal-frame partial removable dental prostheses (PRDPs) based on custom trays used with alginate or polyvinyl siloxane impression material. Fifth-year students of the Nijmegen Dental School made 25 correct impressions for 23 PRDPs for 21 patients using alginate, and 31 correct impressions for 30 PRDPs for 28 patients using polyvinyl siloxane. Clinical fit of the framework as a whole and of each retainer separately were evaluated by calibrated supervisors during framework try-in before (first evaluation) and after (second evaluation) possible adjustments (score 0 = poor fit, up to score 3 = good fit). Framework fit and fit of the denture base were evaluated at delivery (third evaluation). Finally, postinsertion sessions were evaluated and total number of sessions needed, sore spots, adjustments to the denture base, and reported food-impaction were recorded. No significant differences in clinical fit (of the framework as a whole, for the retainers, or for the denture base) were found between the groups in the three evaluation sessions. Differences were not found for postinsertion sessions with one exception: in the alginate group, four subjects reported food impaction, versus none in the polyvinyl siloxane group. Clinical fit of metal-frame PRDPs based on impressions with custom trays combined with alginate or polyvinyl siloxane was similar.

  20. Clinical Fit of Partial Removable Dental Prostheses Based on Alginate or Polyvinyl Siloxane Impressions.

    NARCIS (Netherlands)

    Fokkinga, W.A.; Witter, D.J.; Bronkhorst, E.M.; Creugers, N.H.J.

    2017-01-01

    PURPOSE: The aim of this study was to analyze the clinical fit of metal-frame partial removable dental prostheses (PRDPs) based on custom trays used with alginate or polyvinyl siloxane impression material. MATERIALS AND METHODS: Fifth-year students of the Nijmegen Dental School made 25 correct

  1. Dimensional Changes of Alginate Dental Impression Materials-An Invitro Study.

    Science.gov (United States)

    Kulkarni, Manisha M; Thombare, Ram U

    2015-08-01

    Dentists are always looking ahead for more dimensionally stable material for accurate and successful fabrication of prosthesis in this competitive world. Arrival of newer materials and increased material market puts dentists in dilemma for selection of material. The study evaluated the effect of variations in time of pour and temperature on dimensional stability of three brands of commercially available alginates. Velplast, Marieflex & Zelgan alginate impression materials were evaluated by measuring dimensional accuracy of the master cast. A die was prepared and mounted on the apparatus for the ease of impression making. The prepared casts were categorized into five groups and made up of three brands of alginate impression material with variation in time of pour viz: immediate, 20&40 minutes interval and with varying temperature of 25(0)C, 30(0)C & 40(0)C. Impressions showed least distortion at varying degrees of temperature for 20 minutes, but the values obtained by storing of alginate impressions for 20 minutes at 30(0)C were found to be nearly accurate than the values obtained by storing of impression at 40(0)C. However, storing showed shrinkage of impressions. Marieflex showed better accuracy in comparison with other two materials. Maintenance of temperature and humidity play key role during storage & transport to prevent distortion. But the study suggests immediate pouring which will minimize the distortion. The manipulation instructions, temperature of mixing water, environment & water powder ratio also plays key role in minimizing the distortion.

  2. In Vitro Evaluation of Dimensional Stability of Alginate Impressions after Disinfection by Spray and Immersion Methods

    Directory of Open Access Journals (Sweden)

    Fahimeh Hamedi Rad

    2010-12-01

    Full Text Available Background and aims. The most common method for alginate impression disinfection is spraying it with disinfecting agents, but some studies have shown that these impressions can be immersed, too. The aim of this study was to evaluate the dimensional stability of alginate impressions following disinfecting by spray and immersion methods. Materials and methods. Four common disinfecting agents (Sodium Hypochlorite, Micro 10, Glutaraldehyde and Deconex were selected and the impressions (n=108 were divided into four groups (n=24 and eight subgroups (n=12 for disinfecting by any of the four above-mentioned agents by spray or immersion methods. The control group (n=12 was not disinfected. Then the impressions were poured by type III Dental Stone Plaster in a standard method. The results were analyzed by descriptive methods (mean and standard deviation, t-test, two-way analysis of variance (ANOVA and Duncan test, using SPSS 14.0 software for windows. Results. The mean changes of length and height were significant between the various groups and disinfecting methods. Regarding the length, the greatest and the least amounts were related to Deconex and Micro 10 in the immersion method, respectively. Regarding height, the greatest and the least amounts were related to Glutaraldehyde and Deconex in the immersion method, respectively. Conclusion. Disinfecting alginate impressions by Sodium Hypochlorite, Deconex and Glutaraldehyde by immersion method is not recommended and it is better to disinfect alginate impressions by spraying of Micro 10, Sodium Hypochlorite, Glutaraldehyde and immersion in Micro 10.

  3. Disinfectant Efficacy of 0.525% Sodium Hypochlorite and Epimax on Alginate Impression Material.

    Science.gov (United States)

    Choudhury, Gopal Krishna; Chitumalla, Rajkiran; Manual, Litto; Rajalbandi, Santosh Kumar; Chauhan, Mahinder Singh; Talukdar, Pratim

    2018-01-01

    Species of Streptococcus, Escherichia coli, Staphylococcus, Actinomyces, Pseudomonas, Klebsiella, and Candida are commonly seen in the oral cavity. Impression materials are commonly contaminated with microorganisms. The present study was conducted to assess the disinfection efficacy of Epimax and 0.525% sodium hypochlorite on alginate impression over a period of 10 minutes. This study was conducted in the Department of Prosthodontics in the year 2015. An alginate impression material was prepared. For each bacteria species, 15 samples were used. Out of 15 samples, 3 were used by 0.525% sodium hypochlorite for disinfection for 5 minutes and 3 others for 10 minutes. Similarly, 3 samples were used by Epimax for 5 minutes and other 3 for 10 minutes. Three samples were used as controls. Each sample was polluted with Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus strains. There was no statistical difference in P. aeruginosa and C. albicans after 5 minutes, whereas S. aureus showed significant difference (p alginate impression material against C. albicans, P. aeruginosa, and S. aureus strains. However, Epimax was found to be more effective against S. aureus as compared with 0.525% sodium hypochlorite. Efficacy of disinfection of sodium hypo-chlorite and Epimax on alginate impression.

  4. In vitro hemocompatibility of PVA-alginate ester as a candidate for hemodialysis membrane.

    Science.gov (United States)

    Amri, Choirul; Mudasir, Mudasir; Siswanta, Dwi; Roto, Roto

    2016-01-01

    Alginate based biopolymer with improved physical and chemical properties after esterification using polyvinyl alcohol (PVA) has been studied for possible application as a hemodialysis membrane. The alginic acid to vinyl alcohol molar ratio was predetermined at 0, 0.1, 0.5 and 1. Mechanical strength, hydrophilicity and Ca(2+) adsorption of the membrane before and after modification were evaluated. The obtained PVA-alginate (PVA-Alg) ester membrane was also confirmed using FTIR and SEM. It shows that the PVA-Alg membrane tensile strength is higher than that of native alginate. The water contact angle of the membrane was found to be around 33-50°. The Ca(2+) adsorption capacity tends to decrease with the increase in molar ratio. Furthermore, the modified PVA-Alg ester membrane achieves better protein adsorption and platelet adhesion than the unmodified one. It also exhibits a dialysis performance of 47.1-50.0% for clearance of urea and 42.2-44.6% for clearance of creatinine, respectively. It is expected that this PVA-Alg ester may challenge cellulose acetate for potential application as hemodialysis membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Safety and Efficacy of Alginate Adhesion Barrier Gel in Compromised Intestinal Anastomosis

    NARCIS (Netherlands)

    Chaturvedi, A.; Yauw, S.T.K.; Lomme, R.M.L.M.; Hendriks, T.; Goor, H. van

    2017-01-01

    BACKGROUND: For any anti-adhesive barrier developed for abdominal surgery, the use under conditions in which anastomotic healing is compromised needs to be investigated. The current study evaluates the effect of a new ultrapure alginate gel on early healing of high-risk anastomoses in the ileum and

  6. Interpenetrating hydrogels of O-carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir.

    Science.gov (United States)

    Jana, Sougata; Sharma, Rashmi; Maiti, Sabyasachi; Sen, Kalyan Kumar

    2016-11-01

    In this work, an interpenetrating hydrogel network was constructed using varying combination of O-carboxymethyl Tamarind gum (CTG) and alginate by Ca +2 ion induced gelation method. The hydrogels were characterized by FTIR spectroscopy, Field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and differential scanning calorimetry (DSC) analyses. The hydrogels were spherical in shape with rough surface textures. Depending on the alginate: CTG mass ratio, the hydrogel particles entrapped a maximum of ∼70% acyclovir. The drug release from interpenetrating hydrogels was 18-23% in HCl solution (pH1.2) in 2h. The drug release became faster in phosphate buffer solution (pH6.8) as the proportion of CTG was increased from 25% to 50%. However, the drug release was still slower than that observed for hydrogel particles of sodium alginate alone. Overall, the drug release tendency of the particles was higher in phosphate buffer solution than that in HCl solution. The non-Fickian drug release behavior was assumed after fitting the drug release data into Korsmeyer-Peppas model. The drug release was found to control by diffusion and swelling kinetics of the hydrogels. Thus, CTG gum could effectively retard drug release when used in combination with sodium alginate at an optimized mass ratio. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes.

    Science.gov (United States)

    Chen, Qiang; de Larraya, Uxua Pérez; Garmendia, Nere; Lasheras-Zubiate, María; Cordero-Arias, Luis; Virtanen, Sannakaisa; Boccaccini, Aldo R

    2014-06-01

    This study presents the electrophoretic deposition (EPD) of cellulose nanocrystals (CNs) and CNs-based alginate composite coatings for biomedical applications. The mechanism of anodic deposition of CNs and co-deposition of CNs/alginate composites was analyzed based on the results of zeta-potential, Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analyses. The capability of the EPD technique for manipulating the orientation of CNs and for the preparation of multilayer CNs coatings was demonstrated. The nanotopographic surface roughness and hydrophilicity of the deposited coatings were measured and discussed. Electrochemical testing demonstrated that a significant degree of corrosion protection of stainless steel could be achieved when CNs-containing coatings were present. Additionally, the one-step EPD-based processing of free-standing CNs/alginate membranes was demonstrated confirming the versatility of EPD to fabricate free-standing membrane structures compared to a layer-by-layer deposition technique. CNs and CNs/alginate nanocomposite coatings produced by EPD are potential candidates for biomedical, cell technology and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    Science.gov (United States)

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. A Technology Platform to Test the Efficacy of Purification of Alginate

    NARCIS (Netherlands)

    Paredes-Juarez, Genaro A.; de Haan, Bart J.; Faas, Marijke M.; de Vos, Paul

    Alginates are widely used in tissue engineering technologies, e.g., in cell encapsulation, in drug delivery and various immobilization procedures. The success rates of these studies are highly variable due to different degrees of tissue response. A cause for this variation in success is, among other

  10. Piroxicam loaded alginate beads obtained by prilling/microwave tandem technique: morphology and drug release.

    Science.gov (United States)

    Aquino, Rita P; Auriemma, Giulia; d'Amore, Matteo; D'Ursi, Anna Maria; Mencherini, Teresa; Del Gaudio, Pasquale

    2012-07-01

    This paper presents a tandem technique, based on the combination of prilling and microwave (MW) assisted treatments, to produce biodegradable alginate carriers of piroxicam with different drug controlled release behaviours. Results showed that alginate/piroxicam beads demonstrated high encapsulation efficiency and very narrow dimensional distribution. Beads dried by MW retained shape and size distribution of the hydrated particles while drying rate was strongly increased compared to convective drying processes. Moreover, different MW irradiation regimes promoted interactions between the drug and alginate matrix, affected drug polymorphism as well as inner and surface matrix structure leading to different piroxicam release profiles. High level MW irradiation led to beads with highly porous and swellable matrix able to release piroxicam in few minutes in the intestine while convective drying produced gastro-resistant beads that exhibit sustained piroxicam release (total release in 5.5h) in intestinal environment. On these results the tandem technique prilling/MW irradiation appears to be promising to obtain alginate carrier with tailored NSAIDs release depending on drug characteristics and MW irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization

    NARCIS (Netherlands)

    van Elk, M.; Lorenzato, C.; Ozbakir, B.; Oerlemans, C.; Storm, Gerrit; Nijsen, F.; Deckers, R.; Vermonden, T.; Hennink, W.E.

    2015-01-01

    The objective of this study was to prepare and characterize alginate microgels loaded with temperature sensitive liposomes, which release their payload after mild hyperthermia. It is further aimed that by using these microgels both the drug release and the microgel deposition can be visualized by

  12. in Situ Formation of a Biocatalytic Alginate Membrane by Enhanced Concentration Polarization

    DEFF Research Database (Denmark)

    Marpani, Fauziah; Luo, Jianquan; Mateiu, Ramona Valentina

    2015-01-01

    A thin alginate layer induced on the surface of a commercial polysulfone membrane was used as a matrix for noncovalent immobilization of enzymes. Despite the expected decrease of flux across the membrane resulting from the coating, the initial hypothesis was that such a system should allow high i...

  13. Experiments on rheology of non-Newtonian flow of tylose-alginate ...

    African Journals Online (AJOL)

    Newtonian tylose-alginate (solid-liquid) suspensions in isothermal laminar flow in a horizontal conduit with variable geometry. The complex flow of loaded spherical and large-sized particles of 4.4 mm diameter, and dependence of hydrodynamics ...

  14. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials

    NARCIS (Netherlands)

    Krishnan, Rahul; Ko, David; Foster, Clarence E; Liu, Wendy; Smink, A M; de Haan, Bart; De Vos, Paul; Lakey, Jonathan R T; Opara, Ammanuel C.

    2017-01-01

    Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of

  15. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  16. Alginate-based polysaccharide beads for cationic contaminant sorption from water

    Science.gov (United States)

    Mei Li; Thomas Elder; Gisela Buschle-Diller

    2016-01-01

    Massive amounts of agricultural and industrial water worldwide are polluted by different types of contaminants that harm the environment and impact human health. Removing the contaminants from effluents by adsorbent materials made from abundant, inexpensive polysaccharides is a feasible approach to deal with this problem. In this research, alginate beads combined with...

  17. Chitosan and alginate types of bio-membrane in fuel cell application: An overview

    Science.gov (United States)

    Shaari, N.; Kamarudin, S. K.

    2015-09-01

    The major problems of polymer electrolyte membrane fuel cell technology that need to be highlighted are fuel crossovers (e.g., methanol or hydrogen leaking across fuel cell membranes), CO poisoning, low durability, and high cost. Chitosan and alginate-based biopolymer membranes have recently been used to solve these problems with promising results. Current research in biopolymer membrane materials and systems has focused on the following: 1) the development of novel and efficient biopolymer materials; and 2) increasing the processing capacity of membrane operations. Consequently, chitosan and alginate-based biopolymers seek to enhance fuel cell performance by improving proton conductivity, membrane durability, and reducing fuel crossover and electro-osmotic drag. There are four groups of chitosan-based membranes (categorized according to their reaction and preparation): self-cross-linked and salt-complexed chitosans, chitosan-based polymer blends, chitosan/inorganic filler composites, and chitosan/polymer composites. There are only three alginate-based membranes that have been synthesized for fuel cell application. This work aims to review the state-of-the-art in the growth of chitosan and alginate-based biopolymer membranes for fuel cell applications.

  18. Use of chitosan-alginate as alternative pelletization aid to microcrystalline cellulose in extrusion/spheronization.

    Science.gov (United States)

    Charoenthai, Nattawut; Kleinebudde, Peter; Puttipipatkhachorn, Satit

    2007-09-01

    Two types of different molecular weight chitosan were investigated as a pelletization aid in extrusion/spheronization using water as granulation liquid. Spherical pellets with a maximum fraction of 60% w/w chitosan could be produced when 1.25-2.5% w/w sodium alginate was included in the formulations with no microcrystalline cellulose (MCC). Chitosan with lower molecular weight of 190 kDa showed a better pellet forming property. The pellets obtained had acceptable physical characteristics and a fast drug release. The results from Fourier transform infrared spectroscopy, differential scanning calorimetry and (13)C CP-MAS nuclear magnetic resonance spectroscopy confirmed the formation of polyelectrolyte complex (PEC) between chitosan and sodium alginate, which might be a reason for successful pelletization by extrusion/spheronization. Moreover, the presence of PEC might influence the physical characteristics and dissolution behavior of chitosan-alginate pellets. The results indicated an achievement in production of pellets by extrusion/spheronization without using MCC. Moreover, chitosan combined with sodium alginate could be used as a promising alternative pelletization aid to MCC in extrusion/spheronization. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  19. Ethanol and Levan production by sequential bath using Zymomonas mobilis immobilized on alginate and chitosan beads

    Directory of Open Access Journals (Sweden)

    Vidiany Aparecida Queiroz Santos

    2016-06-01

    Full Text Available Current study evaluates ethanol and levan production using Zymomonas mobilis immobilized on alginate and chitosan beads and assesses the capacity of the beads for reuse in sequential fermentations. Two experiments were carried out: In the first experiment 2(5-2 design evaluated the following independent variables: sucrose concentration; pH; incubation time; temperature and agitation. In the second experiment, based on the best conditions observed in 2(5-2, the capacity of the immobilization support reuse in subsequent fermentations was evaluated for 12 days. In experiments using fractionated factorial experimental design 2(5-2 the best results by immobilized biomass (2.6 g L-1 and immobilization efficiency was shown by alginate and chitosan beads showed only 0.22 g L-1. Chitosan support provided the best rates to levan production (8.90 g L-1. Alginate support showed the highest values by ethanol production (93.4 g L-1. In batch sequential fermentation, re-using immobilization support, alginate support was efficient by maintaining the cellular viability on immobilized support (0.94 g L-1, levan production (21.11 g L-1 and ethanol production (87.21 g L-1. Chitosan support was inadequate for sequential batches since the beads dissolved after the second cycle.

  20. Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG

    NARCIS (Netherlands)

    Wolfram, Francis; Kitova, Elena N.; Robinson, Howard; Walvoort, Marthe T. C.; Codee, Jeroen D. C.; Klassen, John S.; Howell, P. Lynne

    2014-01-01

    Background: The alginate epimerase AlgG converts mannuronate to its C5 epimer guluronate at the polymer level. Results: The structure of Pseudomonas syringae AlgG has been determined, and the protein has been functionally characterized. Conclusion: His(319) acts as the catalytic base, whereas

  1. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules

    NARCIS (Netherlands)

    Sobol, Marcin; Bartkowiak, Artur; de Haan, Bart; de Vos, Paul

    The majority of cell encapsulation systems applied so far are based on polyelectrolyte complexes of alginate and polyvalent metal cations. Although widely used, these systems suffer from the risk of disintegration. This can be partially solved by applying chitosan as additional outer membrane.

  2. Physicochemical Characterization of a Heat Treated Calcium Alginate Dry Film Prepared with Chicken Stock.

    Science.gov (United States)

    Báez, Germán D; Piccirilli, Gisela N; Ballerini, Griselda A; Frattini, Agustín; Busti, Pablo A; Verdini, Roxana A; Delorenzi, Néstor J

    2017-04-01

    Solid sodium alginate was dissolved into chicken stock in order to give a final alginate concentration of 0.9 percent (w/v). Calcium ions present in chicken stock were enough to induce ionic gelation. After drying, Fourier transform infrared spectroscopy, thickness and mechanical properties of films obtained were determined. Calcium alginate-chicken stock films were heated at 130 °C for different times between 0 and 15 min. Mechanical and optical studies, differential scanning calorimetry, visual aspect and scanning electron microscopy were carried out to describe physicochemical properties of heat treated films. Heating developed a maroon ochre color and increased the brittleness (crispness) of the films related to the intensity of the treatment. Differential scanning thermometry and study on appearance of the films suggested that Maillard reactions may be responsible for the observed changes. Maillard reactions mainly occurred between reducing sugar monomers and free amino groups of gelatin peptides present in the chicken stock, and between alginate and gelatin peptides to a lesser extent. In addition, the plasticizing effect of fat added with chicken stock was also studied. These studies suggest a potential use of heat treated chicken stock films as a substitute of roasted chicken skin. © 2017 Institute of Food Technologists®.

  3. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering

    Science.gov (United States)

    Chan, Wing P.; Kung, Fu-Chen; Kuo, Yu-Lin; Yang, Ming-Chen; Lai, Wen-Fu Thomas

    2015-01-01

    A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca2+ from Ca–γ-PGA directly and γ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and for γ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials. PMID:26504784

  4. Numerical Modelling of Insulin and Amyloglucosidase Release from Swelling Ca-Alginate Beads

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Snabe, T.; Pedersen, Lars Haastrup

    2003-01-01

    The release of insulin hexamer (39 kD) and amyloglucosidase (AMG, 97 kD), entrapped in spherical Ca–alginate beads, was investigated. While the release of insulin could be described solely by diffusion this was not the case for the 1.6 (r m /r m) larger AMG protein, where rm is the Stokes–Einstein...

  5. Electrospun alginate nanofibres as potential bio-sorption agent of heavy metals in water treatment

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-03-01

    Full Text Available the equilibrium experimental data than the Freudlich model. The electrospun alginate membranes displayed maximum monolayer sorption capacity (Q0) of 15.6 mg g-1 at a pH of 4. In a competitive adsoption experiment the removal of metal ions in a mixture followed...

  6. Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads.

    Science.gov (United States)

    Stojanovic, Radoslava; Belscak-Cvitanovic, Ana; Manojlovic, Verica; Komes, Drazenka; Nedovic, Viktor; Bugarski, Branko

    2012-02-01

    Encapsulation of Thymus serpyllum L. aqueous extract within calcium alginate beads was studied in order to produce dosage formulations containing polyphenolic compounds. Electrostatic extrusion was applied for encapsulation of thyme aqueous extract in alginate gel beads. In addition to hydrogel beads, heat-dried and freeze-dried forms of beads were examined. Encapsulation systems were examined and compared in order to choose the optimal one with respect to entrapment efficiency, preservation of antioxidant activity and thermal behaviour under heating conditions simulating the usual food processing. The beads obtained with approximately 2 mg g⁻¹ of gallic acid equivalents encapsulated in 0.015 g mL⁻¹ of alginate were spheres of a uniform size of about 730 µm. Encapsulation efficiency varied in the range 50-80% depending on the encapsulation method. Besides, the analysis reveals that the encapsulation process and the material used did not degrade the bioactive compounds, as the total antioxidant content remained unchanged. This was verified by Fourier transform infrared analysis, which proved the absence of chemical interactions between extracted compounds and alginate. Addition of a filler substance, such as sucrose and inulin, in the dried product reduced its collapse and roundness distortion during drying process. This study demonstrates the potential of using hydrogel material for encapsulation of plant poplyphenols to improve their functionality and stability in food products. Copyright © 2011 Society of Chemical Industry.

