WorldWideScience

Sample records for algebraic topology foundations

  1. Algebraic Topology

    CERN Document Server

    Oliver, Bob; Pawałowski, Krzystof

    1991-01-01

    As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.

  2. Boundedly controlled topology foundations of algebraic topology and simple homotopy theory

    CERN Document Server

    Anderson, Douglas R

    1988-01-01

    Several recent investigations have focused attention on spaces and manifolds which are non-compact but where the problems studied have some kind of "control near infinity". This monograph introduces the category of spaces that are "boundedly controlled" over the (usually non-compact) metric space Z. It sets out to develop the algebraic and geometric tools needed to formulate and to prove boundedly controlled analogues of many of the standard results of algebraic topology and simple homotopy theory. One of the themes of the book is to show that in many cases the proof of a standard result can be easily adapted to prove the boundedly controlled analogue and to provide the details, often omitted in other treatments, of this adaptation. For this reason, the book does not require of the reader an extensive background. In the last chapter it is shown that special cases of the boundedly controlled Whitehead group are strongly related to lower K-theoretic groups, and the boundedly controlled theory is compared to Sie...

  3. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy, giv...

  4. Fractal Topology Foundations

    OpenAIRE

    Porchon, Helene

    2012-01-01

    In this paper, we introduce the foundation of a fractal topological space constructed via a family of nested topological spaces endowed with subspace topologies, where the number of topological spaces involved in this family is related to the appearance of new structures on it. The greater the number of topological spaces we use, the stronger the subspace topologies we obtain. The fractal manifold model is brought up as an illustration of space that is locally homeomorphic to the fractal topo...

  5. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.

  6. Operator algebras and topology

    International Nuclear Information System (INIS)

    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L2-cohomology, L2-Betti numbers and other L2-invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  7. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    CERN Document Server

    Baianu, Ion C; Brown, Ronald; 10.3842/SIGMA.2009.051

    2009-01-01

    A novel algebraic topology approach to supersymmetry (SUSY) and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, t...

  8. Topological convolution algebras

    CERN Document Server

    Alpay, Daniel

    2012-01-01

    In this paper we introduce a new family of topological convolution algebras of the form $\\bigcup_{p\\in\\mathbb N} L_2(S,\\mu_p)$, where $S$ is a Borel semi-group in a locally compact group $G$, which carries an inequality of the type $\\|f*g\\|_p\\le A_{p,q}\\|f\\|_q\\|g\\|_p$ for $p > q+d$ where $d$ pre-assigned, and $A_{p,q}$ is a constant. We give a sufficient condition on the measures $\\mu_p$ for such an inequality to hold. We study the functional calculus and the spectrum of the elements of these algebras, and present two examples, one in the setting of non commutative stochastic distributions, and the other related to Dirichlet series.

  9. Foundations of combinatorial topology

    CERN Document Server

    Pontryagin, L S

    2015-01-01

    Hailed by The Mathematical Gazette as ""an extremely valuable addition to the literature of algebraic topology,"" this concise but rigorous introductory treatment focuses on applications to dimension theory and fixed-point theorems. The lucid text examines complexes and their Betti groups, including Euclidean space, application to dimension theory, and decomposition into components; invariance of the Betti groups, with consideration of the cone construction and barycentric subdivisions of a complex; and continuous mappings and fixed points. Proofs are presented in a complete, careful, and eleg

  10. A1-algebraic topology over a field

    CERN Document Server

    Morel, Fabien

    2012-01-01

    This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homotogy sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties.

  11. International Conference on Algebraic Topology

    CERN Document Server

    Cohen, Ralph; Miller, Haynes; Ravenel, Douglas

    1989-01-01

    These are proceedings of an International Conference on Algebraic Topology, held 28 July through 1 August, 1986, at Arcata, California. The conference served in part to mark the 25th anniversary of the journal Topology and 60th birthday of Edgar H. Brown. It preceded ICM 86 in Berkeley, and was conceived as a successor to the Aarhus conferences of 1978 and 1982. Some thirty papers are included in this volume, mostly at a research level. Subjects include cyclic homology, H-spaces, transformation groups, real and rational homotopy theory, acyclic manifolds, the homotopy theory of classifying spaces, instantons and loop spaces, and complex bordism.

  12. Topological gravity with exchange algebra

    OpenAIRE

    Aoyama, S.

    1993-01-01

    A topological gravity is obtained by twisting the effective $(2,0)$ super\\-gravity. We show that this topological gravity has an infinite number of BRST invariant quantities with conformal weight $0$. They are a tower of OSp$(2,2)$ multiplets and satisfy the classical exchange algebra of OSp$(2,2)$. We argue that these BRST invariant quantities become physical operators in the quantum theory and their correlation functions are braided according to the quantum OSp$(2,2)$ group. These propertie...

  13. Algebraic topology a first course

    CERN Document Server

    Fulton, William

    1995-01-01

    To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re­ lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ­ ential topology, etc.), we concentrate our attention on concrete prob­ lems in low dimensions, introducing only as much algebraic machin­ ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol­ ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel­ opment of the subject. What would we like a student to know after a first course in to­ pology (assuming we reject the answer: ...

  14. Topological ∗-algebras with *-enveloping Algebras II

    Indian Academy of Sciences (India)

    S J Bhatt

    2001-02-01

    Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.

  15. Basic algebraic topology and its applications

    CERN Document Server

    Adhikari, Mahima Ranjan

    2016-01-01

    This book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book offers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. T...

  16. Coverings of topological semi-abelian algebras

    Science.gov (United States)

    Mucuk, Osman; Demir, Serap

    2016-08-01

    In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.

  17. An introduction to algebraic topology

    CERN Document Server

    Rotman, Joseph J

    1988-01-01

    There is a canard that every textbook of algebraic topology either ends with the definition of the Klein bottle or is a personal communication to J. H. C. Whitehead. Of course, this is false, as a glance at the books of Hilton and Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard does reflect some truth. Too often one finds too much generality and too little attention to details. There are two types of obstacle for the student learning algebraic topology. The first is the formidable array of new techniques (e. g. , most students know very little homological algebra); the second obstacle is that the basic defini­ tions have been so abstracted that their geometric or analytic origins have been obscured. I have tried to overcome these barriers. In the first instance, new definitions are introduced only when needed (e. g. , homology with coeffi­ cients and cohomology are deferred until after the Eilenberg-Steenrod axioms have been verified for the three homology theories we treat-singular, sim­ ...

  18. Algebra and topology for applications to physics

    Science.gov (United States)

    Rozhkov, S. S.

    1987-01-01

    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  19. Al- Khwarizmi and axiomatic foundation of algebra

    International Nuclear Information System (INIS)

    This paper intends to investigate the axiomatic foundations of algebra, as they were presented in the book of algebra of al-Khwarizmi (9 th century), and as they were developed in many subsequent Arabic works. The paper gives also a description of algebra evolution towards a discipline independent ofgeometry and arithmetic: the two disciplines whosemarriage had led to its birth.By an in depth reading of some details in the text of al Khwarizmi , we concluded that this mathematician intended to lay down the axiomatic foundations of that new discipline. His resort to arithmetical and geometrical means was a way of making his theory more accessible. He used them to justify the axioms: those that were not explicitly introduced per se, and those that were remained implicit. The paper also relies on some unedited writingsof al-Khwarizmi's successors, which could shedlight on the ways they used to consolidate the foundations of algebra and improve its methods. (author)

  20. FOUNDATION OF NUCLEAR ALGEBRAIC MODELS

    Institute of Scientific and Technical Information of China (English)

    周孝谦

    1990-01-01

    Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.

  1. Algebraic topology of finite topological spaces and applications

    CERN Document Server

    Barmak, Jonathan A

    2011-01-01

    This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen’s conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.

  2. Algebraic definition of topological W gravity

    International Nuclear Information System (INIS)

    In this paper, the authors propose a definition of the topological W gravity using some properties of the principal three-dimensional subalgebra of a simple Lie algebra due to Kostant. In the authors' definition, structures of the two-dimensional topological gravity are naturally embedded in the extended theories. In accordance with the definition, the authors will present some explicit calculations for the W3 gravity

  3. Topics in algebraic and topological K-theory

    CERN Document Server

    Baum, Paul Frank; Meyer, Ralf; Sánchez-García, Rubén; Schlichting, Marco; Toën, Bertrand

    2011-01-01

    This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.

  4. Topologically Left Invariant Means on Semigroup Algebras

    Indian Academy of Sciences (India)

    Ali Ghaffari

    2005-11-01

    Let $M(S)$ be the Banach algebra of all bounded regular Borel measures on a locally compact Hausdorff semitopological semigroup with variation norm and convolution as multiplication. We obtain necessary and sufficient conditions for $M(S)^∗$ to have a topologically left invariant mean.

  5. An ideal topology type convergent theorem on scale effect algebras

    Institute of Scientific and Technical Information of China (English)

    WU JunDe; ZHOU XuanChang; Minhyung CHO

    2007-01-01

    The famous Antosik-Mikusinski convergent theorem on the Abel topological groups has very extensive applications in measure theory, summation theory and other analysis fields. In this paper, we establish the theorem on a class of effect algebras equipped with the ideal topology. This paper shows also that the ideal topology of effect algebras is a useful topology in studying the quantum logic theory.

  6. Quantum Algebraic Approach to Refined Topological Vertex

    CERN Document Server

    Awata, H; Shiraishi, J

    2011-01-01

    We establish the equivalence between the refined topological vertex of Iqbal-Kozcaz-Vafa and a certain representation theory of the quantum algebra of type W_{1+infty} introduced by Miki. Our construction involves trivalent intertwining operators Phi and Phi^* associated with triples of the bosonic Fock modules. Resembling the topological vertex, a triple of vectors in Z^2 is attached to each intertwining operator, which satisfy the Calabi-Yau and smoothness conditions. It is shown that certain matrix elements of Phi and Phi^* give the refined topological vertex C_{lambda mu nu}(t,q) of Iqbal-Kozcaz-Vafa. With another choice of basis, we recover the refined topological vertex C_{lambda mu}^nu(q,t) of Awata-Kanno. The gluing factors appears correctly when we consider any compositions of Phi and Phi^*. The spectral parameters attached to Fock spaces play the role of the K"ahler parameters.

  7. Topological isomorphisms for some universal operator algebras

    CERN Document Server

    Hartz, Michael

    2012-01-01

    Let $I$ be a radical homogeneous ideal of complex polynomials in $d$ variables, and let $\\mathcal A_I$ be the norm-closed non-selfadjoint algebra generated by the compressions of the $d$-shift on Drury-Arveson space $H^2_d$ to the co-invariant subspace $H^2_d \\ominus I$. Then $\\mathcal A_I$ is the universal operator algebra for commuting row contractions subject to the relations in $I$. In this note, we study the question, under which conditions there are topological isomorphisms between two such algebras $\\mathcal A_I$ and $\\mathcal A_J$. We provide a positive answer to a conjecture of Davdison, Ramsey and Shalit: that $\\mathcal A_I$ and $\\mathcal A_J$ are topologically isomorphic if and only if there is an invertible linear map $A$ on $\\mathbb C^d$ which maps the vanishing locus of $J$ isometrically onto the vanishing locus of $I$. Most of the proof is devoted to showing that finite algebraic sums of full Fock spaces over subspaces of $\\mathbb C^d$ are closed. This allows us to show that the map $A$ induces...

  8. Barcelona Conference on Algebraic Topology

    CERN Document Server

    Castellet, Manuel; Cohen, Frederick

    1992-01-01

    The papers in this collection, all fully refereed, original papers, reflect many aspects of recent significant advances in homotopy theory and group cohomology. From the Contents: A. Adem: On the geometry and cohomology of finite simple groups.- D.J. Benson: Resolutions and Poincar duality for finite groups.- C. Broto and S. Zarati: On sub-A*-algebras of H*V.- M.J. Hopkins, N.J. Kuhn, D.C. Ravenel: Morava K-theories of classifying spaces and generalized characters for finite groups.- K. Ishiguro: Classifying spaces of compact simple lie groups and p-tori.- A.T. Lundell: Concise tables of James numbers and some homotopyof classical Lie groups and associated homogeneous spaces.- J.R. Martino: Anexample of a stable splitting: the classifying space of the 4-dim unipotent group.- J.E. McClure, L. Smith: On the homotopy uniqueness of BU(2) at the prime 2.- G. Mislin: Cohomologically central elements and fusion in groups.

  9. Algebraic Topology of Spin Glasses

    CERN Document Server

    Koma, Tohru

    2008-01-01

    We study topology of frustrations in d-dimensional Ising spin glasses with nearest-neighbor interactions. We prove the following. (i) For any given spin configuration, the domain walls on the unfrustration network are all transverse to the frustrated loops in the unfrustration network, where a domain wall is given by a (d-1)-dimensional hypersurface whose (d-1) cells are dual to bonds having an unfavorable energy, and the unfrustration network is the collection of all the unfrustrated plaquettes. (ii) For a ground-state spin configuration, the rest of the domain walls are all confined into a neighborhood of the frustration network which is the collection of all the frustrated plaquettes. Relying on these results, we conjecture the following. In three and higher dimensions, the domain walls are stable against thermal fluctuation. As a result, there appears long range order of the spins on the unfrustration network having infinite volume at low temperatures, while the spins on the frustration network exhibit di...

  10. Algebraically contractible topological tensor network states

    CERN Document Server

    Denny, S J; Jaksch, D; Clark, S R

    2011-01-01

    We adapt the bialgebra and Hopf relations to expose internal structure in the ground state of a Hamiltonian with $Z_2$ topological order. Its tensor network description allows for exact contraction through simple diagrammatic rewrite rules. The contraction property does not depend on specifics such as geometry, but rather originates from the non-trivial algebraic properties of the constituent tensors. We then generalise the resulting tensor network from a spin-half lattice to a class of exactly contractible states on spin-S degrees of freedom, yielding the most efficient tensor network description of finite Abelian lattice gauge theories. We gain a new perspective on these states as examples of two-dimensional quantum states with algebraically contractible tensor network representations. The introduction of local perturbations to the network is shown to reduce the von Neumann entropy of string-like regions, creating an unentangled sub-system within the bulk in a certain limit. We also show how perturbations l...

  11. C*-algebras over topological spaces

    DEFF Research Database (Denmark)

    Meyer, Ralf; Nest, Ryszard

    2012-01-01

    We define the filtrated K-theory of a C*-algebra over a finite topological space X and explain how to construct a spectral sequence that computes the bivariant Kasparov theory over X in terms of filtrated K-theory. For finite spaces with a totally ordered lattice of open subsets, this spectral...... sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification. We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe two C*-algebras over a space X with four points that have isomorphic filtrated K-theory...... without being KK(X)-equivalent. For this space X, we enrich filtrated K-theory by another K-theory functor to a complete invariant up to KK(X)-equivalence that satisfies a Universal Coefficient Theorem....

  12. Birman—Wenzl—Murakami Algebra and Topological Basis

    Science.gov (United States)

    Zhou, Cheng-Cheng; Xue, Kang; Wang, Gang-Cheng; Sun, Chun-Fang; Du, Gui-Jiao

    2012-02-01

    In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley—Lieb algebra (TLA), then a family of 9 × 9-matrix representations of Birman—Wenzl—Murakami algebra (BWMA) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast nine-dimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special case.

  13. Algebraically contractible topological tensor network states

    Energy Technology Data Exchange (ETDEWEB)

    Denny, S J; Jaksch, D; Clark, S R [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Biamonte, J D, E-mail: s.denny1@physics.ox.ac.uk [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2012-01-13

    We adapt the bialgebra and Hopf relations to expose internal structure in the ground state of a Hamiltonian with Z{sub 2} topological order. Its tensor network description allows for exact contraction through simple diagrammatic rewrite rules. The contraction property does not depend on specifics such as geometry, but rather originates from the non-trivial algebraic properties of the constituent tensors. We then generalise the resulting tensor network from a spin-1/2 lattice to a class of exactly contractible states on spin-S degrees of freedom, yielding the most efficient tensor network description of finite Abelian lattice gauge theories. We gain a new perspective on these states as examples of two-dimensional quantum states with algebraically contractible tensor network representations. The introduction of local perturbations to the network is shown to reduce the von Neumann entropy of string-like regions, creating an unentangled sub-system within the bulk in a certain limit. We also show how local perturbations induce finite-range correlations in this system. This class of tensor networks is readily translated onto any lattice, and we differentiate between the physical consequences of bipartite and non-bipartite lattices on the properties of the corresponding quantum states. We explicitly show this on the hexagonal, square, kagome and triangular lattices. (paper)

  14. Build an Early Foundation for Algebra Success

    Science.gov (United States)

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  15. Birman-Wenzl-Murakami Algebra and Topological Basist

    Institute of Scientific and Technical Information of China (English)

    周成城; 薛康; 王刚成; 孙春芳; 都桂娇

    2012-01-01

    In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley-Lieb algebra (TLA ), then a family of 9 × 9-matrix representations of Birman-Wenzl-Murakami algebra (t3 WMA ) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast ninedimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special ease.

  16. Experimental and Theoretical Methods in Algebra, Geometry and Topology

    CERN Document Server

    Veys, Willem; Bridging Algebra, Geometry, and Topology

    2014-01-01

    Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research f...

  17. Determinant Formula for the Topological N=2 Superconformal Algebra

    CERN Document Server

    Dörrzapf, M; Dörrzapf, Matthias; Gato-Rivera, Beatriz

    1999-01-01

    The Kac determinant for the Topological N=2 superconformal algebra is presented as well as a detailed analysis of the singular vectors detected by the roots of the determinants. In addition we identify the standard Verma modules containing `no-label' singular vectors (which are not detected directly by the roots of the determinants). We show that in standard Verma modules there are (at least) four different types of submodules, regarding size and shape. We also review the chiral determinant formula, for chiral Verma modules, adding new insights. Finally we transfer the results obtained to the Verma modules and singular vectors of the Ramond N=2 algebra, which have been very poorly studied so far. This work clarifies several misconceptions and confusing claims appeared in the literature about the singular vectors, Verma modules and submodules of the Topological N=2 superconformal algebra.

  18. Determinant formula for the topological N = 2 superconformal algebra

    CERN Document Server

    Doerrzapf, M

    1999-01-01

    The Kac determinant for the topological N = 2 superconformal algebra is presented as well as a detailed analysis of the singular vectors detected by the roots of the determinants. In addition we identify the standard Verma modules containing 'no-label' singular vectors (which are not detected directly by the roots of the determinants). We show that in standard Verma modules there are (at least) four different types of submodules, regarding size and shape. We also review the chiral determinant formula, for chiral Verma modules, adding new insights. Finally we transfer the results obtained to the Verma modules and singular vectors of the Ramond N = 2 algebra, which have been very poorly studied so far. This work clarifies several misconceptions and confusing claims appeared in the literature about the singular vectors, Verma modules and submodules of the topological N = 2 superconformal algebra.

  19. On the topology of real algebraic plane curves

    DEFF Research Database (Denmark)

    Cheng, Jinsan; Lazard, Sylvain; Peñaranda, Luis;

    2010-01-01

    We revisit the problem of computing the topology and geometry of a real algebraic plane curve. The topology is of prime interest but geometric information, such as the position of singular and critical points, is also relevant. A challenge is to compute efficiently this information for the given...... coordinate system even if the curve is not in generic position. Previous methods based on the cylindrical algebraic decomposition use sub-resultant sequences and computations with polynomials with algebraic coefficients. A novelty of our approach is to replace these tools by Gröbner basis computations...... also induces a new approach for computing an arrangement of polylines isotopic to the input curve. We also present an analysis of the complexity of our algorithm. An implementation of our algorithm demonstrates its efficiency, in particular on high-degree non-generic curves....

  20. Topological insulators and C∗-algebras: Theory and numerical practice

    Science.gov (United States)

    Hastings, Matthew B.; Loring, Terry A.

    2011-07-01

    We apply ideas from C∗-algebra to the study of disordered topological insulators. We extract certain almost commuting matrices from the free Fermi Hamiltonian, describing band projected coordinate matrices. By considering topological obstructions to approximating these matrices by exactly commuting matrices, we are able to compute invariants quantifying different topological phases. We generalize previous two dimensional results to higher dimensions; we give a general expression for the topological invariants for arbitrary dimension and several symmetry classes, including chiral symmetry classes, and we present a detailed K-theory treatment of this expression for time reversal invariant three dimensional systems. We can use these results to show non-existence of localized Wannier functions for these systems. We use this approach to calculate the index for time-reversal invariant systems with spin-orbit scattering in three dimensions, on sizes up to 12 3, averaging over a large number of samples. The results show an interesting separation between the localization transition and the point at which the average index (which can be viewed as an "order parameter" for the topological insulator) begins to fluctuate from sample to sample, implying the existence of an unsuspected quantum phase transition separating two different delocalized phases in this system. One of the particular advantages of the C∗-algebraic technique that we present is that it is significantly faster in practice than other methods of computing the index, allowing the study of larger systems. In this paper, we present a detailed discussion of numerical implementation of our method.

  1. Birman-Wenzl-Murakami algebra, topological parameter and Berry phase

    Science.gov (United States)

    Zhou, Chengcheng; Xue, Kang; Gou, Lidan; Sun, Chunfang; Wang, Gangcheng; Hu, Taotao

    2012-12-01

    In this paper, a 3 × 3-matrix representation of Birman-Wenzl-Murakami (BWM) algebra has been presented. Based on which, unitary matrices A( θ, φ 1, φ 2) and B( θ, φ 1, φ 2) are generated via Yang-Baxterization approach. A Hamiltonian is constructed from the unitary B( θ, φ) matrix. Then we study Berry phase of the Yang-Baxter system, and obtain the relationship between topological parameter and Berry phase.

  2. Chiral topological insulator on Nambu 3-algebraic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Kazuki, E-mail: khasebe@stanford.edu

    2014-09-15

    Chiral topological insulator (AIII-class) with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a (l,l,l−1) Laughlin–Halperin type wavefunction with unique K-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge 1/(2(l−1){sup 2}+1). The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.

  3. Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model

    Science.gov (United States)

    Liu, Bo; Xue, Kang; Wang, Gangcheng; Liu, Ying; Sun, Chunfang

    2015-04-01

    In this paper, we study three-dimensional (3D) reduced Birman-Murakami-Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.

  4. Topological expansion of the Bethe ansatz, and quantum algebraic geometry

    CERN Document Server

    Chekhov, L; Marchal, O

    2009-01-01

    In this article, we solve the loop equations of the \\beta-random matrix model, in a way similar to what was found for the case of hermitian matrices \\beta=1. For \\beta=1, the solution was expressed in terms of algebraic geometry properties of an algebraic spectral curve of equation y^2=U(x). For arbitrary \\beta, the spectral curve is no longer algebraic, it is a Schroedinger equation ((\\hbar\\partial)^2-U(x)).\\psi(x)=0 where \\hbar\\propto (\\sqrt\\beta-1/\\sqrt\\beta). In this article, we find a solution of loop equations, which takes the same form as the topological recursion found for \\beta=1. This allows to define natural generalizations of all algebraic geometry properties, like the notions of genus, cycles, forms of 1st, 2nd and 3rd kind, Riemann bilinear identities, and spectral invariants F_g, for a quantum spectral curve, i.e. a D-module of the form y^2-U(x), where [y,x]=\\hbar. Also, our method allows to enumerate non-oriented discrete surfaces.

  5. Quantum field theory on toroidal topology: Algebraic structure and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  6. Geometric Model of Topological Insulators from the Maxwell Algebra

    CERN Document Server

    Palumbo, Giandomenico

    2016-01-01

    We propose a novel geometric model of three-dimensional topological insulators in presence of an external electromagnetic field. The gapped boundary of these systems supports relativistic quantum Hall states and is described by a Chern-Simons theory with a gauge connection that takes values in the Maxwell algebra. This represents a non-central extension of the Poincar\\'e algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term, and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.

  7. Algebraic Topology : New Trends in Localization and Periodicity : Barcelona Conference

    CERN Document Server

    Casacuberta, Carles; Mislin, Guido

    1996-01-01

    Central to this collection of papers are new developments in the general theory of localization of spaces. This field has undergone tremendous change of late and is yielding new insight into the mysteries of classical homotopy theory. The present volume comprises the refereed articles submitted at the Conference on Algebraic Topology held in Sant Feliu de Guíxols, Spain, in June 1994. Several comprehensive articles on general localization clarify the basic tools and give a report on the state of the art in the subject matter. The text is therefore accessible not only to the professional mathematician but also to the advanced student.