  7. Immunological and technical considerations in application of alginate-based microencapsulation systems

    NARCIS (Netherlands)

    Paredes Juárez, Genaro Alberto; Spasojevic, Milica; Faas, Marijke M; de Vos, Paul

    2014-01-01

    Islets encapsulated in immunoprotective microcapsules are being proposed as an alternative for insulin therapy for treatment of type 1 diabetes. Many materials for producing microcapsules have been proposed but only alginate does currently qualify as ready for clinical application. However, many

  8. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: enhancement of survivability and thermotolerance.

    Science.gov (United States)

    Shaharuddin, Shahrulzaman; Muhamad, Ida Idayu

    2015-03-30

    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Silver Alginate Hydrogel Micro- and Nanocontainers for Theranostics: Synthesis, Encapsulation, Remote Release, and Detection.

    Science.gov (United States)

    Lengert, Ekaterina; Saveleva, Mariia; Abalymov, Anatolii; Atkin, Vsevolod; Wuytens, Pieter C; Kamyshinsky, Roman; Vasiliev, Alexander L; Gorin, Dmitry A; Sukhorukov, Gleb B; Skirtach, Andre G; Parakhonskiy, Bogdan

    2017-07-05

    We have designed multifunctional silver alginate hydrogel microcontainers referred to as loaded microcapsules with different sizes by assembling them via a template assisted approach using natural, highly porous calcium carbonate cores. Sodium alginate was immobilized into the pores of calcium carbonate particles of different sizes followed by cross-linking via addition of silver ions, which had a dual purpose: on one hand, the were used as a cross-linking agent, albeit in the monovalent form, while on the other hand they have led to formation of silver nanoparticles. Monovalent silver ions, an unusual cross-linking agent, improve the sensitivity to ultrasound, lead to homogeneous distribution of silver nanoparticles. Silver nanoparticles appeared on the shell of the alginate microcapsules in the twin-structure as determined by transmission electron microscopy. Remote release of a payload from alginate containers by ultrasound was found to strongly depend on the particle size. The possibility to use such particles as a platform for label-free molecule detection based on the surface enhanced Raman scattering was demonstrated. Cytotoxicity and cell uptake studies conducted in this work have revealed that microcontainers exhibit nonessential level of toxicity with an efficient uptake of cells. The above-described functionalities constitute building blocks of a theranostic system, where detection and remote release can be achieved with the same carrier.

  10. Silk sericin-alginate-chitosan microcapsules: hepatocytes encapsulation for enhanced cellular functions.

    Science.gov (United States)

    Nayak, Sunita; Dey, Sanchareeka; Kundu, Subhas C

    2014-04-01

    The encapsulation based technology permits long-term delivery of desired therapeutic products in local regions of body without the need of immunosuppressant drugs. In this study microcapsules composed of sericin and alginate micro bead as inner core and with an outer chitosan shell are prepared. This work is proposed for live cell encapsulation for potential therapeutic applications. The sericin protein is obtained from cocoons of non-mulberry silkworm Antheraea mylitta. The sericin-alginate micro beads are prepared via ionotropic gelation under high applied voltage. The beads further coated with chitosan and crosslinked with genipin. The microcapsules developed are nearly spherical in shape with smooth surface morphology. Alamar blue assay and confocal microscopy indicate high cell viability and uniform encapsulated cell distribution within the sericin-alginate-chitosan microcapsules indicating that the microcapsules maintain favourable microenvironment for the cells. The functional analysis of encapsulated cells demonstrates that the glucose consumption, urea secretion rate and intracellular albumin content increased in the microcapsules. The study suggests that the developed sericin-alginate-chitosan microcapsule contributes towards the development of cell encapsulation model. It also offers to generate enriched population of metabolically and functionally active cells for the future therapeutics especially for hepatocytes transplantation in acute liver failure. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interactions of antimicrobial compounds with cross-linking agents of alginate dressings.

    Science.gov (United States)

    Goh, Cheong Hian; Heng, Paul Wan Sia; Huang, Esther Pei En; Li, Benny Kai Hui; Chan, Lai Wah

    2008-07-01

    The aim of this study was to investigate the antimicrobial activities of calcium ions and other cross-linking agents of alginate dressings, as well as their compatibility with commonly used topical antimicrobials. The antimicrobial activities of cross-linking agents and antimicrobials (five antibiotics and four antiseptics) were evaluated by the broth dilution method. The interactions between individual cross-linking agents and antimicrobials were evaluated using the chequerboard test against common skin pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. From the MIC determined, antibiotics were the most active, followed by the antiseptics and cross-linking agents. Calcium ions, which are commonly used to cross-link alginate, exhibited very weak antimicrobial activity and higher fractional inhibitory concentration than the other cross-linking agents. The use of calcium and gentamicin resulted in antagonism against S. aureus. In contrast, aluminium, zinc and copper ions exhibited higher antimicrobial activities but insignificant interactions with the antimicrobials. Commonly used topical antimicrobials that are active against the skin pathogens S. aureus and P. aeruginosa could be potentially incompatible with calcium alginate dressings. Copper, zinc and aluminium ions are more suitable cross-linking agents for alginate as they do not show antagonism with the antimicrobials and could impart antimicrobial property to the resultant dressing.

  12. Optimization of alginate microcapsules containing cells overexpressing α-l-iduronidase using Box-Behnken design.

    Science.gov (United States)

    Diel, Dirnete; Lagranha, Valeska Lizzi; Schuh, Roselena Silvestri; Bruxel, Fernanda; Matte, Ursula; Teixeira, Helder Ferreira

    2018-01-01

    Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease caused by deficiency of α-l-iduronidase (IDUA), which results in the lysosomal accumulation of glycosaminoglycans (GAG) leading to widespread clinical manifestations. The microencapsulation of IDUA overexpressing recombinant cells has been considered as a promising strategy for the treatment of MPS I. This study aimed at the optimization of alginate microcapsules containing recombinant BHK (Baby Hamster Kidney) cells (rBHK) overexpressing IDUA produced by electrostatic extrusion technique. The alginate microcapsule (MC-A) optimization study was carried out by means of an experimental Box-Behnken Design that allowed the simultaneous evaluation of the influence of voltage (kV), alginate/cell suspension flow (mL/h), and alginate concentration (%) on size and IDUA activity. The optimal conditions of voltage (10kV), flow (25mL/h), and alginate concentration (1.3%) made possible to obtain the smallest microcapsules showing the highest IDUA activity. After optimization, the microcapsules were sequentially coated with PLL and alginate (MC-APA) to increase their stability. MC-A and MC-APA presented monodisperse populations (span<1.22) with an average diameter of less than 350μm. The coating increased the mechanical stability of MC-APA by about 6-fold and modulated the permeability to the enzyme. Surface analyzes of MC-APA showed the presence of PLL bands, suggesting that the last alginate layer appears to have only partially coated the PLL. After 30days of subcutaneous implantation of the MC-APA microcapsules containing rBHK cells in a MPS I murine model, a significant increase in IDUA activity was observed in the skin near the implant. Histological analysis revealed an inflammatory infiltrate at the application site, which did not prevent the release of the enzyme under the conditions evaluated. Taken together, the overall results demonstrate the feasibility of MC-APA as a potential alternative for

  13. The alginate layer for improving doxorubicin release and radiolabeling stability of chitosan hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jeong Il; Lee, Chang Moon; Jeong, Hwan Seok; Hwang, Hyo Sook; Lim, Seok Tae; Sohn, Myung Hee; Jeong, Hwan Jeong [Dept. of Nuclear Medicine and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Chang Moon [Dept. of Biomedical Engineering, Chonnam National University, Yeosu (Korea, Republic of)

    2015-12-15

    Chitosan hydrogels (CSH) formed through ionic interaction with an anionic molecule are suitable as a drug carrier and a tissue engineering scaffold. However, the initial burst release of drugs from the CSH due to rapid swelling after immersing in a biofluid limits their wide application as a drug delivery carrier. In this study, alginate layering on the surface of the doxorubicin (Dox)-loaded and I-131-labeled CSH (DI-CSH) was performed. The effect of the alginate layering on drug release behavior and radiolabeling stability was investigated. Chitosan was chemically modified using a chelator for I-131 labeling. After labeling of I-131 and mixing of Dox, the chitosan solution was dropped into tripolyphosphate (TPP) solution using an electrospinning system to prepare spherical microhydrogels. The DI-CSH were immersed into alginate solution for 30 min to form the crosslinking layer on their surface. The formation of alginate layer on the DI-CSH was confirmed by Fourier transform infrared spectroscopy (FT-IR) and zeta potential analysis. In order to investigate the effect of alginate layer, studies of in vitro Dox release from the hydrogels were performed in phosphate buffered in saline (PBS, pH 7.4) at 37 °C for 12 days. The radiolabeling stability of the hydrogels was evaluated using ITLC under different experimental condition (human serum, normal saline, and PBS) at 37 °C for 12 days. Formatting the alginate-crosslinked layer on the CSH surface did not change the spherical morphology and the mean diameter (150 ± 10 μm). FT-IR spectra and zeta potential values indicate that alginate layer was formed successfully on the surface of the DI-CSH. In in vitro Dox release studies, the total percentage of the released Dox from the DI-CSH for 12 days were 60.9 ± 0.8, 67.3 ± 1.4, and 71.8 ± 2.5 % for 0.25, 0.50, and 1.00 mg Dox used to load into the hydrogels, respectively. On the other hand, after formatting alginate layer, the percentage of the

  14. Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daigeun; Jo, Ara [Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung; Lee, Kune-Woo [Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Lee, Taek Seung, E-mail: tslee@cnu.ac.kr [Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-03-15

    Highlights: • Organic/inorganic hybridized alginate beads were newly synthesized via sol-gel chemistry. • Interaction between the azopyridine and metal ion is the main cause of Co ion detection. • The beads showed improved stability and least leakage of azopyridine during use. • Removal of Co ion was assessed by the ion-exchange of carboxylate groups in alginate. • The beads with dual functions of detection and removal of Co ion were successfully accomplished. - Abstract: We demonstrate a simple method for the visual determination and removal of Co ions using a bead-shaped, capturing probe based on hybridized sodium alginate. For Co ions, the designed protocol consisted of three main constituents: an azopyridine-based Co ion-probe for visual detection; sodium alginate as an adsorbent for the Co ion and a bead construct for removal and structure; silica as a linker for the probe and the alginate, leading to a robust structure. When the composite beads were exposed to Co ions, the yellow color of the beads turned to intensive violet and the color intensity was associated with the Co ion concentration. The color variation was quantified using red-green-blue (RGB) color values that were obtained with a scanner and evaluated with Photoshop. The technique achieved both visual recognition with obvious color change of the beads and efficient removal of the radioactive {sup 60}Co ion. The sensing and removal of any radioactive isotope could be achieved with an appropriate sensing probe, to provide a simple and universal platform for remediation.

  15. Quantitative analysis of potentially toxic metals in alginates for dental use

    Directory of Open Access Journals (Sweden)

    A. S. BRAGA

    2009-01-01

    Full Text Available

    Alginate is one the materials most employed in practice to make dental impressions. Substances like zinc, cadmium and lead silicate, which are included in several alginate brands with the aim of improving their physical, chemical and mechanical properties, are a source of serious concern as regards their toxicity. The most serious chronic effect of oral exposure to cadmium is renal toxicity. Assimilation of lead has deleterious effects on the gastrointestinal tract, hematopoietic system, cardiovascular system, central and peripheral nervous systems, kidneys, immune system, and reproductive system. Chronic oral exposures to zinc have resulted in hypochromic and microcyte anemia in some individuals. The aim of the present study was to measure the cadmium, lead and zinc contents of seven brands of alginate for dental use on sale in Brazil. The samples were weighed and placed in the Teflon cups of a closedsystem microwave oven. Aqua regia (4mL concentrated HCl:HNO3, 3:1 v/v and hydrofluoric acid (2mL concentrated HF were added to the samples, which were then subjected to heating. The samples were then cooled to room temperature and diluted to 25 mL in deionized water in a volumetric glass flask. The samples were diluted in duplicate and analyzed against a reagent blank. The analyses were performed in an atomic absorption flame spectrophotometer. Neither lead nor cadmium was detected. Zinc contents ranged from 0.001% to 1.36% by weight. The alginates exhibited low contents of the metals under study and gave no cause for concern regarding toxicity; even so, it is advisable to monitor potentially toxic materials continually and to analyze their plasmatic levels in the professionals working with them. Keywords: Cadmium, lead, zinc, alginates, intoxication, irreversible hydrocolloid.

  16. Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads

    International Nuclear Information System (INIS)

    Kim, Daigeun; Jo, Ara; Yang, Hee-Man; Seo, Bum-Kyoung; Lee, Kune-Woo; Lee, Taek Seung

    2017-01-01

    Highlights: • Organic/inorganic hybridized alginate beads were newly synthesized via sol-gel chemistry. • Interaction between the azopyridine and metal ion is the main cause of Co ion detection. • The beads showed improved stability and least leakage of azopyridine during use. • Removal of Co ion was assessed by the ion-exchange of carboxylate groups in alginate. • The beads with dual functions of detection and removal of Co ion were successfully accomplished. - Abstract: We demonstrate a simple method for the visual determination and removal of Co ions using a bead-shaped, capturing probe based on hybridized sodium alginate. For Co ions, the designed protocol consisted of three main constituents: an azopyridine-based Co ion-probe for visual detection; sodium alginate as an adsorbent for the Co ion and a bead construct for removal and structure; silica as a linker for the probe and the alginate, leading to a robust structure. When the composite beads were exposed to Co ions, the yellow color of the beads turned to intensive violet and the color intensity was associated with the Co ion concentration. The color variation was quantified using red-green-blue (RGB) color values that were obtained with a scanner and evaluated with Photoshop. The technique achieved both visual recognition with obvious color change of the beads and efficient removal of the radioactive 60 Co ion. The sensing and removal of any radioactive isotope could be achieved with an appropriate sensing probe, to provide a simple and universal platform for remediation.

  17. Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience

    International Nuclear Information System (INIS)

    Barui, Ananya; Mandal, Naresh; Majumder, Subhadipa; Das, Raunak Kumar; Sengupta, Sanghamitra; Banerjee, Provas; Ray, Ajoy Kumar; RoyChaudhuri, Chirosree; Chatterjee, Jyotirmoy

    2013-01-01

    Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. - Highlights: • Role of honey based matrix is evaluated in wound re-epithelialization. • Healing impact of matrix studied in 2D in vitro keratinocyte (HaCaT) wound model. • Faster impedance restoration indicated rapid healing rate of HaCaT under honey. • PCR observations showed faster initiation of cell proliferation under honey. • ICC study indicated better up-regulation of healing markers under honey matrix

  18. Calcium-Alginate-Inulin Microbeads as Carriers for Aqueous Carqueja Extract.

    Science.gov (United States)

    Balanč, Bojana; Kalušević, Ana; Drvenica, Ivana; Coelho, Maria Teresa; Djordjević, Verica; Alves, Vitor D; Sousa, Isabel; Moldão-Martins, Margarida; Rakić, Vesna; Nedović, Viktor; Bugarski, Branko

    2016-01-01

    Carqueja (Pterospartum tridentatum) is an endemic species and various bioactive compounds have been identified in its aqueous extract. The aim of this study was to protect the natural antioxidants from the aqueous extract of carqueja by encapsulation in Ca-alginate microbeads and Ca-alginate microbeads containing 10% and 20% (w/v) of inulin. The microbeads produced by electrostatic extrusion technique had an average diameter from 625 μm to 830 μm depending on the portion of inulin. The sphericity factor of the hydrogel microbeads had values between 0.014 and 0.026, while freeze dried microbeads had irregular shape, especially those with no excipient. The reduction in microbeads size after freeze drying process (expressed as shrinkage factor) ranged from 0.338 (alginate microbeads with 20% (w/v) of inulin) to 0.523 (plain alginate microbeads). The expressed radical scavenging activity against ABTS and DPPH radicals was found to be between 30% and 40% for encapsulated extract, while the fresh extract showed around 47% and 57% of radical scavenging activity for ABTS and DPPH radicals, respectively. The correlation between antioxidant activity and the total phenolic content were found to be positive (in both assay methods, DPPH and ABTS), which indicate that the addition of inulin didn't have influence on antioxidant activity. The presence of inulin reduced stiffness of the hydrogel, and protected bead structure from collapse upon freeze-drying. Alginate-inulin beads are envisaged to be used for delivery of aqueous P. tridentatum extract in functional food products. © 2015 Institute of Food Technologists®

  19. Molecular and biopharmaceutical investigation of alginate-inulin synbiotic coencapsulation of probiotic to target the colon.

    Science.gov (United States)

    Atia, Abdelbasset; Gomma, Ahmed I; Fliss, Ismail; Beyssac, Eric; Garrait, Ghislain; Subirade, Muriel

    2017-03-01

    Colon targeting, as a site-specific delivery for oral formulation, remains a major challenge, especially for sensitive bioactive components such as therapeutic forms of phages, live attenuated virus and prebiotics-probiotics association. Synbiotics could be used to protect encapsulated probiotics during the gastrointestinal tract and control their release in the colon. To achieve these goals, effective prebiotics, such as inulin, could be combined with alginate - the most exploited polymer used for probiotic encapsulation - in the form of beads. This work aimed to study the biopharmaceutical behaviour of alginate beads (A) and inulin-alginate beads of different inulin concentrations (5 or 20%) in 2% alginate (AI5, AI20). Beads were loaded with three probiotic strains (Pediococcus acidilactici Ul5, Lactobacillus reuteri and Lactobacillus salivarius). Dissolution of beads was studied by USP4 under conditions simulating the gastrointestinal condition. The survival rates of the bacterial strains were measured by a specific qPCR bacterial count. Mucoadhesiveness of beads was studied by an ex vivo method using intestinal mucosa. To understand the behaviour of each formulation, the ultrastructure of the polymeric network was studied using scanning electron microscopy (SEM). Molecular interactions between alginate and inulin were studied by Fourier transform infra-red spectroscopy (FTIR). Dissolution results suggested that the presence of inulin in beads provided more protection for the tested bacterial strains against the acidic pH. AI5 was the most effective formulation to deliver probiotics to the colon simulation conditions. FTIR and SEM investigations explained the differences in behaviour of each formula. The developed symbiotic form provided a promising matrix for the development of colonic controlled release systems.

  20. Alginate hydrogel as a potential alternative to hyaluronic acid as submucosal injection material.

    Science.gov (United States)

    Kang, Ki Joo; Min, Byung-Hoon; Lee, Jun Haeng; Kim, Eun Ran; Sung, Chang Ohk; Cho, Joo Young; Seo, Soo Won; Kim, Jae J

    2013-06-01

    Sodium alginate is currently used in medical products, including drugs and cosmetic materials. It can also be used as a submucosal injection material due to its excellent water retention ability. Alginate with a high water retention ability is called alginate hydrogel (AH). The aim of this study was to investigate the usefulness of AH as a submucosal injection material. To investigate the optimal viscosity of AH as a submucosal injection material, we observed the changes in submucosal height from the initial submucosal height in the stomachs of six miniature pigs for each injection material tested (0.3 % AH, 0.5 % hyaluronic acid, glycerol). All submucosal heights were compared serially over time (3, 5, 10, 20, and 30 min). Both immediate and 1-week delayed tissue reactions were investigated endoscopically in the same living pigs. Histological analyses were performed after the animals had been sacrificed. In a preliminary study, we determined that 0.3 % sodium alginate mixed with BaCl2 (400 μl) was the optimal viscosity of AH as an injection material. Our comparison of submucosal height changes over time showed that there was a significant decrease in submucosal height just 3 min following the injection of hyaluronic acid and glycerol, but that following the injection of AH a significant decrease in submucosal height was observed only after 10 min (p injection site. Alginate hydrogel demonstrated long-lasting maintenance of submucosal elevation, safety, and cost-effectiveness in a pig model, which makes it a potential alternative to hyaluronic acid.

  1. Applicability of sodium alginate in decorporation therapy of strontium radioisotopes in human being

    International Nuclear Information System (INIS)

    Ferreira, Aloisio Cordilha

    1999-10-01

    The increasing release of fission products from nuclear weapon tests in the environment has been rising the levels of radioactive contamination of food chains caused by the fall-out of these elements. In cases of accidental exposure, human subjects could be submitted to an internal contamination, which is likely to include several radionuclides. Special concern must be given, however, to the radioactive isotopes of strontium, cesium and iodine, along with the highly radio toxic transuranium elements like cerium. It was found that sodium alginate, a polyelectrolyte commonly used in food industry and obtained from brown algae (Phaeophyceae), provides the selective suppression of absorption of radioactive strontium presented in the ingested food material with no disturbance of the electrolyte balance nor undesirable side effects, even for a long term treatment. Moreover, these patterns were maintained when alginate was associated to other decontamination additives, specially those related to the other radioisotopes mentioned above, as, in this case, losses in the effectiveness, mutual interference or adverse health effects were not detected. These conclusions ground the discussion about the present trend in the usual choice of EDTA/DTPA complex therapy rather than of alginate therapy for medical assistance of radiocontaminated patients, although they corroborate the efficiency and usefulness of alginate salts in situations related to extensive intakes of strontium radioisotopes alone or associated to other fission products. The purpose of the present work is to make a general review of the alginate therapy as well as to discuss its present and future therapeutic importance from the scientific and institutional points of view. (author)

  2. Microencapsulation of probiotic bacteria Lactobacillus plantarum 15HN using alginate-psyllium-fenugreek polymeric blends.

    Science.gov (United States)

    Haghshenas, B; Abdullah, N; Nami, Y; Radiah, D; Rosli, R; Yari Khosroushahi, A

    2015-04-01

    Investigation on the use of herbal-based biopolymers for probiotic-Lactobacillus plantarum 15HN-encapsulation is presented. The objectives are to enhance its oral delivery, colonic release and survival rate of these probiotic cultures in gastrointestinal environment. Nine types of herbal-based polymers blend with different concentration of alginate alone or mixed with psyllium and fenugreek was used as candidate for encapsulation matrix by applying a simple extrusion method. All the blend formulations recorded high encapsulation efficiency at value >98%. The survival rate of viable probiotic cells under both low pH and high bile salt conditions was also high with value above 80% in 2% (w/v) alginate, alginate+psyllium (1·5 + 0·5%) blend and alginate+fenugreek (1·5 + 0·5%) blend as compared to other polymer formulations and nonencapsulated cells. Their release occurred after 2 h in colonic condition and sustained until the 12th hour incubation period. A value added prebiotic effect was observed in (1·5 + 0·5%) alginate-psyllium formulation. The high encapsulation efficiency, high viability of cell in low pH, high bile salt and the sustained release rates of probiotic cells in colonic condition during storage time was also observed for these herbal gel formulations. Herbal-based biopolymers offer added advantages of being prebiotic towards the enhancement of probiotic bacterial growth in the gastrointestinal environment. © 2015 The Society for Applied Microbiology.

  3. Measuring natrium alginate content of brown algae spesies Padina sp. as the basic matter for making dental impression material (Irreversible hydrocolloid impression material

    Directory of Open Access Journals (Sweden)

    Nurlindah Hamrun

    2016-06-01

    Full Text Available One of the most important procedure in denture fabrication and orthodontic treatment is molding the patient’s detail oral cavity to determine the treatment planning. This procedure does by using alginate impression material or irreversible hydrocolloid which is the basic material is natrium alginate which is imported from abroad because it is extracted from brown algae which habitat is not in Indonesia so it is causes the impression material is relative expensive which is impact to high cost of dental treatment. Indonesia as the archipelago country has availability of abundant brown algae Padina sp. especially in Puntondo-Punaga seashore, South Sulawesi, but it has not cultivate yet by the local society because it is never discover by alginate industry so it is just grow wild and it’s potency is useless. This experiment purposes to identified how much natrium alginate is producted from Padina Sp. extraction as the basic matter of irreversible hydrocolloid. The design of this study is conducted by experimental design with one shot case study method. Early stage research, extraction of alginate in form of natrium alginate. After that it is weighted by using analytical weight in milligram (mg unit. Then, it is compare with the standard natrium alginate to observe the similarity of molecule by using FTIR device. Data were analyzed using uji rerata. Based on extracted Padina sp, produced 12.86 g natrium alginate content or 28,4% from the alga dry weight total was used which is 45 g. Based on FTIR test, showed that extracted natrium alginate is similar with the standard natrium alginate with the found of hidroxyl, carboxylate, and eter group which is composer of natrium alginate. From both of infra red spectrum pattern, it was observed unsignificant difference. Extracted natrium alginate Padinasp is same with the standard natrium alginate and it has content 12.86 g.

  4. Effect of immersion disinfection of alginate impressions in sodium hypochlorite solution on the dimensional changes of stone models.

    Science.gov (United States)

    Hiraguchi, Hisako; Kaketani, Masahiro; Hirose, Hideharu; Yoneyama, Takayuki

    2012-01-01

    This study investigated the effect of the immersion of alginate impressions in 0.5% sodium hypochlorite solution for 15 min on the dimensional changes of stone models designed to simulate a sectional form of a residual ridge. Five brands of alginate impression materials, which underwent various dimensional changes in water, were used. A stone model made with an impression that had not been immersed was prepared as a control. The immersion of two brands of alginate impressions that underwent small dimensional changes in water did not lead to serious deformation of the stone models, and the differences in the dimensional changes between the stone models produced with disinfected impressions and those of the control were less than 15 µm. In contrast, the immersions of three brands of alginate impressions that underwent comparatively large dimensional changes in water caused deformation of the stone models.

  5. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  6. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    International Nuclear Information System (INIS)

    Song, YoungShin; Lee, Chang-Soo

    2014-01-01

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation

  7. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Song, YoungShin; Lee, Chang-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-15

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

  8. Production of α-keto acids with alginate-entrapped whole cells of the yeastTrigonopsis variabilis.

    Science.gov (United States)

    Nilsson, K; Brodelius, P; Mosbach, K

    1982-01-01

    The yeast,Trigonopsis variabilis, was immobilized by entrapment in alginate. The immobilized cells containing high amounts of D-amino acid oxidase were used to convert D-amino acids to their corresponding α-keto acids.

  9. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines.

    Science.gov (United States)

    Dekamin, Mohammad G; Karimi, Zahra; Latifidoost, Zahra; Ilkhanizadeh, Siamand; Daemi, Hamed; Naimi-Jamal, M Reza; Barikani, Mehdi

    2018-03-01

    Alginic acid, a widely used naturally occurring carbohydrate which is generally derived from brown seaweeds, can be considered as a bifunctional heterogeneous and green biopolymeric organocatalyst. Alginic acid, without any post-modification with active Bronsted or Lewis acid centers, was found to be a highly active, cost-effective, commercially-available, renewable and recoverable heterogeneous biopolymeric organocatalyst for the expeditious synthesis of polyhydroquinolines (PHQs). Polyhydroquinolines were synthesized from the four-component Hantzsch reaction of ethyl acetoacetate, different aldehydes, ammonium acetate and cyclic 1,3-diones under mild conditions in high to quantitative yields, 75-97%, using alginic acid. Furthermore, alginic acid was found to be reusable for at least 6 consecutive cycles without considerable loss of its catalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Influence of Sodium Alginate on Hypoglycemic Activity of Metformin Hydrochloride in the Microspheres Obtained by the Spray Drying

    Directory of Open Access Journals (Sweden)

    Marta Szekalska

    2016-01-01

    Full Text Available Alginate microspheres with metformin hydrochloride were prepared by the spray drying method in order to improve residence time of drug in the stomach. Nine formulations (F1–F9 with various drug : polymer ratio (1 : 2, 1 : 1, and 2 : 1 and different sodium alginate concentration (1%, 2%, and 3% were evaluated for size, morphology, drug loading, Zeta potential, and swelling degree. In vitro drug release, mathematical release profile, and physical state of microspheres were also evaluated. Optimal formulation characterized by the highest drug loading was formulation F6 (drug : polymer ratio 2 : 1 and 2% alginate solution. Based on glucose uptake in Saccharomyces cerevisiae cells and α-amylase inhibition tests, it could be concluded that alginate microspheres enhance hypoglycemic activity of metformin hydrochloride evaluated in vitro. Designed microspheres are promising as alternative, multicompartment dosage form for metformin hydrochloride delivery.

  11. Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads

    International Nuclear Information System (INIS)

    Hamasaki, Shinichi; Tachibana, Akira; Tada, Daisuke; Yamauchi, Kiyoshi; Tanabe, Toshizumi

    2008-01-01

    Novel fabrication method of highly porous and flexible keratin sponges was developed by combining a particulate-leaching method and a freeze-drying method. Reduced keratin aqueous solution was mixed with dried calcium alginate beads and was lyophilized to give keratin/calcium alginate complex, which was subsequently treated with EDTA solution to leach out calcium alginate beads. The resultant keratin sponge was flexible enough to handle even in dried state because of its quite high porosity (98.9 ± 0.1%), which was brought about by the large and small pores formed by the elimination of calcium alginate beads and water. The sponge supported the attachment and the proliferation of mouse fibroblast cells. Thus, the keratin sponge given by the present fabrication method afforded one alternative as a cell scaffold for tissue engineering

  12. Structure and Dynamics of Alginate Gels Cross-Linked by Polyvalent Ions Probed via Solid State NMR Spectroscopy.

    Science.gov (United States)

    Brus, Jiri; Urbanova, Martina; Czernek, Jiri; Pavelkova, Miroslava; Kubova, Katerina; Vyslouzil, Jakub; Abbrent, Sabina; Konefal, Rafal; Horský, Jiri; Vetchy, David; Vysloužil, Jan; Kulich, Pavel

    2017-08-14

    Alginate gels are an outstanding biomaterial widely applicable in tissue engineering, medicine, and pharmacy for cell transplantation, wound healing and efficient bioactive agent delivery, respectively. This contribution provides new and comprehensive insight into the atomic-resolution structure and dynamics of polyvalent ion-cross-linked alginate gels in microbead formulations. By applying various advanced solid-state NMR (ssNMR) spectroscopy techniques, we verified the homogeneous distribution of the cross-linking ions in the alginate gels and the high degree of ion exchange. We also established that the two-component character of the alginate gels arises from the concentration fluctuations of residual water molecules that are preferentially localized along polymer chains containing abundant mannuronic acid (M) residues. These hydrated M-rich blocks tend to self-aggregate into subnanometer domains. The resulting coexistence of two types of alginate chains differing in segmental dynamics was revealed by 1 H- 13 C dipolar profile analysis, which indicated that the average fluctuation angles of the stiff and mobile alginate segments were about 5-9° or 30°, respectively. Next, the 13 C CP/MAS NMR spectra indicated that the alginate polymer microstructure was strongly dependent on the type of cross-linking ion. The polymer chain regularity was determined to systematically decrease as the cross-linking ion radius decreased. Consistent with the 1 H- 1 H correlation spectra, regular structures were found for the gels cross-linked by relatively large alkaline earth cations (Ba 2+ , Sr 2+ , or Ca 2+ ), whereas the alginate chains cross-linked by bivalent transition metal ions (Zn 2+ ) and trivalent metal cations (Al 3+ ) exhibited significant irregularities. Notably, however, the observed disordering of the alginate chains was exclusively attributed to the M residues, whereas the structurally well-defined gels all contained guluronic acid (G) residues. Therefore, a key

  13. Changes in setting time of alginate impression material with different water temperature

    Directory of Open Access Journals (Sweden)

    Decky J. Indrani

    2013-03-01

    Full Text Available Background: Previous studies showed that setting process of alginates can be influenced by temperature. Purpose: To determine the changes in setting time due to differences in water temperature and to determine the correlation between water temperature and the setting time. Methods: Seven groups of dough alginate were prepared by mixing alginate powder and water, each using a temperature between 13° C–28° C with a interval of 2.5° C. A sample mold (Θ = 30 mm, t = 16 mm was placed on a flat plate and filled with doug alginate. Immediately the flat end of a polished acrylic rod was placed in contact with the surface of dough alginate. Setting time of alginat was measured from the starting of the mix to the time when the alginate does not adhere to the end of the rod. Setting time alginate data were analyzed using one way ANOVA, LSD and Pearson. Results: Setting time of alginate with water temperature between 13° C–28° C were 87 to 119.4 seconds and were significantly different (p < 0.01. The setting time between group were also significantly different (p<0.01. There was an inverse correlation between water temperature and the setting time (r = -0.968. Conclusion: Water temperature between 13° C–28°C with a difference of 2.5° C produced significant differences in alginate setting time; the lower the water temperature being used the longer the setting time was produced.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa proses pengerasan alginat dapat dipengaruhi oleh suhu. Tujuan: Mengetahui perubahan waktu pengerasan alginat akibat perbedaan suhu air serta mengetahui hubungan antara suhu air dan waktu pengerasan. Metode: Tujuh kelompok adonan alginat yang dipersiapkan dengan mencampur bubuk alginat dan air, masingmasing menggunakan suhu antara 13°C–28° C dengan interval 2,5° C. Pengukuran waktu pengerasan alginat dilakukan sesuai dengan spesifikasi ADA no.18. Sebuah cetakan sampel terbuat dari pralon berbentuk

  14. Simultaneous detection and removal of radioisotopes with modified alginate beads containing an azo-based probe using RGB coordinates

    International Nuclear Information System (INIS)

    Jo, Ara; Jang, Geunseok; Namgung, Ho; Kim, Choongho; Kim, Daigeun; Kim, Yujun; Kim, Jongho; Lee, Taek Seung

    2015-01-01

    Highlights: • Modified alginate with azo-based probe (ABO) was synthesized by a reaction between sodium alginate and azo-based probe (BO2). • BO2 was found to be a good probe molecule for radioisotopes using colorimetric analysis. • Detection of Co 2+ and Sr 2+ was mainly carried out via interaction between BO2 and metal ions. • Simultaneous removal of radioisotopes was assessed by the ion-exchange of carboxylate groups in sodium alginate. • The alginate beads with dual functions of detection and removal of metal ions are successfully accomplished. - Abstract: We prepared alginate beads that were modified with an azo-based probe molecule to monitor simultaneously the removal (by alginate) and probing (by the azo-probe molecule) of radioisotopes such as cobalt, strontium, and cesium ions. As an azo-probe molecule, Basic Orange 2 (BO2) was immobilized to the alginate bead. The BO2 in aqueous solution exhibited a slight red shift in absorption with a change in color from orange to dark orange upon addition of cobalt and strontium ions. In contrast, the color of BO2 did not change upon exposure to cesium ions. Thus, the covalently embedded BO2 in alginate beads could adsorb cobalt and strontium ions resulting in recognizable color change of the beads, which was induced by the formation of a complex between BO2 and metal ions. The color changes of the beads in the presence of metal ions were determined quantitatively using RGB color coordinate values. In addition to effectively removing metal ions, the colorimetric coordinate method provides a convenient and simple sensing technique for naked-eye metal ion detection.

  15. Alginate inhibits iron absorption from ferrous gluconate in a randomized controlled trial and reduces iron uptake into Caco-2 cells.

    Science.gov (United States)

    Wawer, Anna A; Harvey, Linda J; Dainty, Jack R; Perez-Moral, Natalia; Sharp, Paul; Fairweather-Tait, Susan J

    2014-01-01

    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n = 15) were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p = 0.003). Sub-group B (n = 9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p = 0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p = 0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p = 0.009) and 35% (p = 0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p iron for the purpose of food fortification. ClinicalTrials.gov NCT01528644.

  16. The Study of Alginate and Whey Protein Hydrolyzed Suplementation Utilization for Cell Release and Microencapsulated Lactobacillus Acidophilus Viability in Probiotic Ice Cream

    Directory of Open Access Journals (Sweden)

    Purwadi Purwadi

    2013-10-01

    Full Text Available The objectives of this research were to increase viability and activity of L. acidophilus encapsulated with alginate and whey protein hydrolyzed for cell release and microencapsulated Lactobacillus acidophilus viability in probiotic ice cream. The methods used were factorial experiment using Completely Randomized Design. Data was analysed with Variance Analysis. The results showed that the interaction between alginate and whey protein hydrolyzed supplemented could be increased the function of CaCl2 and also encapsulated L. acidophilus viability. The used alginate of 1% and whey protein hydrolyzed supplemented of 0,5% produced encapsulated L. acidophilus viability higher than before, but however, the utilization of alginate of 1% and whey protein hydrolyzed supplemented of 0% could release a few cell. Therefore, the utilization of alginate 1% and whey protein hydrolyzed supplemented 0,5% in ice cream produced L. acidophilus highest than other.   Keywords :   Lactobacillus acidophilus, microencapsulation, alginate, whey protein hydrolyzed, cell release, ice cream

  17. Physical, mechanical, and barrier properties of sodium alginate/gelatin emulsion based-films incorporated with canola oil

    Science.gov (United States)

    Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.

    2017-12-01

    The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (pcanola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.

  18. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    International Nuclear Information System (INIS)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-01-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique

  19. Influence of the uronic acid composition on the gastroprotective activity of alginates from three different genus of Tunisian brown algae.

    Science.gov (United States)

    Ammar, Hiba Hadj; Lajili, Sirine; Sakly, Nawfel; Cherif, Dora; Rihouey, Christophe; Le Cerf, Didier; Bouraoui, Abderrahman; Majdoub, Hatem

    2018-01-15

    Alginates from three genus of Tunisian brown algae were isolated and characterized by size exclusion chromatography and Solid-state NMR spectroscopy. Alginate from Padina pavonica (APP) had the highest molecular weight (Mw) with 147,000g/mol while it was 85,000g/mol for alginate from Cystoseira compressa (ACC) and 58,000g/mol for alginate from Dictyopteris membranaceae (ADM). The mannuronate (M) to guluronate (G) ratios were estimated from spectral deconvolution of the 13 C CP/MAS spectra and the results has shown that all the extracts are mannuronic acid-rich alginates with M/G ratio increased in the order ADM - ACC - APP. An interesting gastroprotective effect was observed for the extracts; ADM and ACC exhibited the highest inhibition of gastric lesions, at 50mg/kg, with 83.41% and 75.39% respectively. Otherwise, it has been shown that the gastroprotective effect of alginates depends mainly on their uronic acid composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Highly Efficient Malolactic Fermentation of Red Wine Using Encapsulated Bacteria in a Robust Biocomposite of Silica-Alginate.

    Science.gov (United States)

    Simó, Guillermo; Vila-Crespo, Josefina; Fernández-Fernández, Encarnación; Ruipérez, Violeta; Rodríguez-Nogales, José Manuel

    2017-06-28

    Bacteria encapsulation to develop malolactic fermentation emerges as a biotechnological strategy that provides significant advantages over the use of free cells. Two encapsulation methods have been proposed embedding Oenococcus oeni, (i) interpenetrated polymer networks of silica and Ca-alginate and (ii) Ca-alginate capsules coated with hydrolyzed 3-aminopropyltriethoxysilane (hAPTES). On the basis of our results, only the first method was suitable for bacteria encapsulation. The optimized silica-alginate capsules exhibited a negligible bacteria release and an increase of 328% and 65% in L-malic acid consumption and mechanical robustness, respectively, compared to untreated alginate capsules. Moreover, studies of capsule stability at different pH and ethanol concentrations in water solutions and in wine indicated a better behavior of silica-alginate capsules than untreated ones. The inclusion of silicates and colloidal silica in alginate capsules containing O. oeni improved markedly their capacity to deplete the levels of L-malic acid in red wines and their mechanical robustness and stability.

  1. The synthesis and characterization of hydrogel chitosan-alginate with the addition of plasticizer lauric acid for wound dressing application

    Science.gov (United States)

    Izak Rudyardjo, Djony; Wijayanto, Setiawan

    2017-05-01

    The writers conducted a study about the synthesis and characterization of hydrogel chitosan-alginate by addition plasticizer lauric acid for wound dressing application. The purpose was to find out the impact of lauric acid concentration variation on hydrogel chitosan-alginate to get the best mechanical and physical properties to be applied as wound dressing in accordance with existing standards. This study used commercially chitosan from extract of shells crab, commercially-available alginate from the extract of sargassum sp, and commercial lauric acid from palm starch. The addition of lauric acid was aimed to repair mechanical properties of hydrogel. The composition of chitosan-alginate is 4:1 (v/v), while the lauric acid concentration variations are 0%, 1%, 2%, 3%, 4%, and 5% w/v. The characterization of mechanical properties test (Tensile strength and Elongation at break) at hydrogel showed the hydrogel chitosan-alginate-lauric acid have the characteristic which meets the standard of mechanical properties for human skin. The best performance of hydrogel chitosan-alginate-lauric acid was obtained by increasing luric acid concentration by 4%, which has a thickness value of 125.46±0.63 µm, elongation 28.89±1.01 %, tensile strength (9.01±0.65) MPa, and ability to absorb liquids (601.45 ±1.24) %.

  2. Statistical optimization of bambara groundnut protein isolate-alginate matrix systems on survival of encapsulated Lactobacillus rhamnosus GG

    Directory of Open Access Journals (Sweden)

    Kanyanat Kaewiad

    2017-08-01

    Full Text Available Encapsulation may protect viable probiotic cells. This study aims at the evaluation of a bambara groundnut protein isolate (BGPI-alginate matrix designed for encapsulating a probiotic Lactobacillus rhamnosus GG. The response surface methodology was employed to gain the optimal concentrations of BGPI and alginate on encapsulation efficiency and survival of encapsulated cells. The capsules were prepared at the optimal combination by the traditional extrusion method composed of 8.66% w/v BGPI and 1.85% w/v alginate. The encapsulation efficiency was 97.24%, whereas the survival rates in an acidic condition and after the freeze-drying process were 95.56% and 95.20%, respectively—higher than those using either BGPI or alginate as the encapsulating agent individually. The designed capsules increased the probiotic L. rhamnosus GG survival relative to free cells in a simulated gastric fluid by 5.00 log cfu/ml after 3 h and in a simulated intestinal fluid by 8.06 log cfu/ml after 4 h. The shelf-life studies of the capsules over 6 months at 4 °C and 30 °C indicated that the remaining number of viable cells in a BGPI-alginate capsule was significantly higher than that of free cells in both temperatures. It was demonstrated that the BGPI-alginate capsule could be utilized as a new probiotic carrier for enhanced gastrointestinal transit and storage applied in food and/or pharmaceutical products.

  3. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation.

    Science.gov (United States)

    Nakashima, Y; Tsusu, K; Minami, K; Nakanishi, Y

    2014-06-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  4. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.

    Science.gov (United States)

    Bilal, Muhammad; Asgher, Muhammad

    2015-12-10

    In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like

  5. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review.

    Science.gov (United States)

    George, Meera; Abraham, T Emilia

    2006-08-10

    The protein pharmaceutical market is rapidly growing, since it is gaining support from the recombinant DNA technology. To deliver these drugs via the oral route, the most preferred route, is the toughest challenge. In the design of oral delivery of peptide or protein drugs, pH sensitive hydrogels like alginate and chitosan have attracted increasing attention, since most of the synthetic polymers are immunogenic and the incorporation of proteins in to these polymers require harsh environment which may denature and inactivate the desired protein. Alginate is a water-soluble linear polysaccharide composed of alternating blocks of 1-4 linked alpha-L-guluronic and beta-D-mannuronic acid residues where as chitosan is a co polymer of D-glucosamine and N-acetyl glucosamine. The incorporation of protein into these two matrices can be done under relatively mild environment and hence the chances of protein denaturation are minimal. The limitations of these polymers, like drug leaching during preparation can be overcome by different techniques which increase their encapsulation efficiency. Alginate, being an anionic polymer with carboxyl end groups, is a good mucoadhesive agent. The pore size of alginate gel microbeads has been shown to be between 5 and 200 nm and coated beads and microspheres are found to be better oral delivery vehicles. Cross-linked alginate has more capacity to retain the entrapped drugs and mixing of alginate with other polymers such as neutral gums, pectin, chitosan, and eudragit have been found to solve the problem of drug leaching. Chitosan has only limited ability for controlling the release of encapsulated compound due to its hydrophilic nature and easy solubility in acidic medium. By simple covalent modifications of the polymer, its physicochemical properties can be changed and can be made suitable for the peroral drug delivery purpose. Ionic interactions between positively charged amino groups in chitosan and the negatively charged mucus gel layer

  6. In vitro antimicrobial efficacy of a silver alginate dressing on burn wound isolates.

    Science.gov (United States)

    Thomas, J G; Slone, W; Linton, S; Okel, T; Corum, L; Percival, S L

    2011-03-01

    To test the antimicrobial effectiveness of a silver alginate dressing on opportunistic pathogens, namely meticillin-sensitive Staphylococcus aureus (MSSA) and meticillin-resistant Staphylococcus aureus (MRSA), Klebsiella spp., Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa, Escherichia coli, Enterobacter sakazakii, Enterobacter cloacae, Serratia marcescens, Chryseobacterium indologenes, Proteus vulgaris and Acinetobacter baumannii. In total, 40 microorganisms were isolated from patients attending three burn centres in the US and evaluated for their susceptibility to a silver alginate wound dressing, employing a corrected zone of inhibition assay, conducted on Mueller Hinton agar (MHA). The sizes of the corrected zones of inhibition varied between and within genera. For example, all Acinetobacter baumannii strains were found to be sensitive to ionic silver at pH 7, with a mean of 2.8mm, compared with 3.5mm at pH 5.5. The silver alginate dressing also demonstrated activity on all strains of Enterobacter and Escherichia coli, with susceptibility to the silver alginate dressing enhanced at pH 5.5. For Enterococcus spp. the average corrected zone of inhibition at pH 7 was 3.6mm, versus 4.9mm at pH 5.5. All strains of Pseudomonas aeruginosa were found to be sensitive to the silver alginate dressing. The average corrected zone of inhibition was 6.9mm at pH 7, compared with 8mm at pH 5.5. For MRSA and Staphylococcus aureus, it ranged from 4.5mm to 7.5mm at pH 7. When the pH was decreased to 5.5, the corrected zone of inhibition increased. This study demonstrates the activity of a silver alginate dressing on a wide range of burn isolates, including antibiotic-resistant bacteria, isolated from three different burn centres in the US. It also highlights the possible importance of pH and its potential effects on antimicrobial performance and microbial susceptibility. However, more extensive testing is required to substantiate this. SLP is employed by

  7. Optimization of preparation process and characterization of carboxymethyl chitosan/sodium alginate hemostatic sponge

    Science.gov (United States)

    Hu, Z.; Ouyang, Q. Q.; Cheng, Y.; Hong, P. Z.; Liao, M. N.; Chen, F. J.; Li, S. D.