  8. Topological topics articles on algebra and topology presented to professor P. J. Hilton in celebration of his sixtieth birthday

    CERN Document Server

    James, I M

    1983-01-01

    Professor Peter Hilton is one of the best known mathematicians of his generation. He has published almost 300 books and papers on various aspects of topology and algebra. The present volume is to celebrate the occasion of his sixtieth birthday. It begins with a bibliography of his work, followed by reviews of his contributions to topology and algebra. These are followed by eleven research papers concerned with various topics of current interest in algebra and topology. The articles are contributed by some of the many mathematicians with whom he has worked at one time or another. This book will

  9. Construction Formulae for Singular Vectors of the Topological and of the Ramond N=2 Superconformal Algebras

    CERN Document Server

    Gato-Rivera, Beatriz

    2001-01-01

    We write down one-to-one mappings between the singular vectors of the Neveu-Schwarz N=2 superconformal algebra and $16 + 16$ types of singular vectors of the Topological and of the Ramond N=2 superconformal algebras. As a result one obtains construction formulae for the latter using the construction formulae for the Neveu-Schwarz singular vectors due to D\\"orrzapf. The indecomposable singular vectors of the Topological and of the Ramond N=2 algebras (`no-label' and `no-helicity' singular vectors) cannot be mapped to singular vectors of the Neveu-Schwarz N=2 algebra, but to {\\it subsingular} vectors, for which no construction formulae exist.

  10. INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra"

    CERN Document Server

    Delucchi, Emanuele; Moci, Luca

    2015-01-01

    Combinatorics plays a prominent role in contemporary mathematics, due to the vibrant development it has experienced in the last two decades and its many interactions with other subjects. This book arises from the INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra,'' which was held in Cortona in September 2013. The event brought together emerging and leading researchers at the crossroads of Combinatorics, Topology and Algebra, with a particular focus on new trends in subjects such as: hyperplane arrangements; discrete geometry and combinatorial topology; polytope theory and triangulations of manifolds; combinatorial algebraic geometry and commutative algebra; algebraic combinatorics; and combinatorial representation theory. The book is divided into two parts. The first expands on the topics discussed at the conference by providing additional background and explanations, while the second presents original contributions on new trends in the topics addressed by the conference.

  11. On the Banach $*$-algebra crossed product associated with a topological dynamical system

    CERN Document Server

    Svensson, Christian

    2009-01-01

    Given an arbitrary topological dynamical system $\\Sigma = (X, \\sigma)$, where $X$ is a compact Hausdorff space and $\\sigma$ a homeomorphism of $X$, we introduce and analyze the associated Banach $*$-algebra crossed product $\\ell^1 (\\Sigma)$. The $C^*$-envelope of this algebra is the usual $C^*$-crossed product of $C(X)$ by the integers under the automorphism of $C(X)$ induced by $\\sigma$. While the connections between the structure of this $C^*$-algebra and the properties of $\\Sigma$ are well-studied, such considerations concerning $\\ell^1 (\\Sigma)$ are new. We derive equivalences between topological dynamical properties of $\\Sigma$ and structural properties of $\\ell^1 (\\Sigma)$ that have well-known analogues in the $C^*$-algebra context, but also obtain a result on this so-called interplay whose counterpart in the case of $C^* (\\Sigma)$ is false.

  12. Computing the topology of an arrangement of implicitly defined real algebraic plane curves

    Institute of Scientific and Technical Information of China (English)

    Jorge CARAVANTES; Laureano GONZALEZ-VEGA

    2008-01-01

    We introduce a new algebraic approach dealing with the problem of computing the topology of an arrangement of a finite set of real algebraic plane curves presented implicitly. The main achievement of the presented method is a complete avoidance of irrational numbers that appear when using the sweeping method in the classical way for solving the problem at hand. Therefore,it is worth mentioning that the efficiency of the proposed method is only assured for low-degree curves.

  13. Diagonal Invariant Ideals of Topologically Graded C*-algebras%拓扑分次C*-代数中的对角不变理想

    Institute of Scientific and Technical Information of China (English)

    许庆祥; 张小波

    2005-01-01

    We study diagonal invariant ideals of topologically graded C*-algebras over discrete groups. Since all Toeplitz algebras defined on discrete groups are topologically graded, the results in this paper have improved the first author's previous works on this topic.

  14. Topology of algebraic curves an approach via dessins d'enfants

    CERN Document Server

    Degtyarev, Alex

    2012-01-01

    The book summarizes the state and new results on the topology of trigonal curves in geometrically ruled surfaces. Emphasis is placed upon various applications of the theory to related areas, most notably singularplane curves of small degree, elliptic surfaces, and Lefschetz fibrations (both complex and real), and Hurwitz equivalence of braid monodromy factorizations. The monograph conveys recent knowledge about related objects and is of interest to researchers and graduate students in the fields of topology and of complex and real algebraic varieties.

  15. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  16. Topological properties of real algebraic varieties: du cote de chez Rokhlin

    Energy Technology Data Exchange (ETDEWEB)

    Degtyarev, A I [Bilkent University, Ankara (Turkey); Kharlamov, V M [Institut de Recherche Matematique Avanee, Universite Louis Pasteur et CNRS 7, rue Rene Descartes (France)

    2000-08-31

    The survey covers results in the topology of real algebraic varieties in the direction initiated in the early seventies by V.I. Arnol'd and V.A. Rokhlin. We make an attempt to systematize the principal achievements in the subject. After presenting general tools and results, we pay special attention to surfaces and curves on surfaces.

  17. Topology

    CERN Document Server

    Hocking, John G

    1988-01-01

    ""As textbook and reference work, this is a valuable addition to the topological literature."" - Mathematical ReviewsDesigned as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff t

  18. Topological basis associated with B-M-W algebra: Two-spin-1/2 realization

    Science.gov (United States)

    Wang, Gangcheng; Sun, Chunfang; Liu, Bo; Liu, Ying; Zhang, Yan; Xue, Kang

    2015-01-01

    In this letter, we study the two-spin-1/2 realization for the Birman-Murakami-Wenzl (B-M-W) algebra and the corresponding Yang-Baxter R ˘ (θ , ϕ) matrix. Based on the two-spin-1/2 realization for the B-M-W algebra, the three-dimensional topological space, which is spanned by topological basis, is investigated. By means of such topological basis realization, the four-dimensional Yang-Baxter R ˘ (θ , ϕ) can be reduced to Wigner DJ function with J = 1. The entanglement and Berry phase in the spectral parameter space are also explored. The results show that one can obtain a set of entangled basis via Yang-Baxter R ˘ (θ , ϕ) matrix acting on the standard basis, and the entanglement degree is maximum when the R˘i (θ , ϕ) turns to the braiding operator.

  19. Construction Formulae for Singular Vectors of the Topological N=2 Superconformal Algebra

    CERN Document Server

    Gato-Rivera, Beatriz

    1998-01-01

    The Topological N=2 Superconformal algebra has 29 different types of singular vectors (in complete Verma modules) distinguished by the relative U(1) charge and the BRST-invariance properties of the vector and of the primary on which it is built. Whereas one of these types only exists at level zero, the remaining 28 types exist for general levels and can be constructed already at level 1. In this paper we write down one-to-one mappings between 16 of these types of topological singular vectors and the singular vectors of the Antiperiodic NS algebra. As a result one obtains construction formulae for these 16 types of topological singular vectors using the construction formulae for the NS singular vectors due to Doerrzapf.

  20. Topology

    CERN Document Server

    Manetti, Marco

    2015-01-01

    This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.

  1. Topological charge algebra of optical vortices in nonlinear interactions.

    Science.gov (United States)

    Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V

    2015-12-28

    We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.

  2. Topological charge algebra of optical vortices in nonlinear interactions.

    Science.gov (United States)

    Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V

    2015-12-28

    We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams. PMID:26832066

  3. Topological basis associated with B–M–W algebra: Two-spin-1/2 realization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangcheng, E-mail: wanggc000@163.com [School of Physics, Northeast Normal University, Changchun 130024 (China); Sun, Chunfang [School of Physics, Northeast Normal University, Changchun 130024 (China); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Liu, Bo; Liu, Ying; Zhang, Yan [School of Physics, Northeast Normal University, Changchun 130024 (China); Xue, Kang, E-mail: xuekang@nenu.edu.cn [School of Physics, Northeast Normal University, Changchun 130024 (China)

    2015-01-02

    In this letter, we study the two-spin-1/2 realization for the Birman–Murakami–Wenzl (B–M–W) algebra and the corresponding Yang–Baxter Ř(θ,ϕ) matrix. Based on the two-spin-1/2 realization for the B–M–W algebra, the three-dimensional topological space, which is spanned by topological basis, is investigated. By means of such topological basis realization, the four-dimensional Yang–Baxter Ř(θ,ϕ) can be reduced to Wigner D{sup J} function with J=1. The entanglement and Berry phase in the spectral parameter space are also explored. The results show that one can obtain a set of entangled basis via Yang–Baxter Ř(θ,ϕ) matrix acting on the standard basis, and the entanglement degree is maximum when the Ř{sub i}(θ,ϕ) turns to the braiding operator. - Highlights: • We study a two-spin-1/2 realization of Birman–Murakami–Wenzl algebra. • Topological basis for this model is constructed in this paper. • The reduced representation is related with Wigner D matrix.

  4. Topology

    CERN Document Server

    Kuratowski, Kazimierz

    1966-01-01

    Topology, Volume I deals with topology and covers topics ranging from operations in logic and set theory to Cartesian products, mappings, and orderings. Cardinal and ordinal numbers are also discussed, along with topological, metric, and complete spaces. Great use is made of closure algebra. Comprised of three chapters, this volume begins with a discussion on general topological spaces as well as their specialized aspects, including regular, completely regular, and normal spaces. Fundamental notions such as base, subbase, cover, and continuous mapping, are considered, together with operations

  5. Topological Membranes, Current Algebras and H-flux - R-flux Duality based on Courant Algebroids

    CERN Document Server

    Bessho, Taiki; Ikeda, Noriaki; Watamura, Satoshi

    2015-01-01

    We construct a topological sigma model and a current algebra based on a Courant algebroid structure on a Poisson manifold. In order to construct models, we reformulate the Poisson Courant algebroid by supergeometric construction on a QP-manifold. A new duality of Courant algebroids which transforms H-flux and R-flux is proposed, where the transformation is interpreted as a canonical transformation of a graded symplectic manifold.

  6. Simple-current algebra constructions of 2+1-dimensional topological orders

    Science.gov (United States)

    Schoutens, Kareljan; Wen, Xiao-Gang

    2016-01-01

    Self-consistent (non-)Abelian statistics in 2+1 dimensions (2+1D) are classified by modular tensor categories (MTCs). In recent works, a simplified axiomatic approach to MTCs, based on fusion coefficients Nki j and spins si, was proposed. A numerical search based on these axioms led to a list of possible (non-)Abelian statistics, with rank up to N =7 . However, there is no guarantee that all solutions to the simplified axioms are consistent and can be realized by bosonic physical systems. In this paper, we use simple-current algebra to address this issue. We explicitly construct many-body wave functions, aiming to realize the entries in the list (i.e., realize their fusion coefficients Nki j and spins si). We find that all entries can be constructed by simple-current algebra plus conjugation under time-reversal symmetry. This supports the conjecture that simple-current algebra is a general approach that allows us to construct all (non-)Abelian statistics in 2+1D. It also suggests that the simplified theory based on (Nki j,si) is a classifying theory at least for simple bosonic 2+1D topological orders (up to invertible topological orders).

  7. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2012-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  8. Families of Singular and Subsingular Vectors of the Topological N=2 Superconformal Algebra

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1998-01-01

    We analyze several issues concerning the singular vectors of the Topological N=2 Superconformal algebra. First we propose an algebraic mechanism to decide which types of singular vectors exist, regarding the relative U(1) charge and the BRST-invariance properties, finding four different types in chiral (incomplete) Verma modules and thirty-three different types in complete Verma modules. Then we investigate the family structure of the singular vectors, every member of a family being mapped to any other member by a chain of simple transformations involving the spectral flows. The families of singular vectors in chiral Verma modules follow a unique pattern (four vectors) and contain subsingular vectors. We write down these families until level 3, identifying the subsingular vectors. The families of singular vectors in complete Verma modules follow infinitely many different patterns, grouped roughly in six main kinds. We present a particularly interesting twelve-member family at levels 3 and 4, as well as the co...

  9. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    Science.gov (United States)

    Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2016-05-01

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  10. Topological phase entanglements of membrane solitons in division algebra sigma models with a Hopf term

    Science.gov (United States)

    Tze, Chia-Hsiung; Nam, Soonkeon

    1989-08-01

    Exploiting the unique connection between the division algebras of the complex numbers ( C), quaternions ( H), octonions ( Ω) and the essential Hopf maps S2 n - 1 → Sn with n = 2, 4, 8, we study Sn - 2 -membrane solitons in three D-dimensional KP(1) σ-models with a Hopf term, (D, K) = (3, C), (7, H), and (15, Ω). We present a comprehensive analysis of their topological phase entanglements. Extending Polyakov's approach to Fermi-Bose transmutations to higher dimensions, we detail a geometric regularization of Gauss' linking coefficient, its connections to the self-linking, twisting, writhing numbers of the Feynman paths of the solitons in their thin membrane limit. Alternative forms of the Hopf invariant show the latter as an Aharonov-Bohm-Berry phase of topologically massive, rank ( n - 1) antisymmetric tensor U(1) gauge fields coupled to the Sn - 2 -membranes. Via a K-bundle formulation of the dynamics of electrically and magnetically charged extended objects these phases are shown to induce a dyon-like structure on these membranes. We briefly discuss the connections to harmonic mappings, higher dimensional monopoles and instantons. We point out the relevance of the Gauss-Bonnet-Chern theorem on the connection between spin and statistics. By way of the topology of the infinite groups of sphere mappings Sn → Sn, n = 2, 4, 8, we also analyze the implications of the Hopf phases on the fractional spin and statistics of the membranes.

  11. The Effects of Funding Changes upon the Rate of Knowledge Growth in Algebraic and Differential Topology, 1955-75.

    Science.gov (United States)

    Cohn, Steven F.

    1986-01-01

    Discusses effects of funding variations upon the rate of knowledge growth in algebraic and differential topology. Results based on a marginal productivity model indicated that funding variations had little or no effect upon the rate of knowledge growth. Lists 150 of the field's most highly rated papers. (ML)

  12. Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology & Symplectic Geometry, Noncommutative Geometry and Physics

    CERN Document Server

    Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry

    2014-01-01

    Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...

  13. Summary of the CSRI Workshop on Combinatorial Algebraic Topology (CAT): Software, Applications, & Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Janine Camille [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Visualization and Scientific Computing Dept.; Day, David Minot [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Mathematics and Applications Dept.; Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computer Science and Informatics Dept.

    2009-11-20

    This report summarizes the Combinatorial Algebraic Topology: software, applications & algorithms workshop (CAT Workshop). The workshop was sponsored by the Computer Science Research Institute of Sandia National Laboratories. It was organized by CSRI staff members Scott Mitchell and Shawn Martin. It was held in Santa Fe, New Mexico, August 29-30. The CAT Workshop website has links to some of the talk slides and other information, http://www.cs.sandia.gov/CSRI/Workshops/2009/CAT/index.html. The purpose of the report is to summarize the discussions and recap the sessions. There is a special emphasis on technical areas that are ripe for further exploration, and the plans for follow-up amongst the workshop participants. The intended audiences are the workshop participants, other researchers in the area, and the workshop sponsors.

  14. Calculating Three Loop Ladder and V-Topologies for Massive Operator Matrix Elements by Computer Algebra

    CERN Document Server

    Ablinger, J; Blümlein, J; De Freitas, A; von Manteuffel, A; Schneider, C

    2015-01-01

    Three loop ladder and $V$-topology diagrams contributing to the massive operator matrix element $A_{Qg}$ are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable $N$ and the dimensional parameter $\\varepsilon$. Given these representations, the desired Laurent series expansions in $\\varepsilon$ can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural ...

  15. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). Inst. fuer Physik

    2015-09-15

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element A{sub Qg} are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  16. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  17. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  18. Nonlinear functional analysis in Banach spaces and Banach algebras fixed point theory under weak topology for nonlinear operators and block operator matrices with applications

    CERN Document Server

    Jeribi, Aref

    2015-01-01

    Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices with nonlinear entries in Banach spaces and Banach algebras. The book provides researchers and graduate students with a unified survey of the fundamental principles of fixed point theory in Banach spaces and algebras. The authors present several exten

  19. Algebra

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.

  20. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  1. The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, I K [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2014-04-30

    In this paper we study topological properties of an integrable case for Euler's equations on the Lie algebra so(4), which can be regarded as an analogue of the classical Kovalevskaya case in rigid body dynamics. In particular, for all values of the parameters of the system under consideration, the bifurcation diagrams of the momentum mapping are constructed, the types of critical points of rank 0 are determined, the bifurcations of Liouville tori are described, and the loop molecules are computed for all singular points of the bifurcation diagrams. It follows from the obtained results that some topological properties of the classical Kovalevskaya case can be obtained from the corresponding properties of the considered integrable case on the Lie algebra so(4) by taking a natural limit. Bibliography: 21 titles.

  2. An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology

    OpenAIRE

    Mattiussi, Claudio

    1997-01-01

    In this paper we apply the ideas of algebraic topology to the analysis of the finite volume and finite element methods, illuminating the similarity between the discretization strategies adopted by the two methods, in the light of a geometric interpretation proposed for the role played by the weighting functions in finite elements. We discuss the intrinsic discrete nature of some of the factors appearing in the field equations, underlining the exception represented by the constitutive term, th...

  3. Mikusi\\'nski's Operational Calculus with Algebraic Foundations and Applications to Bessel Functions

    OpenAIRE

    Bengochea, Gabriel; G, Gabriel López

    2013-01-01

    We construct an operational calculus supported on the algebraic operational calculus introduced by Bengochea and Verde. With this operational calculus we study the solution of certain Bessel type equations.

  4. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  5. Noncommutative spectral synthesis for the involutive Banach algebra associated with a topological dynamical system

    CERN Document Server

    de Jeu, Marcel

    2012-01-01

    If X is a compact Hausdorff space, supplied with a homeomorphism, then a crossed product involutive Banach algebra is naturally associated with these data. If X consists of one point, then this algebra is the group algebra of the integers. In this paper, we study spectral synthesis for the closed ideals of this associated algebra in two versions, one modeled after C(X), and one modeled after the group algebra of the integers. We identify the closed ideals which are equal to (what is the analogue of) the kernel of their hull, and determine when this holds for all closed ideals, i.e., when spectral synthesis holds. In both models, this is the case precisely when the homeomorphism has no periodic points.

  6. Structural regularities of helicoidally-like biopolymers in the framework of algebraic topology: II. {alpha}-Helix and DNA structures

    Energy Technology Data Exchange (ETDEWEB)

    Samoylovich, M. I., E-mail: samoylovich@technomash.ru [Central Research Technological Institute ' Technomash' (Russian Federation); Talis, A. L. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation)

    2013-09-15

    The developed apparatus of the 'structural application' of algebraic geometry and topology makes it possible to determine topologically stable helicoidally-like packings of polyhedra (clusters). A packing found is limited by a minimal surface with zero instability index; this surface is set by the Weierstrass representation and corresponds to the bifurcation point. The symmetries of the packings under consideration are determined by four-dimensional polyhedra (polytopes) from a closed sequence, which begins with diamondlike polytope (240). One example of these packings is a packing of tetrahedra, which arises as a result of the multiplication of a peculiar starting aggregation of tetrahedra by a fractional 40/11 axis with an angle of helical rotation of 99 Degree-Sign . The arrangement of atoms in particular positions of this starting aggregation allows one to obtain a model of the {alpha}-helix. This apparatus makes it possible to determine a priori the symmetry parameters of DNA double helices.

  7. Correspondence between the contracted BTZ solution of cosmological topological massive gravity and two-dimensional Galilean conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M R; Kamali, V, E-mail: rezakord@ipm.ir, E-mail: vkamali1362@gmail.com [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of)

    2011-11-07

    We show that a BTZ black hole solution of cosmological topological massive gravity has a hidden conformal symmetry. In this regard, we consider the wave equation of a massless scalar field propagating in BTZ spacetime and find that the wave equation could be written in terms of the SL(2, R) quadratic Casimir. From the conformal coordinates, the temperatures of the dual conformal field theories (CFTs) could be read directly. Moreover, we compute the microscopic entropy of the dual CFT by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole. Then, we consider Galilean conformal algebras (GCA), which arises as a contraction of relativistic conformal algebras (x {yields} {epsilon}x, t {yields} t, {epsilon} {yields} 0). We show that there is a correspondence between GCA{sub 2} on the boundary and contracted BTZ in the bulk. For this purpose we obtain the central charges and temperatures of GCA{sub 2}. Then, we compute the microscopic entropy of the GCA{sub 2} by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole in a non-relativistic limit. The absorption cross section of a near-region scalar field also matches the microscopic absorption cross section of the dual GCA{sub 2}. So we find further evidence that shows correspondence between a contracted BTZ black hole and two-dimensional GCA.

  8. The crossed-product structure of C*-algebras arising from topological dynamical systems

    CERN Document Server

    Farthing, Cynthia; Willis, Paulette N

    2011-01-01

    We show that every topological k-graph constructed from a locally compact Hausdorff space {\\Omega} and a family of pairwise commuting local homeomorphisms on {\\Omega} satisfying a uniform boundedness condition on the cardinalities of inverse images may be realized as a semigroup crossed product in the sense of Larsen.

  9. On the algebraic and topological structure of the set of Tur\\'an densities

    OpenAIRE

    Grosu, Codrut

    2014-01-01

    The present paper is concerned with the various algebraic structures supported by the set of Tur\\'an densities. We prove that the set of Tur\\'an densities of finite families of r-graphs is a non-trivial commutative semigroup, and as a consequence we construct explicit irrational densities for any r >= 3. The proof relies on a technique recently developed by Pikhurko. We also show that the set of all Tur\\'an densities forms a graded ring, and from this we obtain a short proof of a theorem of P...

  10. Geometrical and topological foundations of theoretical physics: from gauge theories to string program

    Directory of Open Access Journals (Sweden)

    Luciano Boi

    2004-07-01

    Full Text Available We study the role of geometrical and topological concepts in the recent developments of theoretical physics, notably in non-Abelian gauge theories and superstring theory, and further we show the great significance of these concepts for a deeper understanding of the dynamical laws of physics. This work aims to demonstrate that the global topological properties of the manifold's model of spacetime play a major role in quantum field theory and that, therefore, several physical quantum effects arise from the nonlocal metrical and topological structure of this manifold. We mathematically argue the need for building new structures of space with different topology. This means, in particular, that the “hidden” symmetries of fundamental physics can be related to the phenomenon of topological change of certain classes of (presumably nonsmooth manifolds.

  11. Semi-algebraic function rings and reflectors of partially ordered rings

    CERN Document Server

    Schwartz, Niels

    1999-01-01

    The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

  12. Topological theory of dynamical systems recent advances

    CERN Document Server

    Aoki, N

    1994-01-01

    This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments. This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book. Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.

  13. Topological features of the Sokolov integrable case on the Lie algebra so(3,1)

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, D V [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2014-08-31

    The integrable Sokolov case on so(3,1){sup ⋆} is investigated. This is a Hamiltonian system with two degrees of freedom, in which the Hamiltonian and the additional integral are homogeneous polynomials of degrees 2 and 4, respectively. It is an interesting feature of this system that connected components of common level surfaces of the Hamiltonian and the additional integral turn out to be noncompact. The critical points of the moment map and their indices are found, the bifurcation diagram is constructed, and the topology of noncompact level surfaces is determined, that is, the closures of solutions of the Sokolov system on so(3,1) are described. Bibliography: 24 titles.