    2017-06-01

    Composite hemostatic sponge was prepared by vacuum freeze-drying using carboxymethyl chitosan and sodium alginate as the main materials and CaCl2 as a crosslinking agent. On the basis of single factor experiments, an orthogonal experiment was carried out to optimize the preparation process of hemostatic sponge. The appearance, water absorption, porosity ratio, and in vitro hemostasis of the sponge were evaluated. The optimum conditions to prepare hemostatic sponge were obtained as follows: mass ratio of sodium alginate to carboxymethyl chitosan 4: 1, mass fraction of CaCl2 2%, and crosslinking temperature 30°C. The hemostatic sponge prepared under such conditions was off-white and porous. Its water absorption and porosity ratio were 3050% and 67.23%, respectively. Meanwhile, the hemostatic sponges had significant in vitro procoagulant activity. Therefore, the hemostatic sponge is expected to be developed as a novel medical material.

  8. Addition of 1, 2 and 3% in mass of sodium alginate in calcium phosphate cement

    International Nuclear Information System (INIS)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A.

    2011-01-01

    The calcium phosphate cement (CFC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry because of their biocompatibility, bioactivity, osteoconductivity and osteotransdutivity, and a paste that can be easily molded and placed into the surgical site. However, CFCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. Aiming to evaluate the strength and time to handle a CFC phase composed mainly of alpha were added to sodium alginate (1%, 2% and 3% wt) and an accelerator handle in an aqueous medium. The cement powder was mixed with liquid takes 2 minutes and resigned in specimens and assessed for apparent density and porosity by the Archimedes method, X-ray diffraction and mechanical strength. We noticed a significant increase in mechanical properties of cement added sodium alginate. (author)

  9. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    International Nuclear Information System (INIS)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A.

    2012-01-01

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  10. Digitization of dental alginate impression: Three-dimensional evaluation of point cloud.

    Science.gov (United States)

    Kim, So-Ri; Lee, Wan-Sun; Kim, Woong-Chul; Kim, Hea-Young; Kim, Ji-Hwan

    2015-01-01

    The purpose of this study was to evaluate the digitization of alginate impressions by analyzing differences between the scan data of two types of impressions (alginate and rubber) taken from the master die and the scan data for the master die. The master die and impressions were digitized using a dental laser scanner (7 series, Dental Wings, Montreal, Canada). The crown portion of the abutment teeth in the digital data of 20 impressions was divided into three regions: cervical surface, middle surface, and occlusal surface. An independent t-test showed a significant difference (palginate and rubber). One-way ANOVA and Tukey's honest significant difference test revealed a significant difference (palginate impressions in the future.

  11. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed

    Directory of Open Access Journals (Sweden)

    Mohamed Fertah

    2017-05-01

    Viscosimetric measurements gave an intrinsic viscosity of 2.542 dL/g which permits to calculate the average molar mass value (1.14 × 105 g/mol. By analyzing 1H NMR spectra, Moroccan L. digitata alginates showed a high quantity of both homopolymeric mannoronic and guluronic blocks (FMM = 0.47 and (FGG = 0.41 respectively, while the alternating block fractions (FMG = 0.06 and FGM = 0.06 showed low values than those previously described in the literature. The M/G ratio value is 1.12 allowing the preparation of alginates suitable to form soft and elastic gels more than brittle ones. The characteristics obtained for Moroccan Laminaria digitata may be useful to obtain polyelectrolyte complexes for the production of drug delivery micro- and nanoparticles. In some cases, a charged polysaccharide with low viscosity is needed.

  12. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges.

    Science.gov (United States)

    Lin, Ning; Bruzzese, Cécile; Dufresne, Alain

    2012-09-26

    Crosslinked polysaccharide sponges have been prepared by freeze-drying of amorphous alginate-oxidized nanocellulose in the presence of a Ca(2+) ionic crosslinking agent. The new carboxyl groups on the surface of nanocellulose induced by the chemical oxidization provided the possibility of participating in the construction of an alginate-based sponge's structure and played a fundamental role in the structural and mechanical stability of ensuing sponges. Furthermore, enhanced mechanical strength induced by oxidized cellulose nanocrystals and the formation of a semi-interpenetrating polymer network from oxidized microfibrillated cellulose were reported. Together with the facile and ionic crosslinking process, the ultrahigh porosity, promising water absorption and retention, as well as the improved compression strength of the crosslinked sponges should significantly extend the use of this soft material in diverse practical applications.

  13. Polyamide microcapsules containing alginic acid: extractability of metal ions and surface characterization by XPS.

    Science.gov (United States)

    Asaki, M; Ichinose, T; Monjushiroh, H; Fukumoto, T; Watarai, H

    1998-01-01

    Polyamide microcapsules containing alginic acid as a water-soluble macromolecular ligand (Alg-MC) were prepared by the interfacial polycondensation of sebacoyldichloride with hexamethylenediamine in a w/o emulsion system. The mean diameter of the microcapsules was 1.2 microns. The extractabilities of Cu(II), Ni(II), Co(II) and Ag(I) into the Alg-MC were examined and the highest uptake was found for Cu(II). It was ascertained that not only the inner ligand solution but also the membrane can accumulate the metal ions. The surface composition of the microcapsules was characterized by X-ray photo-electron spectroscopy (XPS) and it was found that some functional groups of alginic acid were present at the surface penetrating the membrane.

  14. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  15. Glutathione and S-nitrosoglutathione in alginate/chitosan nanoparticles: Cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marcato, P D; Adami, L F; Duran, N [Instituto de Quimica, Universidade Estadual de Campinas, Campinas, SP (Brazil); Melo, P S [Metrocamp, Campinas, SP (Brazil); Paula, L B de [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre (Brazil); Seabra, A B, E-mail: amedea.seabra@gmail.com [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, SP (Brazil)

    2011-07-06

    Nitric oxide (NO) is involved in several physiological processes, such as the control of vascular tone, the immune response and the wound healing process. Thus, there is a great interest in the development of NO-releasing drugs and in matrices which are able to stabilize and release NO locally in different tissues. Thiols, such as glutathione (GSH), are ready nitrosated to form the NO donors S-nitrosothiols (RSNOs). In this work, GSH, a precursor of the NO donor S-nitrosoglutathione (GSNO), was encapsulated into a mucoadhesive combination of alginate/chitosan nanoparticles. The encapsulated GSH was nitrosated in the alginate/chitosan nanoparticles by adding sodium nitrite, leading to the formation of encapsulated GSNO. The cytotoxicity characterization of the nanoparticles containing either GSH or GSNO showed that these materials were completely non cytotoxic to cellular viability. These results show that this novel nanostructure biomaterial has a great potential to be use in biomedical applications where NO has a therapeutical effect.

  16. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model

    DEFF Research Database (Denmark)

    Cao, Bao; Christophersen, Lars; Kolpen, Mette

    2016-01-01

    to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering...... as a model of the extracellular polysaccharide matrix in P. aeruginosa biofilm. We find that, rather than a normal first order saturation curve, the concentration of tobramycin in the alginate beads follows a power-law as a function of the external concentration. Further, the tobramycin is observed...... of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm....

  17. Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes.

    Science.gov (United States)

    Mogharabi, Mehdi; Nassiri-Koopaei, Nasser; Bozorgi-Koushalshahi, Maryam; Nafissi-Varcheh, Nastaran; Bagherzadeh, Ghodsieh; Faramarzi, Mohammad Ali

    2012-01-01

    Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl(2) solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed that ca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively.

  18. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.

    Science.gov (United States)

    Mazutis, Linas; Vasiliauskas, Remigijus; Weitz, David A

    2015-12-01

    Owing to their biocompatibility and reduced side effects, natural polymers represent an attractive choice for producing drug delivery systems. Despite few successful examples, however, the production of monodisperse biopolymer-based particles is often hindered by high viscosity of polymer fluids. In this work, we present a microfluidic approach for production of alginate-based particles carrying encapsulated antibodies. We use a triple-flow micro-device to induce hydrogel formation inside droplets before their collection off-chip. The fast mixing and gelation process produced alginate particles with a unique biconcave shape and dimensions of the mammalian cells. We show slow and fast dissolution of particles in different buffers and evaluate antibody release over time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Alginate hydrogel matrix stiffness influences the in vitro development of caprine preantral follicles.

    Science.gov (United States)

    Brito, I R; Silva, C M G; Duarte, A B G; Lima, I M T; Rodrigues, G Q; Rossetto, R; Sales, A D; Lobo, C H; Bernuci, M P; Rosa-E-Silva, A C J S; Campello, C C; Xu, M; Figueiredo, J R

    2014-07-01

    This study examined caprine follicular development in different concentrations of alginate matrix to determine the optimal conditions for culture. Caprine preantral follicles were cultured in a two-dimensional system (control) or a three-dimensional encapsulated system in 0.25%, 0.5%, or 1% alginate (ALG 0.25, ALG 0.5, and ALG 1, respectively). A higher percentage of morphologically normal follicles developed in ALG 0.5 and ALG 1 than in ALG 0.25 or the control (P rate of antrum formation, however, was higher in ALG 0.25 than in ALG 0.5 and ALG 1 conditions (P growth rates and meiotic resumption than those cultured in ALG 0.5, ALG 1, or the control (P rate of meiotic resumption. © 2014 Wiley Periodicals, Inc.

  20. Biosynthesis of Silver Nanoparticles from Persimmon Byproducts and Incorporation in Biodegradable Sodium Alginate Thin Film.

    Science.gov (United States)

    Ramachandraiah, Karna; Gnoc, Nguyen Trong Bao; Chin, Koo Bok

    2017-10-01

    Fruit industrial wastes such as persimmon seed, peel, and calyx were used to synthesize silver nanoparticles (AgNPs) and their antioxidant activities were compared with byproduct powders having different granularities. The AgNPs were incorporated in sodium alginate thin films and transparency and mechanical properties of the films was analyzed. Persimmon byproduct AgNPs were characterized by ultraviolet-visible spectroscopy, dynamic light scattering, X-ray diffraction, energy-dispersive x-ray spectroscopy, and scanning electron microscopy. The byproduct AgNPs displayed higher antioxidant activities than powders of different granularities (P silver nanoparticles (AgNPs) which were incorporated in sodium alginate thin films. This study evaluated the antioxidant activities and mechanical properties of the films that could be useful in the manufacture of food packaging using biodegradable films. © 2017 Institute of Food Technologists®.

  1. Improving the Stability of Astaxanthin by Microencapsulation in Calcium Alginate Beads.

    Directory of Open Access Journals (Sweden)

    Shen-Fu Lin

    Full Text Available There has been considerable interest in the biological functions of astaxanthin and its potential applications in the nutraceutical, cosmetics, food, and feed industries in recent years. However, the unstable structure of astaxanthin considerably limits its application. Therefore, this study reports the encapsulation of astaxanthin in calcium alginate beads using the extrusion method to improve its stability. This study also evaluates the stability of the encapsulated astaxanthin under different storage conditions. The evaluation of astaxanthin stability under various environmental factors reveals that temperature is the most influential environmental factor in astaxanthin degradation. Stability analysis shows that, regardless of the formulation used, the content of astaxanthin encapsulated in alginate beads remains above 90% of the original amount after 21 days of storage at 25°C. These results suggest that the proposed technique is a promising way to enhance the stability of other sensitive compounds.

  2. Removal of acetaminophen in water by laccase immobilized in barium alginate.

    Science.gov (United States)

    Ratanapongleka, Karnika; Punbut, Supot

    2018-02-01

    This research has focused on the optimization of immobilized laccase condition and utilization in degradation of acetaminophen contaminated in aqueous solution. Laccase from Lentinus polychrous was immobilized in barium alginate. The effects of laccase immobilization such as sodium alginate concentration, barium chloride concentration and gelation time were studied. The optimal conditions for immobilization were sodium alginate 5% (w/v), barium chloride 5% (w/v) and gelation time of 60 min. Immobilized laccase was then used for acetaminophen removal. Acetaminophen was removed quickly in the first 50 min. The degradation rate and percentage of removal increased when the enzyme concentration increased. Immobilized laccase at 0.57 U/g-alginate showed the maximum removal at 94% in 240 min. The removal efficiency decreased with increasing initial acetaminophen concentration. The K m value for immobilized laccase (98.86 µM) was lower than that of free laccase (203.56 µM), indicating that substrate affinity was probably enhanced by immobilization. The immobilized enzyme exhibited high activity and good acetaminophen removal at pH 7 and temperature of 35°C. The activation energies of free and immobilized laccase for degradation of acetaminophen were 8.08 and 17.70 kJ/mol, respectively. It was also found that laccase stability to pH and temperature increased after immobilization. Furthermore, immobilized laccase could be reused for five cycles. The capability of removal and enzyme activity were retained above 70%.

  3. In-vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy.

    Science.gov (United States)

    Mohamed, Amir Ibrahim; Ahmed, Osama A A; Amin, Suzan; Elkadi, Omar Anwar; Kassem, Mohamed A

    2015-10-15

    The purpose of this study was to use near-infrared (NIR) transmission spectroscopic technique to determine clindamycin plasma concentration after oral administration of clindamycin loaded GMO-alginate microspheres using rabbits as animal models. Lyophilized clindamycin-plasma standard samples at a concentration range of 0.001-10 μg/ml were prepared and analyzed by NIR and HPLC as a reference method. NIR calibration model was developed with partial least square (PLS) regression analysis. Then, a single dose in-vivo evaluation was carried out and clindamycin-plasma concentration was estimated by NIR. Over 24 h time period, the pharmacokinetic parameters of clindamycin were calculated for the clindamycin loaded GMO-alginate microspheres (F3) and alginate microspheres (F2), and compared with the plain drug (F1). PLS calibration model with 7-principal components (PC), and 8000-9200 cm(-1) spectral range shows a good correlation between HPLC and NIR values with root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP), and calibration coefficient (R(2)) values of 0.245, 1.164, and 0.9753, respectively, which suggests that NIR transmission technique can be used for drug-plasma analysis without any extraction procedure. F3 microspheres exhibited controlled and prolonged absorption Tmax of 4.0 vs. 1.0 and 0.5 h; Cmax of 2.37±0.3 vs. 3.81±0.8 and 5.43±0.7 μg/ml for F2 and F1, respectively. These results suggest that the combination of GMO and alginate (1:4 w/w) could be successfully employed for once daily clindamycin microspheres formulation which confirmed by low Cmax and high Tmax values. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Does 6 Hours of Contact With Alginate Impression Material Affect Dental Cast Properties?

    Science.gov (United States)

    Ibrahim, Amna Adam; Alhajj, Mohammed Nasser; Khalifa, Nadia; Gilada, Magdi Wadie

    2017-06-01

    Alginate impression (irreversible hydrocolloid) material is commonly used in dental practice because it is easy to mix, low in cost, and well tolerated by patients. The material is not dimensionally stable, however; thus, it is necessary to pour the impression immediately after the molding is accomplished, or within 60 minutes if the impression is kept in 100% humidity. Excessive contact of the alginate impression with the cast model over time may affect the model's properties. In this study, the authors tested the effect of contact time between an alginate impression and type III dental stone on cast model properties. Sixty-seven cast models were obtained from a stainless steel cylinder by using irreversible hydrocolloid impression material and type III dental stone. Thirty-seven cast models were separated from the impression after 1 hour (control group) and 30 cast models were separated after 6 hours (study group). The samples were evaluated under light microscope for surface details and measured by digital caliper for dimensional stability. An indentation on the cast was made and the depth of the indentation was then measured with a digital caliper to measure hardness. The dimensional stability of the cast models was not affected when contact time was increased from 1 hour to 6 hours (P = .507). Surface details did not deteriorate when contact time was increased, as all of the samples could reproduce all details after the 1-hour and 6-hour interval periods. However, hardness was greater after 1 hour of contact time (P = .001) than after 6 hours of contact time. In conclusion, contact between alginate impression material and type III dental stone up to 6 hours did not affect the dimensional stability and richness of the surface; hardness, though, was significantly affected.

  5. Comparison of Luffa cylindrica L. sponge discs and Ca-alginate gel ...

    African Journals Online (AJOL)

    At the end of 96 h fermentation, the ethanol yields were 64.67 ± 0.016 and 65.21 ± 0.030 g/l molasses, with luffa and Ca-alginate entrapped S. cerevisiae cells exhibiting 89.90 ± 0.008 and 91.86 ± 0.072% sugar conversion, respectively. There was no statistically significant difference [Fisher's least significance difference ...

  6. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads

    Czech Academy of Sciences Publication Activity Database

    Hassan, A F.; Abdel-Mohsen, A. M.; Elhadidy, Hassan

    2014-01-01

    Roč. 68, JUL (2014), s. 125-130 ISSN 0141-8130 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.20.0214 Institutional support: RVO:68081723 Keywords : Apricot stone * Alginate beads * Composite * Arsenic * Adsorption Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.858, year: 2014

  7. Fenugreek seed mucilage-alginate mucoadhesive beads of metformin HCl: Design, optimization and evaluation.

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Pradhan, Jyotiprakash; Hasnain, M Saquib

    2013-03-01

    The work investigates the development and optimization of fenugreek (Trigonella foenum-graecum L.) seed mucilage (FSM)-alginate mucoadhesive beads containing metformin HCl through ionotropic gelation using 3(2) factorial design. The effect of polymer-blend ratio (sodium alginate to FSM) and cross-linker (CaCl(2)) concentration on the drug encapsulation efficiency (DEE, %), and cumulative drug release after 10h (R(10h), %) was optimized. The DEE (%) of all these beads was within the range of 71.63 ± 2.32 to 95.08 ± 3.73% with sustained in vitro drug release of 69.78 ± 2.43% to 95.70 ± 4.26% over 10h. The in vitro drug release from these beads was followed controlled-release (zero-order) pattern (R(2)=0.9910 to 0.9953) with super case-II transport mechanism. The average size of these beads was within the range of 0.92 ± 0.05 to 1.30 ± 0.14 mm. The beads were also characterized by SEM, FTIR and (1)H NMR. The swelling and degradation of FSM-alginate beads containing metformin HCl were influenced by pH of the test medium. These beads also exhibited good mucoadhesivity in wash-off test. The optimized FSM-alginate mucoadhesive beads containing metformin HCl showed significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Formulation and in-vitro release studies on chitosan-alginate ...

    African Journals Online (AJOL)

    La présente étude examine la libération in vitro de Vibrio bacterin, un vaccin pour les poissons produit à partir de microcapsules chitosan-alginate modifiées de HPMCAS pour l\\'administration par voie orale chez les poissons. Les microcapsules ont été préparées avec la méthode de coacervation counterion en utilisant un ...

  9. Use of Ca-alginate immobilized Pseudomonas aeruginosa for repeated batch and continuous degradation of Endosulfan

    OpenAIRE

    Pradeep, Vijayalakshmi; Subbaiah, Usha Malavalli

    2016-01-01

    The current investigation is taken up with the aim of studying repeated batch and continuous degradation of Endosulfan, using Ca-alginate immobilized cells of Pseudomonas aeruginosa isolated from an agricultural soil. The work involves the study of genes and enzymes involved in the degradation of the pesticide and was carried out with an objective of reducing the toxicity of Endosulfan by degrading it to less toxic metabolites. The long-term stability of Endosulfan degradation was studied dur...

  10. Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Trandafir, Mihaela-Mirela; Florea, Mihaela; Neaţu, Florentina; Primo, Ana; Parvulescu, Vasile I; García, Hermenegildo

    2016-07-07

    Graphene obtained by pyrolysis of alginate at 900 °C under inert atmosphere and exfoliation is used as a metal-free catalyst for reduction of nitro to amino groups with hydrogen as a reagent. The process is general for aromatic and aliphatic, conjugated and isolated nitro groups, and occurs with low selectivity over hydrogenation of carbon-carbon double bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials.

    Science.gov (United States)

    Krishnan, Rahul; Ko, David; Foster, Clarence E; Liu, Wendy; Smink, A M; de Haan, Bart; De Vos, Paul; Lakey, Jonathan R T

    2017-01-01

    Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining

  12. Ca(2+) cross-linked alginic acid nanoparticles for solubilization of lipophilic natural colorants.

    Science.gov (United States)

    Astete, Carlos E; Sabliov, Cristina M; Watanabe, Fumiya; Biris, Alexandru

    2009-08-26

    The increased tendency toward healthy lifestyles has promoted natural food ingredients to the detriment of synthetic components of food products. The trend followed into the colorant arena, with consumers worried about potential health problems associated with synthetic colorants and demanding food products that use natural pigments. The goal of this study was to entrap a lipophilic natural pigment (beta-carotene) in a water-soluble matrix made of Ca(2+) cross-linked alginic acid, to allow its use as a colorant in water-based foods. The effects of different synthesis parameters such as type of solvent, alginic acid concentration, and calcium chloride concentration on nanoparticle characteristics (i.e., size, zeta potential, and morphology) were evaluated. The particle stability was assessed by measuring aggregation against pH, oxidation, and particle precipitation as a function of time. The particle synthesized measured 120-180 nm when formed with chloroform and 500-950 nm when synthesized with ethyl acetate. The particles were negatively charged (-70 to -80 mV zeta potential) and were stable at pH values ranging from 3 to 7. The presence of calcium was prevalent on the particles, indicating that the divalent ions were responsible for cross-linking lecithin with alginic acid and forming the matrix around the beta-carotene pockets. The addition of calcium increased nanoparticle density and improved beta-carotene protection against oxidation. It is concluded that the method proposed herein was capable of forming water-soluble nanoparticles with entrapped beta-carotene of controlled functionality, as a result of the type of solvent and the amounts of alginate and Ca(2+) used.

  13. Impact of different alginate lyases on combined cellulase–lyase saccharification of brown seaweed

    DEFF Research Database (Denmark)

    Manns, Dirk Martin; Nyffenegger, Christian; Saake, B.

    2016-01-01

    -guluronic acid. When applied together with a fungal cellulase preparation (Cellic®CTec2) at pH 6 and 40 °C on a glucan rich brown seaweed Laminaria digitata the viscosity decreased in the initial minutes while measurable alginate degradation occurred primarily within the first 1–2 hours of reaction. Whereas FALy...... solubilization of sulfated fucoidan, whereas most of the nitrogen was recovered in the residual seaweed solids....

  14. Phenol biodegradation by immobilized Pseudomonas putida FNCC-0071 cells in alginate beads

    Science.gov (United States)

    Hakim, Lukman Nul; Rochmadi, Sutijan

    2017-06-01

    Phenol is one of industrial liquid waste which is harmful to the environment, so it must be degraded. It can be degraded by immobilized Pseudomonas putida FNCC-0071 cells. It needs the kinetics and mass transfer data to design this process which can be estimated by the proposed dynamic model in this study. This model involves simultaneous diffusion and reaction in the alginate bead and liquid bulk. The preliminary stage of phenol biodegradation process was acclimatization cells. This is the stage where cells were acclimated to phenol as carbon source (substrate). Then the acclimated cells were immobilized in alginate beads by extrusion method. The variation of the initial phenol concentration in the solution is 350 to 850 ppm where 60 g alginate bead contained by cells loaded into its solution in reactor batch, so then biodegradation occurs. In this study, the average radius of alginate bead was 0.152 cm. The occurred kinetic reaction process can be explained by Blanch kinetic model with the decreasing of parameter μmax' while the increasing values of initial phenol concentration in the same time, but the parameters KM, KM', and kt were increasing by the rising values of initial phenol concentration. The value of the parameter β is almost zero. Effective diffusivity of phenol and cells are 1.11 × 10-5±4.5% cm2 s-1 and 1.39 × 10-7± 0.04% cm2 s-1. The partition coefficient of phenol and cells are 0.39 ± 15% and 2.22 ± 18%.

  15. Scale-Up Preparation and Characterization of Collagen/Sodium Alginate Blend Films

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-01-01

    Full Text Available In an effort to produce scale-up of edible films, collagen-based films including different amounts of sodium alginate (CS were prepared by casting method. Films were characterized based on their rheological, thermal, and mechanical properties, water vapor permeability (WVP, and oxygen permeability (OP. The microstructures were also evaluated by scanning electron microscopy (SEM, atomic force microscopy (AFM, and Fourier transform-infrared spectroscopy (FTIR. Furthermore, the addition of sodium alginate effectively improved the viscosity and thermal stability, significantly increased TS, and decreased E and WVP (P0.05. SEM and AFM showed homogeneous matrix, with no signs of phase separation in the blends. Overall, films (CS2 produced using collagen (g : sodium alginate (g = 10 : 2 showed suitable rheological property (apparent viscosity was 4.87 m Pa s−1 and better TS (26.49 Mpa, E (64.98%, WVP (1.79 × 10−10 g·cm−1·s−1·Pa−1, and OP (3.77 × 10−5 cm3·m−2·d−1·Pa−1.

  16. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery.

    Science.gov (United States)

    Wang, Jianting; Wang, Ming; Zheng, Mingming; Guo, Qiong; Wang, Yafan; Wang, Heqing; Xie, Xiangrong; Huang, Fenghong; Gong, Renmin

    2015-05-01

    Self-assembled core/shell nanoparticles (NPs) were synthesized from water-soluble alginate substituted by hydrophobic phytosterols. Folate, a cancer-cell-specific ligand, was conjugated to the phytosterol-alginate (PA) NPs for targeting folate-receptor-overexpressing cancer cells. The physicochemical properties of folate-phytosterol-alginate (FPA) NPs were characterized by nuclear magnetic resonance, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug, was entrapped inside prepared NPs by dialysis method. The identification of prepared FPA NPs to folate-receptor-overexpressing cancer cells (KB cells) was confirmed by cytotoxicity and folate competition assays. Compared to the pure DOX and DOX/PA NPs, the DOX/FPA NPs had lower IC50 value to KB cells because of folate-receptor-mediated endocytosis process and the cytotoxicity of DOX/FPA NPs to KB cells could be competitively inhibited by free folate. The cellular uptake and internalization of pure DOX and DOX/FPA NPs was confirmed by confocal laser scanning microscopy image and the higher intracellular uptake of drug for DOX/FPA NPs over pure DOX was observed. The FPA NPs had the potential as a promising carrier to target drugs to cancer cells overexpressing folate receptors and avoid cytotoxicity to normal tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics.

    Science.gov (United States)

    Valentin, Thomas M; Leggett, Susan E; Chen, Po-Yen; Sodhi, Jaskiranjeet K; Stephens, Lauren H; McClintock, Hayley D; Sim, Jea Yun; Wong, Ian Y

    2017-10-11

    3D printed biomaterials with spatial and temporal functionality could enable interfacial manipulation of fluid flows and motile cells. However, such dynamic biomaterials are challenging to implement since they must be responsive to multiple, biocompatible stimuli. Here, we show stereolithographic printing of hydrogels using noncovalent (ionic) crosslinking, which enables reversible patterning with controlled degradation. We demonstrate this approach using sodium alginate, photoacid generators and various combinations of divalent cation salts, which can be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties. This approach is first utilized to template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. Overall, this demonstration of light-based 3D printing using non-covalent crosslinking may enable adaptive and stimuli-responsive biomaterials, which could be utilized for bio-inspired sensing, actuation, drug delivery, and tissue engineering.

  18. Prosopis alba exudate gum as excipient for improving fish oil stability in alginate-chitosan beads.

    Science.gov (United States)

    Vasile, Franco Emanuel; Romero, Ana María; Judis, María Alicia; Mazzobre, María Florencia

    2016-01-01

    The aim of the present work was to employ an exudate gum obtained from a South American wild tree (Prosopis alba), as wall material component to enhance the oxidative stability of fish oil encapsulated in alginate-chitosan beads. For this purpose, beads were vacuum-dried and stored under controlled conditions. Oxidation products, fatty acid profiles and lipid health indices were measured during storage. Alginate-chitosan interactions and the effect of gum were manifested in the FT-IR spectra. The inclusion of the gum in the gelation media allowed decreasing the oxidative damage during storage in comparison to the free oil and alginate-chitosan beads. The gum also improved wall material properties, providing higher oil retention during the drying step and subsequent storage. Fatty acids quality and lipid health indices were widely preserved in beads containing the gum. Present results showed a positive influence of the gum on oil encapsulation and stability, being the main mechanism attributed to a physical barrier effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils

    Science.gov (United States)

    Rafiq, M.; Hussain, T.; Abid, S.; Nazir, A.; Masood, R.

    2018-03-01

    Electrospinning is a well known method for the manufacturing of nanoscale fibers. Electrospun nanofibers have higher surface area to volume ratio and can be used for the incorporation of different materials. Essential oils are well known for their antimicrobial and healing properties since ancient times. The main objective of this study was to develop antibacterial nanofibers by the incorporation of essential oils in sodium alginate/PVA solution. Sodium alginate and PVA have excellent biocompatible properties which are the base of their use in wound care applications. Three different essential oils (cinnamon, clove, and lavender) at three different concentrations (0.5, 1 and 1.5%) were used to optimize the fiber forming conditions during electrospinning and then the desired antibacterial properties were evaluated. Addition of oils in PVA/SA solutions increased the viscosity but reduced the surface tension and conductivity as compared to pure PVA/sodium alginate solution. FTIR Spectra of composite fibers verified the successful incorporation of essential oils in nanofibers through electrospinning. All oil containing samples showed good antibacterial properties against staphylococcus aureus which make them a good replacement of antibiotics. Cinnamon oil loaded nanofibers showed the best results among selected oils regarding the antibacterial properties. Nanofibers with 1.5% cinnamon oil exhibited highest zone of inhabitation of 2.7 cm. Nanofibrous coated cotton gauze showed higher liquid absorptions as compared to simple cotton gauze and potential to be used as wound dressings for its improved liquid absorption and antibacterial activity.

  20. Studies of magnetic alginate-based electrospun matrices crosslinked with different methods for potential hyperthermia treatment.

    Science.gov (United States)

    Chen, Yen-Hsuan; Cheng, Chi-Hui; Chang, Wan-Ju; Lin, Yi-Ching; Lin, Feng-Huei; Lin, Jui-Che

    2016-05-01

    The magnetic electrospun mats were lately established as an innovative biomaterial for hyperthermic cancer treatment. Unlike those surface-modified magnetic nanoparticles that may not firmly adhere onto the tumor for long-term duration, the magnetic mats with nanofibrous structure can promote cell adhesion and kill the tumor directly within an alternating magnetic field. However, most magnetic electrospun mats were fabricated using non-biodegradable polymers and organic solvents, causing the problems of removal after therapy and the suspected biotoxicity associated with residual solvent. Alginate (SA) was utilized in this investigation as the main material for electrospinning because of being biodegradable and water-soluble. The alginate-based electrospun mats were then treated by an ionic or a covalent crosslinking method, and then followed by chelation with Fe(2+)/Fe(3+) for chemical coprecipitation of Fe3O4 magnetic nanoparticles. Significant less cytotoxicity was noted on both liquid extracts from the ionic-crosslinked (Fe3O4-SA/PEO) and covalent-crosslinked (Fe3O4-SA/PVA) magnetic electrospun mats as well as the surface of Fe3O4-SA/PVA. In vitro hyperthermia assay indicated that the covalent-crosslinked magnetic alginate-based mats reduced tumor cell viability greater than Fe3O4 nanoparticles. Such magnetic electrospun mats are of potential for hyperthermia treatment by endoscopic/surgical delivery as well as serving as a supplementary debridement treatment after surgical tumor removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Evaluation of digital model accuracy and time-dependent deformation of alginate impressions.

    Science.gov (United States)

    Cesur, M G; Omurlu, I K; Ozer, T

    2017-09-01

    The aim of this study was to evaluate the accuracy of digital models produced with the three-dimensional dental scanner, and to test the dimensional stability of alginate impressions for durations of immediately (T0), 1 day (T1), and 2 days (T2). A total of sixty impressions were taken from a master model with an alginate, and were poured into plaster models in three different storage periods. Twenty impressions were directly scanned (negative digital models), after which plaster models were poured and scanned (positive digital models) immediately. The remaining 40 impressions were poured after 1 and 2 days. In total, 9 points and 11 linear measurements were used to analyze the plaster models, and negative and positive digital models. Time-dependent deformation of the alginate impressions and the accuracy of the conventional plaster models and digital models were evaluated separately. Plaster models, negative and positive digital models showed significant differences in nearly all measurements at T (0), T (1), and T (2) times (P 0.05), but they demonstrated statistically significant differences at T (2) time (P impressions is practicable method for orthodontists.

  2. In vitro evaluation of fluoride release of Jeltrate® dental alginate

    Directory of Open Access Journals (Sweden)

    Delmo Santiago Vaitsman

    2009-01-01

    Full Text Available Objective: To evaluate of fluoride release from Jeltrate alginate®. Materials and Methods: Four Trademarks of alginate were divided in four groups: conventional Jeltrate®, Plus Jeltrate®, Chromatic Jeltrate® and Chromatic Ortho Jeltrate®. The alginates were handled following the guidelines of the manufacturers. After this was followed by the construction of evidence bodies using silicone molds of the dimensions of 4 mm in diameter and 4mm in height. After take prey, the evidence bodies were removed from the molds and placed in container with 10 ml of ultra purified water, for 2 min. The fluoride release was measured by selective ion electrode connected to an analyzer of ions. Results: The Plus Jeltrate® showed a higher releasing fluoride 247.85 μg/cm2 followed by Chromatic Ortho Jeltrate® (217.83 μg/cm2, Chromatic Jeltrate ® (138.21 μg/cm2 and Jeltrate® (79.61 μg/cm2. Conclusion: Plus Jeltrate® had the best performance in releasing fluoride, followed by Chromatic Ortho Jeltrate®, Chromatic Jeltrate® and conventional Jeltrate®.

  3. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    Science.gov (United States)

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (Palginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  4. A simple, quantitative method using alginate gel to determine rat colonic tumor volume in vivo.

    Science.gov (United States)

    Irving, Amy A; Young, Lindsay B; Pleiman, Jennifer K; Konrath, Michael J; Marzella, Blake; Nonte, Michael; Cacciatore, Justin; Ford, Madeline R; Clipson, Linda; Amos-Landgraf, James M; Dove, William F

    2014-04-01

    Many studies of the response of colonic tumors to therapeutics use tumor multiplicity as the endpoint to determine the effectiveness of the agent. These studies can be greatly enhanced by accurate measurements of tumor volume. Here we present a quantitative method to easily and accurately determine colonic tumor volume. This approach uses a biocompatible alginate to create a negative mold of a tumor-bearing colon; this mold is then used to make positive casts of dental stone that replicate the shape of each original tumor. The weight of the dental stone cast correlates highly with the weight of the dissected tumors. After refinement of the technique, overall error in tumor volume was 16.9% ± 7.9% and includes error from both the alginate and dental stone procedures. Because this technique is limited to molding of tumors in the colon, we utilized the Apc(Pirc/+) rat, which has a propensity for developing colonic tumors that reflect the location of the majority of human intestinal tumors. We have successfully used the described method to determine tumor volumes ranging from 4 to 196 mm³. Alginate molding combined with dental stone casting is a facile method for determining tumor volume in vivo without costly equipment or knowledge of analytic software. This broadly accessible method creates the opportunity to objectively study colonic tumors over time in living animals in conjunction with other experiments and without transferring animals from the facility where they are maintained.

  5. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    Directory of Open Access Journals (Sweden)

    Ricardo Danil Guiraldo

    2014-01-01

    Full Text Available Energy dispersive X-ray spectroscopy microanalysis (EDX, scanning electron microscopy (SEM, and Archimedes’ Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C, Hydrogum 5 (H5, Hydrogum (H, Orthoprint (O, and Jeltrate Plus (JP. The different alginate powders (0.5 mg were fixed on plastic stubs (n=5 and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt. The filler fractions in volume (vt were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  6. Investigation of dental alginate and agar impression materials as a brain simulant for ballistic testing.

    Science.gov (United States)

    Falland-Cheung, Lisa; Piccione, Neil; Zhao, Tianqi; Lazarjan, Milad Soltanipour; Hanlin, Suzanne; Jermy, Mark; Waddell, J Neil

    2016-06-01

    Routine forensic research into in vitro skin/skull/brain ballistic blood backspatter behavior has traditionally used gelatin at a 1:10 Water:Powder (W:P) ratio by volume as a brain simulant. A limitation of gelatin is its high elasticity compared to brain tissue. Therefore this study investigated the use of dental alginate and agar impression materials as a brain simulant for ballistic testing. Fresh deer brain, alginate (W:P ratio 91.5:8.5) and agar (W:P ratio 81:19) specimens (n=10) (11×22×33mm) were placed in transparent Perspex boxes of the same internal dimensions prior to shooting with a 0.22inch caliber high velocity air gun. Quantitative analysis to establish kinetic energy loss, vertical displacement elastic behavior and qualitative analysis to establish elasticity behavior was done via high-speed camera footage (SA5, Photron, Japan) using Photron Fastcam Viewer software (Version 3.5.1, Photron, Japan) and visual observation. Damage mechanisms and behavior were qualitatively established by observation of the materials during and after shooting. The qualitative analysis found that of the two simulant materials tested, agar behaved more like brain in terms of damage and showed similar mechanical response to brain during the passage of the projectile, in terms of energy absorption and vertical velocity displacement. In conclusion agar showed a mechanical and subsequent damage response that was similar to brain compared to alginate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Bromo-oxidation reaction in enzyme-entrapped alginate hollow microfibers

    Science.gov (United States)

    Asthana, Amit; Lee, Kwang Ho; Shin, Su-Jung; Perumal, Jayakumar; Butler, Lauren; Lee, Sang-Hoon; Kim, Dong-Pyo

    2011-01-01

    In this article, the authors present the fabrication of an enzyme-entrapped alginate hollow fiber using a microfluidic device. Further use of enzyme-entrapped alginate hollow fibers as a biocatalytic microchemical reactor for chemical synthesis is also deliberated in this article. To ensure that there is no enzyme leaching from the fiber, fiber surfaces were coated with chitosan. To confine the mobility of reactants and products within the porous hollow fibers the entire fibers were embedded into a transparent polydimethylsiloxane (PDMS) matrix which also works as a support matrix. A vanadium-containing bromoperoxidase enzyme isolated from Corallina confusa was used as a model enzyme to demonstrate the use of these alginate hollow-fiber reactors in bromo-oxidation of phenol red to bromophenol blue at different dye flow rates. Stability of the entrapped enzyme at different temperatures and the effect of the chitosan coating on the reaction conversion were also studied. It was observed that molecules as big as 27 kDa can be retained in the matrix after coating with chitosan while molecules with molecular-weight of around 378 Da can still diffuse in and out of the matrix. The kinetic conversion rate in this microfluidic bioreactor was more than 41-fold faster when compared with the standard test-tube procedure. PMID:21799723

  8. Cell response to the exposure to chitosan-TPP//alginate nanogels.

    Science.gov (United States)

    Schütz, Catherine A; Juillerat-Jeanneret, Lucienne; Käuper, Peter; Wandrey, Christine

    2011-11-14

    Hydrophilic nanocarriers formed by electrostatic interaction of chitosan with oppositely charged macromolecules have a high potential as vectors in biomedical and pharmaceutical applications. However, comprehensive information about the fate of such nanomaterials in biological environment is lacking. We used chitosan from both animal and fungal sources to form well-characterized chitosan-pentasodium triphosphate (TPP)//alginate nanogels suitable for comparative studies. Upon exposure of human colon cancer cells (HT29 and CaCo2), breast cancer cells (MDA-MB-231 and MCF-7), glioblastoma cells (LN229), lung cancer cells (A549), and brain-derived endothelial cells (HCEC) to chitosan-(TPP)//alginate nanogels, cell type-, nanogel dosage-, and exposure time-dependent responses are observed. Comparing chitosan-TPP//alginate nanogels prepared from either animal or fungal source in terms of nanogel formation, cell uptake, reactive oxygen species production, and metabolic cell activity, no significant differences become obvious. The results identify fungal chitosan as an alternative to animal chitosan in particular if biomedical/pharmaceutical applications are intended.

  9. A novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application

    Directory of Open Access Journals (Sweden)

    Mohammad Rafienia

    2017-07-01

    Full Text Available Objecttive (s: Polyvinylalcohol (PVA is among the most natural polymers which have interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing.Materials and Methods: In the current work, PVA and Na-Alginate nanocomposite scaffolds were prepared using the electrospinning (ELS technique in an aqueous solution. Also, (5% and 10% addition of bioglass (BG ceramic to the nanocomposite scaffold were investigated. The blended nanofibres are characterized by scanning electron microscopy (SEM, Fourier-transform infrared (FTIR, also the bioactivity evaluation of nanocomposite scaffold performed in simulated body fluid (SBF solutions.Results: The FTIR analysis indicated that PVA and Alginate may have H+ bonding interactions. The results revealed that with a higher amount of BG, a superior degradation as well as a higher chemical and biological stability could be obtained in the nanobiocomposite blend fibres. Furthermore, the blend nanofibre samples of 10% BG powders exhibit a significant improvement during bioactivity and mechanical testing.Conclusion: The increasing water-contact angle on the polymer surface with decreasing PVA and Alginate content indicated that the scaffold were more hydrophobic than were PVA molecules. Also, In addition, the average diameter of fibers in the sample with 10% BG have the highest porosity compared to the other scaffold samples.

  10. Modification of pH Conferring Virucidal Activity on Dental Alginates

    Directory of Open Access Journals (Sweden)

    Navina Nallamuthu

    2015-04-01

    Full Text Available To formulate an alginate dental impression material with virucidal properties, experimental alginate dental impression materials were developed and the formulations adjusted in order to study the effect on pH profiles during setting. Commercially available materials served as a comparison. Eight experimental materials were tested for antiviral activity against Herpes Simplex Virus type 1 (HSV-1. Changing the amount of magnesium oxide (MgO used in the experimental formulations had a marked effect on pH. Increasing MgO concentration corresponded with increased pH values. All experimental materials brought about viral log reductions ranging between 0.5 and 4.0 over a period of 4 h. The material with the lowest pH was the most effective. The current work highlights the very important role of MgO in controlling pH profiles. This knowledge has been applied to the formulation of experimental alginates; where materials with pH values of approximately 4.2–4.4 are able to achieve a significant log reduction when assayed against HSV-1.

  11. Chitosan/alginate based multilayers to control drug release from ophthalmic lens.

    Science.gov (United States)

    Silva, Diana; Pinto, Luís F V; Bozukova, Dimitriya; Santos, Luís F; Serro, Ana Paula; Saramago, Benilde

    2016-11-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (alginate - CaCl2)/(chitosan+glyoxal) topped with a final alginate-CaCl2 layer to avoid chitosan degradation by tear fluid proteins, proved to have excellent features to control the release of the anti-inflammatory, diclofenac, while keeping or improving the physical properties of the lenses. The coating leads to a controlled release of diclofenac from SCL and IOL materials for, at least, one week. Due to its high hydrophilicity (water contact angle≈0) and biocompatibility, it should avoid the use of further surface treatments to enhance the useŕs comfort. However, the barrier effect of this coating is specific for diclofenac, giving evidence to the need of optimizing the chemical composition of the layers in view of the desired drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Design of cissus-alginate microbeads revealing mucoprotection properties in anti-inflammatory therapy.