  14. Foundations of relational realism a topological approach to quantum mechanics and the philosophy of nature

    CERN Document Server

    Epperson, Michael

    2013-01-01

    This book presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. More broadly, as a philosophical enterprise, the authors propose this conceptual framework as a speculative ontological program that includes a rigorous mathematical formalism, providing a coherent and intuitive ontological scheme that is both novel and applicable practically to the physical sciences.

  15. Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter

    Science.gov (United States)

    Kouneiher, Joseph

    2016-06-01

    The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.

  16. 向量优化中集合的一些相对代数性质和相对拓扑性质%Some relative algebraical properties and relative topological properties of sets in vector optimization

    Institute of Scientific and Technical Information of China (English)

    张万里; 林安

    2014-01-01

    In this paper, the Assumption B1 and B2 are proposed basing on the idea of Flores-Baz´an et al. The relative algebraic interior of the sum for two sets is equal to the sum of the relative algebraic interior for these sets, the sum of the algebraic closure of a set and the relative algebraic interior of a set is equal to the sum of the relative algebraic interior for the two sets, the relative topological interior of the sum for two sets is equal to the sum of the relative topological interior for these sets, the sum of topological closure of set and the relative topological interior of set is equal to the sum of the relative topological interior for the two sets are proved. Furthermore, the equivalent relations between equality of the algebraic closure and the equality of algebraic interior are established. We also obtain the similar equivalent relations for the topological closure and the relative topological interior.%基于 Flores-Baz´an 等人的思想,提出了假设 B1和假设 B2,证明了集合和的相对代数内部等于相对代数内部的和;集合代数闭包与相对代数内部的和等于和的相对代数内部;集合和的相对拓扑内部等于相对拓扑内部的和;集合拓扑闭包与相对拓扑内部的和等于和的相对拓扑内部,建立了集合代数闭包相等与代数内部相等,拓扑闭包相等与拓扑内部相等之间的一些等价关系。

  17. Foundations

    Science.gov (United States)

    Harteveld, Casper

    A building will more likely collapse if it does not have any proper foundations. Similarly, the design philosophy of Triadic Game Design (TGD) needs to reside on solid building blocks, otherwise the concept will collapse as well. In this level I will elaborate on these building blocks. First I will explain what the general idea of TGD is. It is a design philosophy, for sure, but one which stresses that an “optimum” needs to be found in a design space constituted by three different worlds: Reality, Meaning, and Play. Additionally, these worlds need to be considered simultaneously and be treated equally. The latter requires balancing the worlds which may result in different tensions, within and between two or three of the worlds. I continue by discussing each of the worlds and showing their perspective on the field of games with a meaningful purpose. From this, we clearly see that it is feasible to think of each world and that the idea makes sense. I substantiate this further by relating the notion of player and similar approaches to this framework. This level is quite a tough pill to swallow yet essential for finishing the other levels. Do not cheat or simply skip this level, but just take a big cup of coffee or tea and start reading it.

  18. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  19. Topological fields

    CERN Document Server

    Warner, S

    1989-01-01

    Aimed at those acquainted with basic point-set topology and algebra, this text goes up to the frontiers of current research in topological fields (more precisely, topological rings that algebraically are fields).The reader is given enough background to tackle the current literature without undue additional preparation. Many results not in the text (and many illustrations by example of theorems in the text) are included among the exercises. Sufficient hints for the solution of the exercises are offered so that solving them does not become a major research effort for the reader. A comprehensive bibliography completes the volume.

  20. On Hadamard algebras

    Directory of Open Access Journals (Sweden)

    Carlos C. Peña

    2000-05-01

    Full Text Available Topological algebras of sequences of complex numbers are introduced, endowed with a Hadamard product type. The complex homomorphisms on these algebras are characterized, and units, prime cyclic ideals, prime closed ideals, and prime minimal ideals, discussed. Existence of closed and maximal ideals are investigated, and it is shown that the Jacobson and nilradicals are both trivial.

  1. Algebraic renormalization perturbative twisted considerations on topological Yang-Mills theory and on N=2 supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fucito, F.; Tanzini, A. [Rome Univ. 2 (Italy). Dipt. di Fisica; Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, S.P. [Universidade do Estado (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1997-07-01

    The aim of these notes is to provide a simple and pedagogical (as much as possible) introduction to what is nowadays commonly called Algebraic Renormalization. As the same itself let it understand, the Algebraic Renormalization gives a systematic set up in order to analyse the quantum extension of a given set of classical symmetries. The framework is purely algebraic, yielding a complete characterization of all possible anomalies and invariant counterterms without making use of any explicit computation of the Feynman diagrams. This goal is achieved by collecting, with the introduction of suitable ghost fields, all the symmetries into a unique operation summarized by a generalized Slavnov-Taylor (or master equation) identity which is the starting point for the quantum analysis. The Slavnov-Taylor identity allows to define a nilpotent operator whose cohomology classes in the space of the integrated local polynomials in the fields and their derivatives with dimensions bounded by power counting give all nontrivial anomalies and counterterms. I other words, the proof of the renormalizability is reduced to the computation of some cohomology classes. (author) 28 refs., 2 figs.

  2. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  3. Differential topology

    CERN Document Server

    Mukherjee, Amiya

    2015-01-01

    This book presents a systematic and comprehensive account of the theory of differentiable manifolds and provides the necessary background for the use of fundamental differential topology tools. The text includes, in particular, the earlier works of Stephen Smale, for which he was awarded the Fields Medal. Explicitly, the topics covered are Thom transversality, Morse theory, theory of handle presentation, h-cobordism theorem, and the generalised Poincaré conjecture. The material is the outcome of lectures and seminars on various aspects of differentiable manifolds and differential topology given over the years at the Indian Statistical Institute in Calcutta, and at other universities throughout India. The book will appeal to graduate students and researchers interested in these topics. An elementary knowledge of linear algebra, general topology, multivariate calculus, analysis, and algebraic topology is recommended.

  4. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  5. An Algebra of Reversible Computation

    OpenAIRE

    Wang, Yong

    2014-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  6. Two's company, three (or more) is a simplex : Algebraic-topological tools for understanding higher-order structure in neural data.

    Science.gov (United States)

    Giusti, Chad; Ghrist, Robert; Bassett, Danielle S

    2016-08-01

    The language of graph theory, or network science, has proven to be an exceptional tool for addressing myriad problems in neuroscience. Yet, the use of networks is predicated on a critical simplifying assumption: that the quintessential unit of interest in a brain is a dyad - two nodes (neurons or brain regions) connected by an edge. While rarely mentioned, this fundamental assumption inherently limits the types of neural structure and function that graphs can be used to model. Here, we describe a generalization of graphs that overcomes these limitations, thereby offering a broad range of new possibilities in terms of modeling and measuring neural phenomena. Specifically, we explore the use of simplicial complexes: a structure developed in the field of mathematics known as algebraic topology, of increasing applicability to real data due to a rapidly growing computational toolset. We review the underlying mathematical formalism as well as the budding literature applying simplicial complexes to neural data, from electrophysiological recordings in animal models to hemodynamic fluctuations in humans. Based on the exceptional flexibility of the tools and recent ground-breaking insights into neural function, we posit that this framework has the potential to eclipse graph theory in unraveling the fundamental mysteries of cognition.

  7. Two's company, three (or more) is a simplex : Algebraic-topological tools for understanding higher-order structure in neural data.

    Science.gov (United States)

    Giusti, Chad; Ghrist, Robert; Bassett, Danielle S

    2016-08-01

    The language of graph theory, or network science, has proven to be an exceptional tool for addressing myriad problems in neuroscience. Yet, the use of networks is predicated on a critical simplifying assumption: that the quintessential unit of interest in a brain is a dyad - two nodes (neurons or brain regions) connected by an edge. While rarely mentioned, this fundamental assumption inherently limits the types of neural structure and function that graphs can be used to model. Here, we describe a generalization of graphs that overcomes these limitations, thereby offering a broad range of new possibilities in terms of modeling and measuring neural phenomena. Specifically, we explore the use of simplicial complexes: a structure developed in the field of mathematics known as algebraic topology, of increasing applicability to real data due to a rapidly growing computational toolset. We review the underlying mathematical formalism as well as the budding literature applying simplicial complexes to neural data, from electrophysiological recordings in animal models to hemodynamic fluctuations in humans. Based on the exceptional flexibility of the tools and recent ground-breaking insights into neural function, we posit that this framework has the potential to eclipse graph theory in unraveling the fundamental mysteries of cognition. PMID:27287487

  8. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  9. Summing Boolean Algebras

    Institute of Scientific and Technical Information of China (English)

    Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA

    2004-01-01

    In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

  10. Left Artinian Algebraic Algebras

    Institute of Scientific and Technical Information of China (English)

    S. Akbari; M. Arian-Nejad

    2001-01-01

    Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.

  11. Lattice Operators and Topologies

    OpenAIRE

    Eva Cogan

    2009-01-01

    Working within a complete (not necessarily atomic) Boolean algebra, we use a sublattice to define a topology on that algebra. Our operators generalize complement on a lattice which in turn abstracts the set theoretic operator. Less restricted than those of Banaschewski and Samuel, the operators exhibit some surprising behaviors. We consider properties of such lattices and their interrelations. Many of these properties are abstractions and generalizations of topological spaces. The approach is...

  12. Noncommutative topological dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C. Correia [Department of Mathematics, Universidade de Evora, Rua Roma-tilde o Ramalho, 59, 7000-671 Evora (Portugal)] e-mail: ccr@uevora.pt; Martins, Nuno [Department of Mathematics, Instituto Superior Tecnico, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal)] e-mail: nmartins@math.ist.utl.pt; Severino, Ricardo [Department of Mathematics, Universidade do Minho, Campus de Gualtar, 4710 Braga (Portugal)] e-mail: ricardo@math.uminho.pt; Ramos, J. Sousa [Department of Mathematics, Instituto Superior Tecnico, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal)] e-mail: sramos@math.ist.utl.pt

    2006-01-01

    We study noncommutative dynamical systems associated to unimodal and bimodal maps of the interval. To these maps we associate subshifts and the correspondent AF-algebras and Cuntz-Krieger algebras. As an example we consider systems having equal topological entropy log(1 + {phi}), where {phi} is the golden number, but distinct chaotic behavior and we show how a new numerical invariant allows to distinguish that complexity. Finally, we give a statistical interpretation to the topological numerical invariants associated to bimodal maps.

  13. The foundations of statistics

    CERN Document Server

    Savage, Leonard J

    1972-01-01

    Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.

  14. Foundations of factor analysis

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Introduction Factor Analysis and Structural Theories Brief History of Factor Analysis as a Linear Model Example of Factor AnalysisMathematical Foundations for Factor Analysis Introduction Scalar AlgebraVectorsMatrix AlgebraDeterminants Treatment of Variables as Vectors Maxima and Minima of FunctionsComposite Variables and Linear Transformations Introduction Composite Variables Unweighted Composite VariablesDifferentially Weighted Composites Matrix EquationsMulti

  15. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  16. Geometric Algebra for Physicists

    Science.gov (United States)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  17. Finitary Algebraic Superspace

    CERN Document Server

    Zapatrin, R R

    1998-01-01

    An algebraic scheme is suggested in which discretized spacetime turns out to be a quantum observable. As an example, a toy model producing spacetimes of four points with different topologies is presented. The possibility of incorporating this scheme into the framework of non-commutative differential geometry is discussed.

  18. Hochschild homology of structured algebras

    DEFF Research Database (Denmark)

    Wahl, Nathalie; Westerland, Craig Christopher

    2016-01-01

    We give a general method for constructing explicit and natural operations on the Hochschild complex of algebras over any prop with A∞-multiplication—we think of such algebras as A∞-algebras “with extra structure”. As applications, we obtain an integral version of the Costello......–Kontsevich–Soibelman moduli space action on the Hochschild complex of open TCFTs, the Tradler–Zeinalian and Kaufmann actions of Sullivan diagrams on the Hochschild complex of strict Frobenius algebras, and give applications to string topology in characteristic zero. Our main tool is a generalization of the Hochschild complex....

  19. Quantum computation using geometric algebra

    Science.gov (United States)

    Matzke, Douglas James

    This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

  20. Completely Positive Definite Maps on σ-C*-algebras

    Institute of Scientific and Technical Information of China (English)

    许天周; 段培超; 郑庆琳

    2003-01-01

    @@ Recently, there has been increased interest [1-8] in topological *-algebras that are inverselimits of C*-algebras, called Pro-C*-algebras. These algebras were introduced in [5] as a gene-ralization of C*-algebras were called locally C*-algebras. The same objects have been studiedvarious term, in [1-8], it is shown in [6-7] that they arise naturally in certain aspects of C*-algebraslike the tangent algebras of C*-algebras, multipliers of Pedersen's ideal, non-commutative ana-logues of classical Lie groups and K-theory.

  1. Relation and Application between Degree of Continuous Functions in Differential Topology and Degree in Algebraic Topology%球面到球面的连续映射的微分拓扑度与代数拓扑度的关系以及应用

    Institute of Scientific and Technical Information of China (English)

    金亚东; 施俊

    2013-01-01

      In this paper, we studied degree of functions in differential topology() to be equal to degree of functions in algebraic topology (). It showed that the proposition about one of two degrees is true if the proposition about another is true. Under this result, we get some applications.%  研究了球面到球面的连续映射 f 在微分拓扑的映射度等于在代数拓扑的映射度 degAf。这就表明凡是与两种度中其中一种度有关的命题成立,那么与另一种度有关的命题也成立。在此结论下,给出了一些它的应用。

  2. Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras

    Science.gov (United States)

    Mahanta, Snigdhayan

    2015-12-01

    We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.

  3. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  4. Classification theory of topological insulators and superconductors and its application to topological crystalline insulators

    International Nuclear Information System (INIS)

    We review the classification theory of topological insulators and superconductors based on the K-theory and the Clifford algebras. We also review an application of the classification theory to the topological crystalline insulators with reflection symmetry. (author)

  5. Excision in algebraic K-theory and Karoubi's conjecture.

    Science.gov (United States)

    Suslin, A A; Wodzicki, M

    1990-12-15

    We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130

  6. Cluster algebras and Poisson geometry

    OpenAIRE

    Gekhtman, M.; Shapiro, M.; Vainshtein, A.

    2002-01-01

    We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of connected components of refined open Bruhat cells in Grassmanians G(k,n) over real numbers.

  7. Certain number-theoretic episodes in algebra

    CERN Document Server

    Sivaramakrishnan, R

    2006-01-01

    Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.

  8. Algebra and Number Theory An Integrated Approach

    CERN Document Server

    Dixon, Martyn; Subbotin, Igor

    2011-01-01

    Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines-linear algebra, abstract algebra, and number theory-into one compr

  9. Algebraic totality, towards completeness

    CERN Document Server

    Tasson, Christine

    2009-01-01

    Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans ${\\mathcal{B}}$ and a conditional operator, which can be interpreted in this model. We prove completeness at type ${\\mathcal{B}}^n\\to{\\mathcal{B}}$ for every n by an algebraic metho...

  10. A note on transport of algebraic structures

    DEFF Research Database (Denmark)

    Holm, Henrik Granau

    2015-01-01

    We study transport of algebraic structures and prove a theorem which subsumes results of Comfort and Ross on topological group structures on Stone-Cech compactifications, of Chevalley and of Gil de Lamadrid and Jans on topological group and ring structures on universal covering spaces, and of Gle......We study transport of algebraic structures and prove a theorem which subsumes results of Comfort and Ross on topological group structures on Stone-Cech compactifications, of Chevalley and of Gil de Lamadrid and Jans on topological group and ring structures on universal covering spaces...

  11. Topological freeness for Hilbert bimodules

    DEFF Research Database (Denmark)

    Kwasniewski, Bartosz

    2014-01-01

    It is shown that topological freeness of Rieffel’s induced representation functor implies that any C*-algebra generated by a faithful covariant representation of a Hilbert bimodule X over a C*-algebra A is canonically isomorphic to the crossed product A ⋊ X ℤ. An ideal lattice description...

  12. Computer Algebra.

    Science.gov (United States)

    Pavelle, Richard; And Others

    1981-01-01

    Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)

  13. Supertropical algebra

    OpenAIRE

    Izhakian, Zur; Rowen, Louis

    2008-01-01

    We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geomet...

  14. Operator algebras for multivariable dynamics

    OpenAIRE

    Davidson, Kenneth R.; Katsoulis, Elias G.

    2007-01-01

    Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\\tau_i:X \\to X$ for $1 \\le i \\le n$. To this we associate two topological conjugacy algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\\A(X, \\tau)$ and the semicrossed product $\\rC_0(X)\\times_\\tau\\Fn$. We introduce a concept of conjugacy for multidimensional systems, which we coin piecewise conjugacy. We prove that the piecewise conjugacy class of the sy...

  15. Noncommutative algebras associated to complexes and graphs

    OpenAIRE

    Gelfand, Israel; Gelfand, Sergei; Retakh, Vladimir

    2000-01-01

    This is a first of our papers devoted to "noncommutative topology and graph theory". Its origin is the paper math.QA/0002238 by I. Gelfand, V. Retakh, and R.L. Wilson where a new class of noncommutative algebras $Q_n$ was introduced. The algebra $Q_n$ is closely related to factorizations of a generic polynomial of degree $n$ over a division algebra into linear factors.

  16. Lower and Upper Fuzzy Topological Subhypergroups

    Institute of Scientific and Technical Information of China (English)

    Irina CRISTEA; Jian Ming ZHAN

    2013-01-01

    This paper provides a new connection between algebraic hyperstructures and fuzzy sets.More specifically,using both properties of fuzzy topological spaces and those of fuzzy subhypergroups,we define the notions of lower (upper) fuzzy topological subhypergroups of a hypergroup endowed with a fuzzy topology.Some results concerning the image and the inverse image of a lower (upper) topological subhypergroup under a very good homomorphism of hypergroups (endowed with fuzzy topologies) are pointed out.

  17. Differential topology an introduction

    CERN Document Server

    Gauld, David B

    2006-01-01

    Offering classroom-proven results, Differential Topology presents an introduction to point set topology via a naive version of nearness space. Its treatment encompasses a general study of surgery, laying a solid foundation for further study and greatly simplifying the classification of surfaces.This self-contained treatment features 88 helpful illustrations. Its subjects include topological spaces and properties, some advanced calculus, differentiable manifolds, orientability, submanifolds and an embedding theorem, and tangent spaces. Additional topics comprise vector fields and integral curv

  18. Elementary topology problem textbook

    CERN Document Server

    Viro, O Ya; Netsvetaev, N Yu; Kharlamov, V M

    2008-01-01

    This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space. The book is tailored for the reader who is determined to work actively. The proofs of theorems are separated from their formulations and are gathered at the end of each chapter. This makes the book look like a pure problem book and encourages the reader to think through each formulation. A reader who prefers a more traditional style can either find the pr

  19. Algebras with actions and automata

    Directory of Open Access Journals (Sweden)

    W. Kühnel

    1982-01-01

    Full Text Available In the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces. The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed “scalar” or “input” object and show that they still have an algebraic (or monadic forgetful functor (theorem 3.3 and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism, which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed “natural numbers object” has been studied by the authors in [23].

  20. Introduction to algebra and trigonometry

    CERN Document Server

    Kolman, Bernard

    1981-01-01

    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  1. Elliptic algebras

    Energy Technology Data Exchange (ETDEWEB)

    Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2002-12-31

    This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.

  2. An inner product for a Banach-algebra

    International Nuclear Information System (INIS)

    An inner product is defined on a commutative Banach algebra with an essential involution and the resultant inner product space is shown to be a topological algebra. Several conditions for its completeness are established and moreover, a decomposition theorem is proved. It is shown that every commutative Banach algebra with an essential involution has an auxiliary norm which turns it into an A*-algebra. (author). 6 refs

  3. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  4. Algebra-Geometry of Piecewise Algebraic Varieties

    Institute of Scientific and Technical Information of China (English)

    Chun Gang ZHU; Ren Hong WANG

    2012-01-01

    Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.

  5. The algebraic structure of the Onsager algebra

    OpenAIRE

    DATE, ETSURO; Roan, Shi-shyr

    2000-01-01

    We study the Lie algebra structure of the Onsager algebra from the ideal theoretic point of view. A structure theorem of ideals in the Onsager algebra is obtained with the connection to the finite-dimensional representations. We also discuss the solvable algebra aspect of the Onsager algebra through the formal Lie algebra theory.

  6. Combinatorics and commutative algebra

    CERN Document Server

    Stanley, Richard P

    1996-01-01

    Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists. New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special ...

  7. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  8. Geometric Algebra

    CERN Document Server

    Chisolm, Eric

    2012-01-01

    This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...

  9. Hom-Akivis algebras

    OpenAIRE

    Issa, A. Nourou

    2010-01-01

    Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-M...

  10. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  11. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  12. Zonotopal algebra

    OpenAIRE

    Holtz, Olga; Ron, Amos

    2007-01-01

    A wealth of geometric and combinatorial properties of a given linear endomorphism $X$ of $\\R^N$ is captured in the study of its associated zonotope $Z(X)$, and, by duality, its associated hyperplane arrangement ${\\cal H}(X)$. This well-known line of study is particularly interesting in case $n\\eqbd\\rank X \\ll N$. We enhance this study to an algebraic level, and associate $X$ with three algebraic structures, referred herein as {\\it external, central, and internal.} Each algebraic structure is ...

  13. The Cyclotomic Birman-Murakami-Wenzl Algebras

    CERN Document Server

    Yu, Shona

    2008-01-01

    ----- Please see the pdf file for the actual abstract and important remarks, which could not be put here due to the arXiv length restrictions. ----- This thesis presents a study of the cyclotomic BMW (Birman-Murakami-Wenzl) algebras, introduced by Haring-Oldenburg as a generalization of the BMW algebras associated with the cyclotomic Hecke algebras of type G(k,1,n) (also known as Ariki-Koike algebras) and type B knot theory involving affine/cylindrical tangles. They are shown to be free of rank k^n (2n-1)!! and to have a topological realization as a certain cylindrical analogue of the Kauffman Tangle algebra. Furthermore, the cyclotomic BMW algebras are proven to be cellular, in the sense of Graham and Lehrer. This Ph.D. thesis, completed at the University of Sydney, was submitted September 2007 and passed December 2007.

  14. Spectral flows and twisted topological theories

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1995-01-01

    We analyze the action of the spectral flows on N=2 twisted topological theories. We show that they provide a useful mapping between the two twisted topological theories associated to a given N=2 superconformal theory. This mapping can also be viewed as a topological algebra automorphism. In particular null vectors are mapped into null vectors, considerably simplifying their computation. We give the level 2 results. Finally we discuss the spectral flow mapping in the case of the DDK and KM realizations of the topological algebra.

  15. Interactive Topology Optimization

    DEFF Research Database (Denmark)

    Nobel-Jørgensen, Morten

    Interactivity is the continuous interaction between the user and the application to solve a task. Topology optimization is the optimization of structures in order to improve stiffness or other objectives. The goal of the thesis is to explore how topology optimization can be used in applications...... in an interactive and intuitive way. By creating such applications with an intuitive and simple user interface we allow non-engineers like designers and architects to easily experiment with boundary conditions, design domains and other optimization settings. This is in contrast to commercial topology optimization...... on theory of from human-computer interaction which is described in Chapter 2. Followed by a description of the foundations of topology optimization in Chapter 3. Our applications for topology optimization in 2D and 3D are described in Chapter 4 and a game which trains the human intuition of topology...

  16. Topology Explains Why Automobile Sunshades Fold Oddly

    Science.gov (United States)

    Feist, Curtis; Naimi, Ramin

    2009-01-01

    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  17. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1986-01-01

    Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra

  18. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1981-01-01

    Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e

  19. Brans–Dicke gravity theory from topological gravity

    International Nuclear Information System (INIS)

    We consider a model that suggests a mechanism by which the four dimensional Brans–Dicke gravity theory may emerge from the topological gravity action. To achieve this goal, both the Lie algebra and the symmetric invariant tensor that define the topological gravity Lagrangian are constructed by means of the Lie algebra S-expansion procedure with an appropriate abelian semigroup S

  20. Which multiplier algebras are $W^*$-algebras?

    OpenAIRE

    Akemann, Charles A.; Amini, Massoud; Asadi, Mohammad B.