    Science.gov (United States)

    Okunlola, Adenike; Odeku, Oluwatoyin A; Lamprecht, Alf; Oyagbemi, Ademola A; Oridupa, Olayinka A; Aina, Oluwasanmi O

    2015-08-01

    Cissus gum has been employed as polymer with sodium alginate in the formulation of diclofenac microbeads and the in vivo mucoprotective properties of the polymer in anti-inflammatory therapy assessed in rats with carrageenan-induced paw edema in comparison to diclofenac powder and commercial diclofenac tablet. A full 2(3) factorial experimental design has been used to investigate the influence of concentration of cissus gum (X1); concentration of calcium acetate (X2) and stirring speed (X3) on properties of the microbeads. Optimized small discrete microbeads with size of 1.22±0.10 mm, entrapment efficiency of 84.6% and t80 of 15.2±3.5 h were obtained at ratio of cissus gum:alginate (1:1), low concentration of calcium acetate (5% w/v) and high stirring speed (400 rpm). In vivo studies showed that the ranking of percent inhibition of inflammation after 3h was diclofenac powder>commercial tablet=cissus>alginate. Histological damage score and parietal cell density were lower while crypt depth and mucosal width were significantly higher (pdiclofenac microbeads than those administered with diclofenac powder and commercial tablet, suggesting the mucoprotective property of the gum. Thus, cissus gum could be suitable as polymer in the formulation of non-steroidal anti-inflammatory drugs ensuring sustained release while reducing gastric side effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies

    International Nuclear Information System (INIS)

    Santos Silva, Mariana dos; Sgarbi Cocenza, Daniela; Grillo, Renato; Silva de Melo, Nathalie Ferreira; Tonello, Paulo Sergio; Camargo de Oliveira, Luciana; Lopes Cassimiro, Douglas; Rosa, Andre Henrique; Fernandes Fraceto, Leonardo

    2011-01-01

    Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 ± 12 nm, polydispersion of 0.518, zeta potential of -22.8 ± 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat.

  14. Characterization of morphology and composition of inorganic fillers in dental alginates.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  15. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  16. Raman-based imaging uncovers the effects of alginate hydrogel implants in spinal cord injury

    Science.gov (United States)

    Galli, Roberta; Tamosaityte, Sandra; Koch, Maria; Sitoci-Ficici, Kerim H.; Later, Robert; Uckermann, Ortrud; Beiermeister, Rudolf; Gelinsky, Michael; Schackert, Gabriele; Kirsch, Matthias; Koch, Edmund; Steiner, Gerald

    2015-07-01

    The treatment of spinal cord injury by using implants that provide a permissive environment for axonal growth is in the focus of the research for regenerative therapies. Here, Raman-based label-free techniques were applied for the characterization of morphochemical properties of surgically induced spinal cord injury in the rat that received an implant of soft unfunctionalized alginate hydrogel. Raman microspectroscopy followed by chemometrics allowed mapping the different degenerative areas, while multimodal multiphoton microscopy (e.g. the combination of coherent anti-Stokes Raman scattering (CARS), endogenous two-photon fluorescence and second harmonic generation on the same platform) enabled to address the morphochemistry of the tissue at cellular level. The regions of injury, characterized by demyelination and scarring, were retrieved and the distribution of key tissue components was evaluated by Raman mapping. The alginate hydrogel was detected in the lesion up to six months after implantation and had positive effects on the nervous tissue. For instance, multimodal multiphoton microscopy complemented the results of Raman mapping, providing the micromorphology of lipid-rich tissue structures by CARS and enabling to discern lipid-rich regions that contained myelinated axons from degenerative regions characterized by myelin fragmentation and presence of foam cells. These findings demonstrate that Raman-based imaging methods provide useful information for the evaluation of alginate implant effects and have therefore the potential to contribute to new strategies for monitoring degenerative and regenerative processes induced in SCI, thereby improving the effectiveness of therapies.

  17. Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen.

    Science.gov (United States)

    Maiti, Sabyasachi; Singha, Kamalika; Ray, Somasree; Dey, Paramita; Sa, Biswanath

    2009-01-01

    In this study, periodate oxidation of sodium alginate was controlled such that the oxidized alginate could form isolatable beads with Ca(+2) ions. The beads of oxidized alginate having a degree of oxidation 1 mol%, entrapped 89% flurbiprofen and released almost all of its content within 1.5 h in pH 7.2 phosphate buffer solution. The beads were covalently crosslinked with adipic dihydrazide (ADH) in addition to ionic crosslinks and were characterized. Scanning electron microscopy revealed that the beads were spherical having smooth surfaces. The drug entrapment efficiency decreased (90-86%) with increasing concentration of ADH (2-6% w/v) in the gelation medium. However, the beads prolonged the drug release in alkaline dissolution medium up to 8 h depending upon the concentration of ADH. The beads prepared with 2% ADH swelled more rapidly and led to faster drug release in either pH 1.2 HCl solution or pH 7.2 phosphate buffer solution. The swelling tendencies were reduced and the drug release became slower with higher concentrations in either fluid. The drug diffusion from the beads followed super case II transport mechanism. FTIR spectroscopy indicated stable nature of flurbiprofen in the beads and therefore had potential as sustained oral delivery system for the drug.

  18. Isolation and characterization of an Antarctic Flavobacterium strain with agarase and alginate lyase activities

    Directory of Open Access Journals (Sweden)

    Lavín Paris

    2016-09-01

    Full Text Available Several bacteria that are associated with macroalgae can use phycocolloids as a carbon source. Strain INACH002, isolated from decomposing Porphyra (Rhodophyta, in King George Island, Antarctica, was screened and characterized for the ability to produce agarase and alginate-lyase enzymatic activities. Our strain INACH002 was identified as a member of the genus Flavobacterium, closely related to Flavobacterium faecale, using 16S rRNA gene analysis. The INACH002 strain was characterized as psychrotrophic due to its optimal temperature (17ºC and maximum temperature (20°C of growth. Agarase and alginate-lyase displayed enzymatic activities within a range of 10°C to 50°C, with differences in the optimal temperature to hydrolyze agar (50°C, agarose (50°C and alginate (30°C during the first 30 min of activity. Strain Flavobacterium INACH002 is a promising Antarctic biotechnological resource; however, further research is required to illustrate the structural and functional bases of the enzymatic performance observed during the degradation of different substrates at different temperatures.

  19. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    Science.gov (United States)

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  20. The Effect of Cell Immobilization by Calcium Alginate on Bacterially Induced Calcium Carbonate Precipitation

    Directory of Open Access Journals (Sweden)

    Mostafa Seifan

    2017-10-01

    Full Text Available Microbially induced mineral precipitation is recognized as a widespread phenomenon in nature. A diverse range of minerals including carbonate, sulphides, silicates, and phosphates can be produced through biomineralization. Calcium carbonate (CaCO3 is one of the most common substances used in various industries and is mostly extracted by mining. In recent years, production of CaCO3 by bacteria has drawn much attention because it is an environmentally- and health-friendly pathway. Although CaCO3 can be produced by some genera of bacteria through autotrophic and heterotrophic pathways, the possibility of producing CaCO3 in different environmental conditions has remained a challenge to determine. In this study, calcium alginate was proposed as a protective carrier to increase the bacterial tolerance to extreme environmental conditions. The model showed that the highest concentration of CaCO3 is achieved when the bacterial cells are immobilized in the calcium alginate beads fabricated using 1.38% w/v Na-alginate and 0.13 M CaCl2.

  1. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress.

    Science.gov (United States)

    White, Joseph C; Stoppel, Whitney L; Roberts, Susan C; Bhatia, Surita R

    2013-02-01

    Perfluorocarbons (PFCs) are used in biomaterial formulations to increase oxygen (O(2) ) tension and create a homogeneous O(2) environment in three-dimensional tissue constructs. It is unclear how PFCs affect mechanical and transport properties of the scaffold, which are critical for robustness, intracellular signaling, protein transport, and overall device efficacy. In this study, we investigate composite alginate hydrogels containing a perfluorooctyl bromide (PFOB) emulsion stabilized with Pluronic(®) F68 (F68). We demonstrate that PFC addition significantly affects biomaterial properties and performance. Solution and hydrogel mechanical properties and transport of representative hydrophilic (riboflavin), hydrophobic (methyl and ethyl paraben), and protein (bovine serum albumin, BSA) solutes were compared in alginate/F68 composite hydrogels with or without PFOB. Our results indicate that mechanical properties of the alginate/F68/PFOB hydrogels are not significantly affected under small strains, but a significant decrease fracture stress is observed. The effective diffusivity D(eff) of hydrophobic small molecules decreases with PFOB emulsion addition, yet the D(eff) of hydrophilic small molecules remained unaffected. For BSA, the D(eff) increased and the loading capacity decreased with PFOB emulsion addition. Thus, a trade-off between the desired increased O(2) supply provided by PFCs and the mechanical weakening and change in transport of cellular signals must be carefully considered in the design of biomaterials containing PFCs. Copyright © 2012 Wiley Periodicals, Inc.

  2. In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels.

    Science.gov (United States)

    Martínez-Gómez, Fabián; Guerrero, Juan; Matsuhiro, Betty; Pavez, Jorge

    2017-01-02

    Hydrogels, based on polysaccharides have found a number of applications as drug delivery carriers. In this work, hydrogels of full characterized sodium alginate (Mn 87,400g/mol) and commercial poly(vinyl alcohol) (PVA) sensitive to pH and temperature stimuli were obtained using a simple, controlled, green, low cost method based on freeze-thaw cycles. Stable hydrogels of sodium alginate/PVA with 0.5:1.5 and 1.0:1.0w/v concentrations showed very good swelling ratio values in distilled water (14 and 20g/g, respectively). Encapsulation and release of metformin hydrochloride in hydrogels of 1.0:1.0w/v sodium alginate/PVA was followed by UV spectroscopy. The hydrogel released a very low amount of metformin hydrochloride at pH 1.2; the highest release value (55%) was obtained after 6h at pH 8.0. Also, the release of metformin hydrochloride was studied by 1 H NMR spectroscopy, the temporal evolution of methyl group signals of metformin showed 30% of drug release after 3h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy.

    Science.gov (United States)

    Xiao, Qian; Gu, Xiaohong; Tan, Suo

    2014-12-01

    Drying process of aqueous sodium alginate solutions at 50°C was investigated by ATR-FTIR spectroscopy and two-dimensional correlation infrared spectroscopy. Two-dimensional asynchronous spectrum at 1,800-1,350 cm(-1) wavenumber could be resolved into five separate bands, which were assigned to O-H bending vibrations in water (around 1,645 cm(-1)), antisymmetric and symmetric stretching vibrations of free and hydrogen-bonded COO(-) groups of alginate (around 1,595, 1,412, 1,572 and 1,390 cm(-1), respectively). As the drying process progressed, absorbance bands at around 1,127 and 1,035 cm(-1) significantly shifted to lower wavenumbers (1120 and 1027cm(-1), respectively). Suggesting that oxygen atoms at the 2th and 3th position in the pyranose ring might have hydrogen bonded with water or alginate chains. Further analysis using 2D asynchronous correlation spectroscopy between 1800-1500 and 1200-960 cm(-1) wavenumber regions revealed the sequence of spectral changes during the drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    Science.gov (United States)

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  5. Novel Alginate-Gelatin Hybrid Nanoparticle for Drug Delivery and Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Eun Mi Lee

    2014-01-01

    Full Text Available Novel alginate-gelatin hybrid nanoparticles were fabricated using single oil in water (O/W emulsification techniques. Physicochemical property of the particle was characterized using scanning electron microscopy and Fourier’s transmission infrared spectroscopy. Particle size was determined using zeta potential metastasize analyzer and was found to be in range of 400–600 nm. AGNPs were used for culturing human keratinocytes for two weeks to check biocompatibility of synthesized AGNPs. 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed increased metabolic activity of cells cultured on AGNPs in comparison to two-dimensional (2D system (control. Cellular attachment on nanoparticle was further confirmed using SEM and 4′,6-diamidino-2-phenylindole staining. The drug release profile shows possible electrostatic bond between alginate and gelatin resulting in controlled release of drug from AGNPs. For the first time alginate-gelatin hybrid nanosystem has been fabricated and all results showed it can be used as potential system for delivery of drug and therapeutical agents to cells and can also be used for regenerative medicine applications.

  6. Forward osmosis filtration for removal of organic foulants: Effects of combined tannic and alginic acids.

    Science.gov (United States)

    Wang, Lin; Zhang, Wanzhu; Chu, Huaqiang; Dong, Bingzhi

    2016-03-15

    The filtration performance of combined organic foulants by forward osmosis (FO) in active-layer-facing-the-draw-solution (AL-facing-DS) orientation was investigated systematically. Tannic acid and alginate were used as model organic foulants for polysaccharides and humic dissolved organic matters, respectively. The FO could reject combined and single tannic acid and alginate foulants effectively. The more severe fouling flux decline, accompanied with lower combined foulants' retention, was observed with increasing proportions of tannic acid in the combined foulants-containing feed, which was ascribed mainly to the more severe fouling resulting from tannic acid adsorption within the porous support layer of the FO membrane compared to minor alginate deposition on the membrane surface. It was found that the higher the initial flux level and cross flow velocity, the faster the flux decline with lower mixed foulants retention. It was also revealed that the calcium ions in a basic solution enhanced the combined fouling flux reduction and combined foulants retention. As the major constituent of the combined fouling layer, the adsorption of tannic acid might play a more significant role in the mixed fouling of the FO membrane, which was probably influenced by permeation drag caused by water flux and chemical interactions induced by feed solution pH and calcium ion concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Santos Silva, Mariana dos; Sgarbi Cocenza, Daniela [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Grillo, Renato; Silva de Melo, Nathalie Ferreira [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP (Brazil); Tonello, Paulo Sergio [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Camargo de Oliveira, Luciana [Department of Chemistry, UFSCAr, Campus Sorocaba, SP (Brazil); Lopes Cassimiro, Douglas [Institute of Chemistry, Sao Paulo State University - UNESP, Araraquara, SP (Brazil); Rosa, Andre Henrique [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Fernandes Fraceto, Leonardo, E-mail: leonardo@sorocaba.unesp.br [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP (Brazil)

    2011-06-15

    Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 {+-} 12 nm, polydispersion of 0.518, zeta potential of -22.8 {+-} 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat.

  8. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology.

    Science.gov (United States)

    Wang, Chen-Chie; Yang, Kai-Chiang; Lin, Keng-Hui; Liu, Hwa-Chang; Lin, Feng-Huei

    2011-10-01

    Osteoarthritis is a degenerative disease and frequently involves the knee, hip and phalangeal joints. Current treatments used in small cartilage defects including multiple drilling, abrasion arthroplasty, mosaicplasty, and autogenous chondrocyte transplantation, however, there are problems needed to be solved. The standard treatment for severe osteoarthritis is total joint arthroplasty. The disadvantages of this surgery are the possibility of implant loosening. Therefore, tissue engineering for cartilage regeneration has become a promising topic. We have developed a new method to produce a highly organized single polymer (alginate) scaffold using microfluidic device. Scanning electron microscope and confocal fluoroscope examinations showed that the scaffold has a regular interconnected porous structure in the scale of 250 μm and high porosity. The scaffold is effective in chondrocyte culture; the cell viability test (WST-1 assay), cell toxicity (lactate dehydrogenase assay), cell survival rate, extracellular matrix production (glycosaminoglycans contents), cell proliferation (DNA quantification), and gene expression (real-time PCR) all revealed good results for chondrocyte culture. The chondrocytes can maintain normal phenotypes, highly express aggrecan and type II collagen, and secrete a great deal of extracellular matrix when seeded in the alginate scaffold. This study demonstrated that a highly organized alginate scaffold can be prepared with an economical microfluidic device, and this scaffold is effective in cartilage tissue engineering. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  9. Flicking technique for microencapsulation of cells in calcium alginate leading to the microtissue formation.

    Science.gov (United States)

    Wong, Soon Chuan; Soon, Chin Fhong; Leong, Wai Yean; Tee, Kian Sek

    2016-01-01

    Microbeads have wide applications in biomedical engineering field that include drug delivery, encapsulation of biomolecules, tissue padding and tissue regeneration. In this paper, we report a simple, yet efficient, flicking technique to produce microcapsules of calcium alginate at a narrow distribution of size. The system consists of an infusion pump and a customised flicker that taps the syringe needle for dispersing microcapsules of sodium alginate that polymerised in the calcium chloride solution. The flow rate of the syringe pump and the velocity of the flicker were studied to achieve a well controlled and tunable size distribution of microbeads ranging from 200 to 400 μm. At a flow rate of 4 μl/min and flicking rate of 80 rpm, a narrow size distribution of microbeads were produced. Via this technique, HaCaT cells were encapsulated in calcium alginate microbeads that grown into microtissues with a size ranging from 100 to 300 μm after two weeks of culture. These microtissues could be potentially useful for pharmacological application.

  10. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs.

    Science.gov (United States)

    Alshehri, Awatef M; Wilson, Otto C; Dahal, Bishnu; Philip, John; Luo, Xiaolong; Raub, Christopher B

    2017-11-01

    Magnetic nanoparticles (MNPs) self-align and transduce magnetic force, two properties which lead to promising applications in cell and tissue engineering. However, the toxicity of MNPs to cells which uptake them is a major impediment to applications in engineered tissue constructs. To address this problem, MNPs were embedded in millimeter-scale alginate beads, coated with glutaraldehyde cross-linked chitosan, and loaded in acellular and MDA-MB-231 cancer cell-seeded collagen hydrogels, providing local micro-actuation under an external magnetic field. Brightfield microscopy was used to assess nanoparticle diffusion from the bead. Phase contrast microscopy and digital image correlation were used to track collagen matrix displacement and estimate intratissue strain under magnetic actuation. Coating the magnetic alginate beads with glutaraldehyde-chitosan prevents bulk diffusion of nanoparticles into the surrounding microenvironment. Further, the beads exert force on the surrounding collagen gel and cells, resulting in intratissue strains of 0-10% tunable with bead dimensions, collagen density, and distance from the bead. Cells seeded adjacent to the embedded beads are subjected to strain gradients without loss of cell viability over two days culture. This study describes a simple way to fabricate crosslinked magnetic alginate beads to load in a collagen tissue construct without direct exposure of the construct to nanoparticles. The findings are significant to in vitro studies of mechanobiology in enabling precise control over dynamic mechanical loading of tissue constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    International Nuclear Information System (INIS)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-01-01

    Research highlights: → Bacterial alginate-binding Algp7 is similar to component EfeO of Fe 2+ transporter. → We determined the crystal structure of Algp7 with a metal-binding motif. → Algp7 consists of two helical bundles formed through duplication of a single bundle. → A deep cleft involved in alginate binding locates around the metal-binding site. → Algp7 may function as a Fe 2+ -chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  12. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  13. l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mohy Eldin

    2015-05-01

    Full Text Available Novel pH-sensitive hydrogels based on l-arginine grafted alginate (Arg-g-Alg hydrogel beads were synthesized and utilized as a new carrier for protein delivery (BSA in specific pH media. l-arginine was grafted onto the polysaccharide backbone of virgin alginate via amine functions. Evidences of grafting of alginate were extracted from FT-IR and thermal analysis, while the morphological structure of Arg-g-Alg hydrogel beads was investigated by SEM photographs. Factors affecting on the grafting process e.g. l-arginine concentration, reaction time, reaction temperature, reaction pH, and crosslinking conditions, have been studied. Whereas, grafting efficiency of each factor was evaluated. Grafting of alginate has improved both thermal and morphological properties of Arg-g-Alg hydrogel beads. The swelling behavior of Arg-g-Alg beads was determined as a function of pH and compared with virgin calcium alginate beads. The cumulative in vitro release profiles of BSA loaded beads were studied at different pHs for simulating the physiological environments of the gastrointestinal tract. The amount of BSA released from neat alginate beads at pH 2 was almost 15% after 5 h, while the Arg-g-Alg beads at the same conditions were clearly higher than 45%, then it increased to 90% at pH 7.2. Accordingly, grafting of alginate has improved its release profile behavior particularly in acidic media. The preliminary results clearly suggested that the Arg-g-Alg hydrogel may be a potential candidate for polymeric carrier for oral delivery of protein or drugs.

  14. Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution.

    Science.gov (United States)

    Majidnia, Zohreh; Fulazzaky, Mohamad Ali

    2017-04-15

    The presence of Cs(I) ions in nuclear wastewater becomes an important issue for the reason of its high toxicity. The development of adsorbent embedded metal-based catalysts that has sufficient adsorption capacity is expected for the removal of Cs(I) ions from contaminated water. This study tested the use of maghemite, titania and combined maghemite-titania polyvinyl alcohol (PVA)-alginate beads as an adsorbent to remove Cs(I) ions from aqueous solution with the variables of pH and initial concentration using batch experiments under sunlight. The results showed that the use of combined maghemite-titania PVA-alginate beads can have an efficiency of 93.1% better than the use of either maghemite PVA-alginate beads with an efficiency of 91.8% or titania PVA-alginate beads with an efficiency of 90.1%. The experimental data for adsorption of Cs(I) ions from aqueous solution with the initial concentrations of 50, 100 and 200 mg L -1 on the surface of combined maghemite-titania PVA-alginate beads were well fit by the pseudo-second-order and Langmuir models. The optimal adsorption of Cs(I) ions from aqueous solution by combined maghemite-titania PVA-alginate beads under sunlight occurs at pH 8 with an initial Cs(I) ion concentration of 50 mg L -1 . The combined maghemite-titania PVA-alginate beads can be recycled at least five times with a slight loss of their original properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of storage time of extended-pour and conventional alginate impressions on dimensional accuracy of casts.

    Directory of Open Access Journals (Sweden)

    Ahmad Rohanian

    2014-12-01

    Full Text Available Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast.In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side and antero-posterior (distal of right first molar to the ipsilateral central incisor measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey's post-hoc test (P<0.05.Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001. Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours.Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5 alginates.

  16. Low-temperature electron microscopy for the study of polysaccharide ultrastructures in hydrogels. II. Effect of temperature on the structure of Ca2+-alginate beads.

    Science.gov (United States)

    Serp, D; Mueller, M; Von Stockar, U; Marison, I W

    2002-08-05

    Calcium alginate beads were thermally treated at temperatures ranging from 25 degrees C to 130 degrees C for periods of up to 30 minutes. Important modifications to the structure of the alginate beads were shown to be a function of the temperature and period of incubation at each temperature. Modifications to the alginate beads included reduction in size, mechanical resistance, and molecular weight cut-off with increasing temperature and incubation period. Thus, heating 700 microm calcium alginate beads for 20 min at 130 degrees C resulted in a 23% reduction in diameter, 70% increase in mechanical resistance, and 67% reduction in molecular weight cut-off. Incubation of calcium alginate beads containing 2 x 10(6) kDa blue dextran for 20 min at 130 degrees C resulted in no detectable loss of either dye or alginate. This indicates the shrinkage of the beads was due to re-arrangement of the alginate chains within the beads, coupled with loss of water. This hypothesis was verified by direct visual observation of calcium alginate beads before and after thermal treatment using cryo-scanning electron microscopy (cryo-SEM). Unlike other microscopy methods cryo-SEM offers the advantage of extremely rapid freezing which preserves the original structure of the alginate network. As a result cryo-SEM is a powerful tool for studies of hydrogel and capsule structure and formation. Differential scanning calorimetry (DSC) showed that the water entrapped in 2% alginate beads was present in a single state, irrespective of the thermal treatment. This result is attributed to the low alginate concentration used to form the beads. Copyright 2002 Wiley Periodicals, Inc.