    2013-01-01

    We consider the question of when the multiplier algebra $M(\\mathcal{A})$ of a $C^*$-algebra $\\mathcal{A}$ is a $ W^*$-algebra, and show that it holds for a stable $C^*$-algebra exactly when it is a $C^*$-algebra of compact operators. This implies that if for every Hilbert $C^*$-module $E$ over a $C^*$-algebra $\\mathcal{A}$, the algebra $B(E)$ of adjointable operators on $E$ is a $ W^*$-algebra, then $\\mathcal{A}$ is a $C^*$-algebra of compact operators. Also we show that a unital $C^*$-algebr...

  1. Alternative algebraic approaches in quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  2. Topological methods in Galois representation theory

    CERN Document Server

    Snaith, Victor P

    2013-01-01

    An advanced monograph on Galois representation theory by one of the world's leading algebraists, this volume is directed at mathematics students who have completed a graduate course in introductory algebraic topology. Topics include abelian and nonabelian cohomology of groups, characteristic classes of forms and algebras, explicit Brauer induction theory, and much more. 1989 edition.

  3. Duality theories for Boolean algebras with operators

    CERN Document Server

    Givant, Steven

    2014-01-01

    In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.

  4. Homology for higher-rank graphs and twisted C*-algebras

    OpenAIRE

    Kumjian, Alex; Pask, David; Sims, Aidan

    2011-01-01

    We introduce a homology theory for k-graphs and explore its fundamental properties. We establish connections with algebraic topology by showing that the homology of a k-graph coincides with the homology of its topological realisation as described by Kaliszewski et al. We exhibit combinatorial versions of a number of standard topological constructions, and show that they are compatible, from a homological point of view, with their topological counterparts. We show how to twist the C*-algebra o...

  5. Symmetries of topological field theories in the BV-framework

    OpenAIRE

    Gieres, F.; Grimstrup, J. M.; Nieder, H.; Pisar, T.; Schweda, M.

    2001-01-01

    Topological field theories of Schwarz-type generally admit symmetries whose algebra does not close off-shell, e.g. the basic symmetries of BF models or vector supersymmetry of the gauge-fixed action for Chern-Simons theory (this symmetry being at the origin of the perturbative finiteness of the theory). We present a detailed discussion of all these symmetries within the algebraic approach to the Batalin-Vilkovisky formalism. Moreover, we discuss the general algebraic construction of topologic...

  6. Foundations of predictive analytics

    CERN Document Server

    Wu, James

    2012-01-01

    Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o

  7. Piecewise algebraic varieties

    Institute of Scientific and Technical Information of China (English)

    WANG Renhong; ZHU Chungang

    2004-01-01

    The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.

  8. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2015-01-01

    Advanced Linear Algebra, Second Edition takes a gentle approach that starts with familiar concepts and then gradually builds to deeper results. Each section begins with an outline of previously introduced concepts and results necessary for mastering the new material. By reviewing what students need to know before moving forward, the text builds a solid foundation upon which to progress. The new edition of this successful text focuses on vector spaces and the maps between them that preserve their structure (linear transformations). Designed for advanced undergraduate and beginning graduate stud

  9. A Metric Conceptual Space Algebra

    Science.gov (United States)

    Adams, Benjamin; Raubal, Martin

    The modeling of concepts from a cognitive perspective is important for designing spatial information systems that interoperate with human users. Concept representations that are built using geometric and topological conceptual space structures are well suited for semantic similarity and concept combination operations. In addition, concepts that are more closely grounded in the physical world, such as many spatial concepts, have a natural fit with the geometric structure of conceptual spaces. Despite these apparent advantages, conceptual spaces are underutilized because existing formalizations of conceptual space theory have focused on individual aspects of the theory rather than the creation of a comprehensive algebra. In this paper we present a metric conceptual space algebra that is designed to facilitate the creation of conceptual space knowledge bases and inferencing systems. Conceptual regions are represented as convex polytopes and context is built in as a fundamental element. We demonstrate the applicability of the algebra to spatial information systems with a proof-of-concept application.

  10. Word Hopf algebras

    OpenAIRE

    Hazewinkel, Michiel

    2004-01-01

    Two important generalizations of the Hopf algebra of symmetric functions are the Hopf algebra of noncommutative symmetric functions and its graded dual the Hopf algebra of quasisymmetric functions. A common generalization of the latter is the selfdual Hopf algebra of permutations (MPR Hopf algebra). This latter Hopf algebra can be seen as a Hopf algebra of endomorphisms of a Hopf algebra. That turns out to be a fruitful way of looking at things and gives rise to wide ranging further generaliz...

  11. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  12. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  13. GOLDMAN ALGEBRA, OPERS AND THE SWAPPING ALGEBRA

    OpenAIRE

    Labourie, François

    2012-01-01

    We define a Poisson Algebra called the {\\em swapping algebra} using the intersection of curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping algebra -- called the {\\em algebra of multifractions} -- as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of $\\mathsf{SL}_n(\\mathbb R)$-opers with trivial holonomy. We relate this Poisson algebra to the Atiyah--Bott--Goldman symple...

  14. Boolean Algebra of C-Algebras

    Directory of Open Access Journals (Sweden)

    G.C. Rao

    2012-11-01

    Full Text Available A C- algebra is the algebraic form of the 3-valued conditional logic, which was introduced by F. Guzman and C. C. Squier in 1990. In this paper, some equivalent conditions for a C- algebra to become a boolean algebra in terms of congruences are given. It is proved that the set of all central elements B(A is isomorphic to the Boolean algebra of all C-algebras Sa, where a B(A. It is also proved that B(A is isomorphic to the Boolean algebra of all C-algebras Aa, where a B(A.

  15. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  16. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  17. Abstract algebra

    CERN Document Server

    Deskins, W E

    1996-01-01

    This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop

  18. Basic algebra

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  19. Ordered Algebraic Structures : the 1991 Conrad Conference

    CERN Document Server

    Holland, C

    1993-01-01

    This volume contains a selection of papers presented at the 1991 Conrad Conference, held in Gainesville, Florida, USA, in December, 1991. Together, these give an overview of some recent advances in the area of ordered algebraic structures. The first part of the book is devoted to ordered permutation groups and universal, as well as model-theoretic, aspects. The second part deals with material variously connected to general topology and functional analysis. Collectively, the contents of the book demonstrate the wide applicability of order-theoretic methods, and how ordered algebraic structures have connections with many research disciplines. For researchers and graduate students whose work involves ordered algebraic structures.

  20. Adinkras for Clifford Algebras, and Worldline Supermultiplets

    CERN Document Server

    Doran, C F; Gates, S J; Hübsch, T; Iga, K M; Landweber, G D; Miller, R L

    2008-01-01

    Adinkras are a graphical depiction of representations of the N-extended supersymmetry algebra in one dimension, on the worldline. These diagrams represent the component fields in a supermultiplet as vertices, and the action of the supersymmetry generators as edges. In a previous work, we showed that the chromotopology (topology with colors) of an Adinkra must come from a doubly even binary linear code. Herein, we relate Adinkras to Clifford algebras, and use this to construct, for every such code, a supermultiplet corresponding to that code. In this way, we correlate the well-known classification of representations of Clifford algebras to the classification of Adinkra chromotopologies.

  1. Connection preserving actions are topologically engaging

    CERN Document Server

    Candel, A

    2012-01-01

    Topologically and geometrically engaging actions have proved to be useful to obtain rigidity results for semisimple Lie group actions. We show that the action of a simple noncompact Lie group on a compact manifold preserving a unimodular rigid geometric structure of algebraic type (e.g. a connection together with a volume density) is topologically engaging on an open conull dense set.

  2. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  3. Brane Topological Field Theories and Hurwitz numbers for CW-complexes

    OpenAIRE

    Natanzon, Sergey M.

    2009-01-01

    We expand Topological Field Theory on some special CW-complexes (brane complexes). This Brane Topological Field Theory one-to-one corresponds to infinite dimensional Frobenius Algebras, graduated by CW-complexes of lesser dimension. We define general and regular Hurwitz numbers of brane complexes and prove that they generate Brane Topological Field Theories. For general Hurwitz numbers corresponding algebra is an algebra of coverings of lesser dimension. For regular Hurwitz numbers the Froben...

  4. Analysing hybrid drive system topologies

    OpenAIRE

    Jonasson, Karin

    2002-01-01

    In this thesis a simulation model is presented that enables a comparison of different hybrid topologies, with respect to fuel consumption, emissions and performance. The obtained results stress the properties of the different topologies and form a foundation for the choice of hybrid topology. The simulation models included in this thesis are the result of collaboration with Petter Strandh at the Division of Combustion Engines, Department of Heat and Power Engineering, Lund University. The stu...

  5. Clifford algebra, geometric algebra, and applications

    CERN Document Server

    Lundholm, Douglas

    2009-01-01

    These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra. The various applications presented include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

  6. Topological Features In Cancer Gene Expression Data

    OpenAIRE

    Lockwood, Svetlana; Krishnamoorthy, Bala

    2014-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topologic...

  7. Central simple Poisson algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai; XU; Xiaoping

    2004-01-01

    Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.

  8. The Onsager Algebra

    OpenAIRE

    El-Chaar, Caroline

    2012-01-01

    In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. U...

  9. TOPOLOGICAL AND GEOMETRIC PROPERTY OF MATRIX ALGEBRA

    Institute of Scientific and Technical Information of China (English)

    Jipu Ma

    2007-01-01

    @@ Let B(Rn) be the set of all,n×n real matrices,Sr the set of all matrices with rank r,0≤r≤n,and S#r the number of arcwise connected components of Sr.It is well-known that Sn=GL (Rn) is a Lie group and also a smooth hypersurface in B(Rn) with the dimension n×n.

  10. Exotic Elliptic Algebras

    OpenAIRE

    Chirvasitu, Alex; Smith, S. Paul

    2015-01-01

    This paper examines a general method for producing twists of a comodule algebra by tensoring it with a torsor then taking co-invariants. We examine the properties that pass from the original algebra to the twisted algebra and vice versa. We then examine the special case where the algebra is a 4-dimensional Sklyanin algebra viewed as a comodule algebra over the Hopf algebra of functions on the non-cyclic group of order 4 with the torsor being the 2x2 matrix algebra. The twisted algebra is an "...

  11. C*-algebras of tilings with infinite rotational symmetry

    CERN Document Server

    Whittaker, Michael F

    2010-01-01

    A tiling with infinite rotational symmetry, such as the Conway-Radin Pinwheel Tiling, gives rise to a topological dynamical system to which an \\'etale equivalence relation is associated. A groupoid C*-algebra for a tiling is produced and a separating dense set is exhibited in the C*-algebra which encodes the structure of the topological dynamical system. In the case of a substitution tiling, natural subsets of this separating dense set are used to define an AT-subalgebra of the C*-algebra. Finally our results are applied to the Pinwheel Tiling.

  12. Quasi-algebras and general Weyl quantization

    International Nuclear Information System (INIS)

    In this paper we show how the systematic use of the topological properties of the quasi-sup(*)-algebra L(S,S') leads to a systematization of the quantization procedure. With that as background, the multiplication of certain classes of pairs of operators of L(S,S') and the corresponding twisted product of their sybmols are defined. (orig./HSI)

  13. C*-algebras and operator theory

    CERN Document Server

    Murphy, Gerald J

    1990-01-01

    This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

  14. Nonmonotonic logics and algebras

    Institute of Scientific and Technical Information of China (English)

    CHAKRABORTY Mihir Kr; GHOSH Sujata

    2008-01-01

    Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.

  15. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  16. Skew category algebras associated with partially defined dynamical systems

    DEFF Research Database (Denmark)

    Lundström, Patrik; Öinert, Per Johan

    2012-01-01

    We introduce partially defined dynamical systems defined on a topological space. To each such system we associate a functor s from a category G to Topop and show that it defines what we call a skew category algebra A ⋊σ G. We study the connection between topological freeness of s and, on the one ...

  17. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  18. Solvable quadratic Lie algebras

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.

  19. Graded cluster algebras

    OpenAIRE

    Grabowski, Jan

    2015-01-01

    In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite type cluster algebras without coefficients, giving a full classification. Translating ...

  20. Nijenhuis Operators on n-Lie Algebras

    Science.gov (United States)

    Jie-Feng, Liu; Yun-He, Sheng; Yan-Qiu, Zhou; Cheng-Ming, Bai

    2016-06-01

    In this paper, we study (n ‑ 1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples. Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH

  1. Topological and geometric measurements of force chain structure

    CERN Document Server

    Giusti, Chad; Owens, Eli T; Daniels, Karen E; Bassett, Danielle S

    2016-01-01

    Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts to a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force chain structure, with the goal of identifying shape differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here, we discuss a trio of related but fundamentally distinct measurements of mesoscale structure of force chains in arbitrary 2D packings, including a novel statistic derived using tools from algebraic topology...

  2. Three Hopf algebras and their common simplicial and categorical background

    CERN Document Server

    Gálvez-Carrillo, Imma; Tonks, Andrew

    2016-01-01

    We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebras of Goncharov for multiple zeta values, that of Connes--Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, cooperads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretation of known constructions in a large common framework.

  3. Higher algebraic K-theory an overview

    CERN Document Server

    Lluis-Puebla, Emilio; Gillet, Henri; Soulé, Christophe; Snaith, Victor

    1992-01-01

    This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.

  4. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.

  5. On vertex Leibniz algebras

    OpenAIRE

    Li, Haisheng; Tan, Shaobin; Wang, Qing

    2012-01-01

    In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra with...

  6. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  7. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    Zheng Lijing

    2015-11-01

    Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].

  8. Putting Algebra Progress Monitoring into Practice: Insights from the Field

    Science.gov (United States)

    Foegen, Anne; Morrison, Candee

    2010-01-01

    Algebra progress monitoring is a research-based practice that extends a long history of research in curriculum-based measurement (CBM). This article describes the theoretical foundations and research evidence for algebra progress monitoring, along with critical features of the practice. A detailed description of one practitioner's implementation…

  9. WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY

    Institute of Scientific and Technical Information of China (English)

    TaoChangli; LuShijie; ChenPeixin

    2002-01-01

    Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.

  10. Rigidification of algebras over essentially algebraic theories

    CERN Document Server

    Rosicky, J

    2012-01-01

    Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.

  11. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  12. Enveloping algebras of some quantum Lie algebras

    OpenAIRE

    Pourkia, Arash

    2014-01-01

    We define a family of Hopf algebra objects, $H$, in the braided category of $\\mathbb{Z}_n$-modules (known as anyonic vector spaces), for which the property $\\psi^2_{H\\otimes H}=id_{H\\otimes H}$ holds. We will show that these anyonic Hopf algebras are, in fact, the enveloping (Hopf) algebras of particular quantum Lie algebras, also with the property $\\psi^2=id$. Then we compute the braided periodic Hopf cyclic cohomology of these Hopf algebras. For that, we will show the following fact: analog...

  13. Novikov-Jordan algebras

    OpenAIRE

    Dzhumadil'daev, A. S.

    2002-01-01

    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  14. Historical Topics in Algebra.

    Science.gov (United States)

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…

  15. Workshop on Commutative Algebra

    CERN Document Server

    Simis, Aron

    1990-01-01

    The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.

  16. Probabilistic Concurrent Kleene Algebra

    Directory of Open Access Journals (Sweden)

    Annabelle McIver

    2013-06-01

    Full Text Available We provide an extension of concurrent Kleene algebras to account for probabilistic properties. The algebra yields a unified framework containing nondeterminism, concurrency and probability and is sound with respect to the set of probabilistic automata modulo probabilistic simulation. We use the resulting algebra to generalise the algebraic formulation of a variant of Jones' rely/guarantee calculus.

  17. Monotone complete C*-algebras and generic dynamics

    CERN Document Server

    Saitô, Kazuyuki

    2015-01-01

    This monograph is about monotone complete C*-algebras, their properties and the new classification theory. A self-contained introduction to generic dynamics is also included because of its important connections to these algebras. Our knowledge and understanding of monotone complete C*-algebras has been transformed in recent years. This is a very exciting stage in their development, with much discovered but with many mysteries to unravel. This book is intended to encourage graduate students and working mathematicians to attack some of these difficult questions. Each bounded, upward directed net of real numbers has a limit. Monotone complete algebras of operators have a similar property. In particular, every von Neumann algebra is monotone complete but the converse is false. Written by major contributors to this field, Monotone Complete C*-algebras and Generic Dynamics takes readers from the basics to recent advances. The prerequisites are a grounding in functional analysis, some point set topology and an eleme...

  18. Singular Dimensions of theN= 2 Superconformal Algebras. I

    Science.gov (United States)

    Dörrzapf, Matthias; Gato-Rivera, Beatriz

    Verma modules of superconfomal algebras can have singular vector spaces with dimensions greater than 1. Following a method developed for the Virasoro algebra by Kent, we introduce the concept of adapted orderings on superconformal algebras. We prove several general results on the ordering kernels associated to the adapted orderings and show that the size of an ordering kernel implies an upper limit for the dimension of a singular vector space. We apply this method to the topological N= 2 algebra and obtain the maximal dimensions of the singular vector spaces in the topological Verma modules: 0, 1, 2 or 3 depending on the type of Verma module and the type of singular vector. As a consequence we prove the conjecture of Gato-Rivera and Rosado on the possible existing types of topological singular vectors (4 in chiral Verma modules and 29 in complete Verma modules). Interestingly, we have found two-dimensional spaces of singular vectors at level 1. Finally, by using the topological twists and the spectral flows, we also obtain the maximal dimensions of the singular vector spaces for the Neveu-Schwarz N= 2 algebra (0, 1 or 2) and for the Ramond N= 2 algebra (0, 1, 2 or 3).

  19. Generalized Quantum Current Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liu

    2001-01-01

    Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.

  20. The Onsager Algebra

    CERN Document Server

    El-Chaar, Caroline

    2012-01-01

    In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. Using this fourth realization, we explicitly describe all its ideals.

  1. Perturbations of planar algebras

    CERN Document Server

    Das, Paramita; Gupta, Ved Prakash

    2010-01-01

    We introduce the concept of {\\em weight} of a planar algebra $P$ and construct a new planar algebra referred as the {\\em perturbation of $P$} by the weight. We establish a one-to-one correspondence between pivotal structures on 2-categories and perturbations of planar algebras by weights. To each bifinite bimodule over $II_1$-factors, we associate a {\\em bimodule planar algebra} bimodule corresponds naturally with sphericality of the bimodule planar algebra. As a consequence of this, we reproduce an extension of Jones' theorem (of associating 'subfactor planar algebras' to extremal subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose associated bimodule planar algebra is the one which we start with using perturbations and Jones-Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a subfactor planar algebra. We show that the perturbation class of a bimodule planar algebra contains a unique spherical unimodular bimodule planar algeb...

  2. Geometric Algebra

    CERN Document Server

    Artin, E

    2011-01-01

    This classic text, written by one of the foremost mathematicians of the 20th century, is now available in a low-priced paperback edition. Exposition is centered on the foundations of affine geometry, the geometry of quadratic forms, and the structure of the general linear group. Context is broadened by the inclusion of projective and symplectic geometry and the structure of symplectic and orthogonal groups.

  3. Multiparameter Twisted Weyl Algebras

    OpenAIRE

    Futorny, Vyacheslav; Hartwig, Jonas T.

    2011-01-01

    We introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs...

  4. $C^*$-algebraic drawings of dendroidal sets

    OpenAIRE

    Mahanta, Snigdhayan

    2015-01-01

    In recent years the theory of dendroidal sets has emerged as an important framework for combinatorial topology. In this article we introduce the concept of a $C^*$-algebraic drawing of a dendroidal set. It depicts a dendroidal set as an object in the category of presheaves on $C^*$-algebras. We show that the construction is functorial and, in fact, it is the left adjoint of a Quillen adjunction between model categories. We use this construction to produce a bridge between the two prominent pa...

  5. Topological Completeness of First-Order Modal Logic

    NARCIS (Netherlands)

    S. Awodey; K. Kishida

    2012-01-01

    As McKinsey and Tarski [20] showed, the Stone representation theorem for Boolean algebras extends to algebras with operators to give topological semantics for (classical) propositional modal logic, in which the "necessity" operation is modeled by taking the interior of an arbitrary subset of a topol

  6. Chiral Determinant Formulae and Subsingular Vectors for the N=2 Superconformal Algebras

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1997-01-01

    We derive conjectures for the N=2 "chiral" determinant formulae of the Topological algebra, the Antiperiodic NS algebra, and the Periodic R algebra, corresponding to incomplete Verma modules built on chiral topological primaries, chiral and antichiral NS primaries, and Ramond ground states, respectively. Our method is based on the analysis of the singular vectors in chiral Verma modules and their spectral flow symmetries, together with some computer exploration and some consistency checks. In addition, and as a consequence, we uncover the existence of subsingular vectors in these algebras, giving examples (subsingular vectors are non-highest-weight null vectors which are not descendants of any highest-weight singular vectors).

  7. Topological vector spaces and distributions

    CERN Document Server

    Horvath, John

    2012-01-01

    ""The most readable introduction to the theory of vector spaces available in English and possibly any other language.""-J. L. B. Cooper, MathSciNet ReviewMathematically rigorous but user-friendly, this classic treatise discusses major modern contributions to the field of topological vector spaces. The self-contained treatment includes complete proofs for all necessary results from algebra and topology. Suitable for undergraduate mathematics majors with a background in advanced calculus, this volume will also assist professional mathematicians, physicists, and engineers.The precise exposition o

  8. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    Jia-feng; Lü

    2007-01-01

    [1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995

  9. Maps from the enveloping algebra of the positive Witt algebra to regular algebras

    OpenAIRE

    Sierra, Susan J.; Walton, Chelsea

    2015-01-01

    We construct homomorphisms from the universal enveloping algebra of the positive (part of the) Witt algebra to several different Artin-Schelter regular algebras, and determine their kernels and images. As a result, we produce elementary proofs that the universal enveloping algebras of the Virasoro algebra, the Witt algebra, and the positive Witt algebra are neither left nor right noetherian.

  10. Perspectives in Analysis, Geometry, and Topology

    CERN Document Server

    Itenberg, I V; Passare, Mikael

    2012-01-01

    The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.

  11. A universal characterization of higher algebraic K-theory

    CERN Document Server

    Blumberg, Andrew J; Tabuada, Goncalo

    2010-01-01

    We establish a universal characterization of the higher algebraic $K$-theory of stable infinity categories. Specifically, we prove that the (connective) algebraic $K$-theory spectrum construction is the universal functor, with values in a stable presentable infinity category, which inverts Morita equivalences, preserves filtered colimits, and satisfies Waldhausen's additivity theorem. In order to prove these results, we construct and study a suitable localization of the category of presheaves of spectra on small stable infinity categories. In this category, Waldhausen's S.-construction corresponds to the suspension functor and the algebraic K-theory spectrum becomes co-representable. This latter result leads to a complete classification of all natural transformations from algebraic K-theory to topological Hochschild homology (THH) and topological cyclic homology (TC). In particular, we obtain a canonical universal description of the cyclotomic trace map.

  12. Two-dimensional topological gravity and equivariant cohomology

    Science.gov (United States)

    Getzler, E.

    1994-07-01

    The analogy between topological string theory and equivariant cohomology for differentiable actions of the circle group on manifolds has been widely remarked on. One of our aims in this paper is to make this analogy precise. We show that topological string theory is the “derived functor” of semi-relative cohomology, just as equivariant cohomology is the derived functor of basic cohomology. That homological algebra finds a place in the study of topological string theory should not surprise the reader, granted that topological string theory is the conformal field theorist's algebraic topology. In [7], we have shown that the cohomology of a topological conformal field theory carries the structure of a batalin-Vilkovisky algebra (actually, two commuting such structures, corresponding to the two chiral sectors of the theory). In the second part of this paper, we describe the analogous algebraic structure on the equivariant cohomology of a topological conformal field theory: we call this structure a gravity algebra. This algebraic structure is a certain generalization of a Lie algebra, and is distinguished by the fact that it has an infinite sequence of independent operations { a 1, ..., a k }, k≥2, satisfying quadratic relations generalizing the Jacobi rule. (The operad underlying the category of gravity algebras has been studied independently by Ginzburg-Kapranov [9].) The author is grateful to M. Bershadsky, E. Frenkel, M. Kapranov, G. Moore, R. Plesser and G. Zuckerman for the many ways in which they helped in the writing of this paper; also to the Department of Mathematics at Yale University for its hospitality while part of this paper was written.

  13. Bucket foundations

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo

    In this report, bearing behaviour and installation of bucket foundations are reviewed. Different methods and standards are compared with the experimental data presented in Foglia and Ibsen (2014a). The most important studies on these topics are suggested. The review is focused on the response...... of monopod bucket foundations supporting offshore wind turbines....

  14. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  15. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  16. Corporate Foundations

    DEFF Research Database (Denmark)

    Herlin, Heidi; Thusgaard Pedersen, Janni

    2013-01-01

    responsibility (CSR). The paper hence illuminates the fascinating and overlooked role of corporate foundations as potential bridges between business and civil society. It also informs theory on boundary organizations by clarifying challenges and limits of such institutions.......This paper aims to explore the potential of Danish corporate foundations as boundary organizations facilitating relationships between their founding companies and non-governmental organizations (NGOs). Hitherto, research has been silent about the role of corporate foundations in relation to cross......-sector partnerships. The results of this paper are based on interviews, participant observations, and organizational documents from a 19-month empirical study of a Danish corporate foundation. Findings suggest that corporate foundations have potential to act as boundary organizations and facilitate collaborative...

  17. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  18. Topological Methods for Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United Stat

    2016-04-07

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  19. Pawlak algebra and approximate structure on fuzzy lattice.

    Science.gov (United States)

    Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai

    2014-01-01

    The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.

  20. Teleportation, Braid Group and Temperley--Lieb Algebra

    OpenAIRE

    Zhang, Yong

    2006-01-01

    We explore algebraic and topological structures underlying the quantum teleportation phenomena by applying the braid group and Temperley--Lieb algebra. We realize the braid teleportation configuration, teleportation swapping and virtual braid representation in the standard description of the teleportation. We devise diagrammatic rules for quantum circuits involving maximally entangled states and apply them to three sorts of descriptions of the teleportation: the transfer operator, quantum mea...

  1. Algebraic K-theory of strict ring spectra

    OpenAIRE

    Rognes, John

    2014-01-01

    We view strict ring spectra as generalized rings. The study of their algebraic K-theory is motivated by its applications to the automorphism groups of compact manifolds. Partial calculations of algebraic K-theory for the sphere spectrum are available at regular primes, but we seek more conceptual answers in terms of localization and descent properties. Calculations for ring spectra related to topological K-theory suggest the existence of a motivic cohomology theory for strictly commutative ri...

  2. Representations of twisted current algebras

    OpenAIRE

    Lau, Michael

    2013-01-01

    We use evaluation representations to give a complete classification of the finite-dimensional simple modules of twisted current algebras. This generalizes and unifies recent work on multiloop algebras, current algebras, equivariant map algebras, and twisted forms.

  3. Hom-alternative algebras and Hom-Jordan algebras

    CERN Document Server

    Makhlouf, Abdenacer

    2009-01-01

    The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.

  4. Arrangement Computation for Planar Algebraic Curves

    CERN Document Server

    Berberich, Eric; Kobel, Alexander; Sagraloff, Michael

    2011-01-01

    We present a new certified and complete algorithm to compute arrangements of real planar algebraic curves. Our algorithm provides a geometric-topological analysis of the decomposition of the plane induced by a finite number of algebraic curves in terms of a cylindrical algebraic decomposition of the plane. Compared to previous approaches, we improve in two main aspects: Firstly, we significantly reduce the amount of exact operations, that is, our algorithms only uses resultant and gcd as purely symbolic operations. Secondly, we introduce a new hybrid method in the lifting step of our algorithm which combines the usage of a certified numerical complex root solver and information derived from the resultant computation. Additionally, we never consider any coordinate transformation and the output is also given with respect to the initial coordinate system. We implemented our algorithm as a prototypical package of the C++-library CGAL. Our implementation exploits graphics hardware to expedite the resultant and gcd...

  5. Topological photonics

    OpenAIRE

    Lu, Ling; Joannopoulos, John D.; Soljačić, Marin

    2014-01-01

    The application of topology, the mathematics of conserved properties under continuous deformations, is creating a range of new opportunities throughout photonics. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation, even in the presence of impurities. Similarly, the use of carefully designed wavevector-space topologies allows the creation of interfaces that support new states of light with useful and interesting prop...

  6. Foundation Structure

    DEFF Research Database (Denmark)

    2009-01-01

    Method of installing a bucket foundation structure comprising one, two, three or more skirts, into soils in a controlled manner. The method comprises two stages: a first stage being a design phase and the second stage being an installation phase. In the first stage, design parameters are determined...... relating to the loads on the finished foundation structure; soil profile on the location; allowable installation tolerances, which parameters are used to estimate the minimum diameter and length of the skirts of the bucket. The bucket size is used to simulate load situations and penetration into foundation...

  7. Wronski's Foundations of Mathematics.

    Science.gov (United States)

    Wagner, Roi

    2016-09-01

    Argument This paper reconstructs Wronski's philosophical foundations of mathematics. It uses his critique of Lagrange's algebraic analysis as a vignette to introduce the problems that he raised, and argues that these problems have not been properly appreciated by his contemporaries and subsequent commentators. The paper goes on to reconstruct Wronski's mathematical law of creation and his notions of theory and techne, in order to put his objections to Lagrange in their philosophical context. Finally, Wronski's proof of his universal law (the expansion of a given function by any series of functions) is reviewed in terms of the above reconstruction. I argue that Wronski's philosophical approach poses an alternative to the views of his contemporary mainstream mathematicians, which brings up the contingency of their choices, and bridges the foundational concerns of early modernity with those of the twentieth-century foundations crisis. I also argue that Wronski's views may be useful to contemporary philosophy of mathematical practice, if they are read against their metaphysical grain. PMID:27573997

  8. Wronski's Foundations of Mathematics.

    Science.gov (United States)

    Wagner, Roi

    2016-09-01

    Argument This paper reconstructs Wronski's philosophical foundations of mathematics. It uses his critique of Lagrange's algebraic analysis as a vignette to introduce the problems that he raised, and argues that these problems have not been properly appreciated by his contemporaries and subsequent commentators. The paper goes on to reconstruct Wronski's mathematical law of creation and his notions of theory and techne, in order to put his objections to Lagrange in their philosophical context. Finally, Wronski's proof of his universal law (the expansion of a given function by any series of functions) is reviewed in terms of the above reconstruction. I argue that Wronski's philosophical approach poses an alternative to the views of his contemporary mainstream mathematicians, which brings up the contingency of their choices, and bridges the foundational concerns of early modernity with those of the twentieth-century foundations crisis. I also argue that Wronski's views may be useful to contemporary philosophy of mathematical practice, if they are read against their metaphysical grain.

  9. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  10. Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra

    OpenAIRE

    Lagraa, M.; Touhami, N.

    1997-01-01

    We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.

  11. Categories and Commutative Algebra

    CERN Document Server

    Salmon, P

    2011-01-01

    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  12. Glaucoma Foundation

    Science.gov (United States)

    ... Honors Presented at 2016 Think Tank Dinner The Glaucoma Foundation (TGF) has awarded Ursula Schlötzer-Schrehardt, PhD, ... Robert Ritch Award for Excellence and Innovation in Glaucoma for her distinguished career in glaucoma research. This ...

  13. Dysautonomia Foundation

    Science.gov (United States)

    ... disease most people have never heard of ... Familial Dysautonomia (FD) is a rare genetic neurological disorder that ... birth. (More about FD .) Research funded by the Dysautonomia Foundation has led to a number of breakthroughs ...

  14. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  15. A generalization of the Virasoro algebra to arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Razvan, E-mail: rgurau@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada)

    2011-11-21

    Colored tensor models generalize matrix models in higher dimensions. They admit a 1/N expansion dominated by spherical topologies and exhibit a critical behavior strongly reminiscent of matrix models. In this paper we generalize the colored tensor models to colored models with generic interaction, derive the Schwinger Dyson equations in the large N limit and analyze the associated algebra of constraints satisfied at leading order by the partition function. We show that the constraints form a Lie algebra (indexed by trees) yielding a generalization of the Virasoro algebra in arbitrary dimensions.

  16. REAL PIECEWISE ALGEBRAIC VARIETY

    Institute of Scientific and Technical Information of China (English)

    Ren-hong Wang; Yi-sheng Lai

    2003-01-01

    We give definitions of real piecewise algebraic variety and its dimension. By using the techniques of real radical ideal, P-radical ideal, affine Hilbert polynomial, Bernstein-net form of polynomials on simplex, and decomposition of semi-algebraic set, etc., we deal with the dimension of the real piecewise algebraic variety and real Nullstellensatz in Cμ spline ring.

  17. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  18. Topological string theory revisited I: The stage

    Science.gov (United States)

    Jia, Bei

    2016-08-01

    In this paper, we reformulate topological string theory using supermanifolds and supermoduli spaces, following the approach worked out by Witten (Superstring perturbation theory revisited, arXiv:1209.5461). We intend to make the construction geometrical in nature, by using supergeometry techniques extensively. The goal is to establish the foundation of studying topological string amplitudes in terms of integration over appropriate supermoduli spaces.

  19. Bases of Schur algebras associated to cellularly stratified diagram algebras

    CERN Document Server

    Bowman, C

    2011-01-01

    We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.

  20. Topological Rankings in Communication Networks

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard; Træholt, Chresten

    2015-01-01

    In the theory of communication the central problem is to study how agents exchange information. This problem may be studied using the theory of connected spaces in topology, since a communication network can be modelled as a topological space such that agents can communicate if and only...... if they belong to the same path connected component of that space. In order to study combinatorial properties of such a communication network, notions from algebraic topology are applied. This makes it possible to determine the shape of a network by concrete invariants, e.g. the number of connected components....... Elements of a network may then be ranked according to how essential their positions are in the network by considering the effect of removing them. Defining a ranking of a network which takes the individual position of each entity into account has the purpose of assigning different roles to the entities, e...

  1. Introduction to set theory and topology

    CERN Document Server

    Kuratowski, Kazimierz; Stark, M

    1972-01-01

    Introduction to Set Theory and Topology describes the fundamental concepts of set theory and topology as well as its applicability to analysis, geometry, and other branches of mathematics, including algebra and probability theory. Concepts such as inverse limit, lattice, ideal, filter, commutative diagram, quotient-spaces, completely regular spaces, quasicomponents, and cartesian products of topological spaces are considered. This volume consists of 21 chapters organized into two sections and begins with an introduction to set theory, with emphasis on the propositional calculus and its applica

  2. Topological descendants DDK and KM realizations

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1994-01-01

    The "minimal matter + scalar" system can be embedded into the twisted N=2 topological algebra in two ways: a la DDK or a la KM. Here we present some results concerning the topological descendants and their DDK and KM realizations. In particular, we prove four "no-ghost" theorems (two for null states) regarding the reduction of the topological descendants into secon- daries of the "minimal matter + scalar" conformal field theory. We write down the relevant expressions for the case of level 2 descendants.

  3. Topspin Networks and Topology in Loop Quantum Gravity

    Science.gov (United States)

    Duston, C. L.

    2015-01-01

    We discuss the extension of loop quantum gravity to topspin networks, a proposal which allows topological information to be encoded in spin networks. This requires minimal changes to the phase space, C*-algebra and Hilbert space of cylindrical functions. Here we focus on the changes to the area operator and determine how it depends on the topology. We hope these ideas will extend the idea of "background independence" in loop quantum gravity to include topology as well as geometry.

  4. Group identities on the units of algebraic algebras with applications to restricted enveloping algebras

    OpenAIRE

    Jespers, Eric; Riley, David; Siciliano, Salvatore

    2007-01-01

    An algebra is called a GI-algebra if its group of units satisfies a group identity. We provide positive support for the following two open problems. 1. Does every algebraic GI-algebra satisfy a polynomial identity? 2. Is every algebraically generated GI-algebra locally finite?

  5. The $\\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories

    CERN Document Server

    Krichever, I M

    1992-01-01

    The universal Witham hierarchy is considered from the point of view of topological field theories. The $\\tau$-function for this hierarchy is defined. It is proved that the algebraic orbits of Whitham hierarchy can be identified with various topological matter models coupled with topological gravity.

  6. Wilson operator algebras and ground states for coupled BF theories

    OpenAIRE

    Tiwari, Apoorv; Chen, Xiao; Ryu, Shinsei

    2016-01-01

    The multi-flavor $BF$ theories in (3+1) dimensions with cubic or quartic coupling are the simplest topological quantum field theories that can describe fractional braiding statistics between loop-like topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and multiplets of ground states on three torus. In particular, by quantizing these coupled $BF$ theori...

  7. Split Malcev Algebras

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado

    2012-05-01

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  8. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  9. A Note on Z* algebras

    OpenAIRE

    Taghavi, Ali

    2013-01-01

    We study some properies of $Z^{*}$ algebras, thos C^* algebra which all positive elements are zero divisors. We show by means of an example that an extension of a Z* algebra by a Z* algebra is not necessarily Z* algebra. However we prove that an extension of a non Z* algebra by a non Z* algebra is again a Z^* algebra. As an application of our methods, we prove that evey compact subset of the positive cones of a C* algebra has an upper bound in the algebra.

  10. On the Iwasawa Algebra Associated to a Normal Element of $\\mathbb{C}_p$

    Indian Academy of Sciences (India)

    V Alexandru; N Popescu; M Vâjâitu; A Zaharescu

    2010-02-01

    Given a prime number and the Galois orbit $O(x)$ of a normal element of $\\mathbb{C}_p$, the topological completion of the algebraic closure of the field of -adic numbers, we study the Iwasawa algebra of $O(x)$ with scalars drawn from $\\mathbb{Q}_p$ and relate it with $\\mathbb{Q}_p$-distributions and functionals.

  11. Exposition on affine and elliptic root systems and elliptic Lie algebras

    CERN Document Server

    Azam, Saeid; Yousofzadeh, Malihe

    2009-01-01

    This is an exposition in order to give an explicit way to understand (1) a non-topological proof for an existence of a base of an affine root system, (2) a Serre-type definition of an elliptic Lie algebra with rank =>2, and (3) the isotropic root multiplicities of those elliptic Lie algebras.

  12. Foundations of software technology and theoretical computer science

    Energy Technology Data Exchange (ETDEWEB)

    Madhavan, C.E.V. (Indian Inst. of Science, Bangalore (IN))

    1990-01-01

    The papers in this book report on foundations of software technology and theoretical computer science project research results. The authors report on algorithmics: design and analysis of graph, geometric, algebraic and VLSI algorithms; data structures; average analysis; complexity theory; parallel parsing; concurrency; algebraic semantics, event structures; logic programming; algebraic properties, semantics; and software technology: program transformations, algebraic methods. These results together with the formal techniques employed to present them reflect current trends pursued by research groups around the world. The papers treat their topics by reviewing existing results, developing and demonstrating new techniques and suggesting further directions for research.

  13. On Quillen homology and a homotopy completion tower for algebras over operads

    CERN Document Server

    Harper, John E

    2011-01-01

    We describe and study a (homotopy) completion tower for algebras and left modules over operads in symmetric spectra. We prove that a weak equivalence on topological Quillen homology induces a weak equivalence on homotopy completion, and that for $0$-connected algebras and modules over a $-1$-connected operad, the homotopy completion tower interpolates between topological Quillen homology and the identity functor. By an explicit calculation of its layers, we show that the homotopy completion tower is the precise analog---in the context of algebras and modules over operads---of the Goodwillie tower of the identity functor. As easy consequences of the strong convergence properties of the homotopy completion tower, we prove a Whitehead theorem and a Hurewicz theorem for topological Quillen homology. We also prove a relative Hurewicz theorem that provides conditions under which topological Quillen homology detects $n$-connected maps. We prove a finiteness theorem relating finiteness properties of topological Quill...

  14. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  15. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  16. Category Dynamical Systems and Skew Category Algebras

    CERN Document Server

    Öinert, Johan

    2010-01-01

    We introduce category dynamical systems as functors $s$ from a category $G$ to $\\Top^{\\rm op}$ and show that they define what we call skew category algebras $A \\ltimes^{\\sigma} G$. We study the connection between topological freeness of $s$ and, on the one hand, ideal properties of $A \\ltimes^{\\sigma} G$ and, on the other hand, maximal commutativity of $A$ in $A \\ltimes^{\\sigma} G$. In particular, we show that if $G$ is a groupoid and for each $e \\in \\ob(G)$ the group of all morphisms $e \\rightarrow e$ is countable and the topological space $s(e)$ is Tychonoff and Baire, then the following statements are equivalent: (i) $s$ is topologically free; (ii) if $I$ is a nonzero ideal of $A \\ltimes^{\\sigma} G$, then $I \\cap A \

  17. On Derivations Of Genetic Algebras

    International Nuclear Information System (INIS)

    A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two

  18. Applied Foundations

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich

    2002-01-01

    A central theme in the foundations of mathematics, dating back to D. Hilbert, can be paraphrased by the following question "How is it that abstract methods (`ideal elements´) can be used to prove `real´ statements e.g. about the natural numbers and is this use necessary in principle?"......A central theme in the foundations of mathematics, dating back to D. Hilbert, can be paraphrased by the following question "How is it that abstract methods (`ideal elements´) can be used to prove `real´ statements e.g. about the natural numbers and is this use necessary in principle?"...

  19. The Algebraic Properties of Concept Lattice

    Institute of Scientific and Technical Information of China (English)

    KaisheQu; JiyeLiang; JunhongWang; ZhongzhiShi

    2004-01-01

    Concept lattice is a powerful tool for data analysis. It has been applied widely to machine learning, knowledge discovery and software engineering and so on. Some aspects of concept lattice have been studied widely such as building lattice and rules extraction, as for its algebraic properties, there has not been discussed systematically. The paper suggests a binary operation between the elements for the set of all concepts in formal context. This turns the concept lattice in general significance into those with operators. We also proved that the concept lattice is a lattice in algebraic significance and studied its algebraic properties.These results provided theoretical foundation and a new method for further study of concept lattice.

  20. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  1. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  2. Stable endomorphism algebras of modules over special biserial algebras

    OpenAIRE

    Schröer, Jan; Zimmermann, Alexander

    2002-01-01

    We prove that the stable endomorphism algebra of a module without self-extensions over a special biserial algebra is a gentle algebra. In particular, it is again special biserial. As a consequence, any algebra which is derived equivalent to a gentle algebra is gentle.

  3. $L_{\\infty}$ algebra structures of Lie algebra deformations

    OpenAIRE

    Gao, Jining

    2004-01-01

    In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or $L_{\\infty}$ algebra. All such obstructions have been transfered to the revelvant $L_{\\infty}$ algebras which contain only three terms

  4. Omni-Lie Color Algebras and Lie Color 2-Algebras

    OpenAIRE

    Zhang, Tao

    2013-01-01

    Omni-Lie color algebras over an abelian group with a bicharacter are studied. The notions of 2-term color $L_{\\infty}$-algebras and Lie color 2-algebras are introduced. It is proved that there is a one-to-one correspondence between Lie color 2-algebras and 2-term color $L_{\\infty}$-algebras.

  5. Fuzzy logic of quasi-truth an algebraic treatment

    CERN Document Server

    Di Nola, Antonio; Turunen, Esko

    2016-01-01

    This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Łukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV –algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate s...

  6. Comprehensible Presentation of Topological Information

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beketayev, Kenes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bremer, Peer-Timo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hamann, Bernd [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haranczyk, Maciej [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hlawitschka, Mario [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pascucci, Valerio [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-03-05

    Topological information has proven very valuable in the analysis of scientific data. An important challenge that remains is presenting this highly abstract information in a way that it is comprehensible even if one does not have an in-depth background in topology. Furthermore, it is often desirable to combine the structural insight gained by topological analysis with complementary information, such as geometric information. We present an overview over methods that use metaphors to make topological information more accessible to non-expert users, and we demonstrate their applicability to a range of scientific data sets. With the increasingly complex output of exascale simulations, the importance of having effective means of providing a comprehensible, abstract overview over data will grow. The techniques that we present will serve as an important foundation for this purpose.

  7. Algebraic methods for evaluating integrals In Bayesian statistics

    OpenAIRE

    Lin, Shaowei

    2011-01-01

    The accurate evaluation of marginal likelihood integrals is a difficult fundamental problem in Bayesian inference that has important applications in machine learning and computational biology. Following the recent success of algebraic statistics in frequentist inference and inspired by Watanabe's foundational approach to singular learning theory, the goal of this dissertation is to study algebraic, geometric and combinatorial methods for computing Bayesian integrals effectively, and to explor...

  8. Mathematical foundations of biomechanics.

    Science.gov (United States)

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra. PMID:21303323

  9. Topological colloids.

    Science.gov (United States)

    Senyuk, Bohdan; Liu, Qingkun; He, Sailing; Kamien, Randall D; Kusner, Robert B; Lubensky, Tom C; Smalyukh, Ivan I

    2013-01-10

    Smoke, fog, jelly, paints, milk and shaving cream are common everyday examples of colloids, a type of soft matter consisting of tiny particles dispersed in chemically distinct host media. Being abundant in nature, colloids also find increasingly important applications in science and technology, ranging from direct probing of kinetics in crystals and glasses to fabrication of third-generation quantum-dot solar cells. Because naturally occurring colloids have a shape that is typically determined by minimization of interfacial tension (for example, during phase separation) or faceted crystal growth, their surfaces tend to have minimum-area spherical or topologically equivalent shapes such as prisms and irregular grains (all continuously deformable--homeomorphic--to spheres). Although toroidal DNA condensates and vesicles with different numbers of handles can exist and soft matter defects can be shaped as rings and knots, the role of particle topology in colloidal systems remains unexplored. Here we fabricate and study colloidal particles with different numbers of handles and genus g ranging from 1 to 5. When introduced into a nematic liquid crystal--a fluid made of rod-like molecules that spontaneously align along the so-called 'director'--these particles induce three-dimensional director fields and topological defects dictated by colloidal topology. Whereas electric fields, photothermal melting and laser tweezing cause transformations between configurations of particle-induced structures, three-dimensional nonlinear optical imaging reveals that topological charge is conserved and that the total charge of particle-induced defects always obeys predictions of the Gauss-Bonnet and Poincaré-Hopf index theorems. This allows us to establish and experimentally test the procedure for assignment and summation of topological charges in three-dimensional director fields. Our findings lay the groundwork for new applications of colloids and liquid crystals that range from

  10. Topological Amenability

    CERN Document Server

    Antonio, Terra

    2011-01-01

    Let G be a locally compact topological group and X a compact space with continuous G-action. The main result of this essay states that the following statements are equivalent : 1) The action of G on X is topologically amenable ; 2) Every dual (G, X)-module of type C is a relatively injective Banach G-module ; 3) There is a G-invariant element in the double dual of C(X, L1(G)).

  11. Singular dimensions of the N=2 superconformal algebras, 1

    CERN Document Server

    Dörrzapf, M; Doerrzapf, Matthias; Gato-Rivera, Beatriz

    1999-01-01

    Verma modules of superconfomal algebras can have singular vector spaces with dimensions greater than 1. Following a method developed for the Virasoro algebra by Kent, we introduce the concept of adapted orderings on superconformal algebras. We prove several general results on the ordering kernels associated to the adapted orderings and show that the size of an ordering kernel implies an upper limit for the dimension of a singular vector space. We apply this method to the topological N=2 algebra and obtain the maximal dimensions of the singular vector spaces in the topological Verma modules: 0, 1, 2 or 3 depending on the type of Verma module and the type of singular vector. As a consequence we prove the conjecture of Gato-Rivera and Rosado on the possible existing types of topological singular vectors (4 in chiral Verma modules and 29 in complete Verma modules). Interestingly, we have found two-dimensional spaces of singular vectors at level 1. Finally, by using the topological twists and the spectral flows, w...

  12. Finite-dimensional (*)-serial algebras

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.

  13. On hyper BCC-algebras

    Directory of Open Access Journals (Sweden)

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  14. On the Toroidal Leibniz Algebras

    Institute of Scientific and Technical Information of China (English)

    Dong LIU; Lei LIN

    2008-01-01

    Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.