  17. The effectiveness of mimba oil (Azadirachta indica A. Juss spray disinfectant on alginate impression

    Directory of Open Access Journals (Sweden)

    Hanoem EH

    2011-12-01

    Full Text Available Background: Alginate impression contaminated by saliva and blood could potentially cause cross contamination. To prevent this, the impression has to be disinfected by disinfectant liquid, such as mimba oil. Mimba oil (Azadirachta indica A.Juss has some chemical content, such as azadirachtin, which is a phenol group used as antibacterial and antimalaria, nimbolide used as antibacterial and antimalarial, and nimbidin used as antibacterial and antifungal. Purpose: The purpose of this study was to find out the most effective concentration of mimba oil as disinfectant to decrease microorganism colony on alginate impression. Methods: Thirty six samples were taken from 9 respondents. This alginate impression was divided into 4 groups: group 1 sprayed with sterile aquadest (as control group, group 2 sprayed with mimba oil 50% for 30 seconds, group 3 sprayed with mimba oil 75% for 30 seconds, group 4 sprayed with mimba oil 100% for 30 seconds. The microorganism colony was counted by colony counter. The sample data then were analyzed with Kolmogorov-Smirnov test, and was tested with Kruskal Wallis test and Mann Whitney test for further analysis. Results: There was significant difference among each group, p = 0.01 (p < 0.05. Conclusion: In conclusion, usage of 50% concentration of mimba oil as disinfectant is effective to decrease microorganism colony on alginate impression.Latar belakang: Cetakan alginat yang terkontaminasi saliva dan darah dapat berpotensi terjadinya infeksi silang. Untuk mencegah hal tersebut, cetakan didisinfeksi dengan bahan disinfektan cair seperti minyak mimba. Minyak mimba (Azadirachta indica A.Juss memiliki beberapa kandungan kimia, antara lain Azadirachtin yang merupakan kelompok fenol yang memmiliki efek antibakteri dan antimalaria, nimbolide memiliki efek antibakteri dan antimalaria sedangkan nimbidin memiliki efek antibakteri dan antijamur. Tujuan: Tujuan dari penelitian ini adalah untuk menentukan konsentrasi yang paling

  18. Synthesis, characterization and cytotoxicity of S-nitroso-mercaptosuccinic acid-containing alginate/chitosan nanoparticles

    Science.gov (United States)

    Seabra, Amedea B.; Fabbri, Giulia K.; Pelegrino, Milena T.; Silva, Letícia C.; Rodrigues, Tiago

    2017-06-01

    Nitric oxide (NO) is an endogenous free radical, which plays key roles in several biological processes including vasodilation, neurotransmission, inhibition of platelet adhesion, cytotoxicity against pathogens, wound healing, and defense against cancer. Due to the relative instability of NO in vivo (half-life of ca. 0.5 seconds), there is an increasing interest in the development of low molecular weight NO donors, such as S-nitrosothiols (RSNOs), which are able to prolong and preserve the biological activities of NO in vivo. In order to enhance the sustained NO release in several biomedical applications, RSNOs have been successfully allied to nanomaterials. In this context, this work describes the synthesis and characterization of the NO donor S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), which belongs to the class of RSNOs, and its incorporation in polymeric biodegradable nanoparticles composed by alginate/chitosan. First, chitosan nanoparticles were obtained by gelation process with sodium tripolyphosphate (TPP), followed by the addition of the alginate layer, to enhance the nanoparticle protection. The obtained nanoparticles presented a hydrodynamic diameter of 343 ± 38 nm, polydispersity index (PDI) of 0.36 ± 0.1, and zeta potential of - 30.3 ± 0.4 mV, indicating their thermal stability in aqueous suspension. The negative zeta potential value was assigned to the presence of alginate chains on the surface of chitosan/TPP nanoparticles. The encapsulation efficiency of the NO donor into the polymeric nanoparticles was found to be 98 ± 0.2%. The high encapsulation efficiency value was attributed to the positive interactions between the NO donor and the polymeric content of the nanoparticles. Kinetics of NO release from the nanoparticles revealed a spontaneous and sustained release of therapeutic amounts of NO, for several hours under physiological temperature. The incubation of NO-releasing alginate/chitosan nanoparticles with human hepatocellular carcinoma

  19. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    Science.gov (United States)

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  20. Mechanical spectroscopy and relaxometry on alginate hydrogels: a comparative analysis for structural characterization and network mesh size determination.

    Science.gov (United States)

    Turco, Gianluca; Donati, Ivan; Grassi, Mario; Marchioli, Giulia; Lapasin, Romano; Paoletti, Sergio

    2011-04-11

    The structure of calcium-saturated alginate hydrogels has been studied by combining rheological determinations and relaxometry measurements. The mechanical spectroscopy analyses performed on alginate gel cylinders at different polysaccharide concentration allowed estimating their main structural features such as the average mesh size. The calculation was based on the introduction of a front factor in the classical rubber elasticity approach which was correlated to the average length of the Guluronic acid blocks along the polysaccharide chain. Transverse relaxation time (T(2)) determinations performed on the cylinders revealed the presence of two relaxation rates of the water entrapped within the hydrogel network. The cross-correlation of the latter data with the rheological measurements allowed estimating the mesh size distribution of the hydrogel network. The results obtained for the hydrogel cylinders were found to be consistent with the relaxometric analysis performed on the alginate microbeads where, however, only one type of water bound into the network structure was detected. A good correlation was found in the average mesh size determined by means of relaxometric measurements on alginate microbeads and by a statistical analysis performed on TEM micrographs. Finally, the addition of a solution containing calcium ions allowed investigating further the different water relaxation modes within alginate hydrogels.

  1. Controlled release of diuron from an alginate-bentonite formulation: water release kinetics and soil mobility study.

    Science.gov (United States)

    Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E; Flores-Céspedes, F

    1999-02-01

    The herbicide diuron was incorporated in alginate-based granules to obtain controlled release (CR) properties. The standard formulation (alginate-herbicide-water) was modified by the addition of different sorbents. The effect on diuron release rate caused by incorporation of natural and acid-treated bentonites in alginate formulation was studied by immersion of the granules in water under static conditions. The release of diuron was diffusion-controlled. The time taken for 50% release of active ingredient to be released into water, T(50), was calculated for the comparison of formulations. The addition of bentonite to the alginate-based formulation produced the higher T(50) values, indicating slower release of the diuron. The mobility of technical and formulated diuron was compared by using soil columns. The use of alginate-based CR formulations containing bentonite produced a less vertical distribution of the active ingredient as compared to the technical product and commercial formulation. Sorption capacities of the various soil constituents for diuron were also determined using batch experiments.

  2. Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films.

    Science.gov (United States)

    Liu, Kai; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Wang, Huangwei

    2013-07-03

    The nonantibacterial and low strength properties of sodium alginate films negatively impact their application for food packaging. In order to improve these properties, a novel chitosan-benzalkonium chloride (C-BC) complex was prepared by ionic gelation using tripolyphosphate (TPP) as a coagulant, and a biocomposite obtained through the adsorption of C-BC complex on microfibrillated cellulose, MFC/C-BC, was then incorporated into a sodium alginate film. The TEM image showed that the C-BC nanoparticles were spherical in shape with a diameter of about 30 nm, and the adsorption equilibrium time of these nanoparticles on the surface of MFC was estimated to be 6 min under the driving forces of hydrogen bonds and electrostatic interactions. According to the disc diffusion method, the MFC/C-BC biocomposite-incorporated sodium alginate film exhibited remarkable antibacterial activity against Staphylococcus aureus and certain antibacterial activity against Escherichia coli . The strength tests indicated that the tensile strength of the composite sodium alginate film increased about 225% when the loading of MFC/C-BC biocomposite was 10 wt %. These results suggested that the MFC/C-BC biocomposite-incorporated sodium alginate film with excellent antibacterial and strength properties would be a promising material for food packaging, and the MFC/C-BC may also be a potential multifunctional biocomposite for other biodegradable materials.

  3. Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal.

    Science.gov (United States)

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-01-22

    In this work the morphological and surface properties of a biocomposite formulated with vineyard pruning waste entrapped in calcium alginate hydrogel beads were studied. The formulation of the calcium alginate hydrogel beads, containing vineyard pruning waste, was based on the capacity of this green adsorbent to remove dye compounds from wastewater, observing that in the optimum condition (1.25% of cellulosic residue, 2.2% of sodium alginate and 0.475 mol L(-1) CaCl2) the percentage of dyes was reduced up to 74.6%. At lower concentration of CaCl2, high-resolution optical images show that the elongation of the vineyard-alginate biocomposite decreased, whereas the compactness increased. Moreover, higher concentrations of cellulosic residue increased the biocomposite roundness in comparison with biocomposite without the cellulosic residue. Interferometric perfilometry analysis (Ra, Rq, Rz and Rt) revealed that high concentrations of CaCl2 increased the roughness of the of the calcium alginate hydrogel beads observing vesicles in the external surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus.

    Science.gov (United States)

    Maestrelli, Francesca; Mura, Paola; González-Rodríguez, María Luisa; Cózar-Bernal, María José; Rabasco, Antonio María; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla

    2017-09-15

    Metformin is an oral hypoglycemic agent used in the type 2 diabetes, whose poor bioavailability and short half-life make the development of effective extended-release formulations highly desirable. Different metformin-loaded chitosomal and niosomal formulations were developed and suitably characterized, but were unable to provide the desired sustained release. The entrapment of both kinds of colloidal dispersions in calcium alginate beads enabled to strongly reduce the amount of drug released at gastric level (from 18 up to a maximum of 30%), and to obtain a sustained release in simulated intestinal fluid, which was properly tuned by varying the percentage of calcium alginate in the beads. In vivo studies on rats revealed a significant improvement of metformin hypoglycemic effect when orally administered as chitosomal and even more as niosomal dispersion entrapped in alginate beads, not only with respect to the drug as such, but also to the alginate beads loaded with the plain drug. The more intense and sustained therapeutic effect with time provided by the drug-in niosomes-in alginate bead formulation could be very profitable for maintaining tight blood glucose levels over prolonged period of time after oral administration, allowing a reduction of its dose and related collateral effects, and improving patient compliance. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of storage time of extended-pour and conventional alginate impressions on dimensional accuracy of casts.

    Science.gov (United States)

    Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza

    2014-11-01

    Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side) and antero-posterior (distal of right first molar to the ipsilateral central incisor) measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey's post-hoc test (Pimpressions (both Psimpressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours. Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5) alginates.

  6. Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet.

    Science.gov (United States)

    Terakado, Shouko; Ueno, Mai; Tamura, Yuki; Toda, Natsuko; Yoshinaga, Mariko; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Murota, Itsuki; Sato, Nobuyuki; Uehara, Yoshio

    2012-01-01

    In this article, the antihypertensive effects of sodium alginate oligosaccharides, enzymatic products of high molecular natural alginate from sea weeds, in Dahl salt-sensitive (Dahl S) rats were investigated. Dahl S rats fed a high-salt (4% NaCl) diet were treated with sodium alginate oligosaccharides (4% or 8% w/w) for 7 weeks. Systolic blood pressure (SBP) was measured by the tail-cuff method, and hypertensive cardiovascular benefits and kidney damage were assessed. Glomerular function and morphological sclerosis were determined. SBP increased in an age-dependent manner in the untreated Dahl S rats. Sodium alginate oligosaccharide treatment attenuated the increase in SBP in a dose-dependent manner. The heart and aortic walls weighed less in the rats treated with sodium alginate oligosaccharides than in the untreated rats. The SBP reduction was associated with a decrease in urinary protein excretion and an increase in the creatinine clearance rate. Sodium alginate oligosaccharides significantly attenuated hypertensive glomerular sclerosis and arterial injury in the kidney. Fractional excretion of sodium (FENa) decreased in low-salt Dahl S rats and increased with a salt challenge. The alginate oligosaccharides decreased FENa in high-salt Dahl S rats. The results of this study suggest that sodium alginate oligosaccharides attenuate salt-induced hypertension in Dahl S rats. This reduction is associated with decreases in cardiovascular and renal damage.

  7. Synthesis of hydrogels of alginate for system controlled release of progesterone; Sintese de hidrogeis de alginato para liberacao controlada de progesterona

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Marlon de F.; Rodriguez, Ruben J.S.; Silva, Ester C.C. da; Barreto, Gabriela N.S., E-mail: mf_abreu@yahoo.com.br [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos do Goytacazes, RJ (Brazil)

    2015-07-01

    The chemical modifications of natural polymers like alginate, has allowed the development of new formulations for controlled release systems. In this work we report the synthesis of a derivative of the amidic alginate with alkyl chain. The polymer was characterized by spectroscopic techniques: Nuclear Magnetic Resonance and Fourier Transform Infrared. (author)

  8. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Yamasaki, Masayuki; Mikami, Bunzo [Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru; Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2006-05-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2{sub 1} and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°.

  9. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    International Nuclear Information System (INIS)

    Ochiai, Akihito; Yamasaki, Masayuki; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2006-01-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2 1 and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°

  10. Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials

    DEFF Research Database (Denmark)

    Gülez, Gamze; Altintas, Ali; Fazli, Mustafa

    2014-01-01

    Pseudomonas putida is a versatile bacterial species adapted to soil and its fluctuations. Like many other species living in soil, P. putida often faces water limitation. Alginate, an exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect...... of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role...... active to maintain homeostasis. To test our hypothesis, we investigated colony morphologies and whole genome transcriptomes of P. putida KT2440 wild type and its mutants deficient in synthesis of either alginate or all known EPS. Overall our results support that alginate is an important exopolysaccharide...

  11. Effect of PEG-mediated pore forming on Ca-alginate immobilization of nitrilase-producing bacteria Pseudomonas putida XY4.

    Science.gov (United States)

    Cheng, Yongmei; Ma, Li; Deng, Chao; Xu, Zhenghong; Chen, Jinghua

    2014-08-01

    Effect of PEG-mediated pore forming on Ca-alginate immobilization of nitrilase-producing bacteria Pseudomonas putida XY4 was studied. Through using PEG as porogen, the environmental tolerance as well as the biocatalytic reaction efficiency of immobilized cells was greatly improved, i.e., Ca-alginate-PEG immobilized cells got better temperature and substrate concentration tolerance than Ca-alginate immobilized cells and showed similar efficiency with free cells, suggesting that the intrinsic mass transfer resistance of immobilization obviously decreased. It was also observed that the pore diameter and porosity of immobilization beads were related with the molecular weight of PEG. PEG400 was found to be a relatively suitable porogen for Ca-alginate-PEG immobilized cells catalyzed hydrolysis of glycinonitrile. It was noteworthy that the Ca-alginate-PEG immobilized cells could be reused more than 18 times with little loss of enzyme activity which had shown good operation ability and great application potential.

  12. A Non-Destructive Culturing and Cell Sorting Method for Cardiomyocytes and Neurons Using a Double Alginate Layer

    Science.gov (United States)

    Terazono, Hideyuki; Kim, Hyonchol; Hayashi, Masahito; Hattori, Akihiro; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-01-01

    A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES) cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture. PMID:22870332

  13. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Directory of Open Access Journals (Sweden)

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  14. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside.

    Science.gov (United States)

    Ruvinov, Emil; Cohen, Smadar

    2016-01-15

    Alginate biomaterial is widely utilized for tissue engineering and regeneration due to its biocompatibility, non-thrombogenic nature, mild and physical gelation process, and the resemblance of its hydrogel matrix texture and stiffness to that of the extracellular matrix. In this review, we describe the versatile biomedical applications of alginate, from its use as a supporting cardiac implant in patients after acute myocardial infarction (MI) to its employment as a vehicle for stem cell delivery and for the controlled delivery and presentation of multiple combinations of bioactive molecules and regenerative factors into the heart. Preclinical and first-in-man clinical trials are described in details, showing the therapeutic potential of injectable acellular alginate implants to inhibit the damaging processes after MI, leading to myocardial repair and tissue reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Oral delivery of probiotic expressing M cell homing peptide conjugated BmpB vaccine encapsulated into alginate/chitosan/alginate microcapsules.

    Science.gov (United States)

    Jiang, Tao; Singh, Bijay; Maharjan, Sushila; Li, Hui-Shan; Kang, Sang-Kee; Bok, Jin-Duck; Cho, Chong-Su; Choi, Yun-Jaie

    2014-11-01

    Oral administration of live probiotics as antigen delivery vectors is a promising approach in vaccine development. However, the low survival of probiotics in the gastrointestinal tract limits this approach. Therefore, the aim of this study was the encapsulation of probiotic expressing vaccine into alginate/chitosan/alginate (ACA) microcapsules (MCs) for efficient oral vaccine delivery. Here, recombinant Lactobacillus plantarum 25 (LP25) expressing M cell homing peptide fused BmpB protein was used as a model probiotic. The viability of LP25 in ACA MCs was more than 65% in simulated gastric fluid (SGF, pH 2.0) and 75% in simulated small intestinal fluid (SIF, pH 7.2) up to 2h. Encapsulated LP25 was completely released from ACA MCs in SIF within 12h. When stored at room temperature (RT) or 4°C, the viability of LP25 in ACA MCs was higher than free LP25. Interestingly, the viability of LP25 in ACA MCs at 4°C for 5weeks was above 58%, whereas viability of free LP25 stored at RT up to 5weeks was zero. After 4weeks from the first immunization, LP25-M-BmpB-loaded ACA MCs induced a stronger BmpB-specific IgG and IgA production in mice. Collectively, these findings suggest that encapsulation of probiotic by ACA MCs is a promising delivery system for oral administration of probiotic expressing vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Effects of alginate/collagen scaffold on cell proliferation and differentiation of human adipose-derived mesenchymal stem cells].

    Science.gov (United States)

    Cheng, W; Han, X P; Mou, S L; Yang, F; Liu, L P

    2017-04-09

    Objective: To build scaffold materials with different concentrations of alginate and collagen, and to observe the effects of alginate/collagen ratio on the proliferation of human adipose-derived mesenchymal stem cells (hAMSC) and osteogenic differentiation. The optimal concentration of alginate/collagen will be chosen for constructing hydrogel that will be used for bone tissue engineering. Methods: Soluble hydrogel scaffold materials containing alginate/collagen were prepared, and the following groups were established based on different alginate/collagen ratio: 4∶1 (group A), 2∶1 (group B), and 1∶1 (group C). Cell proliferation on the material surface was observed using the cell counting kit-8 (CCK-8) assay, while cell viability in each material group were observed using live/dead staining. Quantitative real-time PCR(qPCR) was used to measure the differential expression of osteogenesis-related genes on and in the materials. Immunofluorescence staining was used to measure the differential gene expression of osteogenesis-related proteins in each group. Results: The results from the CCK-8 assay showed increasing cell proliferation rate on the lyophilized hydrogel material surface as the collagen concentration increased, and the highest cell proliferation was observed in group C. Live/dead staining assay indicated that cells were able to proliferate in all three types of hydrogel materials, and the highest cell viability was found in material from group B ([87.50±2.65]%). qPCR showed that the expression of osteogenesis-related genes in group C was the highest, among the three groups, while the expression of osteocalcin in group B was significantly higher than those in the other two groups ( Pcell proliferation of hAMSC and osteogenenic differentiation. Bone tissue engineering can use 10% hydrogel material, and when the sodium alginate and collagen have a ratio of 2∶1, the hydrogel can be conducive to cell differentiation and proliferation.

  17. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering

    International Nuclear Information System (INIS)

    Luo Yongxiang; Lode, Anja; Gelinsky, Michael; Wu Chengtie

    2013-01-01

    Constructing bioactive scaffolds with controllable architecture for bone tissue engineering and drug delivery still maintains a significant challenge. In this study, we have developed a composite material consisting of mesoporous bioactive glass (MBG) and concentrated alginate pastes for fabrication of hierarchical scaffolds by 3D plotting. The scaffold structure contains well-ordered nano-channels, micropores as well as controllable macropores beneficial for bone tissue engineering applications and drug delivery. The structural architecture of the scaffolds has been optimized by efficient designing of the plotting coordination. The effects of MBG on mechanical strength, apatite mineralization, cytocompatibility and drug delivery properties of the composite scaffolds have been systematically studied. Transmission electron microscopy, scanning electron microscopy and energy-dispersive spectrometry were used to characterize composition and microstructure of the composite scaffolds. The MBG/alginate pastes showed good processability in the 3D plotting process, in which stable MBG/alginate composite scaffolds with controllable architecture can be prepared. The incorporation of MBG particles significantly improved the mechanical properties and apatite-mineralization ability of alginate scaffolds as well as enhanced the attachment and alkaline phosphatase activity of human bone marrow-derived mesenchymal stem cells cultivated onto the scaffolds. Dexamethasone, used as a model drug, can be efficiently loaded in MBG particles and then incorporated into alginate scaffolds resulting in a more sustained release as a function of the MBG content. Our results have indicated that 3D-plotted MBG incorporated alginate scaffolds with well-ordered nano-pores, controllable large pores, and significantly improved physicochemical, biological and drug-delivery properties could be a platform for bone tissue engineering. (paper)

  18. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution.