  15. Developable algebraic surfaces

    Institute of Scientific and Technical Information of China (English)

    CHEN Dongren; WANG Guojin

    2004-01-01

    An algebraic surface can be defined by an implicit polynomial equation F(x,y,z)=0. In this paper, general characterizations of developable algebraic surfaces of arbitrary degree are presented. Using the shift operators of the subscripts of Bézier ordinates, the uniform apparent discriminants of developable algebraic surfaces to their Bézier ordinates are given directly. To degree 2 algebraic surfaces, which are widely used in computer aided geometric design and graphics, all possible developable surface types are obtained. For more conveniently applying algebraic surfaces of high degree to computer aided geometric design, the notion of ε-quasi-developable surfaces is introduced, and an example of using a quasi-developable algebraic surface of degree 3 to interpolate three curves of degree 2 is given.

  16. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  17. Quantum Phase Space from Schwinger's Measurement Algebra

    Science.gov (United States)

    Watson, P.; Bracken, A. J.

    2014-07-01

    Schwinger's algebra of microscopic measurement, with the associated complex field of transformation functions, is shown to provide the foundation for a discrete quantum phase space of known type, equipped with a Wigner function and a star product. Discrete position and momentum variables label points in the phase space, each taking distinct values, where is any chosen prime number. Because of the direct physical interpretation of the measurement symbols, the phase space structure is thereby related to definite experimental configurations.

  18. Teleportation, braid group and Temperley-Lieb algebra

    International Nuclear Information System (INIS)

    We explore algebraic and topological structures underlying the quantum teleportation phenomena by applying the braid group and Temperley-Lieb algebra. We realize the braid teleportation configuration, teleportation swapping and virtual braid representation in the standard description of the teleportation. We devise diagrammatic rules for quantum circuits involving maximally entangled states and apply them to three sorts of descriptions of the teleportation: the transfer operator, quantum measurements and characteristic equations, and further propose the Temperley-Lieb algebra under local unitary transformations to be a mathematical structure underlying the teleportation. We compare our diagrammatical approach with two known recipes to the quantum information flow: the teleportation topology and strongly compact closed category, in order to explain our diagrammatic rules to be a natural diagrammatic language for the teleportation

  19. Symmetric Extended Ockham Algebras

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; Jie Fang

    2003-01-01

    The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30

  20. A quantum field algebra

    OpenAIRE

    Brouder, Christian

    2002-01-01

    The Laplace Hopf algebra created by Rota and coll. is generalized to provide an algebraic tool for combinatorial problems of quantum field theory. This framework encompasses commutation relations, normal products, time-ordered products and renormalisation. It considers the operator product and the time-ordered product as deformations of the normal product. In particular, it gives an algebraic meaning to Wick's theorem and it extends the concept of Laplace pairing to prove that the renormalise...

  1. Algebraic nonlinear collective motion

    OpenAIRE

    Troupe, J.; Rosensteel, G.

    1999-01-01

    Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number $\\Lambda$. The $\\Lambda=0$ solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear g...

  2. Geometric Algebras and Extensors

    OpenAIRE

    Fernandez, V. V.; Moya, A. M.; Rodrigues Jr., W. A.

    2007-01-01

    This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to met...

  3. Lectures in general algebra

    CERN Document Server

    Kurosh, A G; Stark, M; Ulam, S

    1965-01-01

    Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the

  4. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  5. Fundamentals of Hopf algebras

    CERN Document Server

    Underwood, Robert G

    2015-01-01

    This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...

  6. Relations Between BZMVdM-Algebra and Other Algebras

    Institute of Scientific and Technical Information of China (English)

    高淑萍; 邓方安; 刘三阳

    2003-01-01

    Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.

  7. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    Hijligenberg, N.W. van den; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g

  8. Transmutations between Singular and Subsingular Vectors of the N=2 Superconformal Algebras

    CERN Document Server

    Dörrzapf, M; Dörrzapf, Matthias; Gato-Rivera, Beatriz

    1999-01-01

    We present subsingular vectors of the N=2 superconformal algebras other than the ones which become singular in chiral Verma modules, reported recently by Gato-Rivera and Rosado. We show that two large classes of singular vectors of the Topological algebra become subsingular vectors of the Antiperiodic NS algebra under the topological untwistings. These classes consist of BRST- invariant singular vectors with relative charges q=-2,-1 and zero conformal weight, and no-label singular vectors with q=-1, 0. In turn the resulting NS subsingular vectors are transformed by the spectral flows into subsingular and singular vectors of the Periodic R algebra. We write down these singular and subsingular vectors starting from the topological singular vectors at levels 1 and 2.

  9. Transmutations between singular and subsingular vectors of the N = 2 superconformal algebras

    CERN Document Server

    Doerrzapf, M

    1999-01-01

    We present subsingular vectors of the N = 2 superconformal algebras other than the ones which become singular in chiral Verma modules, reported recently by Gato-Rivera and Rosado. We show that two large classes of singular vectors of the topological algebra become subsingular vectors of the antiperiodic NS algebra under the topological untwistings. These classes consist of BRST-invariant singular vectors with relative charges q = -2, -1 and zero conformal weight, and nolabel singular vectors with q = 0, -1. In turn the resulting NS subsingular vectors are transformed by the spectral flows into subsingular and singular vectors of the periodic R algebra. We write down these singular and subsingular vectors starting from the topological singular vectors at levels 1 and 2.

  10. Transmutations between singular and subsingular vectors of the N = 2 superconformal algebras

    Science.gov (United States)

    Dörrzapf, Matthias; Gato-Rivera, Beatriz

    1999-09-01

    We present subsingular vectors of the N = 2 superconformal algebras other than the ones which become singular in chiral Verma modules, reported recently by Gato-Rivera and Rosado. We show that two large classes of singular vectors of the topological algebra become subsingular vectors of the antiperiodic NS algebra under the topological untwistings. These classes consist of BRST-invariant singular vectors with relative charges q = -2, -1 and zero conformal weight, and nolabel singular vectors with q = 0, -1. In turn the resulting NS subsingular vectors are transformed by the spectral flows into subsingular and singular vectors of the periodic R algebra. We write down these singular and subsingular vectors starting from the topological singular vectors at levels 1 and 2.

  11. The Topology of the Cosmic Web in Terms of Persistent Betti Numbers

    OpenAIRE

    Pranav, Pratyush; Edelsbrunner, Herbert; Weygaert, Rien van de; Vegter, Gert; Kerber, Michael; Jones, Bernard J. T.; Wintraecken, Mathijs

    2016-01-01

    We introduce a multiscale topological description of the Megaparsec weblike cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure, and the related geom...

  12. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    Zheng-xin CHEN; Ya-nan LIN

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.

  13. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.

  14. Universal Algebras of Hurwitz Numbers

    OpenAIRE

    A. Mironov; Morozov, A; Natanzon, S.

    2009-01-01

    Infinite-dimensional universal Cardy-Frobenius algebra is constructed, which unifies all particular algebras of closed and open Hurwitz numbers and is closely related to the algebra of differential operators, familiar from the theory of Generalized Kontsevich Model.

  15. Fields and Forms on -Algebras

    Indian Academy of Sciences (India)

    Cătălin Ciupală

    2005-02-01

    In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.

  16. A natural history of mathematics: George Peacock and the making of English algebra.

    Science.gov (United States)

    Lambert, Kevin

    2013-06-01

    In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.

  17. A natural history of mathematics: George Peacock and the making of English algebra.

    Science.gov (United States)

    Lambert, Kevin

    2013-06-01

    In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra. PMID:23961689

  18. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yuan YAO; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  19. On algebraic volume density property

    OpenAIRE

    Kaliman, Shulim; Kutzschebauch, Frank

    2012-01-01

    A smooth affine algebraic variety $X$ equipped with an algebraic volume form $\\omega$ has the algebraic volume density property (AVDP) if the Lie algebra generated by completely integrable algebraic vector fields of $\\omega$-divergence zero coincides with the space of all algebraic vector fields of $\\omega$-divergence zero. We develop an effective criterion of verifying whether a given $X$ has AVDP. As an application of this method we establish AVDP for any homogeneous space $X=G/R$ that admi...

  20. The Topological "Shape" of Brexit

    CERN Document Server

    Stolz, Bernadette J; Porter, Mason A

    2016-01-01

    Persistent homology is a method from computational algebraic topology that can be used to study the "shape" of data. We illustrate two filtrations --- the weight rank clique filtration and the Vietoris--Rips (VR) filtration --- that are commonly used in persistent homology, and we apply these filtrations to a pair of data sets that are both related to the 2016 European Union "Brexit" referendum in the United Kingdom. These examples consider a topical situation and give useful illustrations of the strengths and weaknesses of these methods.

  1. An invitation to general algebra and universal constructions

    CERN Document Server

    Bergman, George M

    2015-01-01

    Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.

  2. Exact Symbolic-Numeric Computation of Planar Algebraic Curves

    CERN Document Server

    Berberich, Eric; Kobel, Alexander; Sagraloff, Michael

    2012-01-01

    We present a novel certified and complete algorithm to compute arrangements of real planar algebraic curves. It provides a geometric-topological analysis of the decomposition of the plane induced by a finite number of algebraic curves in terms of a cylindrical algebraic decomposition. From a high-level perspective, the overall method splits into two main subroutines, namely an algorithm denoted Bisolve to isolate the real solutions of a zero-dimensional bivariate system, and an algorithm denoted GeoTop to analyze a single algebraic curve. Compared to existing approaches based on elimination techniques, we considerably improve the corresponding lifting steps in both subroutines. As a result, generic position of the input system is never assumed, and thus our algorithm never demands for any change of coordinates. In addition, we significantly limit the types of involved exact operations, that is, we only use resultant and gcd computations as purely symbolic operations. The latter results are achieved by combini...

  3. Holographic classification of topological insulators and its eightfold periodicity

    Science.gov (United States)

    LeClair, André; Bernard, Denis

    2012-11-01

    Using generic properties of Clifford algebras in any spatial dimension, we explicitly classify Dirac Hamiltonians with zero modes protected by the discrete symmetries of time reversal, particle-hole symmetry and chirality. Assuming that the boundary states of topological insulators are Dirac fermions, we thereby holographically reproduce the periodic table of topological insulators found by Kitaev (2009 AIP Conf. Proc. 1134 22) and Ryu et al (2010 New J. Phys. 12 065010), without using topological invariants or K-theory. In addition, we find candidate {Z}_2 topological insulators in classes AI, AII of dimensions 0,4 mod 8 and in classes C, D of dimensions 2,6 mod 8.

  4. A Brief Introduction to Fibrewise Topological Spaces Theory

    Institute of Scientific and Technical Information of China (English)

    Baolin GUO; Yingzhao HAN

    2012-01-01

    Fibrewise topological spaces theory,presented in the recent 20 years,is a new branch of mathematics developed on the basis of General Topology,Algebra topology and Fibrewise spaces theory.It is associated with differential geometry,Lie groups and dynamical systems theory. From the perspective of Category theory,it is in the higher category of general topological space,so the discussion of new properties and characteristics of the variety of fibre topological space has more important significance.This paper introduces the process of the origin and development of Fibrewise topological spaces theory.Then,we study the main contents and important results in this branch.Finally,we review the research status of Fibrewise topological spaces theory and some important topics.

  5. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).

  6. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).

  7. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  8. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  9. Computer algebra in gravity

    CERN Document Server

    Heinicke, C; Heinicke, Christian; Hehl, Friedrich W.

    2001-01-01

    We survey the application of computer algebra in the context of gravitational theories. After some general remarks, we show of how to check the second Bianchi-identity by means of the Reduce package Excalc. Subsequently we list some computer algebra systems and packages relevant to applications in gravitational physics. We conclude by presenting a couple of typical examples.

  10. Topology essentials

    CERN Document Server

    Milewski, Emil G

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Topology includes an overview of elementary set theory, relations and functions, ordinals and cardinals, topological spaces, continuous functions, metric spaces and normed spaces, co

  11. Introduction to noncommutative algebra

    CERN Document Server

    Brešar, Matej

    2014-01-01

    Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

  12. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  13. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  14. Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras

    OpenAIRE

    Ashihara, Takahiro; Miyamoto, Masahiko

    2008-01-01

    If a vertex operator algebra $V=\\oplus_{n=0}^{\\infty}V_n$ satisfies $\\dim V_0=1, V_1=0$, then $V_2$ has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set $Sym_d(\\C)$ of symmetric matrices of degree $d$ becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, central charges influence the properties of vertex operator algebras. In t...

  15. Algebraic structures generating reaction-diffusion models: the activator-substrate system

    OpenAIRE

    Palese, Marcella

    2015-01-01

    We shall construct a class of nonlinear reaction-diffusion equations starting from an infinitesimal algebraic skeleton. Our aim is to explore the possibility of an algebraic foundation of integrability properties and of stability of equilibrium states associated with nonlinear models describing patterns formation.

  16. Opening a Gateway to College Access: Algebra at the Right Time. Research Brief

    Science.gov (United States)

    Snipes, Jason; Finkelstein, Neal

    2015-01-01

    Four years of math in high school, with a strong foundation in algebra that builds from middle school, is key to higher education access. Therefore, ensuring that middle and high school students succeed in math--and in algebra in particular--is an important issue for policy and practice. This research brief examines three recent Regional…

  17. The Even and the Odd Spectral Flows on the N=2 Superconformal Algebras

    CERN Document Server

    Gato-Rivera, Beatriz

    1998-01-01

    There are two different spectral flows on the N=2 superconformal algebras (four in the case of the Topological algebra). The usual spectral flow, first considered by Schwimmer and Seiberg, is an even transformation, whereas the spectral flow previously considered by the author and Rosado is an odd transformation. We show that the even spectral flow is generated by the odd spectral flow, and therefore only the latter is fundamental. We also analyze thoroughly the four ``topological'' spectral flows, writing two of them here for the first time. Whereas the even and the odd spectral flows have quasi-mirrored properties acting on the Antiperiodic or the Periodic algebras, the topological even and odd spectral flows have drastically different properties acting on the Topological algebra. The other two topological spectral flows have mixed even and odd properties. We show that the even and the even-odd topological spectral flows are generated by the odd and the odd-even topological spectral flows, and therefore onl...

  18. Axion topological field theory of topological superconductors

    OpenAIRE

    Qi, Xiao-Liang; Witten, Edward; Zhang, Shou-Cheng

    2012-01-01

    Topological superconductors are gapped superconductors with gapless and topologically robust quasiparticles propagating on the boundary. In this paper, we present a topological field theory description of three-dimensional time-reversal invariant topological superconductors. In our theory the topological superconductor is characterized by a topological coupling between the electromagnetic field and the superconducting phase fluctuation, which has the same form as the coupling of "axions" with...

  19. Topology optimization

    DEFF Research Database (Denmark)

    Bendsøe, Martin P.; Sigmund, Ole

    2007-01-01

    Taking as a starting point a design case for a compliant mechanism (a force inverter), the fundamental elements of topology optimization are described. The basis for the developments is a FEM format for this design problem and emphasis is given to the parameterization of design as a raster image...

  20. The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; V S Sunder

    2006-11-01

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.

  1. Graded Lie Algebra Generating of Parastatistical Algebraic Relations

    Institute of Scientific and Technical Information of China (English)

    JING Si-Cong; YANG Wei-Min; LI Ping

    2001-01-01

    A new kind of graded Lie algebra (We call it Z2,2 graded Lie algebra) is introduced as a framework for formulating parasupersymmetric theories. By choosing suitable Bose subspace of the Z2,2 graded Lie algebra and using relevant generalized Jacobi identities, we generate the whole algebraic structure of parastatistics.

  2. Semigroups and computer algebra in algebraic structures

    Science.gov (United States)

    Bijev, G.

    2012-11-01

    Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.

  3. Introduction to Banach spaces and algebras

    CERN Document Server

    Allan, Graham

    2010-01-01

    Banach spaces and algebras are a key topic of pure mathematics. Graham Allan's careful and detailed introductory account will prove essential reading for anyone wishing to specialise in functional analysis and is aimed at final year undergraduates or masters level students. Based on the author's lectures to fourth year students at Cambridge University, the book assumes knowledge typical of first degrees in mathematics, including metric spaces, analytic topology, and complexanalysis. However, readers are not expected to be familiar with the Lebesgue theory of measure and integration.The text be

  4. Spatial Operator Algebra for multibody system dynamics

    Science.gov (United States)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1992-01-01

    The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

  5. Research on Modulation Strategies Based on Multilevel Inverter Universal Hybrid Topology

    Institute of Scientific and Technical Information of China (English)

    Zhou Jinghua; Su Yanmin; Shen Chuanwen; Zhang Lin

    2005-01-01

    Based on multi-module-cascaded inverter topology, this study presented a universal multilevel inverter hybrid topology and unified the researches on multilevel inverter topology. According to the freedom of this universal topology, several new hybrid topologies were constructed. Also, based on conventional modulation strategies- multi-carrier SPWM (Sinusoidal Pulse Width Modulation), hybrid modulation strategies were introduced corresponding to hybrid topologies, and a multilevel SVPWM (Space Vector Pulse Width Modulation) technique based on phase-shifted theory was naturally produced. Simulation and experiment results prove that hybrid topologies and corresponding modulation strategies are valid, which lay a foundation for practical application of hybrid multilevel inverter topologies.

  6. Modern methods in topological vector spaces

    CERN Document Server

    Wilansky, Albert

    2013-01-01

    Designed for a one-year course in topological vector spaces, this text is geared toward advanced undergraduates and beginning graduate students of mathematics. The subjects involve properties employed by researchers in classical analysis, differential and integral equations, distributions, summability, and classical Banach and Frechét spaces. Optional problems with hints and references introduce non-locally convex spaces, Köthe-Toeplitz spaces, Banach algebra, sequentially barrelled spaces, and norming subspaces.Extensive introductory chapters cover metric ideas, Banach space, topological vect

  7. On Linear Algebra Education

    Directory of Open Access Journals (Sweden)

    Sinan AYDIN

    2009-04-01

    Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.

  8. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  9. Super Linear Algebra

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra. Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader. These new class of super linear algebras which can be thought of as a set of linear algebras, following a stipulated condition, will find applications in several fields using computers. The authors feel that such a paradigm shift is essential in this computerized world. Some other structures ought to replace linear algebras which are over a century old. Super linear algebras that use super matrices can store data not only in a block but in multiple blocks so it is certainly more powerful than the usual matrices. This book has 3 chapters. Chapter one introduces the notion of super vector spaces and enumerates a number of properties. Chapter two defines the notion of sup...

  10. Equational axioms of test algebra

    NARCIS (Netherlands)

    Hollenberg, M.

    2008-01-01

    We present a complete axiomatization of test algebra ([24,18,29]), the two-sorted algebraic variant of Propositional Dynamic Logic (PDL,[21,7]). The axiomatization consists of adding a finite number of equations to any axiomatization of Kleene algebra ([15,26,17,4]) and algebraic translations of the

  11. Process algebra for Hybrid systems

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, Chap. 4, 2002] and the process algebra with propositional signals from Baeten and Bergstra [Theoretical Computer

  12. Process algebra for hybrid systems

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2005-01-01

    We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg (Process Algebra with Timing, Springer,Berlin, 2002, Chapter 4), and the process algebra with propositional signals from Baeten and Bergstra(Theoret. Com

  13. Symplectic algebraic dynamics algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the algebraic dynamics solution of ordinary differential equations andintegration of  ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.

  14. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  15. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    J. W. Kitchen

    1994-01-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  16. On Griess Algebras

    OpenAIRE

    Michael Roitman

    2003-01-01

    In this paper we prove that for any commutative (but in general non-associative) algebra $A$ with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra $V = V_0 \\oplus V_2 \\oplus V_3\\oplus ...$, such that $\\dim V_0 = 1$ and $V_2$ contains $A$. We can choose $V$ so that if $A$ has a unit $e$, then $2e$ is the Virasoro element of $V$, and if $G$ is a finite group of automorphisms of $A$, then $G$ acts on $V$ as well. In addition, the algebra $V$ can be chosen with...

  17. The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Razvan, E-mail: rgurau@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada)

    2012-12-01

    Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.

  18. Configuration spaces geometry, topology and representation theory

    CERN Document Server

    Cohen, Frederick; Concini, Corrado; Feichtner, Eva; Gaiffi, Giovanni; Salvetti, Mario

    2016-01-01

    This book collects the scientific contributions of a group of leading experts who took part in the INdAM Meeting held in Cortona in September 2014. With combinatorial techniques as the central theme, it focuses on recent developments in configuration spaces from various perspectives. It also discusses their applications in areas ranging from representation theory, toric geometry and geometric group theory to applied algebraic topology.

  19. Two Probabilistic Powerdomains in Topological Domain Theory

    OpenAIRE

    Simpson, Alex; Battenfeld, Ingo

    2006-01-01

    We present two probabilistic powerdomain constructions in topological domain theory. The first is given by a free ”convex space” construction, fitting into the theory of modelling computational effects via free algebras for equational theories, as proposed by Plotkin and Power. The second is given by an observationally induced approach, following Schröder and Simpson. We show the two constructions coincide when restricted to ω-continuous dcppos, in which case they yield the space of (continuo...

  20. I-adic towers in topology

    OpenAIRE

    Wuethrich, Samuel

    2004-01-01

    A large variety of cohomology theories is derived from complex cobordism MU^*(-) by localizing with respect to certain elements or by killing regular sequences in MU_*. We study the relationship between certain pairs of such theories which differ by a regular sequence, by constructing topological analogues of algebraic I-adic towers. These give rise to Higher Bockstein spectral sequences, which turn out to be Adams spectral sequences in an appropriate sense. Particular attention is paid to th...

  1. Homotopical topology

    CERN Document Server

    Fomenko, Anatoly

    2016-01-01

    This classic text of the renowned Moscow mathematical school equips the aspiring mathematician with a solid grounding in the core of topology, from a homotopical perspective. Its comprehensiveness and depth of treatment are unmatched among topology textbooks: in addition to covering the basics—the fundamental notions and constructions of homotopy theory, covering spaces and the fundamental group, CW complexes, homology and cohomology, homological algebra—the book treats essential advanced topics, such as obstruction theory, characteristic classes, Steenrod squares, K-theory and cobordism theory, and, with distinctive thoroughness and lucidity, spectral sequences. The organization of the material around the major achievements of the golden era of topology—the Adams conjecture, Bott periodicity, the Hirzebruch–Riemann–Roch theorem, the Atiyah–Singer index theorem, to name a few—paints a clear picture of the canon of the subject. Grassmannians, loop spaces, and classical groups play a central role ...

  2. Topological Holography

    CERN Document Server

    Husain, V; Husain, Viqar; Jaimungal, Sebastian

    1999-01-01

    We study a topological field theory in four dimensions on a manifold with boundary. A bulk-boundary interaction is introduced through a novel variational principle rather than explicitly. Through this scheme we find that the boundary values of the bulk fields act as external sources for the boundary theory. Furthermore, the full quantum states of the theory factorize into a single bulk state and an infinite number of boundary states labeled by loops on the spatial boundary. In this sense the theory is purely holographic. We show that this theory is dual to Chern-Simons theory with an external source. We also point out that the holographic hypothesis must be supplemented by additional assumptions in order to take into account bulk topological degrees freedom, since these are apriori invisible to local boundary fields.

  3. Meadow enriched ACP process algebras

    OpenAIRE

    J.A. Bergstra; Middelburg, C.A.

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization of the notion of an ACP process algebra to processes in which data are involved. In meadow enriched ACP process algebras, the mathematical structure for data is a meadow.

  4. Algebraic Properties of Propositional Calculus

    OpenAIRE

    Schuh, Bernd R.

    2009-01-01

    In this short note we relate some known properties of propositional calculus to purely algebraic considerations of a Boolean algebra. Classes of formulas of propositional calculus are considered as elements of a Boolean algebra. As such they can be represented by uniquely defined elements of this algebra which we call "logical primes". The algebraic notations appear useful because they make it possible to derive well known properties of propositional calculus by simple calculations or to subs...

  5. Hom-power associative algebras

    OpenAIRE

    Yau, Donald

    2010-01-01

    A generalization of power associative algebra, called Hom-power associative algebra, is studied. The main result says that a multiplicative Hom-algebra is Hom-power associative if and only if it satisfies two identities of degrees three and four. It generalizes Albert's result that power associativity is equivalent to third and fourth power associativity. In particular, multiplicative right Hom-alternative algebras and non-commutative Hom-Jordan algebras are Hom-power associative.

  6. Homology for higher-rank graphs and twisted C*-algebras

    CERN Document Server

    Kumjian, Alex; Sims, Aidan

    2011-01-01

    We introduce a homology theory for k-graphs and explore its fundamental properties. We establish connections with algebraic topology by showing that the homology of a k-graph coincides with the homology of its topological realisation as described by Kaliszewski et al. We exhibit combinatorial versions of a number of standard topological constructions, and show that they are compatible, from a homological point of view, with their topological counterparts. We show how to twist the C*-algebra of a k-graph by a T-valued 2-cocycle and demonstrate that examples include all noncommutative tori. In the appendices, we construct a cubical set \\tilde{Q}(\\Lambda) from a k-graph {\\Lambda} and demonstrate that the homology and topological realisation of {\\Lambda} coincide with those of \\tilde{Q}(\\Lambda) as defined by Grandis.

  7. Some topics pertaining to algebras of linear operators

    OpenAIRE

    Semmes, Stephen

    2002-01-01

    On the one hand the algebras of linear operators here act on finite-dimensional vector spaces, and on the other hand the point of view is generally an analysts'. Also, one might think of algebras as being used to add more data to basic geometry as on a graph, for instance. Of course this is a common theme which is considered in numerous settings. From an analysts' perspective, compact groups, their representations, and more general topological groups and their representations are basic object...

  8. On isomorphisms of integral table algebras

    Institute of Scientific and Technical Information of China (English)

    FAN; Yun(樊恽); SUN; Daying(孙大英)

    2002-01-01

    For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.

  9. An algebraic geometric approach to separation of variables

    CERN Document Server

    Schöbel, Konrad

    2015-01-01

    Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together a great range of mathematics and mathematical physics, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads. "I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results.”   (Jim Stasheff)   Contents The Foundation: The Algebraic Integrability Conditions The Proof of Concept: A Complete Solution for the 3-Sphere The Generalisation: A Solution for Spheres of Arbitrary Dimension The Perspectives: Applications and Generalisations   Target Groups Scientists in the fie...

  10. Introduction to algebra

    CERN Document Server

    Cameron, Peter J

    2007-01-01

    This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,. new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics. - ;Developed to meet the needs of modern students, this Second Edition of the classic algebra text by Peter Cameron covers all the abstract algebra an undergraduate student is likely to need. Starting with an introductory overview of numbers, sets and functions, matrices, polynomials, and modular arithmetic, the text then introduces the most important algebraic structures: groups, rings and fields, and their properties. This is followed by coverage of vector spaces and modules with. applications to abelian groups and canonical forms before returning to the construction of the number systems, including the existence of transcendental numbers. The final chapters take the reader further into the th...

  11. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  12. The Algebra of -relations

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; R Srinivasan; V S Sunder

    2000-08-01

    In this paper, we study a tower $\\{A^G_n(d):n≥ 1\\}$ of finite-dimensional algebras; here, represents an arbitrary finite group, denotes a complex parameter, and the algebra $A^G_n(d)$ has a basis indexed by `-stable equivalence relations' on a set where acts freely and has 2 orbits. We show that the algebra $A^G_n(d)$ is semi-simple for all but a finite set of values of , and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the `generic case'. Finally we determine the Bratteli diagram of the tower $\\{A^G_n(d): n≥ 1\\}$ (in the generic case).

  13. Essential linear algebra with applications a problem-solving approach

    CERN Document Server

    Andreescu, Titu

    2014-01-01

    This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory;  • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them.   Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course.    ...

  14. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  15. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  16. Elementary linear algebra

    CERN Document Server

    Andrilli, Stephen

    2010-01-01

    Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl

  17. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  18. Hopf Algebra of Sashes

    OpenAIRE

    Law, Shirley

    2014-01-01

    International audience A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has a natural basis given by permutations that we call Pell permutations. The...

  19. Holomorphically Equivalent Algebraic Embeddings

    OpenAIRE

    Feller, Peter; Stampfli, Immanuel

    2014-01-01

    We prove that two algebraic embeddings of a smooth variety $X$ in $\\mathbb{C}^m$ are the same up to a holomorphic coordinate change, provided that $2 \\dim X + 1$ is smaller than or equal to $m$. This improves an algebraic result of Nori and Srinivas. For the proof we extend a technique of Kaliman using generic linear projections of $\\mathbb{C}^m$.

  20. Beginning algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division

  1. Structural and Topology Optimization of Complex Civil Engineering Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2013-01-01

    This paper shows the use of topology optimization for finding an optimized form for civil engineering structures. Today topology optimization and shape optimization have been integrated in several commercial finite element codes. Here, the topology of two complex civil engineering structures...... patterns and dynamic loading lead to implantation of constraints of the optimization. These constraints will influence and change the final topology....... will be optimized using the commercial code Abaqus CAE. The structures are: a bucket foundation for an off-shore submarine structure for a wind turbine, and a pedestrian footbridge over a freeway. The topology optimization method used is the SIMP method, based on minimizing the structures' compliance. Complex load...

  2. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    OpenAIRE

    Hijligenberg, van den, N.W.; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.

  3. Topological Order Parameters for Interacting Topological Insulators

    OpenAIRE

    Wang, Zhong; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2010-01-01

    We propose a topological order parameter for interacting topological insulators, expressed in terms of the full Green's functions of the interacting system. We show that it is exactly quantized for a time reversal invariant topological insulator, and it can be experimentally measured through the topological magneto-electric effect. This topological order parameter can be applied to both interacting and disordered systems, and used for determining their phase diagrams.

  4. L-o cto-algebras

    Institute of Scientific and Technical Information of China (English)

    An Hui-hui; Wang Zhi-chun

    2016-01-01

    L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.

  5. Holographic Symmetries and Generalized Order Parameters for Topological Matter

    Science.gov (United States)

    Cobanera, Emilio; Ortiz, Gerardo; Nussinov, Zohar

    2013-03-01

    We introduce a universally applicable method, based on the bond-algebraic theory of dualities, to search for generalized order parameters in a wide variety of non-Landau systems, including topologically ordered matter. To this end we introduce the key notion of holographic symmetry. It reflects situations in which global symmetries become exact boundary symmetries under a duality mapping. Holographic symmetries are naturally related to edge modes and localization. The utility of our approach is illustrated by presenting a systematic derivation of generalized order parameters for pure and matter-coupled Abelian gauge theories and (extended) toric codes. Also we introduce a many-body extension of the Kitaev wire, the gauged Kitaev wire, and exploit holographic symmetries and dualities to describe its phase diagram, generalized order parameter, and edge states. [arXiv:1211.0564] This work was supported by the Dutch Science Foundation NWO/FOM and an ERC Advanced Investigator grant, and, in part, under grants No. NSF PHY11-25915 and CMMT 1106293.

  6. Topologies on types: connections

    OpenAIRE

    Chen, Yi-Chun; Xiong, Siyang

    2008-01-01

    For different purposes, economists may use different topologies on types. We char- acterize the relationship among these various topologies. First, we show that for any general types, convergence in the uniform-weak topology implies convergence in both the strategic topology and the uniform strategic topology. Second, we explicitly con- struct a type which is not the limit of any finite types under the uniform strategic topology, showing that the uniform strategic topology is strictly fi ner ...

  7. The Koszul property as a topological invariant and a measure of singularities

    CERN Document Server

    Sadofsky, Hal

    2009-01-01

    Cassidy, Phan and Shelton associate to any regular cell complex X a quadratic K-algebra R(X). They give a combinatorial solution to the question of when this algebra is Koszul. The algebra R(X) is a combinatorial invariant but not a topological invariant. We show that nevertheless, the property that R(x) be Koszul is a topological invariant. In the process we establish some conditions on the types of local singular- ities that can occur in cell complexes X such that R(X) is Koszul, and more generally in cell complexes that are pure and connected by codimension one faces.

  8. Axis Problem of Rough 3-Valued Algebras

    Institute of Scientific and Technical Information of China (English)

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  9. Simple algebras of Weyl type

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Over a field F of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector space A[D]=A[D] from any pair of a commutative associative algebra A with an identity element and the polynomial algebra [D] of a commutative derivation subalgebra D of A. We prove that A[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only if A is D-simple and A[D] acts faithfully on A. Thus we obtain a lot of simple algebras.

  10. Simple Algebras of Invariant Operators

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Shen; J.D.H. Smith

    2001-01-01

    Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.

  11. Smooth Frechet subalgebras of *-algebras defined by first order differential seminorms

    Indian Academy of Sciences (India)

    Subhash J Bhatt

    2016-02-01

    The differential structure in a *-algebra defined by a dense Frechet subalgebra whose topology is defined by a sequence of differential seminorms of order 1 is investigated. This includes differential Arens–Michael decomposition, spectral invariance, closure under functional calculi as well as intrinsic spectral description. A large number of examples of such Frechet algebras are exhibited; and the smooth structure defined by an unbounded self-adjoint Hilbert space operator is discussed.

  12. Interactive topology optimization on hand-held devices

    DEFF Research Database (Denmark)

    Aage, Niels; Nobel-Jørgensen, Morten; Andreasen, Casper Schousboe;

    2013-01-01

    # and the graphical user interface is developed using the game engine Unity3D. The underlying code is inspired by the publicly available 88 and 99 line Matlab codes for topology optimization but does not utilize any low-level linear algebra routines such as BLAS or LAPACK. The TopOpt App can be downloaded on i...

  13. Random consensus in nonlinear systems under fixed topology

    OpenAIRE

    Gupta, Radha F.; Kumam, Poom

    2012-01-01

    This paper investigates the consensus problem in almost sure sense for uncertain multi-agent systems with noises and fixed topology. By combining the tools of stochastic analysis, algebraic graph theory, and matrix theory, we analyze the convergence of a class of distributed stochastic type non-linear protocols. Numerical examples are given to illustrate the results.

  14. Topology on locally finite metric spaces

    CERN Document Server

    Capraro, Valerio

    2011-01-01

    The necessity of a theory of General Topology and, most of all, of Algebraic Topology on locally finite metric spaces comes from many areas of research in both Applied and Pure Mathematics: Molecular Biology, Mathematical Chemistry, Computer Science, Topological Graph Theory and Metric Geometry. In this paper we propose the basic notions of such a theory and some applications: we replace the classical notions of continuous function, homeomorphism and homotopic equivalence with the notions of NPP-function, NPP-local-isomorphism and NPP-homotopy (NPP stands for Nearest Point Preserving); we also introduce the notion of NPP-isomorphism. We construct three invariants under NPP-isomorphisms and, in particular, we define the fundamental group of a locally finite metric space. As first applications, we propose the following: motivated by the longstanding question whether there is a purely metric condition which extends the notion of amenability of a group to any metric space, we propose the property SN (Small Neighb...

  15. Chain Homotopies for Object Topological Representations

    CERN Document Server

    Gonzalez-Diaz, Rocio; MEdrano, Belen; Real, Pedro; 10.1016/j.dam.2008.05.029

    2011-01-01

    This paper presents a set of tools to compute topological information of simplicial complexes, tools that are applicable to extract topological information from digital pictures. A simplicial complex is encoded in a (non-unique) algebraic-topological format called AM-model. An AM-model for a given object K is determined by a concrete chain homotopy and it provides, in particular, integer (co)homology generators of K and representative (co)cycles of these generators. An algorithm for computing an AM-model and the cohomological invariant HB1 (derived from the rank of the cohomology ring) with integer coefficients for a finite simplicial complex in any dimension is designed here. A concept of generators which are "nicely" representative cycles is also presented. Moreover, we extend the definition of AM-models to 3D binary digital images and we design algorithms to update the AM-model information after voxel set operations (union, intersection, difference and inverse).

  16. A topological introduction to nonlinear analysis

    CERN Document Server

    Brown, Robert F

    2014-01-01

    This third edition of A Topological Introduction to Nonlinear Analysis is addressed to the mathematician or graduate student of mathematics - or even the well-prepared undergraduate - who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. For this third edition, several new chapters present the fixed point index and its applications. The exposition and mathematical content is improved throughout. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply...

  17. An Algebraic Approach to Hough Transforms

    CERN Document Server

    Beltrametti, Mauro C

    2012-01-01

    The main purpose of this paper is to lay the foundations of a general theory which encompasses the features of the classical Hough transform and extend them to general algebraic objects such as affine schemes. The main motivation comes from problems of detection of special shapes in medical and astronomical images. The classical Hough transform has been used mainly to detect simple curves such as lines and circles. We generalize this notion using reduced Groebner bases of flat families of affine schemes. To this end we introduce and develop the theory of Hough regularity. The theory is highly effective and we give some examples computed with CoCoA.

  18. CASL- The Common Algebraic Specification Language- Summary

    DEFF Research Database (Denmark)

    Haxthausen, Anne

    1997-01-01

    This Summary is the basis for the Design Proposal [LD97b] for CASL, the Common Algebraic Specification Language, prepared by the Language Design Task Group of CoFI, the Common Framework Initiative. It gives the abstract syntax, and informally describes its intended semantics. It is accompanied by...... for approval to the sponsoring IFIP Working Group on Foundations of System Specification, WG 1.3. It received tentative approval, together with a referees' report recommending the reconsideration of some elements of the design [IFI97]; a response has already been made [LD97a]. The present version of...

  19. On the extended and Allan spectra and topological radii

    Directory of Open Access Journals (Sweden)

    Hugo Arizmendi-Peimbert

    2012-01-01

    Full Text Available In this paper we prove that the extended spectrum \\(\\Sigma(x\\, defined by W. Żelazko, of an element \\(x\\ of a pseudo-complete locally convex unital complex algebra \\(A\\ is a subset of the spectrum \\(\\sigma_A(x\\, defined by G.R. Allan. Furthermore, we prove that they coincide when \\(\\Sigma(x\\ is closed. We also establish some order relations between several topological radii of \\(x\\, among which are the topological spectral radius \\(R_t(x\\ and the topological radius of boundedness \\(\\beta_t(x\\.

  20. Boundary conditions for spacelike and timelike warped AdS_3 spaces in topologically massive gravity

    CERN Document Server

    Compère, Geoffrey

    2009-01-01

    We propose a set of consistent boundary conditions containing the spacelike warped black holes solutions of Topologically Massive Gravity. We prove that the corresponding asymptotic charges whose algebra consists in a Virasoro algebra and a current algebra are finite, integrable and conserved. A similar analysis is performed for the timelike warped AdS_3 spaces which contain a family of regular solitons. The energy of the boundary Virasoro excitations is positive while the current algebra leads to negative (for the spacelike warped case) and positive (for the timelike warped case) energy boundary excitations. We discuss the relationship with the Brown-Henneaux boundary conditions.

  1. Categorical Formulation of Finite-Dimensional Quantum Algebras

    Science.gov (United States)

    Vicary, Jamie

    2011-06-01

    We describe how †-Frobenius monoids give the correct categorical description of certain kinds of finite-dimensional `quantum algebras'. We develop the concept of an involution monoid, and use it to construct a correspondence between finite-dimensional C*-algebras and certain types of †-Frobenius monoids in the category of Hilbert spaces. Using this technology, we recast the spectral theorems for commutative C*-algebras and for normal operators into an explicitly categorical language, and we examine the case that the results of measurements do not form finite sets, but rather objects in a finite Boolean topos. We describe the relevance of these results for topological quantum field theory.

  2. The Algebraic Formulation: Why and How to Use it

    Directory of Open Access Journals (Sweden)

    Ferretti Elena

    2015-01-01

    Full Text Available Finite Element, Boundary Element, Finite Volume, and Finite Difference Analysis are all commonly used in nearly all engineering disciplines to simplify complex problems of geometry and change, but they all tend to oversimplify. This paper shows a more recent computational approach developed initially for problems in solid mechanics and electro-magnetic field analysis. It is an algebraic approach, and it offers a more accurate representation of geometric and topological features.

  3. Logic TK: Algebraic Notions from Tarski’s Consequence Operator

    Directory of Open Access Journals (Sweden)

    Hércules A. Feitosa

    2010-04-01

    Full Text Available Tarski presented his definition of consequence operator to explain the most important notions which any logical consequence concept must contemplate. A Tarski space is a pair constituted by a nonempty set and a consequence operator. This structure characterizes an almost topological space. This paper presents an algebraic view of the Tarski spaces and introduces a modal propositional logic which has as a model exactly the closed sets of a Tarski space.

  4. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  5. Rings of quotients of incidence algebras and path algebras

    DEFF Research Database (Denmark)

    Esparza, Eduardo Ortega

    2006-01-01

    We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets...

  6. The Planar Algebra Associated to a Kac Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; Zeph Landau; V S Sunder

    2003-02-01

    We obtain (two equivalent) presentations – in terms of generators and relations-of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.

  7. Structure of Solvable Quadratic Lie Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin-sheng

    2005-01-01

    @@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.

  8. Space, matter and topology

    CERN Document Server

    Asorey, Manuel

    2016-01-01

    An old branch of mathematics, Topology, has opened the road to the discovery of new phases of matter. A hidden topology in the energy spectrum is the key for novel conducting/insulating properties of topological matter.

  9. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  10. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  11. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  12. On Griess Algebras

    Directory of Open Access Journals (Sweden)

    Michael Roitman

    2008-08-01

    Full Text Available In this paper we prove that for any commutative (but in general non-associative algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V_0 oplus V2 oplus V3 oplus ..., such that dim V_0 = 1 and V_2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  13. On Griess Algebras

    Science.gov (United States)

    Roitman, Michael

    2008-08-01

    In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V0 Å V2 Å V3 Å ¼, such that dim V0 = 1 and V2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  14. Algebra for Gifted Third Graders.

    Science.gov (United States)

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  15. Order Units in a *-Algebra

    Indian Academy of Sciences (India)

    Anil K Karn

    2003-02-01

    Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.

  16. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  17. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  18. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  19. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  20. Recollements of extension algebras

    Institute of Scientific and Technical Information of China (English)

    CHEN; Qinghua(陈清华); LIN; Yanan(林亚南)

    2003-01-01

    Let A be a finite-dimensional algebra over arbitrary base field k. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensional k-algebras B and C:D-(Mod- B) ( ) D-(Mod- A) ( ) D-(Mod- C),then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):D-(Mod - T(B)) ( ) D-(Mod - T(A)) ( ) D-(Mod - T(C)).

  1. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  2. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2010-01-01

    Vector SpacesFieldsThe Space FnVector Spaces over an Arbitrary Field Subspaces of Vector SpacesSpan and IndependenceBases and Finite Dimensional Vector SpacesBases and Infinite Dimensional Vector SpacesCoordinate VectorsLinear TransformationsIntroduction to Linear TransformationsThe Range and Kernel of a Linear TransformationThe Correspondence and Isomorphism TheoremsMatrix of a Linear TransformationThe Algebra of L(V, W) and Mmn(F)Invertible Transformations and MatricesPolynomialsThe Algebra of PolynomialsRoots of PolynomialsTheory of a Single Linear OperatorInvariant Subspaces of an Operator

  3. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  4. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  5. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  6. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  7. Lie 2-algebra models

    International Nuclear Information System (INIS)

    In this paper, we begin the study of zero-dimensional field theories with fields taking values in a semistrict Lie 2-algebra. These theories contain the IKKT matrix model and various M-brane related models as special cases. They feature solutions that can be interpreted as quantized 2-plectic manifolds. In particular, we find solutions corresponding to quantizations of ℝ3, S3 and a five-dimensional Hpp-wave. Moreover, by expanding a certain class of Lie 2-algebra models around the solution corresponding to quantized ℝ3, we obtain higher BF-theory on this quantized space

  8. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  9. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  10. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  11. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  12. Automorphism groups of pointed Hopf algebras

    Institute of Scientific and Technical Information of China (English)

    YANG Shilin

    2007-01-01

    The group of Hopf algebra automorphisms for a finite-dimensional semisimple cosemisimple Hopf algebra over a field k was considered by Radford and Waterhouse. In this paper, the groups of Hopf algebra automorphisms for two classes of pointed Hopf algebras are determined. Note that the Hopf algebras we consider are not semisimple Hopf algebras.

  13. Derivations of generalized Weyl algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai(苏育才)

    2003-01-01

    A class of the associative and Lie algebras A[D] = A × F[D] of Weyl type are studied, where Ais a commutative associative algebra with an identity element over a field F of characteristic zero, and F[D] isthe polynomial algebra of a finite dimensional commutative subalgebra of locally finite derivations of A suchthat A is D-simple. The derivations of these associative and Lie algebras are precisely determined.

  14. Optimal Algorithm for Algebraic Factoring

    Institute of Scientific and Technical Information of China (English)

    支丽红

    1997-01-01

    This paper presents on optimized method for factoring multivariate polynomials over algebraic extension fields defined by an irreducible ascending set. The basic idea is to convert multivariate polynomials to univariate polynomials and algebraic extension fields to algebraic number fields by suitable integer substituteions.Then factorize the univariate polynomials over the algebraic number fields.Finally,construct mulativariate factors of the original polynomial by Hensel lemma and TRUEFACTOR test.Some examples with timing are included.

  15. Differential topology

    CERN Document Server

    Margalef-Roig, J

    1992-01-01

    ...there are reasons enough to warrant a coherent treatment of the main body of differential topology in the realm of Banach manifolds, which is at the same time correct and complete. This book fills the gap: whenever possible the manifolds treated are Banach manifolds with corners. Corners add to the complications and the authors have carefully fathomed the validity of all main results at corners. Even in finite dimensions some results at corners are more complete and better thought out here than elsewhere in the literature. The proofs are correct and with all details. I see this book as a reliable monograph of a well-defined subject; the possibility to fall back to it adds to the feeling of security when climbing in the more dangerous realms of infinite dimensional differential geometry. Peter W. Michor

  16. Skin Cancer Foundation

    Science.gov (United States)

    ... Host a Fundraising Event | About Us | Store The Skin Cancer Foundation The Skin Cancer Foundation is the ... A "Sunscreen Gene"? Skin Cancer Facts & Statistics The Skin Cancer Foundation's Champions for Change Gala 2016 Learn ...

  17. Meadow enriched ACP process algebras

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization o

  18. Some Hopf algebras of trees

    NARCIS (Netherlands)

    Laan, P. van der

    2001-01-01

    In the literature several Hopf algebras that can be described in terms of trees have been studied. This paper tries to answer the question whether one can understand some of these Hopf algebras in terms of a single mathematical construction. The starting point is the Hopf algebra of rooted trees as

  19. Computer Algebra in Particle Physics

    OpenAIRE

    Weinzierl, Stefan

    2002-01-01

    These lectures given to graduate students in theoretical particle physics, provide an introduction to the ``inner workings'' of computer algebra systems. Computer algebra has become an indispensable tool for precision calculations in particle physics. A good knowledge of the basics of computer algebra systems allows one to exploit these systems more efficiently.

  20. The Maximal Graded Left Quotient Algebra of a Graded Algebra

    Institute of Scientific and Technical Information of China (English)

    Gonzalo ARANDA PINO; Mercedes SILES MOLINA

    2006-01-01

    We construct the maximal graded left quotient algebra of every graded algebra A without homogeneous total right zero divisors as the direct limit of graded homomorphisms (of left A-modules)from graded dense left ideals of A into a graded left quotient algebra of A. In the case of a superalgebra,and with some extra hypothesis, we prove that the component in the neutral element of the group of the maximal graded left quotient algebra coincides with the maximal left quotient algebra of the component in the neutral element of the group of the superalgebra.

  1. SD-CAS: Spin Dynamics by Computer Algebra System.

    Science.gov (United States)

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.

  2. Certain associative algebras similar to $U(sl_{2})$ and Zhu's algebra $A(V_{L})$

    OpenAIRE

    Dong, Chongying; Li, Haisheng; Mason, Geoffrey

    1996-01-01

    It is proved that Zhu's algebra for vertex operator algebra associated to a positive-definite even lattice of rank one is a finite-dimensional semiprimitive quotient algebra of certain associative algebra introduced by Smith. Zhu's algebra for vertex operator algebra associated to any positive-definite even lattice is also calculated and is related to a generalization of Smith's algebra.

  3. Observable Algebra in Field Algebra of G-spin Models

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.