    Science.gov (United States)

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2015-12-01

    Agglomeration and disagglomeration processes are expected to play a key role on the fate of engineered nanoparticles in natural aquatic systems. These processes are investigated here in detail by studying first the stability of TiO2 nanoparticles in the presence of monovalent and divalent electrolytes at different pHs (below and above the point of zero charge of TiO2) and discussing the importance of specific divalent cation adsorption with the help of the DLVO theory as well as the importance of the nature of the counterions. Then the impact of one polysaccharide (alginate) on the stability of agglomerates formed under pH and water hardness representative of Lake Geneva environmental conditions is investigated. In these conditions the large TiO2 agglomerates (diameter>1μm) are positively charged due to Ca(2+) and Mg(2+) specific adsorption and alginate, which is negatively charged, adsorbs onto the agglomerate surface. Our results indicate that the presence of alginate at typical natural organic matter concentration (1-10 mg L(-1)) strongly modifies the TiO2 agglomerate (50 mg L(-1)) stability by inducing their partial and rapid disagglomeration. The importance of disagglomeration is found dependent on the alginate concentration with maximum of disagglomeration obtained for alginate concentration ≥8 mg L(-1) and leading to 400 nm fragments. From an environmental point of view partial restabilization of TiO2 agglomerates in the presence of alginate constitutes an important outcome. Disagglomeration will enhance their transport and residence time in aquatic systems which is an important step in the current knowledge on risk assessment associated to engineered nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Produção de alginato por microrganismos Alginate production by microorganisms

    Directory of Open Access Journals (Sweden)

    José Miguel Müller

    2011-01-01

    Full Text Available O alginato é um copolímero linear constituído de unidades de ácidos α-L-gulurônicos e β-D-manurônicos e é extensamente utilizado devido as suas propriedades espessantes, estabilizantes e gelificantes. Estas características fazem com que este biopolímero encontre aplicações na indústria de alimentos, na indústria têxtil e de papel, em cosméticos e na área farmacêutica e médica. Atualmente para este conjunto de aplicações sua principal fonte são algas marrons, entretanto, o alginato pode ser obtido a partir de biossíntese, utilizando-se microrganismos do gênero Pseudomonas e Azotobacter. A produção bacteriana de alginato apresenta-se como uma alternativa interessante e sua produção por microrganismos, além de possibilitar a produção de biopolímeros de alta qualidade com características específicas e pré-determinadas, irá diminuir o impacto ambiental nas regiões em que as algas marinhas das quais é extraído são coletadas. Nos últimos anos, vários estudos relacionados à produção de alginato por microrganismos foram realizados com o objetivo de avaliar sua produção e rota metabólica de biossíntese, para caracterizar o material produzido e para determinar as potencialidades de aplicação deste novo material. O rápido desenvolvimento de aplicações do alginato na área médica e farmacêutica, bem como a descoberta de propriedades imunológicas únicas deste material tem aumentado o interesse no desenvolvimento de processos para produzi-lo. Neste artigo são abordados aspectos relacionados à produção e as características do alginato bacteriano e também reportadas às potencialidades e aplicações inovadoras nas quais este material vem sendo utilizado.Alginate is a linear copolymer consisting of units of α-L-guluronic and β-D-mannuronic acid which is widely used due to its thickening, stabilizing and gelling properties. These characteristics mean that it has many applications in the food

  20. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets.

    Science.gov (United States)

    Baghbani, Fatemeh; Moztarzadeh, Fathollah

    2017-05-01

    Ultrasound-responsive perfluorocarbon nanoemulsions are a class of new multifunctional smart nanocarriers which combine diagnostic properties with therapeutic properties and release their drug payload in a controlled manner in response to ultrasound. Therefore, combination therapy using chemotherapeutic and chemosensitizing agents co-entrapped in these nanocarriers seems beneficial for cancer treatment. In the present study, multifunctional smart alginate/perfluorohexane nanodroplets were developed for co-delivery of doxorubicin and curcumin (a strong chemosensitizer). The nanodroplets with the average particle size of 55.1nm were synthesized via nanoemulsion process. The entrapment efficiency of doxorubicin was 92.3%. To improve curcumin entrapment into the alginate shell, Span 60 was added to the formulation as a co-surfactant and finally curcumin entrapment of about 40% was achieved. Ultrasound-mediated drug release kinetic was evaluated at two different frequencies of 28kHz (low frequency) and 1MHz (high frequency). Low frequency ultrasound resulted in higher triggered drug release from nanodroplets. The nanodroplets showed strong ultrasound contrast via droplet to bubble transition as confirmed via B-mode ultrasound imaging. Enhanced cytotoxicity in adriamycin-resistant A2780 ovarian cancer cells was observed for Dox-Cur-NDs compared to Dox-NDs because of the synergistic effects of doxorubicin and curcumin. However, ultrasound irradiation significantly increased the cytotoxicity of Dox-Cur-NDs. Finally, in vivo ovarian cancer treatment using Dox/Cur-NDs combined with ultrasound irradiation resulted in efficient tumor regression. According to the present study, nanotherapy of multidrug resistant human ovarian cancer using ultrasound responsive doxorubicin/curcumin co-loaded alginate-shelled nanodroplets combined with ultrasound irradiation could be a promising modality for the future of cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    Science.gov (United States)

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

  2. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering.

    Science.gov (United States)

    Kanafi, M M; Ramesh, A; Gupta, P K; Bhonde, R R

    2014-07-01

    To immobilize dental pulp stem cells (DPSC) in alginate microspheres and to determine cell viability, proliferation, stem cell characteristics and osteogenic potential of the immobilized DPSCs. Human DPSCs isolated from the dental pulp were immobilized in 1% w/v alginate microspheres. Viability and proliferation of immobilized DPSCs were determined by trypan blue and MTT assay, respectively. Stem cell characteristics of DPSCs post immobilization were verified by labelling the cells with CD73 and CD90. Osteogenic potential of immobilized DPSCs was assessed by the presence of osteocalcin. Alizarin red staining and O-cresolphthalein complexone method confirmed and quantified calcium deposition. A final reverse transcriptase PCR evaluated the expression of osteogenic markers - ALP, Runx-2 and OCN. More than 80% of immobilized DPSCs were viable throughout the 3-week study. Proliferation appeared controlled and consistent unlike DPSCs in the control group. Presence of CD73 and CD90 markers confirmed the stem cell nature of immobilized DPSCs. The presence of osteocalcin, an osteoblastic marker, was confirmed in the microspheres on day 21. Mineralization assays showed high calcium deposition indicating elevated osteogenic potential of immobilized DPSCs. Osteogenic genes- ALP, Runx-2 and OCN were also upregulated in immobilized DPSCs. Surprisingly, immobilized DPSCs in the control group cultured in conventional stem cell media showed upregulation of osteogenic genes and expressed osteocalcin. Dental pulp stem cells immobilized in alginate hydrogels exhibit enhanced osteogenic potential while maintaining high cell viability both of which are fundamental for bone tissue regeneration. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298.

    Science.gov (United States)

    Mandal, Surajit; Hati, Subrota; Puniya, Anil Kumar; Khamrui, Kaushik; Singh, Kishan

    2014-08-01

    Micro-encapsulation of hydrocolloids improves the survival of sensitive probiotic bacteria in the harsh conditions that prevail in foods and during gastrointestinal passage by segregating them from environments. Incorporation of additives in encapsulating hydrocolloids and coatings of microcapsules further improves the survival of the probiotics. In this study, the effect of incorporation of resistant-maize starch in alginate for micro-encapsulation and coating of microcapsules with poly-l-lysine, stearic acid and bees wax on the survival of encapsulated Lactobacillus casei NCDC 298 at pH 1.5, 2% high bile salt, 65 °C for 20 min and release of viable lactobacilli cells from the capsule matrix in simulated aqueous solutions of colonic pH were assessed. Addition of resistant maize starch (2%) improved the survival of encapsulated L. casei NCDC 298. Coating of microcapsules with poly-L-lysine did not further improve the protection of encapsulated cells from the harsh conditions; however, bees wax and stearic acid (2%) improved the survival under similar conditions. Incorporation of maize starch (2%) in alginate followed by coating of beads with stearic acid (2%) led to better protection and complete release of entrapped lactobacilli in simulated colonic pH solution was observed. Additional treatments improve the survival of alginate-encapsulated lactobacilli cells without hindering the release of active cells from the capsule matrix and hence, the resulting encapsulated probiotics can be exploited in the development of probiotic functional foods with better survival of sensitive probiotic organisms. © 2013 Society of Chemical Industry.

  4. Production of BCG alginate-PLL microcapsules by emulsification/internal gelation.

    Science.gov (United States)

    Esquisabel, A; Hernández, R M; Igartua, M; Gascón, A R; Calvo, B; Pedraz, J L

    1997-01-01

    A biocompatible emulsification method for microencapsulation of live cells and enzymes within a calcium alginate matrix applied to Bacillus Calmette-Guérin (BCG) has been developed. Small-diameter alginate beads (microcapsules) were formed via internal gelation of an alginate solution emulsified within vegetable oil. Five different oils (sesame, sweet almond, perhydrosqualene, camomile and jojoba) were used. The rheological analysis of the oils showed a Newtonian behaviour, with viscosities = 30.0, 37.7, 51.2, 59.3 and 67.1 mPa.s for perhydrosqualene, jojoba, camomile, sesame and sweet almond oil respectively. The particle size of the microcapsules obtained ranged from 30.3 microns for the microcapsules prepared with sweet almond oil to 57.0 microns for those made with perhydrosqualene. The mean particle diameter obtained was found to be dependent on the viscosity of the oil employed, according to the equation: phi (micron) = 76.6-0.628 eta (mPa.s) (r2 = 0.943). The encapsulated BCG was identified by the Difco TB stain set K, followed by observation under optical microscopy. Freeze-drying of the microcapsules was carried out to ensure their stability during storage. Two batches of microcapsules (those prepared with sesame and jojoba oil) and four types of cryoprotectors (glucose, trehalose, mannitol and sorbitol), at three concentration levels (5, 10 and 20% w/v) were studied. The parameters evaluated were particle size, physical appearance, reconstitution of lyophilizates and microscopical evaluation. For both batches of microcapsules the best results were obtained with trehalose 5%, showing particle sizes of 42.1 microns in the case of the microcapsules prepared with sesame oil, and of 45.3 microns for those prepared with jojoba.

  5. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.

    Science.gov (United States)

    Ahmad, Ashfaq; Bhat, A H; Buang, Azizul

    2018-02-01

    In this study freely suspended and Ca-alginate immobilized C. vulgaris cells were used for the biosorption of Fe(II), Mn(II), and Zn(II) ions, from the aqueous solution. Experimental data showed that biosorption capacity of algal cells was strongly dependent on the operational condition such as pH, initial metal ions concentration, dosages, contact time and temperature. The maximum biosorption of Fe(II) 43.43, Mn(II) 40.98 and Zn(II) 37.43 mg/g was achieved with Ca-alginate immobilized algal cells at optimum pH of 6.0, algal cells dosage 0.6 g/L, and contact time of 450 min at room temperature. The biosorption efficiency of freely suspended and immobilized C. vulgaris cells for heavy metals removal from the industrial wastewater was validated. Modeling of biosorption kinetics showed good agreements with pseudo-second-order. Langmuir and D-R isotherm models exhibited the best fit of experimental data. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) revealed that the biosorption of considered metal ions was feasible, spontaneous and exothermic at 25-45°C. The SEM showed porous morphology which greatly helps in the biosorption of heavy metals. The Fourier transform infrared spectrophotometer (FTIR) and X-rays Photon Spectroscopy (XPS) data spectra indicated that the functional groups predominately involved in the biosorption were C-N, -OH, COO-, -CH, C=C, C=S and -C-. These results shows that immobilized algal cells in alginate beads could potentially enhance the biosorption of considered metal ions than freely suspended cells. Furthermore, the biosorbent has significantly removed heavy metals from industrial wastewater at the optimized condition.

  6. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production

    DEFF Research Database (Denmark)

    Bagge, N.; Schuster, M.; Hentzer, Morten

    2004-01-01

    The lungs of cystic fibrosis (CF) patients are commonly colonized with Pseudomonas aeruginosa biofilms. Chronic endobronchial P. aeruginosa infections are impossible to eradicate with antibiotics, but intensive suppressive antibiotic therapy is essential to maintain the lung function of CF patients...... from chronically colonized lungs of CF patients are nearly always mucoid due to the overproduction of alginate. Exposure to subinhibitory concentrations of imipenem caused structural changes in the biofilm, e.g., an increased biofilm volume. Increased levels of alginate production may be an unintended...

  7. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA

    DEFF Research Database (Denmark)

    Laux, D.C.; Corson, J.M.; Givskov, Michael Christian

    2002-01-01

    The pathogenesis of Pseudomonas aeruginosa is at least partially attributable to its ability to synthesize and secrete the siderophore pyoverdin and the two zinc metal loproteases elastase and LasA, and its ability to form biofilms in which bacterial cells are embedded in an alginate matrix....... In the present study, a lysophospholipid, 1-paimitoyl-2-hydroxy-sn-glycero-3-phosphate [also called monopalmitoylphosphatidic acid (MPPA)], which accumulates in inflammatory exudates, was shown to inhibit the extracellular accumulation of P. aeruginosa PAO1 alginate, elastase, LasA protease and the siderophore...

  8. Influence of Sodium Alginate on Hypoglycemic Activity of Metformin Hydrochloride in the Microspheres Obtained by the Spray Drying

    OpenAIRE

    Szekalska, Marta; Wróblewska, Magdalena; Sosnowska, Katarzyna; Winnicka, Katarzyna

    2016-01-01

    Alginate microspheres with metformin hydrochloride were prepared by the spray drying method in order to improve residence time of drug in the stomach. Nine formulations (F1–F9) with various drug : polymer ratio (1 : 2, 1 : 1, and 2 : 1) and different sodium alginate concentration (1%, 2%, and 3%) were evaluated for size, morphology, drug loading, Zeta potential, and swelling degree. In vitro drug release, mathematical release profile, and physical state of microspheres were also evaluated. Op...

  9. Design and characterization of self-assembled fish sarcoplasmic protein-alginate nanocomplexes

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; Mattebjerg, Maria Ahlm; Wattjes, Jasper

    2015-01-01

    Macrostructures based on natural polymers are subject to large attention, as the application range is wide within the food and pharmaceutical industries. In this study we present nanocomplexes (NCXs) made from electrostatic self-assembly between negatively charged alginate and positively charged...... caused a decreased viability in HeLa and U2OS cell lines. The simple processing procedure and the high stability of the NCXs, makes them excellent candidates for use in the food and pharmaceutical industry. (C) 2015 Elsevier B.V. All rights reserved....

  10. Effect of chromium speciation on its sorption mechanism onto grape stalks entrapped into alginate beads

    OpenAIRE

    Escudero, Carlos; Fiol, Núria; Villaescusa, Isabel; Bollinger, Jean-Claude

    2013-01-01

    Sorption of Cr(III) and Cr(VI) ions onto 2% grape stalk (GS) powder entrapped in a biopolymeric gel matrix of calcium alginate (CA) has been investigated and a mechanism for the retention of both, Cr(VI) and Cr(III) is proposed. Protons were found to be consumed in Cr(VI) sorption/reduction and to compete with Cr(III) for the sorbent active sites. Isotherm equilibrium was modelled according to Langmuir equation: maximum capacity was found to be 6.4 and 3.6 mg g−1 for Cr(III) and Cr(VI), respe...

  11. Invert sugar formation with Saccharomyces cerevisiae cells encapsulated in magnetically responsive alginate microparticles

    Science.gov (United States)

    Safarik, Ivo; Sabatkova, Zdenka; Safarikova, Mirka

    2009-05-01

    Invert sugar (an equimolar mixture of glucose and fructose prepared by sucrose hydrolysis) is a very important food component. We have prepared magnetically responsive alginate microbeads containing entrapped Saccharomyces cerevisiae cells and magnetite microparticles which can be easily separated in an appropriate magnetic separator. The microbeads (typical diameter between 50 and 100 μm) were prepared using the water-in-oil emulsification process. The prepared microbeads containing yeast cells with invertase activity enabled efficient sucrose conversion. The biocatalyst was quite stable; the same catalytic activity was observed after one month storage at 4 °C and the microbeads could be used at least six times.

  12. Novel drug delivery carrier from alginate-carrageenan and glycerol as plasticizer

    Science.gov (United States)

    Darmokoesoemo, Handoko; Pudjiastuti, Pratiwi; Rahmatullah, Bagus; Kusuma, Heri Septya

    Drug delivery carriers are materials that can be used to administer drugs into the human body. Alginate and carrageenan are natural polymers that have potential as drug delivery material. Therefore in this study conducted a new innovation using carrageenan and alginates from extract of red seaweed and brown seaweed as base materials of capsule. This is expected to improve the quality of the used materials so it's easier to obtain the capsule with base material from carrageenan-alginate that has good quality as drug delivery carrier. Moreover, in the manufacture of capsules from carrageenan and alginates also added plasticizers in order to maintain the elasticity and the swelling degree of the capsules are made so that the capsules are not brittle. In addition, in this study used glycerol because it is a useful plasticizer to increase the plasticity of a material by filling the cavities between monomers. The capsules were prepared with four variations of glycerol concentration are A, B, C and D. In these capsule was analyzed of surface morphology with SEM, test of swelling degree and test of dissolution kinetics for some acidity level. Analysis of surface morphology with SEM shows that the capsule shell has very small pores. The average of swelling degree for capsules A, B, C and D are 452.4%, 599.0%, 730.66% and 731.25%, respectively. FTIR analysis shows that the presence of glycerol can increase the number of hydrogen bonds that are formed. The acidity level affects the dissolution profile of each capsules. In general with an increasingly alkaline environment causes all the capsules will be easier to release. This is because the increasing of acidic groups in the copolymer causes the capsule to be more easily occur neutralization reaction in a more alkaline environment so that the disintegration of capsules can occur more quickly. In addition from this study also can be seen that the increasing concentration of glycerol can cause the rate of capsule dissolution

  13. Slow scan voltammetry for diffusion-controlled currents in sodium alginate solutions

    OpenAIRE

    Wang, Bo; Aoki, Koichi Jeremiah; Chen, Jingyuan; Nishiumi, Toyohiko

    2013-01-01

    Slow scan voltammetry is useful for extracting Faradaic diffusion-controlled currentfrom capacitive one, because the former and the latter are, respectively, proportional tothe square-root of scan rate and the scan rate itself. This report shows clear, reproduciblevoltammograms of 0.5μM redox species with the help of sodium alginate(SA)at scanrates less than 0.1 mV s-1. SA enhances viscosity of solution without any influence ondiffusion coefficient of the redox species so that natural convent...

  14. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules

    Science.gov (United States)

    Qie, Fengxiang; Astolfo, Alberto; Wickramaratna, Malsha; Behe, Martin; Evans, Margaret D. M.; Hughes, Timothy C.; Hao, Xiaojuan; Tan, Tianwei

    2015-01-01

    Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified Au

  15. Sorption of chrysoidine by row cork and cork entrapped in calcium alginate beads

    Directory of Open Access Journals (Sweden)

    Valeria M. Nurchi

    2014-01-01

    The influence on the sorption of pH, initial dye concentration, and particle size, as well as the efficiency of the entrapment, have been investigated. The maximum sorption was found for cork samples of fine particle size (FC, in both row and entrapped forms, at pH 7; conversely, at pH 4 the difference is significant (0.12 mmol/g for row cork and 0.20 mmol/g for entrapped cork, evoking a cooperation of alginate in binding the positively charged chrysoidine molecule.

  16. Biosorption of uranium from wastewater by ZVI-SRB immobilized in calcium alginate

    International Nuclear Information System (INIS)

    Wang Aihe; Zhang Wei; Hu Kaiguang

    2009-01-01

    A ZVI-SRB was immobilized in calcium alginate gel beads,and the immobilized ZVI-SRB was used for removing uranium from wasterwater. The kinetics of uranium biosorption by the immobilized ZVI-SRB and the immobilized SRB was investigated. The results show that the immobilized ZVI-SRB and SRB were effective in removing uranium from wasterwater, and their maximal absorption capacities were up to 312.50 and 256.41 mg/g respectively. The kinetics of uranium biosorption onto the immobilized ZVI-SRB and SRB followed pseudo-second order model. (authors)

  17. Measuring sodium alginate content of brown algae species Padina sp. as the basic matter for making dental impression material (Irreversible hydrocolloid impression material

    Directory of Open Access Journals (Sweden)

    Nurlindah Hamrun

    2016-08-01

    Full Text Available One of the most important procedures in denture fabrication and orthodontic treatment is molding the patient’s detail oral cavity to determine the treatment planning. This procedure was done by using alginate impression material or irreversible hydrocolloid in which the basic material is sodium alginate imported from abroad because it is extracted from brown algae which its habitat is not in Indonesia so that it is causes the impression material is relatively expensive roomates is impact to high cost of dental treatment. Indonesia as the archipelago country has availability of abundant brown algae Padina sp. Especially in Puntondo-Punaga seashore, South Sulawesi, but it has not Cultivate yet by the local society because it is never discovered by alginate industry so it is just grow wild and its potency is useless. This experiment identified the purposes of how much sodium alginate is produced from Padina Sp. Extraction as the basic matter of irreversible hydrocolloid. The design of this study is experimental design with one shot case study method. In early stage research, extraction of alginate in the form of sodium alginate. After that, they are weighted by using analytical weight in milligrams (mg unit. Then, it is compare with the standard sodium alginate to observe the similarity of molecules by using FTIR (Fourier Transform Infra Red device. Data were Analyzed using mean differences. Based on Padina extracted, produced 12.86 g of sodium alginate content or 28.4% from the cleaning algae was used roomates total weight is 45 g. Based on FTIR test, showed that sodium alginate is extracted similar to the standard sodium alginate with the found of hydroxyl, carboxylic acid, ether group and the which is the composer of sodium alginate. In conclusion, from both of infra red spectrum pattern, it was observed unsignificant difference. Extracted sodium alginate Padina is same with the standard sodium alginate and it has 12.86 g content.

  18. Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes.

    Science.gov (United States)

    Konuk Takma, Dilara; Korel, Figen

    2017-04-15

    Alginate solution enriched with vanillin as a bioactive compound was investigated for improving preharvest and postharvest quality and safety of table grapes. Alginate treatments with or without vanillin as preharvest spray and postharvest coating were implemented on table grapes of Alphonse Lavalleé and Razaki cultivars. Fungal decay, biochemical properties, quality and sensory attributes were evaluated at day of preharvest treatment, at harvesting and during 35days of storage at 4±2°C. Alginate treatments with or without vanillin were effective in preventing weight and firmness losses. Total soluble solids, titratable acidity, and color of grapes coated with alginate coatings with or without vanillin showed minor changes compared to control grapes. Alginate coating incorporating vanillin provided significant reduction (1.73log CFU/g) in yeast-mold growth. Moreover, the coatings maintained greater total phenolic content and antioxidant activity compared to others during postharvest storage. In terms of sensory attributes, appearance was ranked as the highest for alginate coating without vanillin due to glossiness of alginate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Maximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation system.

    Science.gov (United States)

    Oh, Yuri; Xu, Xu; Kim, Ji Young; Park, Jong Moon

    2015-08-01

    Brown seaweed contains up to 67% of carbohydrates by dry weight and presents high potential as a polysaccharide feedstock for biofuel production. To effectively use brown seaweed as a biomass, degradation of alginate is the major challenge due to its complicated structure and low solubility in water. This study focuses on the isolation of alginate degrading bacteria, determining of the optimum fermentation conditions, as well as comparing the conventional single fermentation system with the two-phase fermentation system which is separately using alginate and mannitol extracted from Laminaria japonica. Maximum yield of organic acids production and volatile solids reduction obtained were 0.516 g/g and 79.7%, respectively, using the two-phase fermentation system in which alginate fermentation was carried out at pH 7 and mannitol fermentation at pH 8. The two-phase fermentation system increased the yield of organic acids production by 1.14 times and led to a 1.45-times reduction of VS when compared to the conventional single fermentation system at pH 8. The results show that the two-phase fermentation system improved the utilization of alginate by separating alginate from mannitol leading to enhanced alginate lyase activity. Copyright © 20