  4. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  5. A Verified Algebra for Linked Data

    Directory of Open Access Journals (Sweden)

    Ross Horne

    2011-07-01

    Full Text Available A foundation is investigated for the application of loosely structured data on the Web. This area is often referred to as Linked Data, due to the use of URIs in data to establish links. This work focuses on emerging W3C standards which specify query languages for Linked Data. The approach is to provide an abstract syntax to capture Linked Data structures and queries, which are then internalised in a process calculus. An operational semantics for the calculus specifies how queries, data and processes interact. A labelled transition system is shown to be sound with respect to the operational semantics. Bisimulation over the labelled transition system is used to verify an algebra over queries. The derived algebra is a contribution to the application domain. For instance, the algebra may be used to rewrite a query to optimise its distribution across a cluster of servers. The framework used to provide the operational semantics is powerful enough to model related calculi for the Web.

  6. The Power of Algebra.

    Science.gov (United States)

    Boiteau, Denise; Stansfield, David

    This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…

  7. Questions on Algebraic Varieties

    CERN Document Server

    Marchionna, E

    2011-01-01

    P. Dolbeault: Residus et courants.- D. Mumford: Varieties defined by quadratic equations.- A. Neron: Hauteurs et theorie des intersections.- A. Seidenberg: Report on analytic product.- C.S. Seshadri: Moduli of p-vector bundles over an algebraic curve.- O. Zariski: Contributions to the problem of equi-singularity.

  8. Operation of Algebraic Fractions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The first step in factorizing algebraic expressions is to take out the common factors of all the terms of the expression.For example,2x~2+14x+24=2(x~2+7x+12)=2(x+3)(x+4) The three identities are also useful in factorizing some quadratic expressions:

  9. Simple algebras of Weyl type

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai(

    2001-01-01

    [1] Kawamoto, N., Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J., 1986, 16: 417.[2] Osborn, J. M., New simple infinite-dimensional Lie algebras of characteristic 0, J. Alg., 1996, 185: 820.[3] Dokovic, D. Z., Zhao, K., Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. of Amer. Math. Soc., 1998, 350(2): 643.[4] Dokovic, D. Z., Zhao, K., Generalized Cartan type W Lie algebras in characteristic zero, J. Alg., 1997, 195: 170.[5] Osborn, J. M., Zhao, K., Generalized Poisson bracket and Lie algebras of type H in characteristic 0, Math. Z., 1999, 230: 107.[6] Osborn, J. M., Zhao, K., Generalized Cartan type K Lie algebras in characteristic 0, Comm. Alg., 1997, 25: 3325.[7] Zhao, K., Isomorphisms between generalized Cartan type W Lie algebras in characteristic zero, Canadian J. Math., 1998, 50: 210.[8] Passman, D. P., Simple Lie algebras of Witt type, J. Algebra, 1998, 206: 682.[9] Jordan, D. A., On the simplicity of Lie algebras of derivations of commutative algebras, J. Alg., 2000, 206: 682.[10] Xu, X., New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Alg., 2000, 244: 23.[11] Su, Y., Xu, X., Zhang, H., Derivation-simple algebras and the structures of Lie algebras of generalized Witt type, J. Alg., 2000, 233: 642.[12] Dixmer, J., Enveloping Algebras, Amsterdam: North Holland, 1977.

  10. On ultraproducts of operator algebras

    Institute of Scientific and Technical Information of China (English)

    LI Weihua

    2005-01-01

    Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.

  11. Ockham Algebras Arising from Monoids

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; H.J. Silva; J.C. Varlet

    2001-01-01

    An Ockham algebra (L; f) is of boolean shape if its lattice reduct L is boolean and f is not the complementation. We investigate a natural construction of Ockham algebras of boolean shape from any given monoid. Of particular interest is the question of when such algebras are subdirectly irreducible. In settling this, we obtain what is probably the first example of a subdirectly irreducible Ockham algebra that does not belong to the generalized variety Kω. We also prove that every semigroup can be embedded in the monoid of endomorphisms of an Ockham algebra of boolean shape.

  12. Quantum algebra of $N$ superspace

    CERN Document Server

    Hatcher, N; Stephany, J

    2006-01-01

    We identify the quantum algebra of position and momentum operators for a quantum system in superspace bearing an irreducible representation of the super Poinca\\'e algebra. This algebra is noncommutative for the position operators. We use the properties of superprojectors in D=4 $N$ superspace to construct explicit position and momentum operators satisfying the algebra. They act on wave functions corresponding to different supermultiplets classified by its superspin. We show that the quantum algebra associated to the massive superparticle is a particular case described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently.

  13. Algebraic Approach to Algorithmic Logic

    Directory of Open Access Journals (Sweden)

    Bancerek Grzegorz

    2014-09-01

    Full Text Available We introduce algorithmic logic - an algebraic approach according to [25]. It is done in three stages: propositional calculus, quantifier calculus with equality, and finally proper algorithmic logic. For each stage appropriate signature and theory are defined. Propositional calculus and quantifier calculus with equality are explored according to [24]. A language is introduced with language signature including free variables, substitution, and equality. Algorithmic logic requires a bialgebra structure which is an extension of language signature and program algebra. While-if algebra of generator set and algebraic signature is bialgebra with appropriate properties and is used as basic type of algebraic logic.

  14. Notes on Piecewise-Koszul Algebras

    Institute of Scientific and Technical Information of China (English)

    Jia Feng L(U); Xiao Lan YU

    2011-01-01

    The relationships between piecewise-Koszul algebras and other "Koszul-type" algebras are discussed.. The Yoneda-Ext algebra and the dual algebra of a piecewise-Koszul algebra are studied, and a sufficient condition for the dual algebra A to be piecewise-Koszul is given. Finally, by studying the trivial extension algebras of the path algebras of Dynkin quivers in bipartite orientation, we give explicit constructions for piecewise-Koszul algebras with arbitrary "period" and piecewise-Koszul algebras with arbitrary "jump-degree".

  15. The Green formula and heredity of algebras

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Green, J. A., Hall algebras, hereditary algebras and quantum groups, Invent. Math. 1995, 120: 361-377.[2]Ringel, C. M., Green's theorem on Hall algebras, in Representations of Algebras and Related Topics, CMS Conference Proceedings 19, Providence, 1996, 185-245.[3]Xiao J., Drinfeld double and Ringel-Green theory of Hall Algebras, J. Algebra, 1997, 190: 100-144.[4]Sevenhant, B., Van den Bergh, M., A relation between a conjecture of Kac and the structure of the Hall algebra,J. Pure Appl. Algebra, 2001, 160: 319-332.[5]Deng B., Xiao, J., On double Ringel-Hall algebras, J. Algebra, 2002, 251: 110-149.

  16. $A\\mathcal{T}$-Algebras and Extensions of $AT$-Algebras

    Indian Academy of Sciences (India)

    Hongliang Yao

    2010-04-01

    Lin and Su classified $A\\mathcal{T}$-algebras of real rank zero. This class includes all $A\\mathbb{T}$-algebras of real rank zero as well as many *-algebras which are not stably finite. An $A\\mathcal{T}$-algebra often becomes an extension of an $A\\mathbb{T}$-algebra by an -algebra. In this paper, we show that there is an essential extension of an $A\\mathbb{T}$-algebra by an -algebra which is not an $A\\mathcal{T}$-algebra. We describe a characterization of an extension of an $A\\mathbb{T}$-algebra by an -algebra if is an $A\\mathcal{T}$-algebra.

  17. The topology of geology 2: Topological uncertainty

    Science.gov (United States)

    Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Wellmann, J. Florian; Pakyuz-Charrier, Evren

    2016-10-01

    Uncertainty is ubiquitous in geology, and efforts to characterise and communicate it are becoming increasingly important. Recent studies have quantified differences between perturbed geological models to gain insight into uncertainty. We build on this approach by quantifying differences in topology, a property that describes geological relationships in a model, introducing the concept of topological uncertainty. Data defining implicit geological models were perturbed to simulate data uncertainties, and the amount of topological variation in the resulting model suite measured to provide probabilistic assessments of specific topological hypotheses, sources of topological uncertainty and the classification of possible model realisations based on their topology. Overall, topology was found to be highly sensitive to small variations in model construction parameters in realistic models, with almost all of the several thousand realisations defining distinct topologies. In particular, uncertainty related to faults and unconformities was found to have profound topological implications. Finally, possible uses of topology as a geodiversity metric and validation filter are discussed, and methods of incorporating topological uncertainty into physical models are suggested.

  18. The topology of geology 1: Topological analysis

    Science.gov (United States)

    Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Ogarko, Vitaliy; Wellmann, J. Florian; Pakyuz-Charrier, Evren

    2016-10-01

    Topology has been used to characterise and quantify the properties of complex systems in a diverse range of scientific domains. This study explores the concept and applications of topological analysis in geology. We have developed an automatic system for extracting first order 2D topological information from geological maps, and 3D topological information from models built with the Noddy kinematic modelling system, and equivalent analyses should be possible for other implicit modelling systems. A method is presented for describing the spatial and temporal topology of geological models using a set of adjacency relationships that can be expressed as a topology network, thematic adjacency matrix or hive diagram. We define three types of spatial topology (cellular, structural and lithological) that allow us to analyse different aspects of the geology, and then apply them to investigate the geology of the Hamersley Basin, Western Australia.

  19. Proposition Algebra with Projective Limits

    CERN Document Server

    Bergstra, J A

    2008-01-01

    Sequential logic deviates from propositional logic by taking into account that atomic propositions yield different Boolean values at different times during the sequential evaluation of a single proposition. Reactive valuations capture this dynamics of a proposition's environment. This logic is phrased as an equationally specified algebra rather than in the form of proof rules. It is strictly more general than Boolean algebra to the extent that the classical connectives fail to be expressively complete in the sequential case. The proposition algebra PRA is developed in a fashion similar to the process algebra ACP and the program algebra PGA via an algebraic specification which has a meaningful initial algebra for which a range of courser congruences are considered important as well. In addition infinite objects (that is propositions, processes and programs respectively) are preferably dealt with by means of an inverse limit construction which allows the transfer of knowledge concerning finite objects to facts ...

  20. Algebraic connectivity and graph robustness.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  1. Abstract algebra structure and application

    CERN Document Server

    Finston, David R

    2014-01-01

    This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

  2. On Dunkl angular momenta algebra

    Science.gov (United States)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  3. Optical image encryption topology.

    Science.gov (United States)

    Yong-Liang, Xiao; Xin, Zhou; Qiong-Hua, Wang; Sheng, Yuan; Yao-Yao, Chen

    2009-10-15

    Optical image encryption topology is proposed based on the principle of random-phase encoding. Various encryption topological units, involving peer-to-peer, ring, star, and tree topologies, can be realized by an optical 6f system. These topological units can be interconnected to constitute an optical image encryption network. The encryption and decryption can be performed in both digital and optical methods.

  4. The topology of architecture

    DEFF Research Database (Denmark)

    Marcussen, Lars

    2003-01-01

    Rummets topologi, Historiens topologi: betragtninger om menneskets orientering til rum - fra hulen over beherskelse af flere akser til det flydende rum.......Rummets topologi, Historiens topologi: betragtninger om menneskets orientering til rum - fra hulen over beherskelse af flere akser til det flydende rum....

  5. Quantum topological geometrodynamics

    International Nuclear Information System (INIS)

    The description of 3-space as a spacelike 3-surface X of the space H = M4 x CP2 (Product of Minkowski space and two-dimensional complex projective space CP2) and the idea that particles correspond to 3-surfaces of finite size in H are the basic ingredients of topological geometrodynamics (TGD), an attempt at a geometry-based unification of the fundamental interactions. The observations that the Schrodinger equation can be derived from a variational principle and that existence of a unitary S-matrix follows from the phase symmetry of this action lead to the idea that quantum TGD should be derivable from a quadratic phase-symmetric variational principle for some kind of superfield (describing both fermions and bosons) in the configuration space consisting of the spacelike 3-surfaces of H. This idea as such has not led to a calculable theory. The reason is the wrong realization of the general coordinate invariance. The crucial observation is that the space Map(X,H), the space of maps from an abstract 3-manifold X to H, inherits a coset space structure from H and can be given a Kahler geometry invariant under the local M4 x SU(3) an under the group Diff of X diffeomorphisms. The space Map(X,H) is taken as a basic geometric object and general coordinate invariance is realized by requiring that superfields defined in Map(X,H) are diffeo-invariant, so that they can be regarded as fields in Map(X,H)/Diff, the space of surfaces with given manifold topology. Superd'Alembert equations are found to reduce to a simple algebraic condition due to the constant curvature and Kahler properties of Map(X,H). The construction of physical states leads by local M4 x SU(3) invariance to a formalism closely resembling the quantization of strings. The pointlike limit of the theory is discussed. Finally, a formal expression for the S-matrix of the theory is derived and general properties of the S-matrix are discussed

  6. Wilson operator algebras and ground states for coupled BF theories

    CERN Document Server

    Tiwari, Apoorv; Ryu, Shinsei

    2016-01-01

    The multi-flavor $BF$ theories in (3+1) dimensions with cubic or quartic coupling are the simplest topological quantum field theories that can describe fractional braiding statistics between loop-like topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and multiplets of ground states on three torus. In particular, by quantizing these coupled $BF$ theories on the three-torus, we explicitly calculate the $\\mathcal{S}$- and $\\mathcal{T}$-matrices, which encode fractional braiding statistics and topological spin of loop-like excitations, respectively. In the coupled $BF$ theories with cubic and quartic coupling, the Hopf link and Borromean ring of loop excitations, together with point-like excitations, form composite particles.

  7. Free Malcev algebra of rank three

    OpenAIRE

    Kornev, Alexandr

    2011-01-01

    We find a basis of the free Malcev algebra on three free generators over a field of characteristic zero. The specialty and semiprimity of this algebra are proved. In addition, we prove the decomposability of this algebra into subdirect sum of the free Lie algebra rank three and the free algebra of rank three of variety of Malcev algebras generated by a simple seven-dimensional Malcev algebra.

  8. Topology for statistical modeling of petascale data.

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, Valerio (University of Utah, Salt Lake City, UT); Mascarenhas, Ajith Arthur; Rusek, Korben (Texas A& M University, College Station, TX); Bennett, Janine Camille; Levine, Joshua (University of Utah, Salt Lake City, UT); Pebay, Philippe Pierre; Gyulassy, Attila (University of Utah, Salt Lake City, UT); Thompson, David C.; Rojas, Joseph Maurice (Texas A& M University, College Station, TX)

    2011-07-01

    This document presents current technical progress and dissemination of results for the Mathematics for Analysis of Petascale Data (MAPD) project titled 'Topology for Statistical Modeling of Petascale Data', funded by the Office of Science Advanced Scientific Computing Research (ASCR) Applied Math program. Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is thus to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, our approach is based on the complementary techniques of combinatorial topology and statistical modeling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modeling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. This document summarizes the technical advances we have made to date that were made possible in whole or in part by MAPD funding. These technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modeling, and (3) new integrated topological and statistical methods.

  9. Boson condensation in topologically ordered quantum liquids

    Science.gov (United States)

    Neupert, Titus; He, Huan; von Keyserlingk, Curt; Sierra, Germán; Bernevig, B. Andrei

    2016-03-01

    Boson condensation in topological quantum field theories (TQFT) has been previously investigated through the formalism of Frobenius algebras and the use of vertex lifting coefficients. While general, this formalism is physically opaque and computationally arduous: analyses of TQFT condensation are practically performed on a case by case basis and for very simple theories only, mostly not using the Frobenius algebra formalism. In this paper, we provide a way of treating boson condensation that is computationally efficient. With a minimal set of physical assumptions, such as commutativity of lifting and the definition of confined particles, we can prove a number of theorems linking Boson condensation in TQFT with chiral algebra extensions, and with the factorization of completely positive matrices over Z+. We present numerically efficient ways of obtaining a condensed theory fusion algebra and S matrices; and we then use our formalism to prove several theorems for the S and T matrices of simple current condensation and of theories which upon condensation result in a low number of confined particles. We also show that our formalism easily reproduces results existent in the mathematical literature such as the noncondensability of five and ten layers of the Fibonacci TQFT.

  10. Stochastic relations foundations for Markov transition systems

    CERN Document Server

    Doberkat, Ernst-Erich

    2007-01-01

    Collecting information previously scattered throughout the vast literature, including the author's own research, Stochastic Relations: Foundations for Markov Transition Systems develops the theory of stochastic relations as a basis for Markov transition systems. After an introduction to the basic mathematical tools from topology, measure theory, and categories, the book examines the central topics of congruences and morphisms, applies these to the monoidal structure, and defines bisimilarity and behavioral equivalence within this framework. The author views developments from the general

  11. Vertex Algebras, Kac-Moody Algebras, and the Monster

    Science.gov (United States)

    Borcherds, Richard E.

    1986-05-01

    It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.

  12. Topological Field Theory and Matrix Product States

    CERN Document Server

    Kapustin, Anton; You, Minyoung

    2016-01-01

    It is believed that most (perhaps all) gapped phases of matter can be described at long distances by Topological Quantum Field Theory (TQFT). On the other hand, it has been rigorously established that in 1+1d ground states of gapped Hamiltonians can be approximated by Matrix Product States (MPS). We show that the state-sum construction of 2d TQFT naturally leads to MPS in their standard form. In the case of systems with a global symmetry G, this leads to a classification of gapped phases in 1+1d in terms of Morita-equivalence classes of G-equivariant algebras. Non-uniqueness of the MPS representation is traced to the freedom of choosing an algebra in a particular Morita class. In the case of Short-Range Entangled phases, we recover the group cohomology classification of SPT phases.

  13. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Property testing was initially studied from various motivations in 1990’s. A code C  GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  14. Operator product expansion algebra

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jan [CPHT, Ecole Polytechnique, Paris-Palaiseau (France)

    2014-07-01

    The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.

  15. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2009-01-01

    Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  16. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  17. The Algebra Artist

    Science.gov (United States)

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  18. Light Cone Current Algebra

    OpenAIRE

    Fritzsch, H.; Gell-Mann, M.

    2003-01-01

    This talk follows by a few months a talk by the same authors on nearly the same subject at the Coral Gables Conference. The ideas presented here are basically the same, but with some amplification, some change of viewpoint, and a number of new questions for the future. For our own convenience, we have transcribed the Coral Gables paper, but with an added ninth section, entitled "Problems of light cone current algebra", dealing with our present views and emphasizing research topics that requir...

  19. Clifford Algebras and Spinors

    International Nuclear Information System (INIS)

    Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)

  20. Algebra & trigonometry II essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  1. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. The author examines the problem and constructs alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the FORTRAN portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers. 13 references.

  2. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. In this paper we examine the problem and construct alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the Fortran portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers.

  3. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  4. Semisimple Metacyclic Group Algebras

    Indian Academy of Sciences (India)

    Gurmeet K Bakshi; Shalini Gupta; Inder Bir S Passi

    2011-11-01

    Given a group of order $p_1p_2$, where $p_1,p_2$ are primes, and $\\mathbb{F}_q$, a finite field of order coprime to $p_1p_2$, the object of this paper is to compute a complete set of primitive central idempotents of the semisimple group algebra $\\mathbb{F}_q[G]$. As a consequence, we obtain the structure of $\\mathbb{F}_q[G]$ and its group of automorphisms.

  5. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  6. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri

    2009-01-01

    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  7. Algebraic volume density property of affine algebraic manifolds

    OpenAIRE

    Kaliman, Shulim; Kutzschebauch, Frank

    2009-01-01

    We introduce the notion of algebraic volume density property for affine algebraic manifolds and prove some important basic facts about it, in particular that it implies the volume density property. The main results of the paper are producing two big classes of examples of Stein manifolds with volume density property. One class consists of certain affine modifications of $\\C^n$ equipped with a canonical volume form, the other is the class of all Linear Algebraic Groups equipped with the left i...

  8. LOCAL AUTOMORPHISMS OF SEMISIMPLE ALGEBRAS AND GROUP ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Wang Dengyin; Guan Qi; Zhan9 Dongju

    2011-01-01

    Let F be a field of characteristic not 2,and let A be a finite-dimensional semisimple F-algebra.All local automorphisms of A are characterized when all the degrees of A are larger than 1.If F is further assumed to be an algebraically closed field of characteristic zero,K a finite group,FK the group algebra of K over F,then all local automorphisms of FK are also characterized.

  9. Exceptional Vertex Operator Algebras and the Virasoro Algebra

    OpenAIRE

    Tuite, Michael P.

    2008-01-01

    We consider exceptional vertex operator algebras for which particular Casimir vectors constructed from the primary vectors of lowest conformal weight are Virasoro descendants of the vacuum. We discuss constraints on these theories that follow from an analysis of appropriate genus zero and genus one two point correlation functions. We find explicit differential equations for the partition function in the cases where the lowest weight primary vectors form a Lie algebra or a Griess algebra. Exam...

  10. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  11. The tensor hierarchy algebra

    Energy Technology Data Exchange (ETDEWEB)

    Palmkvist, Jakob, E-mail: palmkvist@ihes.fr [Institut des Hautes Etudes Scientifiques, 35 Route de Chartres, FR-91440 Bures-sur-Yvette (France)

    2014-01-15

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.

  12. Priority in Process Algebras

    Science.gov (United States)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  13. New interpretation for the determinant formulae of the N=2 superconformal algebras

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1996-01-01

    We prove that the usual interpretation given for the N=2 determinant formulae, first due to Boucher, Friedan and Kent, must be corrected. The key fact is the spectral flow automorphism of the Twisted Topological algebra, mapping singular states into singular states, which implies after the untwisting that the charged and uncharged singular states of the Aperiodic NS algebra, built on chiral or antichiral primaries, must come in pairs. This fact is not accounted for by the spectra of singular states proposed by BFK. The actual computation of singular states agrees with the predictions of the topological algebra automorphism implying that at any semi-integer level (except 1/2) there exist at least two charged h.w. singular states outside the vanishing plane g^A_k=0, sitting rather on the quadratic vanishing surface f^A_{r,s}=0. We write down the correct spectra of singular states for the Twisted Topological algebra and for the Aperiodic NS algebra for singular states built on chiral and antichiral primaries.

  14. Stability of functional equations in Banach algebras

    CERN Document Server

    Cho, Yeol Je; Rassias, Themistocles M; Saadati, Reza

    2015-01-01

    Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the l...

  15. The Affine q-Schur algebra

    OpenAIRE

    Green, R. M.

    1997-01-01

    We introduce an analogue of the $q$-Schur algebra associated to Coxeter systems of type $\\hat A_{n-1}$. We give two constructions of this algebra. The first construction realizes the algebra as a certain endomorphism algebra arising from an affine Hecke algebra of type $\\hat A_{r-1}$, where $n \\geq r$. This generalizes the original $q$-Schur algebra as defined by Dipper and James, and the new algebra contains the ordinary $q$-Schur algebra and the affine Hecke algebra as subalgebras. Using th...

  16. An Improved Algorithm for Generating Database Transactions from Relational Algebra Specifications

    CERN Document Server

    Dougherty, Daniel J

    2010-01-01

    Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler, Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent progress in improving the robustness and efficiency of this transformation.

  17. An Improved Algorithm for Generating Database Transactions from Relational Algebra Specifications

    OpenAIRE

    Dougherty, Daniel J.

    2010-01-01

    Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler, Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent progress in improving the robustness and efficiency of this transforma...

  18. An Improved Algorithm for Generating Database Transactions from Relational Algebra Specifications

    Directory of Open Access Journals (Sweden)

    Daniel J. Dougherty

    2010-03-01

    Full Text Available Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler, Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent progress in improving the robustness and efficiency of this transformation.

  19. DERIVATIONS ON DIFFERENTIAL OPERATOR ALGEBRA AND WEYL ALGEBRA

    Institute of Scientific and Technical Information of China (English)

    CHENCAOYU

    1996-01-01

    Let L be an n-dimensional nilpotent Lie algebra with a basis{x1…,xn),and every xi acts as a locally nilpotent derivation on algebra A. This paper shows that there exists a set of derivations{y1,…,yn}on U(L) such that (A#U(L))#k{y,1,…,yn] is ismorphic to the Weyl algebra An(A).The author also uses the de4rivations to obtain a necessary and sufficient condition for a finite dimesional Lie algebra to be nilpotent.

  20. Assessing Algebraic Solving Ability: A Theoretical Framework

    Science.gov (United States)

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…